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As device geometries shrink, variability of process parameters becomes 

pronounced, resulting in a significant impact on the power and timing performance of 

integrated circuits. Deterministic optimization algorithms for power and area lack 

capabilities for handling uncertainty, and may lead to over-conservative solutions. As a 

result, there is an increasing need for statistical algorithms that can take into account the 

probabilistic nature of process parameters.   Statistical optimization techniques however 

suffer from the limitation of high computational complexity. The objective of this work is 

to develop efficient algorithms for optimization of area and power under process 

variability while guaranteeing high yield. The first half of the dissertation focuses on two 

design-time techniques: (i) a gate sizing approach for area minimization under timing 

variability; (ii) an algorithm for total power minimization considering variability in 

timing and power.   
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Design-time methods impose an overhead on each instance of the fabricated chip 

since they lack the ability to react to the actual conditions on the chip. In the second half 

of the dissertation we develop joint design-time and post-silicon co-optimization 

techniques which are superior to design-time only optimization methods. Specifically, we 

develop (i) a methodology for optimization of leakage power using design-time sizing 

and post silicon tuning using adaptive body bias; (ii) an optimization technique to 

minimize the total power of a buffer chain while considering the finite nature of 

adaptability afforded.  The developed algorithms effectively improve the over-

conservatism of the corner-based deterministic algorithms and permit us to target a 

specified yield level accurately. As the magnitude of variability increases, it is expected 

that statistical algorithms will become increasingly important in future technology 

generations. 
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Chapter 1:  Introduction 

The growth of process variability in scaled CMOS requires that it is explicitly 

addressed in the design of high performance and low power microprocessors. This 

growth can be attributed to multiple factors, including the difficulty of manufacturing 

control, the emergence of new systematic variation-generating mechanisms, and the 

increase in fundamental atomic-scale randomness – for example, the random placement 

of dopant atoms in the transistor channel. The International Technology Roadmap for 

Semiconductors (ITRS) in 2006 indicates that the variability of the parameters could be 

as much as 30% of the nominal value, resulting in 40% variation in circuit timing and 

50% variation in power dissipation for the current generation (65nm technology) [1]. 

Moreover, it is anticipated that variability in parameters will continue to increase 

according to the current trend, as shown in Figure 1.1.  This growth of process variability 

has ushered in an urgent need for statistical analysis and optimization algorithms  

Recently, considerable research efforts have focused on developing statistical 

approaches to timing analysis, including the models and algorithms accounting for the 

impact of delay variability on circuit performance [2][3][4] [5]. These techniques concern 

themselves with eliminating the conservatism introduced by employing traditional worst-

case timing models in predicting the timing yield of the circuit. In view of the importance 

of variability, new methods are needed to evaluate the power-limited parametric yield of 

integrated circuits and guide the design towards statistically feasible and preferable 

solutions. This can be achieved through the migration to statistical optimization 

techniques that account for both power and delay variability. 
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Figure 1.1: Predicted variability of key parameters, circuit timing, and power 
consumption (Data source: ITRS  ) 

Several factors contribute to the growth in process variability [6][7][8].  While the 

continued need for more performance necessitates rapid technology scaling, there are 

severe limitations to our capacity to improve manufacturing tolerances [9]. This is 

manifested in the rise of such effects as channel length variation due to the optical 

proximity effect [10][11]; systematic spatial gate length variation due to the aberrations 

in the stepper lens [12]; and variation in interconnect properties caused by non-uniform 

rate of chemical-mechanical polishing (CMP) in layout regions of different pattern 

density[13][14]. Scaling also brings about parameter uncertainty of a fundamental 

atomic-level nature. This is best exemplified by variability in transistor threshold voltage 

due to random dopant fluctuations (RDF). As transistors scale, the transistor channel 
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contains fewer dopant atoms whose precise number and location cannot be controlled, 

and even small fluctuations can impact threshold voltage significantly [15][16] [17]. 

The patterns of variability are also changing: the intra-chip component of 

variation grows as a percentage of total variability in key process parameters such as 

channel length and threshold voltage [18][19]. It is this change that is largely responsible 

for the need to develop new approaches to timing analysis and optimization, as the 

traditional methods fail in the presence of uncorrelated intra-chip variability. 

Circuit-level variability is directly dependent on the decision variables: for 

instance, the standard deviation of threshold voltage depends inversely on the square root 

of transistor area [20]. Statistical algorithms that explicitly account for the variance of 

objective and constraint functions during optimization are expected to perform much 

better. In contrast, deterministic algorithms lack the notion of parameter variance and 

parametric yield, preventing design for yield as an active design strategy. An algorithm 

that does not comprehend the dynamic changes in performance variability arising from 

threshold voltage dependency on sizing is unlikely to be successful in parametric yield 

optimization. Instead, if a worst case process corner is assumed to ensure sufficient yield 

the circuit gets over-designed resulting in worse power consumption and lower 

performance. Thus, the introduction of statistical optimization has a potentially 

significant impact on circuit performance and parametric yield.  

1.1 STATISTICAL OPTIMIZATION FOR TIMING YIELD 

Traditional circuit optimization techniques are insufficient for the purpose of 

parametric yield improvement in nanometer scale integrated circuits. In the past, case-

files have been used effectively with the traditional deterministic algorithms while 

guaranteeing a specific yield point. Typically, these case files would be worst case, 

nominal, and best case process corners combined with the worst case, nominal, and best 
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case operating (voltage, temperature) corners. The effect of variability was captured in 

these case files by modifying the device SPICE model parameters to correspond to a 

specific percentile of the parameter distribution [21]. Analyzing and optimizing the 

circuit with these parameters guaranteed that it would meet the performance constraints at 

a specific percentile of probability. However, this approach works only when variability 

is predominantly inter-chip, causing differences in the chip-to-chip properties, with 

parameter variation in devices within a chip being neglected. In nanometer scale 

technologies, intra-chip variation is significant. Also, deterministic optimization makes 

the tacit assumption that circuit performances of different gates have identical 

sensitivities to the variation of process parameters. The highly non-linear and non-

additive responses of performance variability make this premise untenable [22]. This 

results in the breakdown of the case-file based approach to handling variability in 

optimization as it becomes impossible to come up with a case file that will guarantee a 

specific yield point.  

The inability to target a specific parametric yield point is a significant limitation 

of deterministic optimization, in general, and sizing, one of the most potent optimization 

techniques, in particular. The transistor and gate sizing problem has been formulated in 

several ways in the deterministic setting, including unconstrained delay minimization 

[23], and area and power minimization under delay constraints [24]. Several powerful 

solution methods exist, among which is sensitivity-based iterative approach of TILOS 

[25], an optimization approach using linear programming [26] and a fast technique based 

on Lagrangian relaxation [27] However, none of these approaches take variability into 

account, treating gate delays as fixed quantities.  

There have been several recent attempts to introduce statistical considerations into 

sizing [28][29][30][31][32]. In [28], a general non-linear gate sizing problem based on a 
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statistical gate delay model is proposed. An approach based on the concepts from utility 

theory [29] posits an objective function that penalizes paths with large variance. In [30], 

the authors modify the existing sizing algorithm based on Lagrangian relaxation [27] to 

incorporate an additional yield constraint Recently, two techniques based on geometric 

programming have been proposed [31][32] and solved using convex optimization tools.  

In this dissertation, we present a new approach to statistical gate sizing. The 

problem is cast into a robust linear program, which is then reformulated as a second-order 

conic program to analytically capture the dependence of the objective function on the 

variance of gate delays in closed form. This allows us to achieve better run-time 

compared to the known approaches.  

1.2 THE NEED FOR POWER LIMITED PARAMETRIC YIELD OPTIMIZATION  

The increase in leakage power with scaling, and the strong dependence of leakage 

on highly varying process parameters, raises the importance of statistical leakage and 

parametric yield modeling. There are several reasons for increased leakage power 

consumption. Supply voltage scaling requires the reduction in threshold voltage (Vth) in 

order to maintain gate overdrive strength. Threshold voltage reduction causes an 

exponential increase in subthreshold channel leakage current. To make matters worse, 

aggressive scaling of gate oxide thickness leads to significant gate oxide tunneling 

current [33].  

For transistors in the weak inversion region, the subthreshold current can be 

expressed as: 

 
( )/ /(1 )gs th thermal ds thermal
V V V V V

sub
I e e

h- -µ -  (1.1)  

where 
gs

V  and 
ds

V  are gate- and drain-to-source voltages, 
thermal

V  is the thermal voltage, 

and h  is the subthreshold slope coefficient [33]. For the purpose of statistical analysis, 

the exponential dependence of subthreshold current on process parameters is better 
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captured by an empirical model in terms of the variation in effective channel length 

( LD ) and the variation in threshold voltage ( VD ), taken to be stochastically 

independent of channel length [34]: 

 
2

2 3 1( )/L a L a V a

sub
I e- D + D + Dµ   (1.2) 

where 
1

a , 
2

a  and 
3

a  are process-dependent parameters. The gate tunneling current 

strongly depends on the thickness of oxide (
ox

T ) and can be described as [35]: 

 
2.5 2.5

1 2 1 2( ) ( )gs ox gd oxcV c T cV c T

ox
I e e

- -- -µ +  (1.3) 

where 
1

c  and 
2

c  are the process-dependent fitting parameters, and 
gs

V  and 
ds

V  are the 

gate-to-source and gate-to-drain voltages respectively. A simple empirical model captures 

the dependence of 
ox

I  on the variation in the oxide thickness ( TD ) [34]: 

 /T b

ox
I e-Dµ   (1.4) 

where b is the process-dependent parameter. 
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Figure 1.2:    Exponential dependence of leakage current on 0.18µm process parameters 
results in a large spread for relatively small variations around their nominal 
value 
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The models indicate that both subthreshold and gate leakage currents are 

exponential functions of highly-variable process parameters, specifically effective 

channel length, threshold voltage, and oxide thickness. This strong dependence causes a 

large spread in leakage current in the presence of process variations (Figure 1.2), with 

subthreshold leakage depending primarily on Leff and Vth, and gate leakage depending on 

Tox. Historically, Tox has been a well-controlled parameter, and as a result, it had smaller 

impact on leakage variability. However, this is rapidly changing as technology 

approaches the limits of thin film scaling. While leakage power exhibits exponential 

dependencies on process variables, chip frequency has a near-linear dependency on most 

parameters [34]. This difference in magnitude of variation is easily observed in 

measurements. Figure 1.2 shows that a 1.3× variation in delay between fast and slow die 

could potentially lead to a 20× variation in leakage current [36].  

Leakage power is inversely correlated with chip frequency. Slow die have low 

leakage, while fast die have high leakage (Figure 1.2). The same parameters that reduce 

gate delay – shorter channel length, lower threshold voltage, thinner gate oxide – also 

increase the leakage. Moreover, the spread in leakage grows as the chip becomes faster. 

In characterizing chips according to their operating frequency, it has been observed that a 

substantial portion of the chips in the fast bins have unacceptably high leakage power 

consumption.  

In the absence of substantial leakage power, parametric yield is determined by the 

maximum possible clock frequency. Switching power is relatively insensitive to process 

variation. When the leakage power typical of current CMOS technologies is added, the 

total power starts approaching the power limit determined by the cooling and packaging 

considerations. Crucially, the exponential dependence of leakage on process spread 

means that the total power may cross the cooling (power) limit well below the maximum 



 8

Maximum 
power

Minimum clock 
frequency

Maximum clock 
frequency due to 
maximum power

Fraction of
total yield

Clock frequency

Power

Dynamic power

Leakage power
Maximum 

power

Minimum clock 
frequency

Maximum clock 
frequency due to 
maximum power

Fraction of
total yield

Clock frequency

Power

Dynamic power

Leakage power

 

Figure 1.3:    Inverse correlation between leakage power and frequency contributes to 
parametric yield loss. The maximum frequency of usable chips is reduced 
because chips in what would be the “fast” bin exceed power limits. 

possible chip frequency, since chips operating at higher frequencies have exponentially 

higher leakage power consumption. Thus, due to the inverse correlation between speed 

and leakage, yield is limited both by slower chips and chips that are too fast, because they 

are too leaky.  

This is further illustrated in Figure 1.3. The leakage-delay correlation and the 

resulting dual squeeze on parametric yield is one of the reasons why new methods that 

can simultaneously estimate timing-limited and power-limited yield need to be utilized. 

These will allow designing circuits in a way that optimizes the trade-off between power- 

and timing-limited yields. At the same time, this will permit making the circuit more 

robust, i.e., less sensitive to parameter variation. For this, new methods that can 

simultaneously handle timing-limited and power-limited yield need to be utilized. This 

requires new techniques for statistical parametric yield optimization.  
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Figure 1.4:    Effectiveness of ABB in reducing delay spread 

In this dissertation, we describe a new statistical algorithm for total power minimization. 

Starting with a chance-constrained LP, it is transformed into a second order conic 

program using mathematical properties of the uncertain parameters.  A two phase 

approach based on optimal delay budgeting and slack utilization, akin to [37] is used. The 

delay budgeting phase is formulated as a robust version of the power-weighted linear 

program that assigns slacks based on power-delay sensitivities of gates. We explicitly 

incorporate the notion of variability in delay and power due to process variations into the 

optimization, by setting an uncertain robust linear program. The variance of delay and 

power, assumed to be due to channel length and threshold voltage variation, is mapped to 

the variance of the sensitivity vector. The statistical (robust) linear program is cast into a 

second order conic program that can be solved efficiently. The slack assignment is inter-

leaved with the configuration selection which optimally redistributes slack to the gates in 

the circuit to minimize total power savings. 
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1.3  DESIGN-TIME AND POST-SILICON CO-OPTIMIZATION: MOTIVATION AND 
CHALLENGES 

Two fundamental paradigms are available for dealing with variability: statistical 

design (optimization at design time) and post-silicon adaptivity (on-line tuning). To 

guarantee reliable circuit operation with minimal power consumption, next-generation 

circuit synthesis techniques for robustness must explicitly account for the availability of 

post-silicon adaptivity in synthesizing the circuit. There is a growing body of work on 

statistical circuit analysis methods and statistical post-synthesis optimization, including 

sizing and dual-threshold voltage assignment algorithms. These tools show promise in 

reducing parametric yield loss, or alternatively, reducing power consumption while 

maintaining high yield.  However, the growing magnitude and complexity of uncertainty 

is bound to make post-synthesis tuning techniques insufficient in guaranteeing reliable 

circuit operation with reasonable parametric yield. 

Post-silicon design adaptivity, or tuning, currently includes several techniques; 

the primary ones are adaptive body biasing (ABB) and adaptive supply voltage (ASV). 

ABB uses the body effect to modulate the threshold voltages of transistors, thereby 

controlling leakage and performance [38][39][40][41] (Figure 1.4). ASV raises the power 

supply (Vdd) for slow (low-leakage) dies, and lowers it for fast (high-leakage) dies, 

ensuring better overall yield [42]. It relies on the roughly cubic dependence of leakage 

power on Vdd in CMOS circuits (also impacting dynamic power quadratically).  

A widespread industrial adoption of adaptive techniques is not yet possible for 

two reasons. One is that designers do not have the tools to help them decide whether, and 

how much, adaptive circuitry is needed, or what type of post-silicon tuning technique will 

be most appropriate. The availability of both design-time (pre-silicon) optimization and 

post-silicon adaptivity leads to a rich optimization space in which coordination between 
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the two levels is required. Sizing can be used to upsize the gates beyond the need of a 

nominal design to achieve higher timing yield, but with increased power. Alternatively, 

the adaptivity of threshold voltage can be used to tighten the speed distribution to 

improve yield. Depending on the magnitude and the spatial structure of variability, the 

two approaches will have different cost-effectiveness, i.e., they will be characterized by 

different Pareto curves in the space of design objectives.  

Algorithmically, future robust circuit synthesis can be conceptualized as a two-

stage optimization problem, with additional second-stage tuning available upon the 

realization of uncertain variables. In this dissertation an efficient formulation is proposed 

using the theory of adjustable optimization. This optimization paradigm presumes that the 

decision-maker has a chance to update his optimization strategy upon learning additional 

information. If the objective function is linear in the decision variables, then, under the 

conditions that the uncertainty sets are affine functions of some parameters, the optimal 

policy for the second-stage decisions can be computed efficiently.  

