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 We have performed a series of experiments examining the properties of high 

Mach number blast waves.  Preliminary experiments were conducted on the Janus laser at 

Lawrence Livermore National Laboratory while the majority of experiments were carried 

out on the Z-Beamlet laser at Sandia National Laboratories.  We created blast waves in 

the laboratory by using 10 J- 1000 J laser pulses to illuminate millimeter scale solid 

targets immersed in gas.  The experimental results can be grouped into three categories.  

Firstly, we confirmed the importance of line radiation on the evolution of the blast wave 

and that this importance increased with the atomic number of the gas used.  This was 

determined through three measurements: Interferometric measurements of the size of the 

radiative precursor preceding the blast front, measurements of the blast wave trajectory, 

and measurements of the size of additional blast waves created by the radiation ablating 

material in the blast wave path.  The second set of experiments examined the effect of the 

passage of a laser pulse on the subsequent evolution of the created blast wave.  We find 

that the laser’s passage creates a warm channel of gas where a blast wave travels at 

higher velocity than it does through unperturbed gas.  This creates a bulge-like feature on 

the blast wave surface.  This effect is magnified in higher atomic number gases where 
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multi-photon ionization is more prevalent, causing additional energy to be deposited in 

the gas.   The final set of experiments studied the validity of theories forwarded to 

explain the dynamics of perturbations on astrophysical blast waves.  These experiments 

consisted of a systematic scan of the decay rates of perturbations of known primary mode 

number induced on the surface of blast waves by means of a regularly spaced wire array.  

The amplitude of the induced perturbations relative to the radius of the blast wave was 

tracked and fit to a power law in time.  Measurements were taken for a number of 

different mode numbers and background gasses and the results show qualitative 

agreement with previously published theories for the hydrodynamics of thin shell blast 

wave. 
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1.  Introduction 

The stars have always held a fascination for mankind.  As technology has advanced 

our ability to study the stars has increased accordingly.  Ancient peoples looked up at the 

stars and created stories for the figures they saw in the patterns and thus were born the 

constellations.  Galileo used a telescope to examine the surface of Earth’s moon and to 

see the moons of Jupiter launching a series of increasingly powerful optical telescopes 

including the 10 meter Keck telescope in Hawaii.  In the last century telescopes have 

moved from the optical to a number of other regions of the electromagnetic spectrum, 

notably radio frequencies including the Very Large Array in New Mexico and the 305 

meter Arecibo radio telescope in Puerto Rico.  Space based telescopes such as the Hubble 

telescope and satellites avoid the distortions caused by the Earth’s atmosphere and have 

further expanded our understanding of astrophysical phenomenon.  At this point we are 

able to look across the sky and back billions of years to the early stages of the universe, 

and the precision of these observations continues to grow with time.   

Unfortunately, even the most sensitive instrument can only observe the 

information that reaches Earth.  Despite the sophistication of our instruments, this limits 

us to one view of a given event and keeps us at a distance.  Computer simulations1 

provide a tool to help understand the implications of theories advanced to understand 

observation, and significant advances have been made in this area.  However, computer 

simulations require validation and verification to be reliable.  Observational data is 

limited in its applicability for this purpose as the exact conditions surrounding the onset 

of a given phenomena are rarely available.  Furthermore, it is impossible to subtly change 

the conditions of an astrophysical event so that one can ensure that all of the important 
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physics is being included in a computer model.  For this type of purpose, data from 

laboratory experiments is invaluable.  These experiments are difficult as most 

astrophysical phenomena involve conditions that are very different from those on Earth.   

Advancements in laser technology have helped make examination of some astrophysical 

phenomena possible. 

 

1.1  Laser Astrophysics 

 

Lasers can provide a concentrated burst of energy in a small target volume over a 

short period of time which allows access to extreme states of matter.  As laser science has 

advanced, the amounts of energy have increased and the time scales have shortened 

allowing access to increasingly extreme states of matter.  However, even early on in their 

development in the 1960s, the promise of lasers for modeling astrophysical phenomenon 

was considered2 but at that time the existing technology was inadequate to the task.  

Since that time lasers have consistently increased in power and energy, opening up 

increasingly exotic experimental conditions for laboratory study and now laser science 

has sufficiently matured to allow many astrophysical phenomena to be scaled for study in 

the laboratory.  We can now test theories applicable to astrophysical systems in a 

controlled fashion, allowing measurement and control of parameters that previously 

could only be inferred from observations.  This allows for the systematic testing of 

theories relevant to astrophysics and allows data to be gathered that enables the validation 

and verification of increasingly complex laser codes.   
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In 2001, Takabe3 conducted a survey of the state of laser astrophysics and its 

applicability to the laser fusion community and broke potential areas of study into 

eighteen areas based on two criteria.  The first criteria was the type of physics and 

Takabe identified six potential areas of physics that would be of interest to the laser 

fusion community:  laser-plasma interactions, electron energy transport, hydrodynamics 

and shocks, hydrodynamic instability, atomic physics and x-ray transport, and laser-

produced relativistic plasma.  The second criteria examined was the type of relationship 

to astrophysics: sameness, similarity, or resemblance.  These criteria describe how close 

the physics in an experiment is to that of an astrophysical phenomenon.  Sameness means 

there is no difference in the physics, similarity means that the physics in the laboratory is 

related to that in the astrophysical phenomenon by scaling laws, and resemblance means 

that no scaling law exists but that the phenomenon resemble each other.  Based on these 

two criteria, Takabe identified fifteen astrophysical phenomena that could be studied in 

the lab and provide insight into laser fusion science ranging from examinations of the 

equation of state of the interiors of giant planets to studying relativistic cosmological jets.  

Number twelve on this list of fifteen is study of the Vishniac overstability, which Takabe 

sorts under the criteria of atomic physics and x-ray transport as the type of physics and 

that the laboratory experiments resemble the astrophysical phenomena.     
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1.2   Pulsed Laser Technology 

 

Lasers are able to access increasingly exotic states of matter through improvement in 

one of three main areas of the laser, typified by three different types of laser systems.  

The laser energy can be increased, an avenue epitomized by increasingly large and 

expensive long pulse laser facilities.  Alternatively, the peak power of the laser pulse can 

be increased by shortening the duration of a laser pulse and lasers utilizing chirped pulse 

amplification (CPA) concentrate on this parameter.  Finally, the wavelength of the laser 

can be reduced, creating higher energy photons which can penetrate deep into matter and 

provide unique benefits.  X-ray lasers are typical of this path but facilities are just now 

being built that can reach the types of power and energy levels required for use in 

laboratory astrophysics experiments. 

 

1.2.1  High Power Lasers 

 

 As the intensity of a laser pulse increases nonlinear effects such as self focusing 

become increasingly important4.  These effects can begin to cause damage in the 

materials that make up a laser chain.  Prior to 1985 the only way to increase the intensity 

of a laser pulse and avoid this problem was to lower the intensity of the laser beam while 

it is in the laser chain and amplify to full energy by increasing the area of the beam.  The 

beam could then be focused once the danger to materials in the laser chain had passed 

enabling the increase in laser intensity desired.  This method leads to increasingly large 

optics in the laser chain and correspondingly high costs.  However in 1985 Strickland and 
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Mourou5 developed the technique of chirped pulse amplification (CPA).  In lasers 

systems designed on this technique a very short duration laser pulse (down to a few 

femtoseconds in duration) is spread out spectrally in time by use of diffraction gratings.  

This allows the laser pulse to be amplified at a relatively low intensity.  At the end of the 

laser chain a second set of gratings undo the temporal chirp, shortening the laser pulse 

once again and dramatically increasing the intensity.  Using this technique very high 

power pulses (> 1012 W) can be created by a system that fits in a university laboratory 

and is affordable for an independent researcher.  Larger multi-million dollar high-power 

facilities employing this technique are capable of powers greater that 1015 W per pulse. 

 There are a number of laboratory astrophysics experiments that have been 

undertaken using high power short-pulse lasers.  Utilizing the high magnetic fields that 

accompany the high electric field present when a high power laser pulse in focused to a 

small area, researchers on the Vulcan laser at Rutherford Appleton Laboratory6, 7 have 

performed experiments examining the properties of collisionless shocks much like those 

common in the magnetized plasma of the interstellar medium.  In addition, researchers at 

Lawrence Livermore National Laboratory have designed experiments8 looking at 

electron-positron plasmas.  More experiments are listed in a survey of the state of 

collisionless plasmas in laser astrophysics done by Zakharov9. 

 

1.2.2 High Energy Lasers 

 

 Alternatively to increasing the power of a laser pulse by shortening the length of a 

pulse, once can access new physics by increasing the energy in a laser pulse.  In order to 



 

 6

do this, one needs a large amount of energy stored in an amplifier material leading to the 

need for large pulsed power electronics and large amounts of amplifier material.  These 

concerns lead to high costs and require large physical areas limiting these types of lasers 

to large facilities.  The most common type of large laser amplifier utilizes neodymium-

doped glass as an amplifier material.  This type of amplifier is utilized in the highest 

energy pulsed lasers currently under construction: the National Ignition Facility (NIF) at 

Lawrence Livermore National Laboratory in Livermore, California and the Laser 

Megajoule in Bordeaux, France.  These are both multiple beam laser facilities capable of 

illuminating a target with several megaJoules of energy.   

Use of high energy lasers in general allow for longer lasting, larger scale 

experiments as compared to the high power lasers described in the previous section, but 

at the cost of examining less extreme states of matter.  One example of the type of 

astrophysically relevant experiment possible with large energy laser systems is the 

proposed experiment of Remington et al.10 on the NIF facility to study the equation of 

state of large planetary cores using laser generated shocks. 

 

1.3  Supernova Remnant Studies 

  

One of the areas discussed by Takabe in his survey of laser astrophysics is the 

physics of hydrodynamics and shocks, which has been one of the first areas available for 

study.  Ryutov et al.11 calculated scaling parameters to allow laboratory experiments to be 

hydrodynamically relevant to supernova remnants (SNRs) based on the dimensionless 

Euler number.  Various experiments have looked at physics associated with early and late 
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time supernova remnants as well as general properties of collisionless shocks.  Studies 

have been done looking at the early time behavior of SNRs have examined the onset of 

various instabilities, such as the Rayleigh-Taylor12 and Richtmyer-Meshkov13 instabilities 

relevant to the mixing of material from different layers of the original star.  Experiments 

in these areas are primarily done using high-energy laser systems. 

The studies of late time SNRs have concentrated on radiative supernova remnants, 

such as portions of the Cygnus Loop and the Vela supernova remnant.  There have been 

experiments on the structure of radiative shocks14 as well as their behavior15, 16.  These 

shocks exhibit a large amount of structure and Vishniac et al.17-19 developed a theory for 

the behavior of perturbations on blast waves which has received significant attention.  

They proposed an instability they called the pressure driven thin shell overstability and is 

now known as the Vishniac overstability to account for the structure seen in radiative 

SNRs.  It is believed this overstability may play an important role in star formation20, 21.  

There has since been a great deal of work to verify the theory.  Computer simulations 

have seen the overstability grow from a small seed22 and have confirmed some of the 

theoretically determined growth rates23.  Experimentally, Grun et al.16 performed 

important early work looking at this theory in spherical blast waves, and Edwards et al.15 

performed experiments in cylindrical geometry.  These previous experiments will be 

discussed in chapter 7.  This thesis describes a series of experiments we have undertaken 

that have quantitatively examined the predictions of Vishniac et al.’s theory. 
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1.4  Plan for this Thesis 

 

 The main purpose of this thesis is to examine experimentally the evolution of 

perturbations on high Mach number blast waves and compare the results to theoretical 

predictions.  In order to do this the physics of shock waves in general and blast waves in 

particular is examined in Chapter 2.  This includes a general description of disturbances 

in a fluid leading to the formation of a shock front.  In addition, the various types of 

shock waves including blast waves are discussed and the effects of radiation on a blast 

wave are examined in this chapter.  Chapter 3 looks at the physics of supernova remnants 

(SNRs) and the factors that need to be considered when designing an experiment to study 

them in the laboratory as well as an explanation of the previously published theory17-19 of 

Vishniac et al. for the evolution of perturbations on blast waves.  The results of various 

simulations looking at both astrophysical and laboratory produced blast waves is 

summarized in Chapter 4.  This includes the results of simulations performed in support 

of our specific experiments.  Chapter 5 looks at the setup of the experiments done at two 

different laser facilities: the Janus laser at Lawrence Livermore National Laboratory and 

the Z-Beamlet laser at Sandia National Laboratories.  Chapter 6 describes the working of 

all the diagnostics fielded during the experiments including several types of 

interferometer and a schlieren telescope.  Chapter 7 summarizes all the experimental data 

and the analysis performed.  The experiments described are sorted into three major areas: 

diagnosis of radiative effects, the effect of the passage of a drive laser on the subsequent 

blast wave evolution, and measurement of the evolution of perturbations on blast waves.  
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This chapter also contains a comparison of the results of the perturbation evolution 

experiments to the theoretical predictions described in Chapter 3.  Finally, Chapter 8 

summarizes the thesis and provides conclusions as well as possibilities for future work. 
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2. Shock Wave Physics 

 

2.1 Acoustic Waves 

 

All waves traveling through a fluid, including shock waves, are governed by 

conservation equations, including conservation of mass and momentum.  The most 

commonly used forms of the equations for conservation of mass and momentum in 

hydrodynamics are the equation of  continuity and Euler’s equation24-26: 

 ( ) 0v
t
ρ ρ∂

+ ∇ • =
∂

G G  (2.1.1) 

 

 1( )v v v p
t ρ

∂
+ •∇ = − ∇

∂

G G GG G  (2.1.2) 

 

Here ρ is the density of the fluid, v is the fluid velocity, t is time, and p is the 

pressure of the fluid.  If the wave is weak, a weak wave being one for which the velocity 

of fluid particles in the wave is small compared to the sound speed of the medium, then 

these equations can be linearized.  Following Landau and Lifshitz24, the pressure and 

density can be separated into mean values and small variations due to the wave according 

to p = p0+p’ and ρ = ρ0+ρ’, where the subscript 0 indicates the mean value and the 

primed variables are the small variations due to the wave.  Also, the velocity of the 

particles, v, is treated as a small parameter.  Substituting into the equation of 
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continuity(2.1.1) and Euler’s equation(2.1.2) and neglecting small quantities of second 

order or higher yields: 

 

 0
' 0v

t
ρ ρ∂

+ ∇ • =
∂

G G  (2.1.3) 

 

for the equation of continuity and 

 

 
0

1 ' 0v p
t ρ

∂
+ ∇ =

∂

G G
 (2.1.4) 

 

for Euler’s equation.  Using these two equations and the assumption that the wave is 

adiabatic, the behavior of the wave can be described in terms of the velocity potential φ, 

where v = —φ: 

 

 
2

2 2
2 0c

t
φ φ∂

− ∇ =
∂

 (2.1.5) 

where  

 2

s

pc
ρ

 ∂
=  ∂ 

 (2.1.6) 

 

Equation (2.1.5) has the form of a wave equation.  The solutions to this equation are 

waves traveling with a characteristic speed c.  In a fluid, such waves are known as sound 

waves and c is the sound speed. 
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As the speed of the particles in the wave increases towards the sound speed the 

small terms that were neglected in the above analysis become increasingly significant.  

The effect of these terms can be understood by examining the case of a plane wave 

defined to be traveling along the x-axis24.  In this case the equation of continuity(2.1.1) 

becomes: 

 ( ) 0v
t x
ρ ρ∂ ∂

+ =
∂ ∂

 (2.1.7) 

 

and Euler’s equation(2.1.2) can be written as: 

 

 1 0v v pv
t x xρ

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (2.1.8) 

 

Equation (2.1.7) can be rewritten as: 

 

 ( ) 0d v
t d x
ρ ρ ρ

ρ
∂ ∂

+ =
∂ ∂

 (2.1.9) 

 

and equation (2.1.8) as 

 

 1( ) 0v dp vv
t dv xρ

∂ ∂
+ + =

∂ ∂
 (2.1.10) 

 

Rearranging (2.1.9) we get: 
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 ( )d vt
d

x

ρ
ρ

ρ ρ

∂
∂ = −

∂
∂

 (2.1.11) 

or 

 ( )x d v dvv
t d dρ

ρ ρ
ρ ρ

∂  = = + ∂ 
 (2.1.12) 

 

This is an equation for the velocity of the wave at constant density.  Similarly, (2.1.10) 

can be rearranged to obtain an equation for the velocity of the wave at constant fluid 

velocity: 

 

 1

v

x dpv
t dvρ

∂  = + ∂ 
 (2.1.13) 

 

Noting that velocity of the wave is a function of only the fluid density implying constant 

v is the same as constant ρ, we can combine (2.1.12) and (2.1.13): 

 

 1dv dp
d dv

ρ
ρ ρ

=  (2.1.14) 

 

The right side of this equation can be rewritten using 

 

 2dp dp d dc
dv d dv dv

ρ ρ
ρ

= =  (2.1.15) 
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leading to the equation 

 

 
2dv c d

d dv
ρρ

ρ ρ
=  (2.1.16) 

 

or, rearranging 

 

 dv c
d ρ ρ

= ±  (2.1.17) 

 

Integrating this equation yields an expression for the fluid velocity, v. 

 

 c dpv d
c

ρ
ρ ρ

= ± = ±∫ ∫  (2.1.18) 

 

This final form can be differentiated to get an equation for the speed of sound: 

 1( ) dpc v
dvρ

=  (2.1.19) 

We can use this with (2.1.13) to get  

 

 ( )
v

x v c v
t

∂  = + ∂ 
 (2.1.20) 

 

Integrating this equation yields: 
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 ( )( ) ( )x t v c v f v= ∗ + +  (2.1.21) 

 

Here f(v) is an arbitrary function of the particle velocity.  This equation describes 

a wave traveling with a velocity u = v + c.  Because c(v) varies with density, the speed of 

the wave varies with the position in the wave front and the shape of the wave changes 

with time.  Landau and Lifshitz24 show that d(v + c)/dρ >0, meaning that the speed of the 

wave increases with density.  Because of this, the density peak of a compression wave 

travels faster than the front edge of the wave, causing the profile of the wave to steepen 

until the peak catches the front edge and the density ceases to be single valued as a 

function of position.  This is a physical impossibility, and instead a discontinuity arises in 

the flow variables.  This discontinuity is known as a shock front24-26. 

 

2.2 Basic Shock Physics 

 

A shock can be characterized by applying conservation laws across the shock 

front.  Conservation of mass, momentum, and energy can be applied to deduce the 

properties of the shocked gas from the shock speed and the properties of the unshocked 

gas. In the rest frame of the shock front the equations for the conservation of mass, 

momentum and energy are: 

 

 1 1 0 0u uρ ρ=  (2.2.1) 

 2 2
1 1 1 0 0 0p u p uρ ρ+ = +  (2.2.2) 
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22

0 01 1
1 0

1 02 2
p up uε ε

ρ ρ
+ + = + +  (2.2.3) 

 

Here 

 0u D= −  (2.2.4) 

and 

 1 ( )u D v= − −  (2.2.5) 

  

Where D is the velocity of the shock wave, v is the gas velocity in the rest frame of the 

undisturbed gas, u is the velocity of the gas in the rest frame of the shock front, p is the 

pressure of the gas, ρ denotes the gas’s density and ε is the internal energy of the gas.  

