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Description of subsurface reservoirs is important for decision-making in the 

development of hydrocarbon resources. Reservoir description concerns (1) geophysical 

interpretation: prediction of rock properties from geophysical measurements such as 

borehole and seismic amplitude data, and (2) reservoir modeling: modeling of the spatial 

distribution of rock properties conditioned by geophysical interpretations (geological 

modeling), and simulation of fluid-transport, elastic, mechanical, and electromagnetic 

phenomena, among others, taking place in a geological model (reservoir simulation). 

Reservoir description based on stochastic reservoir modeling and conditioned by fluid 

production history enables uncertainty estimation for hydrocarbon reserves and fluid 

production forecast. Accurate reservoir description assists the management of risk and 

profit during the exploration and development of hydrocarbon production resources.  

As one of the most important components of reservoir description, the 

interpretation of well logs provides high-resolution estimations of in situ rock properties 

around the wellbore, such as lithology, porosity, fluid saturation, permeability, and elastic 

moduli. However, conventional petrophysical models are often too simplistic to reproduce 

the complex relationship between well logs and rock properties, especially permeability. 

Therefore, data-driven inferential methods, such as machine learning modeling, are needed 

for more accurate permeability prediction in spatially complex rocks. The accurate 
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prediction of permeability across multiple wells is even more challenging because of 

variable borehole environmental conditions (e.g., drilling fluid and borehole size), different 

logging instruments (e.g., induction vs. lateral resistivity logs), and their vintage (e.g., 

logging-while-drilling vs. wireline logs). To mitigate biases introduced by both variable 

borehole environmental conditions and borehole instruments, well-log normalization is 

commonly implemented prior to performing multi-well interpretation projects. However, 

conventional well-log normalization methods ignore the correlation among different well 

logs and require much effort and expertise by the interpreter.  

The first objective of this dissertation is to develop a data-driven interpretation 

workflow that uses machine-learning methods to perform automatic well-log 

normalization by considering the correlation among different well logs and to accurately 

estimate permeability from the normalized well logs. The workflow consists of four steps: 

(1) identifying well-calibrated wells (type wells) for the wells that need correction (test 

wells), based on the statistical distance of the associated well logs. (2) Obtaining training 

data from type wells to train the machine-learning model to minimize the mean-squared 

error (MSE) of permeability prediction. (3) Performing well-log normalization for the test 

well logs by minimizing the divergence to the type-well well logs. (4) Predicting the 

permeability of test wells using normalized well logs. 

The new interpretation workflow is applied to predict the permeability of 30 wells 

in the Seminole San Andres Unit (SSAU). Compared to the permeability prediction model 

without well-log normalization, the new workflow decreases the mean-squared error 

(MSE) of permeability prediction by 20-50% and greatly accelerates well-log 

preprocessing with the automatic well-log normalization step.  

Stochastic reservoir models conditioned by petrophysical and geophysical 

interpretations are important for uncertainty management during reservoir exploration and 
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development. Conventional geostatistical methods, such as Kriging and multiple-point 

simulation, are commonly used for conditional reservoir modeling. However, it is difficult 

to use these methods to construct reservoir models that reproduce long-range geological 

patterns that are important for fluid-transport prediction, such as the continuity of channels 

in a turbidite channel sedimentary system.  

The second objective of this dissertation is to develop a new machine learning 

method to construct stochastic reservoir models that reproduce important long-range 

patterns and are conditioned by the interpretation of well logs and seismic amplitude data. 

This method consists of three steps: (1) calculating training images of a depositional 

system, such as a turbidite channel or a deepwater lobe system, with rule-based modeling 

methods. (2) Training a new conditional generative adversarial model, referred to as the 

stochastic pix2pix model, to generate reservoir model realizations that reproduce patterns 

in the training images and are conditioned by well logs and seismic amplitude data. (3) 

Using the trained model to generate conditional reservoir model realizations. However, 

limitations on computer memory make it difficult for the new method to generate reservoir 

model realizations with over millions of voxels, such as models with multi-scale 

architectural elements. To further improve the computational efficiency to generate large 

and detailed reservoir models, a hierarchical modeling workflow is developed which uses 

the stochastic pix2pix model to simulate architectural elements from the largest to the 

smallest scale.   

The stochastic pix2pix method is verified by comparing the generated lobe and 

fluvial channel model realizations to reservoir models constructed with the rule-based 

modeling method. Comparisons indicate that conditioning data, such as rock facies 

interpreted from well logs and depositional surfaces identified from seismic amplitude 

data, are well reproduced in model realizations generated with the new method. Statistical 



 10 

metrics, such as semi-variogram, multiple-point histogram (MPH), compensational 

stacking index, geometrical probability map, and rock facies histogram were calculated to 

confirm that model realizations accurately reproduce the patterns observed in the training 

images. Metrics of performance indicate a good reproduction of patterns, for example, the 

mean-absolute error of geometrical probability is below 2%, while the MPH difference is 

below 5%.  

The combination of well-log normalization and interpretation workflow with 

machine learning-based stochastic reservoir modeling enables more accurate formation 

evaluation and better estimates of uncertainties associated with rock property distributions 

than possible with standard modeling approaches.   
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one realization of the training image; (E) is the back-calculation of the 

seismic interpretation and well-log interpretation from the realizations. ...139 
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the discriminator are (E*) true model or (E) realizations from the 
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images at well locations; (D) image generated from random model 

parameters (channel width, levee width, etc.). If the number of training 

images available is small, (A) (B) (D) can be clustered and transformed 

into labels or omitted in the analysis...........................................................140 
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minimizing the mismatch with seismic interpretation and well-log 
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 28 

Figure 3.7: Conditioned realizations with different channel and levee widths. 

Compared to the true model, reservoir model realizations have similar 

shapes of sandy and shale facies but different channel and levee widths. 

These results indicate that we have good control over the architecture 

parameters (in this case, levee and channel widths) by specifying them 

in the input layer (D) of the stochastic pix2pix model. ...............................143 

Figure 3.8: Realizations with fixed channel and levee widths and neck cutoff 

threshold conditioned by seismic interpretation only. The realizations 
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Figure 3.10: Indicator variograms and histograms of different facies. Variograms and 
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channel and point bar, where the lack of information at the center of 
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and overestimation of the continuity of point bars. Differences in the 
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threshold conditioned by both seismic and well-log interpretations. 
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of the true model and geometries of different facies are preserved. 

Compared to the realizations conditioned to seismic interpretation only, 

realizations conditioned to both well log and seismic interpretation 
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Figure 3.12: Probability map and Shannon entropy map for different facies with fixed 

channel and levee widths (conditioned to both well-log and seismic 

interpretations). White dots identify well locations. Similar to 

probability maps generated from realizations conditioned to seismic 

interpretation only, small variations are observed in shale and levee 

distributions. Well-log interpretation provides additional information on 
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Figure 3.16: Indicator variograms and histograms of different facies in reservoir 

model realizations conditioned to high-uncertainty data. Histograms 
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quantile of the realizations, and the variograms of point bar and 

abandoned channels are within 75% quantile. Variograms of realizations 
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Figure 3.21: Realizations generated from the interpretation of field seismic data 

(Kolla et al., 2007). It is worth noting, similar to figure 20, only the 

outline of the seismic interpretation (binary facies map) is used as a 

constraint for new realization generation. Sandy facies are well 

reproduced, and the facies distribution also exhibits sufficient 

variability. Patterns of facies are reproduced; neck cutoffs tend to 
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Chapter 1: Introduction 

Reservoir description involves the interpretation of geophysical data and the 

construction of numerical models for a hydrocarbon reservoir. Interpretation of 

geophysical data, such as well logs and seismic amplitude, provides 1) high-resolution rock 

property estimation at well locations and low-resolution rock property prediction around 

the reservoir, and 2) information about the geological setting, depositional patterns, and 

geometries of depositional elements. To integrate the interpretation results at different 

scales, geostatistical methods are applied to interpolate rock properties between wells and 

build subsurface uncertainty models that honor the field data and reproduce the 

depositional patterns informed by the interpretation of geophysical data. An accurate 

description of subsurface reservoirs and quantification of the associated uncertainties are 

important for the estimation of reserves and hydrocarbon production forecast, which assist 

risk management and decision making regarding the development of an oil field. To 

improve the accuracy of well-log interpretation, I developed a new machine learning (ML) 

workflow for multi-well well-log normalization and permeability prediction, and to 

improve the modeling for subsurface uncertainty, I proposed a new machine learning 

workflow for single- and multi-scale stochastic reservoir modeling.  

To improve the accuracy of permeability prediction, a new machine learning model 

for well-log normalization and permeability prediction workflow is developed. The 

machine learning model is trained with data from type wells, which are wells with well-

calibrated well logs. The model is then used to normalize the well logs and predict the 

permeability of test wells, which are wells with well logs that need correction. Type wells 

are identified with a new divergence-based distance matrix. The new type well 

identification method and permeability prediction model improve the reliability of 
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petrophysical interpretation by imposing a stationarity constraint, which assumes that the 

formation property distribution among a test well and associated type wells is stationary, 

i.e., statistics of formation property distribution do not vary spatially.  

Conventional geostatistical methods for stochastic reservoir modeling generally do 

not reproduce long-range depositional patterns. The sequential simulation strategy adopted 

in conventional geostatistical methods makes it slow to calculate multiple, detailed 

reservoir model realizations. To mitigate these problems, a new method, the stochastic 

pix2pix model, is developed for reservoir modeling. It is trained using training images 

calculated with a rule-based reservoir modeling method and applied to generate multiple 

reservoir model realizations that honor seismic and petrophysical interpretations and 

reproduce depositional patterns.  

The first section of this chapter gives a review of the background and relevant 

literature on permeability prediction, well-log normalization, and reservoir modeling. The 

next three sections discuss the limitations of current methods, the objectives of my 

research, and provide an overview of the new methods. The last section provides an outline 

of the subsequent chapters, related journal publications, and conference proceedings.  

1.1 BACKGROUND AND LITERATURE REVIEW 

The first part of this section reviews the definition and common methods for 

permeability prediction and different types of well-log correction methods; the second part 

of this section reviews the definition of reservoir modeling and common geostatistical 

methods for reservoir modeling. 
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1.1.1 Permeability Prediction and Well-Log Correction 

Accurate permeability prediction is important for the evaluation of the flow 

potential of a reservoir. Permeability prediction is about using direct or indirect 

measurements of formation properties to predict permeability. Many models have been 

proposed to predict permeability from different measurements, such as well logs, porosity, 

grain size, and pore size. Some petrophysical models are based on an ideal physical model, 

such as the tube bundle model (Carman, 1956); others are based on an empirical correlation 

between different features. Krumbein and Monk (1943), Berg (1970), and Van Baaren 

(1979) propose to use grain size to predict permeability; Swanson (1981) and Pittman 

(1992) predict permeability from capillary pressure curve measurements; Nicolaysen and 

Svendsen (1991) use lookup table to directly predict permeability from well logs. In this 

dissertation, I mainly focus on developing new methods of using well logs to predict 

permeability. The simplicity of empirical petrophysical models makes it unlikely to overfit 

the data, thus making the models suitable for permeability prediction in homogeneous 

reservoirs. However, for complex reservoirs with many facies and different degrees of 

diagenesis, simple petrophysical models may underfit the data and not capture the complex 

relationship between permeability and well logs. Overfitting is the situation where the 

model’s performance in the training set is better than that in the test set, and underfitting 

happens when the model is too simple to accurately predict permeability even for the 

training set. 

To capture the complex relationship between permeability and well logs, 

researchers resort to data-driven methods. For example, to make permeability predictions, 

Finol and Jing (2002) use the fuzzy modeling method, Mohaghegh et al. (1995) use an 

artificial neural network (ANN), and Otchere et al. (2021) use ensemble modeling methods, 
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such as the random forest (RF) method. These models can accurately predict permeability 

for the training set (type wells).  

However, an accurate permeability prediction model for type wells does not 

guarantee an accurate permeability prediction for test wells, because logging conditions, 

such as logging tools, logging vintage, and borehole environment of each well may vary, 

resulting in different degrees of bias in well logs. Therefore, well-log correction methods 

based on physical models and statistical models are proposed, respectively.  

To perform the correction based on physical models, interpreters use a physical 

model to simulate potential measurement bias introduced by different environmental 

conditions. For example, borehole correction removes the signal from the borehole to 

obtain the signal solely from the formation by simulating the formation of mud cake and 

intrusion of mud filtrate (Grove and Minerbo, 1991; Doetsch et al., 2010). Despite the 

physical basis of these methods, a lack of information about logging parameters, such as 

mud weight, mud composition, drilling speed, logging tools, etc., and the complexity of 

the logging environment may cause an inaccurate physical model-based correction. 

A more straightforward way of performing well-log correction is to use statistical 

methods to perform well-log normalization. Statistical methods do not require information 

or make assumptions about the logging tools and borehole conditions. They are only based 

on the assumption of the stationarity of formation properties between wells. Well-log 

normalization assumes a test well and associated type wells have similar formation 

properties, which should yield similar well logs if they are measured under the same 

environmental conditions (Bornemann and Doveton, 1981; Sheir, 2004; Pan et al., 2022). 

The dissimilarity between distributions of well logs of each well can be quantified as the 

divergence, which is defined as the statistical distance between two probability 

distributions (Kullback and Leibler, 1951; Fuglede and Topsoe, 2004). In conventional 
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well-log normalization methods, well logs from a test well are linearly scaled to match the 

histograms of well logs from associated type wells. For example, the two-point scaling 

normalization matches the minimum and maximum values of well logs that correspond to 

rocks with distinct petrophysical properties (Sheir, 2004). 

1.1.2 Stochastic Reservoir Modeling 

Stochastic reservoir modeling is important for understanding the propagation of 

uncertainties from the static data, such as understanding of geological setting, well, and 

seismic data, to dynamic data, such as production and pressure data. Pyrcz and Deutsch 

(2014) define reservoir modeling as the calculation of a numerical representation of the 

subsurface over the volume of interest, and the properties of interest. Reservoir models 

should integrate all information available in the field, e.g., interpretations of wireline logs, 

seismic data, and production data. The uncertainty of a reservoir is represented by 

calculating multiple reservoir model realizations and scenarios, and the model realizations 

can be used for risk management during decision-making.  

Many geostatistical methods have been developed to perform stochastic reservoir 

modeling. They are based on different assumptions and are used to reproduce different 

spatial statistics. Sequential Gaussian simulation (SGS), which is one of the earliest 

reservoir modeling methods, is still very popular in the industry for modeling homogenous 

reservoirs. The SGS method is used to simulate a Gaussian field, where the simulated data 

is assumed to be autocorrelated, Gaussian random variables. When it is used for formation 

property modeling, the property to be simulated is transformed to be Gaussian distributed 

with the quantile transformation method, and then the simulation domain is filled with 

property prediction along a random raster path. The value assigned to each cell in a 

reservoir model is calculated as the weighted sum of nearby simulated data, well data, and 
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random residuals (Pyrcz and Deutsch, 2014). The weights of different data and the variance 

of residuals are calculated with the Kriging method (Oliver and Webster, 1990). The SGS 

model realizations only reproduce two-point statistics, i.e., the semi-variogram 

(autocorrelation) of the formation property. Despite the simplicity of this method, i.e., the 

SGS method only requires well data for geostatistics (semi-variogram) calculation, it is 

difficult for the SGS method to generate reservoir model realizations with complex 

patterns.  

To mitigate this problem, the multiple-point simulation (MPS) method is 

introduced. The MPS method extracts patterns, i.e., the multiple-point statistics, from 

training images (TI) using a filter, which is denoted as the template. The pattern extracted 

with the template is denoted as the event, the statistics of which are used to guide the 

stochastic, sequential simulation of a reservoir model. The statistics of events can be stored 

and searched in different ways during the sequential simulation. For example, Strebelle 

(2002) proposes to use the dynamic data storage search tree to store and retrieve patterns; 

Mariethoz (2010) proposes to use the direct sampling method to avoid storage of the event, 

and search for a matched event in a random portion of the TI for every step of the sequential 

simulation. Despite the improvement in pattern reproduction of the MPS method, a large 

template is needed to reproduce large-scale patterns, which requires large computer 

memory and storage. Moreover, sequential simulation with a large template also makes it 

slow to perform the simulation, because of a large number of conditional data within a 

template and a complex search tree. To improve the computational efficiency, the method 

based on the simulation of patches is developed, where a small patch instead of a node is 

simulated for every step of the sequential simulation (Hu and Chugunova, 2008; Pyrcz and 

Deutsch, 2014; Li et al., 2016). However, the lack of continuity near the boundary of 

adjacent, simulated patches is still an unsolved problem. 
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To enable more efficient reservoir modeling and reproduction of large-scale 

patterns, researchers resort to machine learning methods. Generative adversarial neural 

network (GAN), variational autoencoder, and associated variants are recently used for 

unconditional (not conditioned to field data), stochastic reservoir modeling (Goodfellow et 

al., 2014; Chan and Elsheikh, 2017; Laloy et al., 2018). Compared to the MPS method, 

which stores and retrieves pattern information with a search tree, machine learning models 

enable large-scale pattern detection, learning, and retrieval via stacked convolutional 

neural networks that do not require that much computer memory and storage space. Instead 

of sequentially simulating each node like the MPS method, which may take about an hour 

for a large simulation grid (>1000000 cells) and large template size (>800 cells), the 

machine learning model simulates the whole simulation grid at once within a few seconds. 

The fast simulation is achieved by mapping the spatial statistics of training images to a 

simple Gaussian distribution via variational inference. During the training of a GAN 

model, we minimize the divergence between statistics of training images and those of 

generated reservoir model realizations. In a GAN model, two neural networks denoted as 

the generator and the discriminator, are trained adversely to generate reservoir models that 

reproduce the spatial statistics of the training image. The generator is trained to generate 

reservoir models that reproduce patterns in the training image. The discriminator is trained 

to distinguish the training images from reservoir model realizations generated by the 

generator. When the generator is successfully trained, the discriminator cannot tell if 

generated reservoir model realizations are from the training image or not. Jason-Shannon 

(JS) divergence between training image patches and generated reservoir models is a metric 

to identify the training process. Once the JS divergence is minimized, the Nash equilibrium 

is reached (Goodfellow et al., 2014), and the discriminator cannot tell the generated 
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reservoir models from the training image patches, and the generated reservoir model 

realizations are believed to successfully reproduce patterns in the training image.  

1.2 PROBLEM STATEMENT 

Good reservoir models should honor accurate well-log interpretation. Biases in 

well-log measurements and interpretation tend to propagate to reservoir models and 

deteriorate efficient reservoir development; Reservoir models that do not reproduce well 

interpretation results may yield unreliable estimation for the productivity of a reservoir. 

Despite many successful applications of previous methods for well-log correction, 

permeability prediction accuracy imaprovement, and conditional stochastic reservoir 

modeling (Aly et al., 1997, Aguirre and Antelo, 2001; Hassanpour et al., 2013; Quartero et 

al., 2014; Al-Mudhafar, 2017; Wood, 2020), challenges remain for more accurate 

formation evaluation under different logging environments and modeling of a complex 

reservoir. Three problems with the well-log normalization and permeability prediction, and 

two challenges in reservoir modeling are discussed as follows: 

1) For permeability prediction, most machine learning models assume independent 

samples and stationary and independent well-log noise. For example, when the 

mean squared error (MSE) is used as the loss function to train a model, the 

measurement noise covariance is assumed to be a constant, and the autocovariance 

of adjacent data noise is assumed to be zero. However, the well-log bias introduced 

by different logging environments invalidates this assumption. For example, we 

may constantly overestimate or underestimate the permeability for a whole interval 

in some wells, which is a common issue observed when previous methods are 

applied to predict permeability. The nonstationary well-log measurement bias leads 

to the nonstationary permeability prediction error. Therefore, the loss function of 
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the permeability prediction model needs to be modified, and well-log correction is 

needed to include additional constraints to mitigate the effect of the nonstationary 

bias on permeability prediction. 

2) For well-log normalization, conventional methods only consider the univariate 

statistics of each well log. However, the correlation between different types of well 

logs, which is important for constraining the normalization of a well log, is largely 

ignored or requires the subjective knowledge of an expert. An automatic 

normalization method considering the statistics of and between well logs is needed. 

3) For type well identification in well-log normalization, the nearest wells do not 

necessarily have similar formation property distribution, especially in the 

conditions that the reservoir is complex and nonstationary, formation property lacks 

spatial continuity, and the well spacing is large. A method to directly calculate the 

statistical similarity between a test well and a type well is needed. 

4) For reservoir modeling conditioning, the GAN method tends to have mode collapse 

issues, i.e., the lack of diversity in the reservoir model realizations it generates. To 

improve the conditioning to both well and seismic data interpretation while 

generating diverse model realizations, a more robust generative machine learning 

model is needed. 

5) For large, high-resolution reservoir modeling, direct simulation with the GAN 

model may require too much memory and storage resource. A hierarchical 

modeling approach should be integrated with the GAN method for more efficient 

modeling. 
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1.3 RESEARCH OBJECTIVES 

To address the limitations in conventional permeability estimation, well-log 

normalization, type well identification, and reservoir modeling methods, I develop new 

statistical and machine learning models. The scope of this dissertation includes: 

1) Developing a permeability prediction model that is robust to different logging 

environments. 

2) Developing a new, automatic, well-log normalization method that considers the 

joint distribution of each well log. 

3) Developing a type-well identification method to properly identify type (training) 

wells for a test well in a complex reservoir with large well spacing. 

4) Developing a new reservoir modeling method that improves reservoir modeling 

efficiency and generates reservoir model realizations that reproduce long-range 

patterns while honoring well, and seismic data. 

5) Developing a workflow that efficiently calculates high-resolution, large reservoir 

model realizations for reservoirs with many depositional hierarchies. 

1.4 METHOD OVERVIEW 

The interpretation of well logs and the calculation of reservoir models involves the 

manipulation of “big data”, i.e., large, high-dimensional data, which is difficult to handle 

with simple empirical or physical models. To improve our capability of handling “big 

data”, many data-driven methods that rely on advanced statistics are proposed. Data-driven 

methods are applied to the interpretation of well logs and reservoir modeling with success 

(Deng et al., 2019; Wood et al., 2020; Zhang et al., 2022). However, few petrophysical and 

geostatistical insights are incorporated in these methods; the statistical and physical 

assumptions of the methods are still vague and not discussed. Therefore, I extend current 
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machine-learning methods to incorporate geostatistics and petrophysics constraints. The 

assumptions and application of the new data-drive methods and the conventional machine 

learning methods are discussed and compared. The new data-driven methods I developed 

to reach the objectives and mitigate the problems in well-log normalization, permeability 

prediction, and reservoir modeling are as follows: 

1) Conventional well-log interpretation methods do not consider the error introduced 

by logging conditions that vary with wells. To mitigate the effects of different 

logging environments for permeability prediction, I developd a new deep neural 

network model, the discriminative adversarial (DA) neural network. Compared to 

classical neural network models (Mohaghegh et al., 1995; Aminian et al., 2003), 

which only minimize the mean squared error of permeability prediction in the 

training data, this new model has an additional constraint term, which is based on 

the assumption of stationary formation property among test and training wells. 

Therefore, the new model is trained to minimize both the error of permeability 

prediction in the training data and the divergence between training and test data. 

2) The classical well-log normalization methods for well-log correction ignore the 

relationships between different types of well logs, making the correction results 

unreliable. To improve the reliability of well log correction, I developd an 

automatic well-log normalization method that considers the multivariate statistics 

of different types of well logs. The well-log normalization model is embedded in 

the permeability prediction model so that the statistics of predicted permeability are 

also considered when performing the normalization. 

3) Conventional type-well identification methods assume the same logging conditions 

for all wells and stationary rock property distribution. However, these assumptions 

are rarely valid. To identify type wells in a complex reservoir and with different 
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logging conditions, I develop a type-well identification method based on the 

divergence between well logs of each well. 

4) It is difficult for conventional geostatistical methods to reproduce long-range 

depositional patterns while honoring the seismic and well data. Therefore, I 

developed a new deep learning model, the stochastic pix2pix model, that fills in 

high-resolution heterogeneity models consistent with low-resolution seismic 

regions, geologic architecture, and well data with reasonable realizations to 

represent uncertainty ready for flow forecasting. In addition, I have extended 

minimum acceptance reservoir model checks to QC these models for reliable 

forecasting. 

5) Multi-scale reservoir modeling is difficult because it is computationally expensive 

and the relationships between architectural elements at different scales are difficult 

to model. To perform efficient multi-scale reservoir modeling, I propose a 

workflow that first calculates large-scale depositional elements, and then populates 

small depositional elements within large containers. The workflow is based on 

sequential application of a GAN-based, stochastic depositional-element modeling 

method and density-based spatial clustering of applications with noise (DBSCAN)-

based depositional-element identification. 

1.5 DISSERTATION OUTLINE 

This dissertation is divided into five chapters. Following this introductory chapter, 

the next three chapters discuss the research objectives, new methods, and associated results 

in more detail, and the last chapter summarizes the findings and conclusions.  

Chapter 2 introduces new data-driven methods for type-well identification, well-

log normalization, and permeability prediction. The assumptions, development, and 



 51 

application of these methods are discussed and compared to conventional methods. This 

chapter provides the details of the three new methods, which are 1) type well identification 

with the new, divergence-based method, 2) the well-log normalization with the DA model 

and linear constraint model, 3) permeability prediction with the DA model and linear 

constraint models. The new methods are validated with core measurements and well logs 

from the Seminole San Andres Unit (SSAU), a carbonate reservoir located in the Central 

Basin. The new methods are compared to conventional methods based on the MSE of 

permeability prediction.   

Chapter 3 describes the structure of the stochastic pix2pix model and its application. 

The stochastic pix2pix model is an extension of the GAN method (Goodfellow et al., 2014) 

to perform stochastic reservoir modeling that is conditioned to well and seismic 

interpretation results. To validate the new method, I calculate fluvial channel models as 

training images with the rule-based method and use the new method to generate reservoir 

model realizations based on the training images. Different statistics, such as variogram and 

multiple point histogram (MPH), of the training images and reservoir model realizations 

are compared to validate the reproduction of patterns. The conditioning to well and seismic 

interpretation is also discussed.  

In chapter 4, I develop a new workflow by combining the stochastic pix2pix method 

with the DBSCAN-based depositional element identification method to perform multi-

scale reservoir modeling. To validate the workflow, I first calculate conceptual models for 

the deepwater lobate system with the rule-based method and then use them as training 

models to train the new workflow to generate multi-scale reservoir model realizations that 

reproduce patterns in the training images. To assure the reproduction of patterns in the 

reservoir model realizations, the realizations are compared to the training models based on 
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statistics related to the depositional pattern, geometry of depositional elements, and the 

conformance of depositional elements across different scales. 

In chapter 5, I summarize the finding and conclusions from Chapters 2-4 and 

provides recommendations for best practice related to this dissertation.  

1.6 LIST OF PUBLICATIONS 

Based on the research in this dissertation, several journal and conference papers are 

published or submitted for peer review. They are listed as follows:  

1.6.1 Refereed Journal Publications 

Pan, W., Torres-Verdín, C., and Pyrcz, M. J. (2021). Stochastic Pix2pix: a new machine 

learning method for geophysical and well conditioning of rule-based channel 

reservoir models. Natural Resources Research, 30(2), 1319-1345.  

Pan, W., Jo, H., Santos, J. E., Torres-Verdín, C., and Pyrcz, M. J. (2022). Hierarchical 

machine learning workflow for conditional and multiscale deepwater reservoir 

modeling. AAPG Bulletin (accepted).  

Pan, W., Torres-Verdín, C., Duncan I. J., and Pyrcz, M. J. (2021). Reducing the uncertainty 

of multi-well petrophysical interpretation from well logs via machine-learning and 

statistical models. Geophysics (Manuscript submitted for review).  

1.6.2 Refereed Conference Proceedings 

Pan, W., Torres-Verdín, C., and Pyrcz, M. J. (2020). New machine learning method for 

integrated subsurface modeling. Presented at the AGU 2020 Fall Meeting, 

December 7-16, 2020. 