The problem is formulated in the following way. The first-stage (design-time) 

power-delay optimization is done via sizing, and second-stage (post-silicon) optimization 

is achieved by body bias tuning. The second stage decision variables are represented as 

affine function of parameter uncertainty. The solution to this optimization problem is a 

design time decision (size of gates in the circuit) and an optimal policy that prescribes the 

amount of bias depending on the realizations of uncertain variables (e.g. gate length, Vth 

on a specific chip). Three measures of complexity that parameterize the solution and the 

optimality of this problem are introduced by us: the control complexity (the granularity of 

control), the measurement complexity (the granularity of the monitoring and sensing 

circuitry), and the parameter complexity (a measure of how spatially uncorrelated the 

process variable is). Using these metrics, formal quantitative trade-offs between design-
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time and post-silicon adaptivity can be identified. Such capability will also be useful for 

the analysis and development of the fine-granular control structures, e.g. for determining 

the spatial granularity. 

1.4. DESIGN OF POWER-OPTIMAL BUFFERS TUNABLE TO PROCESS VARIABILITY 

Large capacitive loads are ubiquitous in CMOS integrated circuits. Typically, 

tapered buffers are designed to drive these large capacitances to ensure that the load 

placed on previous stages of the signal path is not too large [43]. Buffers are used in 

memory access path as wordline drivers [44], to drive large off-chip capacitances in I/O 

circuits [45] and in clock trees to ensure that skew constraints are satisfied [46]. Also, the 

recent trend of exacerbating wire delays necessitates the insertion of more buffers per 

unit length of global interconnect to meet delay targets [47]. Aggressive deployment of 

buffers in high-performance microprocessors means that they now account for a 

significant portion of total power consumption of the chip. For instance, wordline drivers 

are estimated to account for nearly half the energy consumption of small embedded 

SRAMs [45].   

The expedient need for power efficiency in mobile and portable devices, in 

conjunction with the increase in leakage power with scaling, has espoused the 

development of techniques for low-power buffer design [48][49]. With the growth of 

variability, several techniques have been proposed for statistical power optimization in 

general, and buffer design in particular [50][51], to reduce parametric yield loss due to 

variability. However design-time methods impose a fixed overhead for each instance of 

the fabricated chip. An alternate paradigm to design-time optimization is post-silicon 

adaptivity, which allows the designer to tune chips individually to help meet performance 

constraints. 
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One specific methodology for run-time adaptivity for buffer chains explored in 

[51] in the context of memories, is to use the capability of switching between high-speed 

and low-power configurations to exploit their delay-energy tradeoffs. The alternative 

power-delay characteristics can be achieved using different techniques like sizing, or by 

employing different threshold voltages. However, the strategies developed thus far do not 

take into account the magnitude and characteristics of process variability to design the 

buffers. Using our approach, we demonstrate that the optimal decision depends on the 

underlying process variability and propose a method to co-ordinate the design-time and 

post-silicon steps optimally and efficiently.  

We propose a general formulation for tunable buffer design under uncertainty 

using the theory of finite adaptable optimization. Under this framework, the buffers are 

designed to have either an additional branch. The best configuration is selected based on 

the realization of uncertainty. The optimization problem is formulated as the 

minimization of the total power consumption while guaranteeing that timing yield 

constraints are met. The solution to the problem is the set of design time decisions, 

namely the sizing of the inverters in the buffers, and the optimal tuning policy. The 

tuning policy of selecting an alternative design after manufacture can be described by 

defining an optimal partition of the uncertainty set: the partitions are the regions in the 

space of process parameters. A decision about the buffer configuration option is taken 

depending on the region into which a particular realization falls.  

1.5 DISSERTATION ORGANIZATION 

The remainder of the dissertation is organized as follows. Chapter 2 presents a 

statistical sizing algorithm which is formulated as a robust linear program. In Chapter 3, 

the impact of variability on power is discussed and an algorithm for total power 

minimization is presented which treats both timing and power probabilistically. Power 
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reduction is performed by simultaneous sizing and dual threshold voltage assignment, 

and good run-time is achieved by casting the problem as a second-order conic problem. 

In Chapter 4 we develop an algorithm for design-time and post-silicon co-optimization 

which unifies design-time gate-level sizing and post-silicon adaptation using adaptive 

body bias at the chip level. The formulation utilizes adjustable robust linear programming 

to derive the optimal policy for assigning body bias once the uncertain variables, such as 

gate length and threshold voltage, are known. In Chapter 5 we develop a strategy to 

optimize the total power of a buffer circuit in the presence of variability by designing a 

tunable buffer circuit wherein depending on realizations of process parameters, buffer 

stages with different size are selected. The number of alternative buffer tunable settings is 

small, and we show power can be reduced by choosing an optimal rule that guides 

switching between the alternatives once the uncertain process parameters are realized. 

Finally, Chapter 6 concludes this dissertation. 
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Chapter 2:  A Fast Sizing Algorithm by Robust Linear Programming  

Statistical gate sizing has emerged as an important tool to reduce the over-

conservatism of deterministic corner-case based optimization while ensuring that timing 

yield constraints are satisfied. It is possible to formulate a general statistical gate sizing 

problem that can be described by analytical but non-linear functions and solve it directly 

using a general non-linear solver [28]. The objective and constraints are expressed as 

explicit functions of the mean and variance of gate delays. However, the techniques 

relying on non-linear optimization tend to be excessively slow which would greatly limit 

the capacity for large-scale circuit optimization. More efficient formulations based on 

geometric programming are also possible. In [31], the fact that sizing problems have 

fairly flat maxima is exploited by utilizing heuristic techniques to compute the “soft-

max” of arrival times. Statistical static timing analysis is then used to guide the 

optimization in the right direction. The algorithm based on geometric programming 

presented in [32] models parameter variations using an uncertainty ellipsoid, and 

proceeds to construct a robust geometric program, which is solved by convex 

optimization tools.  

In this chapter, we present a new approach to statistical gate sizing. Its major 

contribution is the analytical treatment of delay variability and an efficient computation 

implementation. The problem is cast into a robust linear program, which is then 

reformulated as a second-order conic program to analytically capture the dependence of 

the objective function on the variance of gate delays in closed form. Second-order conic 

programs can be very efficiently solved using existing interior point methods.  This 

allows us to achieve significantly better run-time compared to the known approaches. We 

demonstrate the use of the sizing algorithm on an industrial microprocessor module and a 
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number of practical challenges of using a statistical algorithm in an industrial setting are 

addressed. The variability and delay models are generated from and validated by 

industrial technology files and transistor models and the algorithm was integrated into a 

CAD flow handling sequential elements, fixed size macros, and non-static logic elements.  

2.1 FORMULATING THE ROBUST LINEAR PROGRAM FOR SIZING 

This section first presents the mathematical formulation of deterministic circuit 

sizing. Then it proposes a robust linear program for sizing in the presence of variability to 

guarantee the attainment of the desired timing yield. 

2.1.1 Deterministic Problem Formulation  

The gate sizing problem can be formulated as follows. Given a circuit 

implemented using standard library cells and the maximum delay target, find a load drive 

capability for all the cells that meets timing constrains while minimizing total circuit area. 

We assume that the cell’s drive capabilities are continuous within some range. Both the 

drive strength and the input capacitance of cells are known once the sizing parameter is 

determined. The problem can be written as: 

 
min

. .
ckt target

s t D D£

å j j
j

c s
 (2.1) 

where,
j

s is the size of gate j and 
j

c is a weight assigned to each gate type representing the 

area of its minimum sized version, 
ckt

D is the delay of the circuit and 
target

D  is the timing 

target. 
 

2.1.2 Sizing under Parameter Uncertainty 

The impact of process variability is to introduce uncertainty into circuit timing. 

Several process parameters exhibit an impact on the timing performance of high-end 
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integrated circuits. Notably, the variability in the effective channel length,
eff

L , and the 

threshold voltage,
th

V , cause substantial variation in gate delay. Intra-chip component of 

variation that introduces uncorrelated delay variation has particularly detrimental effect 

on timing. In seeking a formulation of the statistical sizing problem, we must satisfy two 

requirements. First, the probabilistic constraints have to be represented in a way that will 

permit analytical treatment of circuit timing variance. Second, this analytical formulation 

must be amenable to efficient computational implementation.   

We can write the statistical equivalent of the deterministic problem (2.1) by 

making the constraint satisfaction a probability event. This results in the following robust 

linear program for sizing: 

 
min

. . ( )
j j

j

ckt target

c s

s t P D D g£ ³
å

 (2.2) 

Now we require the constraints to be met with probability ofg , which is the required 

timing yield at the timing target
target

D .  

2.2 STATISTICAL GATE DELAY MODELING 

Following earlier suggestions, a piece-wise linear approximation can be used in 

optimization [26]. We adopt a linearized gate delay modeling method, extending it to a 

statistical representation. Let the gate delay be represented as 
j j j

d d d= +D , where 
j

d is 

the nominal gate delay and
j

dD is the term representing the variability in delay. The 

nominal gate delay can be described by the piecewise linear equations: 

 
1 2 3

[ , ]l l l

j j j j j k
d a a s a s l 1 L= - + " Îå  (2.3) 

where l  are the fitting regions and L  is the number of such regions. This model captures 

the dependence of delay on the size of the gate 
j

s  and its load
k

så . The coefficients 

found are by the least-square fit of the piecewise linear model to a set of data points 
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Figure 2.1: The piecewise linear delay model for a NAND2 gate. 

generated via a circuit simulation using SPICE for gates in the cell library. The accuracy 

of the fit can be improved by increasing the number of fitting regions L. The accuracy of 

the approximation is good and the average error is less than 5% for L=3. The size range 

considered is 1-8x of the minimum size gate. 

Assuming that a first order Taylor’s series expansion for gate delay 
j

d is adequate, 

we can write: 

 / / /( ) ( ) ( )
j j j th th j

d d L L d V V d W WD @ ¶ ¶ D + ¶ ¶ D + ¶ ¶ D  (2.4) 

where LD ,
th

VD and WD are the parameter random from nominal. The precise 

dependence of the sensitivities, i.e. the first derivatives of delay with respect to the 

parameter, on gate size is posynomial. To capture the dependence of the variance of gate 

delay on the decision variables (gate sizes) of a second-order conic program, the 

sensitivity coefficients of a gate need to be represented as linear functions of the driver 

and load sizes. We use an empirically fitted linear model for this purpose. For example, 

the sensitivity of delay to gate length variation is empirically modeled as: 
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 /
0 1 2

( ) ( )
j j j j j k

d L b b s b s¶ ¶ = + + å  (2.5) 

Also, to simplify analysis, we force the sensitivity coefficients to be the same in the entire 

size range. The values of sensitivities of delay to gate length, width, and threshold 

voltage are computed by SPICE simulations. The error in mean is less than 2% while the 

error at the 3m s+ point is around 8%. Note that since Leff, Vth and W can be modeled as 

normally distributed random variables, gate delay is also normal. 

The modeling framework must consistently handle different decompositions of 

variability into inter-chip and intra-chip components. This is accomplished here by 

adopting a linear additive model that decomposes the variability of all parameters into the 

intra-chip and chip-to-chip variability components. For example, for the effective channel 

length the model is: L L LD = D +D
inter intra

, and 2 2 2s s s= +
L inter intra

.  The gate delay 

co-variance can be written down as: 

cov( , ) cov( , ) cov( , ) cov( , )
j k

j j jk k k
j k j k j k th th

th th

d d dd d d
d d L L W W V V

L L W W V V

¶ ¶ ¶¶ ¶ ¶
= + +

¶ ¶ ¶ ¶ ¶ ¶
 (2.6) 

where, cov( , ) cov( , )j k

j k intra intra
L L L L L L= D +D D +D

inter inter
 and 

inter
LD , 

interth
VD  and 

inter
WD are the inter-chip components and 

intra
LD , 

intrath
VD  and 

intra
WD  are the intra-chip 

components of variation. This model is not based on the knowledge of the specifics of the 

spatial correlation of intra-chip variability, in contrast to approaches such as [2]. Thus, 

the gate-to-gate correlation is assumed to come from the joint impact of intra- and inter-

chip variability only. We believe this is a good model to sufficiently approximate the 

percent point function of gate delay (that gives the value of delay at an arbitrary 

percentile of the distribution) as a second-order cone of gate sizes, which was our initial  

objective in developing the statistical gate delay model that will be suitable for statistical 

optimization.  
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 Figure 2.2: Equiprobability contours of jointly distributed normal random variables. 

2.3 PATH BASED SIZING USING SECOND ORDER CONIC PROGRAMMING 

In this section the theory behind Second Order Conic Programming (SOCP) is 

briefly explained. We then proceed to transform the robust LP in (2.2) into a path based 

formulation which is an SOCP.  

2.3.1 Overview of Second Order Conic Programming  

In general, a Second Order Conic Program (SOCP) consists of minimizing a 

linear function over the convex set described by the intersection of an affine space with 

one or more second-order cones. Consider the Robust Linear Program: 

 

min

. . ( ) , 1..

T

T
i i i

c x

s t P a x b i mh£ ³ =
 (2.7) 

where ( , )
i i i

a N a= å . 

The equi-probability Gaussian sets are ellipsoids with their axis and orientation 

given by covariance matrix 
i

å (Figure 2.2). This implies that the constraint 

( )T

i i i
P a x b h£ ³  can be written as:  

 1/21( )T

i i i i
b a x xf h-- ³ S  (2.8) 

This leads to the following SOCP equivalent of the robust LP:  

= ( , )i i ia N a

nominal ia

Equiprobability 
contours

= ( , )i i ia N a

nominal ia

= ( , )i i ia N a

nominal ia

Equiprobability 
contours
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1/21

min

( )( )

T

T T

i i i i

c x

a x x x bf h-+ S £
 (2.9) 

The reasons for seeking an SOCP based formulation for sizing are manifold. Second-

order conic programs are convex, and an optimal solution is, therefore, globally optimal. 

In addition there exist extremely efficient techniques to solve SOCPs that exploit their 

special structure [53][54].  

2.3.1 Formulation of Path–based Constraints  

The probabilistic constraint on circuit delay must be translated into a set of path-

based constraints, in the form ( )
i target i

P D D a£ ³ , where 
i

D  is the delay of path i, such 

that the resulting set of constraints well approximates, and ideally guarantees, the 

specified yield level g . The path delay is: 

 , 
i j i

D d j p= " Îå  (2.10) 

Given the models of the previous section, path delays are 

Gaussian, 2~ ( , )
ii i D

D N D s  , and using translation-invariance of normal distribution, the 

probabilistic path delay constraint ( )
i target i

P D D a£ ³  can be re-written as: 

 (( ) / ) ( ) / )
i ii i D target i D i

P D D D Ds s a- £ - ³  (2.11) 

which can be finally transformed into: 

 1( )   
ii i D target

D Df a s-+ £  (2.12) 

where 
i

D is the nominal delay of the path i, 
iD

s  is the standard deviation of the delay of 

the path, and f  is the cumulative distribution function (cdf) of the standard normal 

distribution (0,1)N . The path delay variance can now be expressed as a second-order 

conic function of gate sizes ( js ) using the delay covariance expressions established in the 

previous section: 
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( ) cov( , )
i

i i

D j j k
j p k p

s d ds
Î Î
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åå  (2.13) 

This permits setting up the SOCP for statistical gate sizing: 

 
1

min 

. . ( ) ,
i

j j
j

i i D target

c s

s t D D i Pf a s-+ £ " Î

å
 (2.14) 

2.3.2 Node- based Sizing Formulation  

Since the above constraints are path based, the resulting optimization problem is 

computationally expensive. Converting the path delay constraints into node-based 

constraints, in mathematical terms, requires additively approximating the percent-point 

function of path delay with a combination of node-delay percent point functions. The 

transformation is performed using the standard introduction of additional node arrival 

time constraints: 

 
1

min 

,   for 

( )
j

j j
j

o target

k j j j d

c s

AT D o PO

AT AT d f b s-

£ " Î

³ + +

å
 (2.15) 

where jAT  is the arrival time at node j,  targetD is the required arrival time at the primary 

outputs. Here
j

d and 1/2cov( , )
jd j jd ds =  are the mean and standard deviation of the gate 

delay. The transformation to the node-based formulation, involved selecting the node 

probability levels (
j

b ) for the individual gates on the path. In the following section we 

discuss a strategy for node yield assignment which is based on path criticality. 

2.4 CRITICALITY BASED YIELD ASSIGNMENT 

In the previous section, we outlined the statistical sizing algorithm assuming that 

the node yields 
j

b  are chosen in such a way that required timing yield g is obtained and 

the objective is minimized over all such assignments.  While such an assignment is not 
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intuitively obvious, it is clear that an exhaustive enumeration of all possible assignments 

is infeasible. However, it is apparent that a successful yield assignment scheme has to 

integrate information about the circuit obtained from statistical timing. In this section we 

derive a strategy based on path and gate criticalities that guides the optimization in the 

direction of optimality. Let us initially proceed from a path based setting, which is more 

intuitive. 