The subscript 0 denotes a property of the undisturbed gas and 1 denotes a property of the 

shocked gas an infinitesimal distance behind the shock front. 

Using the conservation of mass equation (2.2.1) to eliminate u1 from the 

conservation of momentum equation (2.2.2) we are left with: 

 

 2 2 1 0
0 0

0 1

p pu V
V V

−
=

−
 (2.2.6) 

 

V here is the specific volume of the gas, i.e. 1/ρ.  If we instead eliminate u0 the equation 

becomes 

2 2 1 0
1 1

0 1

p pu V
V V

−
=

−
    (2.2.7) 
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Equations (2.2.6) and (2.2.7) can be used to eliminate the fluid velocity from 

equation (2.2.3).  This yields a form of what is known as the Rankine-Hugoniot relations: 

 1 0 1 0 1 0
1 ( )( )
2

p p V Vε ε− = − −  (2.2.8) 

 

To solve this equation, the equation of state for the gas, ε(p,ρ), must be known.  

Every material has its own equation of state.  For most gasses the equation of state of a 

perfect gas with constant specific heats is used.  This equation of state has the form: 

 

 1
1vc T pVε

γ
= =

−
 (2.2.9) 

 

cv is the specific heat at constant volume and γ is the adiabatic index of the gas also 

known as the polytropic index or the isentropic exponent.  The adiabatic index is equal to 

the ratio of the specific heats of the gas and is a measure of the number of energetic 

degrees of freedom the gas possesses, n. 

 

 2p

v

c n
c n

γ +
= =  (2.2.10) 

 

cp is the specific heat at constant pressure.  Applying equation (2.2.9) on either side of a 

shock front and taking the ratio we can see that 
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 1 1 1

0 0 0

T p V
T p V

=      (2.2.11)    

                             

The equation of state (2.2.9) can be inserted into the conservation of energy 

equation(2.2.3): 

 
22

0 01 1

1 01 2 1 2
p up uγ γ

γ ρ γ ρ
+ = +

− −
 (2.2.12) 

 

Using equations (2.2.6) and (2.2.7), we can eliminate the velocities from this equation 

leaving what are known as the jump conditions. 

 

 0 11
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 (2.2.14) 

 

In the limit of a very strong shock, i.e. that p0 << p1, (2.2.14) simplifies to: 

 01

0 1

1
1

V
V

ρ γ
ρ γ

−
= =

+
 (2.2.15) 

As a shock increases in strength the pressure, velocity and temperature ratios across the 

shock front all increase and the density approached the limiting value of the strong shock 

conditions. 

 For real gasses a number of physical processes violate the assumption of constant 

specific heats used to formulate the equation of state used in this analysis.  If molecular 
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disassociation or ionization occurs in the gas due to shock heating then the specific heats 

of the gas will change.  Also, energy losses due to radiation mean the blast wave is no 

longer adiabatic.  Despite these processes, the general formalism outlined above is often 

useful in describing a shock.  When there is radiation or disassociation ongoing, an 

effective adiabatic index can be employed that treats processes such as ionization and 

radiation as effective degrees of freedom. As the amount of radiation increases, the 

number of effective degrees of freedom increases and the value of the effective adiabatic 

index approaches 1.  It is often considered more appropriate to refer to the effective 

adiabatic index as the polytropic index as the system is no longer adiabatic.     

 The jump conditions for a shock wave assume time independence.  To determine 

if they can be applied to a changing shock wave, the Knudsen number must be examined.  

The Knudsen number is the ratio of a mean free path of a shocked particle to the scale 

length over which the shock properties change.  To the extent this parameter is small the 

steady state conservation laws may be used.  Most astrophysical shocks are collisionless, 

and in this case the ion gyro-radius takes the place of the mean free path of the particles. 

The mean free path of a charged particle in cm, l, assuming single ionization of the gas is 

given by Zel’dovich and Raizer26 as: 

 

 
2

43.5 10 Tl
n

∗∼  (2.2.16) 

 
 
Here T is the average temperature in degrees and n is the density in particles per cubic 

centimeter.  For our experiments, given a 3 eV average temperature and 10 Torr pressure, 

the average mean free path is of the order of nanometers and from experiments the shock 
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thickness is of the order of tens of microns.  This means the Knudson number is less than 

10-4 and the analysis in this section is applicable to a high degree of accuracy. 

 

2.3 Blast Waves 

 

The time evolution of a shock wave depends on how it is created.  A shock driven 

by a piston traveling at a constant velocity will also travel at a constant velocity away 

from the piston.  In addition, assuming the pre-shock gas is homogeneous, the properties 

of the shocked gas will be homogeneous and constant.  However, if the drive of the shock 

changes over time then the strength of the shock will change correspondingly.  Moreover 

the thermodynamic variables will no longer be constant in the shocked region.  The most 

extreme example of this occurs if the shock is produced by a brief point explosion.  In 

this case what is known as a blast wave is created.  A blast wave is also known as a 

decaying shock wave and decreases in strength over time as the energy of the initial 

explosion is spread over an increasingly large volume.   

Because the shock strength of a blast wave varies over time, the properties of the 

shocked gas vary depending on position.  If a homogenous pre-explosion material is 

assumed then there is a simple description explaining the general variation in 

thermodynamic variables behind the shock front.  Initially, the explosion that creates the 

blast wave creates a small region of highly heated gas.  This gas exerts a substantial 

pressure on the surrounding material and the heated material from this region begins to 

expand into the surrounding region.  This material collides with and heats the 

surrounding material in an increasingly large volume.  This volume expands faster than 
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the surrounding material can react, causing the heated material and thus the pressure of 

the region to pile up at the shock front and the profile of the density and pressure is thus 

peaked at the shock front.  As the heated volume becomes larger, the initial energy of the 

explosion is spread over an increasing amount of gas, lowering the average temperature 

of the gas.  Therefore the temperature of the shocked gas tends to rise as one approaches 

the center of a blast wave as these regions were shocked earlier and thus experienced a 

stronger shock.  The pressure equilibrates over time and thus approaches a constant value 

at the center of the blast wave.  As a result the density varies inversely with the 

temperature so as to maintain a constant pressure in this region.  This means that the 

density increases with the radius of the blast wave even prior to the peak at the shock 

front.  The general distribution of hydrodynamic properties of a gas near a blast wave is 

illustrated in Figure 1.  
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Figure 1. General distribution of hydrodynamic properties of gas near a blast wave.  The three 
variables are offset from one another in position so they can all be seen. 

 A self-similar solution exists for the evolution of a blast wave assuming several 

conditions apply.  The first is that the energy and pressure of the gas prior to being 

shocked are small compared to those of the shocked gas.  The second condition is that the 

background material the blast is traveling into is uniform.  Additionally the effect of 

viscosity must be negligible.  Finally, the energy of the blast wave must be conserved.  If 

these conditions are met then the only characteristic parameters of the system are the 

energy of the explosion and the density of the background gas.  The blast wave evolution 

can then be described by the well known Taylor-Sedov solution.  The only combination 

of the energy of the explosion and the density of the background gas that has units of 
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only length and time is the ratio of the energy of the blast wave (E) to the density of the 

background gas (ρ0).  This ratio has the units of length5/time2.  Consequently the 

similarity variable will be: 

 
1
5

0
2R

Et
ρξ  =  

 
 (2.3.1) 

and the blast wave radius (R) will evolve according to the equation: 
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0.4ER tξ
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 
 (2.3.2) 

Sedov used conservation of energy27 to determine the similarity variable ξ in his original 

solution.  The pressure behind the shock front varies as the average energy per unit 

volume, i.e. p1 ∝ E/R3.   

 Zel’dovich and Raizer26 present a simple analytical approximation proposed by 

Chernyi to understand strong explosions in a homogeneous medium that I shall follow 

here.  The primary assumption of this approximation is that all of the mass in the blast 

wave is contained inside a thin shell behind the blast front.  The density inside this layer 

is governed by the strong shock equations(2.2.15).  The total mass swept up by the blast 

front, M, is equal to: 

 3
0

4
3

M Rπ ρ=  (2.3.3) 

 

Setting this equal to the mass in the thin shell determines the thickness of the shell, DR: 
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3
RR R ππ ρ ρ∆ =  (2.3.4) 

solving this equation for ∆R and using the conditions for a strong shock (2.2.15) yields 
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3 3 1
R RR ρ γ

ρ γ
−

∆ = =
+

 (2.3.5) 

If one assumes the shell of mass is very thin then it follows that velocity of the 

gas in it is constant throughout and corresponds to the gas velocity just behind the front 

u1.  In order to determine the force exerted by the hot gas behind the thin shell, we 

assume the shell is infinitesimally thin.  Newton’s law for the change of momentum of 

the thin shell, noting that the mass inside the shell varies with time, becomes: 

 ( ) 2 2
1 14 4c

d Mu R p R p
dt

π π α= =  (2.3.6) 

where pc is the pressure pushing on the inside of the thin shell and can be written as a 

fraction α of the pressure behind the shock front p1.   u1 and p1 can be rewritten in terms 

of D, the shock velocity, using (2.2.1), (2.2.4), (2.2.15), and (2.2.2).   

 2
1 0
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1

p Dρ
γ

=
+

 (2.3.7) 
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2

1
u D

γ
=

+
 (2.3.8) 

Plugging (2.3.7) and (2.3.8) into (2.3.6) yields 

 3 2 21
3

d R D D R
dt

α=  (2.3.9) 

The time derivative can be rewritten as 

 d dR d dD
dt dt dR dR

= =  (2.3.10) 

and this used to integrate (2.3.9) 

 3(1 )D aR α− −=  (2.3.11) 
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where a is a constant of integration.  Values for the constants a and α can be determined 

using conservation of energy.  The kinetic energy of the gas is given by  

 
2

1

2k
MuE =  (2.3.12) 

The internal energy is predominately in the gas inside the cavity bounded by the thin 

shell.  The gas exerts a pressure pc and its internal energy is: 

 31 4
1 3T cE R pπ

γ
=

−
 (2.3.13) 

Substituting for αp1 for pc the total energy can be written as the sum of the kinetic and 

internal energies 
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 (2.3.14) 

We can use (2.3.7) and (2.3.8) to write the equation in terms of D 
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 (2.3.15) 

Using equation for the total mass M (2.3.3) and the shock velocity D (2.3.11) we can 

rewrite this equation as 
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 (2.3.16) 

For an energy conserving blast wave the energy is constant and so the dependence on R 

must disappear implying α= ½.  Using this result along with (2.3.11), (2.3.7), and (2.3.8) 

leads to some of the relationships previously mentioned for an energy conserving blast 

wave, such as 

R ~ t2/5, p1 ~ R-3, u1 ~ R-3/2, and D ~ R-3/2. 
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Similarly, using ½ for α we solve (2.3.16) for a 

 ( )( )
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 (2.3.17) 

This equation can be used to get an approximate value for the similarity variable if we 

note the fact that 
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 (2.3.18) 

The similarity variable can then be written as 
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 (2.3.19) 

The analysis resulting from the Chernyi approximation can repeated for cylindrical and 

planar expanding blast waves and in those cases the relationship between the radius of the 

blast wave and the other variables changes.  In cylindrical geometry this relationship 

becomes: 
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 (2.3.20) 

 

and in planar coordinates: 
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If the condition of energy conservation is violated then this behavior is modified.  

If there is energy lost, via radiation or some other means, then the blast wave will tend to 

slow down faster than the Taylor-Sedov solution.  There are only two scenarios where 

exact analytical solutions exist for the behavior of a radiative blast wave.  If all of the gas 

in the blast front is cooled by radiation but the inner gas remains hot then the blast wave 

will follow what is known as the pressure driven snowplow solution.  In this case a cold 

dense shell of gas is pushed out by the pressure of the low density hot gas interior to the 

blast front.  In this solution the blast wave trajectory, R, goes as t2/7 instead of the t0.4 

behavior of the Taylor-Sedov solution.  If the gas interior to the blast front is also cooled 

by radiation then the momentum conserving snowplow regime is reached.  Here the thin 

dense shell of cold gas coasts into the surrounding medium with constant momentum.  In 

this solution the blast wave slows down very quickly and R goes as t2/8.  The derivation 

of the pressure driven snowplow solution is fairly complicated and relies on assumptions 

about the polytropic index of the gas.  However, the momentum conserving snowplow 

solution is relatively straightforward and can be found by setting the change of 

momentum of the blast wave equal to zero.  We first start with a definition of the 

momentum (P) in terms of the blast wave mass (M) and its velocity (U): 

 P MU=  (2.3.22) 

The rate of change of the momentum of the blast wave is then given by: 

 0P MU MU= + =� � �  (2.3.23) 

A dot above a quantity denotes a derivative with respect with time.  The mass of the blast 

wave can be approximated by the product of the total volume swept up by the blast wave 

and the density of background gas (ρ): 
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M Rπ ρ=  (2.3.24) 

Here R is the radius of the blast wave.  The derivative of the mass if then: 

 24M R Uπ ρ=�  (2.3.25) 

U is again the velocity of the blast wave and is equal to the derivative of its radius.  

Plugging these equations into (2.3.23) yields: 

 2 20 4 ( )
3

RUR Uπ ρ= +
�

 (2.3.26) 

The coefficient of the right side of this equation can be ignored as R = 0 is not a case of 

interest.  This leaves us with: 

 2

3
RUU− =
�

 (2.3.27) 

Noting that U is the time derivative of R, this equation can be rewritten as: 

 3 3U U R
U R R

−
= − =

� �
 (2.3.28) 

Integrating the outside parts of this equation give us: 

 3ln( ) ln( )U R c−= +  (2.3.29) 

c is a constant of integration.  Raising e to both sides yields: 

 3cU e R−=  (2.3.30) 

but U= dR
dt

 and so (2.3.30) can be rewritten as: 

 3 cR dR e dt=  (2.3.31) 

 

this can be integrated to yield: 
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cR e t d= +  (2.3.32) 

 

Ignoring our second constant of integration d, we get the result we were looking for that 

R ∝ t2/8. 

 
 

 

2.4 Radiative Processes 

 

There are three main radiative processes that can occur in a blast wave: free-free 

or bremsstrahlung radiation, free-bound radiation, and bound-bound or line radiation.   

 

2.4.1 Bremsstrahlung26, 28 

 

Bremsstrahlung radiation occurs when one charged particle is accelerated in the 

Coulomb field of another charged particle. Quantum mechanically, since bremsstrahlung 

radiation involves transitions in the continuum of the ion energy levels, the spectrum of 

radiation produced is continuous and in general governed by energy spectrum of the 

electrons in the plasma.   

  A general understanding of the radiation can be gathered by looking at the 

classical dipole approximation to the radiation.  The radiated power of a system of 

moving particles, P, in the dipole approximation goes as 
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 (2.4.1) 

 

Where c is the speed of light and d is the dipole moment of the system, which can be 

written as: 

 i i
i

d q r= ∑ G  (2.4.2) 

 

Where qi and ri are the charge and position of element i of the dipole.  Because the 

dipole moment of two like particles goes as the center of mass, and is therefore constant, 

radiation from two body collisions must involve unlike particles.  The most common 

situation in a plasma is when an unbound electron encounters an ion and is accelerated by 

its’ Coulomb field.  Some of the energy of the electron is radiated away causing the 

electron to slow down.  Quantum mechanically this can be thought of as the electron 

entering the continuum energy levels of the potential of the ion and decaying to a lower 

continuum state with the emission of a photon with appropriate energy.   

A general understanding of the bremsstrahlung process can be obtained by using 

the small scattering approximation.  This approximation assumes several things.  The first 

is use of the dipole approximation.  The second assumption arises from the fact that the 

acceleration of the electron in the electron-ion collision is larger than the acceleration of 

the ion by the inverse ratio of their masses; therefore the acceleration of the ion can be 

neglected.  The final assumption of the small scattering approximation is that the motion 

of the electron is unchanged by the encounter, in other words the momentum and energy 
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of the emitted photon are a small fraction of that of the electron.  In this assumption the 

second derivative of the dipole moment can be written as 

 

 d ev= −
G G�� �  (2.4.3) 

 

An estimate can be obtained for the derivative of the velocity.  Since we are assuming the 

change of motion of the electron is small, the total velocity change of the electron can be 

estimated by looking only at the component of acceleration due to the Coulomb force 

normal to the path of the electron: 
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= =
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Here Z is the effective charge state of the ion, Z is the charge state of the ion, r is 

the distance from the ion and Fcoulomb is the Coulomb force.  The impact parameter, b, can 

be used in place of the radius.  The impact parameter is the distance of closest approach 

of the electron to the ion.  The time over which the electron interacts with the ion can be 

estimated as τ=b/v, where again b is the impact parameter and v is the velocity of the 

electron.   

 

The emitted power therefore goes as 
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 The time over which the electron radiates can be estimated as t = b/v.  Therefore 

the total energy emitted by an electron during a bremsstrahlung event is approximately 

given by: 
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For comparison with free-bound radiation, it will be convenient to follow Zeldovich and 

Raizer26 and consider the total radiated energy from an infinite ring of electrons of unit 

flux incident on a single ion.  The total emitted power is then given by: 
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  The majority of power radiated during a bremsstrahlung event occurs at frequencies ν of 

the order of 1/(2πt) ~ v/(2πb).  Therefore, the majority of electrons within a small band 

Dν of a given frequency ν are predominantly produced by electrons with impact 

parameters within a small range Db of b, where b ~ v/2πν.  The range of impact 

parameters Db is given by taking the derivative of the estimate for b: 
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This implies that the total power radiated at a given frequency is  
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The exact solution is given in Landau and Lifshitz’s book29 and is given by: 
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for 
3

22
mv

Ze
ν

π
<< .  It will prove useful for later comparisons to integrate (2.4.10): 
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where in the last equality we have used the relation for the energy of a photon E=hν and 

h is Planck’s constant. 
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2.4.2 Free-Bound Radiation 

If the energy lost by an electron during a bremsstrahlung event is large enough, it 

will cause the electron to be captured by the ion it is passing by.  Quantum mechanically 

it can be thought of as a transition by the electron from a continuum state of the ion to a 

bound state.  Since it involves transition from the continuum, the emitted radiation is 

continuous across its spectral range.  Following Zel’dovich and Raizer, we can examine 

the capture of an electron by a hydrogen-like ion.  The energy levels of such a hydrogenic 

atom are related to the principal quantum number n, which can be any positive integer 

value, according to: 
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I Z IE
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= − = −  (2.4.13) 

 

IH is the ground state potential of hydrogen and I = IHZ2 is the ground energy of an 

arbitrary hydrogenic atom.  The time averaged kinetic energy of a bound electron is equal 

to the negative of one-half the potential energy and is also equal to the negative of the 

total energy.  Therefore: 
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For large n the levels look nearly continuous and motion of the electron is quasi-classical.  

The cross section for electron capture into a specific energy level,σcn, is26: 
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In order to compare bound free radiation to bremsstrahlung radiation we can follow 

Zeldovich and Raizer26 and look at the total energy radiated away by an infinite ring of 

electrons incident on an atom due to free-bound radiation, qbf.  This quantity is the energy 

of the radiated photon times the cross section for that photon to be emitted and given by: 

 

 bf cn
n

q hνσ= ∑  (2.4.16) 

 

This can be compared to the equivalent quantity for bremsstrahlung radiation, (2.4.12).  