Pan, W., Jo, H., Santos, J. E., Torres-Verdín, C., and Pyrcz, M. J. (2021). Stochastic 

Pix2Pix method for conditional and hierarchical deepwater reservoir modeling. 

Presented at the Geostats 2021 Meeting, July 12-16, 2021. 

Pan, W., Torres-Verdín, C., and Pyrcz, M. J. (2021). Feature engineering in well log 

interpretation. Presented at the GeoGulf 2021 Meeting, October 27-29, 2021. 

Pan, W., Torres-Verdín, C., and Pyrcz, M. J. (2022). Reducing the uncertainty of multi-

well petrophysical interpretation from well logs via machine-learning and statistical 

models. Presented at the SPWLA 2022 Spring Topical Conference on 

Petrophysical Machine Learning, March 23-24, 2022. 
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Chapter 2: Well-Log Normalization and Permeability Prediction via 

New Machine Learning and Statistical Models 

Well-log interpretation provides in situ prediction of formation properties such as 

porosity, hydrocarbon pore volume, water saturation and permeability that support reserve-

volume estimates, production forecasts, and decision making in reservoir development. 

However, due to measurement errors, variability of well logs caused by multiple 

measurement vendors, different borehole tools, and non-uniform drilling/borehole 

conditions, predictions of formation properties with original well logs without 

preprocessing may not be accurate, especially in the context of multi-well prediction. To 

improve the robustness of multi-well petrophysical property prediction, well-log 

normalization techniques such as two-point scaling and mean-variance normalization are 

commonly used to correct well logs. However, these techniques often do not consider the 

correlation between well logs and require subjective knowledge to be effectively 

implemented. To reduce the uncertainties and time associated with multi-well 

petrophysical property prediction, I develop the discriminative adversarial (DA) model and 

the linear constraint model for well-log normalization and petrophysical property 

prediction. I also develop a new divergence-based type well identification method for 

improved test well and training well assignment. 

The DA neural network model developed for well-log normalization and 

interpretation can perform both linear and nonlinear well-log normalization by considering 

the joint distribution of each well log and formation properties. The linear constraint model 

uses an ensemble of predictions from linear models to constrain both well-log 

normalization and petrophysical property prediction. The divergence-based type well 

identification method is developed to select type (training) wells for a test well based on 
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the statistical similarity of associated well-log distributions instead of the distance between 

wells. 

I apply the proposed methods to improve the accuracy of well-log normalization 

and the prediction of permeability for the Seminole San Andres Unit, a carbonate reservoir. 

In comparison to the classical machine-learning model without normalization, the model 

with two-point scaling normalization, and the model with linear constraints, the DA model 

yields better performance, e.g., the mean-squared error of permeability prediction 

decreases by approximately 20-50%. 

2.1 INTRODUCTION 

Petrophysical property prediction is important for accurate reservoir 

characterization, reservoir modeling calibration, and decision-making during the 

development of reservoirs (Xu et al., 1992; Pan et al.,2021; Santos et al., 2021; Jo et al., 

2020; Jo et al., 2021). Improving the accuracy of petrophysical interpretation of complex 

reservoirs, such as carbonate and shale reservoirs, is a major challenge in the oil and gas 

industry (Greder et al., 1996; Mohaghegh et al., 1997; Deng et al., 2020). The complexity 

of pore geometries, the role of micro fractures, and extensive modification of pore systems 

by diagenesis (Figure 2.1) confound the relationships and weaken correlations between 

well logs and petrophysical properties, and make it challenging to predict flow-related 

petrophysical properties, such as permeability. 

The uncertainty of permeability prediction with well logs is mainly caused by two 

factors: a lack of pore throat structure information in all kinds of well logs except for the 

nuclear magnetic resonance (NMR) log, and the measurement error (uncertainty) of well 

logs (Medellin et al., 2019; Wang et al., 2019; Jachmann, 2020).  
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To better explore related information conveyed by each type of well log, 

researchers develop complex permeability prediction models, such as machine learning 

models (Gashler, 2008; Bestagini et al., 2017; Sidahmed et al., 2017; Shashank and 

Mahapatra, 2018; Bennis and Torres-Verdín, 2019; Brazell et al., 2019; Deng et al., 2019; 

Lang et al., 2019; Liang et al., 2019; Shao et al., 2019; Xu et al., 2020; Deng et al., 2021; 

Yu et al., 2021). Compared to petrophysical model-based methods, e.g., the Timur-Coats 

equation and Windland’s equation (Leverett, 1941; Timur, 1968), machine-learning 

approaches obtain better results by fitting more complex relationships between well logs 

and permeability. Common machine-learning methods used for permeability prediction 

include random forest, feed-forward neural network, and convolutional neural network 

(CNN) (Collobert and Weston, 2008; Bhattacharya and Mishra., 2018; Zhu et al., 2018; 

Zhong et al., 2019). Given that many models have been successfully applied to extract 

features from well logs to predict permeability, I decide to focus on the second factor, 

which is to mitigate the propagation of well-log measurement uncertainty to permeability 

prediction. 

Understanding the statistics of well-log bias (uncertainty of well logs) can inform 

the correction of well logs and build better models for petrophysical property prediction. 

However, in almost all previous research about using machine learning methods to make 

permeability predictions, the uncertainty of well logs is ignored. The permeability 

prediction model is trained with training data that is compiled by lumping raw well log 

data from all available wells. By using all training data to train a single model, we implicitly 

assume that the measurement error and bias of well logs and permeability prediction are 

stationary, i.e., the error does not vary with well locations or depths, and the well-log 

interpretation is unique, i.e., permeability can be uniquely determined from a set of well 

logs. However, these assumptions are not always valid in practice. Well-log measurement 
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error is mainly caused by different environmental conditions. Environmental conditions, 

such as logging tools, vendors and vintage, and borehole fluids, commonly vary with wells. 

Therefore, errors are rarely stationary, hampering effective multi-well permeability 

prediction for carbonate reservoirs (Prasad et al., 2004; Deng et al., 2019). These errors are 

exacerbated by the complexity of the borehole environment, as well as the behavior of 

drilling tools, typically alternatingly slippery and sticking, making errors vary with well 

location and depth along the well. Furthermore, well-log interpretation is commonly non-

unique because of incomplete or inadequate measurements, whereby different formation 

properties may yield similar well logs (Mallan et al., 2018; Gaillot et al., 2019; Liu et al., 

2019; Maalouf et al., 2020).  

Physics-based preprocessing methods, such as borehole correction, and statistics-

based methods, such as well-log normalization, are commonly used to mitigate the well-

log error and help decrease the permeability prediction uncertainty. Physics-based 

correction is accurate when physical models reproduce the actual physical phenomenon 

and operational data are available. However, the operational data are not always accessible, 

and models may not reflect the reality. Therefore, in this dissertation, I mainly discuss data-

driven workflows that incorporate statistics-based preprocessing methods into machine 

learning models. Well-log normalization is the process of re-scaling or re-calibrating well 

logs of a well so that they are consistent with well logs acquired in other wells within the 

same field or region (Shier, 2004). Wells with well logs that are interpreted, calibrated with 

core measurements or corrected for borehole environmental effects, are denoted as type 

wells or training wells, and their well logs are denoted as type well logs or training well 

logs, respectively, while wells with well logs that require normalization and interpretation 

are denoted as test wells, and their well logs are denoted as test well logs. Normalization 

of test well logs reduces errors introduced by variations in environmental conditions and 
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non-uniqueness by constraining the prediction of test well logs with statistics of type well 

logs, thereby making models calibrated with type wells robust for test-well petrophysical 

property prediction. 

Imposing constraints to petrophysical interpretation based on statistics of core 

measurements or accurate petrophysical predictions is an important aspect of petrophysics 

that has not been well-studied. For conventional normalization methods, e.g., the two-point 

scaling method (Shier, 2004), one first identifies type wells with formation properties that 

are regionally or globally representative. Then, each test well log is linearly normalized to 

match the values of type well logs in two formations with distinct formation properties. 

For example, the gamma-ray log values of pure shale and sandstone facies in a test well 

are normalized to be the same as those in type wells. The values for distinct formation 

properties are usually chosen as the minimum and maximum values within an interval 

(Shier, 2004). When petrophysical properties are stationary among test and type wells, i.e., 

the summary statistics of well logs do not vary among these wells, test well logs should 

exhibit marginal distributions similar to those of the type wells. This normalization method 

is also known as affine correction in geostatistics (Pyrcz and Deutsch, 2014). According to 

Shier (2004), there are 5 common methods for type well identification. Based on their 

assumptions of stationarity, they can be roughly divided into two categories (Figure 2.2):  

1). Stationary reservoir assumption: the specified statistics of well logs are 

invariant over a specified interval (Figure 2.2A). The big histogram well-log normalization 

method (Shier, 2004) makes this assumption. In the big histogram method, one normalizes 

test well logs to match all type well logs in the field. I refer to this category of type well 

identification methods as the stationary well method. 

2). Non-stationary reservoir (regional stationarity) assumption: the specified 

statistics of well logs are variant over a specified interval (Figure 2.2B). The well logs 
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should not be normalized to match the global statistics. To mitigate the nonstationarity 

issue, spatial continuity of petrophysical properties is used to help identify type wells. If 

petrophysical properties are continuous regionally, the closest wells within the small region 

should have similar petrophysical properties (regional stationarity). Therefore, test well 

logs are normalized to match well logs from the nearest type wells instead of all type wells. 

Type well, neighbor comparisons, and the trial normalization method (Shier, 2004) make 

this assumption. I refer to this category of methods as the type well method. 

There are three limitations in classical well-log normalization methods: (1) the 

successful application of the normalization depends heavily on the experience of the 

interpreter; a bad choice of normalization parameters, such as the two values representing 

different facies in the two-point scaling method (Shier, 2004), or a bad choice of type wells 

can introduce bias into the interpretation results and cause problems, such as over 

alignment. Over alignment is the situation where the statistics of formation properties from 

one well are different from those of the type wells, whereas well logs are incorrectly 

normalized to exhibit the same distribution. (2) Conventional normalization methods only 

normalize test well logs to reproduce the marginal distribution of each type well log, i.e., 

the histograms of each well log. However, the reproduction of marginal distributions does 

not guarantee the reproduction of correct correlations between normalized well logs; a 

misleading correlation between normalized well logs can degrade the performance of 

prediction models, whereby the joint distribution of multiple well logs needs to be 

considered. The joint distribution is the distribution of a well log given the values of other 

types of well logs. (3) Conventional normalization methods are linear. However, the bias 

introduced by environmental conditions can be nonlinear and varies with other formation 

properties, e.g., facies, resulting in non-linear structures that must be corrected by 

normalizing joint distributions. 
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To normalize well logs such that test well logs have joint distributions similar to 

those of type well logs, one can minimize the divergence between the joint distribution of 

type well logs and test well logs. Divergence measures, such as the Kullback–Leibler (KL) 

divergence (Kullback and Leibler, 1951) and Jason-Shannon (JS) divergence (Manning 

and Schutze, 1999), can be used to quantify the statistical dissimilarity between two joint 

distributions. Chang et al. (2021) use the maximum mean discrepancy domain transfer 

(MMDDT) learning model to predict rock facies, which implicitly imposes the spatial 

stationarity assumption and minimizes the maximum mean discrepancy (MMD) for the 

outputs of intermediate layers in a neural network, the intermediate features, during 

training. The intermediate features are non-linear transformations of the input well logs, 

thus can also be regarded as non-linearly normalized well-log features for corrected joint 

distributions. However, the model is not flexible enough to be applied with other pre-

trained machine-learning or calibrated petrophysical models because intermediate features 

are not normalized well logs, we cannot directly use them in other models. Additionally, 

in their model, the prediction error and divergence are minimized simultaneously 

(synchronized); differences in the convergence time of these two loss functions lead to 

either overfitting or over alignment in petrophysical prediction. The output facies 

prediction is not constrained based on the stationarity assumption. Furthermore, the lack of 

physical meaning for the intermediate features makes it difficult to interpret the results and 

provide useful findings.  

To mitigate the above limitations, I propose to use a modified asynchronized 

discriminative adversarial (DA) domain adaptation method (Tzeng et al., 2017) to 

normalize well logs and make permeability predictions. In the modified DA model, the 

predictive layers, which are layers that map normalized well logs to formation properties, 

are first trained. Then preprocessing layers are trained to normalize test well logs by 
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minimizing the divergence between normalized test well logs and type well logs, and the 

divergence between associated permeability predictions through a discriminator neural 

network. With this structure, the prediction error of formation properties and the JS 

divergence are minimized asynchronously to avoid overfitting or over alignment. The 

predictive layers can be pre-trained petrophysical or machine-learning models, making the 

model more flexible. Intermediate features in the DA model are normalized well logs that 

are comparable to training well logs of properly selected type wells, which are more 

interpretable.  

With this model, I also mitigate the remaining two limitations of conventional well-

log normalization methods, i.e., nonlinear normalization can be performed with nonlinear 

preprocessing layers, and the divergence is calculated in the feature space identified by a 

discriminator neural network, which can avoid over alignment. 

Compared to previous methods, the asynchronized DA model for multi-well 

petrophysical interpretation mitigates overfitting and over alignment problems, improves 

the accuracy and interpretability of well-log normalization and permeability prediction.  

2.2 METHOD 

This section first describes the data used to compare the proposed methods to 

conventional methods for the case of permeability prediction, then introduces the structure 

of the DA model for well-log normalization and permeability prediction. I use the DA 

model to calculate normalized test well logs and associated permeability prediction that 

reproduce the joint distribution of type well logs and associated permeability measurements, 

mitigating errors introduced by non-stationary well logs. The DA model assumes stationary 

formation properties and well logs from the test well and associated type wells and adds 

constraints to improve the accuracy of the interpretation. 
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Another new model proposed here to perform the normalization and permeability 

prediction is the linear-constraint model, which uses an ensemble of linear model 

predictions from the linear well-log interpretation model and the linear stationarity model 

to constrain the well-log normalization and interpretation instead of DA loss in a DA model. 

The DA, linear constraint, two-point scaling, and unconstrained interpretation workflows 

are compared in the Results section of this chapter to decide on the best interpretation 

workflow for well-log normalization and permeability prediction in the examined 

carbonate reservoir.  

Divergence-based type well identification methods are also discussed in this section 

to address the problem of non-stationary formation properties among different wells and 

compared to the distance-based type well identification method in the Results section.  

Compared to conventional well-log normalization, type well identification and 

well-log interpretation models, I expect the new methods to perform more effectively for 

multi-well petrophysical interpretation, and to predict formation properties more accurately 

from well logs in the presence of environmental uncertainties, spatial 

continuity/discontinuity, and (regional) stationarity. 

2.2.1 Data Preparation 

The proposed method is verified with core permeability measurements and wireline 

log data from the Seminole San Andres Unit (SSAU), a dolomitized carbonate reservoir 

located on the eastern shelf of the Central Basin, West Texas, USA (Wang et al., 1998).  

The SSAU has produced more than 700 million barrels of oil from the upper and lower San 

Andres formations, with water flooding conducted between 1960 and 1980 and CO2 

flooding since the 1980s. Rock porosity in the producing reservoir zone ranges from 5% to 

20%, while permeability ranges from 0.01 mD to 2000 mD (Male and Duncan, 2020). I 
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select 30 wells with core permeability measurements and complete well logs from 625 

wells drilled between 1940 and 2010. The well logs used as inputs for permeability 

prediction are gamma-ray (GRD), density (RHOB), neutron porosity (NPHI), and 

compressional slowness (DT), along with relative depth and porosity prediction. The 

caliper log (CALD) is used for well-log quality control. Core porosity (CPOR) and 

maximum horizontal permeability (CKMAX) from cores are used to calibrate and validate 

my interpretation workflow (Figure 2.3). 

Several steps are taken to perform the quality control: (1) Abnormal spikes and 

outliers in well logs are evaluated for potential errors; (2) caliper logs are used to identify 

intervals with severe borehole washouts; (3) well logs are depth shifted by matching the 

troughs and peaks of core porosities and the interpreted porosity log. 

Wells are divided into the training set consisting of type wells and test set consisting 

of test wells to train and validate the proposed method, respectively. Cross-validation is 

performed to determine the optimal combination of well logs and hyperparameters for 

permeability prediction. Core permeability is log-transformed; all well logs are min/max 

normalized to a minimum of -1 and a maximum of 1 to improve the performance of the 

gradient-based optimization method for machine-learning model training. 

2.2.2 Discriminative Adversarial (DA) Model 

The proposed DA model has a model structure similar to that of the generative 

adversarial neural networks (GAN). As shown in Figure 2.4, there are two neural networks 

in the DA model, the first one is denoted as the generator (𝐺), while the second one is 

denoted as the discriminator (𝐷 ). During training, the discriminator is optimized to 

distinguish the normalized well logs and petrophysical predictions of the type wells from 

those of the test wells, and output 1 for the type wells and 0 for test wells. The generator is 



 63 

optimized to calculate the normalized well logs and predict formation properties in the test 

wells, such that the statistical distributions of well logs and properties are similar to those 

of the type wells, making the discriminator fail to distinguish the outputs of the generator 

from the data of the training set (update 2 in Figure 2.4). The generator is also responsible 

for minimizing the prediction errors in type wells (update 1 in Figure 2.4). Both generator 

and discriminator are trained adversarially until the generator outputs normalized well logs 

and petrophysical property predictions for the test wells that reproduce the statistics 

observed for type wells, and Nash’s equilibrium is reached (Goodfellow et al., 2014). Due 

to noise and bias present in well logs, which are caused by various borehole environmental 

conditions, e.g., irregular caliper, noisy and inadequate measurements, wells penetrating 

similar formation properties may exhibit different well logs.  

The generator can be further divided into two parts (Figure 2.4), the preprocessing 

layers (𝑃) normalizing well logs and the mapping layers (𝑀) mapping normalized well logs 

to formation properties.  Preprocessing layers calculate normalized well logs (�̃�𝑠, �̃�𝑡 ) 

from well logs of the training set (𝑋𝑠) and test set (𝑋𝑡) with the same structure but different 

weights and biases (𝑃𝑠 , 𝑃𝑡); when 𝑃𝑠 is an identical mapping, and 𝑃𝑡 is a linear mapping, 

the preprocessor is equivalent to the conventional linear normalization.  Mapping layers 

(𝑀) for �̃�𝑠 and �̃�𝑡 are the same, where petrophysical property predictions for the training 

set (�̃�𝑠) and the test set (�̃�𝑡) are calculated. Mapping layers are optimized to minimize the 

prediction errors of the training set (𝑋𝑠, 𝑌𝑠), cross-validation is applied to obtain optimal 

weights and biases of mapping layers that avoid overfitting. Mapping layers are the only 

layers that exist in a conventional, unconstrained machine-learning model. In the DA 

model, mapping layers can be a pre-trained machine-learning model or a classical 

petrophysical model that does not overfit the training data. Algorithm 2.1 summarizes the 
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training process of the asynchronized discriminative adversarial model. The objective 

functions for the discriminator and the generator are given by 

min
𝐷

ℒ𝑎𝑑𝑣𝐷
(𝑋𝑠, 𝑋𝑡, 𝑃𝑠 , 𝑃𝑡, 𝑀 ) = −𝔼𝑥𝑠

[log𝐷 (𝑀(𝑃𝑠(𝑋𝑠)), 𝑃𝑠(𝑋𝑠))]

− 𝔼𝑥𝑡
[log (1 − 𝐷 (𝑀(𝑃𝑡(𝑋𝑡)), 𝑃𝑠(𝑋𝑠)))] 

(2.1) 

min
𝑃𝑡

ℒ𝑎𝑑𝑣𝐺
(𝑋𝑡, 𝑀, 𝐷 ) = −𝔼𝑥𝑡

[log𝐷 (𝑀(𝑃𝑡(𝑋𝑡)))] (2.2) 

min
𝑃𝑠,𝑀

ℒ𝑝𝑟𝑒𝑑(𝑋𝑠, 𝑌𝑠 ) = 𝔼𝑥𝑠,𝑦𝑠
[‖𝑌𝑠 − 𝑀(𝑃𝑠(𝑋𝑠))‖2

 ] , 
(2.3) 

where ℒ𝑎𝑑𝑣𝐷
 is the discriminator adversarial loss and  ℒ𝑎𝑑𝑣𝐺

 is the generator adversarial 

loss. The ℒ𝑝𝑟𝑒𝑑 term in Eq. 2.3 is the mean-squared error (MSE) of the prediction for the 

continuous response feature and can be replaced with categorical cross-entropy for 

categorical output or other types of errors that are commonly used in machine-learning 

models. The mapping layers can be replaced with pre-trained petrophysical or machine-

learning models, and in these cases, Eq. 2.3 is not used to train the pre-trained models to 

avoid overfitting. The model trained with Eq. 2.3 only is denoted as the original 

(unconstrained) model because no preprocessing layers are used for well-log normalization. 

The other loss functions (Eqs. 2.1 and 2.2) are formulated adversarially, the generator is 

trained to minimize the probability of fake assigned by the discriminator to predictions 

from the generator (Eq. 2.2), and the discriminator is trained to maximize the probability 

of assigning fake to predictions from the generator (Eq. 2.1). When the model is trained in 

batch, the total probability is the multiplication of the probability of each sample, which 

can be very small when the batch size is large. To avoid truncation error and vanishing 

gradient, the logarithm of probability is used as the loss function, so that the loss of each 

sample is additive, and the expectation is the arithmetic mean of the logarithmic probability. 

When bias between the well logs of the training and test sets is deemed negligible, 

high certainty should be assigned to unconstrained predictions and slight normalization 
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should be performed to avoid over alignment. In this latter case, another loss term to 

quantify the certainty of unconstrained prediction is added to Eq. 2.2, such that Eq. 2.2 is 

modified into Eq. 2.2* as follows: 

min
𝑃𝑡

ℒ𝑎𝑑𝑣𝐺𝐶
(𝑋𝑡, 𝑃𝑠 , 𝑀, 𝐷, 𝜆 ) = −𝔼𝑥𝑡

[log𝐷 (𝑀(𝑃𝑡(𝑋𝑡)))]

+ 𝜆𝔼𝑥𝑡
[‖𝑀(𝑃𝑡(𝑋𝑡)) − 𝑀(𝑃𝑠(𝑋𝑡))‖2

 ], 

(2.2*) 

where  𝜆 quantifies the certainty of unbiased well logs in the test set and 𝜆 is set 

to 0 in my workflow to impose high uncertainty to test well logs. The L2 constraint term 

(‖ ‖2) can be replaced with other types of loss functions for the prediction of other types 

of formation properties, such as categorical cross-entropy for categorical output for rock 

facies prediction; 𝑀(𝑃𝑡(𝑋𝑡)) is equal to  �̃�𝑡 in Algorithm 2.1. 

When a pre-trained model is used as the mapping layers, and the gradient is not 

accessible, such as tree models and black-box commercial interpretation algorithms, a 

simple model, such as the random forest (RF) is used as the discriminator. The RF 

discriminator calculates the ℒ𝑎𝑑𝑣𝐷
 with cross-validation to avoid overfitting and the 

optimum model parameters for 𝑃𝑠 are obtained through grid search. 

To apply the DA model for well-log normalization and permeability prediction, two 

assumptions need to be made: (1) well logs and core measurements from the type wells are 

of good quality and petrophysical properties are stationary among a test well and associated 

type wells. I recommend the following three steps to improve the stationarity between 

wells: first dividing well logs into zones, then performing well correlation, and finally 

training the DA model for each zone. (2) Type wells exhaustively sample the formation 

penetrated by test wells, i.e., one can find at least one type well with petrophysical property 

distribution similar to any of the test wells. When the type wells have biased samples 

compared to the test wells, data balancing and semi-supervised learning should be applied. 
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To make these two assumptions valid, proper selection of type well(s) for a test 

well is important. To choose the type well(s), I propose two divergence-based type well 

identification methods for reservoirs with stationary and non-stationary petrophysical 

property distribution. These methods better capture the statistical similarities between 

training and test wells, compared to the classical, distance-based type well identification 

method, which only considers spatial distance and assumes spatial continuity of formation 

properties. The statistical similarity is a better metric to choose training wells that exhibit 

petrophysical property statistics similar to those of a test well, especially in the case where 

formation properties are non-stationary among wells, e.g., adjacent wells may penetrate 

different zones. 

2.2.3 Type-Well Identification with Statistical Distance 

Type wells should be selected to have formation properties similar to those of a test 

well. Because of spatial continuity and stationarity of petrophysical property distribution, 

spatial distance is commonly used, i.e., a type well for a test well is the well spatially closest 

to the test well. This type of well identification method is the conventional type well 

method (Shier, 2004), and assumes spatial continuity, where two adjacent wells should 

exhibit similar formation properties.  

𝐷𝑖𝑠𝑡(𝑖, 𝑗) = √(𝑙𝑜𝑐𝑥𝑖
− 𝑙𝑜𝑐𝑥𝑗

)
2

+ (𝑙𝑜𝑐𝑦𝑖
− 𝑙𝑜𝑐𝑦𝑗

)
22

 (2.4) 

where 𝐷𝑖𝑠𝑡(𝑖, 𝑗) is the distance between well i and well j, 𝑙𝑜𝑐𝑥 and 𝑙𝑜𝑐𝑦 are the 

x and y coordinates of the interval of interest within well i and j. 

However, when formation properties are non-stationary, zone thickness varies at 

different well locations, wells penetrate different zones, and well spacing is large, spatially 

close wells may not have similar well-log and petrophysical property distribution, e.g., in 

a complex depositional environment, depositional environments and architectural elements 
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varies with region, spatially close wells do not necessarily penetrate the same architectural 

elements or stratigraphic intervals. 

Therefore, we propose to directly calculate the statistical similarity between wells 

to identify type wells, i.e., the divergence between the well logs of each pair of wells 

(Pérez-Cruz, 2008; Sasaki et al., 2015). Wells with small divergence to the test well are 

identified as the type wells. The JS divergence between wells is calculated as the sum of 

two KL divergences. The JS divergence calculation is as follows:  

  

𝐷𝑖𝑣(𝑖, 𝑗) = 𝐾𝐿(𝑃𝑖||𝑃𝑗) + 𝐾𝐿(𝑃𝑗||𝑃𝑖)

= −∑𝑃𝑖(𝑋) log (
𝑃𝑗(𝑋)

𝑃𝑖(𝑋)
) − ∑𝑃𝑗(𝑥) log (

𝑃𝑖(𝑋)

𝑃𝑗(𝑋)
) 

(2.5) 

where 𝐷𝑖𝑣(𝑖, 𝑗) is the JS divergence between the well logs (𝑋) of well 𝑖 and 𝑗, 

which is the sum of the KL divergence between well logs from the two wells; it is 

calculated for each zone;  𝑃𝑖(𝑋) is the probability of having well log measurements 

around x in well 𝑖, nearest neighbor method is used to calculate the probability (Wang, et 

al., 2009). When no zonation information is available, data coverage of well 𝑖 by well 𝑗 

(𝐾𝐿(𝑃𝑖||𝑃𝑗)) is calculated and used for type well selection. In this chapter, I use the JS 

divergence of density, neutron, and sonic logs between wells to identify the type wells. 

Depending on whether the type wells for each test well are the same, I further define 

the divergence-based method into two methods. When the formation properties are 

stationary, we may use all type wells with similar statistics to train a single predictive model 

and normalize test wells, this method is denoted as the stationary well method. While when 

formation properties are not stationary, depositional patterns/environments vary with 

regions, a test well is corrected using well logs from type wells that are statistically similar 

to it, type wells vary with the test well. I denote this method as the type well method.  
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Therefore, in this study, three training and testing splitting strategies are discussed: 

1) the spatial distance-based type well method, which assumes a non-stationary 

petrophysical property distribution and identifies type wells for each test well with spatial 

distance, 2) the statistical distance-based type well method, which assumes non-stationary 

petrophysical property distributions and identifies type wells for each test well with 

divergence, and 3) the stationary well method, which assumes a stationary petrophysical 

property distribution and identifies type wells for all test wells with divergence. For 

methods (1) and (2), the weights of mapping layers vary for different test wells, while for 

method (3), only one set of mapping layers is trained with all the data from all training 

wells. 