Definition 1: The criticality of a pathi  is defined as [55] Pr( )
i k

D Dz = >  

,k P k i" Î ¹ .  

Definition 2: The criticality of a path can also be expressed in terms of the 

sensitivity of the circuit delay to the change in path delay as [ ] / [ ]
i ckt i

E D E Dz = ¶ ¶ . 

Fact 1: The criticalities of all the paths in a circuit sum to 1.  

Definition 2 allows us quantify the impact of a change in path yield 
i

aD on 

circuit yield g as: 

 
( / )

( / )
ckt ckt

i i
i i

F D

F D
g z a

¶ ¶
D = D

¶ ¶
 (2.16) 

where 
ckt

F and 
i

F  are the cdfs of the circuit and path delay respectively. 

The first order derivatives of the cdfs with respect to delay represents the 

sensitivity of change in yield to the corresponding delay. The above equation expresses 

the change in the overall circuit yield in terms of the change in the individual path yields. 

Observing that criticality of path determines its impact on overall circuit yield, we 

conclude that more critical paths should be assigned larger path yields.  This leads to the 

following LP for path yield assignment: 

 

max

( / )
. .

( / )

, 0

i

ckt ckt
i i iter

i i
init

i i i

i target i

F D
s t

F D

a

z a g

a a a
a g a

D
¶ ¶

D £ D
¶ ¶

= -D
³ D ³

å
å  (2.17) 
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The goal is to maximize the relaxation in path-yield 
i

aD  from the initial value init

i
a such 

that the yield target g is met.  The criticalities 
i
z  , initial circuit (

init
g )and path yields  

( init

i
a ) are obtained from Statistical Static Timing Analysis (SSTA). The procedure is 

repeated iteratively by moving in small decrements of 
iter

gD to reach g . 

The transformation to a node-based formulation, involves selecting the node 

probability levels (
j

b ) for the individual gates on the path. To achieve this we employ a 

similar criticality based strategy to formulate an LP which gives us the node based 

relaxations
j

bD : 

 

max

( / )
. .

( / )
( / )

( / )

, 0

j

ckt ckt
i i iter

i i

i i
j i

nodes j i j j
init

i i i

i target i

F D
s t c

F D
F D

i P
F d

b

a g

b a

a a a
a g a

Î

D
¶ ¶

D £D
¶ ¶

¶ ¶
D = D " Î

¶ ¶

= -D
³ D ³

å
å

å  (2.18) 

Here, we maximize the sum of the node relaxations jbD while ensuring that the path -

yield constraints are not violated. The flow for yield assignment is depicted in Figure 2.3 

We start with the circuit netlist, the statistical delay library and the required yield 

constraint. The circuit is then sized conservatively to meet the timing yield constraint 

using uniform node yield assignment. A small yield decrement 
iter

gD is chosen to ensure 

that the change in path criticalities is small. The node criticalities are obtained from 

SSTA and the LP is set up to obtain the node relaxations. The node yields are 

subsequently updated and the circuit is sized using the new values. This procedure is 

repeated until the required timing yield is obtained.  The formulation in (2.15) however 

does not permit us to differentiate between inter and intra-chip components of variation.  
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Figure 2.3: The yield assignment flow 

To accomplish this, we rewrite the percent point function of gate delay 
1( ) ( )

j jd j j j dq db f b s-= +  such that it is linear in the inter- 

chip component. This transformation is equivalent to assuming that all the gates in the 

circuit have the same sensitivity to the inter-chip variability of the process parameters. 

This can be justified as inter-chip variation inherently assumes perfect correlation 

between devices on a chip. For the sake of exposition consider two sources of variation 

namely L  and W  . The percent point function of delay is now given by: 

 
1

/ /

1 2 2 2 2 1/2
/ /

ˆ ( ) ( )(( ) ( ) )

( )(( ) ( ) ))
jd j j j j L j W

j L j W

q d d L d W
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f a s s
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inter inter
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 (2.19) 
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Figure 2.4: Simple circuit for evaluating yield assignment strategy 

To test the strategy, we consider a simple circuit with 4 inverters and 2 paths as 

depicted in Figure 2.4. To better understand the effectiveness of the yield assignment 

strategy we consider three different scenarios. In the first scenario, when all gates are set 

to their minimum size, the mean delay of path 1 is smaller than that of path 2, but its 

variance is larger, i.e, 1 2 1 2,m m s s< >  Sizing the circuit for 0.997 yield results in the 

sizes 1 2 3 3[ , , , ] [4, 4,3.94,2.14]s s s s = .  From Monte-carlo analysis the criticalities of paths 

1 and 2 were found to be 1 0.14c = and 2 0.86c = . Therefore path 1 is much less critical 

compared to path 1. One would expect a non-uniform assignment to make take this into 

account and enable greater area savings on path 1. It should also ensure that the optimizer 

is more reluctant to downsize gates on path 2 because it is more critical. Using non-

uniform assignment, the optimal decision is 1 2 3 3[ , , , ] [2.23, 2, 2.61, 2]s s s s =  and the value 

of the objective function is 8.87. The yield from Monte-carlo analysis is 0.95 and the 

criticalities of the paths are 1 0.44c =  and 2 0.56c = . Using uniform assignment, the 

value of the objective function is 8.89. The optimal decision is 

1 2 3 3[ , , , ] [2.32, 2, 2.54, 2]s s s s = . The yield from Monte-carlo analysis is 0.94 and the 

criticalities of the paths are 1 0.37c = and 2 0.63c = . We see that our initial conjecture 
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is indeed accurate. Non-uniform assignment is able to better optimize for yield on the 

critical paths and area on the non-critical paths.  

In the second setting, when all gates are set to their minimum size, the mean delay 

of path 1 is equal to that of path 2, but its variance is larger, i.e, 1 2 1 2,m m s s= > . Sizing 

the circuit for 0.997 yield results in the sizes 1 2 3 3[ , , , ] [4, 4, 3.94, 2.5]s s s s = . From Monte-

carlo analysis the criticalities of paths 1 and 2 were found to be 1 0.25c = and 

2 0.75c = .We observe that path1 may have been wastefully sized up in order to meet 

timing. After sizing using the yield assignment strategy outlined in this section the value 

of the objective function is 9.78 and the optimal decision is 

1 2 3 3[ , , , ] [2.98, 2, 2.79, 2]s s s s = .The yield from Monte-carlo analysis is 0.94 and the 

criticalities of the paths are 1 0.42c = and 2 0.58c = . Using uniform assignment, the 

value of the objective function is 9.84. The optimal decision is 

1 2 3 3[ , , , ] [3.06, 2, 2.77, 2]s s s s = . Therefore non-uniform assignment is able to do better 

even in this scenario. 

In the third setting, we want the paths to be almost equally critical after sizing, i.e, 

at minimum size,  1 2 1 2,m m s s» »  Sizing the circuit for 0.997 yield results in the sizes 

1 2 3 3[ , , , ] [4, 3.94, 4, 3.38]s s s s = .  As expected the criticalities are also very close to each 

other with 1 0.45c = and 1 0.55c = . Using the non-uniform assignment strategy the value 

Table 2.1: Results of non-uniform assignment on circuit with 100 inverter chains 

Circuit Delay  Area
m  s  

     Uniform Assignment 2166 72.7 2.5  

Configuration 1 Non-uniform Assignment 2081 72.6 2.4 

Uniform Assignment 1628 76.5 1.53  

Configuration 2 Non-uniform Assignment 1608 76.5 1.52 
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 of the objective function is 10.74. The optimal decision is 

1 2 3 3[ , , , ] [3.48, 2, 3.26, 2]s s s s = .The yield from Monte-carlo analysis is 0.95 and the 

criticalities of the paths are 1 0.497c = and 2 0.503c = . Using uniform assignment, the 

value of the objective function is 10.75. The optimal decision is 

1 2 3 3[ , , , ] [3.5, 2, 3.25, 2]s s s s = .The yield from Monte-carlo analysis is also 0.95 and the 

criticalities of the paths are 1 0.48c = and 2 0.52c = . Therefore, we observe that when 

paths have similar criticalities, both uniform and non-uniform optimizations produce 

almost identical results. 

However, for the simple circuit we observe that the savings in area obtained by 

non-uniform yield assignment compared to uniform assignment is small. Our next step is 

to evaluate its efficacy on larger circuits. Consider a circuit comprising of 100 inverter 

chains. One of the paths (path 1) is more critical than the others (Configuration 1). When 

we compare the sizes of the gates on path 1, we see that that in the case of non-uniform 

assignment, the gates are sized up more, since it is more critical. The area of gates on 

path 1 is 15.6 as compared to 13.8 with uniform assignment. However, the off critical 

paths are sized down more in the case of non-uniform assignment leading to an overall  

Table 2.2: Impact of logic depth, number of paths and correlation on area savings 

Max. Logic Depth (m )

0, 100pr = =  
6 8 10 

Savings in Area (%) 3.9 3.8 3.7 

Number of Paths (p )

0, 6mr = =  
10 100 1000

Savings in Area (%) 3.9 3.9 3.9 

/inter intrar s s=  

100, 6p m= =  
0 1 3 

Savings in Area (%) 3.9 2.1 1.2 
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savings in area of ~4% over uniform assignment. In the next scenario that we consider 

(Configuration 2), path 1 has zero criticality and the other paths are equally critical. In 

this case we observe that the results are nearly identical as the savings in area on the only 

non-critical path is not significant. Table 2.1 summarizes the results from non-uniform 

and uniform assignments for this circuit. 

We observe that increasing the number of paths and the logic depth of the paths 

produces nearly identical behavior (Table 2.2). However, these experiments were 

performed assuming that the variability was all intra-chip. As expected when the amount 

of inter-chip variation is increased the effectiveness of non-uniform yield assignment 

decreases. Table 2.3 depicts the results obtained on the benchmark circuits. We observe 

that when realistic breakdowns of variability are assumed uniform assignment performs 

very well and the difference in the optimal solutions produced by uniform and non-

uniform assignments is small. We conclude that non-uniform assignment does better than 

uniform assignment when paths differ in criticalities and the non-critical paths have scope 

for further optimization. However, when paths have similar criticalities or the non-critical 

paths are already at minimum size, both uniform and non-uniform optimizations produce 

almost identical results. 

 In the light of the above conclusions, we can employ a scheme of choosing the 

node yields uniformly in which we set all the node probabilities uniformly to jb b= . 

Although we incur some sub-optimality, it is typically quite small, as circuit 

configurations produced by uniform assignment lie very close to the Pareto frontier. This 

value can be identified by simple line search scheme. Figure 2.5 depicts margin 

coefficient selection for the c880 benchmark. 
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Table 2.3: Results of yield assignment on benchmark circuits 

Uncorrelated Equal Breakdown  

Aunif Anonunif DA (%) 
Aunif Anonunif DA (%) 

C432 779 752 3.46 837 822 1.79 

C888 1253 1231 1.22 1338 1328 0.74 

C1908 2641 2574 2.51 2732 2696 1.30 

C7552 4158 4012 3.51 4305 4236 1.58 

The required circuit yield is set at 90% and the timing target is 950 ns. The minimum 

value of at which circuit timing becomes feasible is identified as the final node-yield 

assignment. 
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Figure 2.5: Uniform node yield selection strategy on a benchmark circuit 

2.5 APPLICATION OF THE ALGORITHM IN THE MICROPROCESSOR DESIGN FLOW 

Extending statistical optimization to an industrial design flow requires addressing 

several additional issues. The major ones are dealing with sequential elements and 

handling non-static logic. Even when microprocessor modules are largely implemented in 

static CMOS, they typically contain a number of gates implemented using non-static 

(pass-transistors or transmission gates) logic (i.e. multiplexers and XOR gates). These 

currently cannot be sized using an automated sizing algorithm. The feedback present in 
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 1.Process post-synthesis structural netlist. Define:
 G - Set of gates 
 F  – Set of flops 
 IG - Set of primary input gates 
 OG - Set of primary output gates 
2.Define . .FI FIG s t g GÎ if g GÎ and some ( )input g FÎ . 
3.Perform breadth first search starting from each FIg GÎ and Ig GÎ to 

obtain the fanout  cone ( )FOC g terminating in f FÎ or Og GÎ . 
4. Perform backward traversal of circuit graph to levelize .F  

Construct the hash array ( ) {( , ( ))} ( )i iLH f g level g i output f= " Î . 
5. for 0j = to _max level   
    begin 
 jNETLIST = f  

Traverse ( )LH f to obtain . . ( )i ig s t level g j=  and obtain temp_array 
= ( )iFOC g . 

 Unique (temp_array) 
 Augment jNETLIST  with temp_array . 
    end 
6. Identify non-static logic gates. 
7. Size jNETLIST  

 

Figure 2.6: The pseudo-code for application of statistical sizing to a sequential circuit. 

sequential elements may render the optimization problem infeasible. Since our sizing 

algorithm is node based, we approach the problem of sizing a sequential circuit by 

extracting the combinational slices from a structural post-synthesis Verilog file. All gates 

between two adjacent flop-boundaries are treated as a single combinational slice. The 

flip-flop outputs are treated as input nodes to the combinational block the output nodes. 

The arrival time of signals at an input node is now given by tsetup + tclk-Q of the flop. To 

handle non-static logic, we adapt a simple approach. Such cells are identified and 

assigned the g  percentile of delaydg , corresponding to the size obtained from a 

deterministic path-based sizing heuristic, such as based on logical effort, and a realistic 

fanout that we take to be FO4. Here g  is the desired parametric yield. The delay dg can 

be obtained by performing a Monte Carlo simulation of the cell.  

Since we fix the size of the cell, we introduce a structural constraint to capture 

this. We also need to make sure that the fanout gates aren’t sized up such that the delay is 
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greater than the delay dg . An additional constraint restricting the load on the gate is thus, 

also introduced. For example, if gate j is a multiplexer, which is typically implemented 

using transmission gates, the additional constraints introduced are: 

 constant, 4 , ( ),
j k j j

s s s k FO j d dg= £ Î =å  (2.20) 

Here
j

s is the size of the gate, , ( )
k

s k FO jÎ  are its fanout gates. 

The pseudo-code in Figure 2.5 describes the procedure of extracting the 

combinational slices from a sequential circuit.  It consists of a path tracing routine to 

obtain the fanout cone of logic for every gate driven by a flop and a levelizing routine 

that assigns levels to each flop present in the circuit. We assign levels to the flops so that 

we can identify the gates that are present between any two flop boundaries. In this 

procedure, some gates may appear in different combinational slices if they appear on 

paths that fanout to flops at different levels. To avoid these gates being sized multiple 

times, the statistical sizing algorithm is applied starting with the level closest to the 

primary outputs. We keep track of gates that have previously been sized, and at 

succeeding levels, these gates are not sized again 

2.6  EXPERIMENTAL RESULTS 

The developed methodology was tested within an industrial microprocessor 

design flow for a low-power, 32-bit x86 processor, in addition to publicly available 

ISCAS benchmark circuits. A proprietary standard cell library targeted for a 90nm 

CMOS process was used. The library contains 22 cells, with more than 15 drive 

strengths. We used a sub-set of this library. The technology is bulk CMOS. The 

technology was characterized statistically with respect to three parameters: effective 

channel length (Leff ), minimum transistor width (W), threshold voltage (Vth). The 

variation was found to be 5% for Leff and W, and 8% for Vth in terms of ( /s m ) values. 
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Figure 2.7: The area-delay curves for different breakdowns of variability. Statistical 
optimization results in smaller area for the same delay target as the intra-
chip component increases 

Statistical delay models were generated using a circuit simulator HSPICE by the Monte-

Carlo simulation method. The SOCP algorithm was implemented using the commercially 

available conic solver MOSEK [57]. 

The area reduction that the statistical approach can enable without the loss of 

performance and at the same yield level is documented in Table 2.4. For the processor 

block, the reduction is 26%, and across the benchmark test cases the average area 

reduction of 19% is obtained. The analysis was performed by first optimizing the circuit 

using a linear optimization with uncertain parameters set to their worst case values. 

targetT corresponds to the minimum delay through the circuit obtained by unconstrained 

optimization in this deterministic setting and detA  is the corresponding area. %A99.99 is the 

area obtained by the statistical sizing algorithm for the timing constraint equal to Ttarget at 

the  99.99% yield level. The area savings are defined for 99.99% yield as 

det % det(A - A )/A99.99 . An equal breakdown into intra and inter-chip components is 

assumed for the correlated case. The application of the statistical flow to the 
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microprocessor block was studied in depth with respect to different decompositions of 

process variability. Figure 2.7 shows the area-delay Pareto curves for different structures 

of variability. We experimented with three different breakdowns. The area improvements 

are better for higher ratios of intra-chip variability. As the intra-chip component 

increases, the sizing algorithm is able to find a configuration with lesser area for the same 

delay target. 
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Figure 2.8: The run-time behavior of the sizing algorithm.  
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Figure 2.9: Result of performing Monte Carlo on circuit configurations for different 
desired yield levels for the c6288 benchmark. At target of 4.4ns, yield obtained is close to 
desired. 
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Figure 2.10: The area-delay curves at different yield levels. Statistical optimization does 
uniformly better than the deterministic optimization at the same yield level. 