Using (2.4.14) we can estimate the spacing between high n energy levels. 
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Plugging this equation into (2.4.15) and then into (2.4.16) yields: 
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The summation is of order unity and can be ignored.  Therefore the ratio of the energy 

due from free-bound transitions to that of bremsstrahlung radiation is: 
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where E is the energy of the emitted photon.  Therefore the ratio of energy emitted is the 

ratio of the energies of the transitions involved in each process.  Since the free-bound 

transitions can involve bound states with substantial potential energy the transition 

energy can increase by a factor of several. 

 

2.4.3 Line Radiation 

Line radiation involves excited electrons bound to an atom.  These electrons can 

emit a photon and decay into a lower energy state.  Because of the discrete nature of 

energy levels in an atom, the possible frequencies of radiation are limited.  This means 

the spectrum of line radiation appears as a series of discrete peaks, or lines.  The intensity 

of radiation at a specific frequency is governed by the energy level populations in the 

atom and the transition rates between levels involved in the transition.  While transitions 

between many levels can occur and line radiation in the visible portion of the spectra is a 

useful diagnostic, the majority of the energy dynamics will occur for transitions between 

the ground state and the excited sates.  The energy gap between the ground states of an 

atom and the 1st excited state represent the majority of the total binding energy of the 

ground state of the atom.  Therefore any transitions between excited states will be less 

energetic than transitions between the ground states and excited states.  A visual 

representation of this fact can be seen in the Grotian diagrams for neutral nitrogen and 

xenon (the gasses used in our experiments) shown in Figure 2 and Figure 3 respectively.  

The vertical axis on these graphs is the energy of each quantum level relative to the 
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ground state and the mauve line is the energy at which the neutral atom ionizes.  It is 

clear that a majority of the energy of ionization is in the transition from the ground state 

to the 1st excited state.  It should be notes that nitrogen has a triplet ground state which 

accounts for the 3 energy levels between 0 and 4 eV. 

 
Figure 2. Grotian diagram for neutral nitrogen courtesy NIST (www.nist.gov).  Energy levels are 
shown in eV and only the strongest transitions are listed.  Notice that the shown transitions all have 
more than a 6 eV energy difference between levels. 
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Figure 3. Grotian diagram for neutral xenon courtesy NIST (www.nist.gov).  Energy levels are shown 
in eV and only the strongest transitions are listed.  Notice that the shown transitions all have more 
than a 6 eV energy difference between levels. 
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2.5  The Effect of Radiation on Blast Waves 

 

The importance of radiation energy losses on the hydrodynamics of the blast wave 

is measured by the dimensionless cooling parameter, ε*30.  This parameter measures the 

fraction of energy lost at the blast front by radiation.  An ε* of 0 indicates no net energy 

loss due to radiation, while an ε* of 1 implies full radiative cooling and the onset of the 

snowplow regimes.  An ε*< 0 is indicative of a net absorption of energy and is known as 

the detonation case.   

For the case of 1>ε*>0 Liang and Kielty30 proposed an approximate analytical 

solution that attempted to quantify several effects of radiation on blast wave evolution.  

The first effect of radiation is on the polytropic index of the blast wave.  The polytropic 

index of the radiating gas can be calculated from the polytropic index of the pre-shock 

gas and the cooling rate ε* according to the formula: 
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γ γε
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−
=

− +
 (2.5.1) 

 

Here γ is the polytropic index of the pre-shock gas and γ1 is the polytropic index of the 

radiating gas.  In the adiabatic case ε*=0 and one recovers that γ1 = γ.     

 The second effect of radiation is a change in the time evolution of the blast wave 

trajectory.  Depending on the size of ε*, the trajectory of a spherical blast wave can 

evolve as anything from the Taylor-Sedov t0.4 to the momentum conserving snowplow 

t0.25.  Liang and Kielty30 modify the Chernyi approximation26 described earlier in this 
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chapter to get an estimate of the temporal exponent as a function of the radiative energy 

loss.  They show that the α in (2.3.11) is related to the polytropic indices index according 

to the equation 

 

 2
14 2 ( 2) (1 ) 0α α γ γ+ − + − =  (2.5.2) 

 

 Finally, the coefficient of the blast wave trajectory can be used to deduce the 

volume over which the initial energy was injected to create the blast wave.  To do this 

Liang and Kielty30 start with the following equation for the blast wave trajectory with an 

arbitrary α: 

 

 (4 3 )[(4 3 ) ]R at αα −= −  (2.5.3)  

 

They then solve the general form of (2.3.18) for the variable a and get 
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This provides a relationship between the initial deposited energy E0 and the radius of the 

initial energy deposition sphere R0.   
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3. Radiative Supernova Remnants 

 

3.1 Supernova Remnants 

 

When a star explodes in a supernova it releases on the order of 1051 ergs of 

energy.  This explosion moves out, sweeping up the surrounding interstellar medium 

(ISM).  The expanding remains of the explosion are known as a supernova remnant 

(SNR).  A SNR goes through up to four stages of evolution.  The first stage is the 

explosion of the star.  This phase is also known as the ejecta dominated phase and in it 

the constituents of the explosion fly ballistically into space with approximately constant 

velocity.  This stage ends when approximately as much matter has been swept up as was 

in the initial explosion.  At this point a shock front forms.  Because of the low density of 

the interstellar medium and the relatively significant background magnetic field, most 

interstellar shocks are collisionless.  For a collisionless shock energy is dissipated by 

interactions with the magnetic field instead of collisions between particles, as is common 

for shocks in denser media.  Most SNRs at some point in their evolution meet the 

conditions described in the previous chapter for the self-similar Taylor-Sedov solution for 

blast wave evolution.  Therefore, the 2nd stage of existence for a SNR is known as the 

Taylor-Sedov phase.  During this phase the energy of the blast wave remains constant 

while the total mass swept up increases.  This causes the energy of the blast wave to be 

spread over an increasingly large volume and the blast wave to slow down in time.  The 

trajectory of the blast wave will follow the Taylor-Sedov R ∝ t0.4 solution.  Once the 
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energy of the initial explosion is spread over a sufficient volume, the SNR enters its final 

phase of existence.  At this point the strength of the SNR has decayed to the point it is no 

longer a blast wave but rather a sound wave.  The strength of that sound wave continues 

to decrease and eventually the wave becomes indistinguishable from the background 

ISM. 

If the conditions in the ISM encountered by the SNR are right then it is possible 

for a SNR to enter a stage between the Taylor-Sedov phase and the decay phase known as 

the radiative phase.  When a star goes supernova the material in the initial explosion is 

heated to many keV average temperature.  At these temperatures, the gas involved is fully 

ionized and there are no opportunities for bound-free or line radiation.  Once the SNR 

cools below approximately 3 keV the constituent gas begins to recombine and line 

radiation and free-bound radiation become important.  At this time the amount of energy 

lost via radiation increases significantly.  The spectrum of light emitted by the SNR at 

this time changes from a smooth bremsstrahlung-like spectrum, to one dominated by 

spectral lines as is illustrated for the Cygnus Loop in Figure 4. If the density of the ISM is 

high enough this radiation becomes the dominant energy loss mechanism and the SNR 

will enter the radiative phase.  In the radiative phase the energy loss via radiation causes 

the velocity of the SNR decreases more quickly than in the energy conserving Taylor-

Sedov phase.  The trajectory in this phase may follow the pressure-drive snowplow or 

momentum-conserving snowplow solutions mentioned in the previous chapter.      
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Figure 4. Spectrum of UV Emission from Miller Position 1 in the Cygnus Loop, one of the canonical 
examples of a radiative supernova remnant.  This figure is taken from Raymond et al. Ap. J, 560, 
P.763.  Notice that the spectrum is completely dominated by the spectral lines. 

Ryutov et al.11 suggested that there were two main conditions for a SNR to enter a 

radiative phase.  The first condition is that radiation is the dominant cooling mechanism, 

exceeding any hydrodynamic cooling rates.   To provide an estimate of when this 

condition would be met they compared the cooling time due to radiation to the 

characteristic convective cooling time.  The convective cooling time is set by the 

characteristic gas dynamic time h/s, where h is the characteristic scale length of the SNR 

and s is the sound speed of the heated gas.  In the paper they use the sound speed for a 

gas with an adiabatic index of 5/3: 
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Here A is the atomic number of the gas, T is the temperature in electron volts, and 

Z is the average ion charge state.  Quantities in [] are units.  For the radiative cooling 

time, energy radiated away by bremsstrahlung radiation is calculated.  To do this the 

energy density of the shocked gas in the SNR is divided by the radiated power per unit 

volume.  This yields a radiative cooling time of: 
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Where Λn is the normalized cooling rate31 in ergs cm3 sm-1 and ni is the density of ions.  

For bremsstrahlung radiation Λn is 1.7*10-25 Zeff
2 T(eV)1/2.  For regions that have a 

shocked temperature from 30 eV to 3 keV line and free-bound radiation can have a 

significant effect on the cooling time, reducing it by up to two orders of magnitude.  

However, as a first approximation the bremsstrahlung rate alone can be used.  

The second condition for a SNR to be in a radiative phase is for the radiation 

produced to escape.  This is necessary for there to be a net energy loss by the SNR.  

Saying that radiation can escape the region of the SNR is equivalent to saying the SNR is 

optically thin.  Ryutov et al. examined this condition by comparing the mean free path of 

bremsstrahlung photons to the scale length of the SNR.  The bremsstrahlung mean free 
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path was determined by averaging over a Planckian distribution of photons in a fully 

ionized plasma, also known the Rosseland mean.  This yields a mean free path of: 
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Both conditions for a radiative SNR can be written as bounds on the scale length 

of the SNR for a given temperature and density, with the bremsstrahlung mean free path 

providing an upper bound and the product of the sound speed and radiative cooling time 

serving as the lower bound.  Or, equivalently, for a given scale length of the SNR, these 

two equations define a region in temperature and density space where a SNR will enter a 

radiative phase.  This region is shown visually in Figure 5 for both astrophysical and 

laboratory conditions.  The black curves represent the condition that radiative cooling be 

dominant and the red curves show the boundary at which the SNR becomes optically 

thick.  Radiative SNRs are possible in the region between these two curves.  As 

previously mentioned, line and bound-free radiation can have a significant impact on the 

conditions for a radiative blast wave.  In general, between a few eV and 3 keV, both 

curves in the figure will tend to bend towards lower density for the same temperature.  

Following Ryutov et al. hydrogen gas and a scale length of 1016 cm was chosen for the 

astrophysical parameters.  In practice, the condition on the radiation cooling time is the 

critical one, and SNRs only enter a radiative phase when encountering clouds of matter in 

the ISM, often material sloughed off by a star prior to its going supernova.  As a quick 

guide, McKee and Draine32 showed that radiative blast waves would travel with an 
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approximate velocity range of 110 km/s – 200 km/s.  For the laboratory conditions, we 

looked at xenon gas and a 1 cm scale length.  The green triangle in the laboratory graph 

section highlights the parameter range where we might expect radiative blast waves.  

These considerations were taken into account when designing the experiments described 

in later chapters.   

 
Figure 5. Conditions determined by Ryutov et al. for a supernova remnant (SNR) to be radiative.  
There are two main conditions for a radiative SNR.  Radiative cooling must exceed hydrodynamic 
cool (right of black line) and the SNR must be optically thin to the radiation (left of the red curve).  
The graph on the left is for an astrophysical environment.  The graph on the right shows the results 
for laboratory conditions.  The green triangle in the left graph highlights the desired parameter 
space and the red blob indicates where experiments were designed to exist. 

 Several effects accompany the onset of a radiative phase in a supernova remnant.  

One is that some of the radiation produced by the shocked gas is absorbed in the 

background material outside the blast front.  This creates a region of warm ionized gas 

preceding the shock front of the SNR.  This region of ionized gas is known as a radiative 

precursor.  The idea of a radiative precursor is illustrated in Figure 6.  A second important 

effect accompanying the onset of the radiative phase is the thinning of the blast front.  As 
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discussed previously, radiation provides an effective degree of freedom for the energy in 

the blast wave, lowering its polytropic index.  The radiation lowers the temperature of the 

gas in the blast front making it cooler and more compressible.  This makes the blast front 

thinner for the same pressure drive and more susceptible to instabilities. 

 
Figure 6. Illustration of the temperature versus position in a radiative supernova remnant.  Some of 
the radiation from the shock front is absorbed in the background gas, creating a warm region known 
as the radiative precursor.  Behind the shock front, the gas thermalizes to its final state. 

Large scale structure is seen in supernova remnants known to be in the radiative 

phase, such as the Cygnus Loop and the Vela SNR.  An image of these SNRs is shown in 

Figure 7.  It is believed that when these structured SNRs encounter clouds of gas, they 

create density clumps that can seed the process of star formation20, 21.  Vishniac et al. 

theorized that the structure was due to an overstability that arises in the radiative SNRs 
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due to the thinning of the shock front.  Therefore they formulated the theory17-19 of the 

pressure driven thin shell overstability, now known as the Vishniac overstability.  

 
Figure 7. Images of the Cygnus Loop (left) and Vela Supernova Remnant.  These are the canonical 
examples of radiative supernova remnants.  Each is the remains of a supernova from over 10,000 
years ago.  The large scale structure seen in the edge profile is believed to be caused by the Vishniac 
overstability. 

 
3.2 Vishniac Overstability 

 

Vishniac and Ryu used perturbation analysis to develop a comprehensive theory17-

19 for the hydrodynamic evolution of perturbations on the surface of a blast wave.  The 

general idea behind the Vishniac overstability is illustrated in Figure 8.  The blast wave is 

bounded on one side by ram pressure arising from expansion into an external medium 

and on the other by the thermal pressure of hot gas inside the blast wave.   If there is any 

ripple of perturbation on the blast wave surface these two pressures can become 

misaligned.  This causes mass to flow from the peaks of the perturbation to the troughs, 

increasing the relative momentum of the troughs.  As the blast wave expands it sweeps up 
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additional matter and slows.  This additional matter will comprise a smaller percentage of 

the mass of the troughs than the peaks, thus causing the troughs to slow less.  Eventually 

the troughs of the perturbation pass the peaks and the process reverses, creating an 

oscillation in the blast wave surface.  If the blast wave front is thin enough the oscillation 

can grow with time.   

 
Figure 8. Illustration of the forces acting on a blast wave subject to the Vishniac Overstability.  The 
black curve represents the blast front.  The green and blue arrows represent the thermal and ram 
pressures respectively.  The solid blue arrows show where the ram pressure acts and the dashed blue 
arrows are copies to aid in determining the net effect of the added pressures.  The red curve 
represents the sum of the ram and thermal pressures and the net force on the gas in the blast wave.  
Note gas is pushed from the peaks of the ripple to its troughs. 

To study the evolution of perturbations on the surface of a blast wave, Vishniac 

and Ryu assumed an adiabatic shock that followed the Taylor-Sedov solution for the 
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unperturbed blast wave.  They then started with the conservation laws for such a blast 

wave.  These are: 

The continuity equation: 
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 Conservation of momentum: 
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 and conservation of energy: 
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In these equations p is the pressure of the gas, v is the gas velocity, t is time, ρ is the 

density of the gas and γ is its adiabatic index.  In place of the energy equation, 

conservation of entropy can be used: 
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Next, Ryu and Vishniac defined the perturbation variables as the difference between the 

total value of a variable and the value associated with the unperturbed blast wave: 

 0 ˆ( , , , ) ( , , , ) ( , )v r t v r t v r t rδ θ φ θ φ≡ −
G G  (3.2.5) 

 

 0( , , , ) ( , , , ) ( , )r t r t r tδρ θ φ ρ θ φ ρ≡ −  (3.2.6) 

 

 0( , , , ) ( , , , ) ( , )p r t p r t p r tδ θ φ θ φ≡ −  (3.2.7) 

 

where quantities with a 0 subscript refer to the unperturbed blast wave and r, θ, andφ are 

the normal spherical coordinates.  The above equations are then inserted into the 

conservation equations, (3.2.1), (3.2.2), and (3.2.4), which are then linearized to 1st order 

in the perturbations variables to give 
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In the above equation the radial and transverse components of the fluid velocity, vr and vt 

respectively, have been separated.  Next the perturbation variables are normalized to the 

value of the unperturbed variables at the shock front according to: 

 
2

vv
v
δδ ≡
GG

�  (3.2.11) 

 

 
2

δρδρ
ρ

≡�  (3.2.12) 

 

 
2

pp
p

δδ ≡�  (3.2.13) 

and the radial coordinate according to 
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For these equations the subscript 2 denotes the value of the quantity for the unperturbed 

blast wave at the shock front.  The unperturbed variables can be similarly normalized to 

their values at the shock front.  Ryu and Vishniac then expand the perturbations into 

spherical harmonics (Ylm).  This allows the time component of the evolution of a 

perturbation to be separated from its spatial behavior.  The various wavelength 

components (specific l and m values) of the normalized perturbation variables become: 
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There is an assumed l and m subscript on the perturbation variables in the above 

equations that is not written as we choose to look at a specific component as 

representative of the whole.  The operator “t is the transverse gradient and is defined as: 
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Using the Taylor-Sedov solution discussed in chapter 2 for blast wave evolution the time 

derivatives of the normalized unperturbed variables can be written as: 
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Noting that the radial component of the perturbation variables will behave like the 

unperturbed variables, we can take the time derivatives of (3.2.15)-(3.2.17): 
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Here s is the temporal exponent from equations (3.2.15)-(3.2.17).  Using these equations, 

(3.2.8)-(3.2.10) become: 
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Here (3.2.25) and (3.2.26) are the result of separately solving (3.2.9) in the radial and 

transverse directions.  Combining like terms and using (3.2.18)-(3.2.20) we can further 

modify these equations to: 
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 Finally, we can change to the normalized variables and make some final 

manipulations to get to the form of the equations desired: 
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  These equations, when combined with proper boundary conditions can be solved 

numerically to give values for s, the growth rate of the perturbations.  The growth rate 

will vary as a function of γ and ℓ, the polytropic index of the shocked gas and the mode 

number of the perturbations respectively.  A sample of some of the curves for the real 

part of s as a function of ℓ for different polytropic indices is shown in Figure 9.  The 

imaginary part of s determines the rate at which the perturbations oscillate.  This portion 

tends to increase rapidly with increasing mode number, meaning higher mode number 

perturbations will oscillate more rapidly.  Ryu and Vishniac also developed an 
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approximate analytical solution for the evolution of perturbations on blast waves18, but 

we have used the exact numerical solutions for comparison to experiment. 

 
Figure 9. Theoretical predictions of Ryu and Vishniac for the evolution of perturbations on high 
Mach number blast waves.  Shows the temporal exponent versus the log of the mode number of the 
perturbation for a number of different polytropic indices (gammas). 