Cross plots and histograms of well logs and core measurements of all the wells are 

visualized and analyzed to support the stationarity assumption for the reservoir and find 

potentially biased test wells. Additionally, to ascertain the statistical similarity, divergences 

between type wells and test wells are visualized with multi-dimensional scaling (MDS) 

(Borg and Groenen, 2005), where wells are mapped to a 2-D feature space that maximizes 

the reproduction of the pairwise divergence as pairwise separation distance. The isolation 

forest method (Liu et al., 2008) is used to identify wells with abnormal well logs, i.e., 

outlier wells whose distances to other wells are large.    

2.2.4 Model with Linear Constraints 

The DA model normalizes well logs by imposing the DA loss constraints; it is 

important to compare the DA constraint to other common constraints. Therefore, I compare 

the DA model to the machine-learning model with linear model constraints. The linear 

constraint model has the same model structure as the DA model, except that it does not use 

the DA loss to optimize the preprocessing layers; instead, it optimizes the preprocessing so 
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that the output permeability predictions are consistent with the predictions obtained from 

the unconstrained model and all types of linear models.  

The linear model ensembles include a stationarity constraint and linear models 

between well logs with high certainty and permeability. With the stationarity constraint 

and linear models between well logs and permeability, we can decrease the model variance 

and improve the prediction accuracy. The assumption made for the linear constraint model 

is that the distribution of petrophysical property, i.e., logarithmic permeability, is stationary 

and that the distribution of the prediction error of the linearly constrained model is also 

stationary. 

To impose the stationarity constraint for a test well and associated type well(s), the 

mean value of a petrophysical property, the global proportion of different facies, and their 

spatial covariance are assumed stationary among a test well and associated training wells. 

The spatial statistics are then used to perform the prediction of formation properties. Due 

to the spatial heterogeneity of the reservoir, properties such as permeability have a limited 

spatial continuity; therefore, for permeability prediction, I only use the mean value to 

constrain the prediction, i.e., 

𝑌�̅� = 𝔼𝑦𝑠
[𝑌𝑠], (2.6) 

where 𝑌�̅� is the average value of the petrophysical property of type wells for a test 

well.  

For the prediction of continuous formation properties, such as porosity, the Kriging 

method instead of the mean value is used to impose the constraint. With the Kriging method, 

the formation property prediction (𝑌�̅�) is the weighted (𝑚𝑖) average of nearby formation 

properties (𝑌𝑠) at a lag distance of 𝑠𝑖 (Eq. 2.6*). The weight (𝑚𝑖) is determined through 
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variogram calculated from type wells, I refer interested readers to Pyrcz and Deutsch (2014) 

for more information. 

𝑌�̅� = ∑𝑚𝑖𝑌𝑠[𝑠𝑖]

𝑁

𝑖=1

 (2.6*) 

To impose the linear well-log interpretation model constraint, a simple linear model 

or petrophysical model is used to predict formation properties from well logs that are 

believed less likely to be affected by the borehole logging environment and logging tools, 

e.g., density log (RHOB), i.e., 

min
𝐴,𝐵

ℒ𝑙𝑖𝑛𝑒𝑎𝑟(𝑋𝑠𝑢
 ) = 𝔼𝑥𝑠,𝑦𝑠

[‖𝐴𝑋𝑠𝑢
+ 𝐵 − 𝑌𝑠‖2

 ] 

�̃�𝑠𝑙
= 𝐴𝑋𝑠𝑢

+ 𝐵, 

(2.7) 

where 𝐴 and 𝐵 are coefficients of the linear model calibrated with the training 

data, 𝑋𝑠𝑢
 are the reliable well logs of type wells for a test well, and �̃�𝑠𝑙

 is the prediction 

of the linear model for the training set.  

To combine different types of linear predictions, the covariance matrix of the 

predictions of different models is used to weight the predictions from different models. The 

variance of the ML model predictions is calculated with the K-fold cross-validation, i.e., 

the covariance between predicted and true formation properties of the validation set instead 

of the training set is calculated and used to represent the uncertainty of different predictions, 

thereby constraining the prediction of the complex mapping model and avoiding potential 

overfitting; the corresponding loss function is written as 

𝐶𝑑 =

[
 
 
 
 
 
 
 𝐶𝑜𝑣(𝑀(𝑃𝑠(𝑋𝑠)), 𝑌𝑠)

𝜆𝑙
2

𝐶𝑜𝑣(𝑀(𝑃𝑠(𝑋𝑠)), 𝑌�̅�)

𝜆𝑙

𝐶𝑜𝑣 (�̃�𝑠𝑙
,𝑀(𝑃𝑠(𝑋𝑠)))

𝜆𝑙

𝐶𝑜𝑣(𝑀(𝑃𝑠(𝑋𝑠)), 𝑌�̅�)

𝜆𝑙
𝐶𝑜𝑣(𝑌�̅�, 𝑌𝑠) 𝐶𝑜𝑣(𝑌�̅�, �̃�𝑠𝑙

)

𝐶𝑜𝑣 (�̃�𝑠𝑙
,𝑀(𝑃𝑠(𝑋𝑠)))

𝜆𝑙
𝐶𝑜𝑣(𝑌�̅�, �̃�𝑠𝑙

) 𝐶𝑜𝑣(�̃�𝑠𝑙
, 𝑌𝑠) ]

 
 
 
 
 
 
 

 

(2.8) 
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𝐸 = [𝑀(𝑃𝑡(𝑋𝑡)) − 𝑀(𝑃𝑠(𝑋𝑡));  𝑀(𝑃𝑡(𝑋𝑡)) − 𝑌�̅�;𝑀(𝑃𝑡(𝑋𝑡)) − (𝐴𝑋𝑡𝑢
+ 𝐵)] 

min
𝑃𝑡

ℒ𝑙𝑐(𝑋𝑠, 𝑋𝑡, 𝑌𝑠, 𝑃𝑠, 𝑀) = 𝔼𝑥𝑡
[𝐸𝑇𝐶𝑑

−1𝐸], 

where 𝐶𝑜𝑣 is the covariance of the predictions of two methods, 𝜆𝑙 is similar to 

𝜆, quantifying the certainty that well logs of a test well and associated type wells have the 

same logging environment, 𝐸 is the array of differences between different predictions, 

and ℒ𝑙𝑐 is the linear constraint added to Eq. 2.3. During training, the linear constraint (Eq. 

2.8) instead of the adversarial loss (Eqs. 2.1 and 2.2) is optimized after the optimization of 

the 𝑃𝑠 and 𝑀 with Eq. 2.3.  

2.2.5 Design of Numerical Experiments 

Machine-Learning workflows without any constraints (conventional machine-

learning method), the DA model, the model with two-point scaling normalization, and the 

model with linear constraints are compared. Two-point scaling method normalizes the test 

well logs to match the distribution of type well logs by matching the maximum and 

minimum values, the corresponding equation is written as:  

  

𝑋�̃� = min (𝑋𝑠) +
(max (𝑋𝑠) − min (𝑋𝑠))(𝑋𝑡 − min(𝑋𝑡))

(max(𝑋𝑡) − min (𝑋𝑡))
 (2.9) 

where the 10% and 90% quantiles are regarded as the minimum and maximum 

values to avoid the effects of outliers. 

The structures of 𝑃𝑠 and 𝑀 layers are identical for all workflows, and only the 

normalization layers of the test set (𝑃𝑡), and loss functions vary in different workflows and 

are summarized as follows:  

1). In conventional machine-learning workflows, the test data normalization layer 

(𝑃𝑡) is an identical mapping layer, i.e., normalized well logs are the same as the original 
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well logs as no normalization is performed. Only update 1 (Figure 2.4) is performed, and 

only the prediction MSE loss of Eq. 2.3 is minimized to update the mapping layer (M). 

2). In the two-point scaling method, the test data normalization layer (𝑃𝑡) is replaced 

with the two-point normalization operation, only the prediction MSE loss of Eq.2.3 is 

minimized to update the mapping layer (M).  

3). In the DA workflow, the test data normalization layer (𝑃𝑡) is determined through 

Eq. 2.2 or Eq. 2.2*, both adversarial and prediction MSE loss (Eqs. 2.1, 2.2, and 2.3) are 

used to update the mapping layer (M) and test well normalization layer (𝑃𝑡). 

4). In the model with linear constraints, the test data normalization layer (𝑃𝑡) is 

determined through Eq. 2.8 and Eq. 2.3 is used to update the mapping layer (𝑀).  

Three different type-well identification methods and four workflows, a total of 12 

conditions, are compared. All 30 wells are used for the numerical experiment, the training 

testing data split is based on the jackknife test method, a.k.a. the leave-one-out validation 

method, i.e., each time a well is selected from all wells as the test well while the type wells 

are selected from the remaining wells. For the type well methods, one training well is 

selected for each test well from the rest 29 wells, while for the stationary well method, 6 

wells are selected from the 30 wells to be the training wells that have the shortest distances 

to the other non-outlier wells, if the test well is one of the training well, then only the rest 

5 wells are used for training. The 6 training wells are kept the same when they are used to 

train a prediction model for test wells. I apply these schemes to train and test different 

permeability prediction models, and the permeability predictions of each model are 

validated against core measurements. The performances of the different type well 

identification methods and prediction models are evaluated based on the MSE of 

permeability predictions (Eq. 2.10). the MSE is first calculated for each test well, and the 

performance is evaluated by averaging the MSE of all test wells. The performance of 
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different workflows on wells identified as outlier test well using MDS and isolation forest 

and non-outlier test wells are discussed respectively.  

  

𝑀𝑆𝐸 = ‖𝑌𝑡 − 𝑌�̃�‖2
 (2.10) 

 

2.3 RESULTS 

I first visualize well logs of all wells to identify abnormal well logs that may need 

normalization. Then divergence-based type wells are calculated and visualized. Finally, I 

visualize the normalized well logs and associated permeability prediction for two wells and 

summarize the MSE of permeability prediction of all 12 scenarios to determine the best 

workflow for well-log normalization and permeability prediction. 

 

2.3.1 Well-Log Visualization 

I visualize the pairwise cross plots (bivariate joints) and the marginal distribution 

of well logs from all 30 wells in Figure 2.5. Cross plots between porosity core 

measurements (CPOR) and permeability core measurements (CKMAX) from different 

wells are similar, indicating a stationary carbonate reservoir.  Cross plots and histograms 

of well logs indicate that biases exist in the sonic logs (DT) and neutron logs (NPHI) of 

some of the wells, which will be corrected with the normalization models in the following 

sections. Abnormal wells can be identified by observing the scatter plots in Figure 2.5. For 

the same density and neutron porosity values, the abnormal wells have abnormally high 

sonic well logs compared to other wells, which can lead to an overestimate of porosity and 
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permeability. Possible causes for the abnormal sonic log are different sonic logging tools, 

and logging vintage.  

Even though formation properties from core measurements are stationary, the bias 

introduced by the measurement environments, such as different logging tools, vendors, and 

vintages may not be stationary; therefore, I also compare results obtained with both the 

stationary well method and the type well method.  

2.3.2 Type Well Identification 

Figure 2.6 shows the locations of all the wells available for my study. For the 

distance-based type well identification method we select training wells as the wells closest 

to the test wells. To better understand the statistical similarity of well logs between wells, 

the divergence between each pair of wells is calculated and summarized as the distance 

matrix in Figure 2.7. In the distance matrix, a large distance between two wells indicates a 

huge difference in their well log distribution, whereas a small divergence indicates a similar 

distribution. It is obvious from the distance matrix that well 9 and well 24 have large 

distances to other wells, which indicates the associated well-log joint distributions are 

different from others. Therefore, I refer to them as the outlier test wells. In Figure 2.8, the 

2D multiple dimensional scaling (MDS) map calculated from the divergence matrix helps 

to visualize the statistical distance between the wells. Each point in Figure 2.8 represents a 

well and the distances (lines) between them is the divergence, the x- and y-axis do not have 

a physical meaning, they are embedded features to reproduce the statistical distance 

between wells. Wells 9 and 24 (yellow) are identified as outlier wells with isolation forest 

with the parameterization of the MDS method. In the stationary well method, 20% of wells 

with the smallest distances to the center of the well cloud are used as the training wells 

(green), and the other wells (blue) are not used for training, while in the divergence-based 
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type well method, the well statistically closest to a test well is identified as the training well, 

no matter if it is close to the center.  

2.3.3 Permeability Prediction and Normalized Well Logs Calculated with Different 

Methods  

Permeability prediction for all wells is performed with the 12 combinations of 

methods and the MSE of prediction is calculated. Tables 2.2 and 2.3 summarize the average 

MSE of the permeability predictions for the two outlier test wells and 28 non-outlier test 

wells. The following observations stem from the two tables:  

1) Compared to models without constraints, all types of constraints discussed 

above improve the performance of the permeability prediction model. 

2) For outlier test wells, the DA model combined with the stationary type well 

identification method yields the best permeability predictions. 

3) For non-outlier test wells, the DA model combined with the divergence-based 

type well identification method yields the best permeability predictions. 

4) For the training well selection strategy, the distance-based type well method 

exhibits the highest MSE, regardless of the constrained model used. The 

differences between permeability predictions obtained with the divergence-

based type well and stationary well methods are small for test wells that are not 

outliers. 

Permeability predictions and permeability core measurements from the outlier well 

24 are compared in the first four tracks in Figure 2.9. Compared to predictions without 

normalization (K_origin), the two-point scaling, DA constraint, and linear constraint 

methods yield the best permeability predictions.  Permeability prediction with the DA 

method (K_DA) has the lowest MSE. For tracks 5 to 8, the normalized and original well 
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logs are compared, the correction to sonic log (DT) is large for all three methods, and the 

DA constraint method predicts the lowest normalized compressional slowness compared 

to other methods.  While differences between normalized and original nuclear logs are 

small for the DA method, well logs normalized with the linear constraint method are 

smoother than the original well logs, and the average value of the density log normalized 

with the two-point scaling method decreases by 3% compared to the original density log.  

Figure 2.10 summarizes the multivariate statistics of normalized well logs and 

permeability. The distribution of well logs (orange, “Test”) of the outlier test well is 

different from that of the training well logs (blue. “train”). Predictions obtained without 

well-log normalization (green, “Origin”) overestimate the permeability due to the biased 

sonic log; the prediction and normalized well logs calculated with the linear constraint 

method (red, “Linear constraint”) have a smaller variance and a higher correlation than 

those calculated with other methods. Normalized well logs calculated with the two-point 

scaling method (pink, “Two-point scaling”) reproduce the univariate statistics of the 

training well logs, while normalized well logs calculated with the DA method (brown, 

“DA”) and reproduce the joint distribution of the training well logs. Compared to other 

methods, the variance of permeability predicted with the linear constraint method (K_linear) 

decreases 23% on average, while the correlation coefficient of normalized well logs 

increases 11 % on average. Marginal distributions of normalized well logs calculated with 

both the two-point scaling and DA methods match those of the training wells.   

Figure 2.11 compares the permeability predictions and normalized well logs from 

one of the non-outlier test wells, well No. 0. Prediction errors are low for all four methods, 

and corrections to well logs are small for the DA and two-point scaling methods, while the 

linear constraint method smooths and increases the sonic log after normalization. The 

pairwise, multivariate statistics of well logs and permeability predictions in Figure 2.12 
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show that the normalized well logs are similar to the training well logs except for the linear 

constraint method. The distribution of well logs (orange, “Test”) from this well exhibits 

univariate and pairwise statistics similar to those of the training well logs (blue. “train”). 

Permeability predictions and normalized well logs calculated with the original (green, 

“Origin”), DA (brown, “DA”), and two-point scaling (pink, “Two-point scaling”) methods 

all reproduce the distribution of the training well logs, while permeability predictions and 

normalized well logs calculated with the linear constraint method (red, “Linear constraint”) 

have smaller variance and higher correlation compared to other methods. 

The divergence of well logs and permeability predictions between the test and type 

wells is calculated for every iteration of DA (blue) model training, and the final iterations 

of two-point scaling (red) and unconstrained (yellow) models. Figure 2.13 compares the 

divergence with the MSE of permeability prediction. A lower divergence indicates that the 

normalized well logs better reproduce the distribution of training well logs. Training of all 

three constrained models decreases the divergence and better predicts the permeability. 

The DA model at its lowest divergence point (blue) has the lowest error, followed by the 

two-point scaling method (red) and the original model (yellow). Also, the two-point scaling 

method may have lower divergence than the DA model (A) due to over alignment. The DA 

model training is an iterative optimization process: the error does not monotonically 

decrease or increase; instead, the model normalizes well logs and makes predictions to 

explore the solution space iteratively, guided by discriminators optimized at different 

epochs, where the optimal output can be determined as the point with the lowest divergence. 

In Figure 2.14, the discriminator accuracy is calculated and compared to the MSE of 

permeability prediction.  

A strong correlation exists between the divergence and the MSE of permeability 

prediction and between the discriminator accuracy and the MSE. Because the DA model 
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training is an iterative optimization process, we determine the optimal permeability 

predictions of the DA model by only keeping the iteration with the lowest divergence/ 

discriminator accuracy. Although the two-point scaling method sometimes has a lower 

divergence, the DA method yields more accurate permeability predictions. Compared to 

the other two methods, the DA method has the lowest discriminator accuracy.  

In Figure 2.15, cross-plots of predicted permeability and permeability core 

measurements of all wells indicate that no obvious bias exists in any of the predictions 

obtained with the four methods, while the DA method has the lowest error. 

2.4 DISCUSSION 

2.4.1 Comparison of Different Type Well Identification Methods 

As shown in Tables 2.2 and 2.3, permeability predictions calculated with the 

distance-based type well method have the highest error compared to the divergence-based 

methods, indicating a non-stationary petrophysical property distribution and/or different 

environmental effects between spatially adjacent wells. Wells that are spatially close to 

each other do not necessarily have similar petrophysical property distributions or borehole 

environments, resulting in different statistics of well logs in adjacent wells, which 

introduces the non-uniqueness and measurement bias and degrades the performance of 

machine-learning models. Divergence-based type well and stationary well methods 

mitigate this adverse behavior by training machine-learning models with only the training 

wells with small well-log joint distribution divergence to test wells, i.e., the distribution of 

well logs and formation properties of the test wells are similar to those of the training wells, 

and the training data are better adapted to the test data.    

For outlier test wells, the stationary well method has better performance than the 

divergence-based type well method. Outlier test wells have petrophysical property 
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statistics or borehole environments that are very different from other wells, whereby it is 

difficult to find training wells with formation properties and borehole environments similar 

to those of the outlier test wells. Consequently, constraining the interpretation with global 

unbiased statistics yields better permeability predictions.  

For other test wells, the divergence-based type well method is better than the 

stationary well method because wells with similar logging environments and petrophysical 

property statistics are available, and only minor well-log normalization is needed for the 

prediction. 

2.4.2 Comparison of Different Permeability Prediction Models 

The performances of different methods are compared for outlier and non-outlier 

test wells identified with isolation forests and are summarized in Tables 2.2 and 2.3. The 

performances of different methods for imposing constraints can be ranked as follows: top 

performance is for the DA method, followed by the linear constraint method, then the two-

point scaling method and the worst performance is for the original model without constraint.  

Normalized well logs and permeability predictions obtained with the different 

methods vary in multivariate statistics as shown in Figures 2.9 and 2.12. The differences 

are as follows: 

1) The linear constraint method constrains the original model with the average 

permeability and a simple linear relationship between reliable well logs and 

permeability. By decreasing model variability, the model is less prone to overfitting 

the training data, resulting in a stronger linear correlation between permeability 

predictions and well logs. 

2) The two-point scaling method reproduces marginal distributions of well logs. It 

normalizes well logs to have a small divergence to the training wells. However, 
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failure to consider the joint distribution of well logs and predicted permeability 

causes degradation of the prediction accuracy. 

3) The DA method is designed to reproduce the joint distribution of well logs and 

permeability distribution (Figure 2.4). However, it is found that the approximated 

divergence can be higher than for the two-point scaling method, as shown in Figure 

2.13A. Two possible explanations, besides an inaccurate divergence approximation, 

for this behavior are as follows: (1) the DA method is not likely to over-align the 

training data, e.g., for a perfect discriminator and shallow 𝑃𝑠 layers, if the test set 

is a biased subset of the training set. The best strategy for 𝑃𝑠 layers to “fool” the 

discriminator is to perform an identical mapping instead of minimizing the 

divergence; therefore, the DA method is robust to potential over-alignment, (2)  𝑃𝑠 

layers are trained to minimize the distance between the high-level features extracted 

by the discriminator instead of the divergence of the normalized well logs and 

permeability, i.e., discriminator accuracy (Figure 2.14); consequently, the 

associated features are better representations of the relationship between well logs 

and permeability. 

4) The performance of the original model without any constraints is degraded by 

different borehole environmental conditions and the non-uniqueness of well-log 

interpretation. 

Overall, the DA method yields the best permeability prediction by considering the 

multivariate statistics and high-level features extracted by the discriminator.  

2.4.3 Convergence of the DA Method 

The training of the 𝑃𝑠 layers in the DA model is a dynamic process, i.e., the 𝑃𝑠 

layers and the discriminator are optimized in an adversarial way. There is no clear indicator 
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for the end of the training process for the DA model, i.e., the training continues as long as 

the training of the generator or discriminator does not overwhelm the training of the other. 

However, as shown in Figures 2.13 and 2.14, a strong correlation exists between the 

divergence, discriminator accuracy, and prediction mismatch. Therefore, I propose to use 

the discriminator accuracy or divergence to determine the end of the training, where the 

training should be long enough to obtain a result with small discriminator accuracy and 

divergence, while the permeability predictions obtained at the iteration with the lowest 

possible discriminator accuracy or divergence are taken as the final prediction. 

2.4.4 Computational Time 

On a standard desktop, it takes an average of 160 seconds of CPU time to train a 

DA model, 150 seconds to train a linear-constraint model, and 120 seconds to train a model 

without normalization or with two-point scaling normalization. Despite the longer training 

time for DA and linear-constraint models, the normalization module is integrated with the 

interpretation module within the model structure, which saves the extra time and effort for 

manual well-log normalization. It usually takes many iterations and several minutes for 

each iteration to perform the manual well-log normalization of each well. 

2.4.5 Comparison to Petrophysical Model 

The multimineral analysis is performed to obtain the porosity and saturation 

predictions for outlier well No. 24 without normalizing the sonic well log. Petrophysical 

model, the Timur equation, is used to calculate the permeability from porosity and water 

saturation. Figure 2.16 compares the petrophysical permeability prediction to other 

predictions. The petrophysical model yield better permeability predictions except for the 

DA prediction . There are two reasons for the good petrophysical model prediction: (1) The 
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high uncertainty assigned to the sonic log makes multimineral analysis yield a more 

accurate prediction for porosity, which is used to predict permeability. (2) The simple 

petrophysical model, which uses porosity and saturation to predict permeability, is more 

robust and general compared to complex models.    

2.5 CONCLUSIONS 

For the first time, I provided geostatistical insights and assumptions of classical 

well-log normalization methods for consistent quantification of petrophysical properties 

from well logs acquired in multiple neighboring wells, i.e., the stationarity of formation 

properties. I found that statistical distance-based type well identification methods are better 

than the distance-based type well identification method for permeability prediction from 

well logs. While the permeability prediction error ((log mD)^2) of the distance-based type 

well identification method is between 0.51 and 0.91, the error of statistical distance-based 

type well identification methods is between 0.4 and 0.8. Compared to the distance-based 

method, the statistical distance-based method decreases the permeability prediction error 

by 20-40%. The statistical distance-based type well identification method improves the 

interpretation accuracy by better adapting test wells to training wells with borehole 

environmental conditions and formation properties similar to the test well. Therefore, I 

recommend using the divergence-based type well identification method for well-log 

normalization in test wells without obvious measurement biases and noise, while using the 

stationary type well identification method for test wells with well-log statistics very 

different from those of training wells. 

With the two new, constrained, machine learning-based, multi-well petrophysical 

interpretation workflows introduced in this chapter, i.e., the linearly constrained and DA 

models integrated with statistical distance-based type well identification strategy, I 
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successfully decreased the petrophysical interpretation error introduced by logging vintage, 

vendors, and borehole environments of different wells, and greatly decreased the time and 

effort required for manual well-log normalization and interpretation. While the 

permeability prediction error without constraints is between 0.57 and 1.6, the error of 

permeability prediction with constraints is between 0.43 and 0.91. Compared to classical 

machine-learning models without constraints, the linear constraint model decreases the 

permeability prediction error by 10%-50%, while the DA model decreases the permeability 

prediction error by 20-60%. I found that the enforcement of proper constraints greatly 

improved the accuracy of petrophysical interpretation; hence, I propose to use either the 

DA model or the linear constraint model for machine-learning-based well-log 

interpretation. 

Accurate formation properties predicted with my proposed statistical distance-

based type well identification method and constrained machine-learning model help to 

construct reservoir models that provide more accurate reserve-volume estimates and 

production forecasts and help with decision-making in reservoir development.  

Both the statistical distance-based type well identification method and the 

constrained machine-learning model assume that well logs are stationary among training 

and test wells, thus proper zonation is necessary for the successful application of my 

interpretation workflow. In the future, I will examine the possibility of performing 

automatic zonation to further automate the petrophysical interpretation procedure.  
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Table 2.1:  Summary of loss functions, calibration methods, and normalization 

operations of different well-log normalization and interpretation methods. 

Two-point scaling method normalizes test well logs to match the histograms 

(univariate statistics) of training well logs; the normalization is performed 

before the training of the permeability prediction model (asynchronized); 

the normalization is performed via linear operations. The maximum mean 

discrepancy domain transfer (MMDDT) method performs normalization by 

minimizing the maximum mean discrepancy (MMD) between training and 

test well logs; the objective functions of the normalization and predictive 

models are optimized simultaneously (synchronized); the MMDDT method 

supports both linear and non-linear normalization of well logs. The 

discriminative adversarial (DA) method normalizes test well logs to 

minimize the Jason-Shannon divergence (JSD) to the training well logs; the 

normalization model is trained after the training of the permeability 

prediction model (asynchronized); the DA model supports both linear and 

non-linear normalization of well logs.  

Methods Loss Calibration Operation 

Two-point scaling univariate statistics asynchronized linear 

MMDDT MMD synchronized (non)linear 

DA JSD asynchronized (non)linear 
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Table 2.2: MSE of logarithmic permeability predictions for outlier test wells. Without 

proper constraints, the MSE can be greater than one order of magnitude 

(1.6299). Adding constraints and properly normalizing the well logs help to 

decrease the permeability prediction error.  

Methods 
No constraint Two-point 

scaling 

Linear 

constraint 

DA loss 

constraint 

Divergence-based type well 0.76077 0.800165 0.617754 0.628871 

Distance-based type well 1.25534 0.740518 0.652266 0.91469 

Stationary well method 1.6299 0.653783 0.691621 0.588523 
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Table 2.3: MSE of logarithmic permeability predictions for non-outlier test wells. The 

overall MSE is lower than that for outlier test wells. Adding constraints and 

properly normalizing the well logs also help to increase to decrease the 

permeability prediction error. 

Methods 
No constraint Two-point 

scaling 

Linear 

constraint 

DA loss 

constraint 

Divergence-based type well 0.584184 0.529513 0.452425 0.427909 

Distance-based type well 0.745191 0.592629 0.517844 0.595696 

Stationary well method 0.571057 0.509348 0.453453 0.438051 
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Algorithm 2.1: Asynchronized discriminative adversarial (DA) model for petrophysical 

interpretation. 

1. Calibrate petrophysical models or train machine-learning models (𝑃𝑠 , 𝑀) 

according to Eq. 2.3, with the training data (𝑋𝑠 and 𝑌𝑠) from type wells and 

perform K-fold cross-validation to avoid overfitting of the training data. 

2. Fix and save the model parameters obtained in the first step. 

3. Use the model obtained in the previous step to calculate �̃�𝑠 and �̃�𝑡 with 𝑋𝑠 

and  𝑋𝑡 , respectively. 