Table 2.4: Minimum area obtained by deterministic and statistical algorithms at different 
yield levels. 

    Area - statistical optimization Area Reduction (%)  
Correlated Uncorrelated  

Circuit 

No. 
of  
gates Ttarget(ns) Adet 

A99.99% A99.99% A95.5% A84% 

Uncorrelated Correlated 
Runtime 

(sec) 

c432 261 0.427 1103 837 779 725 695 29.3 24.1 3.4 

c880 615 0.475 1430 1338 1253 1244 1236 12.3 6.43 13.5 

c1355 685 0.478 3828 2920 2474 2389 2327 35.3 23.7 16.4 

c1908 1238 0.791 3120 2732 2641 2614 2587 15.3 12.4 53.6 

c2670 2041 0.844 4166 3732 3615 3596 3578 13.2 10.4 144 

c3540 2582 1.059 6406 5765 5543 5498 5457 13.4 10.0 178 

c5315 3753 0.972 7988 7526 7372 7340 7309 7.7 5.7 312 

c6288 2704 2.24 9647 8202 7337 7286 7198 23.9 14.9 197 

mP_blk 9245 0.72 2245 1655 1642 1520 1432 26.3 26.1 
1482 

                                                                                              Average Savings  18.8 13.4   

Table 2.4 and Figure 2.8 also point to the run-time behavior of our algorithm. It 

can be seen that the runtime grows only slightly faster than linear in circuit size. The 

runtime to optimize the microprocessor block of 10K gates is reasonable, close to 
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24minutes. The run-time for the largest benchmark circuit is on the order of several 

minutes (197s). 

One of the practical aspects of using the algorithm is selecting the node confidence 

levels to approximate the resulting circuit yield. We have found that a simple method of 

using the circuit confidence value directly for node values led to a surprisingly close 

match, as verified by a post-optimization Monte Carlo simulation on the circuit 

configurations obtained from the sizing algorithm (Figure 2.9 for the c6288 benchmark). 

The timing target was set at 4.4 ns and the circuit was sized for different yield levels. It is 

evident from the figure that the yield obtained is very close to what is predicted by the 

algorithm. The difference in area between the circuits sized at different yield levels is 

much greater for tighter timing constraints (~20%) and is very small at loose timing. 

Overall, statistical optimization performs uniformly better in comparison with the 

deterministic sizing. Figure 2.10 also points to the fact that in the presence of variability, 

certain timing targets are unachievable for a particular yield level, and designing for the 

nominal values of the varying parameters will lead to an unacceptably low yield. Again, 

this penalty grows as we approach the maximum frequency of operation of the circuit. 

 

2.7  SUMMARY 

In this chapter, we have presented a statistical sizing approach that analytically 

treats timing variability in timing and has good computational properties. This is due to 

the computationally efficient formulation of statistical sizing as a second-order conic 

program. We also report the first application of large-scale statistical design optimization 

in an industrial microprocessor design flow. In the next chapter, we examine the impact 

of variability on power and make a case for the consideration of both timing and power 

driven parametric yield loss during optimization. 
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Chapter 3:  A Statistical Algorithm for Power- and Timing-Limited 
Parametric Yield Optimization  

Post-synthesis circuit optimization techniques, such as sizing and dual-Vth 

allocation, are effective in reducing leakage, and have been widely explored in a 

deterministic setting [62][63]. While relying on different implementation strategies, all of 

these techniques essentially trade the slack of non-critical paths for power reduction by 

either downsizing the transistors or gates or setting them to a higher. In the past, case-

files have been used with such optimization methods to guarantee that the circuit is 

optimized while guaranteeing a specific yield point. The rise of uncorrelated intra-chip 

variability [19][18] results in the breakdown of the case-file based approach to handling 

variability in optimization as it becomes impossible to come up with a case file that will 

guarantee a specific yield point. This requires the introduction of fully statistical 

optimization techniques that can handle the variance of objective and constraint functions 

explicitly during optimization. Given the exponential dependence of leakage power on 

the highly variable transistor channel length and threshold voltage, it can be expected that 

the introduction of rigorous statistical optimization will significantly reduce the leakage 

power consumption. 

The primary limitation of existing statistical CAD techniques is their high 

computational cost. This makes the application of such algorithms to industrial-size 

circuits a difficult task. In this chapter, we focus on a statistical yield enhancement 

technique that achieves high computational efficiency, while treating both timing and 

power metrics probabilistically. 

In order to enable an efficient computational formulation, the problem of 

parametric yield maximization in this algorithm is converted into that of statistical power 

minimization under probabilistic timing constraints. It uses a two phase approach based 
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on optimal delay budgeting and slack utilization. The delay budgeting phase is 

formulated as a robust version of the power-weighted linear program that assigns slacks 

based on power-delay sensitivities of gates. The notion of variability in delay and power 

due to process variations is explicitly incorporated into the optimization, by setting up an 

uncertain robust linear program. The statistical (robust) linear program is cast into a 

second order conic program that can be solved efficiently. The slack assignment is inter-

leaved with the configuration selection which optimally redistributes slack to the gates in 

the circuit to minimize total power savings. 

 

3.1 POWER MINIMIZATION BY DELAY BUDGETING 

Table 3.1 shows the tradeoffs in delay and power when transistor thV is changed. 

Importantly, the leakage variability strongly depends on both sizing changes and 

thV assignments. In Table 3.1 the 99% leakage corresponds to setting the threshold 

voltage of the device to its worst case value. A value of /s m = 7% was used for thV . It is 

clear that low thV  devices exhibit a higher leakage spread while high thV devices exhibit a 

higher delay spread. Downsizing reduces gate area, increasing delay and reducing mean 

leakage, but also increasing the variance of thV  due to random dopant placement [64]. 

Thus, leakage at high quantiles can actually go up.  

The general problem of gate sizing and thV  assignment, given that gate delay and 

power are non-convex, is an NP-complete problem [65], as is the extension to including 

multiple threshold voltages. Any computationally feasible approach to optimize circuits 

of any significant size will have to be based on approximating techniques. It has been 

shown earlier that [37] delay budgeting strategy can be used for power minimization with 

sizing and dual thV  assignment. The advantage of this formulation is that circuit 

modifications can be driven by global, rather than greedy, decision-making. Such a  
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Table 3.1: Delay and Power characteristics of low- thV  and high- thV devices 

 
Nominal 99th percentile Nominal 99th percentile

Low V th  (0.1 V) 1.00 1.15 1.00 2.15

High V th  (0.2 V) 1.20 1.50 0.12 0.20

Delay Leakage

 

deterministic algorithm is a two-phase iterative relaxation scheme. The input to the first 

phase is a circuit sized for maximum slack using a transistor (gate) sizing algorithm, such 

as TILOS [25], with all the devices set to low thV .This circuit has the highest possible 

power consumption of any circuit realization. The available slack is then optimally 

distributed to the gates based on the power-delay sensitivities: that is, the slack is 

allocated in a way that maximizes the power reduction. The second phase consists of a 

local search among gate configurations in the library, such that slack assigned to gates in 

previous phase is utilized for power reduction.  

The idea of using power-delay sensitivity of a circuit as an optimization criterion 

is itself well known [66]. A linear measure of gate’s power-delay sensitivity is power 

reduction per unit of added delay: 

 / .s P D= ¶ ¶  (2.21)  

The power reduction for an added delay ( )d i  is then given by ( ) ( )s i d i . For example, a 

gate driving a net with large fan-out will have a higher sensitivity than a gate with a small 

fan-out. Thus, a unit of added slack to a node with a higher sensitivity will lead to the 

greater power reduction. We rely on extending this concept to efficient optimization 

based on large-scale linear programming by converting a power minimization problem 

into a power-weighted slack redistribution problem. The notion of a gate configuration 

space is introduced. Let a gate configuration be any valid assignment of sizes and 

threshold voltages to transistors in a gate in the library. For any fixed capacitive load, a  

set of points in the power-delay space, i.e. Pareto points, can be identified among all the 



 40
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(b) With a 15fF capacitive load and input slew 0.2ns.
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(b) With a 15fF capacitive load and input slew 0.2ns.
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(b) With a 15fF capacitive load and input slew 0.2ns. 

Figure 3.1: The power-delay space for a NAND2 gate driving two different capacitive 
loads. The Pareto frontier is depicted by the dashed gray lines. 

possible configurations (Figure 3.1). Clearly, a power optimal solution for the entire 

circuit will contain gates only in their Pareto-optimal configurations. Thus in optimizing 

the circuit we need to consider only Pareto points of all the gates. The trade-offs between 

delay and both leakage and dynamic power can be captured in tables, parameterized by 

the capacitive load. For each of the Pareto-optimal gate configurations, the decrease in 
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power consumption ( PD ) and the change in delay ( DD ) are calculated. Thus, a 

sensitivity coefficient is available for every pair of Pareto points in the power-delay 

space. For example, we may compute the sensitivity of changing the gate from all 

transistors having low thV  to the configuration where all transistors have high thV . 

We may assume that initially the circuit is in its highest power-consuming state. 

Then, using the framework of the gate configuration space, a linear program can be 

formulated to distribute slack to gates with the objective of maximizing total power 

reduction while satisfying the delay constraints on the circuit:  

 

 

. . ,  for ( )
,   for , .

j j
0

j k j j

o target j

max s d

s t AT AT d d k FI j
AT D o PO d dd

³ + + " Î
£ " Î £

å
 (2.22) 

Here iAT  is the arrival time at nodei  , T  is the required arrival time at the 

primary output, 0
id  is the delay of the gate i  in the circuit configuration obtained by 

sizing for maximum slack, is  is the power-delay sensitivity value for the gate, id  is the 

additional slack assigned to the gate and dd is the upper bound on the slack . 

The algorithm is constructed as an iterative-relaxation method. At its core is an 

interleaved sequence of (i) optimal slack-redistribution using LP, and (ii) the local search 

over the gate configuration space to identify a configuration that will absorb the assigned 

slack (Figure 3.2). Selection of optimal configurations is done independently for each 

gate. It has been shown that when the configuration space is continuous, and delay is a 

monotonic and separable function, such a procedure is optimal for small increments of 

slack assignments dd [67]. Also, the sensitivity vector is accurate within a narrow range 

of delay, requiring moving towards the solution under small slack increments. Even 

though the configuration space generated by thV  assignments is discrete, the ability to 

size transistors in a continuous manner ensures that a configuration exactly utilizing the  
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Figure 3.2: Flowchart illustrating the algorithm for power minimization 

slack allotted in the slack assignment phase can be found. 

3.2 STATISTICAL MODEL FOR POWER-DELAY SENSITIVITY  

The data in Table 3.1 highlights how sensitive the power and delay of individual 

gates to variability in process parameters. Parametric yield due to power- and timing-

limited yield loss can, therefore, be substantially improved if explicit statistical treatment 

is extended to post-synthesis leakage power-minimization techniques based on sizing and 

thV  assignment.  

We assume that both L  and thV  follow the normal distribution, or can be easily 

approximated as normal. An additive statistical model that decomposes the variability, of 

both L  and thV , into the intra-chip and chip-to-chip variability components is used 

(Section 2.2). The relative magnitudes of the intra- and inter-chip components can be 

controlled by adjusting their variances. The impact of variability on delay and power is 
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captured by statistically characterizing the power-delay sensitivity values for each gate. 

We now need to establish some theoretical properties of the random sensitivity vector. 

We assume that a first-order Taylor expansion of the gate delay function is adequate: 

 / /( , ) ( ) ( ) .o tho th thd d L V d L L d V V@ + ¶ ¶ D + ¶ ¶ D  (2.23)  

Note that this additive model can be extended to handle other relevant sources of 

variability such as gate width and oxT  variation. 

The sub-threshold leakage current of a gate is expressed as an exponential 

function of the random parameters as: 

 , exp( )leak leak nom thP P aL bV= +  (2.24)       

where ,leak nomP  is the nominal value of leakage per unit width. We obtain a good fit using 

this model, the rms error being ~8%, while the maximum error was 12%. We found that 

employing a model with quadratic dependence on channel length [34], L   improved 

accuracy by < 1%, validating the use of our model. Under this model, leakage power is a 

log-normal random variable. Dynamic power consumption, dynP  is very weakly dependent 

on the variation of thV  and L , thus it can be ignored for variational analysis.  

Under this model, total power has two components, namely, leakP , which is 

random, and the non-random component dynP . The power-delay sensitivity, thus, has to 

be defined separately for dynamic and leakage power.  

If we define /d dyns P d= D D  and /leaks P d= D D , it is clear that s is a random 

variable. In our approach, we consider only this component during statistical 

optimization. Henceforth, the term sensitivity refers to s , with mathematical properties 

as described subsequently.  

Theorem 3.1. Power-delay sensitivity is a log-normal random variable. 

Proof:  The power-delay sensitivity is defined as: 

/leaks P d= ¶ ¶ .             
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Here, the implicit assumption is that the variability in delay arises due to variation in thV  

and L .  
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Since the sensitivity terms /d L¶ ¶  and / thd V¶ ¶  are not random variables, being 

independent of thV  and L , the sensitivity s follows a log-normal distribution.    

Based on the above variability models, the variance and covariance of the power-

delay sensitivity coefficients are characterized via a Monte-Carlo simulation for all the 

cells in the library. For each cell, delay and power are represented statistically using 

(2.23)and (2.24) . The statistical properties of the power-delay sensitivity of the cell can 

then be computed using (2.25).  

Setting 
/ /( ) ( )th

a b
c

d L d V
= +

¶ ¶ ¶ ¶
, the variance of power-delay sensitivity for a 

cell can be expressed as: 

 / /

2

var[ ] var[( ) ]
( ) ( )

var[ ].

leak
th

leak

a b
s P

d L d V

c P

= +
¶ ¶ ¶ ¶

=
 (2.26) 

Similarly the covariance between two cells can be obtained as: 

 , ,cov[ , ] cov[ , ].i j i j leak i leak js s c c P P=  (2.27)  

The characterization thus provides the numerical values of the vector of mean 

sensitivities,s  and the covariance matrix S  of s . To simplify modeling, we assume that 

this correlation arises due to die-to-die variation, and not from spatial correlation between 

cells on a die.   
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 In the presence of non-zero inter-chip variability and spatial intra-chip 

variability, the sensitivity coefficients are correlated. Because the optimization is easier to 

set up when the sensitivities are uncorrelated, Principal Component Analysis (PCA) is 

used to transform the original vector of sensitivities into one with a diagonal covariance 

matrix. This transformation handles cell correlation arising from thV  and L . Given the 

covariance matrix S  of the vector of sensitivitiess , PCA obtains the vector of principal 

components 's . Then, the sensitivities are expressed in terms of their uncorrelated 

principal components [68]: 

 ' .s s As= +  (2.28)  

where s  is the vector of mean sensitivities and the matrixA  is the eigenvector matrix of 

S .  

3.3 DELAY BUDGETING USING ROBUST LINEAR PROGRAMMING 

In this section, a statistical equivalent for the power minimization strategy is 

described. To handle variability of process parameters, the problem is reformulated as a 

robust linear program. As mentioned in Section 3.2, the algorithm assumes two primary 

sources of variability: effective channel length (L ) and gate-length independent variation 

of threshold voltage ( thV ). This modeling framework gives the ability to account for the 

contrasting effects of parameter variability on low- and high- gates: low- thV  gates exhibit 

higher variation in leakage, while high- thV gates exhibit higher delay variability.  

When formulating a statistical power minimization problem, we find that an 

equivalent formulation of (2.22), which places the power weighted slack vector into the 

constraint set, is more convenient. Here, we define equivalence in the following manner: 

given the same power and timing constraints, the optimal solution, i.e, the vector of 

slacks produced by the two LPs is the same. In resorting to this definition, we restrict 

ourselves to the intersection of feasibility sets of the two LPs. 
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Theorem 3.2. If P is the initial power consumed by the circuit, P̂  is the optimal 

power achieved by (2.22) at a specific targetD and 1̂d  the corresponding vector of optimal 

allocated slacks, the optimization problem (2.29) is equivalent to (2.22). 
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Proof: We need to show that, if 2̂d  denotes the optimal vector of allocated slacks 

from (), and 2̂( )P d  is the corresponding minimum power solution at the specified maxT , 

1 2
ˆ ˆ ˆ( )= ( )P P P=d d . Since we start with the same initial configuration P , it suffices to 

prove that 1 2
ˆ ˆ=d d . 