 
For any given value of the wave number a perturbation grows as a power law in 

time, δ ∝ ts.  They find that for a gas with an effective adiabatic index > 1.2, 

perturbations will decay for all wave numbers.  For a gas with an effective adiabatic 

index ≈1.2, there will marginal stability of the blast wave at an approximate wave number 

of 20.  For gasses with an adiabatic index < 1.2 there will be a range of wavelengths for 

which perturbations will grow.  For all adiabatic indices, the growth rate increases slowly 
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as a function of wave number until the wavelength approaches the thickness of the blast 

front.  At this point, the growth rate rapidly falls off with increasing wave number.  

Because the blast wave front becomes thinner as the adiabatic index approaches 1, the 

fall off point and thus the maximal growth rate location moves to higher wave number as 

the adiabatic index becomes smaller.   

 

 

3.3  Hydrodynamic Scaling for Blast Waves 

 

 Ryutov et al.11, in addition to providing an estimate for when a SNR enters a 

radiative phase as was discussed earlier in this chapter, examined the conditions for 

hydrodynamic similarity between two systems.  There are several assumptions that need 

to be made to derive such a scaling.  The first is that the system behaves as an ideal 

compressible hydrodynamic fluid.  This means that there is zero viscosity and heat 

conductivity.  In addition, for the specific case of scaling supernova remnants, Ryutov et 

al.11 assumed a polytropic gas, which provided them with the type of equation of state 

discussed in chapter 2 (specifically equation (2.2.9)).  They then examine the “Euler 

equations”: conservation of mass (2.1.1) and momentum (2.1.2) equations for the gas 

described earlier and a conservation of energy equation using the polytropic gas equation 

of state.  These three equations are given by: 
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Ryutov et al. then noted that these equations are invariant under the following 

transformation: 
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Using these relations one can say that two systems will behave similarly if their “Euler 

numbers” are the same, where the Euler numbers are defined according to: 
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The subscripts 1 and 2 denote mean properties of the two different systems.  One can 

similarly use the relations (3.3.4) along with the scale heights of the two systems h1 and 

h2 to compare the timescales at which the two systems evolve: 
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Because of the assumption of no heat conduction, this scaling system does not strictly 

apply to radiating blast waves, but they still provide a useful tool in comparing our 

laboratory experiments to SNRs.  We can take the astrophysical parameters from the 

work of Ryutov et al. and the laboratory conditions from our experiments and compare 

the two systems.  The laboratory values will be taken from a combination of measured 

and simulated values for blast waves in nitrogen gas produced by a 1000 J laser pulse.  

 

Quantity SNR Value Lab Value 

h (cm) 3.0*1016 1 

v (cm/s) 9.5*108 4*106 

p (dyn/cm2) 1*10-5 2*107 

ρ (g/cc) 1*10-22 1.5*10-4 

 

 Plugging these numbers into (3.3.5) yields Euler numbers of 3 for the SNR and 10 

for the lab condition.  Therefore, the Euler number is similar for the two systems.  We get 

from (3.3.6) that there is a conversion factor of 3*10-14 for transforming time scales 

between the SNR and the lab frame.  This means 1,000 years (3*1010 s) corresponds 

roughly to 1 ms in the lab frame, which is longer than most of the experiments.  It should 

be noted that the astrophysical parameters were taken for a young SNR (at the 13 yr 

mark) and for the radiative SNRs (usually 10,000 years to 15,000 years old) the 

parameters will vary somewhat with in general larger scales and smaller pressures both of 

which will tend to lower the conversion factor and bring the relevant time scales more in 

line with the laboratory experiments. 
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4.  Blast Wave Simulations 

 

4.1 Astrophysical Simulations 

 

 Over the years a number of simulations have been performed to look at various 

aspects of the theory of Vishniac et al.  Simulations of both super nova remnants (SNRs) 

and laboratory experiments have been done.  Mac Low and Norman23 performed 

simulations using the two dimensional numerical hydrodynamics code ZEUS-2D to 

confirm the growth rates predicted by Vishniac and Ryu19 for low polytropic index 

gasses.  They modeled self-similar, adiabatic, blast waves with an adiabatic index of 1.1 

and perturbed them with a theoretical eigenmode of the overstability.  The resulting 

perturbation evolution followed the theoretical growth rates predicted by Vishniac et al. 

while the perturbation was in the low amplitude limit.  However, perturbation growth 

saturated at higher amplitude due to the formation of transverse shocks created by gas 

colliding supersonically in the valleys of the perturbation.   

Blondin et al.22 performed a series of one dimensional and two dimensional 

simulations of expanding supernova remnants using the piecewise parabolic numerical 

hydrodynamics code VH-1.  Results from the one dimensional simulations show the SNR 

trajectory undergoing a massive unstable change as the SNR enters the radiative regime 

and the blast shell collapses.  After this period the blast wave trajectory slows down and 

approaches t0.33.  This is higher than either the pressure driven snowplow or momentum 

conserving snowplow regimes expected when a SNR goes fully radiative.  The authors 
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suggest that the reason for the difference with theory is the presence of a reverse shock 

traveling through the interior of the SNR increasing the thermal pressure pushing the 

shock front.  However, they caution this value may be affected by the assumption of an 

infinitely thin shock transition in the simulations. The two dimensional simulations 

performed provided several results.  The first result was a confirmation that the density of 

the interstellar medium (ISM) into which a SNR travels has a determining impact on 

whether or not an overstability can arise and the period over which it grows.  Blondin et 

al. found that the impact of overstabilities was proportional to the density of the ISM in 

the simulations, and that there was no evidence of the overstability if the ISM was too 

disperse.  In addition, they found it necessary to provide a seed for the perturbation in the 

background gas in order to see any effect from the Vishniac overstability.  Seeding with a 

high growth eigenmode of the approximate solution of Vishniac and Ryu18 a density 

perturbation as small as 0.1% began to show effects on the blast wave’s radial evolution.  

For a 1% density perturbation the oscillations on the order of 10% of the radius of the 

SNR were observed, suggesting the Vishniac overstability could indeed have a significant 

impact on the morphology of a SNR.   

 

4.2 Simulations of Laboratory Experiments 

 

 In addition to simulations of astrophysical situations, laser-driven blast wave 

experiments have also been simulated.  Laming and Grun have written two papers33, 34 

simulating previous experiments of Grun et al16.  In these experiments blast waves were 

created by illuminating foils immersed in five Torr of background gas with 100 J-200 J 
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laser pulses.  Blast waves traveling through both nitrogen and xenon gasses were 

simulated.  Using detailed atomic models to account for ionization in the blast wave, 

Laming and Grun provide predictions for many properties of the simulated blast waves at 

a number of time steps up to 400 ns after the creation of the blast wave.  At each time, 

they give predictions for the velocity of the shock front, the relative abundances of 

various ionization states of the gas, the temperature of the radiative precursor preceding 

the shock front, the Mach number of the shock front, the polytropic index of the gas in 

the front, the maximum growth rate of the Vishniac overstability, the mode number at 

which this maximum growth occurs, and the fractional energy loss due to radiation at the 

shock front (ε).  The polytropic index is calculated from the density jump across the 

shock in the simulations and the jump conditions listed in section 2.2, and the growth rate 

and mode number of the overstability are calculated from the approximate analytical 

formulas of Ryu and Vishniac18.  The results for the polytropic index and growth rates 

from the two papers differ somewhat while other parameters mostly remain the same.  In 

the earlier paper, blast waves in nitrogen are stable at all but the earliest simulated time 

(40 ns) and the authors speculate that at this time the blast wave is still in the ejecta 

dominated phase.  In the later paper blast waves in nitrogen have the potential to be 

overstable for 150 ns before entering a stable regime.  In general the polytropic index and 

maximum growth rates differ fairly significantly for nitrogen between the two papers.  

Blast waves traveling through xenon show a much smaller discrepancy.  In both papers, 

these blast waves are overstable for approximately 200 ns, or until they drop below 25 

km/s.  In the earlier paper the polytropic index then quickly increases to a more stable 

value.  In the later paper the behavior is the same for the first 200 ns but the late time 
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behavior in the later paper maintains a lower polytropic index for a longer period of time.  

Generalizing the xenon results, Laming and Grun suggest there is an approximate cutoff 

velocity of 25 km/s for the overstability to occur in blast waves traveling through 5 Torr 

of xenon gas.  They also suggest that at higher gas densities there will be depopulation of 

excited energy levels by electron collisions that will reduce the radiative cooling rate for 

blast waves of similar velocity.  This means that the cutoff velocity for the overstability 

will likely rise with the gas pressure.  They also attribute the depopulation of excited 

energy levels by electron collisions as part of the reason for the reduced chance for 

overstability in nitrogen as opposed to xenon. 

The experiments simulated by Laming and Grun differ from our experiments 

where the blast waves are produced by ~ 1kJ on pin targets.  However, the spatial scales 

and velocities observed in their experiments were very comparable to those we observe 

(using the different target geometry) making their theoretical predictions particularly 

relevant.  Since the temporal evolution of their simulated blast waves differ significantly 

from the ones seen in our experiments, we chose to compare blast waves traveling with 

similar velocities.  For our experimental blast waves at 100 ns (approximately the time 

the blast wave encounters the wire array in our experiments), our blast wave is traveling 

at ~ 35 km/s.  Laming and Grun33 predicted an effective polytropic index of  1.23 for 

blast waves with this velocity which they later revised to 1.1 34 in the second paper. 

 In support of our specific experiments we have performed simulations using the 

one dimensional Lagrangian radiation hydrodynamics code HYADES35.  This code 

employs a tabular equation of state (EOS) and diffusive radiation transport with user 

defined photon groups.  To simulate our problem we simulated a 500J or 1 kJ, 1 ns, 527 
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nm wavelength laser pulse incident on a 0.25 micron radius plastic target immersed in 10 

Torr of nitrogen gas (1.6 e-5 grams per cubic centimeter).  We employed the SESAME 

EOS number 5000 from Los Alamos National Laboratory as the EOS for nitrogen gas.  

All simulations were run in spherical geometry.  Simulations were run for approximately 

1 microsecond in order to capture the dynamics of the blast wave during the period that 

perturbations evolved (~150 ns -700 ns).  Simulations took between 1-20 hours to run 

depending on a number of factors including the energy of the laser pulse and the number 

of zones used.   

The first attempt at simulations included all default parameters and no radiation as 

well as an aluminum target material.  This resulted in a blast wave that was too strong 

and traveled too quickly.  In addition, in an attempt to reduce numerical errors, the sizes 

of zones adjoining one another were kept to approximately the same size.  Due to the 

large density difference between the solid aluminum and the low density nitrogen gas 

there was a mass mismatch between the last zone of the aluminum pin and the first zone 

of the nitrogen gas.  This mismatch caused density oscillations in the gas.  Matching the 

masses caused the same problem due to size mismatch.  It was found that an intermediate 

zone size for the nitrogen that did not match either the size or mass well minimized the 

oscillations.  Eventually, an equation of state was found for Teflon, which allowed us to 

change the target to this material and more closely match the experiment.  This further 

reduced the mass mismatch and fully eliminated the oscillations.  Other improvements 

discovered during these early simulations include parameters that can be changed to 

reduce the time for a simulation to run.  Output from a simulation includes a .tmf file that 

lists how long each time step takes to run and the process that limits the size of the time 
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step.  It was found that the courant time was the predominant limiting time factor.  This is 

the time that it takes for the shock front to cross one material zone.  This time step could 

be increased by changing the dtcurm parameter.  This parameter is the multiplier for the 

courant time step and can be increased from the default value of 1 to 2 without causing 

problems.  An additional error that was discovered during this period was associated with 

the energy of the laser pulse.  Entries for the laser in Hyades are input in terms of laser 

intensity in units of Watts per square centimeter.  Originally, we used the solid target as 

the point at which the intensity was to be calculated.  In fact, the code assumes a one 

square centimeter area for the beam and intensities should be entered in terms of this 

value.  Because of this the laser energy in some early simulations was one megaJoule 

instead of one kilaJoule.    

The main parameters that were adjusted were the electron flux multiplier (flxlem) 

and electron conduction multiplier (condem).  We changed these in order to match the 

simulated trajectory to that observed during experiments.  These were modified 

extensively in early experiments but it was later discovered that they need to be kept to 

within a factor of a few of their default values in order to maintain a physically viable 

simulation.  Within these boundaries, changing these parameters did not have much of an 

effect on the blast wave trajectory.  The change that created the greatest change on the 

trajectory was inclusion of radiation.  This provided a means for the blast wave to cool 

and slowed the blast wave down.  However, the trajectory could not be matched well 

with a 1000 J laser pulse.  Using a 500 J laser pulse resulted in a trajectory that much 

more closely matched the experiment.    
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The primary output examined was the density ratio across the shock front, in 

order to gain an estimate of the polytropic index using the jump conditions.  The density 

profile of the shock during the period of measured perturbation evolution is seen in 

Figure 10 for a 1000J laser drive and in Figure 11 for a 500J laser drive.  For the 1000J 

drive, prior to 300 ns, the blast wave decayed from a very large density ratio across the 

shock front, consistent with a polytropic index less than 1.2 and growth of the 

overstability.  After 300 ns, the density ratio experienced quasi-stability and decayed 

slowly from a density ratio consistent with a polytropic index of 1.25 for approximately 

500 ns.  After approximately 800 ns total time, the density ratio began falling as the blast 

wave expanded and cooled.  From these results, we took the approximate polytropic 

index of the nitrogen gas in our experiment to be 1.25 during the period from ~150 ns – 

700 ns for purposes of comparison to experimental results.  However, the value of 1.25 is 

in good agreement with the Laming and Grun result from their 1st paper.  For the 500 J 

laser drive the blast wave seems to smoothly decay over the entire time range.  Over the 

time period shown in Figure 11, the density ratio implies a polytropic index ranging from 

1.1-1.55.  The higher polytropic indices seen here corresponds more closely to the values 

implied by experiment that will be discussed later.  There were some features in the 

simulation that indicated that these values may be somewhat in error.  The most 

important of these is the lack of a significant radiative precursor in the simulation data, 

which is significantly different from the results of experiments. This precursor shows up 

clearly in the experimental data, and its absence in the simulation may artificially 

increase the density ratio and thus lower the polytropic index.     
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Figure 10. Simulation results from Hyades for spherical blast waves produced in 10 Torr (1.6 e -5 
g/cc) of nitrogen gas.  Density profiles versus position are seen for a number of different times.  
Times are relative to a 1000J laser pulse incident on a 0.25mm radius spherical plastic target. 
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Figure 11. Results of Hyades simulation of blast wave traveling in 10 Torr (1.6 e -5 g/cc) of nitrogen 
gas.  The blast wave was created by a 500J laser pulse incident on a 0.25mm radius plastic sphere.  
There is a strong decrease in the strength of the blast wave with time. 

The reason the radiative precursor does not show up properly in the simulations is 

most likely related to how radiation is handled in the codes.  If all possible radiative 

transitions in the hot gas were properly modeled and the action of each radiated photon 

tracked the computing time necessary to simulate any experiment would be prohibitively 

long even for the fastest computers.  To circumvent this problem, radiation 

hydrodynamics codes average the properties of the gas at different photon energies and 

use a diffusion approximation to determine the action of the radiation.  The size of the 

“photon groups” the radiation is broken into can be set by the user, allowing high 

precision around known strong transitions, but there is always some averaging.  In 
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addition, instead of tracking the behavior of each individual photon, the mean action of 

photons is determined by the diffusion approximation that is based on an assumption of 

local radiative thermal equilibrium, which will not be the case for an optically thin blast 

wave that has non-local radiation transport.  These approximations to radiation transport 

used in the hydrocodes to make computation times reasonable may be responsible for the 

discrepancy in the radiative precursor between experiment and theory. 
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5.  Experimental Setup 

 

A schematic of the primary experimental test bed used for the experiments 

described in chapter 7 is shown in Figure 12.  For all of our experiments, a solid target 

was placed in a target chamber filled with less than an atmosphere of background gas.  A 

drive laser illuminated one side of the solid target and created our blast waves.  A second 

independent probe laser was fired at a controllable time later and was the basis of our 

diagnostics.  
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Figure 12. Layout of experimental setup for use with Z-Beamlet laser.  Up to 1000 J level drive beam 
entered the experimental chamber from the left and illuminated a solid target.  A probe beam used in 
both an interferometer and schlieren diagnostic starts at the top of the drawing.  The four 
beamsplitters used in he diagnostics are labeled B/S. 

5.1 Laser Systems 

 

Our experiments were conducted at two different laser facilities.  Early 

experiments at 10 J and 100 J drive energy were conducted on the Janus laser at 

Lawrence Livermore National Laboratory36.  This laser fired 1 ns pulses at 1054 nm 

wavelength every ten minutes at the 10 J level or every 30 minutes at the 100 J level.  
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The amplifiers in the Janus laser are made of doped glass which has poor thermal 

conductance.  It is the cool down time for the glass that sets the shot repetition rate for 

this laser.  The 10 J level was known as rod shots due to the fact only the rod amplifiers 

were used during these shots.  The large glass slab amplifiers that provided the final 

amplification to the 100 J level have large volumes and so take over 20 minutes to cool 

after a shot, leading to the 30 minutes between system shots, as the 100 J shots are 

known.  The drive laser was focused by a 1.5 m focal length lens to target chamber 

center.  A separate few mJ, 532 nm wavelength laser provided the probe beam in these 

experiments.  The probe pulse was 10 ns long, but the camera used in the diagnostics was 

electronically gated to 2 ns.  A photodiode at the center of the target chamber was used to 

initially measure the relative timing between the two laser pulses to approximately 1 ns.  

The timing of the probe pulse relative to the drive laser could then be adjusted using a 

digital delay generator.  In addition to the drive and probe lasers there was an alignment 

laser available.  This was a low energy pulsed laser that emitted multi-ns pulses at 1054 

nm wavelength with a 10 Hz repetition rate.   

Experiments at the 500 J and 1000J levels were conducted on the Z-Beamlet laser 

at Sandia National Laboratories37.  Pulses from this laser can be adjusted from 600 ps to 2 

ns in length.  For our experiments 1 ns long pulses were employed.  The final focusing 

lens for this laser had a focal length of 90 cm.  On target, the laser light is at a 527 nm 

wavelength but during the amplification stages this laser operates at 1054 nm 

wavelength.  A KDP crystal is used to convert the laser light to 527 nm after all the 

amplification has been done.  A dichroic mirror prior to the target chamber is coated to 

reflect 527nm light and pass 1054 nm light.  However, a small amount of 1054 nm light 
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is reflected and enters the experimental chamber.  This light has a different focal spot 

than the 527 nm light and passes by the solid targets set up at the target chamber center.  

However, it can affect the gas in the chamber in the region of its laser cone, and this 

effect must be kept in mind when looking at these regions.  The glass amplifiers on this 

laser are significantly larger than those on the Janus laser.  Therefore, a three hour cool 

down period was required between shots on this laser in order to maintain a small focal 

spot, limiting experiments to three shots per day.   

The probe laser used in conjunction with these experiments, known as the NLS 

laser, was capable of firing up to 10J, approximately 150 ps pulses at 1064 nm 

wavelength but was operated at a level that produced 80 mJ pulses that ranged from ~ 

130 ps- 250 ps in duration.  This was achieved by firing only two of the five NLS 

amplifiers and firing the second of these at less than full power.  All of the amplifiers on 

the NLS laser are rod amplifiers and the two used for probing our experiment have the 

smallest radii of the five.  Because of this, the limiting factor for the shot rate on NLS 

was charging of the capacitor banks that powered the flash lamps exciting the rod 

amplifiers.  Charging took approximately three minutes.  The output of the regenerative 

amplifier (regen) of this system was employed for alignment purposes.  The regen 

operated at a 5 Hz repetition rate and put out laser pulses with a few mJ of energy, but 

otherwise identical to the other pulses from the system. 