For number of training iterations do 

• Sample minibatch 𝑥𝑠, �̃�𝑠 from 𝑋𝑠, �̃�𝑠, and 𝑥𝑡 , �̃�𝑡 from 𝑋𝑠, �̃�𝑡 

• Update the discriminator (𝐷) by descending the discriminator loss of 

Eq. 2.1 

• Update the preprocessing layers for the test set (𝑃𝑠) by descending the 

generator loss of Eq 2* 

      End for 

4. Save the weights of 𝑃𝑠 when the ℒ𝑎𝑑𝑣𝐺𝐶
 is small. 

5. Make predictions for the test set with 𝑃𝑠 and 𝑀. 
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Figure 2.1: Optical microscope images and core images from cores of the Seminole San Andres Unit (SSAU), taken by 

Almirall. Open Fractures at small (A) and large scales (C), filled and void pores (B) in carbonates make the 

accurate characterization of connectivity between pores difficult, resulting in a weaker correlation between 

porosity and permeability than for the case of sandstones, thereby posing formidable challenges for permeability 

prediction. 
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Figure 2.2: Well-log normalization methods based on different assumptions. (A) In a stationary reservoir, the statistics of 

well logs from a test well (red) are normalized to match those from all type wells (blue). (B) In a non-stationary 

reservoir, the statistics of well logs from a test well are normalized to match those of nearby type well(s) that have 

similar statistics.  
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Figure 2.3: Input well logs and core data for quality control and workflow validation. There are three zones in this interval 

(Zonation, track 2), and we are interested in predicting the permeability (Core Analysis Kmax) of the “SSAU 

Reservoir” production zone using the caliper log (CALD), gamma-ray log (GRD), sonic log (DT), neutron 

(NPHI) and density (RHOB) porosity logs and resistivity logs (laterolog LLD, LLS). Conventionally, well logs 

are normalized with the two-point scaling method to reproduce the univariate statistics of well logs from the type 

wells. One endpoint is chosen from the anhydrite/dolomite interval (blue) overlaying the production zone (green) 

while the remaining endpoint is selected from the dolomite facies in the production zone (green).  
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Figure 2.4: Structure of the Discriminative Adversarial (DA) model. MSE loss function and adversarial loss function are 

optimized asynchronously through update 1 (blue line) and update 2 (red line) respectively. 𝑃𝑠 is an identical 

mapping and not updated, unless intermediate features instead of well logs are deemed to be stationary (blue, 

dash line).  
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Figure 2.5: Histograms and pair-wise scatter plots of sonic (DT), neutron (NPHI), density (RHOB), core permeability 

(CKMAX), and core porosity (CPOR) logs of all 30 wells. Each color in histograms and scatter plots represents 

data from a well, the well number is listed every five wells in the legend. Biased well logs are identified with red 

circles. 
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Figure 2.6: Wellhead locations of 30 wells (blue) at SSAU. Core measurements and well logs are available for these wells to 

calibrate and validate different models. 
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Figure 2.7: Statistical distance matrix representing the well-log divergence between any pair of wells. The statistical distance 

between a pair of wells is calculated as the divergence of the well-log joint distribution between the wells, a high 

value indicates different well-log distribution of a pair of wells, and vice versa.   
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Figure 2.8: MDS map calculated based on the statistical distance of all wells. Test wells (blue) and training wells (green) are 

statistically similar, while outlier test wells (orange) are statistically different from the other wells; lengths of 

lines between wells represent their pair-wise statistical distances on the two-dimensional MDS feature space. 
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Figure 2.9: Permeability predictions and normalized well logs of the outlier well No. 24 based on 6 stationary training wells. 

Comparison of results obtained with the unconstrained model (black with suffix “_origin”), linearly constrained 

model (red with suffix “_linear”), two-point scaling normalized model (green with the suffix “scaling”), and DA 

model (blue with the suffix “_DA”). The first four tracks show the actual (brown dots) and predicted permeability 

(line), and the MSE of permeability prediction is shown at the header of each track. The next three tracks show 

the original (black) and normalized sonic (DT), density (RHOB), and neutron (NPHI) well logs. 
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Figure 2.10: Cross-plots and histograms of normalized well logs and permeability of outlier test well No. 24. The distribution 

of well logs and permeability measurements of the test well (orange, “Test”), of the training wells (blue. “train”), 

and well logs and permeability prediction calculated without well-log normalization (green, “Origin”), calculated 

with linear constraint method (red, “Linear constraint”), calculated with the two-point scaling method (pink, 

“Two-point scaling”) and calculated with the DA method (brown, “DA”) are compared.  
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Figure 2.11: Normalized well logs and permeability predictions of a non-outlier test well No. 0. Comparison of results 

obtained with the unconstrained model (black with suffix “_origin”), linearly constrained model (red with suffix 

“_linear”), two-point scaling normalized model (green with the suffix “scaling”), and DA model (blue with the 

suffix “_DA”). The first four tracks show the actual (brown dots) and predicted permeability (line), and the MSE 

of permeability prediction is shown at the header of each track. The next three tracks show the original (black) 

and normalized sonic (DT), density (RHOB) and neutron (NPHI) well logs.   
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Figure 2.12: Cross-plots and histograms of normalized well logs and permeability predictions obtained from a non-outlier test 

well No. 0. The distribution of well logs and permeability measurements of the test well (orange, “Test”), of the 

training wells (blue. “train”), and well logs and permeability prediction calculated without well-log normalization 

(green, “Origin”), calculated with linear constraint method (red, “Linear constraint”), calculated with the two-

point scaling method (pink, “Two-point scaling”) and calculated with the DA method (brown, “DA”) are 

compared. 
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Figure 2.13: The divergence vs. the MSE of permeability prediction from 3 constrained models at different training epochs for 

outlier test well No. 24 (A) and non-outlier well No. 0 (B). A lower divergence indicates that the normalized well 

logs better reproduce the distribution of training well logs. Training of all three constrained models decreases the 

divergence and better predicts the permeability. The DA model at its lowest divergence point (blue) has the 

lowest error, followed by the two-point scaling method (red) and the original model (yellow). Also, the two-point 

scaling method may have lower divergence than the DA model (A) due to over alignment. The DA model 

training is an iterative optimization process: the error does not monotonically decrease or increase; instead, the 

model normalizes well logs and makes predictions to explore the solution space iteratively, guided by 

discriminators optimized at different epochs, where the optimal output can be determined as the point with the 

lowest divergence. 
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Figure 2.14: Accuracy of the discriminator vs. the MSE of permeability predictions at different training epochs of three 

constrained models for an outlier test well (A) and a non-outlier test well (B). Permeability calculated with the 

DA method (blue) has the lowest prediction error, followed by the two-point scaling method (red) and the original 

model (yellow). The DA method has the lowest discriminator accuracy. The DA model training is an iterative 

process, where the discriminator accuracy oscillates between 0 and 1 during the training, and the optimal output 

can be determined as the training epoch with the lowest discriminator accuracy at a late training stage.  
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Figure 2.15: Accuracy of the discriminator vs. the MSE of permeability predictions at different training epochs of three 

constrained models for an outlier test well (A) and a non-outlier test well (B). Permeability calculated with the 

DA method (blue) has the lowest prediction error, followed by the two-point scaling method (red) and the original 

model (yellow). The DA method has the lowest discriminator accuracy. The DA model training is an iterative 

process, where the discriminator accuracy oscillates between 0 and 1 during the training, and the optimal output 

can be determined as the training epoch with the lowest discriminator accuracy at a late training stage.  
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Figure 2.16: Permeability predictions and normalized well logs of the outlier well No. 24 based on 6 stationary training wells. 

Comparison of results obtained with the unconstrained model (black with suffix “_origin”), linearly constrained 

model (red with suffix “_linear”), two-point scaling normalized model (green with the suffix “scaling”), DA 

model (blue with the suffix “_DA”), and petrophysical model (orange with suffix “_Petrophysics”). The first five 

tracks show the actual (brown dots) and predicted permeability (line), and the MSE of permeability prediction is 

shown at the header of each track. The sixth track shows the porosity prediction from multimineral analysis.The 

last three tracks show the original (black) and normalized sonic (DT), density (RHOB), and neutron (NPHI) well 

logs. The petrophysical model is robust to abnormal sonic log due to the high uncertainty assigned to the sonic 

log. 
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Chapter 3: Conditional Simulation of Fluvial Channel Reservoir with 

the Stochastic Pix2pix Method 

Constructing subsurface models that accurately reproduce geological heterogeneity 

and their associated uncertainty is critical to many geoscience and engineering 

applications. For hydrocarbon reservoir modeling and forecasting, for example, spatial 

variability must be consistent with geological processes, geophysical measurements, and 

time records of fluid production measurements. Generating such subsurface models can be 

time-consuming; conditioning them to different types of measurements is even more 

computationally intensive and technically challenging. Using too many free variables can 

cause overfitting of the data, thereby decreasing the predictive ability of the model; high 

dimensionality also slows convergence during history-matching of fluid production 

measurements. To contend with these problems, I introduce a new machine learning 

approach, referred to as the stochastic pix2pix method, which parameterizes high-

dimensional, stochastic reservoir models into low-dimensional Gaussian random variables 

in latent space.  

Many of the world’s significant hydrocarbon fields originate from fluvial or 

turbidite deposits, with sedimentary processes and spatial distribution of rock facies 

significantly influencing their flow behavior. Rule- or object-based methods are commonly 

used to geostatistically model these types of reservoirs. I introduce a new and efficient 

machine learning-based reservoir modeling workflow capable of generating 2D fluvial 

reservoir models that account for the available field data and the geometries of different 

facies. By constraining subsurface model realizations to available geophysical and 

petrophysical interpretations, multi-physics inversion can be greatly accelerated thereby, 

requiring only production history matching. Although my models are 2D, an extension to 



 105 

3D can be readily implemented through reservoir-unit modeling and conditioning. The 

proposed method and workflow also partially solve the common problem of machine 

learning methods, wherein mapping low- to high-resolution images often yields reduced 

spatial variability. 

The proposed method is an extension of conditional generative adversarial 

networks (CGAN), in which I incorporate a novel penalty term into the loss function to 

generate various realizations honoring the same conditional data, such as structural 

interpretation from seismic data, and borehole measurements at key well locations. I “train” 

the generative model on geologically realistic, multivariate spatial models generated with 

a rule-based fluvial reservoir simulator. Each high-resolution training image includes 5 

lithofacies with distinct petrophysical property trends. To evaluate the performance of the 

proposed method, visual inspection and indicator variograms are applied to gauge how well 

the realizations reproduce existing patterns in the true model. A new metric, the mean 

categorical error, is proposed to quantify how well the realizations match the conditioning 

data. 

The new method reproduces seismic amplitude data with 99.69% accuracy and 

borehole measurements with 93.3% accuracy in synthetic examples. Spatial heterogeneity 

is verified with visual inspection and two-point statistics: it is found that spatial patterns 

and indicator variograms from the training images for all facies are reproduced well. The 

proposed method correctly reproduces patterns even when the conditioning data are 

significantly different from those in the training set. Likewise, the method can perform 

continuous model modifications, meaning that the machine learning procedure effectively 

reproduces the migration rule of a meandering (fluvial) system. 
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3.1 INTRODUCTION 

Generating an ensemble of reservoir models that accurately predicts the range of 

possible subsurface flow behavior is critical for hydrocarbon reservoir management, risk 

analysis, and development decision-making. Such reservoir models are often generated 

with geostatistics-based stochastic modeling methods that incorporate all available field 

measurements, such as well logs, seismic interpretation data, and time records of fluid 

production measurements.  

Fluvial and deep-water reservoirs are two of the world’s most important types of 

hydrocarbon reservoirs (Swanson, 1993). High-quality clastic rocks in these reservoirs are 

capable of storing huge amounts of hydrocarbon and water. Building reservoir models that 

accurately characterize the distribution of these rocks is therefore of great importance for 

optimum reservoir development decision-making. However, because the spatial 

distribution of reservoir rocks is associated with the depositional process, each facies in a 

fluvial reservoir often demonstrate unique architectural geometries, this complicates 

accurate reservoir modeling (Onesti & Miller, 1974; Ferguson et al., 2001; Zhang et al., 

2005; Guin et al., 2010; Ramanathan et al., 2010). It is common practice to perform 

reservoir modeling and conditioning via two-point geostatistical methods, but the nonlinear 

and non-stationary property distribution in fluvial reservoirs limits the accuracy of 

variogram-based approaches without an extreme level of deterministic constraints (Cressie 

& Hawkins, 1980; Cressie, 1985; Warrick & Myers, 1987; Deutsch & Journel, 1992; 

Williams, 1998; Gringarten & Deutsch, 2001; Pyrcz & Deutsch, 2014). 

Many multi-point simulation (MPS) methods have been developed to generate 

models reproducing the nonlinear ordering relationships and non-stationary property 

distributions pertinent to fluvial reservoirs (Strebelle & Journel, 2001; Caers, 2003; 

Boisvert et al., 2006; Boisvert et al., 2007; Hu & Chugunova, 2008; Pyrcz et al., 2008; 
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Boisvert et al., 2010; Mariethoz et al., 2010; Pyrcz et al., 2012; Mariethoz & Caers, 2014). 

MPS methods use multiple-point templates to extract patterns from exhaustive, analog 

reservoir models. Patterns are stored as a large set of conditional probabilities, which are 

then applied in the sequential simulation paradigm to generate reservoir models. Training 

images are commonly derived from object-based or rule-based models, with the 

expectation that the generated reservoir models will reproduce the patterns present in the 

training images. However, MPS methods often fail to reproduce the long-range patterns of 

the training image; in particular, the bias of reduced connectivity resulting from, e.g., 

broken channels, remains an unsolved problem for MPS methods. To capture large-scale 

features, a large training image and a large template are required, but the limits in computer 

memory and computational time prohibit a large template to be used.  

Object-based methods have been developed to reproduce certain long-range 

patterns. These methods model facies as parameterized architectural geometries, which are 

then incorporated into the reservoir model by enforcing constraints such as data 

conditioning, global proportions, and locally variable proportions (Haldorsen & Lake, 

1984; Deutsch & Wang, 1996; Holden et al., 1998; Hu & Jenni, 2005; Hassanpour et al., 

2013). Other rule- and surface-based methods have been developed to better account for 

sedimentary dynamics, wherein reservoir models are generated sequentially according to 

sedimentary dynamics-based rules (Øren & Bakke, 2002; Pyrcz et al., 2005; Zhang et al., 

2009; Pyrcz et al., 2012; Pyrcz et al., 2015). However, both object- and rule-based methods 

face an important technical challenge, which is that some of the model parameters are 

integers and not differentiable. Non-differentiable variables complicate reservoir model 

conditioning and model parameterization (Pyrcz & Deutsch, 2005; Zhang et al., 2009; 

Boisvert & Pyrcz, 2014; Alpak et al., 2017; Wang et al., 2018). This is especially the case 

with the rule-based reservoir model because each geological object is generated as a 
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random process and conditioned upon previously simulated objects, thereby resulting in 

large-scale emergent features (Pyrcz et al., 2014). 

The ensemble of reservoir models currently available to researchers is based on a 

large suite of parameters and random processes. With current geostatistical approaches, it 

is difficult to provide more compact parameterization for fluvial reservoirs because of the 

large number of objects (Oliver et al., 2008). In turn, the large number of parameters in any 

given model poses problems for both history matching and static conditioning. 

Model dimensionality reduction is thus important for all kinds of subsurface inverse 

problems, and researchers have achieved success with different methods for reservoir 

model reduction (Laloy et al., 2015; Asher et al., 2015; Li et al., 2016; Laloy et al., 2017; 

Jin et al., 2019; Mo et al., 2019). In recent years, a new machine learning method referred 

to as GAN has been developed to parameterize high-dimensional reservoir models to a 

low-dimensional latent space (Goodfellow et al., 2014). Latent space is a hidden space 

effectively created by this parameterization. Its dimension is equal to the number of 

reduced model parameters. GAN consists of two deep convolutional neural networks 

(CNN) (Hansen & Salamon, 1990; Specht, 1991; LeCun et al., 1998; Yosinski et al., 2014), 

called generator and discriminator neural networks. The GAN is used to stochastically 

generate new images which show the same patterns as the images used for training. 

Researchers have investigated conditional and unconditional fluvial reservoir models 

generated using different types of GANs, and some of their work shows promising results 

(Chan & Elsheikh, 2017; Dupont et al., 2018; Laloy et al., 2018; Zhang et al., 2019; Jo et 

al., 2019). Likewise, GANs have proven to be efficient for reservoir model 

parameterization and model reduction. Chan & Elsheikh (2017) used Wasserstein GAN 

(Arjovsky et al., 2017) to generate permeability fields for fluid flow simulation. Laloy et 

al. (2018) generated unconditional reservoir models from hand-drawn training images 
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using the spatial GAN; the models are then used as a priori models in Markov Chain Monte 

Carlo sampling methods (MCMC) for history matching. Single-phase fluid flow inverse 

problems have been successfully solved using the latter method. To condition reservoir 

models to static well-log data, Dupont et al. (2018) added facies mismatch at well locations 

to the loss function and applied a sampling method to generate conditional realizations. It 

should be noted, however, that in Dupont et al. (2018) the geometries of different facies in 

the training images were relatively simple. Jo et al. (2019) increased model complexity by 

using rule-based models as training images; well data conditioning was performed by 

inpainting the areas near well locations. However, because only well data were used to 

constrain the realizations, the inpainting method could result in artifacts near wells. Finally, 

in all of the above papers, “mode collapse” is a common problem during training. Mode 

collapse means that models generated by GAN are similar to each other, thus only simple 

geometries have been learned during training.  

In my effort to produce reservoir models mimicking the sedimentary process of 

channel systems, I generate training images using the rule-based reservoir modeling 

method. The training images have up to five facies with distinct geometries and inter-facies 

spatial relationships. I also require that the reservoir models not only honor the well-log 

data, but also the seismic data. Given so many conditioning constraints, it is difficult to use 

sampling methods to perform the conditioning; the number of constraints also makes it 

difficult to parameterize the posterior distribution and use it as the a priori distribution for 

other inversion calculations, e.g., production history matching. Therefore, I developed a 

new generative method, the stochastic pix2pix method, to generate reservoir model 

realizations to honor well logs and seismic interpretations and to parameterize reservoir 

models to low-dimensional Gaussian space. It is based on the pix2pix method (Isola et al., 

2017), which is built upon conditional generative adversarial networks (CGAN) (Mirza & 
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Osindero, 2014). CGAN generates diverse realizations given constraints such as labels and 

categories. However, as noted by Isola et al. (2017), CGAN and pix2pix methods cannot 

generate realizations that vary significantly given the same complex conditioning data. The 

new loss function in the proposed stochastic pix2pix method makes it possible to 

stochastically generate significantly different reservoir models conditional to the same 

complex constraints. The stochastic pix2pix method reproduces both the long- and short-

range patterns observed in the training images. The resulting models honor well data and 

large-scale seismic constraints, and they are consistent with geological knowledge. The 

workflow may also be used to generate reservoir models conditioned to well locations, and 

well and seismic data, or as downscaling seismic data while honoring well constraints. 

The machine learning-based subsurface modeling method can be applied to a 

variety of subsurface modeling problems, such as oil or water reservoir modeling, for 

instance, the stochastic pix2pix method can build better reservoir models which not only 

reproduce complex geological patterns, but also efficiently incorporate geophysical and 

petrophysical interpretations. Well parameterized latent space variables can be used as a 

good a priori distribution for efficient history matching. The proposed workflow can 

greatly help reservoir management and decision-making in fluvial or turbidite reservoirs. 

3.2 METHOD 

3.2.1 A Review of the Pix2pix Method 

The stochastic pix2pix method is an extension of the pix2pix method developed by 

Isola et al. (2017). pix2pix is a CGAN with one additional L1-norm loss term (Eq. 3.1). 

CGAN is a GAN conditioned to labels and other a priori knowledge about the training 

image. All generative models are used to learn patterns from the training images, such as 

the shape of objects, relative positions of different objects, and the trend within each object, 
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to generate realizations reproducing these patterns. For common reservoir modeling 

applications, training images can be rule-based reservoir models, object-based reservoir 

models, hand-drawn conceptual reservoir models, outcrop photographs, physics-based 

geologic process models, flume experiments, or shallow seismic interpretation. Generated 

models are stochastic subsurface reservoir models.  

In the GAN approach, there are two neural networks (NNs), which are generator 

(G) and discriminator (D). While the generator attempts to produce more realistic models 

from low-dimensional random variables, the discriminator learns to identify the fake 

reservoir model realizations (y) obtained from the training images. They compete 

constantly until the generator yields reservoir models similar to training images, effectively 

fooling the discriminator. The neural network used in the generator is a special CNN 

structure called U-Net (Ronneberger et al., 2015), while the discriminator consists of a 

series of CNNs. I use CNNs for both generator and discriminator because CNNs are proven 

efficient tools for automatic pattern extraction (O’Shea & Nash, 2015). Compared to 

conventional CNNs, U-Net uses less computational memory and can transfer local patterns 

from the conditioning image to the realizations, enhancing the reproduction of local 

patterns (Ronneberge et al., 2015). 

In CGAN, the input and loss functions are different from GAN. While the 

generators (G) in GANs learn to map from only random variables, z, in the latent space to 

realizations y: y=G(z), the generator (G) in CGAN learns to map from both random 

variables and conditioning data, x, to realizations: y= G (x, z). The latent space is a low-

dimensional space that high-dimensional training images can map to, thus we can expect 

to generate conditional, stochastic reservoir models by simply changing the parameters in 

latent space. The discriminator (D) in CGAN not only is responsible for distinguishing the 

generated models from the training images, but also verifies that the models are consistent 
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with the conditioning data. In reservoir modeling, the conditioning data can be the low-

resolution seismic inversion and interpretation, well-log interpretation, or prior knowledge 

about the reservoir architecture (e.g., channel and levee width). 

Compared to CGAN, the pix2pix method adds the L1-norm of the difference 

between the generated models and actual models over all pixels to the loss function (see 

Eq. 3.1). The additional L1-norm enhances the resolution of generated models and 

encourages the exact reproduction of the training images.  

The additional L1-norm loss term and the loss function of the pix2pix method are 

expressed as: 

 
ℒ𝐿1(𝐺) = 𝔼𝑥,𝑦,𝑧[‖𝑦𝑡𝑟𝑎𝑖𝑛 − 𝐺(𝑥, 𝑧)‖1] 

 
(3.1) 

 
ℒ𝐶𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼𝑦[𝑙𝑜𝑔𝐷(𝑦)] + 𝔼𝑥,𝑧[log(1 −  𝐷(𝐺(𝑥, 𝑧)))] 

 

(3.2) 

 

 

ℒ𝑝𝑖𝑥2𝑝𝑖𝑥 = 𝑎𝑟𝑔 min
𝐺

max
𝐷

ℒ𝐶𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆ℒ𝐿1(𝐺) 

 
(3.3) 

Where 𝑥  are the conditioning data, 𝑧  are random variables in latent 

space,  𝐺(𝑥, 𝑧) and 𝑦 are generated models, 𝑦𝑡𝑟𝑎𝑖𝑛  are training images, 𝐷  is the 

discriminator and 𝐺  is the generator,  𝜆  is the certainty coefficient of the L1-norm, 

 ℒ𝐶𝐺𝐴𝑁 is the loss function of CGAN, and ℒ𝑝𝑖𝑥2𝑝𝑖𝑥 is the total loss function. 

Specifically, in property modeling, ℒ𝐿1(𝐺)  represents the L1 norm of the 

differences between the generated reservoir property models, such as porosity models, and 

the training images over all pixels. In facies modeling,  ℒ𝐿1(𝐺) is the L1 norm of the 

binary correctness map over all pixels. The value at each point of the binary correctness 

map equals 0 if the facies at that point in both the realization and the training image are the 

same; otherwise, it equals 1. 
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ℒ𝐶𝐺𝐴𝑁(𝑥, 𝑧) is the loss function of a CGAN, which is a binary cross-entropy loss 

function in facies modeling.  𝔼𝑦[𝑙𝑜𝑔𝐷(𝑦)]  is the logarithmic probability that the 

discriminator decides whether a training image originates from the training image 

set . 𝔼𝑥,𝑧[log(1 −  𝐷(𝐺(𝑥, 𝑧)))]  is the logarithmic probability that the discriminator 

decides whether a generated reservoir model does not originate from the training image 

set. 

In Eq. 3.3, ℒ𝑝𝑖𝑥2𝑝𝑖𝑥  is the total loss function, and 𝑎𝑟𝑔 min
𝐺

max
𝐷

ℒ𝐶𝐺𝐴𝑁(𝐺, 𝐷) 

represents the process of finding parameters (𝑎𝑟𝑔) for (1) the generator  to minimize 

(min
𝐺

) the probability that the discriminator successfully distinguishes the generated 

reservoir models from training images, and (2) the process of finding parameters for the 

discriminator to maximize  (max
𝐷

) the probability that the discriminator can successfully 

distinguish the generated reservoir models from training images. The generator and 

discriminator compete constantly until Nash equilibrium is reached (Myerson, 1978) and 

the generator can generate realizations reproducing the patterns in the training images. 

One problem with pix2pix, as noted by Isola et al. (2017), is that the images 

generated with it do not show much variability. Two factors cause the lack of variability in 

results obtained with the pix2pix method: (1) the L1-norm term tends to cause overfitting 

to the training image, and (2) inputting conditioning images into the discriminator 

decreases the variety of patterns in the ensuing realizations. 

3.2.2 Stochastic Pix2pix for Diverse Reservoir Model Generation 

To alleviate the limitations of pix2pix, I develop the stochastic pix2pix method. In 

this method, I first back-calculate the conditioning data from the generated reservoir 

models, and then use the mean squared error (MSE) between the target conditioning data 
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and back-calculated conditioning data as an additional loss term to enforce the 

conditioning. The loss function can be expressed as 

ℒ𝐿2𝑠𝑡𝑜
(𝐺) = 𝐸𝑧[‖𝑥𝑡𝑟𝑎𝑖𝑛 − 𝐺−1(𝐺(𝑥𝑡𝑟𝑎𝑖𝑛, 𝑧))‖2] 

 
(3.4) 

ℒ 𝑠𝑡𝑜(𝑥, 𝑧) = 𝑎𝑟𝑔 min
𝐺

max
𝐷

ℒ𝐶𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆ℒ𝐿2𝑠𝑡𝑜
(𝐺) 

 
(3.5) 

where 𝑥𝑡𝑟𝑎𝑖𝑛  are the target conditioning data, 𝑧 are random variables in latent 

space,  𝐺(𝑥𝑡𝑟𝑎𝑖𝑛, 𝑧)  are generated models, 𝐺−1 is the back calculator, 𝐷  is the 

discriminator and 𝐺 is the generator,  𝜆 is the certainty coefficient of additional L2-norm 

loss term, ℒ𝐿2𝑠𝑡𝑜
 is the L2-norm of conditioning data mismatch, ℒ 𝑠𝑡𝑜(𝑥, 𝑧) is the total 

loss function, and ℒ𝐶𝐺𝐴𝑁 is the loss function of a CGAN. 

More specifically, 𝐺−1(𝐺(𝑥𝑡𝑟𝑎𝑖𝑛, 𝑧))  is the inverse process of mapping the 

generated or training reservoir models back to the target conditioning data (e.g., seismic, 

well-log interpretations maps), 𝑥𝑡𝑟𝑎𝑖𝑛 , using simple arithmetic operations.  ℒ𝐿2𝑠𝑡𝑜
(𝐺) is 

the L2-norm of the difference between back-calculated conditioning data and the actual 

conditional data; and 𝑎𝑟𝑔min
𝐺

max
𝐷

ℒ𝐶𝐺𝐴𝑁(𝐺, 𝐷) is the process (𝑎𝑟𝑔) of finding both 

parameters for the generator 𝐺 to minimize the probability of correct classification (min
𝐺

) 

and parameters for the discriminator 𝐷  to maximize the probability of correct 

classification (max
𝐷

). 𝜆 represents how certain we are about the conditioning data. The 

additional MSE term ℒ𝐿2𝑠𝑡𝑜
(𝐺) in the total loss function is included to avoid generated 

models converging to a simple mode;  𝜆 controls how well the generated models reproduce 

the conditioning data. When 𝜆 is small, the stochastic pix2pix method defaults to CGAN, 

and tends to reproduce only common patterns in training images while ignoring the 

conditioning data; on the other hand, when 𝜆  is large, the method tends to perfectly 

reproduce the conditioning data, thereby decreasing the variability of realizations. The 
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patterns in the training images are not well reproduced in the realizations when 𝜆 is above 

10000. 