Representing  i is då by Ts d , where s  is the vector of sensitivities and d  is the 

vector of assigned slacks. It follows that,  

 1 2
ˆ ˆ .T T³s d s d  (2.30) 

since 2̂d  is a sub-optimal solution to (2.22). Let ˆP P P- = D . Feasibility of  (2.29)  

implies: 
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 D £

s d

s d
 (2.31)  

But from our assumption 1̂
TPD = s d  since this is the optimal power savings 

enabled by (2.22). Therefore, from (2.31): 

 1 2
ˆ ˆ .T T£s d s d  (2.32) 

Equations (2.30) and (2.32)together must imply: 

 1 2
ˆ ˆ .T T=s d s d  (2.33)  

And, 0is i¹ " implies 1 2
ˆ ˆ .=d d                                             
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From a physical perspective, the minimization in the objective function of (2.29)   

forces the LP to place a premium on the total slack and assign more slack to gates with 

higher sensitivity in order to meet the power constraint. 

The statistical equivalent of (2.29) is now formulated by probabilistically treating 

the uncertainty of the sensitivity vector and of timing constraints: 

 
( )max. . }

( )  for 

,  for ( ).

j

j j const

o target
0

j k j j

min d

s t P s d P P

P AT D o PO

AT AT d d k FI j

h
g

³ - ³
£ ³ " Î

³ + + " Î

å
å  (2.34) 

In this formulation, the change in dynamic power, summed across all the cells, due to 

additional slack assigned to each cell, is a deterministic quantity, it can be subtracted out 

at each iteration. 

3.4 STATISTICAL DELAY BUDGETING USING SOCP 

In (2.34), the deterministic constraints have been transformed into the 

probabilistic constraints. These probabilistic constraints set respectively the power-

limited parametric yield,h , and the timing-limited parametric yield,g  . Based on the 

formulation of the model of uncertainty, they capture the uncertainty due to process 

parameters via the uncertainty of power and delay metrics. We now transform both 

probabilistic inequalities such that they can be efficiently handled by the available 

optimization methods. The challenge is to handle these inequalities analytically, in closed 

form.  

3.3.1 Transforming the Circuit Timing Constraint 

Using the theory proposed in Section 2.4, the node yields can be obtained with aid 

of SSTA. The probabilistic timing constraints can be written as: 



 48

 
0

0

,   for 

,  for ( ).
j

o target

j k j j jd

AT D o PO

AT AT d k d k FI js
£ " Î
³ + + + " Î  (2.35) 

Where 1( )j jk f b-= , jb is the node yield assigned.  

3.3.2 Handling the Probabilistic Power Constraint 

Letting T
i iu s d s d= =å , max constP P PD = -  and ' 1h h= - , we can re-write 

the probabilistic constraint as (ln ln ) 'P u P h£ D £ . In Section 3.2 we have shown that u 

can be modeled as a lognormal random variable. If 2~ ( , )u LN m d , then, 2ln ~ ( , )u N m s . 

Now, if the mean of u is m and the standard deviation of u is d , 

then, ( )2 2 2ln /m mm d= + , 2 2ln(1 / ).ms d= +         

The translation-invariance property of a normal distribution can be used to 

express as: 

 
ln ln

( ) '.
u P

P
m m

h
s s
- D -

£ £  (2.36) 

Since (ln )/ (0,1)u Nm s-  , letting (.)f  be the cdf of (0,1)N , the constraint 

(ln ln ) 'P u P h£ D ³  can be expressed as: 

 1( ') ln( ).Pm f h s-+ ³ D  (2.37) 

Using the above relationships between m and μ, and σ and s, we can express the 

probabilistic constraints as: 

 ( )2 2 2 1 2 2ln / ( ') ln(1 / ) ln( )m m m Pd f h d-+ + + ³ D  (2.38) 

 The advantage of this our formulation is the ability to take into account 

uncertainty of the constraint function explicitly. Indeed, the mean of u 

is ( )T Tm E s d s d= = , and the variance is 2 Td dd = S , where S  is the covariance matrix 

of the vector of sensitivities s. Using the above non-linear probabilistic constraint, 

however, would require solving a non-linear optimization problem which is 
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computationally expensive. However, we can reformulate this problem as a second-order 

conic program (SOCP) that can be solved efficiently. 

Letting 1( ')q f h-=  and using () we can define: 

 2 2 2 2 2
0( , , ) ln( / ) ln(1 / ).f m m m md q d q d= + + +  (2.39)   

To formulate (2.39)  as an SOCP, we need a percent point function which is linear 

in m and d . To this end, a least square of fit of 0f onto f , which is linear in these 

parameters, has to be performed.  

To perform this fit, we make use of an interesting property of the lognormal 

distribution, namely, its shape parameter. The shape parameter is the standard deviation 

s  of the underlying normal random variable. This dictates the broadness of the 

lognormal distribution [69] . In practice, we observed that the leakage and sensitivity 

distributions had shape parameters 0.5s < . Therefore, we are justified in confining the 

region of the approximation to 0.5s £ . Normalizing the mean m , we sample the shape 

parameter s and obtain the corresponding values ofm  and d using the relations: 

 

2

2 2

exp((2 )/2)

exp(2 2 ) exp(2 ).

m m s

d m s m s

= +

= + - +
 (2.40)  

From (2.40), a set of values can be computed for 0f corresponding to the different 

shape parameters. These can then be used to fit the linear function f . 

 ( ( ) ) ( ).f m k q d l q= +  (2.42)  

Here, ( ) l q and ( )k q  are linear functions of q .  The rms error was found to be 

~5% and the maximum error  was ~9%.   

Using Tm s d=  and 2 Td dd = S , where S  is the covariance matrix of the vector 

of sensitivities s, the constraint  can now be re-written as: 

 1/2( )( ) ln( )/ ( ).T T
ss d d d Pk q l q+ S ³ D  (2.43)  
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Using (2.43), and (2.35)we can formulate the SOCP as: 

 

0
0

1/2

 

. . ( )( ) ln( )/ ( )     

, .
j

j

T T
s

j k j j j o targetd

min d

s t s d d d P

AT AT d k d AT D

k q l q
s

+ S ³ D
³ + + + £

å
 (2.44)       

Here 1( ')q f h-= , and the node margin coefficients ik are obtained using the yield 

assignment strategy outlined in Section 2.4. 

3.5. EXPERIMENTAL RESULTS 

The algorithm was implemented in C as a pre-processing module to interface with a 

commercial conic solver available as part of MOSEK [57]. The benchmark circuits were 

synthesized to a cell library that was characterized for a 70nm process using Berkeley 

Predictive Technology Model [61]. The algorithm was run on a dual core 1.5GHz. AMD 

Athlon machine with 2GB of RAM. 

The gates present in the library are NOR2, NOR3, NOR4, NAND2, NAND3, 

NAND4 and inverter. Gates have eight discrete sizes, ranging from 1× to 8× the 

minimum size, and were characterized for a fixed input slew of 20ps, based on output 

slew observed for an FO4 inverter, characterized using SPICE. Though in its current 

form our approach cannot capture the impact of slew on delay at, it is possible to model 

the dependence of gate delay (and output slew) on input slew linearly [70]. Such a model 

can be easily accommodated in our framework. Gate delay (average of worst case rise 

and fall delay) and internal power were specified by lookup tables versus load 

capacitance. No wire loads were used, but it would be straightforward to add these to the 

load capacitance. Switching power was calculated as normal (αfCLVdd
2, where α is the 

activity factor, f is the clock frequency, CL is the load capacitance, and Vdd is the supply 

voltage). Leakage power is specified by gate input state as: 

 (1 ) .i i
i

P Pa b= - å  (2.45)  
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where iP  is the leakage current for a gate in dominant leakage state i, and ib  is the 

probability that the gate is in that dominant state. The activity factors and state 

probabilities were determined by random simulation. It is assumed that granularity of thV  

allocation is at the NMOS/PMOS stack level. For NMOS (PMOS) transistors, the high 

threshold voltage is 0.20V (–0.20V) and the low threshold voltage is 0.10V (–0.10V).  

Different levels of variability in L  were explored ranging from 3% to 8% of σ/μ. 

It is assumed that 
thVs  of a gate is inversely proportional to its size, and gate-length 

independent thV variation is due to random dopant placement. Pelgrom’s model [64] is 

used to describe 
thVs  dependence on transistor size. The assumed magnitude of thV  

variability is /s m  = 7%. The mean and covariance matrix of cell sensitivities were 

computed for all gate configurations using SPICE. Different structures of variability of 

the process parameters were explored. In one scenario, we considered all variation to be 

uncorrelated, in the second case we assumed an equal breakdown of total variability into 

its inter and intra-chip components. In another experiment, inter-chip variation was 

assumed to be the dominant component. Principal component analysis was used to  
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Figure 3.3: PDFs of static (leakage) power produced by a Monte- Carlo simulation of 
the benchmark circuit (C432) optimized by the deterministic and statistical 
algorithms. 
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Figure 3.4: Power-delay curves for 99.9% timing and power yield.  

orthogonalize the covariance matrix of cell sensitivity coefficients. The performance and 

run-time behavior of the optimization   algorithm   is validated on   the public ISCAS'85 

benchmark circuits and several industrial blocks. All comparisons are done for the same 

arrival time at the primary output. This can be achieved by performing the deterministic 

power optimization under identical statistical timing constraints. Deterministic 

optimization in this case refers to optimization where the random parameters L and 

thV are set to the worst case values. 

3.4.1 Effectiveness of Algorithm in Optimizing Power  

Across the benchmarks results indicate that  the  savings of, on average, 33% in leakage 

power (measured at the 99.9th quantile) without the loss of timing or power yield can 

achieved by statistical optimization as opposed to the deterministic approach, (Table 3.2). 

The level of effL  variability is assumed to be /s m  = 8%. In the table, n is the number of 

gates in the circuit, and Static and Total refer to static and total power in μW respectively. 

The results in Table 3.2 are for the case where variability is evenly decomposed into its 

intra and inter-chip components. Table 3.2 also documents the run- 
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Figure 3.5: Power-delay curves at different timing yield levels for the C432 benchmark. 

time behavior of the statistical optimization algorithm. For the largest benchmark the run-

time is of the order of a few (~4) minutes. It is pertinent to mention that the speedup is 

obtained due to the special structure of the SOCP program that is not available to the 

general non-linear solvers enabling the optimization problem to be solved extremely 

efficiently. 

The reason for the reduction in power enabled by statistical optimization is the 

ability of the statistical algorithm to explicitly account for the variance of constraint and 

objective functions. This can be attributed to the fact that the statistical optimization 

allots slack more efficiently. One manifestation of the superiority of statistical 

optimization is the fact that it can assign more transistors to a high thV . For example for 

the C432 benchmark optimized for a target delay of 0.55ns for 99.9% timing and power 

yields, the number of transistors set to high thV  by the statistical algorithm is 20% more 

than the corresponding number for the deterministic algorithm.  As a result, the spread of 

the leakage distribution is reduced and the mean is shifted towards lower values. Figure 

3.3 shows the pdf of static power obtained by a Monte Carlo simulation of the circuit 

configurations produced by the statistical and deterministic optimizations. Both the mean 
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Figure 3.6: Power-delay curves at different power limited yields and variance of static 
power for the deterministically optimized circuit are greater, which implies 
that the static power   savings   increase   at    higher percentiles.  

The superiority of statistical optimization over the deterministic optimization is 

illustrated in Figure 3.4. Under the same power and timing yield constraints (g = h = 

99.9%), statistical optimization produces uniformly better power-delay curves. The 

improvement strongly depends on the underlying structure of physical process variation. 

As the amount of uncorrelated variability increases, i.e. the intra-chip component grows 

in comparison with the chip-to-chip component, the power savings enabled by statistical 

optimization increase. The power savings at the 95th percentile are 23%, and those at 99th 

percentile are 27% respectively.  

The ability to directly control the level of parametric power and timing limited 

yield permits choosing a ‘sweet spot’ in the power-delay space. Figures. 3.5-3.6 show 

aset of power-delay curves for one of the benchmarks, c432. Figure 3.5 plots the total 

power vs. delay at the output obtained by running the statistical optimization for various 

timing yield levels (g ), with the power yield set at 99.9%. It can be observed that at tight 

timing constraints the difference in power optimized for different yield levels is 
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significant. Figure 3.6 confirms that optimizing the circuit for a lower power yield will 

lead to higher total power consumption and longer delay. For the same yield, the trade-off 

between power and arrival time is much more marked at tighter timing constraints.  
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Figure 3.7: Run time behavior of the statistical power optimization algorithm 

Table 3.2: Power Savings Obtained by Statistical over Deterministic Algorithm 

  Timing yield z = 99.9%, Power yield h = 99.9% Timing yield z = 84%, Power yield h = 99.9% 

Deterministic 
Optimization  

    Statistical  
Optimization 

Savings in 
Power (%) 

Deterministic 
Optimization 

     Statistical  
Optimization  

Savings in 
Power (%) 

 n 

Static Total Static Total Static Total Static Total Static Total Static Total 

Run 
Time 
(s) 

 

sc_ivlogic       40 29 140 19 111 35.2 20.8 19 113 12 97 33.3 14.8 9 

sc_inc12       78 45 218 28 176 37.7 19.4 32 192 21 149 35.0 22.0 10 

sc_edcs1 258 186 747 127 632 32.1 15.4 126 683 87 583 30.7 14.6 30 

c432 261 157 858 107 696 32.3 18.9 112 783 75 620 32.8 20.8 31 

c499 641 457 1290 305 1066 33.4 17.3 302 1054 213 894 29.6 15.2 52 

c880 615 713 1217 492 1018 31.0 16.3 461 847 331 728 28.2 14.1 47 

c1355 685 531 1501 343 1216 35.5 19.0 379 1240 244 994 35.6 19.8 56 

c1908 1238 899 2559 611 2112 32.1 17.5 673 2284 503 1945 25.2 14.9 122 

c2670 2041 1468 4814 1055 4113 28.1 14.6 1112 3926 813 3382 26.9 13.9 153 

c3540 2582 1181 5549 809 4765 31.5 14.1 856 4498 602 3943 29.7 12.3 171 

c5315 3753 2984 5411 1960 4493 34.3 17.0 2096 3769 1456 3222 30.5 14.5 241 

c6288 2704 1178 5744 778 4691 34.0 18.3 746 4130 529 3429 29.1 17.0 273 

Average  savings 33.1 17.4  30.5 16.2  
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3.4.2 Computational Properties of the Algorithm  

Figure 3.7 depicts the run-time behavior of the algorithm. The optimization 

problems were solved using the interior point optimization package MOSEK. A single 

SOCP optimization run of c6288 for slack assignment takes about 11 seconds. It can be 

seen that the run-time is roughly linear in circuit size making the algorithm scalable to 

large industrial blocks. The complexity of the second phase of the power minimization 

algorithm, which maps the allotted slack to gates in the library is ( )O mN , where m is the 

number of alternatives in the gate configuration space. The overall complexity of our 

statistical power minimization algorithm is, therefore, close to linear  

As mentioned previously, the granularity of thV  allocation to gates in the library is 

at the NMOS/PMOS stack level.  Since each gate type  has 8 posible sizes, a gate in the 

library has 32 possible configurations. We  ran the algorithm using a smaller  library, by 

having only four possible gate sizes and restricting the thV  allocation to gate level (i.e. all 

transistors in a gate have the same thV ) and found that this led to a solution which 

consumed more power for the same delay constraint. However, the benefits with regards 

to run time were minimal, as the mapping phase does not limit the run-time performance 

of the algorithm. 

3.5 A CASE STUDY ON THE C17 BENCHMARK 

In this section we illustrate how statistical optimization is able to achieve savings 

in dynamic and leakage power compared to deterministic optimization with the help of 

the simple c17 benchmark circuit. The circuit configuration which results in minimum 

delay (and maximum slack) is depicted in Figure 3.8. All the gates are at low-Vt.  