There was some variation in the pulse length of the NLS laser, from ~125 ps-300 

ps.  These pulse lengths were all considerably shorter than the 2 ns probe duration in the 

Janus experiments.  In addition, blast waves were examined between 25 ns and 10 µs 

after the drive laser hit the target, and the pulse durations measured were all short 
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compared to these times.  Thus a small variation in the probe pulse time has no effect on 

the measurements.  The relative timing between the drive and probe lasers was again 

measured using a photodiode and adjusted to ensure a less than 1 ns uncertainty in the 

relative timing.   

The NLS laser is not relay imaged and so the beam quality can suffer, especially 

at higher energies.  By keeping the probe laser energy at a minimum, the effects of 

propagating the beam were minimized.  However, a significant amount of scattered light 

from the drive laser reaches the diagnostic cameras.  Therefore the probe beam needs to 

be intense enough to be distinguished from the background noise.  It was found that with 

a 70 mJ – 90 mJ level of energy the probe beam could be discerned from the background 

noise and adequate beam quality was maintained and so this level was used.  The NLS 

laser is housed directly below the platform where the experimental area is located.  

Therefore the beam entered the area through a hole directly beneath the chamber, where 

it was deflected onto the table and periscoped up to the correct height.  The point labeled 

“probe beam” in is the location of the periscope. 

 

5.2 Gasses and Target Materials 

 

The vacuum target vessels used in the experiments were evacuated to less than 

100 milliTorr pressure and then filled with gas via a leak valve to the desired pressure.  

Due to the fact that a thermocouple pressure gauge is inaccurate when measuring the 

pressure of gasses like xenon and helium, a Baratron gauge was used to measure the 

pressure of gas in the chamber.  The thermocouple pressure gauge is unsuitable for a 
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noble gas because the low dipole moment of these gasses causes the gauge to read low.  

In addition, for a heavy gas like xenon, the gas tends to stay inside the gauge head, 

causing the gauge to be inaccurate for a while even when measuring other gasses.  The 

pressure of gas in the chamber varied with the experiment and for most shots was set by 

theoretical considerations.   

The work of Ryutov et al. on supernova remnant discussed in chapter 3 describes 

the conditions under which a blast wave will become radiative.  Experiments were 

designed to meet these criteria and the gas pressure in the chamber was set to match the 

expected temperature of the blast wave.  For early 10 J and 100 J experiments, the gas 

pressure was 5 Torr the majority of the time.  To ensure we were not missing the proper 

region of parameter space, an experiment was performed to examine the effect of varying 

the pressure on the blast wave evolution, specifically looking for enhanced growth of 

perturbations.  There was no noticeable change in the perturbation evolution found.  For 

the 500J and 1000J experiments the total gas pressure was maintained at 10 Torr.  A 

variety of gases was used in the experiments including xenon, nitrogen, helium and 

mixtures of nitrogen and xenon in order to examine the effects of a change in the 

polytropic index of the background material.  The polytropic index of a gas will vary with 

the amount of radiation emitted, which varies with the atomic number of the gas. 

In order to launch a blast wave into a background gas, it is necessary to 

concentrate the laser energy in the midst of the gas.  Since a low pressure gas absorbs 

laser light poorly a solid target is necessary to absorb the laser energy and launch the 

blast wave.  However, a low mass target is desired in order to allow the majority of the 

energy to be coupled into the blast wave instead of being used to vaporize the target.  The 
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downside of the solid target is that it can cause a deviation from sphericity in the resulting 

blast wave.  If the target is not immediately vaporized by the laser pulse the resulting 

explosion will be partially slowed by the remainder of the target, this means that the 

energy of the part of the explosion will be greater in the direction towards the drive laser 

than away.  In our experiments, we have found that this causes the length of the blast 

wave to be greater along the laser propagation direction than perpendicular to it. 

At both laser facilities the solid targets could be manipulated in three dimensions 

by use of translation stages.  This allowed the target to be placed precisely at the target 

chamber center.  For Janus targets a CW laser coincident with the drive beam was 

employed to position the target.  By moving the target so that all the laser light was 

blocked, it could accurately be placed at the focus of the drive laser.  For Z-Beamlet 

targets a pair of cameras with a highly magnified view of the center of the target chamber 

were placed to aid in target alignment.  The two cameras were place at the outside of the 

target chamber approximately 60° offset from one another relative to target chamber 

center, on ports 30° above and below the port where the drive laser entered the chamber 

as is illustrated in Figure 13.  The two fields of view intersected at target chamber center.  

A CW alignment beam coincident with the drive beam was also employed to aid in target 

alignment.  The position of the target transverse to the drive laser could be adjusted on 

either camera, and the focal position was set when the vertical position of the alignment 

beam on the target was identical on both cameras.  As is illustrated in Figure 13, if the 

target is in the wrong focal position the alignment beam will appear above the center of 

the image for one camera and below for the other.  The camera systems were set up so 
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that the field of view of the camera images was only a few millimeters and the target 

could be positioned with a high degree of accuracy.   

 
Figure 13. Illustration of the side view of the target chamber used for experiments on the Z-Beamlet 
laser.  A CCD camera was placed on either side of the drive laser entry port.  The fields of view of the 
two cameras intersected at target chamber center.  Any misalignment of the solid target along the 
focal axis of the drive laser would cause images of an alignment laser coincident with the drive laser 
to appear at different positions on the two cameras. 

Since the Janus laser could fire every 10 min – 30 min depending on the energy 

level, it was desirable to be able to fire multiple times without venting the target chamber 

in order to change targets.  This made it necessary to have a target that could withstand 
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multiple laser pulses.  Therefore, a stainless steel sewing needle that tapered from a 1 mm 

radius tip to a point was used as the target.  This allowed multiple shots to be fired on the 

tip portion of the needle before reaching a portion of the target that was too thick to be 

entirely ablated, necessitating a change of targets.  For later experiments on the Z-

Beamlet laser, the laser could only be fired every 3 hours, eliminating the need for a 

multi-shot target.  Therefore smaller lower mass wire targets were employed that were 

completely destroyed on every shot.  The targets for the Z-Beamlet experiments were 

held in place by slip fitting them into a piece of coaxial cable that has had its center wire 

removed and an appropriate sized hole bored into the tip.  The type of target was changed 

several times during the course of early experiments on this laser.  Initially, a 0.25 mm 

radius copper wire was chosen.  The radius was quickly increased to 0.5mm as images 

showed a significant amount of laser light passing by the target.  While this was likely 

mostly unconverted light since this light has a different focal spot than the main drive 

energy and only a small fraction of the energy in the beam, it was significant enough to 

disturb the background gas and interfere with the experimental measurements.  

Eventually, the target material was changed to nylon.  A plastic target offered two 

advantages over the copper target.  The first was less radiation from the target.  Some 

separate experiments carried out by collaborators on the Janus laser confirmed that 

radiation from the target material can affect the evolution of the blast wave somewhat and 

this is also suggested in our data.  Using a plastic target made it easier to isolate and 

diagnose the effects of radiation from the shocked gas.  In addition, explosion of copper 

targets created debris that impacted the windows of our chamber.  When the probe beam 
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passed through these windows, the debris affected the beam and showed up in the 

diagnostics interfering with measurements.   

 

5.3 Wire Arrays 

 

For a number of experiments, we induced regular perturbations on the surface of 

blast waves.  Initially, for a few shots on the Janus laser, a pin was placed in the path of 

blast waves in xenon for 100J level drive energies.  However radiation from the blast 

wave created a blast wave off the pin that interfered with the main blast wave.  In 

addition the evolution would be difficult to compare to theory because with only one pin 

in the blast wave path the modal content would be very large.  This is due to the fact that 

the Fourier transform of a single pulse has a large number of frequency components.  To 

minimize the modal content it was desirable to induce as many wavelengths of the 

perturbation as possible around the spherical blast wave.  Therefore we fielded improved 

wire arrays for later experiments. 

For experiments on the Z-Beamlet laser wire arrays with several wires were 

created.  The arrays were designed so that the spacing of the wires on the arrays could be 

adjusted between shots to increase the available parameter space for experiments.  During 

preliminary experiments the wire array employed was made of 1/16” thick aluminum and 

strung with tantalum wires.  We tried to attach the wires by soldering them, but soldering 

does not work on aluminum.  Eventually, we arc-welded the wires into place and this 

worked, but was time consuming and difficult.  This array was placed at a 45° vertical 

angle above the target plane on the side of the target away from the drive laser.  This 
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array met with limited success.  The angle made it difficult to place the array precisely 

and since the wires were arc-welded they could not be modified or repaired between 

shots.  In addition, the fundamental laser light that entered the chamber visibly affected 

the gas on the back side of the target in its focal cone, adding complication to the 

experiment.  For later runs new arrays were constructed that worked much better.    

Two different wire arrays were employed during our experiments.  These arrays 

were placed above the target to avoid the effects of the fundamental light entering the 

chamber.  The first array was constructed of 1/8“ thick brass and had a square clear 

aperture approximately 3 cm on a side.  Quarter-millimeter scale grooves were machined 

into the array at two millimeter intervals.  Through these grooves were strung 30 gauge 

tin-copper wires.  To string the wires, one long wire was wrapped around a screw in the 

array and then wrapped around the array through the appropriately spaced grooves.  The 

wire was then held in place at each end with an aluminum bar and paper padding.  The 

wire was clipped on the backside of the array so that only the portions of the wire 

necessary for the experiment remained.  This array was much easier to restring than the 

preliminary model and could be modified between shots.  An illustration of this array is 

shown in Figure 14.  Figure 15 shows an image of this array in the target chamber.  The 

wires were spaced 2, 4, or 6 mm apart in order to vary the mode number of the induced 

perturbation.  A schematic for a second, cylindrical, array is shown in Figure 16.  This 

array was designed to be half of a 1 cm diameter cylinder with flat extended sides for 

holding the array and was constructed of stainless steel so that it would maintain its 

shape.  Grooves on this array were spaced every one millimeter and wires were spaced 

every 2, 3 or 4 mm.  The wires used in this array and the process for stringing this array 
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was identical to that for the flat array except that the flat aluminum bar was replaced by a 

stainless steel insert that matched the shape of the array. 

 
Figure 14. Illustration of planar wire array.  The inner square where the wires are strung is 3 cm on 
a side.  The wires were 30 gauge copper or tin-copper and there are grooves every 2 mm for wires. 
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Figure 15. Picture of the planar wire array inside the Z-Beamlet target chamber along with a target 
wire.  The drive laser enters from the right of the picture and the probe beam enters the chamber 
through a port just to the left of the port through which the picture was taken and exits through the 
opposite side. 

 
Figure 16. Illustration of cylindrical wire array.  The array was designed to be one half of a 1 cm 
diameter wire array with extended sides so the array could be mounted.  Grooves were cut every 1 
mm on opposite sides of the array to allow 30 gauge copper or tin-copper wire to be strung. 
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5.4 Diagnostic Systems 
 

 Two main types of diagnostic were employed during the experiments, schlieren 

diagnostics and various interferometers.  For experiments on the Janus there was only one 

camera to record images for these experiments and so only a single diagnostic could be 

fielded at a time.  For most shots a schlieren telescope was employed, but both a 

Nomarski and a Michelson interferometer were employed for some shots.  For the 

experiments on Z-Beamlet two cameras were available and a Mach-Zehnder 

interferometer was fielded on most shots in addition to a schlieren telescope.  For these 

experiments four 50/50 beamsplitters were used at the four corners of the interferometer 

prior to the imaging lens.  The beamsplitter the probe beam hits just prior to entering the 

chamber (B/S A from Figure 17) and the beam splitter preceding the imaging lens of the 

interferometer (B/S D) separate and recombine the two legs of the interferometer 

respectively.  The beamsplitter that separates the probe beam after the chamber (B/S C) 

passes some probe light for use in the schlieren diagnostic.  In order to maximize the 

contrast between light and dark fringes in an interferometer it is necessary to equalize the 

intensity between the two beams of the interferometer.  Therefore a fourth beamsplitter 

(B/S B) was employed to compensate for the light lost at beamsplitter C to the schlieren 

diagnostic.  The original beamsplitters in this setup proved to be unsuitable possibly 

because only one side of the optics was coated and thus they were replaced. 
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Figure 17. Layout of experimental setup for use with Z-Beamlet laser.  Up to 1000 J level drive beam 
entered the experimental chamber from the left and illuminated a solid target.  A probe beam used in 
both an interferometer and schlieren diagnostic starts at the top of the drawing.  The four 
beamsplitters used in he diagnostics are labeled B/S. 

The probe beam entered and exited the experimental chamber through 0.5” thick 

windows of 4” diameter coated to minimize reflection at both the fundamental (1064 nm) 

and second harmonic (532 nm) frequency of the probe beam.  After early experiments 

when debris from metal targets damaged some of the windows, similarly coated 0.25” 

thick windows were used as debris shields and placed between each window and the 

target. 

 For all experiments CCD cameras were used to record images from the 

diagnostics.  For the Livermore experiments, a Peltier cooled CCD camera from Roper 

Scientific was used.  This camera had 16 bit dynamic range and a chip approximately 1.3 
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cm on a side.  For the Z-Beamlet experiments three different types of CCD camera were 

used.  The first cameras used were similar to the cameras used at Livermore and had 

Peltier cooled chips approximately 1.3 cm on a side and 16-bit dynamic range.  These 

became unavailable and for one run Pulnix brand cameras with 8-bit dynamic range and 

un-cooled chips 13 mm on a side were employed.  After this new cameras were obtained 

from Roper Scientific that had 16-bit dynamic range and Peltier cooled chips over 2 cm 

on a side.   Interference and neutral density filters were placed in front of the cameras in 

order to isolate the probe light from any other sources and control the intensity of probe 

light incident on the cameras.  Because some of the unconverted 1054 nm light from the 

Z-Beamlet laser was scattered in the chamber two 4 nm line width interference filters 

were necessary in each diagnostic leg to properly isolate the 1064 nm wavelength probe 

laser light from this 1054 nm wavelength light.  One interference filter was taped to the 

front of each camera in order to prevent it from seeing the room lights.  The probe light 

would occasionally ablate material from the schlieren diagnostic pin creating a small 

plasma.  The emission from this plasma created a bright area on the schlieren image.  To 

combat this we put one or two neutral density filters with total optical density (OD) 

between 1.5 and 2.5 prior to the beam block wire.  This eliminated the plasma on the 

beam block wire and improved the diagnostic.  The remaining neutral density filters for 

the schlieren diagnostic of total OD 3 along with an interference filter were placed in a 

mount just preceding the camera.  The filters in the interferometer beam path were setup 

in a similar method, with the pre-focus neutral density filters being employed to avoid 

burning the filters just after the focus, when there was little space before the camera and 

the intensity of the beam was high.  On the Janus shots only one broadband interference 
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filter centered at 532 nm was necessary in addition to the neutral density filters placed 

just before the camera.  The probe beam on these experiments was weaker and therefore 

there was no additional plasma created on the beam block wire. 

 Telescopes were used to image the targets onto the cameras.  Because the scale 

length of the blast waves reached several centimeters and the CCD chips were only 1 cm 

- 2 cm on a side in size, the telescopes were set up so that they demagnified the image of 

the target.  The Z-Beamlet experiments were set up with approximately a factor of 4-8 of 

demagnification.  During the Livermore experiments there was a lower demagnification 

factor and in order to follow the evolution of the created blast waves the target was 

moved relative to the probe beam.  Using the target manipulation translation stages it was 

possible to move the target relative to the probe beam axis.  The focus of the drive beam 

could then be adjusted using a translatable lens to match the new target position.  In order 

to determine the spatial scale in our diagnostics, images of a clear plastic ruler were 

taken.   

During experiments on the Janus laser, only one diagnostic was fielded at a time.  

A two lens telescope was employed as part of the schlieren diagnostic and to image the 

target when the interferometer was employed.  For the experiments at Z-Beamlet the 

imaging systems for the interferometer and schlieren diagnostics were separated.  The 

schlieren diagnostic initially utilized a single lens imaging telescope with an 

approximately 1 m focal length lens.  However, significant spherical aberration was seen 

on images from this setup.  Therefore a two-lens imaging telescope with an 80 cm focal 

length for the first lens in the pair was set up for later runs.  The focal length of the 

second lens varied from 10 cm to 20 cm to vary the demagnification factor of the 
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telescope.  For the interferometer a single lens telescope was utilized.  This telescope had 

a reduced demagnification factor as compared to the two lens telescope for the schlieren 

telescope.  The field of view is inadequate for examining the blast wave at late times, but 

provides a magnified view for early times.  In order to allow the easiest set up of the 

interferometer, it was desirable that all imaging occur after the beams had been 

recombined.  However, due to space considerations, this made it very difficult to employ 

a two lens telescope.  If the single lens telescope were set up so that the demagnification 

factor was equivalent to that of the two lens telescope two problems arose.  The first was 

that the focus of the lens became very tight and it was difficult to put any filters between 

the lens and camera without damaging them.  Secondly, the f number of the system 

became exceedingly small and the image on the camera exhibited significant spherical 

aberration.  Therefore the reduced demagnification factor single lens telescope was 

employed for most experimental runs. 
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6.  Diagnostics 

 

 During the course of the experiments described in the next chapter a number of 

different diagnostics were employed.  This included several different types of 

interferometers including a modified Michelson, a Nomarski, and a Mach Zehnder.  In 

addition, the primary diagnostic for most experiments was a schlieren telescope.   

 

6.1 Interferometers38   

 

 In order to measure the electron density profile in front of our shock waves we 

employed a number of interferometers.  These diagnostics rely on the dependence of the 

index of refraction of plasma on electron density.  This index of refraction change can 

affect an electromagnetic wave traveling through the plasma, such as a laser beam.  It is 

difficult to calculate the exact effects of a non-uniform plasma on a laser beam.  