By incorporating only the mismatch of conditioning data as an additional loss term 

into the loss function, we avoid the overfitting problem in the pix2pix method. The 

generator of the stochastic pix2pix model is a U-net, which outputs the realizations and the 

back-calculated conditioning images (see Figure 3.1); the discriminator is a series of 

CNNs, which output the probability of the input image being a training image (Figure 3.2).  

It is worth noting that the structure of my algorithm is similar to the cycle-consistent 

adversarial networks (CycleGAN) method (Zhu et al., 2017), but with CycleGAN the 𝐺−1 

operator is effectively another generative adversarial network because the images are 

unpaired. Nevertheless, the neural network can be easily fooled (Nguyen et al., 2015), 

which may cause the lack of variability seen with CycleGAN. Therefore, in my proposed 

method, I use simple arithmetic operations to back-transform the generated models into 

conditioning models. Random variables, 𝑧, are also added to the input of the generator to 

ensure the variation of generated models. 

Unlike the pix2pix method, where realizations, training images, and conditioning 

data are all inputs for the discriminator, in the stochastic pix2pix I only use generated 

models and training images as the input for the discriminator. I do this because the patterns 

of architectural element distribution (geological settings) are stationary among all training 

images, i.e., the same rule-based reservoir modeling simulator is used to generate the 

training images. 

There are 3 main differences between the classical and the new methods: 

1) I did not use the reconstruction loss (L-1 loss term) to enforce exact reproduction. 

2) I did not input conditioning data to the discriminator because I assume the patterns 

are stationary among all training images. 
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3) I add loss terms to force the realizations to honor the conditioning data. 

By making these modifications, I successfully generate diverse realizations by only 

changing the latent variables. 

 

3.2.3 Markov Chain Monte Carlo (MCMC) Method for Globally Optimum Models 

Search 

The generation of diverse models requires that the certainty coefficient, 𝜆, not be 

set too large. To find the optimal match between models and the well logs and seismic 

interpretation, we can use the MCMC method, Metropolis-Hastings (M-H) sampling to 

assess the realizations. Although other sampling methods can be used, MCMC gives the 

most accurate a posteriori distribution. The workflow can be summarized as follows: 

1) 𝑥𝑡~𝑓(𝑥), initialize input 𝑥𝑡=0 as a combination of (1) 100 random variables (𝑧) in 

latent space, and (2) conditioning data, such as channel widths, levee widths, and 

avulsion rate according to a priori distribution 𝑓(𝑥).  

2) For t< 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 

a) 𝑥𝑡+1 = 𝑥𝑡 + ∆𝑥~𝑔(𝑥𝑡+1|𝑥𝑡), add a small perturbation to 𝑥𝑡 according to a 

user-defined probability distribution 𝑔. 

b) 𝑙𝑡+1 = 𝑓2(𝑥𝑡+1) , calculate the likelihood function using the uncertainty 

probability function 𝑓2 in geophysical interpretation. 

c) Generate random variable 𝛼 from a 0 to 1 uniform distribution. 

d) Compare 
𝑙𝑡+1𝑓(𝑥𝑡+1)

𝑙𝑡𝑓(𝑥𝑡)
 and 𝛼. 

e) If 
𝑙𝑡+1𝑓(𝑥𝑡+1)

𝑙𝑡𝑓(𝑥𝑡)
> 𝛼, 𝑥𝑡 = 𝑥𝑡+1, return to (2). 

f) If 
𝑙𝑡+1𝑓(𝑥𝑡+1)

𝑙𝑡𝑓(𝑥𝑡)
≤ 𝛼, return to (2). 
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The posterior distribution can be calculated by fitting a multi-Gaussian model to 

the 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 samples.  

3.2.4 Training Images From the Rule-Based Model 

The images used for training the pix2pix model are generated with UTFLUVPY, a 

rule-based, channel system modeling program. This software is developed in Python. It is 

based on the algorithm developed by Pyrcz et al. (2008). The centerline of each channel is 

initialized as a second-order autoregressive random (AR) process. The two parameters in 

this AR process are determined by wavelength (k), dampening factor (h), and disturbance 

variance (s) (Ferguson, 1976). Migrations of channels are modeled using the bank retreat 

model developed by Sun et al. (1996). Neck cutoffs occur when the centerline of a channel 

intersects itself. The channel avulsion takes place according to the probability given by the 

user. The avulsion point is selected at a probability proportional to the curvature of the 

channel. In this rule-based model, I model five facies: channel fill elements, lateral 

accretion elements (point bar), levee, abandoned channel element (neck cutoffs), and 

background shale. 

Property trends within different facies are modeled according to the depositional 

rules.  For example, porosity trends in point bars are simulated according to the 

depositional rules described by Thomas et al. (1987). In directions perpendicular to the 

active channel’s trajectory, sand quality near the channel is higher. Along the trajectory of 

the channel, sand upstream is of better quality than that downstream. To integrate the 

vertical upward-fining trend in point bars, point bars deposited earlier are assigned lower 

quality than those deposited later. Trends in other facies are modeled according to Pyrcz & 

Deutsch (2014). In the lateral direction, both channels and oxbow lakes have better quality 

sand in the middle and lower quality sand at the edge. It is assumed that the mean flow rate 
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in an oxbow lake is lower than that in a channel, so the overall sand quality in a channel is 

higher than that in an oxbow lake. Point bars have the highest quality rock because, at the 

time of deposition, the flow rate is higher in point bars than in abandoned channels and 

oxbow lakes. Different types of trends are tested, which are all well reproduced by my 

machine learning algorithm, but in this dissertation, I only show trends based on the spatial 

basis of a square root distance function (square root of the distance away from the 

centerline of a channel). 

3.2.4 Applying Stochastic Pix2pix to the Generation of Conditional Models of 

Fluvial Reservoir Facies 

3.2.4.1 Inputs and Loss Functions 

To perform more efficient sampling and ensure the generative model converges to 

the mode constrained by all conditioning data, conditioning data are integrated into both 

the input and loss function. The loss function is shown in Eq. 3.5. The additional loss term 

in Eq. 3.4 is composed of the mismatch between the seismic data and well-log data. 

3.2.4.2 Seismic Data Conditioning 

The proposed workflow assumes that seismic data have been inverted and 

interpreted to a low-resolution local sand and shale proportion map (Figure 3.3A). The 

inverted and interpreted image is applied in both the input layer and loss function. In the 

loss function, an additional MSE term (Eq. 3.6) between the back-calculated proportion 

map and the training proportion map is added (Figure 3.3A). The additional loss term for 

seismic data conditioning is expressed as 

ℒseismic(𝐺) = −
∑ ∑ (𝑡𝑖𝑘 − 𝑡𝑖𝑘

∗ )2𝐾
𝑘=1

𝑁
𝑖=1

𝑁𝐾
 (3.6) 
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where 𝑁 is the batch size, K is the number of pixels in the reservoir model; 𝑡𝑖𝑘 is the 

probability that in the 𝑖𝑡ℎrealization, facies at kth pixel is sandy; 𝑡𝑖𝑘
∗  is the probability 

that in the 𝑖𝑡ℎtraining image, facies at kth pixel is sandy facies 

3.2.4.3 Well Data Conditioning 

As in seismic data conditioning, facies at well locations in the training images are 

applied in both the input and loss function of the stochastic pix2pix model. The additional 

loss term for well data conditioning can be expressed as 

ℒwell_log(𝐺) = −
∑ ∑ ‖𝑤𝑖𝑙 − 𝑤𝑖𝑙

∗‖𝐿
𝐿=1 2

𝑁
𝑖=1

𝑁𝐿
 

 

(3.7) 

where 𝑁 is the batch size, 𝐿 is the number of well-log interpretations, 𝑤𝑖𝑙 is the 

probability of each facies at the 𝑙𝑡ℎ well location in the 𝑖𝑡ℎ reservoir model realizations, 

and 𝑤𝑖𝑙
∗  is the one-hot encoding (Paktar, 2017) of the facies at the 𝑙𝑡ℎ well location in 

the 𝑖𝑡ℎ training image. 

3.2.4.4 Encoding the Parameters of Rule-Based Models 

Parameters of the rule-based models, such as channel width, levee width, cutoff 

threshold, and avulsion frequency vary when generating training images. To ensure 

sufficient training images for different combinations of parameters, to decrease the number 

of input parameters, and to avoid mode collapse, training images are clustered according 

to the properties of their corresponding rule-based model using K-means clustering and 

encoded by a feed-forward neural network. I employ K-means clustering for the ease of 

interpretability and sufficient simplicity for the workflow. The output from this neural 

network is reshaped to that of the training image and used as input in the stochastic pix2pix 

model (Figure 3.1). Although I do not explicitly incorporate these model parameters into 
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the loss function, the results show that the generated images are consistent with the input 

model parameters (Figure 3.6). 100 Gaussian random variables in latent space are also 

combined with a feed-forward neural network to generate a random model parameter map 

with the same shape as the training image (Figure 3.1). 

3.2.4.5 Encoding the Parameters of Rule-Based Models 

I add all the additional loss terms and rewrite the total loss function (Eq. 3.5) as 

 

ℒsto
∗ (𝑥, 𝑧) = 𝑎𝑟𝑔min

𝐺
max

𝐷
ℒ𝐶𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆𝑠𝑒𝑖𝑠ℒseismic(𝐺)

+ 𝜆𝑙𝑜𝑔ℒwell_log(𝐺) 

 

(3.8) 

where 𝜆𝑠𝑒𝑖𝑠 and 𝜆𝑙𝑜𝑔 are the certainty coefficients of the seismic and well-log 

interpretations. The weights, 𝜆𝑖, must be small enough to avoid overfitting and to generate 

diverse realizations.  

The purpose of the training process is to find the parameters in the CNNs that 

minimize ℒsto
∗ . Figure 3.3 shows the inputs and outputs for the generator. Inputs for the 

generator are a proportion map of the training image (seismic interpretation) (A); facies 

data in the training image at well locations (well-log interpretation) (B); random variable 

map generated from 100 random variables in latent space (C); and random model parameter 

map from the parameters of the rule-based models (D). These are stacked and input into 

the generator (Figure 3.1) to generate simulated facies distributions (E). As for the 

discriminator (Figure 3.4), the inputs are the generated facies distribution (E), and the 

training images (E*). Another option is to use (A), (B), and (D) as input if the number of 

training images is large. The output of the discriminator is the probability that an input 

reservoir model is from the training set. The algorithms for training the generator and 

discriminator and for performing prediction are summarized as 
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• Generator: 

1) Generate (C) and (D) using feed-forward neural networks from low-

dimensional variables. 

2) Extract (A) and (B) from the training images. 

3) Combine (A), (B), (C), and (D) and use them as input for U-Net (Figure 

3.1) to generate the facies distribution (E) and back-calculate (A) and (B). 

Find weights for U-Net by minimizing 𝐺∗ 𝑠𝑡𝑜. 

• Discriminator: 

1) Combine (E), (E*) and use them as input for the discriminator CNNs (see 

Figure 3.2). Optionally, also input (A), (B), and (D) into the CNNs. 

2) Differentiate the generated and training images and find weights for the 

discriminator by maximizing ℒ𝐶𝐺𝐴𝑁. 

• Prediction: 

1) Obtain (A) and (B) from seismic interpretation and well-log interpretation, 

respectively; generate (D) from prior knowledge about the depositional 

environment of the reservoir; generate (C) as a Gaussian field with 0 mean 

and 1 variance. 

2) Use (A), (B), (C) and (D) as input for the generator; the outputs are 

conditional realizations. 

The generator and discriminator are sequentially trained until Nash equilibrium is 

reached. To find realizations that best match the seismic and well-log interpretations, we 
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can use the Metropolis-Hastings method to sample the realizations from the generator (see 

Figure 3.5).  

3.2.4.6 Property Model Generation with Stochastic Pix2pix 

Continuous subsurface property model generation is similar to facies model 

generation, except for the input and output. In a stochastic pix2pix model, the inputs for 

reservoir property model generation are well-log interpretations (B) and facies maps 

generated in facies modeling (E). These output a continuous property trend model. 

Depending on the application, continuous property noise based on two-point statistics can 

be added to property trend models to optimize well log match and to incorporate 

heterogeneity into the reservoir models (similar to the method of Pyrcz et al., 2005). 

3.2.4.7 Training Image Generation and Hyper-Parameters 

The synthetic case comprises 10,000 images with a cell size of 16m as the training 

set. The training images are generated with the rule-based channel reservoir simulator 

UTFLUVPY. I also generate a validation set of 1,000 reservoir models with different 

random seeds. The shapes of training images, validation models, and realizations are all 

56×56. I train the stochastic pix2pix model on the training set and evaluate its performance 

on the validation set. For each training image, its parameters in rule-based modeling are 

uniformly sampled from Table 3.1, and consistently used during the rule-based modeling. 

The architecture of the stochastic pix2pix model is tuned to optimize the results. 

The shape of latent space is fixed at 100×1. In the generator (Figure 3.1), there are 6 

convolutional layers with the rectified linear unit (ReLU) activation functions and 1 output 

layer with the SoftMax activation function to generate categorical probability (Figure 3.6). 

The discriminator has 3 intermediate CNNs with ReLU activation functions and an output 
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layer with a Sigmoid activation function (Figure 3.2). Adam optimization (Kingma & Ba, 

2014), with a learning rate of 0.0002, is used for model calibration. I employ the Adam 

optimizer because it requires less memory and is not very sensitive to hyper-parameters. I 

train the stochastic pix2pix model on a Tesla P100 GPU with a batch size of 128 for 1,000 

epochs. After training the model for 10,000 epochs, realizations still show diversity, with 

no mode collapse when λ are small. To perform continuous property modeling, one only 

needs to change the SoftMax activation function in the output layer of the generator to the 

Tanh function and scale the property in the training images to between -1 and 1. By scaling 

the property and introducing the Tanh function, I introduce more non-linearity, thereby 

preventing the neural network from fitting to potential outliers. 

3.2.5 Model Evaluation 

Performance evaluations for my suggested workflows are based on two factors, 

namely, how accurately the generated reservoir models predict the conditioning data in the 

true model and how well the reconstructed reservoir models reproduce the patterns of 

training images. The pattern reproduction is evaluated by indicator variogram and 

histogram. The accuracy of data conditioning is quantified by the mean categorical error, 

calculated as 

 

𝐿𝑐𝑎𝑡 =
∑ ∑ 𝑚𝑖𝑘

𝐾
𝑘=1

𝑁
𝑖=1

𝑁𝐾
 

 

(3.9) 

where 𝑁 is the batch size, K is the number of pixels in the reservoir model, and 𝑚𝑖𝑘 is a 

point in the binary correctness map that equals 0 if the facies at 𝑘𝑡ℎ pixel is the same in 

both the true model and 𝑖𝑡ℎ realization. 
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3.3 RESULTS 

3.3.1 Controlling the Geometries of Realizations 

I investigate the effect of the input architecture parameters (Figure 3.3D) on the 

realizations. I assume the correct channel width, levee width, and neck cutoff threshold are 

unknown. By changing these parameters (see sec. 2.5.4), I expect to change the input layer 

(D) and control the corresponding features in the generated reservoir models while 

honoring the seismic interpretation. The results in Figure 3.7 show the realizations with the 

same seismic conditioning image and different input architecture parameters. It can be seen 

from these results that the stochastic pix2pix model successfully controls the corresponding 

features for the given inputs. 

3.3.2 Conditioning the Realizations to Accurate Seismic Interpretation 

To generate realizations only conditioning to seismic data, I first set 𝜆𝑙𝑜𝑔 to 0 and 

𝜆𝑠𝑒𝑖𝑠 to 100, and then delete the well-log facies map in the input layer of the generator 

(Figure 3.3). In Figure 3.8, I show different realizations generated with the stochastic 

pix2pix method with the same channel and levee widths and neck cutoff threshold as the 

true model. The boundary between sandy and shale facies in the true model is well 

reproduced in realizations, indicating that the realizations honor the seismic interpretations. 

The mean categorical error (see Eq. 3.9) for seismic interpretation is 0.34%.  

The continuous channel fill with low curvature in each realization shows that the 

stochastic pix2pix method captures long-range spatial patterns. Neck cutoffs with high 

curvatures show that the method can also capture the local short-scale, spatial features. The 

distribution of levee facies at the edge of a channel complex is consistent with fluvial 

channel deposition concepts. Finally, spatial diversity between different realizations shows 

that this method mitigates the mode collapse and overfitting problems. 
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In Figure 3.9 I explore model diversity with the probability maps of different facies 

and the corresponding Shannon entropy map. There are low uncertainties in shale and levee 

facies distribution, owing to the assumption of accurate seismic interpretation and known 

channel and levee width. Compared to the probability map of neck cutoffs, the probability 

map of the abandoned channel (channel fill) shows lower curvature. Point bars away from 

shale and sand boundaries show higher uncertainty. The Shannon entropy map 

demonstrates high uncertainty in the center of the sandy facies because the boundary does 

not provide much information about facies distribution within. 

In Figure 3.10, I compare variograms and histograms of different facies from the 

true model and the realizations. Both histograms and variograms of the realizations match 

the true model with a high degree of accuracy. The standard deviation of the error in all 

variograms is less than 10%. Categorical histograms of the proportions of neck cutoffs, 

abandoned channel, and point bar facies over the realizations are slightly different from 

those in the true model, indicating that the method does not constrain the realizations to a 

specific proportion of facies. Facies proportion may be added to the input and loss function 

in the future, so that calculations from well-log interpretation can be used to better constrain 

the generated realizations in a relatively stationary reservoir. 

3.3.3 Realizations Conditioned to Seismic and Well-Log Interpretation 

I generate conditional realizations via the standard stochastic pix2pix workflow. 

 𝜆𝑠𝑒𝑖𝑠 is set to 100 and 𝜆𝑙𝑜𝑔 is set to 10.  

In Figure 3.11 I show different realizations generated with the stochastic pix2pix 

method having the same channel and levee widths and neck cutoff threshold as the true 

model. Compared to realizations without well log conditioning, the facies distributions 

show less variety than expected. Although the realizations do not perfectly match the facies 
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at well locations, most of the facies at well locations are correct. The mean categorical error 

for seismic interpretation is 0.41% (Eq. 3.9), and the error for well-log interpretation is 

6.71%. 

Probability and Shannon entropy maps are shown in Figure 3.12. In both the 

probability and Shannon entropy maps, the facies uncertainties near well locations greatly 

decrease to an average of 0.2042. So, for example, the probability map of the abandoned 

channel shows that the channel is more likely to be located at the center of the channel 

complex. 

Variograms and histograms of different facies after well log conditioning are 

compared in Figure 3.13. After conditioning to well data, the realizations more closely 

reproduce the variograms and histograms of the true model. 

The training process of the proposed method for generating conditional realizations 

only takes about 2 hours of CPU time, and it is faster than the stochastic sampling method. 

My models are relatively small compared to the real reservoir model, but the stochastic 

pix2pix method can be applied hierarchically to downscale the reservoir model, i.e., the 

low-resolution output can be discretized into several patches, and each patch can be used 

as input for another stochastic pix2pix model to generate part of a high-resolution reservoir 

model. Such a procedure of generating high-resolution reservoir models--more 

computationally efficient and requiring less memory than direct full-scale 3D reservoir 

modeling--will be the subject of my future work. 

3.3.4 Model Realizations with High Uncertainty 

To generate conditional realizations in settings with a high degree of seismic and 

well-log interpretation uncertainty, we can integrate multiple subsurface geophysical and 

petrophysical interpretations and reduce the weight of seismic and well-log conditioning 
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in the loss function. Given only one set of uncertain seismic and well-log interpretations, I 

use CGAN to generate possible seismic and petrophysical interpretations and set both 

𝜆𝑙𝑜𝑔  and  𝜆𝑠𝑒𝑖𝑠  to 0.1. I then use the stochastic pix2pix method to model the facies 

distribution conditional to high-uncertainty seismic and well-log interpretation. 

Realizations are shown in Figure 3.14. Here I see more diversity in the distributions of 

different facies, but the patterns in the training images are preserved.  

Probability maps of different facies and the Shannon entropy map are shown in 

Figure 3.15. There is reduced certainty in the local facies distribution; however, the general 

pattern of each facies is preserved. As expected, high uncertainties associated with the 

interpretations lead to a map with high Shannon entropy. 

The variograms and histograms of different facies are shown in Figure 3.16. The 

realizations have much higher entropy than that shown in cases assigned a higher degree 

of seismic and well-log interpretation certainty. The histograms are not well matched and 

the variograms of different facies also show larger variations from the true model. 

3.3.5 Multiple Point Statistics Validation 

To validate that my method successfully reproduces the higher-order statistics in 

the training images, I compare the multiple point density functions between the training 

images and realizations conditioned to both seismic and well-log interpretation. A 

comparison of the density functions with a 4-point template (Boisvert et al, 2010) is shown 

in Figure 3.17, only 10 configurations with the highest frequencies are shown.  

I also calculate the difference between the multiple point density functions with 4-

, and 9-point templates for training images and realizations. I only perform the calculation 

for 4- and 9-point templates because there are 5 facies in my models. An n-point template 

has 5^n different configurations. Too much memory and computational resources are 
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required to perform MPS or density function calculation when n is large. The difference 

between the MPH of training models and model realizations with a 4-point template is 

0.0848, and the difference with a 9-point template is 0.1677, which I think is acceptable.  

3.3.6 Property Modeling 

The facies map is used as input in another stochastic pix2pix model to generate the 

within-facies property model. Facies trends include point bars where sand quality is lower 

transitioning to the center of channels with the highest-quality sand. Sand quality in the 

center of a channel or an oxbow lake is higher than that at the edge.  

In both the true model and realizations (Figure 3.18), I observe that point bars 

adjacent to the active (abandoned) channel fill have better sand quality than those 

surrounded by oxbow lakes or those away from the channel. I can track the potential 

depositional order from some of the realizations, which indicates that the order of 

depositional time in training images is effectively learned by the stochastic pix2pix model. 

The lateral trends of all facies in the realizations follow the rules defined in Sec. 2. 4. These 

property models are of direct use, therefore, for reservoir simulation and history matching. 

Two-point statistics-based residuals can be added to the property models to better capture 

well-log interpretation results and their statistics. 

3.3.7 Comparison to Pix2pix Method 

I use the M-H sampling method to find the best match that was generated with 

stochastic pix2pix and compare it with that generated with the pix2pix method (Figure 

3.19). Data matching of both the stochastic pix2pix method and the pix2pix method are 

good. The mean categorical errors (Eq. 3.9) of seismic interpretation reproduction are 

0.096% and 0.542% for the stochastic pix2pix method and the pix2pix method, 
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respectively. The mean categorical errors of well-log interpretation reproduction are 4.5% 

for both methods. However, the stochastic pix2pix method preserves the patterns of 

different facies better than does pix2pix; in addition, the stochastic pix2pix method 

generates more diverse realizations (Figures 3.14 and 3.18). Compared to workflows with 

inpainting for well data conditioning (Jo et al., 2019), my proposed method does not create 

artifacts near wells, and the long-range patterns of different facies are better preserved. 

3.4 DISCUSSION 

The stochastic pix2pix method generates diverse facies and property distributions 

conditioned by seismic and well data and thus is highly applicable for decision-making in 

subsurface development operations. Reservoir models generated with this method preserve 

the patterns observed in the training images, e.g., continuous, small-curvature active 

channel fill, large-curvature neck cutoffs, drip-like point bars, and continuous levees 

distributed at the boundary of sandy facies. However, most of the results are based on 

numerical experiments with the same forward model. This section discusses the robustness 

of my method for realistic seismic interpretation (field data), how to apply it for real-time 

reservoir management and pre-drill assessment, the factors controlling the spatial 

smoothness of the parametric properties, and the method’s application to large-scale, 

complex turbidite channel systems. 

3.4.1 How Robust Is Stochastic Pix2pix Method? 

In applying this method to field data, one may come across seismic/well-log 

interpretations that are very different from the training images; in cases such as these, 

unconditional realizations generated by methods like GAN may not produce satisfactory 

stochastic reservoir models, which have the same conditioning data. To show the 
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robustness of this method, I apply it to the map of Texas and real seismic interpretations, 

which are transformed into binary facies maps and used as a constraint. As we can see from 

Figures 3.20 and 3.21, even though the conditional images are different from those in the 

training images, the proposed method still reproduces diverse long-range and short-range 

patterns of facies consistent with the outline. In Figure 3.21, the generated reservoir model 

reproduces the outline of the segmented seismic interpretation. Potential locations of neck 

cutoffs, point bars, and channel fills can be identified from the ensemble of realizations. 

 

3.4.2 How Can Stochastic Pix2pix Method be Applied to Real-Time Reservoir 

Management and Pre-Drill Assessment? 

 This 2D model is suitable for reservoirs with high aggradation rates or reservoir 

units with high degrees of vertical isolation. Nevertheless, its extension to 3-D is 

straightforward. My method has two advantages over other rule-based or object-based 

methods. First, it can perform fast simulation and conditioning; second, it can parameterize 

high-dimensional reservoir models to low-dimensional input parameters. This allows us to 

update the reservoir in real-time and make optimal decisions based on the latest reservoir 

model. For example, during the exploration phase, we may drill wells to reduce the 

uncertainty of the reservoir model, targeting locations with high Shannon entropy to 

maximize information. During the reservoir development phase, we may drill wells 

intersecting the facies with high certainty of the highest rock quality based on the facies 

probability map. 

With this new reservoir modeling method, we can obtain the probability map of 

facies distribution as well as property distributions. This information is vital for future 

drilling and completion operations, e.g., for areas with high uncertainties we may adopt a 



 131 

more conservative drilling strategy. Given this knowledge, we can also design well-log 

operations to maximize the sensitivity of well logs to the expected range of formation 

properties or expected lithofacies. Thus, for wells in areas with low uncertainty, we may 

require fewer well logs. The probability maps can also help petrophysicists choose optimal 

coefficients for petrophysical models. The entire proposed workflow is summarized in 

Figure 3.22. 

3.4.3 How Does the Training Set Affect the Realizations? 

A large training data set does not necessarily yield good results, although a training 

data set with consistent patterns does. The most important advantage of the stochastic 

pix2pix method is that it uses the CGAN structure, which allows us to label the training 

images based on the similarity of their patterns. For example, we can divide the training 

images based on their mean channel, levee widths, and avulsion probability. 

By dividing the training set into groups with more consistent, or stationary, patterns, 

the performance of my model is enhanced, and we can experiment with more conceptual 

models. For example, to test if the reservoir is a meandering channel complex, we may use 

low avulsion frequency and large channel width in the input layer of the stochastic pix2pix 

model, whereas to test if it is a distributary fluvial delta system, we may use high avulsion 

frequency and small channel width in the input layer. I will discuss the implications of 

dividing training images by pattern in my future work. 

In this dissertation, I use training images generated with a rule-based model. 

However, images from high-resolution seismic interpretation and tomography photos can 

also be used as training images, although manual assignment of labels may be required in 

these cases. 
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3.4.4 How Well Does the Stochastic Pix2pix Method Parameterize Low-Avulsion 

Rate Channel Systems? 