The circuit configuration produced by deterministic optimization is shown in 

Figure 3.9. We note the gates 5 and 6 have been set to high-Vt. 
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Figure 3.8: c17 circuit sized for maximum slack 
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Figure 3.9: c17 circuit configuration produced by deterministic optimization 

Circuit delay at 99.97 quantile  ( 99.97D )  :  47.5  

Dynamic power ( dynP )     : 12.4 

Leakage power at 99.97 quantile ( ,99.97leakP )  : 6.4 

Low-Vt device width                                      : 15.5 
High- Vt device width   :  4.4 

Circuit delay at 99.97 quantile  ( 99.97D )  :  42.5 

Dynamic power ( dynP )    : 26.1 

Leakage power at 99.97 quantile( ,99.97leakP )   : 12.5 

Low-Vt device width                                      : 42 
High- Vt device width    :  0 
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The following configuration is produced by statistical optimization. We note the 

gates 5 and 6 are retained at low- Vt, but gate 1 is set to high- Vt. 
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Figure 3.10: c17 circuit configuration produced by statistical optimization 

The differences in statistical and deterministic optimization can be explained in 

the following way.  For large gates, the statistically feasible alternative is a gate with 

higher threshold voltage, and slightly higher drive strength. This is because going from a 

higher threshold voltage to a lower threshold voltage results in a significant reduction in 

the variance of leakage. Statistical optimization assigns slacks in a way that picks 

configurations with maximum mean sensitivity but minimum variance of sensitivity. In 

the deterministic case however, slack is assigned in a way that results in the gate with the 

maximum mean value of sensitivity being picked. This is why gate 6 is set to a higher 

size but also higher threshold voltage in the case of statistical optimization 

Now consider gates 5 and 6. We see that statistical optimization picks a smaller 

gate but a with lower threshold voltage while deterministic optimization picks a high-Vt 

Circuit delay at 99.97 quantile  ( 99.97D )  :  47.5  

Dynamic power ( dynP )     : 11.1 

Leakage power at 99.97 quantile ( ,99.97leakP )  : 5.48 

Low-Vt device width                                      : 11 
High- Vt device width   :  7.5 
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gate with larger drive strength. The leakage penalty for choosing a low-Vt gate in this 

case is very small, and is compensated by the smaller value of dynamic power. However, 

low-Vt gates have smaller variance in delay than high-Vt gates. This means that the 

statistically feasible alternative in such cases is a low-Vt  gate with smaller drive strength. 

One can therefore think of statistical optimization as leveraging its ability to account for 

variance in delay to save dynamic power. A manifestation of these two mechanisms is 

exemplified by a larger high-Vt device width and smaller low-Vt device width, resulting in 

net savings in leakage power and smaller total device width leading to savings in 

dynamic power for statistical optimization compared to deterministic optimization 

3.6 SUMMARY 

In the recent past it was sufficient to model the impact of variability on timing. 

With high-end designs experiencing a double-sided squeeze on parametric yield due to 

the power-dissipation limits, power variability needs to be explicitly taken into account. 

This requires the adoption of new analysis and optimization methodologies that 

incorporate the notion of power-limited parametric yield loss. In this chapter we have 

presented a novel statistical algorithm for total power minimization that is based 

statistical slack budgeting using second order conic programming. The algorithm is 

capable of treating both power and timing metrics probabilistically, allowing joint 

optimization of both power and timing limited yield. The algorithm can handle multiple 

sources and different structures of variability. We demonstrate that across the 

benchmarks the algorithm achieves significant reduction in static and total power. In the 

next two chapters, we present joint design-time and post-silicon techniques that address 

the primary limitation of design time techniques: their inability to react to conditions on 

chip after manufacture. 
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Chapter 4: Joint Design-Time and Post-Silicon Minimization of 
Parametric Yield Loss using Adjustable Robust Optimization  

The fundamental limitation of design-time methods is that they impose an 

overhead on each instance of the fabricated chip since they intrinsically lack the ability to 

“react” to the actual conditions on the chip. For example, when using sizing for timing 

optimization they impose a fixed area overhead that may be wasteful on some instances 

of the ICs that would meet timing even with smaller driver sizes. Having an adjustable-

width driver would be ideal, since it could ensure meeting constraints with the minimum 

overhead for each chip. 

The problem that we address in this chapter is how to perform design-time circuit 

optimization and post-silicon tuning jointly. Why should these two steps be coordinated, 

i.e., why do we need joint co-optimization? The two methods operate from different 

viewpoints: in design-time optimization a decision (e.g., sizing) must be made before the 

realization of uncertainty (gate length), while in post-silicon tuning of the decision (the 

value of bias to apply) is made after the realization of uncertainty, i.e., when the chip's 

physical properties have been determined during manufacturing.  

However, the two paradigms operate within a single budget of uncertainty, and 

thus meeting constraints can be achieved by both methods. But their cost-effectiveness 

depends on specific conditions, such as the spatial correlation of process variability, the 

granularity of adaptivity that can be implemented, and the magnitude of leakage power in 

comparison with the switching power. The objective of this chapter is to develop formal 

means and optimization methods that will allow joint optimization. The specific 

optimization strategy will jointly consider the amount of variability and cost-

effectiveness of power reduction strategies, to derive a policy that will guide post-silicon 
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tuning, as well as make the first-phase design decisions. This will allow to optimally 

partition the design space between these levels of hierarchy. 

Formally, the objective of the algorithm we develop is to minimize the expected 

value of leakage power under a given delay constraint T  at a given yield a : 

 min  . . ( )
leak

E s t P D T a£ ³  (4.1) 

This formulation is generic and, different specific optimization mechanisms can be 

studied. In this chapter we focus on sizing and adaptive body bias for threshold control at 

the chip level, with only a small number of partitions of the chip into individually tunable 

clusters. . In the above formulation, the objective function and the constraints depend on 

both the design time optimization variables (sizes) and the post silicon decision variables 

(body biases). The problem can be formally viewed as a two-phase optimization under 

uncertainty with recourse. The key contribution of our approach is the derivation of the 

optimal policy for body biasing as an affine function of the realizations of the uncertain 

parameters (gate lengthL  and threshold voltage
th

V ). The solution to the above 

optimization problem therefore yields the sizes for the gates in the circuit and an optimal 

body bias policy. 

4.1 GATE AND CIRCUIT MODELING  

4.1.1 Delay and Leakage Models 

Adjusting the circuit properties to manufacturing conditions can be achieved by 

several techniques, including adaptive buffer sizing, adaptive body biasing, and adaptive 

supply voltage biasing. Because the joint timing-leakage optimization is of primary 
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Figure 4.1: The dependence of delay on body bias. 

concern, adaptive body bias may be the most useful tool. It has been demonstrated 

[40][42] that body biasing can be employed as an extremely effective knob to perform 

post silicon optimization and performance tuning by reducing the leakage for those dies 

that violate power constraints and increasing the frequency of those dies that do not meet 

delay specs.  

The adaptive body bias technique exploits the dependency of the threshold 

voltage of a MOSFET device on its source-to-body voltage to achieve dynamic tuning of 

its delay and leakage power. For an NMOS device, the threshold voltage can be 

expressed as [33]: 

 
0

( 2 2 )
th th SB f f

V V Vg f f= + + -  (4.2) 

 
where

0th
V is the threshold voltage of the device with zero body bias, g  is the body bias 

coefficient, and 
f

f  is the Fermi potential. Decreasing the source potential relative to the 

body of an N-channel device, translates to a negative
SB

V , and decreases the threshold 
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Figure 4.2: Comparison of the normalized leakage of inverter predicted by SPICE and the 
analytical leakage model 

voltage. This technique, known as forward body biasing (FBB) reduces the delay of the 

gate at the expense of leakage power. On the other hand, application of reverse body bias 

(RBB) by applying a positive 
SB

V  causes the threshold voltage of the device to increase. 

RBB is thus very effective in reducing the leakage power consumption. 

For nominal delay, piecewise linear models are used.. The variability is assumed 

to come from two major sources. Transistor gate length (L ) exhibits strong lithography 

induced variability. Threshold voltage (
th

V ) variation due to oxide thickness and dose 

variation is also taken into account. The impact of L  on 
th

V  due to drain-induced barrier 

lowering is predicted by the device model directly, which permits modeling L  and 
th

V  as 

independent random variables. Both L  and
th

V  are assumed to follow the normal 

distribution. An additive statistical model that decomposes the variability, of both L  

and
th

V , into the global (chip-to-chip) and local (intra-chip) uncorrelated variability 

components is used.  
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The impact of process parameter variability on gate delay is captured using a first-

order parametric delay model: 

 
1 2 3th SB

d S L S V S VD @ D + D + D  (4.3)                               

where LD  and 
th

VD  are the parameter deviations and 
SB

VD  is the applied body bias. 

The sensitivities are the first-order derivatives of delay with respect to the specific 

variable (L ,
th

V ,
SB

V ). 

Using a modeling approach similar to [34], the subthreshold leakage current of a 

gate is expressed as an exponential function of the random parameters as: 

 exp( )
o th SB

I I a L b V c V= ⋅ D + D + D  (4.4) 

where 
o

I  is the nominal value of leakage per unit width. We obtain a good fit using this 

model (Figure 4.2), the rms error being ~8%. For a circuit block the expression for 

leakage can be expressed as: 

 
,

exp( )
tot i i i i i th i i SB

i

I w a L b V c Vb= ⋅ ⋅ D + D + Då  (4.5) 

where the nominal gate leakage is 
0,i i i

I wb= ⋅ .Following [34], we assume that the 

impact of random component of variation on chip-level leakage value can be captured by 

a constant multiplier that we take to modify the value of 
i

b , in the above expression.  

4.1.2 Affine Model for Body Bias 

The essence of adjustable optimization framework is that the variable that is 

allowed to be tuned is not determined arbitrarily but is dependent in some way on the 

realizations of uncertain variables. A computationally tractable solution to a statistical 

adjustable problem requires 
SB

VD  to be an affine function of uncertain parameters, L  

and
th

V : 

 
0 1 2 ,SB g th g

V L Vp p pD = + D + D  (4.6)                               
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The coefficients
0

p , 
1

p  and 
2

p  are to be determined in the process of optimization. Such 

a parameterization is physically equivalent to compensating for the variation in leakage 

due to L  and
th

V , by applying body bias [23]. Though, the value of body bias is not a 

random variable, based on (4.6) it can be treated mathematically as one. With that 

observation, let us define 2
,

( , )
i i i i g i th g i SB

X N a L b V c Vm s= = D + D + D  

The mean and variance of a lognormal XY e=  in terms of the mean and variance 

of the normal random variable  2( , )X N m s=  are [58]: 

 

2

2 2

( ) exp( )
2

( ) exp[2( )] exp(2 )

E Y

Var Y

s
m

m s m s

= +

= + - +
 (4.7)                              

 
Observing that 

,
( ) ( exp( ))

tot i i i g i th g i SB
i

E I E w a L b V c Vb= ⋅ ⋅ D + D + Då  and 

,
( )

i i g i th g i SB o
E a L b V c Vm p= D + D + D =  we can write the expected value of total 

block leakage as: 

 2( ) exp( / 2)
tot i i o i

i

E I wb p s= ⋅ ⋅ +å  (4.8) 

4.2 DESIGN TIME / POST SILICON CO-OPTIMIZATION USING ADAPTABLE ROBUST 
OPTIMIZATION 

In the optimization strategy we develop, the optimal body bias is determined after 

the realization of uncertainty of the process parameters. On-chip measurements are used 

to measure the actual parameter values and their deviations from nominal values. Then, 

the policy derived during optimization can be used to choose an optimal forward or 

reverse body bias. RBB can be applied to reduce yield loss in the high frequency (high 

leakage bins), and can be used FBB to tighten the distribution at the low frequency bins. 
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4.2.1 Adaptable Robust Optimization 

First we introduce the theoretical foundation for robust adjustable optimization. 

We use robust optimization as the bedrock of our strategy. A robust LP can be defined as 

the problem of minimizing the worst-case of a linear objective and constraint functions 

[59]: 

 
[ , , ]

min{ sup ( ) : [ , , ] }
A b c Z

Tc x Ax b A b c Z
z

z
º Î

£ " º Î  (4.9)                

Here the uncertainty in the matrix coefficients is represented as 

[ , , ]A b cz º varying in the nonempty compact convex uncertainty setZ . 

The above problem requires all decisions to be made prior to the actual realization 

of the uncertain parameters. However, in many real-life cases not all the decisions have to 

be made simultaneously: only some variables may become known earlier. In that case, 

the remaining decision variables can be adjusted to the realizations of uncertain data. It is 

obvious that if the opportunity to adjusting some variables is given, the optimal solution 

will be better (or at least, no worse) than for the problem above. Problems with similar 

structure have been known as multi-stage stochastic problems with recourse, and are 

known to be intractable. Robust problems are not stochastic problems, and can be solved 

in polynomial time. We can re-write the problem of (4.9) in terms of the non-adjustable 

variables u  and the adjustable variablesv . Then, the adjustable robust problem can be 

defined as:  

 min{ : ( [ , , , ] ) : }T
u

c U V b c Z v Uu Vv b
v

z
æ ö÷ç ÷ç " º Î $ + £÷ç ÷ç ÷çè ø

 (4.10) 

In this formulation, the adjustable variables v  are allowed to depend on the 

realization ofz . 

Still, it is shown in [60] that the general robust problem with adjustable 

parameters is NP-complete, unless restrictions are applied on how exactly the adjustable 
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variables tune themselves to uncertain data. It is also shown that a computationally 

feasible adjustable robust linear problem can be achieved if the adjustable variables are 

constrained to be affine functions of the uncertain variables. This is equivalent to: 

 v w Wz= +  (4.11) 

From this we see that the adjustable variables can be tuned once the realization of 

uncertain data is known. However, if we are to be able to identify an optimal policy and 

do that computationally efficiently, the dependency cannot have general form, but must 

be constrained. This ultimately leads to the affinely adjustable robust linear program: 

 min{ : ( ) [ , , , ] }T
u

c Uu V w W v b U V b c Z
v

z z
æ ö÷ç ÷ç + + £ " º Î÷ç ÷ç ÷çè ø

 (4.12)  

In particular, for uncertainty sets specified using linear or second-order cone 

constraints, the above problem can be reformulated as an LP or a second-order conic 

program [60].                              

4.2.2 Co-Optimization: Problem Formulation 

We now map our design-time and post-silicon tuning problem into a robust 

adjustable linear program. Our objective in formulating the problem is to set up a robust 

linear program with adjustable parameters.  

The task of co-optimization is effectively a two-stage optimization problem with 

recourse. Denoting column vectors by boldface letters, we formulate the problem as that 

of minimizing the overall expected leakage power (or current) with expectation being 

taken over the population of manufactured chips while satisfying timing constraints under 

a statistical timing model: 

 min ( ) . . ( ( , ) )
tot SB

E I s t P D V T aD £ ³w  (4.13)            
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In this formulation the objective and constraint functions are dependent both on design-

time variables (gate sizes) and post-silicon optimization variables (
SB

VD ).  We begin by 

writing the expression for mean leakage as: 

 ( ) T

tot
E I = g w  (4.14) 

where g  is an 1N ´  vector with entries 2exp( / 2)
i i o i

g b p s= + . The objective 

function is thus linear in the gate sizes and non-linear (exponential) in
SB

VD . We will 

deal with this by adopting a linearization approach in which we locally linearize the 

objective's dependence on 
SB

VD  at the fixed value of vector of gate sizesw . 

Let us, for convenience form a single vector of decision variables 

[ ]T
SB

V= Dx w . The gate delay model introduced in the previous section can allow us to 

express path timing constraints in the form of: 

 ( , ) T

SB
D V a xD =w  (4.15) 

Now consider the probabilistic chance constraint ( ( , ) )
SB

P D V T aD £ ³w  specified for 

the entire circuit. We can heuristically re-write the circuit-level probabilistic timing 

constraints in terms of path-based constraints as discussed in Chapter 2. We assume that a 

corresponding confidence level 
j

h  can be selected. Then, we require: 

 ( ( , ) )   
i SB j

P D V T jhD < ³ " Î Pw  (4.16) 

where P  is the relevant path-set. Relying on the linear vector representation introduced 

above we can write: 

 ( ( , ) ) ( )
i SB j

P D V T P T jhD £ = £ ³ " Î PTw a x  (4.17) 

If a  is distributed normally, ( , )N a S , the coefficients of x  belong to an ellipsoidal 

uncertainty set. Then, it can be shown that the above constraint is equivalent to:  

 (  T T 1/2

j
k ) T j+ S £ " Î Pa x x x  (4.18) 
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where 1( )
j j

k f h-=  and f  is the cumulative distribution function (cdf) of the standard 

normal distribution. The path delay constraints of (4.18) represent a set of second-order 

conic path timing constraints.  

It has been shown that adjustable robust linear programs can be made 

computationally tractable only if the adjustable (second- stage) decision variables are 

affine functions of uncertain variables [60]. Without loss of generality, consider only the 

global sources of variation 
g

LD  and
,th g

VD , and a single value of body bias
SB

VD  for all 

the gates on the chip. Then, the affine policy is given by: 

 
0 1 2 ,SB g th g

V L Vp p pD = + D + D  (4.19) 

This dependence can be used to express the expected value of leakage current as: 

 ( )
,

2 2 2 2 2
0, 0 1, 1 2, 2

exp ( ) ( ) ( )
g th gi i i i L i V

g f f fb p p s p s= + +  (4.20) 

where 
0,i
f , 

1,i
f , and 

2,i
f  are linear functions of 

0
p , 

1
p , and 

2
p  respectively.          