However, when the wave vector changes very little over the distance of a wavelength, the 

WKBJ approximation39 applies.  In this case the phase accumulated by a laser beam 

when traveling through plasma φ is given by: 

 

 k dl Ndl
c
ωφ = • =∫ ∫

G G
 (1.1) 

 

 where l is the distance along the ray path and k is the solution of the homogeneous 

plasma dispersion relation for the angular frequency ω of the laser.  N is the refractive 
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index of the plasma, which in the case where there are negligible magnetic fields can be 

written as: 

 
2
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c

nN
n

ω
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Here ω is the frequency of the incident laser, ωp is the plasma frequency and e, 

me, and ne are the charge, mass, and density of electrons in the plasma.  The critical 

electron density, nc, is defined as the density where the plasma frequency ωp equals the 

frequency of the laser beam ω.     
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For a two-beam interferometer where the electric fields of the two beams are 

given by: 

 1 2exp exp )E (iωt) and Ε (iωt iφ  +  (1.5) 

 

The combined field is given by: 

 1 2 exp )) exptE (E E (iφ (iωt)= +  (1.6) 

 

And the intensity of the combined beams is given by: 
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When the there is perfect alignment of the beams, φ is a constant and the output of 

the interferometer is a constant intensity field.  By creating a small misalignment of the 

interferometer beams, it is possible to set up a pattern of interference fringes spatially 

across the combined beam before the experiment.  The phase lag in the experimental arm 

of a two-beam interferometer as compared to the reference arm is proportional to the 

difference in the index of refraction encountered by the probe beam.  Assuming a 

negligible index of refraction (N ≅ 1) in the reference arm of the interferometer this is just 

the difference of equation (1.1) applied to both arms: 

 

1
2ω ωφ (N-1) dl 1 1 dl

c c
e

c

n
n

 
  ∆ = = − −    

 
∫ ∫  (1.8) 

 

If the electron density in the plasma is much lower than the critical frequency (or 

equivalently the frequency of the incident laser beam is much higher than the plasma 

frequency) then equation (1.8) simplifies to: 

 e
c

ω∆φ n dl
2cn

≈ ∫  (1.9) 

 

The phase change created by traveling through some amount of plasma, such as 

the plasma that makes up the blast waves in our experiments, can be measured spatially 

across the beams.  Practically this means setting up the interferometer without anything in 

the experimental area.  Then any change in the image is due to the experiment and the 
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phase change at any point can be measured.  This phase change can then be inverted 

using equation (1.9) to give the integrated electron density through the experimental area. 

Three different types of interferometer were fielded during our experiments at 

different times: modified Michelson38, Nomarski, and Mach Zehnder38.  The Michelson 

and Nomarski interferometers split the probe beam after it had passed through the 

experimental area and relied on the fact that the probe beam was significantly larger than 

the interesting experimental space.  Due to this fact, the portions of the beam that had 

gone through pristine gas could be interfered with those portions enclosed by the blast 

wave. 

 

6.1.1 Michelson Interferometer 

 

A diagram of the modified Michelson interferometer is shown in Figure 18.  This 

setup is slightly modified from what is traditional.  The use of a corner mirror in one arm 

of the interferometer inverts the image in that arm.  In our setup the corner mirror 

inverted the image vertically.  This allows an image in one half of the beam to be 

interfered with undisturbed probe light in the other half.  Since the entire image is 

interfered with a vertically inverted version of itself, two images of the experimental area 

will appear.  It should be noted that in a standard Michelson interferometer the object to 

be studied would be paced in one of the arms of the interferometer.  In this setup the 

probe beam is interfered with a reference beam from the other arm instead of an inverted 

image.  The corner mirror in the modified setup is replaced by a flat mirror in the 
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standard setup and only one image of the experiment appears.  A sample image of data 

from our modified Michelson interferometer can be seen in Figure 19. 

 
Figure 18. Diagram of a modified Michelson interferometer.  The probe beam enters from the top, is 
split by the beamsplitter in the center, enters both arms, and is recombined before entering the 
detector.  Use of a corner mirror in one arm causes the reflected image to invert allowing the 
interference of one half o the beam with the other half. 
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Figure 19. Sample image from Michelson interferometer.  The probe beam has been interfered with a 
vertically mirrored image of itself.  The image is of a blast wave traveling in 5 Torr of nitrogen gas 
produced by a 100 J laser pulse 100 ns earlier. 
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6.1.2  Nomarski Interferometer 

 

The Nomarski interferometer makes use of a Wollaston prism to split the probe 

beam based on polarization.  A diagram of this type of interferometer is shown in Figure 

20.  Probe light passes through the experimental region.  It then goes through a polarizer 

to ensure it is linearly polarized with an angle of polarization 45° offset from the axis of 

the Wollaston prism.  The next item in the optics chain is a lens that images the target 

onto the detector.  Then the Wollaston prism splits the probe light into two orthogonal 

polarizations.  The two polarizations are sent out at a slight angle relative to each other.  

A second polarizer set along the original polarization direction of the probe light 

recombines the two beams, creating an interference pattern which is observed.  A sample 

image can be seen in Figure 21.  Much like in the modified Michelson interferometer, the 

undisturbed part of the probe beam is interfered with that portion that passed through the 

experimental region and two images of the blast wave are created. 

 
Figure 20. Diagram of Nomarski interferometer.  The first polarizer ensures the probe light has one 
polarization.  The Wollaston prism splits the probe light into two orthogonal polarizations, each 45 
degrees off that of the original probe light.  The final polarizer recombines the light back into the 
original polarization and creates the interference pattern. 
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Figure 21. Image from Nomarski interferometer.  Notice double image, one from each polarization of 
light.  The image is of a blast wave traveling in 5 Torr of nitrogen gas produced by a 10 J laser pulse. 

 

6.1.3  Mach-Zehnder Interferometer 

 

 The Mach Zehnder Interferometer is somewhat different from the modified 

Michelson and Nomarski interferometers described previously in that the experimental 

image is interfered with a separate reference beam and not a part of the same beam.  This 

difference enabled imaging of larger areas as there is no need for ½ the probe beam to go 

through undisturbed gas.  A diagram of this type of interferometer is shown in Figure 22.  

In this interferometer the probe beam is split before entering the experimental area into 

imaging and reference arms.  The imaging arm passes through the experimental area 

experiencing a phase shift.  The reference arm passes through empty space.  This allows 

the change in index of refraction due to the plasma in the experiment to be measured.  A 
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sample image from the Mach-Zehnder interferometer used in our experiments is seen in 

Figure 23. 

 
Figure 22. Diagram of Mach Zehnder interferometer.  The probe beam is split into imaging and 
reference arms.  The imaging arm passes through the area of the experiment and the reference beam 
through empty space.  The two arms are recombined at the end of the interferometer. 
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Figure 23. Sample Mach-Zehnder Interferometer image.  The probe beam is interfered with a 
portion of the beam that had been split off prior to entering the experimental image, thus there is 
only one image.  The image is of a blast traveling in xenon gas created by a 1000 J laser pulse. 

6.1.4  Abel Inversion38 

 

 The electron distribution for a cylindrically symmetric plasma can be inferred 

using a technique known as an Abel inversion.  This technique allows any quantity for 

which the available measurement is a chord integral in a cylindrically symmetric media 

to be converted to a function of radius.  In Cartesian coordinates, the chord integral takes 

the form: 
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Where x is the dimension the laser travels, y is the perpendicular dimension along which 

measurements are made and f(r) is the quantity to be measured as a function of radius, 

electron density in our experiments, and F(y) is the measured quantity integrated along 

chords through the material.  The coordinate system is illustrated in Figure 24.  The 

integral over x in (2.1) can be converted to an integral over r: 

 
2 2
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∫  (2.2) 

 

This transform can then be inverted to yield an equation for the radial distribution of our 

quantity given the chord integrals: 
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∫  (2.3) 

 

In order to get an absolute measurement from equation (2.3) it is necessary that f(a) = 0.  

In practice this means that a small amount of the probe beam must pass through 

undisturbed gas.  Using (2.3), we can get the radial electron density distribution from the 

chord integrals derived from the interferometer. 
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Figure 24. Illustration of coordinates used in Abel Inversion.  The laser propagation direction is x 
and y is the perpendicular coordinate in the image along which a phase measurement is made.  The 
full radius of the cylinder is a and the radial coordinate is r. 

 

6.2  Dark-Field Imaging 

 

 Also known as a Schlieren diagnostic, dark-field imaging is sensitive to the index 

of refraction of a plasma much like an interferometer. However, in this case the laser 

beam used is not split.  A diagram of a schlieren telescope is seen in Figure 8.  The basis 

of dark-field imaging is a telescope set up to image the experimental area.  An object 

such as a wire or razor blade is then used to block the focus of the telescope, creating a 
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dark field at the image plane if the telescope when the experimental area is undisturbed.  

Any plasma created will cause index of refraction changes along the beam path.  These 

index of refraction changes deviate the beam by an angle θ given by: 

∫= dlN
dy
dθ  

 

Here dl is an integral along the beam path, and y is any spatial coordinate perpendicular 

to the beam propagation direction.  The deviated light will pass around the beam block 

and emerge from the telescope.  The size of the beam block and the focal properties of 

the laser determine the sensitivity of the diagnostic.  This creates bright areas at the image 

plane of the telescope wherever there are large index of refraction gradients, i.e. large 

density gradients.  This makes this diagnostic ideal for looking at systems where a large 

density gradient is expected, such as the edge of a blast wave.  We have primarily used 

this diagnostic to look at small spatial scale features in the blast front.  A sample image is 

seen in Figure 9.   

 
Figure 8. Diagram of a schlieren telescope.  This diagnostic is essentially an imaging telescope with a 
beam block at the center.  Index of refraction changes in the imaged material cause deviation of the 
laser light so it passes around the beam block. 
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Figure 9. Sample image from schlieren telescope of a blast wave traveling past a wire array.  Small 
scale features of the blast wave can be seen using this diagnostic.  The image is of a blast wave 
traveling in 10 Torr of xenon past a 6 mm spaced wire array.  The blast wave was created by a 1000 J 
laser pulse 2000 ns earlier. 
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7. Experimental Description 

 

We performed experiments exploring the properties of high Mach number blast 

waves created in a number of different background gasses.  The results of these 

experiments can be separated into three basic areas.  The first set of results concern the 

amount of radiation produced by the blast front and its impact on the evolution of the 

blast wave.  The next area is the effect of the drive laser on the evolution of blast waves.  

Finally, a number of experiments were performed examining the evolution of 

perturbations on the surface of the produced blast waves.  This included examining the 

possibility of perturbations growing from noise, as well as measuring the evolution of 

perturbations induced on the blast wave surface. 

 

7.1 Diagnosis of Radiation 

A number of features observed during our experiments allowed us to diagnose the 

importance of radiation on blast wave evolution as a function of background gas.  This 

included the trajectories of the blast waves, the presence and size of a radiative precursor 

and the ablation of wires in the blast wave path.  In addition, in certain cases we can get 

an estimate of the amount of energy present in the radiative precursor. 
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7.1.1 Effect of Radiation on Blast Wave Trajectory 

 

As has been previously discussed, the trajectory of a blast wave can provide 

insight into the importance of radiation on its evolution.  For an energy conserving blast 

wave the trajectory will closely follow the Taylor-Sedov solution27, 40 and evolve as R ∂ 

t0.4.  Radiation causes a blast wave to lose energy, decelerating more quickly than the 

energy conserving Taylor-Sedov solution predicts.  To gain insight into the effect of 

radiation on our blast waves, we measured the trajectory of blast waves in multiple gasses 

produced by various drive energies. 

The radial trajectories of blast waves produced by both 500 J and 1000 J laser 

pulses in 5 Torr -10 Torr of both xenon and nitrogen gas were measured.  In addition, the 

trajectory of blast waves produced in a mixture of these gasses by 1000 J laser pulses was 

measured.  The mixed gas used in these experiments was 7.5 Torr xenon gas and 2.5 Torr 

nitrogen gas by pressure and all further references to mixed gas will refer to this mixture.  

The reason behind this choice of gas mixture will be explained later in this chapter.   

Images of blast waves in xenon at various times after a 1000 J level drive beam 

hit a plastic target are shown in Figure 25.   As can be seen, the blast waves are somewhat 

elliptical.  The smaller vertical axis was chosen to serve as the radius of the blast wave.  

The reason for this decision was that the larger axis was often difficult to measure for two 

reasons.  The first reason is that the edge of the blast wave closest to the drive laser input 

was out of the field of view of the diagnostics at late times as seen in the 800 ns panel of  

Figure 25.  In addition, effects from the drive laser that will be discussed later in this 

chapter cause this same edge of the blast wave to be unreliable.  The smaller axis was 
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therefore more reliable and blast wave trajectories were measured in terms of this axis.  

Similar images for blast waves in nitrogen gas and mixed gas are shown in Figure 26 and 

Figure 27 respectively.   

 
Figure 25. Images of Blast waves traveling through 10 Torr of xenon gas.  The images were taken 
between 50 ns and 800 ns after a 1000 J level drive beam hit the target. 
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Figure 26. Images of blast waves traveling in 10 Torr of nitrogen gas.  The blast waves were created 
by 1000 J level laser pulses.  The images were taken between 75 ns and 300 ns after the drive beam 
hit the target. 
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Figure 27. Images of blast waves traveling through a mixture of xenon and nitrogen gas.  The 
imaging system was being aligned between shots causing some images to appear blurry.  Blast waves 
were created by a 1000 J level laser pulse 

 For laser drive energies at or below the 500 J level the blast wave trajectories in 

both xenon and nitrogen gas follow the Taylor-Sedov solution.  At the 1000 J level of 

drive energy deviations from this behavior begin to develop.  The measured blast wave 

trajectories produced by a 1000 J laser drive in both xenon and nitrogen gas as well as 

our mixed gas are seen in Figure 28.  The trajectory in nitrogen has a best fit for the 

temporal exponent of 0.38 ≤ 0.02, consistent with the Taylor-Sedov solution.  The 

limited mixed gas data has a best fit for the temporal exponent of 0.45 ≤ 0.03, slightly 

above the Taylor-Sedov solution but reasonably close considering the relatively small 

data set.  In contrast, the blast waves in xenon have a more complicated evolution.  At 
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times less than 200 ns the blast waves in xenon clearly follow a non-Taylor Sedov 

trajectory, and in fact are consistent with the momentum conserving snowplow41 regime 

t0.25.  After 500ns, the blast wave settles into a Taylor-Sedov like regime.  The data 

between these two times is roughly consistent with both exponent values and may 

represent a transition region.  The early time behavior of blast waves in xenon implies 

that energy lost via radiation is having a significant effect on the hydrodynamics. 

 

Figure 28. Trajectories of blast waves traveling through xenon and nitrogen gas as well as a mixture 
of the two gasses.  The blast waves were created by a 1000 J level laser pulse.  Error bars are smaller 
than the data points. 

 There is one other result that can be obtained from the trajectory information 

given: the Mach number of the blast waves compared to the sound speed of the 

background gas.  The sound speed of nitrogen and xenon gasses are 334 m/s and 1.09 

km/s respectively.  Looking at the average velocity between trajectory points, we can 

estimate the range of velocities the blast waves in the various gasses go through during 

the time their trajectories were tracked.  For blast waves in xenon the velocity ranges 

from 15 km/s to 1.5 km/s over the measured timed range leading to Mach numbers from 

1.4 to 14.  Since nitrogen is lighter the blast waves in that gas travel faster and the 
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velocity ranges from 52 km/s to 25 km/s corresponding to Mach numbers from 75 – 156.  

For the mixed gas data, the measured trajectory starts at a much later time and so the 

speeds measured are correspondingly slower and range from 3.7 km/s to 2 km/s.  The 

Mach number in this gas is unknown as it is a mixture of the other two.  Using the xenon 

sound speed as an upper value leads to Mach numbers from 1.8 to 3.4 as a lower bound. 

 

7.1.2  The Radiative Precursor 

 

Another indication of the presence and strength of radiation from a blast wave is 

the radiative precursor that proceeds it32.  A radiative precursor is a region of heated, 

ionized gas preceding the shock front created when radiation from the shocked gas is 

absorbed by the surrounding background gas.  Evidence for radiative precursors appears 

in both our schlieren and interferometry data.  For both diagnostics, the effect of the 

ionized electrons in the precursor is seen.  In the schlieren diagnostic the electron density 

gradient in the precursor causes an index of refraction gradient that deflects the probe 

light and allows it to past the beam block in the schlieren telescope.  This shows up as a 

glow in front of the shock front.  The Mach-Zender interferometer enables an estimate of 

the electron density in the precursor through use of an Abel inversion technique.  The 

extent of the radiative precursor varied with the type of background gas.  An example of 

schlieren and interferometer images in helium are seen in Figure 29.  Here there only a 

slight deviation of the fringes outside the blast front in the interferometer and no glow 

surrounding the blast wave in the schlieren image.  These are both indications of very 

little ionization of the background gas.  This can be compared to the schlieren and 
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interferometry data for shocks in nitrogen 150ns after a 1000J level drive seen in Figure 

30.  The area of strongly deviated fringes preceding the shock front in the interferometer 

image and the distinct glow in the schlieren image are indicative of a strongly ionized 

precursor.  With this image, it was possible to perform an Abel inversion38 as described 

in chapter 6.  This gives an estimate that the gas just in front of the shock is ionized 2.5 

times on average.  A similar level of radiative precursor is seen in the mixed gas as is 

shown in Figure 31.  Here the interferometer imaging system provides less 

demagnification and so the fringes extend off the field of view and an Abel inversion is 

not possible.  However, the glow region in the schlieren imaging is of similar extent to 

that in Figure 30.  For the xenon data the precursor is more extensive and extends off the 

field of view as is see in Figure 32, making a quantitative estimate of the ionization state 

impossible.  The extent of the xenon precursor is further illustrated by the glow extending 

throughout the field of view in the images in Figure 25. 
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Figure 29. Interferometer and schlieren images of a blast wave traveling in helium gas 300 ns after 
being produced by a 1000 J laser pulse.  The array has traveled past a 4 mm spaced wire array.  
There is little deviation of the fringes outside the blast front in the interferometer and no glow in the 
schlieren image, indicating no radiative precursor. 
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Figure 30. Images of a blast wave in nitrogen traveling past a 4mm spaced wire array 150 ns after a 
1kJ drive laser beam struck a plastic target.  The top image is from a Mach-Zehnder interferometer 
and the bottom from a schlieren telescope. 
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Figure 31. Interferometer and schlieren images of a blast wave traveling in a mixed gas 1400 ns after 
being produced by a 1000 J laser pulse.  The gas is 7.5 Torr of Xenon and 2.5 Torr of N2 by pressure.  
The wave has passed by a 3mm spaced wire array.  There is moderate deviation of the fringes in the 
interferometer and a visible glow in the interferometer. 

 

Figure 32. Image of blast wave traveling in xenon 2000 ns after being created by a 1000 J laser pulse.  
The blast wave is passing a 6 mm spaced wire array.  Note the deviated fringes extend off the edge of 
the viewing area. 
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7.1.3  Ablation of Wires by Radiation 

 

The final indication we have that our blast waves are radiating energy away is the 

effect of this radiation on wire arrays placed in the path of the blast wave.  Radiation 

from our blast waves ablates material from the wires in the arrays, creating small blast 

waves that precede the main blast wave.  Much like the radiative precursor, the strength 

of this effect varies with the background gas.  This effect is fairly small for blast waves in 

nitrogen as seen in Figure 30.  These small shocks do not affect observations of the main 

blast wave.  For blast waves in pure xenon, the effect is much larger as shown in Figure 

33.  These additional waves interfere with our measurement, meaning pure xenon could 

not be used as a target gas.  Our gas mixture was chosen to maximize the effect of 

radiation on the blast waves while not producing additional blast waves large enough to 

interfere with our measurements.  We tested a 5 Torr xenon and 5 Torr nitrogen mixture 

and found the additional blast waves stayed at a manageable level.  We then tested a 

mixture of 7.5 Torr xenon and 2.5 Torr nitrogen and discovered that this level was 

marginally manageable depending on the experimental setup.  Figure 34 shows two 

images of blast waves traveling through a gas mixture of 7.5 Torr xenon and 2.5 Torr 

nitrogen by pressure.  Each blast wave was created by a 1000 J laser pulse.  The only 

difference in the two experimental setups is that the copper wires in the array in the left 

hand image are armored with plastic.  The presence of this plastic enhances the size of 

the additional blast waves to the point that they interfere with the measurement of the 

main blast wave.  If the image on the left is carefully examined a blast wave very similar 

to that present in the right hand image can be identified.  However, the additional blast 
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waves make it difficult to discern.  The significant effect of the plastic coating on the 

copper wire is indicative of the fact that the chosen gas mixture represents among the 

highest percentages of xenon possible before the radiation effects make data analysis 

impossible.   