My hope, in parameterizing one set of random variables to another set of variables, 

is that the mapping can be as linear as possible, and the response surface for the two sets 

of variables as smooth as possible. The stochastic pix2pix method maps complex reservoir 

models to a 100 × 1 Gaussian space. To test whether a smooth change in Gaussian space 

can yield a smooth change in reservoir models, I use the gradual deformation method (Hu, 

2000; Hu & Jenni, 2005), given by 

𝑌(𝑡) = 𝑌1 sin(𝑡) + 𝑌2 cos(𝑡) (10) 

 

where 𝑌(𝑡), 𝑌1, and 𝑌2 are Gaussian random functions, and 𝑡 is the angle. It can be 

proved that a new Gaussian random function,  𝑌(𝑡), can be defined as the sum of two 

independent Gaussian random functions 𝑌1 and 𝑌2 weighted by trigonometric functions. 

By changing the angle, t, I continuously sample between two random variables in the 

Gaussian latent space. As shown in Figure 3.23, the mapping is smooth because the 

reservoir models also change continuously; for example, the abandoned (active) channel 

fill gradually deforms to originate new point bars and neck cutoffs. Figure 3.23 shows that 

when the channel intersects itself, a neck cutoff forms, which is consistent with the 

sedimentary process I try to mimic. Similarly, most of the realizations do not break the 

rules I used to generate training images. We may conclude, therefore, that the stochastic 

pix2pix method manages to learn the migration rule of the meandering channel system. 

The combination of stochastic pix2pix and gradual deformation methods can be directly 

used for history matching.  
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3.4.4 Application to Large-Scale, Confined Complex Turbidite Reservoir Modeling 

The examples shown in previous sections are relatively simple and small. In this 

section I discuss how to generate training images representing a large-scale, complex 

turbidite system, using the same ML algorithm to generate realizations conditioning to the 

boundary of the canyon in which the turbidite channel system resides. The size of the 

realizations is 1024×256, which can be directly used for field applications. 

In rule-based reservoir modeling, when conditioning the channel models to the 

boundary of a channel complex, many artifacts may be introduced. Channels that intersect 

the channel complex boundary during accretion may have to be abandoned; or, the 

accretion rate toward the boundary may be damped to avoid the intersection between 

channel elements and the boundary. To avoid these artifacts, I use unconditional training 

images and then employ stochastic pix2pix to perform the conditional model generation. 

In Figure 3.24, patterns such as continuous channel fill, neck cutoffs indicating left-to-right 

flow direction, and levee filling to the canyon’s confines, all indicate that the stochastic 

pix2pix method can reproduce the patterns for a large-scale, complex turbidite reservoir. 

3.5 CONCLUSIONS 

The following conclusions stem from the implementation and verification of new 

method of stochastic pix2pix for modeling low-avulsion rate channel systems: 

1) Results show that the pix2pix modeling method can reproduce the patterns in each 

facies contained in the training images while honoring static data, and the 

stochastic pix2pix method improves the pattern reproduction and the diversity of 

the realizations (see Sec 3.6). 

2) The stochastic pix2pix method is successfully applied to construct fluvial 

reservoir models consistent with well-log and seismic interpretation. It can also be 
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expressed as downscaling from seismic-scale interpretation to reservoir scale 

required for flow forecasting. Compared to conventional reservoir modeling and 

conditioning methods, the proposed method improves computational efficiency 

and pattern reproduction when simulating and conditioning models (see Sec. 3.1, 

3.2, 3.3, 3.4, 4.1). 

3) The stochastic pix2pix method reproduces the patterns observed in rule-based 

fluvial training images, such as continuous, small-curvature active channel fill; 

large-curvature neck cutoffs; drip-like point bars; and continuous levees 

distributed at the boundary of sandy facies. One common limitation of generative 

machine learning methods, however, is that they do not precisely quantify the 

quality of the reproduction of the patterns in the training images. Therefore, I used 

visual evaluation and two-point statistics to qualitatively verify that the patterns 

were adequately reproduced (see Sec. 3.2, 3.3, 4). Additional metrics such as 

multiple-point histograms could be considered as well (Boisvert et al., 2010). 

4) Property models generated with the stochastic pix2pix method follow the trend 

that we observe in rule-based models. The new method serves as a good 

parameterization tool for history matching because the 100 variables in latent 

space represent a much smaller number of variables than otherwise necessary to 

capture the properties for all the grids.  

5) The method can continuously modify the active channel continuously to mimic 

real meandering channel migration. I regard this as evidence that the new method 

manages to learn the depositional rule of the meandering channel’s point bar 
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system (see Sec. 4.4). This algorithm can model large-scale channel systems (see 

Sec. 4.5). 

6) I anticipate the new workflow being used by reservoir engineers and geologists as 

an alternative to conventional MPS and rule-/object-based reservoir modeling 

methods, allowing them to more efficiently and accurately perform stochastic 

reservoir modeling and conditioning for channel reservoirs such as fluvial or 

turbidite systems. The following steps are recommended for optimal performance: 

first, facies models should be built with the stochastic pix2pix method with 

relatively low certainty coefficients, 𝜆, with a sampling of realizations performed 

as necessary; next, property trend modeling conditioned to facies models should 

be performed by another stochastic pix2pix method; and last, two-point statistical 

property noise should be added to the property trend model via co-simulation 

methods.   

7) The main limitation of my method is that it is currently applicable to 2D models. 

It can only be directly used in cases where the aggradation rate of a reservoir is 

high, e.g., in the upper part of a turbidite sequence. However, 3D models can be 

easily generated via zone-by-zone (reservoir unit) simulation, which will be the 

focus of my future work. Also, because the size of the reservoir model is 

relatively small, I will use by-patch downscaling to hierarchically increase the 

size of the model and add details to it in future investigations.
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Table 3.1: Summary of the ranges of parameters input for the rule-based model. 

 

 

 

Parameter Low High Parameter Low High 

k 0.08 0.15 Channel width 32 m 128 m 
h 0.3 0.5 Levee width 32 m 384 m 

s 0.03 0.07 Cutoff threshold 64 m 320 m 

Avulsion frequency 0.0 0.0    
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Figure 3.1: Structure of the generator (example of training images with 56×56 pixels). It is a U-net structure. Inputs for the 

generator are four concatenated layers. The first two layers are conditioning images (well-log map, seismic 

interpretation) whose sizes are both 56×56. The third layer describes the expanded architectural geometries 

(channel, levee widths, cutoff threshold); its original shape is 3×1 and is expanded to 56×56 using a fully 

connected neural network to be compatible with the shape of the reservoir model. The last layer describes the 

expanded random variables; its original shape is 100, and it is also expanded to 56×56. Concatenated inputs are 

encoded with a series of CNNs and down-sampling layers and are then decoded by a series of CNNs and up-

sampling layers; short cuts between encoding layers and decoding layers preserve the local features. The 

generator first outputs the probability map of all 5 facies; it then back-calculates the two layers of conditioning 

images. 
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Figure 3.2: Structure of the discriminator (example of training images with 56×56 pixels). It is a series of CNNs. Inputs to the 

generator are the one-hot encoding (Potdar et al., 2017) of either training images or generated realizations (one-

hot encoding transforms categorical facies models into higher dimensions with values of only 0 or 1). Patterns in 

those images are extracted by a series of CNNs. In the last layer, patterns extracted from CNNs are flattened and 

linked with a fully connected neural network (NN). The NN then outputs the probability that the input image 

comes from the ensemble of training images. 
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Figure 3.3: Generator architecture for reservoir modeling problems. Inputs for the generator are (A) seismic interpretation 

map from training images; (B) facies in the training images at well locations; (C) random variables generated 

from 100 variables in latent space; (D) image generated from random model parameters (channel width, levee 

width, etc.). These inputs are concatenated and sent into the U-net in the generator to yield one realization of the 

training image; (E) is the back-calculation of the seismic interpretation and well-log interpretation from the 

realizations. 
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Figure 3.4: Discriminator architecture for the reservoir modeling problem. Inputs for the discriminator are (E*) true model or 

(E) realizations from the generator. Alternatively, one can input (A) upscaled, low-resolution binary facies 

distribution from training images; (B) facies in the training images at well locations; (D) image generated from 

random model parameters (channel width, levee width, etc.). If the number of training images available is small, 

(A) (B) (D) can be clustered and transformed into labels or omitted in the analysis. 
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Figure 3.5: Realizations that match the static conditioning data best are found by minimizing the mismatch with seismic 

interpretation and well-log interpretation using the Metropolis-Hastings (M-H) sampling method. 
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Figure 3.6: Sigmoid and ReLU activation functions. The Softmax activation function is a multivariate sigmoid activation 

function. 
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Figure 3.7: Conditioned realizations with different channel and levee widths. Compared to the true model, reservoir model 

realizations have similar shapes of sandy and shale facies but different channel and levee widths. These results 

indicate that we have good control over the architecture parameters (in this case, levee and channel widths) by 

specifying them in the input layer (D) of the stochastic pix2pix model. 
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Figure 3.8: Realizations with fixed channel and levee widths and neck cutoff threshold conditioned by seismic interpretation 

only. The realizations match the outline of the true model; patterns of different facies are preserved and consistent 

with fluvial channel depositional concepts. Facies distributions are different from realization to realization, 

confirming that the method solves the mode collapse problem associated with other GAN methods. 
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Figure 3.9: Probability maps and Shannon entropy map of different facies with fixed channel and levee widths. The Shannon 

entropy map summarizes the local uncertainty in the facies distribution; the lighter the color, the greater the 

uncertainty. Large λ_seis forces realizations to exhibit marginal variation at sand/shale boundaries; the shale 

facies also exhibits low uncertainty. Fixed levee width causes the levee facies to have low uncertainty as well. I 

find high uncertainty in the distribution of neck cutoffs, point bars, and abandoned channels. The Shannon 

entropy map indicates that the center of sandy facies has the highest uncertainty because the information from the 

sand/shale boundary degrades with distance from the boundary. 



 146 

 

 

Figure 3.10: Indicator variograms and histograms of different facies. Variograms and histograms of different facies are 

accurately reproduced in the realizations. The match of variograms is good except for the abandoned channel and 

point bar, where the lack of information at the center of sandy facies causes underestimation of the continuity of 

channel facies and overestimation of the continuity of point bars. Differences in the histogram are mainly caused 

by facies variation away from the sand/shale boundary. 
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Figure 3.11: Realizations with fixed channel and levee widths and neck cutoff threshold conditioned by both seismic and well-

log interpretations. Purple dots identify the location of wells. Realizations match the outline of the true model and 

geometries of different facies are preserved. Compared to the realizations conditioned to seismic interpretation 

only, realizations conditioned to both well log and seismic interpretation exhibit less variation in facies 

distribution. The abandoned channel has large variations only in places where few wells are drilled, e.g., where 

“near X” equals 100m and 500m. 
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Figure 3.12: Probability map and Shannon entropy map for different facies with fixed channel and levee widths (conditioned 

to both well-log and seismic interpretations). White dots identify well locations. Similar to probability maps 

generated from realizations conditioned to seismic interpretation only, small variations are observed in shale and 

levee distributions. Well-log interpretation provides additional information on facies distribution within sand 

bodies. The abandoned channel is more likely to be located at the center of the sand body, which is consistent 

with the true model. Less uncertainty is observed in the Shannon entropy map. Shannon entropy at well locations 

is small. 
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Figure 3.13: Variograms and histograms for different facies (conditioned to both well-log and seismic interpretation). 

Compared to the variograms of realizations only conditioned to the seismic data, well-log information improves 

the match of the variogram for different facies. Facies within the sand body also yield a better histogram match 

with the true model. 
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Figure 3.14: Realizations conditioned to upscaled seismic interpretation with large uncertainty. Larger variations are found in 

the distributions of different facies; however, the patterns for each facies are reproduced. 
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Figure 3.15: Probability maps for different facies and Shannon entropy map. Given the high uncertainty in seismic 

interpretation and the absence of well-log interpretation, one can no longer distinguish potential facies 

distributions from the probability maps. However, the general trend can still be observed. 
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Figure 3.16: Indicator variograms and histograms of different facies in reservoir model realizations conditioned to high-

uncertainty data. Histograms show that  realizations underestimate the proportion of neck cutoff facies and 

overestimate the proportion of the other facies; the variograms of the neck cutoffs, shale and levee facies are 

within 25% quantile of the realizations, and the variograms of point bar and abandoned channels are within 75% 

quantile. Variograms of realizations show larger variation than realizations conditioned to low-uncertainty data. 



 153 

 

Figure 3.17: Multiple point density function (4-point template) comparison between training image and realizations. 

Configurations are made of shale (green), active channel (red), point bar (yellow), neck cut-off (black), and levee 

(blue) facies. 
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Figure 3.18: Property realizations generated from the facies model. Realizations successfully reproduce the trend of property 

distributions within each facies. 
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Figure 3.19: Comparison between maximum likelihood estimates obtained from the stochastic pix2pix and pix2pix methods. 

Realizations generated with the stochastic pix2pix method exhibit a better match with the seismic interpretation; 

they also reproduce the long-range patterns of different facies better than does pix2pix. 
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Figure 3.20: Realizations generated from the map of Texas. Although the shapes of the shaly facies and sandy facies are very 

different from those of training images, my method still reproduces the patterns of each facies observed in the 

training images. 



 157 

 

Figure 3.21: Realizations generated from the interpretation of field seismic data (Kolla et al., 2007). It is worth noting, similar 

to figure 20, only the outline of the seismic interpretation (binary facies map) is used as a constraint for new 

realization generation. Sandy facies are well reproduced, and the facies distribution also exhibits sufficient 

variability. Patterns of facies are reproduced; neck cutoffs tend to happen when channels intersect themselves. 
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Figure 3.22: The stochastic pix2pix method for real-time reservoir management. Seismic interpretation is used to generate 

possible reservoir models; these models are then used to generate probability and uncertainty maps. The maps can 

be employed in well planning and pre-drilling assessment, and they can also help petrophysicists to optimize the 

parameters used in their models. History matching in reservoir model subspace is also facilitated where all 

reservoir models have already been conditioned to geophysical/petrophysical interpretations. 
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Figure 3.23: Two instances of continuous mapping from Gaussian random variables to realizations. The realizations change 

continuously as the Gaussian random variables change using the gradual deformation method. The continuous 

deformation of active (abandoned) channel fill is similar to the migration of a real meandering channel, in that 

point bars and neck cutoffs tend to be generated whenever the channel intersects itself. One can interpret this as 

the machine successfully understanding the channel migration process. 
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Figure 3.24: Generation of large-scale complex turbidite reservoir models. The realizations reproduce the patterns in the 

corresponding true models, such as continuous channel fill, neck cutoffs indicating the left-to-right flow direction, 

and levee filling the rest of the confining canyon. This indicates that the stochastic pix2pix method can be applied 

for large-scale 2D stochastic reservoir modeling and can be extended to 3D modeling by modeling each zone with 

different seismic/well data constraints. 
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Chapter 4: Hierarchical Modeling of Deepwater Lobate Reservoir via 

Machine Learning Methods 

Unconfined deepwater lobe deposits are among the most important targets in 

deepwater oil field exploration and production. Accurate stochastic simulations of the 

sedimentary architectures and petrophysical properties of deepwater lobe deposits require 

robust seismic and well data integration. The reservoir heterogeneity at scales below 

seismic resolution generally exhibits important and predictable hierarchical architectures 

that control the vertical and horizontal connectivity of the reservoir, affecting the 

hydrocarbon recovery rate during development. Current geostatistical simulation 

algorithms such as variogram- and multiple-point-based methods readily perform property 

modeling conditioned to well data and trends informed from seismic data at and above 

seismic resolution. Yet, these common geostatistical models are limited in their ability to 

reproduce essential, multiscale heterogeneities below seismic resolution between wells, 

including nested multiscale architectures and trends. Rule-based methods are commonly 

used for modeling the hierarchical architectures but conditioning the models to well logs 

and seismic data is still limited, difficult, and time-consuming. Either a prohibitive degree 

of expert intervention is employed resulting in overly deterministic models or the common 

‘cookie cutter’ approach is applied, resulting in inconsistency over the multiple scales.  

To address the well and seismic data conditioning and multiscale modeling 

limitations of current geostatistical modeling methods, I propose a new workflow based on 

the hierarchical application of the newly developed stochastic pix2pix machine learning 

algorithm. The hierarchical stochastic pix2pix workflow calculates a diverse ensemble of 

conditional, multiscale architectural, and petrophysical property model realizations by 

learning the stacking and geometrical patterns of architectural elements in rule-based 
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deepwater lobe deposit training models. I demonstrate the hierarchical stochastic pix2pix 

workflow to calculate an ensemble of multiscale deepwater lobe depositional systems 

conditioned by: (1) geostatistical rule-based training and testing models, (2) bounding 

surfaces, and property estimates from seismic and well log interpretations. 

With the hierarchical stochastic pix2pix workflow I can efficiently and accurately 

calculate diverse 3D reservoir models, which are conditional to the well-log and seismic 

interpretations, and reproduce multiscale heterogeneity. I also use quantitative measures, 

such as a raster-based compensational index and the dynamic Lorenz coefficient to validate 

the model accuracy. In addition, the reduced model parametric representation and efficient 

model calculation available with the hierarchical stochastic pix2pix workflow is critical to 

the practical solutions to reservoir inverse problems.  

4.1 INTRODUCTION 

Accurate reservoir models are essential for developing subsurface forecasts to 

support subsurface development decision-making to maximize project value, steward vital 

energy resources, and minimize environmental and safety risks. An accurate reservoir 

model complies with three conditions: (1) an exact match of the well-log interpretations at 

well locations, known as well conditioning, (2) conformity to bounding surfaces and 

informative attributes from seismic interpretation, known as seismic conditioning, and (3) 

consistency of geological concepts, such as the spatial and temporal order, geometries of 

sedimentary elements, and the patterns of petrophysical property distribution of 

sedimentary elements at different scales. These models must be calculated efficiently to 

provide an ensemble of realizations that jointly represent subsurface uncertainty. 

Current geostatistical methods, such as two-point semivariogram-based or multi-

point, integrate spatial statistics inferred from available conditioning data, training images, 
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and analog information sources, such as outcrops and mature fields. These methods are 

unlimited in their ability to condition to well data, (Pyrcz and Deutsch, 2014) but tend not 

to reproduce single scale, nor multiscale subsurface heterogeneity, representing salient 

fluid flow conduits, barriers, and baffles such as curvilinear channels, undulating drapes, 

and specific facies ordering relationships (Pyrcz et al., 2012). 

Stochastic object- and rule-based geostatistical methods reproduce complex 

multiscale subsurface heterogeneities by filling the reservoir model with nested, 

parameterized architectural elements of appropriate shapes and dimensions according to a 

set of user-defined geometric parameters and rules (Pyrcz, 2004; Deveugle et al., 2014). 

Rule-based methods utilize probabilistic rules that mimic sequential depositional processes 

to better reproduce patterns resulting from the depositional process, such as stacking 

patterns and geometries of depositional elements. When I perform rule-based modeling for 

lobe deposit, I assume stationary depositional patterns and geometry of architectural 

elements, which may not be valid when the depositional environment changes. 

Depositional elements are sequentially and stochastically generated and deposited to 

generate the model. The deposition of the elements follows a set of rules so that 

depositional elements are more likely to deposit on elevation lows. However, well and 

seismic conditioning for surface- and object-based models is difficult because the 

feedbacks and interactions between the placed multiscale architectural elements hinder the 

forecasting and optimization parameter selection for well and seismic conditioning (Pyrcz, 

2004; Michael et al., 2010; Bertoncello et al., 2013; and Wang et al., 2018). Seismic 

conditioning is the process of calculating reservoir models with architectural elements that 

are consistent with architectural element surfaces and horizons interpreted from seismic 

data. Zhang et al. (2009) demonstrate rule-based modeling of deepwater lobes to form a 
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lobe complex. However, the bounding surface of the lobe complex is not used as a 

constraint for the modeling of lobes. 

Due to the limitation of current modeling methods, researchers resort to machine 

learning-based approaches (Santos, et al., 2021) to calculate more accurate reservoir model 

realizations with good well, seismic, and multiscale geological concept conditioning. Most 

of the machine learning-based methods are based on generative adversarial networks 

(GAN) (Goodfellow et al., 2014). In a GAN, two neural networks, the generator and the 

discriminator, compete to stochastically calculate reservoir model realizations reproducing 

patterns in training images. As with current geostatistical methods, these GAN model 

realizations are calculated by varying the image generation random number seed. The GAN 

uses convolutional neural networks to extract high-order statistics about the geometric and 

depositional patterns of architectural elements in training models and stochastically 

calculate new model realizations by varying random latent variables (Goodfellow et al., 

2014). GAN-based methods have been successfully applied to build more accurate 

reservoir models, for example, Chan and Elsheikh (2017) demonstrate that the GAN-based 

method yields improved channel reservoir model realizations over the principal-

component-analysis-based method; Laloy et al. (2018) calculate GAN-based unconditional 

(without well conditioning) channel reservoir models and apply the models to solve a 

hydraulic inverse problem; Dupont et al. (2018) use semantic inpainting method to perform 

soft well conditioning and Jo et al. (2019) perform well conditioning for GAN-based 

models by filling void regions near wells with inpainting methods. However, current well 

conditioning methods may introduce spatial artifacts especially when the conditioning data 

are dense relative to the scale of spatial continuity, and may underestimate the spatial 

uncertainty around the well, because of the lack of spatial uncertainty in Convolutional 

Neural Network (CNN) output. Seismic conditioning and multiscale sedimentary 
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architectures are not considered in previous publications, and the statistics applied to assess 

the reproduction of multiscale geological concepts in the realizations may not fully capture 

the geometric and depositional patterns of architectural elements at different scales.  

To improve well and seismic conditioning, Pan et al. (2020) propose the stochastic 

pix2pix method that incorporates the seismic and well conditioning as additional loss terms 

during the training of the GAN model. With this method, they successfully calculate 

realizations of fluvial channel models with good well, seismic and single-scale geological 

concept conditioning. However, a large weight for the well conditioning can potentially 

cause the mode collapse problem (Zhang, 2018), which refers to the lack of diversity in the 

realizations, resulting in an unrealistically low level of spatial uncertainty between wells 

and in the model forecasts. To avoid the mode collapse caused by well conditioning, and 

exactly reproduce well data, a skip connection is added to the generator (Figures 4.21 and 

4.22). 

Deepwater reservoirs often exhibit multiscale geological features, including 

distinct spatial trends, orientations, and geometries of architectural elements at different 

scales, as well as relationships between each scale, such as architectural confinement 

(Sullivan et al., 2000; Abreu et al., 2003; Sullivan et al., 2004; Deptuck et al., 2008; Prélat 

et al., 2009; and Zhang et al., 2016). Many hierarchical schemes have been proposed to 

characterize the deep-marine sedimentary architecture (Groenenberg, et al., 2010; Cullis et 

al., 2018), for example, Mutti and Normark (1987,1991) identify five main orders of scale 

for turbidite deposits based on the timescales reflected by each order; Pickering et al. 

(1995) classify the sedimentary architecture into seven orders based on the facies, 

geometries, and bounding surfaces of sedimentary elements at different scales; Prélat et al. 

(2009) define four hierarchical orders for distributary deposits based on the recognition of 

bounding surfaces identified by fine-grained deposits between sand-rich bodies. Cullis et 
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al. (2018) compare different sedimentary architecture classification methods and 

summarize the common nomenclatures and definitions used to define the hierarchical 

architecture of deep-water deposits. The hierarchical schemes proposed by Cullis et al. 

(2018) are adopted in this chapter. According to Cullis et al. (2018), in lobe deposits (Figure 

4.1), we can often identify four hierarchical divisions: ‘bed’, ‘lobe element’, ‘lobe’, and 

‘lobe complex’. A ‘bed’ is the smallest building block of a lobe deposit, which is 

interpreted as the product of a single depositional event. ‘Beds’ separated by non-erosional 

surfaces, are stacked with little lateral offset into a higher hierarchical division termed the 

‘lobe element’. Genetically related ‘lobe elements’ bounded by thin (<2 cm thick) siltstone 

intervals, stacked with small offset (~500 m, Deptucket al., 2008) within topographic lows 

generate lobate or lenticular geometries, termed ‘lobe’. Compensational stacking of 

genetically related ‘Lobes’ bounded by muddy intervals 0.2-2m thick forms the ‘Lobe 

complex’. ‘Lobe complex’ is commonly bounded by basin-wide claystone intervals that 

are >50 cm thick (Cullis et al., 2018).  

Performing accurate uncertainty quantification for architectural elements that are 

unresolvable by the conventional seismic survey is important for the characterization of 

the deepwater deposit. However, current reservoir modeling workflows are limited in their 

ability to capture these features, most workflows rely on a ‘cookie-cutter’ approach that 

omits important relationships between scales. In the cookie-cutter approach, I break the 

model into subsets and then populate reservoir properties in each subset separately and then 

recombine (e.g., geostatistical facies-based models). This often results in discontinuities 

are subset boundaries. For example, in Figure 4.2, with the cookie-cutter approach, small-

scale lobes identified with upward decreasing porosity trends are calculated over a larger 

domain independently, and then “cut out” and placed into a lobe complex. Consequently, 

the lobes are not stacked within a lobe complex consistent with the lobe complex geometry, 
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scale, and bounding surfaces.  This inability to build multiscale, hierarchical models may 

impact the accuracy of flow forecasts near the bounding surfaces. Figures in this chapter 

are vertically exaggerated (VE) for better visualization. 

To further address the problems, I propose a new recursive, multiscale modeling 

workflow, known as the hierarchical stochastic pix2pix, based on the stochastic pix2pix 

method (Pan et al., 2020) coupled with an automatic segmentation method for the 

construction of the consistent, conditional, multiscale deepwater lobe deposit model 

realizations, including bed, lobe element, lobe and lobe complex models. The stochastic 

pix2pix method is derived from the pix2pix method (Isola et al., 2017) to perform low-

resolution to high-resolution image mapping. While the pix2pix method is deterministic, 

the stochastic pix2pix method is stochastic by introducing an additional loss function to 

force model realizations to reproduce low-resolution images (Pan et al., 2020). The model 

realizations are validated with new spatial statistics to quantify the reproduction of spatial 

and temporal distribution and the geometries of sedimentary elements at different scales 

within the lobe complex. I efficiently calculate practical and more accurate subsurface 

uncertainty models through a suite of model realizations, to support improved development 

decision-making. The Method section provides more details on how to apply hierarchical 

stochastic pix2pix for multiscale lobe system modeling and the methods for model 

validation.  

4.2 METHOD 

In this section, I describe: (1) the proposed hierarchical stochastic pix2pix 

workflow for consistent conditional reservoir modeling for a lobe complex, (2) the 

calculation of training models and different machine learning methods used in the 

workflow for conditional reservoir modeling,  (3) the metrics used to validate the models 
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with respect to well, seismic, multiscale geological concept conditioning and uncertainty 

representation of the ensemble of model realizations calculated with the hierarchical 

stochastic pix2pix workflow. 

4.2.1 Hierarchical Stochastic Deepwater Lobe Deposit Modeling 

As with current hierarchical reservoir modeling workflows, the proposed 

hierarchical stochastic pix2pix workflow constructs model realizations from the largest to 

the smallest scale, and stochastic architectural models are first simulated and used to 

parametrize the reservoir model, and the lithology and petrophysical property model are 

then calculated conditioned on the simulated architectural model. In this chapter two 

architectural elements, lobes, and lobe elements are modeled within a lobe complex. 

 It is difficult to conditionally simulate the bounding surfaces of architectural 

elements of an uncertain number at different scales with machine learning models. To 

avoid direct simulation of the surfaces, lobes and lobe elements are identified by ordered 

beds, with the associated index increasing from the top to the bottom. The term ‘bed’ used 

to identify the lobe is not the architectural element ‘bed’ but a parameterization, it does not 

have a geological meaning. With this parameterization of lobes and lobe elements, we can 

simulate the bed index of each voxel in the model instead of bounding surfaces with the 

stochastic pix2pix method. The bounding surfaces and geometries of lobe and lobe 

elements are then calculated with a hierarchical segmentation method based on the 

distribution of the beds. Finally, petrophysical property patterns, e.g., fining upward, 

thickening upward, and lateral trends, are stochastically simulated for the hierarchical 

architectural elements with classical geostatistical methods. The architectural elements 

identified at well locations are transformed to bed index as constraints for modeling. Rock 

quality of lobe and lobe elements generally decreases from the base to the top; adjacent 
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lobes and lobe elements are separated by shale drapes at the top of lobes and lobe elements; 

the base of a lobe/lobe element with high rock quality contacts with the top of a lobe/lobe 

element with low rock quality. Therefore, bed indexes can be used to represent the rock 

quality trend and assist segmentation of lobe and lobe elements from lobe complex and 

lobe respectively. 