The robust adjustable optimization problem can now be formulated as: 

 
1/21

min  

( )( )

T

T T
j j j

T jf a-+ S £ " Î P

g w

a x x x
 (4.21)                       

where ( )
,

2 2 2 2 2
0, 0 1, 1 2, 2

exp ( ) ( ) ( ) [1, ]
g th gi i i i L i V

g f f f i Nb p p s p s= + + " Î Note that the original 

problem has now been cast as an optimization problem in 
0

p , 
1

p , and 
2

p  and gate 

widths, 
i

w . The solution to this problem is an optimal policy 
0 1 2

( , , )P p p p=  and the 

vector of gate width w  such that the timing constraints are satisfied. 

4.3 PROBLEM SOLUTION 

To enable a computationally efficient solution, we solve the problem as a two 

phase optimization program. The first phase consists of solving a weighted sizing 

problem assuming fixed body bias and the second phase consists of solving for the body 
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bias value assuming fixed gate size. This is performed in an iterative manner using 

successive approximations until the solution converges.  

Denoting column vectors using boldface letters, the final optimization problem 

( , )ABB w p  can now be expressed as: 

 
1/21

min  

( )( )

T

T T
j j j

T jf a-+ S £ " Î P

g w

a x x x
 (4.22) 

where ( )
,

2 2 2 2 2
0, 0 1, 1 2, 2

exp ( ) ( ) ( ) [1, ]
g th gi i i i L i V

g f f f i Nb p p s p s= + + " Î Here p  denotes the 

vector of sp . We transform the path based formulation into a node based formulation 

[26] to solve the problem efficiently. 

This problem is solved iteratively by computing optimal sw in the first stage and 

optimal sp  in the second stage until the solution converges. At an iteration l  the w -

phase consists of solving ( 1)( , )lABB -w p  to obtain ( )lw  and the p -phase solves the 

problem ( )( , )lABB w p  to obtain ( )lp . Initially, for 0l = , 0 [1, ]
j

j kp = " Î  

corresponding to zero body bias.   

Solving w -phase does not pose a problem as the objective function is linear in 

gate widths, w and the delay constraints are second order cones. It can therefore be 

solved readily as an SOCP. However, the p -phase objective is non-linear in the decision 

variables. To address this issue we propose to expand the objective function using a first 

order Taylor series. The p - phase optimization problem solved at iteration l  is 

approximated as: 

 
0 1 2

1/2

0 1 2

1

min

. .

( )( )

T T T

T T
j j j

F

s t F

T j Paths

p p pp p p

f a-

³  +  + 

+ S £ " Î

(g w) (g w) (g w)

a x x x

 (4.23) 

where 
0p

 ,
1p

 and 
2p

 are the gradients computed w.r.t 
0

p , 
1

p , and
2

p  respectively. The 

complete algorithm optim_abb is presented in Figure 4.3.  



 71

 1. set 0 [1, ]i i kp = " Î  

2. get Timing Target T  

3. set D T< such that ( 1)( , )lABB -w p is feasible. 

4. chose delay increment Dd  

5. set 1l =  

6. if D T<  

solve w - phase ( 1)( , )lABB -w p setting delay 
constraint to D . 

 else 

print ( 1)l-w and 
( 1)l-p as the optimal solution and 

stop 

7. set D D Dd= +  

8. if D T<  

solve p -phase ( )( , )lABB pw setting delay constraint 

to D .  

 else 

print ( )lw  and 
( 1)l-p as the optimal solution and stop

9. set D D Dd= +  

10. set 1l l= + and goto step 6 

  

Figure 4.3: The two phase algorithm optim_abb for post silicon optimization using ABB. 

4.3.1 Accounting for Intra-chip Variation 

The policy described above cannot account for random parameter variation. Since 

the structure of the policy needs to be specified at optimization time, we need to know the 

number of measurements we can make on chip to account for the intra-chip random 

variation. Assume that we can make 
l

k  measurements L  and 
v

k  measurements of 
th

V . 

Assuming that we are allowed a single choice of 
SB

VD : 

 
0 ,

1 1

l v

l

k k

SB i i k i th i
i i

V L Vp p p
+

= =

D = + D + Då å  (4.24)                  

The notion of measurement complexity 
l v

k k k= +  is used here to represent the 

amount of information we are able to obtain about the structure of variability. As we  
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 Figure 4.4:   PDFs of delay distributions produced by design- time only optimization and 
joint optimization.  

demonstrate in the results section, a higher value of k  implies a lower leakage value. 

However, it is achieved at the cost of increased run-time and diagnostic overhead. 

Similarly, we can introduce the notion of control complexity n  which refers to 

the number of body bias values that are allowed. Control complexity reflects the degree 

of controllability over the body bias assignment and also the circuit overhead. It is 

currently assumed that the granularity of body bias assignment is at the block level. This 

is because tuning individual gates is clearly too expensive from the physical design 

perspective (extra routing overhead, voltage conversion). Spatial clustering may also be 

used as the gates that are spatially proximate are more likely the benefit from an equal 

body bias assignment.  

4.4 EXPERIMENTAL RESULTS 

We are now in a position to put together the complete design-time and post silicon 

co-optimization flow. We start by choosing the level of measurement complexity and 

control complexity. These along with the distributional information about the uncertain 
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Figure 4.5:   Comparison of disjoint optimization and joint design time and post silicon 
optimization. 

data are the inputs to the above algorithm. The algorithm optim_abb produces a set of 

gate sizes and an optimal policy for selecting 
SB

VD  for the given structure of variation 

and the control and measurement complexity. When the chip is fabricated, the actual 

realizations of the uncertainty are known hence the value of body bias is determined from 

the policy from (4.24). 

The optimization problem was solved using the conic optimization package 

MOSEK [57].  The experiments were run on a 32-bit, 3.7 GHz. Intel Xeon processor with 

4GB of memory. The benchmark circuits were synthesized to a cell library that was 

characterized for a 70 nm process using Berkeley Predictive Technology Model. For 

NMOS (PMOS) transistors, the threshold voltage is 0.10V (-0.10V). The assumed 

magnitude of 
th

V  and L variability is /s m =8% and 5% respectively. The optimal 

solution (sizes and policy) produced by the algorithm were evaluated using Monte Carlo 

analysis to estimate the expected value of leakage power by sampling from the 

distribution of the uncertain parameters 
th

V  and L . 
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Figure 4.4 illustrates the effectiveness of our algorithm in reducing the spread of 

the circuit delay and ameliorating the problem of the dual ended squeeze on parametric 

yield. This is achieved by increasing the delay of faster chips by applying RBB. Since 

these chips have high leakage power consumption, our algorithm reduces power limited 

yield loss. From the Figure it can be seen that the yield is improved by about 5%.   

We performed comparison against heuristics that performs post silicon tuning 

separately after sizing. Since it is difficult to pick optimal value of body bias for cells in 

design, disjoint tuning performs worse than joint optimization: the delay spread is higher 

and the leakage power consumption is greater (Figure 4.5). 

Three measures of complexity are used to characterize the optimality of the 

solution: the control complexity n  which represents the granularity of control, the 

measurement complexity k  which refers to the granularity of the monitoring and sensing 

circuitry, and the parameter complexityr , defined as the ratio 2 2/
l tot

s s . Thus, r  is a 

measure of how spatially uncorrelated the process variable is.   
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Figure 4.6:   Comparison of design time only optimization and joint design time and post 
silicon optimization. 
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Application of FBB to slow chips serves to tighten the delay distribution further. Since 

the circuit is guaranteed to meet the timing yield target even for zero FBB, applying 

forward body bias does not improve timing yield but increases the number of chips in the 

higher frequency bins. Figure 4.6 compares the leakage power of the circuits obtained by 

employing only design time optimization and the joint design time and post silicon 

algorithm outlined in the paper. As expected, using post silicon optimization enables a 

more optimal solution compared to design time only optimization. However as the 

complexity of variability increases, the benefit of using post silicon optimization 

decreases. This can be attributed to the fact that as the amount of uncorrelated variability 

increases, design time optimization performs better, but to utilize the adaptability 

provided by post silicon optimization, more measurements need to be made and more 

complex control system used (larger number of individually clusters of logic on a chip). 

Therefore, increasing measurement complexity k  improves the quality of the solution 

(reduces expected value of leakage). This is also depicted in Figure 4.7 However, this  
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Figure 4.7:   The runtime increases as the measurement complexity is increased, as 
optimal policy depends on more measurements. 
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Figure 4.8:   The expected value of leakage power decreases as we increase measurement 
complexity but the benefits level off for high values of k. 

comes at the cost of increased run-time and diagnostic overhead. This is shown in Figure 

4.7, which indicates that the run-time of the algorithm increases as k  is increased. 

Table 4.1 documents the results obtained across the benchmarks. All solutions 

were evaluated using Monte Carlo analysis. 1000 samples were generated for each 

random parameter. The circuits were optimized for the same delay target, which is 

evaluated using Monte Carlo. We observe that for a reasonable choice of measurement 

complexity, using our algorithm,  an average saving of 20% savings in leakage power 

consumption can be obtained compared to design time only optimization.  Table 5.1 also 

cites the runtimes of the algorithm. It can be seen that the run time behavior is extremely 

good (about 2 minutes) even for the largest benchmark circuit. 

Finally, we explore the dependence of the quality of the solution obtained from 

post silicon optimization on the measurement complexity and control complexity.  

Increasing k  improves the leakage power but there is a point of diminishing returns 
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beyond which the improvement is insignificant. This is depicted in Figure 4.8. Increasing 

the number of circuit clusters with individually adjustable threshold voltages (i.e., 

increasing the control complexity) improves the results of optimization, Figure 4.9. As 

with measurement complexity, this improvement in leakage power is achieved at a cost. 

A larger value for control complexity implies greater overhead, such as in biasing 

circuitry and routing.  
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Figure 4.9:   The expected value of leakage power decreases as we increase control 
complexity n. A larger n corresponds to more allowable values of body bias. 

Table 4.1: Leakage power savings obtained by the joint post-silicon and design-time 
optimization. 

Design time optimization 
E(Ileak) ( Wm ) 

Joint design-time and post-silicon optimization 
( 8k = ) 

E(Ileak) ( Wm ) Leakage power      
savings (%) 

Circuit No. of 
gates 

0.5r =  0.8r =  

0.5r = 0.8r =  0.5r =  0.8r =  

Runtime 
(s) 

 
C432 261 328 301 246 291 25.00 3.32 8
C499 641 908 845 568 622 37.44 26.39 15.2
C880 615 560 470 388 405 30.71 13.83 12.5

C1355 685 684 603 557 595 18.57 1.33 21.1
C1908 1238 1203 1167 926 1040 23.03 10.88 31
C2670 2041 1706 1669 1405 1530 17.64 8.33 55
C3540 2582 2718 2584 2142 2473 21.19 4.30 63
C5315 3753 3801 3700 3544 3598 6.76 2.76 108
C6288 2704 2918 2902 2454 2685 15.90 7.48 132

Average savings 21.8 8.73  
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4.5 SUMMARY 

In this chapter we have developed a theoretical foundation for joint design-time 

and post-silicon optimization. The problem is cast as an adjustable robust linear program 

and solved in a computationally efficient way. Results indicate that the designer can 

greatly benefit from synergistic application of design time and post silicon optimization 

techniques due to the ability of post silicon optimization solution to tune itself to the 

realization of uncertain data and up to 20% savings in leakage power can be obtained. We 

have also introduced metrics that enable designers to assess the complexity of biasing 

circuitry needed. In the next chapter we explore he notion of flexible tuning in an 

application with limited second stage adaptability using the framework of finite adaptable 

optimization. 
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Chapter 5: Design of Power-Optimal Buffers Tunable to Process 
Variability  

Given a capacitive load LC , the problem of buffer design is to find the values of 

the sizing factors such that the required objective function is minimized. The problem can 

be formulated using several objectives including propagation delay through the buffer 

chain or its energy-delay product [43].  The set of optimal designs can be represented by 

the Pareto curve in the energy-delay space [52] . For some cases, the optimization above 

can be done analytically. For example, it can be shown that a minimum delay buffer 

chain can be designed by setting the taper factor to 2.7. 

In the presence of variability, conventional buffer design principles may not be 

most effective. Indeed, guaranteeing that timing constraints are met even under the 

“slow” process conditions requires over-designing the buffer, in the sense that for most 

instances of the process the area and power could be smaller.  The optimization challenge 

that we address is how to choose the values of parameters that are fixed during the design 

and how to select between the alternatives after manufacture such that the timing yield is 

met, and average power is minimized. The problem is formulated statistically in terms of 

yield of timing and power metrics. We seek to minimize the total power of the buffer, 

under a delay constraint T  at a given yieldg . Thus we have: 

 min  ( ) . . ( )
dyn leak

P E P s t P D T g+ £ ³  (5.1) 

Here, 
dyn

P is the dynamic power consumption and
leak

P  the leakage power. 

Here, ()P denotes the probability measure of the variability. This formulation is general, 

and allows us to explore various power, delay and yield trade-offs. 
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5.1 ADAPTABLE BUFFER DESIGN PRINCIPLES 

Variability is assumed to be due to two major sources- transistor gate length (L ) 

and threshold voltage. Because of the relatively small size of buffers compared to chip 

size, only global variability in L and 
th

V  is considered.  The impact of process parameter 

variability on gate delay is captured using a first-order model. The deviation from 

nominal delay of the buffer is  

 ' '
1 2

1

( )
j j

N

th
j

D S L S V
=

D = D + Då  (5.2) 

where the sensitivities '
1j

S and '
2j

S  of  gate j  have a posynomial dependence on its size 

and load. The sub-threshold leakage power of a gate is expressed as an exponential 

function of the random parameters. For a buffer chain the expression for leakage can be 

written as: 
 

, , 0,
(1 ) exp( )

leak chain act i i i i i th
i chain

P P w a L b Va
Î

= - D + Då  (5.3)                   

5.1.1 Overview of Finite Adaptable Optimization 

Adaptable optimization addresses optimization with uncertain parameters, where 

there are two stages of decisions (in our case, the first stage is the design phase, and the 

second is the post-silicon tuning phase). Second stage decisions depend on the realization 

of the uncertainty. Adaptable optimization seeks to make optimal design decisions in the 

first phase, given that such tuning is possible. Post-silicon tuning options are limited by 

physical constraints, as well as by the expense and implementation overhead of having to 

solve very complex post-silicon tuning optimization problems for every chip. Finite 

adaptable optimization [71] is a framework intended for such limited second-stage 

adaptability. The second stage decisions are discrete, and chosen from a finite set of pre-

determined “contingency” plans. We denote the realization of the uncertainty as w , and 

the uncertainty set in which w  takes values as W . A partition of the uncertainty set W   
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Figure 5.1:   Conceptual representation of the adaptable buffer 

into k  regions is selected, such that
1

k

i
i=

W = W . Depending on the region the realized 

uncertainty falls in, a contingency plan is selected for the second stage. The first-stage 

design, and the contingency plans are optimally selected by solving: 

 

1

1
min max{ ,..., }

min
. . ( ) ( ) , , [1, ]k

i
i

T T T

k

i i

c x d y d y

s t A x B y b i kw w w
=

W= W

é ù+ê ú
ê ú+ ³ " Î W Îê úë û

 (5.4) 

       

5.1.2 Buffer Design as a Finite Adaptable Optimization Problem 

In the probabilistic setting which we consider below, the max can be replaced by 

an expected value. We use this framework as our optimization strategy to design a small 

number of alternative buffers (our contingency plans). The alternatives are due to the 

buffer chain that has a low power branch and an additional high-speed branch (Figure 

5.1). In the post-silicon phase, a buffer is selected depending on the realization of 

uncertain variables: e.g. if gate length is smaller than a pre-determined quantity, we use 

the low-power version of the buffer, if it is above, we use the high-speed version. The 

result is flexible and effective post silicon tuning with minimal implementation overhead. 

This set of individual buffers is henceforth collectively referred to as a ‘buffer 

configuration’. The sizing factors for common inverters correspond to the first stage 

decision variables. The second stage variables are the non-common portions in the 
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buffers, and only these depend on w . Consistent with other approaches, the sizing factor 

of the first inverter is chosen to be unity.  