 

Figure 33. Image of a blast wave in xenon passing a 9mm spaced wire array.  Radiation from the 
main blast wave has ablated the wires in the array, creating many additional blast waves the 
interfere with the measurement of the main wave. 

 



 

 116

 

Figure 34. Two images of blast waves traveling past 4 mm spaced wire arrays immersed in a mixed 
gas.  The gas is 7.5 Torr xenon and 2.5 Torr nitrogen by pressure.  Each blast wave was produced by 
a 100 J laser pulse.  The wires in both arrays are copper, but those in the left image are coated in 
plastic.  The addition of the plastic increases the size of the blast waves ablated off the wires, 
interfering with the main blast wave. 

The combination of effects on blast wave trajectory, the radiative precursor, and the 

additional blast waves strongly indicates that the blast waves we created were radiating 

energy away.  Furthermore, the amount of radiated energy depended on the background 

gas used, scaling with the atomic number of the gas used.  This scaling arises from the 

increased importance of line and bound-free radiation in higher atomic number elements 

due to lower ionization thresholds.   

 

7.1.4 Estimate of Radiated Energy 

The radiative precursor data discussed earlier in this chapter can be used to estimate 

the total energy in the radiative precursor.  The energy in the precursor takes two forms, 

temperature of the gas and that energy used to ionize the gas.  As was mentioned the Abel 

inversion technique described in chapter 6 can be used to determine the ionization state of 

the gas in the radiative precursor when the entire precursor is in the field of view of the 
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interferometer, which in our experiments was only for the blast waves in nitrogen.  We 

can then estimate the temperature necessary to achieve this ionization state and combine 

these two estimates to get the total energy in the precursor.  The energy due to ionization 

will be given by the product of the number of atoms in the gas and the ionization 

potential of the average charge state.  The kinetic energy of each atom is given by 3
2

kT , 

where k is the Boltzmann constant and T is the temperature of the gas.   

 We have performed this analysis for the nitrogen data at 150 ns discussed earlier 

in the chapter.  We estimate this gas to be ionized 2.5 times on average from an Abel 

inversion of the interferometry data.  The second ionization potential of nitrogen is 29.6 

eV and the third ionization potential is 47.5 eV.  Averaging these two numbers give us 

38.5 eV per atom in ionization energy.  We can also estimate the temperature of the 

nitrogen gas necessary to ionize to this level is approximately 5 eV.  This temperature 

implies around 7 eV of kinetic energy per atom, leading to a total energy of 45.5 eV per 

atom in the radiative precursor. 

The number of atoms in the precursor can estimated by looking at the inner and outer 

radius of the precursor relative to the center of the blast wave and multiplying the total 

contained volume by the density of the background gas.  There should be little to no 

change in the density of the gas in the region of the precursor as compared to the 

background gas.  The precursor seen in Figure 30 surrounding the blast wave in nitrogen 

after 150 ns has an inner radius of 1.25 cm and an outer radius of 1.8 cm leading to a total 

contained volume of 16.25 cubic centimeters (ccs).  The density of nitrogen at 10 Torr 

pressure is 1.6 * 10-5 g/cc leading to a total mass of 2.6 * 10-4 g.  Nitrogen has an atomic 

mass of 14 atomic mass units and an atomic mass unit is 1.66 * 10-24 g meaning there are 
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1.12 * 1019 nitrogen atoms in the radiative precursor and 5.1 * 1020 eV or 85 J of energy 

in the precursor.  This puts a lower bound on the total energy radiated by the blast wave 

during its evolution. 

In order to get an idea of how large this number is, we can also look at the ionization 

energy in the plasma.  From the simulation results described in chapter 4, we can estimate 

the mean ionization state in the blast wave shell at 3.5.  The fourth ionization potential of 

nitrogen is approximately 75 eV and the average of the third and fourth ionization 

potentials is thus 61.25 eV.  The blast wave radius at 150 ns is 1.25 cm meaning there is 

1.3 * 10-4 g of material swept up by the blast wave or 5.8 * 1018 atoms and 3.55 * 1020eV 

or 56.9 J of energy necessary to ionize this material to the a mean ionization state of 3.5.  

This is slightly less but comparable to the lower bound on the radiated energy. 

 

7.2   Effect of Drive Laser on Blast Wave Evolution 

 

We performed experiments designed to build on earlier published experiments at 

lower energies and to clarify discrepancies between theoretical predictions and 

experimental observations for the growth rate of the Vishniac overstability.  These 

experiments had two major goals.  The first was observing growth of the Vishniac 

overstability from noise.  Based on the observed trajectories shown in Figure 28, we 

expected the possibility of growth of the overstability over at least the 1st 200 ns for blast 

waves in xenon.  Our second goal was to determine the effect of the drive laser passage 

on the subsequent evolution of the blast wave it creates.  We suspected this was a major 

cause in a discrepancy between published theory and previous experimental results. 
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Important early experimental work on the Vishniac overstability was published by 

Grun et al.16, using the Pharos III laser at the Naval Research Laboratory.  They 

conducted experiments on the evolution of hemispherical blast waves produced in a 

background gas by single-sided irradiation of a plastic foil by 200J laser pulses.  Because 

of this target geometry the blast waves produced traversed the region of gas affected by 

the drive laser.  Grun et al.16 reported observing the Vishniac overstability grow from 

noise in blast waves traveling through xenon gas, while those blast waves traveling 

through nitrogen gas remained stable and the shock front remained smooth.  Images from 

this work can be seen in Figure 35.  Whereas theory18 predicted a maximum growth rate 

going as t0.7 at an ℓ number of ~50 for the estimated polytropic index associated with the 

xenon blast wave, Grun et al.16 observed growth going as t1.6 at an ℓ number of ~10.   

 
Figure 35. Figure from Grun et al.   Blast waves produced by 200 J laser pulses incident on flat 
plastic foils from right of images.  Image on the left is of a blast wave traveling through nitrogen, 
while the blast wave on the right is traveling through xenon.  Note both the large feature in the laser 
focal cone and the small scale structure in the xenon image. 
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More recent work on blast waves in cylindrical geometry was published by 

Edwards et al.15.   They illuminated a jet of xenon clusters with an ultra-fast laser.  This 

created a cigar shaped filament of exploding clusters which drove a cylindrical blast 

wave into the surrounding xenon.  They observed evidence of the formation of a radiative 

shock and a slight deviation from a Taylor-Sedov trajectory but did not observe any 

perturbation growth on the shock front.  The authors postulated the primary reason they 

saw no growth was the Mach number of their blast wave was too low and in addition that 

the wave was heated by efficient electron conduction between the hot core and the blast 

wave shell, leading to a higher polytropic index and a thicker blast front.   

The Lamming and Grun33, 34 simulation discussed in the simulation chapter have 

clarified the physics involved in the experiments.  Their work seemed to confirm 

Edwards et al.’s theory that the reason for the discrepancy between the two sets of 

experiments was the low Mach number of the blast waves in that work by showing that 

there is a velocity cutoff for the overstability to affect blast waves traveling through 

xenon gas.  This cutoff was shown to be around 25 km/s for blast waves traveling in 5 

Torr of xenon gas, well above the velocity of the blast waves in Edwards et al15.  

However, the analysis performed by Lamming et al.33, 34 as to the mode number and 

growth rate predicted maximum growth at a lower rate and higher ℓ number than either 

what was seen in the Grun et al. experiments or the published theory of Vishniac et al.19 

further emphasizing the need for additional experiments to clarify this discrepancy. 

The velocity and temperature of a laser driven blast wave increase with increasing 

drive energy.  For the range of temperatures seen in laboratory experiments (on the order 

of 1 eV – 10eV) an increase in temperature should lead to an increase in the ionization 
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state, especially for higher atomic number gasses.  This increase in the ionization state 

should lead to increasing amounts of line and free-bound radiation, increasing the 

importance of radiation on the hydrodynamics of the blast wave.  Therefore by changing 

the energy of the drive laser used to create our blast waves, we can vary the importance 

of radiation and isolate features caused by the experimental setup from those caused by 

radiation.  We performed a series of experiments attempting to resolve the discrepancies 

between previous experiments and published theories.  Three different drive laser 

energies ranging from 10 J to 1000 J were used to create blast waves in 5 Torr or 10 Torr 

of nitrogen or xenon gas.  The use of a pin target (as opposed to the planar foil targets 

used in Grun’s16 experiment) allowed us to examine the evolution of the blast wave both 

in the gas previously traversed by the laser on the front side of the pin and in the pristine 

gas on the back side of the pin.  For these experiments the Schlieren diagnostic was used 

to examine the front morphology of the blast waves as a function of time and position. 

Images of shockwaves traveling through 5-10 Torr of Xenon gas are shown on the 

left side of Figure 36.  In all cases the laser pulse came in from the left of the picture.  At 

all energies the blast waves exhibit similar behavior.  There is a marked difference 

between the section of blast wave traveling over the gas region traversed by the laser and 

the rest of the blast wave.  The difference is a turbulent region with a large perturbation 

that varies in wave number, but is of order 10, on the laser side of the wave that is not 

present on the back side of the wave.  This feature is consistent in wave number with the 

Grun results16.   It is further interesting to note that in all of our data and the published 

data of Grun et al. the large scale feature appears to be centered in the laser focal cone.  If 

the feature were associated with the Vishniac overstability, one would expect rippled 
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features at all points on the spherical blast shell, depending on random noise in the 

background gas and the initial blast wave.  The turbulent feature we see generally 

becomes increasingly pronounced with increasing energy, but the qualitative behavior is 

similar.  There is also some dependence of the feature on the pin material.  The pin 

material for the 10 J shots was stainless steel, while the 500 J shots employed a copper 

target and the 1000 J shots were done with nylon targets.  The 500 J shot has a 

particularly wide feature and we suspect this may be due to the radiation from the copper 

target.  A magnified image of the feature for 1000 J drive energy is shown in Figure 37.  

In contrast to this energy independent feature, there are smaller scale perturbations, closer 

in wave number to the theoretical maximal growth rate mode number of 50 18, that appear 

only at higher energies.  Though it is difficult to measure a growth rate for these 

perturbations due to their small size, they seem more consistent with theoretical 

predictions for the Vishniac overstability and are seen both in our higher energy data as 

seen in Figure 25 and in the data from Grun et al 16 as seen in Figure 35.   

The xenon images can be contrasted with the images of blast waves traveling 

through 5-10 Torr nitrogen gas, shown on the right side of the same figure.  Again we see 

blast waves produced by the same three laser drive energies.  In this case the feature seen 

in xenon in the region traversed by the laser is greatly reduced and the small scale 

perturbations never arise.  The fact that a qualitatively energy independent feature is seen 

only on blast waves traveling through xenon gas and only in the region of the laser cone 

suggests that there is some effect of the laser’s passage on the evolution of blast waves in 

xenon.  This feature is evident on blast waves traveling at velocities both above and 
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below the theoretical cutoff determined by Lamming et al.33, 34 and with 1053 nm and 527 

nm laser drive pulses. 

 

Figure 36. Images of blast waves traveling in xenon (left side) and nitrogen (right) gas at various 
times.  The energy of the drive laser used to produce the blast waves is indicated in each panel. 



 

 124

 

Figure 37. Expanded view of feature on the laser side of a blast wave traveling through xenon.  The 
blast wave was created 400 ns earlier by a 1000 J laser pulse. 

 

 We attribute the turbulent feature in Xe to pre-ionization of the gas by the laser.  

The most likely reason that the feature is seen on blast waves traveling through xenon gas 

and not on those traveling through nitrogen gas has to do with the different multi-photon 

ionization thresholds of these gasses.  The threshold for multi-photon ionization in xenon 

is lower than in nitrogen.  At a laser wavelength of 527nm ionization is a 5 photon 

process in xenon, as compared to 7 in nitrogen, and the ratio increases for higher charge 

states.  This means that there is likely more ionization and heating of the xenon gas 
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caused by the laser’s passage, creating a low gas density region.  Therefore, the blast 

wave traveling over this area will pick up gas that is lower density and hotter than in 

other regions, causing it to slow down less as it travels, creating the bump like feature 

seen.  Several facts support the idea that the feature is caused by the laser’s passage. 

As previously mentioned, in both our results and those of Grun et al 16 the feature appears 

only in the laser cone path, as is illustrated in the 1st panel of Figure 36.  The feature also 

appears independent of the blast wave velocity.  In our shots the average velocity at early 

times (between 50 ns and 100 ns) ranges from ~12 km/s for  10J shots, below the 25 km/s 

threshold predicted for the onset of the overstability in xenon gas predicted by 

Lamming33, 34, to ~140 km/s for the 1000J shots, above this threshold.   

 Simulations were performed that support and further clarify the conclusions 

suggested by the data.  2D simulations of blast wave evolution were performed using the 

Lawrence Livermore National Laboratory code CALE42.  CALE is a 2-D arbitrary 

Lagrangian Eulerian (ALE) code with a tabular equation of state (EOS) and interface 

tracking.  For our simulations ~7.5 Torr of xenon gas was assumed for the initial 

background.  A 0.5mm Mo sphere was used as the target and the laser pulse was 100J in 

5ns, with a 0.4mm focal spot size. Some results from the simulation are shown in Figure 

38.  The first panel of the figure shows a contour plot of the electron temperature 17ns 

after the initial laser pulse.  One can clearly see the hot plasma in the region of the laser 

cone.  The third panel of the figure shows simulated density gradients of a blast wave 

traveling through 7.5 Torr of Xenon gas about 400 ns after the 100J drive beam struck the 

target.  The second panel shows experimental data taken at t = 300ns and 10J drive.  

There is a strong similarity between the experimental result and the simulation.  The large 
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perturbation on the blast wave’s surface in the simulation is qualitatively similar to that 

seen in all our xenon experimental results and to that seen in previous experiments.  

While the large perturbation on the blast wave surface does show up, the smaller scale 

structure seen on the blast waves in xenon produced by high energy shots is absent.  This 

is most likely due to inadequate resolution of the experiments.  The simulation uses 4 

degree angular zoning which is adequate to start to see the affects of the laser channel on 

the evolving blast-wave, but is much too coarse to resolve the small scale "turbulent" 

features seen in the experiment.  These small scale features, which are almost certainly 

three dimensional, evidently evolve differently in the case of Xe, and may be indicative 

of the higher compressibility of Xe through ionization and or radiative effects.  The 

results from this section are summarized in a paper we have published43.  
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Figure 38. Results from simulations performed to ascertain the role of the passage of a drive laser 
beam on the subsequent evolution of the blast wave it creates.  Panel a shows CALE simulations 
demonstrating the creation of a heated region of gas in the laser cone.  Panel b shows experimental 
data taken 300 ns after a 10 J laser pulse created a blast wave.  Panel c shows a simulated blast wave 
400 ns after being created by a 100 J laser pulse. 
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7.3 Evolution of Induced Perturbations on Blast Waves 

 

 The small scale ripples seen in the experiments described in the previous section 

that may be caused by the Vishniac overstability do not grow to a large enough amplitude 

for a growth rate to be accurately measured.  In order to sidestep this problem our next set 

of experiments attempted to shortcut the growth process by inducing perturbations on the 

surface of a blast wave.  The published theory for perturbations on high Mach number 

blast waves17-19 shows that the evolution these perturbations depend primarily on two 

variables: the mode number of the perturbation and the polytropic index of the medium 

the blast wave is traveling through.  Regularly spaced wire arrays were placed in the path 

of the blast waves in order to induce perturbations with a known primary mode number.  

The primary mode number of the perturbations could be varied by altering the spacing of 

the wire arrays.  The polytropic index of a gas will vary with the importance of radiation, 

which is dependant on the choice of background gas.  Several background gasses were 

employed to examine the effect of radiation on the evolution of the perturbations.  By 

altering these two parameters and tracking induced perturbations as a function of time, 

we were able to make quantitative comparisons to the published theory19.   

Experiments were performed on blast waves traveling in helium, nitrogen, and 

xenon gases as well as a mixture of xenon and nitrogen.  For each gas several different 

wire spacings were used to induce differing primary frequency perturbations on the blast 

waves.  Two different types of arrays described in chapter 5 were used during the course 

of the experiments, a planar array and a cylindrical one.  For a given gas only one type of 

array was used.  A series of shots were fired with different delays between the drive and 
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probe beams for each array and gas combination employed.  This produced a series of 

images that could be examined to provide comparison to the theoretical predictions for 

the Vishniac overstability. 

 

7.3.1  Planar Wire Array 

 

 For experiments in nitrogen and xenon gas, the planar wire array was used.  Using 

spatial calibration of the imaging system it was determined that the array was placed just 

under 9mm from the focus of the drive laser beam.  This lead to a circumference of ~55 

mm for the blast wave at the point it intersected the array.  The array was strung with the 

wires spaced 2 mm, 4 mm, and 6 mm apart to correspond to mode numbers of 28, 14, and 

9 respectively.  The mode content of the induced perturbations was complicated by 

several factors.  The 1st was an ellipticity to the blast wave that added a low mode number 

perturbation to the blast wave.  Another major source of modal content was the use of a 

planar array.  The use of a planar array meant that the blast wave was at slightly different 

radii when each wire was encountered.  This broadens the range of mode numbers in the 

induced perturbation.  In addition, the use of a planar array limited the solid angle of the 

blast wave that the wire array intersected.  This both added modal content to the induced 

perturbation and limited the modal resolution of Fourier transforms performed on the 

data. 

 A series of images for blast waves produced in nitrogen passing past the three 

differently spaced arrays were taken.  Figure 39 shows the evolution of blast waves past 

the 2 mm spaced (mode number 28) array.  Figure 40 shows the results for the 4 mm 
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(mode number 14) array and the results for the 6mm spaced (mode number 9) wire array 

are shown in Figure 41.  As expected from the nitrogen trajectory information described 

in section 7.1, blast waves produced in nitrogen do not have the right conditions for 

growth of the Vishniac overstability.  The perturbations induced by the wire array 

diminish with time.    
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Figure 39. Time series of images of blast waves traveling in 10 Torr of nitrogen gas past a 2 mm 
spaced wire array.  Blast waves were created by a 1000 J laser pulse.  Induced perturbations decay 
with time as is expected in nitrogen. 
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Figure 40. Time series of images of blast waves traveling in 10 Torr nitrogen gas past a 4 mm spaced 
wire array.  Blast waves were created by a 1000 J laser pulse.  Induced perturbations decay with time 
as is expected in nitrogen. 
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Figure 41. Images of blast waves traveling in nitrogen created by 1000 J laser pulse.  The blast waves 
are traveling past a 6mm spaced wire array.  Perturbations induced by the array decay with time, as 
expected for blast waves in nitrogen. 