The workflow steps for the specific case of modeling of lobe and lobe elements 

within a lobe complex are illustrated in Figure 4.3 and enumerated here: 

 

1) Specify the container (lobe complex) identified by the top and base bounding 

surfaces and the bed-index representation of lobe identified at well locations as 

the inputs (A) for the stochastic pix2pix model. The bounding surfaces are either 

horizons identified from well and seismic data, or the outlines of the simulated 

lobe complex. A maximum number of eight beds are allowed to identify a lobe at 

a well location.  

2) Apply stochastic pix2pix model to simulate bed indexes (B) identifying lobes, 

conditioning to the well data and top and base bounding surfaces of the lobe 

complex.  

3) Identify lobes (C) based on the distribution of bed index with a segmentation 

workflow of sequential application of the Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) method (Ester, et al., 1996).   

4) Using the same methods in steps 1-3 with the lobe bounding surfaces (C) from 

step 3 and the bed-index representation of lobe elements identified as new 

constraints to simulate bed index within lobe elements (D) and define lobe 
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elements (E). 

5) Calculate lithology and property model realizations (F). Linear models between 

the bed index and petrophysical properties in lobes and lobe elements are fit based 

on well data with the coefficients and residuals of the linear models treated as 

spatial random functions and stochastically co-simulated across the reservoir with 

Gaussian geostatistical simulation (Pyrcz and Deutsch, 2014). lithology and 

property models are simulated from the largest lobe scale to the lobe element 

scale and finally the grid-scale. At the lobe and lobe element scale, models are 

parameterized as beds. Simulated lithology and properties at a large scale are used 

as the prior information for the simulation of fine-scale models. When seismic 

attributes, such as acoustic impedance or seismic facies are available, they can 

also be incorporated into the conditional simulation as soft conditioning data 

(Pyrcz and Deutsch, 2014). 

The proposed workflow stochastically models architectural elements and 

associated petrophysical properties from lobe scale to lobe element scale; however, if high-

resolution seismic interpretation with mapped lobes is available, the second half of the 

proposed workflow can be used to integrate the mapped lobes as deterministic constraints 

to model the lobe element distribution. 

Lobe-element features and associated correlations may be inferred from existing 

reservoir data and analogs such as high resolution, shallow seismic, outcrop, and mature 

reservoir studies. When there is significant uncertainty, I recommend the use of ranges of 

these model parameters (Table 4.1) to integrate these uncertainty sources.  A scaling 

factor is applied to the length parameters of lobes to obtain those of lobe elements. In this 
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case, the size of the reservoir model is scaled such that the length parameters of lobe 

elements are one-half of those of lobes. In this chapter, the extent of models at different 

scales is fixed to be 50 km×50 km×50 m, the gridding of the lobe scale model in this chapter 

is 56×56×56 voxels and the gridding of lobe element scale model is increased to 

112×112×112 voxels with the lengths of voxels halved for a better illustration of the added 

details.  

4.2.2 Training Model Set Calculation 

A Python, rule-based deepwater lobe model simulator (UTLBPY) based on the 

algorithm proposed by Jo and Pyrcz (2019), is applied to calculate the training models for 

training the stochastic pix2pix model. I use the UTLBPY to simulate training models with 

probabilistic, depositional rules, which mimic the compensational stacking of lobes. The 

geometrical parameters applied in the training model calculation are shown in Figure 4.4, 

and the ranges of the geometrical parameters of the lobe are summarized in Table 4.1. 

Lobes and lobe elements are defined by the height (H), radius (R), aspect ratio (b), 

orientation ( 𝜑), and healing factor (m) parameters as discussed in Jo and Pyrcz (2019). To 

apply this workflow to calculate reservoir model realizations for actual fields, geometries 

of the architectural elements at different scales should be based on local interpretation of 

conditioning data and available analog information, e.g., well log correlation and outcrop 

analog. The distribution of aspect ratio, orientation, and healing factor are assumed to be 

within the same range over lobe and lobe element scales. The output of the UTLBPY 

simulator is a lobe scale architectural model (Figure 4.5) identified with eight beds. The 

diverse ensemble of rule-based models provides sufficient training for the workflow and 

represents geological concept uncertainty. 
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To train and validate the stochastic pix2pix model, I calculate 1100 rule-based lobe 

scale architectural models (Figure 4.5) with UTLBPY, 1000 of the models are applied as 

the training set, while the other 100 models are withheld as the test set. 30 to 65 lobes are 

stacked to form a lobe complex with variable bounding surface geometries. These lobe 

scale training models are sufficient to train stochastic pix2pix models for modeling 

multiscale reservoirs recursively because I assume a linear relationship between the length 

parameters of architectural elements at different scales, and the depositional patterns are 

similar. A simple linear relationship is assumed for this demonstration but can be updated 

for any deepwater setting. However, if the geological concepts vary over the multiple 

scales, different stochastic pix2pix models should be trained on the corresponding single 

scale, rule-based training models. When multiscale rule-based training models are 

available, we can calculate conditional multiscale reservoir model realizations without 

segmentation steps. 

While I use rule-based models as the truth models in this chapter for the training to 

demonstrate the reproduction of depositional patterns and statistics, any other types of 

geologically realistic training models, such as satellite images, outcrop images can also be 

used for training. 

4.2.3 Stochastic Pix2pix Model Training 

Two injection wells (I1, I2) and two production wells (P1, P2) with a well spacing 

of 15 km are placed into the reservoir models (Figure 4.5). lithologies, porosity, and 

architectural element boundaries at lobe complex, lobe and lobe element scales are 

assumed known at the well locations. These well data are used as hard data for the 

stochastic pix2pix model. The stochastic pix2pix model is trained to calculate realizations 

of the 3D bed index distributions conditioned on the hard data. The derivation of the 
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stochastic pix2pix method can be found in Pan et al (2020), and the architecture of the 

generator in the stochastic pix2pix method for exact well conditioning in lobe system 

modeling is in Figure 4.22. 

4.2.4 Lobe Segmentation and Ordering 

I propose a practical workflow based on density-based spatial clustering of 

applications with noise (DBSCAN) method to automatically segment the lobes and lobe 

elements based on associated bed distribution and then assign depositional sequence based 

on the elevation of their centers of gravity.  

The DBSCAN, a density-based clustering method, is applied for lobe and lobe 

element segmentation for the following reasons: (1) indices of beds inside a lobe or a lobe 

element are continuous; the indices become discontinuous between the adjacent lobe and 

lobe elements, the DBSCAN can make use of this feature and clusters architectural 

elements based on the closeness of beds of the same index; (2) the number of lobes within 

a lobe complex or lobe elements within a lobe is unknown, and the DBSCAN does not 

require prior knowledge of the number of architectural elements. 

A large bed index (Figure 4.5) in a lobe or lobe element is in contact with the small 

bed index of adjacent elements. Given this pattern, the proposed segmentation approach 

starts with segmenting large-index beds at the bottom of each lobe, which are isolated from 

each other by continuous, small-index shaly rock. Low-index beds from adjacent lobes are 

more likely to connect with adjacent low-index beds. Therefore, I gradually include the 

beds with lower index by performing interpolation, allocating a voxel to its nearest lobe, 

until every voxel is assigned a label. Other recent instance segmentation methods, such as 

the region-based convolutional neural network (RCNN), Fast RCNN and Mask RCNN 

(Girshick, 2015; He, et al., 2017) may also yield accurate lobe segmentation results. 
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Nevertheless, the proposed segmentation should be more computationally efficient for 

these applications. The lobes and lobe elements are then ordered in temporal sequence 

based on the elevation of their center of gravity. 

4.2.5 Statistical Assessment of Model Realizations 

I use the synthetic models calculated with the rule-based simulator as the truth 

models, to provide conditioning data and validate modeling results. 

To perform the statistical assessment, I use different metrics to evaluate the seismic 

conditioning biases and uncertainties, the reproductions of depositional rules, depositional 

surfaces, geometries of lobes, property distribution, and fluid-flow-related dynamic 

properties of model realizations. For the brevity of the demonstration, and the same 

depositional rules are applied across multiple scales, only the statistics at the lobe scale are 

analyzed. 

Seismic conditioning bias for a lobe scale model realization is calculated as the 

relative mean absolute error (RMAE) between the sizes of the lobe complex (a voxel is 

labeled 1 if it is within the lobe complex, and 0 otherwise) calculated from the model 

realizations and the associated truth model, same as the ℒseis  loss term in stochastic 

pix2pix (Pan, et al, 2020), divided by the volume of the lobe complex of the truth model. 

To calculate the bias in seismic conditioning at the lobe element scale, I calculate 

one lobe element scale model realization for each of the truth lobe scale models and denote 

it as the lobe element scale truth model. I then use the well data from that lobe element 

scale truth model, and the lobe containers from a lobe scale model realization to calculate 

1 lobe element scale model for each of the associated 100 lobe scale model realizations, 

the resulting lobe element scale models are denoted as lobe element scale model 

realizations. The seismic conditioning bias for lobe element scale model realizations is 



 175 

calculated in the same way as for lobe scale models, with the lobe element scale truth model 

as the truth model. 

Shannon entropy measures the local uncertainty through the local variability of the 

bed distribution over multiple model realizations of a subsurface model (Babak, et al, 

2013). Shannon entropy map is applied to evaluate the effects of well and seismic 

conditioning data on the uncertainty model represented by the realizations. The Shannon 

entropy map of bed distribution for each of the truth models is calculated based on the 

associated 100 model realizations. The Shannon entropy map is calculated as: 

 H(x, y, z) = −∑𝑝𝑖(𝑥, 𝑦, 𝑧) log2 𝑝𝑖(𝑥, 𝑦, 𝑧)

𝑁

𝑖=1

 (4.1) 

where H(x, y, z) is the Shannon entropy, 𝑝𝑖(𝑥, 𝑦, 𝑧) is the probability that 𝑖𝑡ℎ 

bed exists at a location (𝑥, 𝑦, 𝑧) in model realizations, and 𝑁  equals 9, which is the 

maximum bed index.  

To validate the reproduction of the number of lobes in lobe scale model realizations, 

I calculate the average numbers of lobes in the model realizations for each of the truth 

model over the associated 100 model realizations and compare them with the number of 

lobes in the truth model. 

To validate that the model realizations reproduce the geometry of lobes in the truth 

models, I compare the lobe probability map, which is the probability of a voxel, offset from 

the centroid of a lobe, being part of that lobe, for both truth models and model realizations. 

The 10,000 model realizations and 100 truth models are segmented to obtain the geometries 

of all the individual lobes, the center of gravities of these segmented lobes are then placed 

to the same location, the voxels occupied by a lobe is labeled 1 and 0 otherwise. The lobe 

probability for both realizations and truth models are calculated by averaging the labels for 

each voxel. 
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The compensational index (CI) quantifies the degree of compensational stacking, 

the tendency for a lobe to deposit in topographic low (Straub et al. 2009); therefore, CI 

validates the reproduction of the lobe stacking rules, an important part of geologic 

conditioning. CI is calculated as: 

 

σSS(𝑇) = √∫ [
𝑟(𝑇; 𝑥, 𝑦)

�̂�(𝑥, 𝑦)
− 1]

2

𝑑𝐴
𝐴

 

 

(4.2) 

 𝜅 = −
ln (

σSS

𝑎 )

ln(𝑇)
 (4.3) 

 

 

where σSS  is the standard deviation of sedimentation/subsidence (SDS),  

𝑟(𝑇; 𝑥, 𝑦) is the local sedimentation rate during one depositional event, which deposited 

for a time period of T, �̂�(𝑥, 𝑦) is the sedimentation rate averaged over all depositional 

events, and A is the lateral area of a model. The leading coefficient 𝑎 and compensational 

index 𝜅  are coefficients determined through regression. Naturally occurring lobe 

reservoirs have 𝜅 that ranges from 0.5 to 1 (Straub et al. 2009). The depositional order 

that I obtained through lobe segmentation is based on the center of gravity instead of the 

actual temporal sequence, thus I indicate this necessary approximation of the 

compensational index through the term raster-based compensational index (RCI). In RCI 

calculation, a constant averaged sedimentation rate of 7.115 × 105𝑚3 (1 voxel) per unit, 

time is assumed, and T is calculated sequentially according to the calculated temporal 

sequence of lobes. To calculate the RCI from model realizations and truth models, 

composite surfaces based on the sequence of lobes in a lobe complex are reconstructed and 

the SDS is calculated with Eq. 4.2 through linear regression in the logarithmic scale. I 
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compare the RCI of the truth models and their realizations to obtain the average RCI 

difference quantifying the difference in the depositional patterns. The RCI difference is 

calculated with following steps: (1) the RCI is calculated for each of the truth models and 

the associated model realizations, (2) the averaged RCI of model realizations are calculated 

for each of the truth models by averaging the RCI of associated 100 model realizations, (3) 

the averaged RCI difference is calculated as the mean of the RCI of truth models 

subtracting the averaged RCI of their associated realizations. 

Interfacial width (Barabási and Stanley, 1995) measures the roughness of a surface 

represented as the composite of lobes at a specific step in the centroid-based assignment of 

a sequence of lobes. It is the root-mean-squared fluctuation of the heights of a surface. It 

is defined as follows: 

 

 W = √
1

𝐴
∫(ℎ(𝑥, 𝑦) − ℎ̅)

2

𝐴

 (4.4) 

where W is the interfacial width, ℎ(𝑥, 𝑦) is the height of a surface at location (x, 

y), ℎ̅ is the average height of the surface, and A is the area of the surface on the x-y plane. 

The interfacial width for each surface in the model is calculated, and the histogram of the 

interfacial widths of training models and model realizations are compared to validate the 

proposed workflow.   

Dynamic Lorentz coefficient (DLC) is a standard dynamic metric for reservoir flow 

diagnostic assessment to rank reservoir models (Shook & Mitchell, 2009). To calculate 

DLC, I simulate a single-phase, steady-state flow within the reservoir. The single-phase 

flow rate (𝑞𝑗), pore volume (𝑉𝑝𝑗) and the time of flight (TOF) of the N streamlines are 

calculated to obtain the storage and flow capacity of the reservoir, which can then be used 

to calculate the DLC. The streamline distribution map, storage and flow capacity cross plot 
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are efficient, visual tools to understand the impact of different subsurface models on the 

flow heterogeneity (Shook & Mitchell, 2009; Kaplan, et al., 2017; Lie, 2019). In Eqs. 4.5 

and 4.6 I show how to calculate the storage capacity (Φ), the flow capacity (F), and DLC 

(𝐿𝐶): 

 Φ =
∑ 𝑉𝑝𝑗

𝑖
𝑗=1

∑ 𝑉𝑝𝑗
𝑁
𝑗=1

 𝑎𝑛𝑑 𝐹 =
∑ 𝑞𝑗

𝑖
𝑗=1

∑ 𝑞𝑗
𝑁
𝑗=1

 (4.5) 

 
𝐿𝐶 = 2(∫𝐹𝑑Φ − 0.5

1

0

) (4.6) 

 

where 𝑖 is from 1 to N, 𝑉𝑝𝑗 and 𝑞𝑗 are ordered according to their velocity 
𝑞𝑗

𝑉𝑝𝑗 
. 

To perform dynamic statistical analysis with truth models and associated realizations, the 

permeability distributions are calculated from porosity distribution with the Kozeny-

Carman equation (Carman, 1956). The streamline distributions are calculated by assuming 

constant injection (2000 psi, red) and production pressures (1000 psi, black) at the four 

wells. To quantify the reproduction of DLC, the absolute difference of DLC is calculated 

for each of the truth models as the absolute value of the difference between the DLC of the 

truth model and the mean DLC of the associated 100 model realizations. 

 

 

4.3 RESULTS 

The multiscale model realizations are calculated and compared with the truth 

models to validate the reproduction of key features and evaluate the uncertainties.  
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4.3.1 Conditional Lobe Distribution 

The bed distribution of one of the truth models and the associated conditional 

realizations are shown in Figures 4.6, 4.7, and 4.8. The stacking, geometry, orientational 

patterns, and the porosity distribution pattern of model realizations honor those of the truth 

model.  

The seismic conditioning bias expectation of the calculated model realizations is 

2.5897×10^(-5) and the bed indexes are correct at the well locations, because of the skip 

connection layer in the generator (Figure 4.22).  

4.3.2 Lobe Segmentation 

An instance segmentation with the hierarchical DBSCAN clustering workflow is 

performed to calculate the location of each lobe and the associated depositional sequence 

from the bed model (Figure 4.9). From the comparison of the segmentation result with the 

associated porosity model, I find that the shape of the extracted lobe is consistent with the 

sequence of beds within the lobe, adjacent lobes are not amalgamated, and a lobe is not 

split into multiple small lobes after segmentation. The depositional sequence of lobes 

increases with the increase of the elevation of the associated underlying surfaces.  

4.3.3 Conditional Lobe Element Modeling 

I calculate two lobe element scale model realizations conditioned to the truth model 

(Figure 4.10) and a lobe scale model realization (Figure 4.11) respectively with the 

proposed workflow. The realizations demonstrate: (1) the lobe elements (E, F) conform to 

the bounding surfaces identified by the lobes (D). (2) The sequence of beds (B, C) within 

each lobe element and the shape and orientation of each lobe element (E, F) are consistent 

with the parameters specified in the rule-based models. (3) The distribution of lobe 
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elements (E, F) is diverse. The averaged seismic conditioning bias for lobe scale 

realizations is 0.012. 

4.3.4 Lithology and Property Modeling 

I hierarchically calculate lithology and property distributions based on the 

parameterization rendered by the simulated depositional architectures at different scales. 

The lithology and property models at different scales conditioned to the lobe scale truth 

model and model realization are shown in Figures 4.12 and 4.13, respectively. Small scale 

lithology and property model realizations are simulated conditioned to the next large-scale 

realizations, contributing to the preservation of patterns of lithology and property 

distribution at large scales during the stochastic downscaling.. 

4.3.5 Statistical Validation of Reservoir Model Realizations 

The proposed model-based statistics validate the model realizations for the 

following aspects: (1) the well and seismic conditioning, (2) the uncertainty in the number 

of lobes in model realizations, (3) geometry and depositional pattern reproduction, (4) 

univariate model property distribution, and (5) dynamic property reproduction. For the 

brevity of the demonstration, and given the stationarity assumption across all scales, this 

analysis is shown only for the lobe scale model realizations.  

4.3.5.1 Well and Surface Conditioning Uncertainty Analysis 

The Shannon entropy map is calculated from bed distribution in model realizations 

to quantify the uncertainties associated with conditioning data in stochastic architectural 

modeling (Figure 4.14). Shannon entropy ranges between 0 and 1 in this case; it is small at 

grid cells near the bounding surface of lobe complex (A) and well locations (B, C) and 
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increases at grid cells away from the conditioning data. The Shannon entropy at well 

location is zero, indicating an exact reproduction of bed sequence at well locations. 

4.3.5.2 Uncertainty of the Number of Lobes 

In Figure 4.15A I compare the number of lobes in the truth model in Figure 4.6 

with the associated model realizations. In Figure 4.15B, the average number of lobes in 

model realizations matches the actual number of lobes in truth models. The standard 

deviation of the number of lobes is calculated for each of the truth models over the 

associated 100 model realizations and demonstrated as the histogram in Figure 4.15C. The 

number of lobes in realizations shows diversity with an average standard deviation of 2.2.  

4.3.5.3 Reproduction of Architectural-Element Geometry and Depositional Pattern 

In Figure 4.16, I calculate and compare the 3D distribution (A, B), horizontal (C, 

D) and vertical (E, F) cross-sections of the lobe probability (E, F) of the truth models (A, 

C, E) and associated model realizations (B, D, F). The model realizations successfully 

reproduce the lobe geometries.  The difference (G, H) of the lobe probability is below 

10%, and the shape and orientation of the lobe probability of both the truth models and 

model realizations are consistent with the input parameters specified in the rule-based 

simulator.  

To validate the reproduction of depositional rules, I compare the RCIs of the truth 

models and the associated model realizations. The distribution of time interval (T) and SDS 

of one of the truth models in the test set and the associated model realizations are shown in 

Figure 4.17 and used for RCI calculation. The averaged RCI difference across all models 

is 1.14%. The averaged standard errors of the regressions for the truth models and 

realizations are 0.0033 and 0.0040, respectively. The result that the RCI at large time 
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interval is approximately equal to 1 (red line in Figure 4.17) are consistent with the lobe 

depositional experiment results obtained by Wang et al. (2011). 

To validate the depositional pattern reproduction in the lobe scale model 

realizations, I compare histograms of interfacial widths (Figure 4.18A) of the all-model 

realizations and truth models in the test set in Figure 4.18B. The median value of interfacial 

widths of truth models and their realizations are 2.88 and 3.04 respectively, the interfacial 

widths of model realizations are higher by 5.5%, indicating a good reproduction of lobe 

geometries.  

4.3.5.4 Univariate Statistics of Simulated Properties  

In Figure 4.19, the histograms of the net to gross and porosity distribution in all 

truth models and their realizations are compared. The difference in their histograms is 

within 3%.  

4.3.5.5 Analysis of Dynamic Property  

The streamline distributions of one of the truth models and one of the associated 

model realizations are shown in Figure 4.20 (A1, A2, B1, B2). The storage and flow 

capacity cross plot and histograms of DLC for both realizations and truth models are 

plotted in Figure 4.20 (C1, C2). In the flow-storage capacity cross plot, the realizations 

(black) match the truth model (red) closely; in the histogram, the DLC of model realizations 

also reproduces the variability of those of truth models, and the mean of the DLC of the 

truth model’s 100 model realizations is smaller than the DLC of truth model by 0.23%. 
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4.4 DISCUSSION 

4.4.1 Depositional Patterns and Conditioning Data 

In Figures 4.6 to 4.13, I compare the distribution of architectural elements, lithology 

and porosity of model realizations with those of truth models at different scales. The model 

realizations successfully reproduce the patterns in the truth models, such as the increase of 

bed order with associated elevation in lobes and lobe elements, bounding surfaces 

represented by shaly facies, compensational stacking of architectural elements, and the 

geometries of the elements. The reproduction of these patterns indicates that the stochastic 

pix2pix method is an efficient tool to perform stochastic hierarchical architectural element 

modeling. When combined with classical geostatistical conditional simulation methods, 

the stochastic pi2pix method can yield lithology and property models that are consistent 

with the geological concepts at different scales. The depositional patterns of architectural 

elements represented by the ordered beds are successfully reproduced by the generator in 

the stochastic pi2xpix model. 

As for data conditioning, the distribution of lobe elements and lobes conform with 

the bounding surfaces of the lobe and lobe complex respectively. Data at well locations are 

reproduced without artifacts found near the well locations or near bounding surfaces. The 

stochastic pix2pix model does not have a mode collapse problem often observed in deep 

learning, i.e., the structures of the realizations show diversity while conditioning to the 

static data. 

4.4.2 Effects of Conditioning Data on Lobate Model Realizations 

In the Shannon entropy map of Figure 4.14, the entropy is low in the vicinity of 

bounding surfaces, and the entropy decreases with the increase of curvature of the 

bounding surface. This phenomenon can be explained as: the high-curvature surface 
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indicates a single lobe deposited beneath/ above the surface, and the shape of the lobe can 

be inferred from the curvature; whereas the low curvature surface can either be formed by 

a large lobe or several small lobes, large uncertainty is associated with the shapes of the 

lobes. This indicates that the proposed workflow results in a rational uncertainty model for 

a multiscale fill of small-scale architectural elements within a large-scale architectural 

element.   

For local well data, the entropy of lithology distribution near the well locations is 

relatively low, and the entropy generally increases with the distance from the nearest well. 

However, it is found that the well data may cause low uncertainty in the regions not 

adjacent to the well, this phenomenon can be explained as: (1) if two wells penetrate the 

same lobe, the area between these two wells can show low uncertainty; (2) due to the 

stacking rules, if two wells determine the locations of two lobes with high certainties, the 

lobe distribution between these two wells should also have high certainties.  

4.4.3 Checkerboard Artifacts and Geometrical Uncertainty of Depositional 

Elements 

Checkerboard artifact (Odena et al., 2016) is common in the model realizations 

calculated with GAN methods, it appears as higher noise-to-signal ratio in the model 

realizations than in the training models. These artifacts are caused by the deconvolutional 

process in the generator (Figures 4.21 and 4.22). In Figures 4.17, 4.18, and 4.20, the 

realizations have the bias to overestimate the DLC and interfacial width and underestimate 

the RCI. This phenomenon can be explained as: the checkerboard artifacts increase the 

short-range heterogeneity of the reservoir model realizations and cause more random 

lithology distribution and rougher surfaces. However, the checkerboard artifacts in the 
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realizations are not severe; the DLC is only underestimated by 0.23 %, RCI is 

underestimated by 1.14%, and interfacial width is overestimated by 5.5%.  

The geometry of the lobe probability distribution is consistent with the inputs of 

the rule-based simulator (Figure 4.16). High uncertainty appears near the edge of the lobe 

probability distribution because the edge parts of a lobe are more likely to be affected by 

nearby lobes deposited earlier or the boundaries of the lobe complex. The checkerboard 

artifacts also cause the difference in the lobe probability distribution between the truth 

models and the model realizations, the lobe probability distribution of the model 

realizations tends to overestimate the uncertainty of geometry because of the artificial 

randomness introduced by the checkerboard artifacts. However, the average error is about 

1%, remaining at the acceptable level. This indicates that even though a small bias exists, 

the lobes in the model realizations effectively reproduce the training models’ overall 

geometry and orientation. The P10 and P90 of the net-to-gross ratio (NTG) and porosity 

from the truth models are reproduced in model realizations (Figure 4.19).  

4.4.4 Advantages and Potential Applications of Hierarchical Stochastic Pix2pix 

Workflow 

The hierarchical stochastic pix2pix workflow can be used for efficient hierarchical 

subsurface modeling, it can stochastically calculate the lithology and property distributions 

of small-scale architectural elements conformed with large-scale architectural elements 

simulated or identified through the interpretation of geophysical data, these realizations 

can be applied as the prior models to solve a variety of subsurface inverse problems, for 

example, hierarchical history matching can be performed by gradually increasing the 

complexity of the models to avoid overfitting. Uncertainties of depositional architectures 

are better propagated to the production forecast, and P10 and P90 of the production forecast 
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are more accurately calculated (Pan et al., 2020). When depositional architectures of the 

reservoir are correctly captured in the training models, the reservoir model should yield 

better production forecasts and assist decision-making in oil field development. Compared 

to current geostatistical methods, this workflow requires much less computational time and 

can robustly calculate conditional, multiscale reservoir uncertainty models with 

realizations. 

4.5 CONCLUSIONS 

Deepwater lobe deposits are important reservoir targets for oil and gas 

development. As such, reservoir models with good well, seismic conditioning, and 

multiscale geological concept conditioning are essential for successful reservoir 

development and risk analysis. The proposed workflow calculates diverse conditional, 

multiscale subsurface reservoir model realizations efficiently. New statistics are applied to 

validate the model realizations, and I find these realizations successfully honor the 

depositional patterns and geophysical conditioning data, the stochastic pix2pix method and 

the proposed hierarchical stochastic pix2pix workflow can be applied to efficiently 

calculate conditional multiscale stochastic lobe reservoir models that capture the 

geometrical and stacking patterns of the rule-based training models. Conditioning data are 

honored in the realizations, the incorporation of the conditioning data causes no obvious 

artifacts while rationally constraining the uncertainty model. Compared to the current 

reservoir modeling methods, the proposed workflow has improved well, seismic, and 

geological concept conditioning, and requires less computational time. 