Our objective is to optimize the common inverters and the multiple buffers such 

that the total power for the entire configuration is minimized. For the sake of 

convenience, let us represent the objective function ( )
dyn leak

P E P+ by
tot

P . For a design 

with k  alternative buffers, this corresponds to a partition of the uncertainty set into k  

regions. Thus we adapt (5.4) to get: 

 
1

k

j=1

min ( , , ) ( )

. . ( ( , , ) | ) , [1, ]

k

i
j

tot j

j j

P P

s t P D T j k

w w

w w g
=

W= W

Î W

£ Î W ³ " Î

å


j

j

x y

x y

 (5.5)  

Here, the vector x  represents the sizes of the inverters in the common part of the buffer 

configuration and 
j
y  the non-common portion for buffer j . In (5.5), the objective and 

constraints have the same coefficients for the first and second stage variables 

( ,= =c d A B ). When there is no shared portion between the buffers in a configuration, 

the problem decouples, and can easily be parallelized [71]. 

5.1.3 Design of Adaptable Buffer  

The adaptable buffer is designed using tri-state inverters as shown in Figure 5.2. 

The high-speed branch is turned on using the ctrl signal. The delay and power of the 

high-speed and low-power buffers are modeled as posynomial and linear functions of the 

inverter widths respectively. The delay reduction in the high-speed case occurs due to the 

sharing of the load between the two inverters in the final stages of the two chains. 
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Figure 5.2:   Adaptable buffer design using tristate inverters 

5.2 BUFFER OPTIMIZATION STRATEGY 

In this section the optimization strategy is described in detail. The objective is to 

co-optimize design time and post-silicon tunability in a mathematically rigorous manner, 

to obtain the first and second stage decisions (sizes or body biases) of the common and 

non-common portions of the buffers, and the optimal partition of the uncertainty set. 

5.2.1 Partitioning the Uncertainty Set 

In the initial presentation, we restrict our attention to only one varying process 

parameter, the effective channel lengthL , and partition of the uncertainty into only two 

pieces. This is done merely to explain the procedure more clearly, and the full treatment 

is shown later. Though multiple partitions could be considered, this carries the penalty of 

increased area and control circuitry cost.  
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In this initial setting, we must select a truncation point 
0
l , and design two buffers, 

one to be used if the channel length realization satisfies 
0

[ , )L lÎ ¥ , and the other 

for
0

( , ]L lÎ -¥ . The objective of the optimization is to find the sizes of the inverters in 

the buffers and the truncation point 
0
l which defines the decision policy.  

For the sake of presentation let { }2
,

1
x x xÎ be a selector variable that refers to 

whether buffer 1 or 2 is selected. Assuming 2( , )
L L

L N m s , for any truncation point 
0
l , 

let 
1

a  denote the probability of selecting the low power buffer and 
2

a  denote the 

probability of selecting the high speed buffer . (Henceforth, the term truncation point is 

used interchangeably to refer to
1

a or 
0
l .) It follows that 

 
0

1 1 0

2 1 1

P( ) ( ) ( )

P( ) 1

L

L

l
x x P L l

x x

m
a f

s
a a

-
= = = £ =

= = = -
 (5.6) 

where f  is the cdf of (0,1)N . Define random variables 
1

L and 
2

L with ranges 

0
( , ]l-¥ and 

0
[ , )l ¥  whose pdf and cdf is the rescaled conditional pdf ofL , conditioned 

on being smaller or larger, respectively, than
0
l . 

5.2.2 Formulating the Constraints and Objective 

LetD denote the delay through the buffer configuration. 

Letting ( | ), 1,2
i i

D D x x i= = = , the delay constraint can be written as: 

 
1 1 2 2

( )

( ) ( ) ( ) ( )

P D T

P D T P x x P D T P x x

g
g

£ ³
 £ = + £ = ³

 (5.7) 

If ( ) , 1,2
i i

P D T ib£ = = , (5.7) reduces to 

 
1 1 2 2 1 1 2 2

. . ( ) , ( )s t P D T P D Ta b a b g b b+ ³ £ ³ £ ³  (5.8) 

The delay constraints are posynomial in the buffer sizes and linear in the process 

parameters, implying that delay is monotonic in the process parameters. This can be used 

to show that the following conditions are equivalent. 
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 * * * 1

( )

( ) ( ) where ( )
Li

i i

i i i i i i

P D T

D L T L l D l T l F

b

b-

£ ³

 £ " £  £ =
 (5.9) 

The objective function is the total power of the configuration. Let
,tot config

P denote the total 

power of the buffer configuration. Let
,

( | ), 1,2
tot i tot i

P P x x i= = = . The objective can 

be formulated as 

 1 ,1 ,1 2 ,2 ,2

1 ,1 2 ,2

( )( [ ]) ( )( [ ])
dyn leak dyn leak

tot tot

P x x P E P P x x P E P

P Pa a
= + + = +

= +
    (5.10) 

Adopting an exponential leakage power model with 0
t

VD = , for a single gate 

we then have: 

 
, ,

( ) (exp( ))
leak i o i i

E P P w E a L= D  (5.11) 

where
L

L L mD = - . Total dynamic power of a buffer depends on buffer sizes and can 

be computed straightforwardly as the sum of the dynamic powers of the individual 

components. Consider the problem of computing the expected value of leakage power of 

a buffer. 
 

, , 0, 1
( ) ( ) (exp( )) for 1,2

leak i leak j j j i
j i j i

E P E P P w E a L i
Î Î

= = D =å å  (5.12) 

Observing that the term 
1

exp( )
i

a LD is the moment generating function of 
i

LD for 

1
t a= , 

,1
( )

leak
E P can be expressed as:  

 20
,1 0,

10

( )
( ) exp( / 2)

( )leak L j j
j

F l
E P a P w

l
s

f Î

= å  (5.13) 

wheref is the cdf of (0,1)N  and  
0

( )F l is the cdf of 2 2( , )
L L

N ts s  (and similarly for 

,2
( )

leak
E P ). Using (5.13), the final optimization formulation can be stated as 

 

1 2

1 ,1 2 ,2

* * * 1 * 1
1 2 1 1 2 2

min 

( ) , ( ) where ( ), ( )
L L

tot tot
P P

D l T D l T l F l F

a a

b b- -

+

£ £ = =
 (5.14) 

This is a geometric program (GP) for a given truncation point. 
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5.3  PROBLEM SOLUTION USING GEOMETRIC PROGRAMMING 

We can now proceed to solve the adaptable buffer sizing problem. Given a delay 

constraint T  timing yield  g  and capacitive load 
L

C the first step is to pick the number of 

stagesN . To obtainN , the non-adaptive formulation in (5.1) is solved repeatedly to find 

the smallest N for which the problem is feasible. This is also the smallest value of N for 

which the adaptable problem (5.14)  is feasible. Since adding additional stages increases 

power consumption (Figure 5.5), this is the optimal value of N for the adaptable 

problem.  

To obtain the optimal truncation point, we observe that the problem is quasi-

convex in 
0
l . The optimal truncation point can be obtained quickly by bisection, although 

for simplicity we solve repeatedly via a linear sweep over the interval [0.0013,0.9987], 

corresponding to 0 [ 3, 3]L

L

l m
s
-

= -  (justified by quasi-convexity, and the results of 

Section 5.4).  The overall algorithm is summarized in Figure 5.3.  

 

 

 

 

 

 

 

 

 

 

Figure 5.3:  Pseudo-code for solving the adaptive buffer design problem   

1. get timing constraint T , timing yield γ and capacitive load 

LC  

2. while ( ln LN C< )  
Solve (5.1) 
if ( = 'feasible'status ) 
 goto step 3 
endif 
set 1N N= + and goto step 2 

3. adapt_buffer ( N ) 
 
adapt_buffer ( N ) 

1. set lα , uα , αΔ  

2. set lα α= , min = ∞ , trunc_point = 0  

3. while ( uα α≤ ) 

 solve (5.14) for 1
0 ( )L Ll μ φ α σ−= +  

 if ( obj_value < min ) 

min = obj_value  

0trunc_point = l  

 endif 
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5.3.1 Extension to Variability in Threshold Voltage 

In the previous sections, we restricted attention to variability in L . We now show 

that the optimization strategy can be extended to two-dimensional uncertainty. Once 

again, we seek to find an optimal partition of the uncertainty set such that the design 

options corresponding to these partitions result in minimum total power consumption. 

Letting Land 
t

V  denote the realizations of channel length and threshold voltage 

respectively, the buffer selected depends on the region where L and 
t

V  lie – the first 

buffer is selected when 
0 0

( , ) [ , ) [ , )
t

LV l vÎ ¥ ´ ¥  , and so forth. Denoting the probability 

of picking buffer j by
j

a , 

 
1 0 0 0 0

(( , ) [ , ) [ , )) ( [ , )) ( [ , ))
t t

P LV l v P L l P V va = Î ¥ ´ ¥ = Î ¥ Î ¥     (5.15) 

since LD and 
t

VD  are independent random variables. The values of , [2, 4]
j

ja Î  

can be similarly obtained. 

The expected value of leakage of buffer j  can be computed using Equation (5.13) 

. The results derived in Section 5.2, are valid for
t

VD , thus the adaptable problem can be 

formulated for variability inL and 
t

V , similarly to (5.14). This is again a GP for a given 

truncation point 
0 0

( , )l v . We obtain the optimal partition by a linear sweep in both 
0
l and 

0
v .  

5.4 EXPERIMENTAL RESULTS 

The optimization problem was solved using the geometric optimization package 

ggplab, which is a toolbox implemented in MATLAB [72].  The experiments were run on 

a 32-bit, 3.7 GHz. Intel Xeon processor with 4GB of memory. The inverters were 

characterized using a 65nm process using Berkeley Predictive Technology Model [61]. 

An important part of the proposed strategy is the ability to measure the values of L and tV . 

The modified shift-and-ratio method [73] and the technique based on the Drain Induced 



 88

0.0 0.2 0.4 0.6 0.8 1.0
14.0

14.7

15.4

16.1

16.8

17.5

18.2

18.9

19.6

20.3

P
to

t

α

 Timing Yield =99.9%
 Timing Yield =95.5%
 Timing Yield =84%

Optimal truncation point  

Figure 5.4:   Dependence of total power of buffer configuration truncation point for 
different timing yields 

Barrier Lowering (DIBL) phenomenon [74] have been demonstrated to be accurate for 

channel length extraction in sub-100 nm devices.  For threshold voltage, several 

techniques have proven to be accurate [75]. 

Once the actual realizations of the uncertainty are known, the value of the 

appropriate buffer can be chosen based on the partition set that the uncertain variables lie 

in. Figure 5.3 shows the dependence of the total power of the configuration on the 

truncation point for different values of timing yield.  It is clear that there exists an optimal 

partition for which the total power is minimized. The optimal partition at 99.9% timing 

yield is: proportion of low-power buffer use is 0.85 and high-speed buffer use is 0.15 

Also, the optimal truncation point shifts towards the left as the yield constraint is relaxed. 

Picking the truncation point 1a » , corresponds to solving (5.1)  for the required timing 

yield constraints. As the figure shows, the adaptive scheme produces a savings of ~15%.  

The savings become greater as the magnitude of variability increases. 
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Figure 5.5:   Comparison of statistical and adaptive buffer design approaches 
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Figure 5.6:   Monte Carlo simulation of buffer configuration 

 Figure 5.5 depicts the power- savings enabled by the adaptive scheme. The run-

time behavior of the algorithm is very good. For instance, solving (5.14)  to obtain an 

optimal truncation point and the corresponding buffer sizes takes ~15 seconds for a 5-
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stage buffer configuration. Figure 5.6 shows a Monte-Carlo simulation of the buffer 

configuration. It is evident that the spread in power grows for faster configurations. This 

makes switching to the low-power version whenever possible a more attractive 

proposition. 

5.5 SUMMARY 

In this chapter we have developed an analytical post-synthesis and design-time 

co-optimization technique for buffer sizing using the paradigm of finite adaptable 

optimization. This approach provides the flexibility to pick one buffer from a finite 

number of buffer designs based on the realization of uncertainty. Results indicate that up 

to 15% savings in total power can be achieved by applying our technique, at the cost of 

14% control logic area overhead. 
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Chapter 6: Conclusions 

It is now universally accepted that deterministic timing and power optimization 

algorithms are no longer adequate as they do not handle variability effectively.   The 

objective of this dissertation is to develop robust optimization algorithms that consider 

the impact of parameter variability on circuit timing and power consumption. This 

dissertation has investigated: (i) a gate sizing approach for area minimization under 

timing variability; (ii) an algorithm for total power minimization considering variability 

in timing and power (iii) a methodology for optimization of leakage power using design-

time sizing and post silicon tuning using adaptive body bias; (iv) an optimization 

technique to minimize the total power of a buffer chain while considering the finite 

nature of adaptability afforded. 

Timing yield is the percentage of chips meeting a specific constraint. Timing 

yield optimization strategies aim at ensuring that the circuit meets its timing constraints 

with a specific probability. Gate and transistor sizing that are often performed at the post-

synthesis stage of design offers a simple strategy for yield optimization. It is natural to 

seek a statistical solution that can reuse the existing sizing tools and flows, and in this 

dissertation we develop an efficient statistical sizing algorithm for timing yield 

improvement. Specifically, variability in circuit delay is analytically treated by 

formulating a robust linear program with ellipsoidal uncertainty. This is then mapped 

onto a second-order conic program which can be solved efficiently.  

However, in the nanometer regime, parametric timing yield alone is not a 

sufficient metric as it ignores variability in leakage power. This necessitates the 

development of optimization techniques to minimize parametric yield loss resulting from 

power and delay variability. In the absence of substantial leakage power, parametric yield 
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is determined by the maximum possible clock frequency. Switching power is relatively 

insensitive to process variation. When the leakage power typical of current CMOS 

technologies is added, the total power starts approaching the power limit determined by 

the cooling and packaging considerations. Crucially, the exponential dependence of 

leakage on process spread means that the total power may cross the cooling (power) limit 

well below the maximum possible chip frequency, since chips operating at higher 

frequencies have exponentially higher leakage power consumption. Thus, due to the 

inverse correlation between speed and leakage, yield is limited both by slower chips and 

chips that are too fast, because they are too leaky. In this dissertation we propose an 

algorithm for total power minimization under timing and power yield constraints in the 

presence of variability. The algorithm is formulated as a robust optimization program 

with a guarantee of power and timing yields, with both power and timing metrics being 

treated probabilistically. Power reduction is performed by simultaneous sizing and dual 

threshold voltage assignment. 

Parametric yield loss due to variability can be effectively reduced by both design-

time optimization strategies and by adjusting circuit parameters to the realizations of 

variable parameters. The two levels of tuning operate within a single variability budget, 

and because their effectiveness depends on the magnitude and the spatial structure of 

variability their joint co-optimization is required. Algorithmically, future robust circuit 

synthesis can be conceptualized as a two-stage optimization problem, with additional 

second-stage tuning available upon the realization of uncertain variables. In this paper an 

efficient formulation is proposed using the theory of adjustable optimization. This 

optimization paradigm presumes that the decision-maker has a chance to update his 

optimization strategy upon learning additional information. We describe an optimization 

strategy that unifies design-time gate-level sizing and post-silicon adaptation using 



 93

adaptive body bias at the chip level. In addition three measures of complexity that 

parameterize the solution and the optimality of this problem are introduced by us: the 

control complexity (the granularity of control), the measurement complexity (the 

granularity of the monitoring and sensing circuitry), and the parameter complexity (a 

measure of how spatially uncorrelated the process variable is). Using these metrics, 

formal quantitative trade-offs between design-time and post-silicon adaptivity can be 

identified. 

Adaptable optimization seeks to make optimal design decisions in the first phase, 

given that such tuning is possible. Post-silicon tuning options are limited by physical 

constraints, as well as by the expense and implementation overhead of having to solve 

very complex post-silicon tuning optimization problems for every chip. Finite adaptable 

optimization is a framework intended for such limited second-stage adaptability. The 

second stage decisions are discrete, and chosen from a finite set of pre-determined 

“contingency” plans. Here we develop a strategy using finite adaptable optimization that 

enables reduction in power in the presence of variability by using a tunable buffer circuit: 

depending on realizations of process parameters, buffer stages with different size are 

selected and their thresholds are adjusted through body bias to minimize power while 

guaranteeing performance. 

In this dissertation, we have analyzed the impact of variability on power and 

timing and its impact on circuit performance and yield and developed techniques to 

counter its detrimental effect. With high-end designs experiencing a double-sided 

squeeze on parametric yield due to the power-dissipation limits, power variability needs 

to be explicitly taken into account. This requires the adoption of new analysis and 

optimization methodologies and is expected that continued progress in this area will help 

designers deal with variability in a far more effective fashion. 
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