Future work could include the use of unconditional multiscale rule-based models 

as training models to train the stochastic pix2pix to directly calculate multiscale reservoir 

models, which may be more efficient than hierarchical stochastic pix2pix workflow that 
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requires recursive application of stochastic pix2pix model. It is also possible to apply this 

workflow for other important depositional environments with distinct sedimentary 

architectures, such as the fluvial and carbonate deposits. 
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Table 4.1: Ranges of random model parameters of rule-based lobate reservoir modeling 

simulator.  

Parameters Low High 

Maximum height of lobe (H) 4 m 5 m 

Radius (R) 18 km 20 km 

Aspect ratio (b) 1.4 1.6 

Orientation (𝜑) 

Healing factor (m) 

25° 
1.2 

35° 
1.2 
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Figure 4.1: Hierarchical structure of a deepwater lobe deposit (Groenenberg, et al., 2010). The lobe element, lobe, and lobe 

complex show similar geometrical and stacking patterns. The spatial distribution of small-scale architectural 

elements conforms to the bounding surfaces of large elements.   
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Figure 4.2: Connectivity artifacts caused by the ‘cookie-cutter’ approach in a vertical cross-section of a lobe deposit, with 

vertical exaggeration. Light yellow pixels represent sandy facies with high porosity, and dark green pixels represent 

shaly facies with low porosity. (1) the truth model and (2) one model realization calculated with the ‘cookie-cutter’ 

approach are compared. White dash lines outline lobes near the bounding surfaces (red dash lines) of the lobe 

complex, shaly flow baffles should exist at the bounding surfaces, but in (2), artificial flow conduits across the 

surface (black arrows) lead to an overestimation of reservoir connectivity. If an impermeable layer is artificially 

added to the upper surface, the geometries, and petrophysical property pattern of lobes adjacent to the surface are 

distorted. Images are vertically exaggerated 1000 times (VE=1000X).  
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Figure 4.3: Workflow for hierarchical lobe deposit modeling. (A) Bounding surfaces of lobe complex and beds interpretations 

at well locations are used as input for the Stochastic pix2pix model, (B) bed index representation of lobe scale 

architectural model, (C)Lobes segmented based on the distribution of beds, (D) bed index representation of lobe 

element scale architectural model, (E) segmented lobe element scale architectural model, (F) Property model 

calculated with classical sequential Gaussian simulation conditioned on well, seismic data and architectural model.   
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Figure 4.4: The shape of a lobe and the parameters used to define a lobe, length parameters of a lobe element are half of those 

shown in Table 4.1.   
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Figure 4.5: Bed distribution in training models calculated with UTLBPY. The 4 wells that condition the stochastic pix2pix 

models are indicated with black and red lines, but the training images are not conditional on these wells.   
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Figure 4.6: 3D bed distribution in lobe scale truth model (A) and the associated conditional model realizations (B, C, D, E, F). 

Model realizations have different bed distributions, indicating a good model diversity.   
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Figure 4.7: Fence diagram of bed distribution of a lobe scale truth model (A) and the associated conditional model realizations 

(B, C. D, E, F).  A good reproduction of bed index at well locations indicates good well conditioning. Well data 

does not introduce artifacts to the lobes that wells penetrated.   
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Figure 4.8: Horizontal cross-sections (28th layer) of bed distribution of lobe scale truth model (A) and the associated 

conditional model realizations (B, C, D, E, F). Adjacent lobes are separated by high bed index (low-quality rocks), 

and geometries of lobes in model realizations are similar to those in the training model.   
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Figure 4.9: Lobes (B, C, E, F) segmented from the lobe scale bed distribution realizations (A, D), lobes are ordered based on 

the elevation of their center of gravity. Lobes identified are consistent with the bed index model, adjacent lobes are 

not lumped, and a lobe is not identified as two or more lobes.   
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Figure 4.10: Model realizations of lobe element scale and associated lobe scale models. (A) Beds in the lobe scale truth model; 

(B, C) beds in lobe element scale model realizations; (D) lobes in the truth model; (E, F) lobe elements in lobe 

element scale model realizations. Lobe elements identified are consistent with the bed index model, adjacent lobe 

elements are not lumped, and a lobe element is not identified as two or more lobe elements. The stacking of lobe 

elements is constrained by lobe bounding surfaces.   
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Figure 4.11: Model realizations of lobe element scale and associated lobe scale models. (A) Beds in the lobe scale model 

realization; (B, C) beds in lobe element scale model realizations; (D) lobes in the truth model; (E, F) lobe elements 

in lobe element scale model realizations. Lobe elements identified are consistent with the bed index model, adjacent 

lobe elements are not lumped, and a lobe element is not identified as two or more lobe elements. The stacking of 

lobe elements is constrained by lobe bounding surfaces.   
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Figure 4.12: Multiscale lithology and porosity models conditioned to the lobe scale truth model. Lithologies (A, B, C) and 

porosity (D, E, F) models are simulated from the lobe scale (A, D) to the lobe element scale (B, E) and from the 

lobe element scale to the bed scale (C, F). Models at different scales are parametrized with beds in lobes (A, D), 

beds in lobe elements (B, E), and voxels (C, F) respectively. The decreasing upward trend of the net to gross and 

porosity are reproduced in model realizations.   
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Figure 4.13: Multiscale lithology and porosity models conditioned to a lobe scale model realization. Lithologies (A, B, C) and 

property (D, E, F) models are simulated from the lobe scale (A, D) to the lobe element scale (B, E) and from the 

lobe element scale to the bed scale (C, F). Models at different scales are parametrized with beds in lobes (A, D), 

beds in lobe elements (B, E), and voxels (C, F) respectively. The decreasing upward trend of the net to gross and 

porosity are reproduced in model r 
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Figure 4.14: Shannon entropy map of bed sequence in lobe scale model realizations. (A) 3D Shannon entropy distribution; (B) 

fence diagram of Shannon entropy adjacent to wells; (C) the 28th horizontal cross-section of Shannon entropy map.  
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Figure 4.15: Comparison between truth models and model realizations based on the associated number of lobes. (A) Distribution 

of the numbers of lobes in each of the 100 model realizations of the truth model in Figure 4.6. (B) The number of 

lobes in truth models vs. the average number of lobes in the associated model realizations. (C) The distribution of 

standard deviations of the number of lobes in realizations.   
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Figure 4.16: Comparison between the lobe probability maps of the training models (A, C, E) and realizations (B, D, F). (A) and 

(B) shows the probability that a voxel offset (DX, DY, DZ) from lobe centroid is within in the lobe; (C) and (D) 

are horizontal cross-sections of the lobe probability with zero vertical offsets (DZ); (E) and (F) are center vertical 

cross-sections of the lobe probability with zeros offset in Y direction (DY); (G) and (H) are the differences in the 

lobe probability of the two cross-sections (truth models minus model realizations).   
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Figure 4.17: Cross plots of the standard deviation of sedimentation/subsidence (SDS) and time interval (T) for truth models (A) 

and realizations (B), two linear models (green and red lines) are fitted to the data to calculate the raster 

compensational index (RCI) of short-term deposition and long-term deposition.   
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Figure 4.18: (A) Bounding surfaces extracted from one of the segmented lobe model realizations, (B) histograms of interfacial 

widths of the truth models (blue) and associated model realizations (orange).  
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Figure 4.19: (A) Histograms of reservoir net-to-gross ratio (NTG) and (B) porosity for the truth models and model realizations.   



 208 

 

Figure 4.20: Flow diagnostic analysis. 3D (A1, B1) and top (A2, B2) views of Streamline (red) distribution within the truth 

model (A1, A2) and one of the model realizations (B1, B2). (C1) Storage and flow capacity of model 

realizations(red) and truth model (blue). (C2) Histograms of the DLC of model realizations (red) and truth model 

(blue).   
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Figure 4.21: Structure of the generator (Pan et al., 2021). A U-net structure (Ronneberger et al., 2015) is used for latent space to 

reservoir model space mapping.   
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Figure 4.22: Structure of the new generator for better well conditioning. It improves well data conditioning by adding a skip 

connection (purple arrow) to the generator proposed by Pan et al (2021).
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CHAPTER 5: Conclusions and Recommendations 

Based on my work from previous chapters, in this final chapter, I summarize 

important findings, provide guidelines for best practice, and give recommendations for the 

direction of future work. 

5.1 CONCLUSIONS 

A comprehensive analysis of conventional petrophysical interpretation workflow 

under the framework of (geo)statistics reveals that the main source of interpretation error 

is the nonstationarity of rock property distribution and logging condition. Our findings on 

the importance of well-log preprocessing and nonuniqueness constraints should encourage 

more focus on (1) the interpretability of machine learning models and (2) petrophysical 

data preprocessing informed by domain expertise. This can avoid the situation of garbage 

in garbage out. 

The stochastic pix2pix method and associated hierarchical modeling workflow 

enable more efficient conditional stochastic subsurface modeling for petrophysical 

property prediction between wells. The workflow can integrate different types of 

information. With the increase in our ability to obtain more data from the field, this 

capability of incorporating large and complex data is becoming increasingly important for 

reservoir description. 

These accurate and efficient petrophysical interpretation methods and stochastic 

reservoir modeling methods enable agile and sensible decision-making in reservoir 

development 

In this section, a detailed summary of my findings on well-log normalization, 

permeability prediction, and reservoir modeling is provided 
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5.1.1 Multivariate Statistics-Informed Well-Log Normalization and Permeability 

Prediction  

i. Compared to physical model-based well-log correction, which assumes the 

model can simulate the actual physical phenomenon, correction based on 

normalization assumes the stationarity of formation properties between type 

and test wells. Well-log normalization methods are suitable for well-log 

correction when the borehole environment is too complex to be modeled,  

parameters about logging tools and environment are missing, or enough type 

wells have been drilled and calibrated. 

ii. In complex reservoirs with large well spacing, statistical distance-based type 

well identification methods are better than the conventional, distance-based 

type-well identification method in permeability prediction. By directly 

considering the statistical similarity of well logs in different wells, the statistical 

distance-based method does not assume the spatial continuity of formation 

properties between wells, making it a more suitable method for well-log 

normalization in a reservoir that is regionally stationary. 

iii. The DA well-log normalization method successfully decrease the error of 

permeability prediction from well logs for the SSAU carbonate reservoir. The 

decrease is more obvious for wells with abnormal well logs compared to wells 

with normal well logs. 

iv. Compared to the permeability prediction model integrated with the 

conventional, two-point scaling normalization method, the DA model and 

linearly constrained model yield more accurate permeability prediction by 

considering the joint distribution of different types of well logs. 
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v. Permeability predicted with the linear constraint model has a lower variance 

compared to other models because of the average permeability constraint. 

5.1.2 Stochastic Pix2pix for Stochastic Fluvial Channel Modeling 

i. Fluvial channel model realizations generated with the stochastic pix2pix 

modeling method successfully reproduce patterns of facies and property 

distribution in the training images, while honoring static data. 

ii. Compared to conventional, sequential simulation-based reservoir modeling 

methods, the stochastic pix2pix model is more computationally efficient, 

generating multiple reservoir model realizations within seconds.  

iii. Architectural elements in a fluvial system, such as point bar, abandoned 

channel, and neck cut-off can be easily identified from facies model realizations 

generated with the stochastic pix2pix method. This indicates a good 

reproduction of depositional patterns. 

iv. Petrophysical property patterns within architectural elements, such as the 

decrease of rock quality from the center of a point bar to the edge, are 

reproduced in the reservoir model realizations generated with the stochastic 

pix2pix method. 

v. Reservoir model realizations generated with the stochastic pi2xpix method 

reproduce the spatial statistics of the training model, including semi-variogram 

and MPH. 

vi. The stochastic pix2pix method successfully reproduces long-range patterns, 

such as the continuous channel, in the model realizations it generates. The 

seismic and well data are also honored in the model realizations. 
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vii. Model reduction and parameterization rendered by the stochastic pix2pix 

method make it easy to use the reservoir model realizations as prior models for 

inverse problems, such as history matching. Continuous changes in the latent 

variable space result in continuous changes in model space.  

5.1.3 Hierarchical Modeling of Deepwater Lobate Reservoir with ML Methods 

i. The proposed ML-based, hierarchical modeling method successfully generates 

diverse, multi-scale lobate, facies, and property model realizations.  

ii. Model realizations generated with the hierarchical modeling workflow 

reproduce both depositional patterns and dynamic property (DLC) of the 

training model.  

iii. The relationship between architectural elements at different scales is believed 

to be reasonable, where the bounding surface of a large architectural element is 

formed by the aggregation of bounding surfaces of small architectural elements.  

iv. The hierarchical modeling workflow enables the modeling of large, detailed 

lobate systems with limited computational resources. It is more efficient than 

classical, sequential simulation-based methods.  

v. Despite a mild checker-board effect, statistics, such as porosity histogram and 

net to gross, are reproduced in reservoir model realizations.  

5.2 RECOMMENDATIONS 

To be able to use spatial statistics of rock property to constrain well-log 

interpretation and to perform reservoir modeling that is informed by well-log 

interpretation, I summarize best practices to apply the DA model for permeability 

prediction and the stochastic pix2pix method for reservoir modeling.  
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5.2.1 Best Practices for Well-Log Normalization and Interpretation 

i. The DA model assumes stationary formation properties between training and 

test wells. Zonation is recommended before performing normalization and 

interpretation because it helps identify formations with similar depositional 

environments. This improves the stationarity between training and test data, and 

thus improves the accuracy of well-log normalization and interpretation.  

ii. The well-log normalization is performed based on summary statistics of each 

zone. However, local, abnormal measurements may introduce large errors to 

the calculation of the statistics. Therefore, proper preprocessing, which removes 

local, abnormal spikes, is recommended.   

iii. Models are trained with both core measurements and well logs. If well logs are 

not properly aligned with core measurements, the performance of the model is 

degraded. The misalignment results from adverse borehole conditions, such as 

the stick and slip of logging tools. To mitigate this problem, depth matching is 

needed to improve the alignment of well logs and core measurements. 

iv. Training the DA model with a large learning rate can be unstable, thus a small 

learning rate and batch normalization are recommended to improve the stability 

of the training process.  

v. When the size of the training set is small, a simple neural network with a few 

layers is desired to avoid potential overfitting. Proper feature engineering is also 

recommended for training shallow neural networks, for example, gradients of 

well logs are proven to improve the accuracy of well-log interpretation. Similar 

to the well-log normalization method, the gradient feature assumes that well 

logs and associated features among wells are stationary, and therefore, it 

removes potential, low-frequency bias in well logs.  
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5.2.2 Best Practices for ML-Based Reservoir Modeling 

i. The stochastic pix2pix algorithm minimizes the J-S divergence between the 

training models and generated reservoir model realizations on the feature space 

identified by the discriminator. However, it is difficult to tell when to stop the 

training from the loss function. Therefore, I recommend using the divergence 

of the multiple-point histogram (MPH) between the training models and the 

model realizations as the criteria for stopping training. The training stops once 

the divergence stops decreasing significantly. 

ii. The training models used in this dissertation are calculated with rule-based 

reservoir modeling programs. Other training models, such as satellite images 

and outcrop of analogs, can also be used to generate more realistic reservoir 

model realizations. 

iii. The step size during model training should be small to ensure stable training. A 

large step size may cause the discriminator to converge to a local minimum and 

introduce mode collapse problems. 

iv. The ML-based reservoir modeling methods are a type of global optimization 

method. During the training, the divergence between the training and generated 

models of the whole reservoir model is minimized, whereas, for the sequential 

simulation method, only local statistics are reproduced. Therefore, the ML-

based method is more suitable for simulating reservoir models with large-scale 

patterns. 

v. Because the convergence of the GAN-based, stochastic pix2pix model is 

difficult to detect, diagnostic statistical plots, such as the MPH, facies 

histogram, property histograms, and semivariograms, have to be calculated for 
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both the training and simulated models and compared to ensure the reproduction 

of spatial statistics in model realizations. 

vi. Because of the potential mode collapse problem, the diagnostic statistical plots 

should be calculated for the same region in each model realization to ensure the 

diversity in model realizations.   

5.3 FUTURE WORK 

Potential future work to further advance the integration of geostatistics and 

petrophysical interpretation is provided in this section. 

5.3.1 Future Work for Well-Log Normalization and Interpretation 

i. Well-log correction via well-log normalization is based on the assumption of 

stationary petrophysical property. To ensure formation properties between 

training and test wells are stationary, we have to perform zonation for each well. 

However, 1) zones may not be identified based on the stationarity of the 

formation properties, and 2) it can be time-consuming to identify zones in each 

well manually. Therefore, it is important to develop an automatic zonation 

method and a well-correlation method to accurately identify zones for well-log 

normalization. 

ii. Because the number of wells is small, I explicitly calculate the statistical 

distance between wells to identify type wells for a test well. However, it is also 

important to check if we can directly add summary statistics of well logs as 

additional features to help machine learning models improve permeability 

prediction accuracy. 
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iii. Data-driven well-log interpretation methods are susceptible to local, abnormal 

measurements, and automatic abnormal detection algorithms to help identify 

local anomalies may improve the accuracy of the interpretation.  

iv. Uncertainty quantification for petrophysical interpretation is important for 

understanding the reliability of data-driven interpretation results. Therefore, 

ensemble- or variational-inference-based uncertainty quantification methods 

should be developed to perform uncertainty estimation. 

v. The new methods developed in this dissertation for well-log interpretation are 

only validated with field data from the SSAU for permeability prediction. 

Further study to investigate the applicability of this method to the prediction of 

other formation properties from other types of reservoirs should be helpful to 

understand the applicability of the methods. 

5.3.2 Future Work for ML-Based Reservoir Modeling 

i. Because ML-based reservoir modeling methods require large computer 

memory to model large reservoirs, I propose to use a hierarchical workflow. 

However, in the industry, sequential simulation is a more common solution for 

building large reservoir models. Therefore, it is also important to check how the 

ML-based, sequential simulation method may work compared to the 

hierarchical work. 

ii. I successfully applied machine learning-based reservoir modeling methods for 

the modeling of the fluvial channel, turbidite channel, and lobate systems. 

However, it is important to test if the methods also work for other more complex 

depositional systems. 
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iii. The ML-based reservoir modeling methods use variational inference to map 

simple latent random variables to depositional patterns in a reservoir. It is 

important to know what types of patterns cannot be reproduced with the 

variational inference.  

The amount of computational time required for training the stochastic pix2pix model for 

stochastic reservoir modeling is large compared to conventional geostatistical methods. 

Optimization of the neural network structure to accelerate the training process should be 

conducted to make the ML-based reservoir modeling workflow more efficient.  
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Nomenclature 

LIST OF SYMBOLS 

Chapter 2 

‖ ‖𝟐: L2 norm, mean squared error 

𝓛𝒂𝒅𝒗𝑫
: Discriminator adversarial loss 

𝓛𝒂𝒅𝒗𝑮
: Generator adversarial loss 

ℒ𝑎𝑑𝑣𝐺𝐶
: Generator adversarial loss when the well log uncertainty is known 

ℒ𝑙𝑐: Linear constraint 

ℒ𝑙𝑖𝑛𝑒𝑎𝑟: Loss function of the linear predictive model 

ℒ𝑝𝑟𝑒𝑑: Prediction error of a training set 

𝐶𝑑: Covariance matrix of petrophysical property prediction  

�̃�: Preprocessed predictor features (normalized well logs) 

�̃�: Response feature prediction (petrophysical property, permeability prediction) 

�̅�: Averaged value of the petrophysical property along an interval (zone) of a well 

𝑋: Predictor features (well logs) 

𝑌: Response features (petrophysical property, permeability) 

𝐴, 𝐵: Slope (A) and Intercept (B) of a linear model 

𝐶𝑜𝑣: Covariance calculation operator 

𝐷: Discriminator in a discriminative adversarial model 

𝐸: Differences between permeability predictions calculated with different models 

𝐺: Generator in a discriminative adversarial model 

𝑀: Mapping layers that predict permeability from (normalized) well logs 

𝑚𝑖: Weight for the adjacent ith permeability measurement, which is calculated with the 

Kriging method 

𝑃: Preprocessing layers for well-log normalization 

𝑃𝑖(𝑋), 𝑃𝑗(𝑋): Probability distributions of well logs from well i and j 

𝑥, 𝑦, �̃�, �̃�: Samples drawn from data set 𝑋 and 𝑌 respectively 

𝔼: Expectation 

min: Minimum value 
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max: Maximum value 

𝐷𝑖𝑣(𝑖, 𝑗): JS divergence between well logs from well i and well j 

𝐾𝐿(𝑃𝑖||𝑃𝑗), 𝐾𝐿(𝑃𝑗||𝑃𝑖): KL divergence from well logs i to well logs j and from well logs 

j to well logs i. 

𝐷𝑖𝑠𝑡(𝑖, 𝑗): Spatial distance between well i and well j 

𝑙𝑜𝑐𝑥𝑖,𝑦𝑖
: X and Y coordinates of well i 

Subscripts of Chapter 2 

𝑙: Parameters and coefficients of a linear model 

𝑠: Features/Layers from the training set 

𝑡: Features/Layers from the test set 

𝑢: Unbiased measurements 

Chapter 3 

𝐷: Discriminator in a discriminative adversarial model 

𝐺: Generator in a discriminative adversarial model 

𝐺−1: Reverse the calculation performed by the generator and obtain conditioning data 

from reservoir model realizations 

𝑥: Conditioning data 

𝑥_𝑡𝑟𝑎𝑖𝑛: Conditioning data (well and seismic data) in training reservoir models 

𝑥𝑡: Inputs of the generator at iteration t, which include latent variables and parameters for 

rule-based reservoir modeling 

𝑓(𝑥): a priori distribution of inputs of the generator 

𝑓2(𝑥𝑡): Probability distribution of the conditioning data, which is used to calculate the 

evidence probability  

𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: maximum number of iterations during the MCMC optimization 

𝑦: Reservoir model realizations calculated with the generator in a GAN model 

𝑦𝑡𝑟𝑎𝑖𝑛: Training reservoir models calculated with rule-based modeling method 

𝑧: Random variables in the latent space 

𝑙𝑡: loss function at iteration t during the MCMC optimization  

ℒ𝐿1: L1 norm loss function 

ℒ𝐶𝐺𝐴𝑁: Loss function of a conditional generative adversarial model 
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ℒ𝑝𝑖𝑥2𝑝𝑖𝑥: Loss function of a pix2pix model 

‖ ‖1, ‖ ‖2: Operations to calculate L1, L2 norms 

𝔼: Expectation 

𝜆, 𝜆𝑙𝑜𝑔, 𝜆𝑠𝑒𝑖𝑠: Certainty coefficients for data conditioning (well log: 𝜆𝑙𝑜𝑔, seismic data: 

𝜆𝑠𝑒𝑖𝑠) 

𝑌: Gaussian random variables 

𝑎𝑟𝑔: Find model parameters via stochastic gradient descent method 

(max
𝐷

): Maximize the probability that the discriminator can successfully distinguish the 

generated reservoir models from training images 

(min
𝐺

): Minimize the probability that the discriminator successfully distinguishes the 

generated reservoir models from training images 

ℒ𝐿2𝑠𝑡𝑜
: Loss function of the L2-norm of conditioning data mismatch 

ℒ 𝑠𝑡𝑜(𝑥, 𝑧): Loss function of a stochastic pix2pix model 

ℒseismic: Loss function for seismic conditioning 

ℒwell_log: Loss function for well-log conditioning 

ℒsto
∗ : Loss function of a stochastic pix2pix model conditioned to seismic and well data 

𝐿𝑐𝑎𝑡: Mean categorical error of data conditioning 

𝑚𝑖𝑘: A point in the binary correctness map, which equals 0 if the facies at 𝑘𝑡ℎ pixel are 

the same in both the 𝑖𝑡ℎ true model and 𝑖𝑡ℎ reservoir model realization 

𝑡𝑖𝑘 The probability that in the 𝑖𝑡ℎrealization, the facies at kth pixel is sandy facies  

𝑡𝑖𝑘
∗ : The probability that in the 𝑖𝑡ℎtraining image, the facies at kth pixel is sandy facies  

𝑡: Angle used in gradual deformation method 

𝑤𝑖𝑙: The probability of each facies existing at the 𝑙𝑡ℎ well location in the 𝑖𝑡ℎ reservoir 

model realizations 

𝑤𝑖𝑙
∗ : The one-hot encoding of the facies existing at the 𝑙𝑡ℎ well location in the 𝑖𝑡ℎ 

training image 

𝑁: Batch size 

K: Number of pixels in the reservoir model 

𝐿: Number of well-log interpretations 

k: Wavelength for rule-based channel system modeling 

h: Dampening factor for rule-based channel system modeling 
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s: disturbance variance for rule-based channel system modeling 

Chapter 4 

H(x, y, z): Shannon entropy of reservoir model realizations at (x, y, z)  

𝑝𝑖(x, y, z): Probability that the 𝑖𝑡ℎ bed exists at a location (𝑥, 𝑦, 𝑧) in model realizations 

σSS: Standard deviation of sedimentation/subsidence 

T: Stratigraphic time required for one depositional event 

𝑟(𝑇; 𝑥, 𝑦): Rate of sedimentation at location (x, y) during one depositional event 

�̂�(𝑥, 𝑦): Sedimentation rate averaged over all depositional events 

A: Lateral area of a model 

𝑎: Leading coefficient 

𝜅: Compensational index  

W: Interfacial width 

ℎ(𝑥, 𝑦): Height of a surface at location (x, y) 

ℎ̅: Averaged height of a surface 

𝑞𝑗: Single-phase flow rate of streamline j 

𝑉𝑝𝑗: Pore volume along streamline j 

N: Total number of streamlines 

Φ: Storage capacity 

F: Flow capacity 

𝐿𝐶: Dynamic Lorentz coefficient 

H: Maximum height of a lobe 

R: Radius of a lobe 

b: Aspect ratio of a lobe 

𝜑: Orientation of a lobe 

M: Healing factor of a lobe 

LIST OF ACRONYMS 

ANN: Artificial neural networks 

AR: autoregressive random (process) 

CALD: Caliper log (in) 
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CGAN: Conditional generative adversarial networks 

CI: Compensational index 

CKMAX: Maximum core permeability measurement (mD) 

CNN: Convolutional neural network 

CycleGAN: Cycle-consistent adversarial networks 

CPOR: Core porosity measurement (v/v) 

CPU: Central processing unit 

DA: Discriminative adversarial model 

DBSCAN: Density-based spatial clustering of applications with noise 

DLC: Dynamic Lorentz coefficient 

DT: Sonic slowness log (us/ft) 

GAN: Generative adversarial neural network 

GRD: Gamma ray log (api) 

JS: Jason-Shannon (divergence) 

K: Permeability 

KL, K-L: Kullback–Leibler (divergence) 

LLD: Lateral deep resistivity log  

LLS: Lateral shallow resistivity log 

MCMC: Markov Chain Monte Carlo sampling methods 

MDS: Multi-dimensional scaling 

M-H: Metropolis-Hastings sampling method 

ML: Machine learning 

MMD: Maximum mean discrepancy  

MMDDT: Maximum mean discrepancy domain transfer (learning) 

MPH: Multiple-point histogram 

MPS: Multiple-point simulation 

MSE: Mean squared error 

NPHI: Neutron porosity log (v/v) 

NTG: Net-to-gross ratio 

NN: Neural network 
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RCI: Raster-based compensational index 

RCNN: Region-based convolutional neural network 

ReLU: Rectified linear unit 

RF: Random forest model 

RHOB: Density log (gm/cm3) 

RMAE: Relative mean absolute error 

SDS: Standard deviation of sedimentation/subsidence 

SGS: Sequential Gaussian simulation 

SSAU: Seminole San Andres Unit 

TI: Training images 

TOF: time of flight 

UTFLUVPY: A rule-based, channel system modeling program 

UTLBPY: A rule-based, lobate system modeling program 

VE: Vertically exaggerated (X times) 

Suffix 

_DA: Normalized well logs and permeability prediction calculated with the DA model 

_linear: Normalized well logs and permeability prediction calculated with the linearly 

constrained model  

_origin: Original well logs and permeability prediction calculated with the model without 

any constraints 

_scaling: Normalized well logs and permeability prediction calculated with two-point 

scaling method  
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