 
 A similar series of images was taken for blast waves produced in xenon gas.  

Images for the 2 mm spaced (mode number 28) wire array are shown in Figure 42.  

Figure 43 shows images of the evolution past a 4 mm spaced (mode number 14) array 

and Figure 44 shows similar images for the 6mm spaced (mode number 9) array. 

However, the strong radiation from these blast waves produced effects that made analysis 

difficult.  As mentioned previously, the radiation from the blast waves in xenon ablated 

material in the arrays, creating additional blast waves.  These additional blast waves 
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made it difficult to measure the main blast wave until is was outside the field of view of 

the diagnostics and the perturbations had significantly died away. 

 
Figure 42. Time series of images of blast waves traveling in 10 Torr xenon gas past a 2 mm spaced 
wire array.  Blast waves were produced by 1000 J laser pulses.  The radiation from the main blast 
wave has ablated material from the wires in the array, creating additional blast waves that interfere 
with measurement of the main wave. 
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Figure 43. Time series of images of blast waves in 10 Torr of xenon traveling through a 4mm spaced 
wire array.  The blast waves were created by a 1000 J laser pulse.  Radiation from the main blast 
wave ablates the wires in the array creating additional blast waves that obscure the main blast wave. 
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Figure 44. Images of blast waves in xenon traveling past a 6mm spaced wire array.  Blast waves were 
created by 1000 J laser pulses.  Radiation from the main blast wave irradiates the wires in the array, 
ablating material and creating additional blast waves that obscure the main blast wave. 

7.3.2 Cylindrical Wire Array 

 

 In order to limit the modal content of the induced perturbations on the blast waves 

the half-cylindrical wire array was used for later experiments in helium and for a mixture 

of nitrogen and xenon.  This array was placed approximately 8-9 mm from the drive laser 

focus with the placement varying slightly for the different gasses.  The wires were spaced 

2 mm, 3 mm, and 4 mm apart corresponding to mode numbers ranging from 12 to 30 

depending on the gas and wire spacing.  This array somewhat limited the added modal 

content from the shape of the array, however it was still of finite angular size and did not 

correct the ellipticity of the blast wave.  In fact, this array may have created some 
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ellipticity with the vertical axis being the longer one.  Figure 45 shows images of blast 

waves in helium traveling past a 4mm spaced (mode number 12.2) half-cylindrical wire 

array.  A series of images of blast waves in helium traveling past a 3mm spaced (mode 

number 16.3) half-cylindrical wire array is shown in Figure 46 and Figure 47 shows 

similar images for the 2mm spaced (mode number 24.4) array.  Because of its small 

atomic number and high ionization potential (24.6 eV for the 1st ionization potential of 

helium as opposed to 14.5 eV for nitrogen and 12.1 eV for xenon) radiation is expected to 

play little or no role for blast waves in helium.   

   

 
Figure 45. Images of blast waves in helium gas traveling past a 4mm spaced wire array.  The blast 
waves were created by 1000 J laser pulses. 
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Figure 46. Images of blast waves in helium produced by 1000 J laser pulses.  The images were 
captured with various delays to the drive laser beam as indicated.  The blast waves are traveling past 
a 3 mm spaced wire array.  The induced perturbations decay with time as expected. 
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Figure 47. Images of blast waves in 10 Torr Helium gas traveling past a 2mm spaced wire array.  
Blast waves were created by 1000 J laser pulses 

 For shots in the mixed gas the evolution is more complicated.  Images for blast 

waves in the mixed gas traveling past a 3mm spaced (mode number 20) cylindrical wire 

array are shown in Figure 48.  The main blast wave is slightly obscured by additional 

blast waves, but can be discerned and analyzed.  The same problems can be seen in the 

images for blast waves traveling past a 2 mm spaced (mode number 30) wire array seen 

in Figure 49 and the 4mm spaced (mode number 15) wire array seen in Figure 50.  
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Figure 48. Images of blast waves in a mixed gas produced by 1000 J laser pulses.  The images were 
captured with various delays relative to the drive beam as indicated.  The blast waves are traveling 
past a 3mm spaced wire array. 
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Figure 49. Images of blast waves in a mixed gas produced by 1000 J laser pulses.  The images were 
captured with various delays relative to the drive beam as indicated.  The blast waves are traveling 
past a 2 mm spaced wire array. 
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Figure 50. Images of blast waves in a mixed gas produced by 1000 J laser pulses.  The images were 
captured with various delays relative to the drive beam as indicated.  The blast waves are traveling 
past a 4 mm spaced wire array. 

7.3.3  Analysis Method 

 

 For each image taken the edge of the blast wave was traced out by hand.  The 

center of the blast wave was then estimated from the image by finding the edges of the 

blast wave and taking the mid point of each axis when possible.  However, sometimes 

one edge of the blast wave was either not on screen or not discernable.  In these cases a 

bit of curve was used to discern the center.  Either two vertical position values at one 

horizontal position or two horizontal positions at one vertical position were measured and 

averaged to find the center.  Using this center, the trace of the blast wave edge was then 
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transformed to polar coordinates.  A sample plot of this for a blast wave in nitrogen 

traveling past a 6 mm spaced wire array is seen in Figure 51.  This graph was then 

interpolated to provide even spacing between data points.  The mean radius of the blast 

wave was determined from the resulting graph and subtracted from the data.  In addition, 

the angular position was normalized to fractions of a circle so that frequency of any 

perturbation in the graph would correspond to its mode number.  A sample of the result 

of this transformation for the graph shown in Figure 51 is seen in Figure 52.   

 
Figure 51. Sample plot of blast wave edge transformed to polar coordinates.  This is a plot of the edge 
of a blast wave traveling through nitrogen after passing a 6mm spaced wire array.  The effect of the 
wires is quite noticeable. 
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Figure 52. Sample plot of blast wave deviation from mean radius as a function of angular fraction of 
a circle.  Data is from a blast wave traveling through nitrogen and passing a 6 mm spaced wire array. 

 The data for the radial deviation from the mean radius versus angle in fractions of 

a circle was Fourier transformed to isolate the mode number corresponding to the wire 

array spacing.  This allowed us to limit the effect of the modal content induced by the 

limitations of the wire arrays and the low mode number ellipticity, by only looking at the 

amplitude of one mode number.  The Fourier transform of the data in Figure 52 is shown 

in Figure 53.  The amplitude of the desired mode number is then plotted as a fraction of 

the mean radius of the blast wave and this value is graphed as a function of time for each 

wire array.  The error in the amplitude is set as a one pixel error divided by the square 

root of the number of wavelengths of the perturbation measured in the image.  For 
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example, for a mode number 24 perturbation on which one quarter of the circumference 

of the blast wave is seen as usable data in an image, the error in the amplitude is set at 

one pixel divided by the square root of six (one quarter of the circumference times 24 

wavelengths per circumference).  This error is then normalized to the mean radius with 

the amplitude.   

 
Figure 53. Sample plot of the Fourier transform of perturbation position data.  The data is from a 
blast wave traveling in nitrogen and passing a 6 mm spaced wire array.  The mode number 
corresponding to the wire array spacing at the point the blast wave intersects the array is 
highlighted. 

 
The evolution of the normalized amplitude was fit to a power law in time to 

determine the exponent.  This experimentally derived exponent could then be compared 
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to theoretical predictions.  The data for blast waves in nitrogen gas traveling past a 6 mm 

spaced wire array is seen in Figure 54.  A similar plot for blast waves in the mixed gas is 

shown in Figure 55.  It is worth noting that all the points in this graph are consistent with 

the same value meaning that this data does not rule out the possibility of no growth or 

even a slow decay of the blast wave.  However, the fact that the points fit the power law 

well inside the error bars may mean that the estimated error is too large and that the 

suggestion of growth is stronger than the error bars would lead one to believe.  This idea 

is represented by the least squares fit error that is used to determine the error bars for the 

growth rate comparison to theory that will be discussed later. 
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Figure 54. Plot of the amplitude of the induced perturbation mode number as a fraction of the mean 
blast radius versus time for blast waves in nitrogen traveling past a 6 mm wire array.  The data is fit 
to a power law in time to compare to theory. 
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Figure 55. Plot of the amplitude of the induced perturbation mode number as a fraction of the mean 
blast radius versus time for blast waves in a 7.5 Torr Xe/2.5 Torr N2 mixed gas traveling past a 4 mm 
spaced wire array.  The data is fit to a power law in time to compare to theory. 

 The data taken on the cylindrical array was particularly difficult to analyze and a 

sample Fourier transform plot is seen in Figure 56 for helium gas and Figure 57 for the 

mixed gas.  There are no peaks corresponding to the wire array spacing induced mode 

number.  However, it was discovered that we could still take the amplitude at this mode 

number and plot it.  It was important to get the same mode number on all arrays and the 

resolution of the Fourier transform was somewhat coarse.  To overcome this, we 

interpolated between points to get the amplitude of the exact mode number we were 

interested in.  This yielded a relatively smooth curve to fit a temporal power law.  The 
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results of this method yielded a very close agreement between theory and experiment for 

the helium data as will be discussed in the next section which gave us some confidence it 

could be employed for the mixed gas data.  However, the difficulty with this data means 

there is a low signal to noise ratio and the results must be treated with caution.    

 

 
Figure 56. Sample Fourier transform plot for perturbations on blast waves traveling in helium gas 
and passing a 4 mm spaced wire array.  The mode number corresponding to the wire array spacing 
at the radius where the blat wave intersected the array is 12.2.  There is no peak at this point but the 
measured amplitude can still be measured and compared to theory. 
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Figure 57. Sample Fourier transform plot for perturbations on blast waves traveling in a gas mixture 
of nitrogen and xenon and passing a 4 mm spaced wire array.  The mode number corresponding to 
the wire array spacing at the radius where the blast wave intersected the array is 16.5.  There is no 
peak at this point but the measured amplitude can still be measured and compared to theory. 
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7.3.4  Comparison of Experimental Results to Theory 

 

 As has been mentioned, growth or damping rates for the Vishniac overstability 

depend on two variables, the mode number, determined by the wire spacing of our arrays, 

and the polytropic index.  Estimates for the polytropic index were obtained in different 

ways for the various gasses.  For gasses where radiation is important, nitrogen and the 

mixed gas in our experiments, the temperature of the gas changes with time as the blast 

wave expands and radiation escapes.  As the blast wave cools, the importance of radiation 

decreases and the polytropic index increases.  Therefore for these gasses it may be true 

that there is no one polytropic index that is correct for all times, but that a range of 

polytropic indices apply over time.    

For blast waves in helium gas radiation plays almost no part in the evolution as 

has been shown earlier in this chapter and so the behavior is that of an ideal monatomic 

gas.  Such gasses have an adiabatic index of 1.67.  This adiabatic index should be 

constant throughout the blast wave lifetime and so helium gas provides a valuable 

baseline test for quantitative comparison to theory.   

Blast waves traveling in mixed gas were impossible to simulate due to the lack of 

a reliable equation of state for such gasses.  For this data we relied solely on the 

polytropic index implied by comparison to theory.  The polytropic index of blast waves 

in nitrogen gas can be estimated from the simulations described in chapter 4.  This 

includes the simulations of Laming and Grun33, 34, which predict a polytropic index 

ranging from 1.1-1.23 and our own Hyades simulations which estimate the polytropic 

index at 1.25.   
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To provide a consistency check of the simulation results for blast waves in 

nitrogen we used the theory by Liang and Keilty30 described in section 2.5.  Given the 

density ratio from Hyades along with the amplitude and exponent from the trajectory fit, 

this theory provides predictions for the importance of radiation, the polytropic index of 

the post-radiative-cooling gas, and the size of the initial energy deposition area,.  

From the temporal exponent of the trajectory and the polytropic index implied by 

Hyades, we get an estimate for the value of the polytropic index of the post-radiative-

cooling gas of 1.36 ± 0.12.  From these values and the trajectory amplitude and assuming 

that the energy in the blast wave is the initial laser energy, we can obtain an initial energy 

deposition area of 120 µm to 350 µm.  This is consistent with the focal properties of the 

laser.  The focal spot of the Z-Beamlet laser varies from 70 µm to 300 µm depending on 

the heat load of the laser.  The final prediction we can gather is the fraction of energy lost 

due to radiation at the blast wave front, ε, would have to be 0.24.  An ε of 0 indicates no 

net energy loss via radiation, while an ε of 1 indicates the fully radiative case, commonly 

referred to as the pressure driven snowplow.  The theory of Laming and Grun33 predicts 

an ε of 0.17 for our shock velocity.   

One caveat to these results is the theory of Liang and Keilty assumes that ε is 

constant.  The predictions of Laming and Grun show that this is not the case early on, but 

that the vast majority of the change in ε occurs before the blast wave slows to 45 km/s.  

This implies that at the point where we induce perturbations on the blast wave, the value 

of ε has already reached at point where it does not change much and we can apply the 

predictions of this theory.  In total, the predictions resulting from the application of this 

theory seem consistent with the experiment and simulations. 
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 We compare our helium experimental results with the predictions of Ryu and 

Vishniac19 in  Figure 58.  For helium, the experimental data closely matches the 

theoretical predictions for an adiabatic index of 1.67.  This matches our assumption of 

what the adiabatic index should be.  For the mixed gas there seems to be a sharp 

difference between the polytropic index implied by the highest mode number array and 

that implied by the other two arrays as seen in Figure 59.  For the wider two arrays, the 

implied adiabatic index seems to be between 1.1 and 1.2, while for the final point the 

implied adiabatic index is closer to 1.3.  Since data for all three points were taken over 

two experimental runs at the laser facility, it seems unlikely that there was any variation 

in the laser that would specifically affect experiments on one array and not the others.  

There is a possibility that the induced perturbations wavelength for this array is close to 

the thickness of the blast front and in this regime the blast wave’s behavior is not well 

described by theory.  This possibility is somewhat unlikely though, as the blast wave 

thickness should vary proportionally to the polytropic index.  Therefore the higher 

polytropic index gasses should have thicker blast fronts and should see the same effect 

for the high mode number arrays.  In the theory of Ryu and Vishniac it can be seen that 

the imaginary component of the temporal exponent of the perturbation evolution 

increases with increasing mode number.  Therefore, the oscillation speed of the higher 

mode number blast waves should be higher.  It may be possible that the higher mode 

number perturbations in the mixed gas are partially decreasing in size due to their 

oscillating behavior.  Since the mixed gas is significantly heavier than the nitrogen or 

helium gasses, the time scales for the blast wave evolution are correspondingly longer 

and the oscillation behavior may have more of an effect, explaining the discrepancy 
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between this data and that of the other gasses.  However, it is also true that the mixed gas 

data is the most difficult to analyze and that the higher mode number data is the most 

complicated.  It may simply be that there is not enough data to statistically overcome the 

uncertainties associated with this particular experimental setup. 

 

Figure 58. Comparison of experimental data for the temporal decay of perturbations on blast waves 
in helium (blue squares) to theoretical predictions for various polytropic indices (gammas).  The data 
closely agree to the theoretical predictions for a polytropic index of 1.67, which matches the adiabatic 
index for an ideal monatomic gas. 
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Figure 59. Comparison of experimental data for the evolution of perturbations on blast waves 
traveling through a mixture of nitrogen and xenon (orange squares) with theoretical predictions for 
various polytropic indices (gammas).  The data points at lower mode number seem to imply a 
polytropic index between 1.1 and 1.2.  The final data point is more consistent with a polytropic index 
of 1.3. 

The experimental results for nitrogen seem most consistent with the predictions 

for a polytropic index of 1.4 as seen in Figure 60.  However, the experimental data cannot 

exclude polytropic indices of 1.3-1.5.  These values are all somewhat higher then the 

polytropic indices suggested by simulations, and are significantly different from the 

polytropic index of 1.1 suggested by the newer predictions of Laming and Grun34.  There 

are several possibilities for this discrepancy.  The first possibility is the experimental data 

could be in error, possibly due to the sources of modal noise mentioned earlier.  

Alternately, the mismatch with the theory curves from the work of Vishniac and Ryu19 
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could be because the effect of significant pressure in the pre-shock plasma due to 

preheating is not included.. For example, in these experiments the precursor is ionized 2.5 

times on average indicating that the precursor region is heated to several eV.  This degree 

of ionization and the implied temperature are significantly higher than appear in the 

simulation results, and would make the gas less compressible, raising the effective 

polytropic index.  

 

Figure 60. Comparison of experimentally determined decay rates for the amplitude of perturbations 
on blast waves traveling in nitrogen (brown squares) to theoretical predictions for various adiabatic 
index (gamma) gases. 
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7.4 Conclusions 

 

We have shown that we are producing radiating blast waves and that the strength of 

radiation varies with the type of background gas, proportionally to its atomic number.  In 

addition, we have shown that care must be taken in conducting these experiments as the 

passage of the drive laser used to create our blast waves can have a significant effect on 

the subsequent evolution of the blast wave created in the region of the drive laser’s focal 

cone.   

Finally we have reported the results of measurements of the temporal evolution of 

perturbations induced on the surface of high Mach-number blast waves.  The results of 

these measurements would seen to generally confirm the published theoretical predictions 

of Vishniac et al.17-19  For blast waves in helium where radiation is minimal the 

experimental results agree with the theoretical predictions with a high degree of accuracy.  

In gasses where radiation plays a more significant role interpreting the results is more 

complicated.  Because the temperature and thus the amount of radiation emitted changes 

in the blast waves as a function of time it is difficult to assign a single polytropic index to 

these blast waves.  In addition, the presence of the radiative precursor preceding these 

blast waves adds an additional complicating factor.  However, we can say that the general 

dependence of the perturbation evolution on mode number and polytropic index is as 

described in theory.   
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8.  Conclusion 

 

8.1 Summary 

 

The goal of this work has been to experimentally measure the properties of high 

mach-number blast waves.  Specifically, we have looked at the evolution of perturbations 

on the surface of these blast waves.  Understanding how these perturbations evolve 

provides insight into the origin of structure seen in radiative supernova remnants (SNRs) 

that may play an important role in star formation.  The primary method of study in this 

thesis is tracking the evolution of perturbations on laser produced blast waves induced by 

means of wire arrays and comparing the results to the published theories of Vishniac et 

al.17-19  

In order to explain fully the physics of the perturbations measured, in chapter 2 of this 

thesis I have described the physics of disturbances in fluids leading to a discussion of 

shock waves and then blast waves.  I have also discussed the various effects of radiation 

on blast waves and then in chapter 3 described the physics of the supernova remnants for 

which the original theory was developed, including a discussion of scaling laws to 

simulate these remnants in the laboratory.   

In chapter 4 I summarized the results of simulations of both astrophysical and 

laboratory blast waves that have been performed.  The astrophysical simulations confirm 

the mechanism causing the structure on the SNRs and some of the specific growth rates 

predicted.  Simulations performed both in support of previously published experiments 

and our specific experiments are described.  They provide predictions for the properties 
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of laser produces blast waves (including the polytropic index of the shocked gas) that can 

be used to assist in the comparison of theory to experiment. 

I then provide a detailed description of the setups used for experiments performed on 

both the Janus laser at Lawrence Livermore National Laboratory and the Z-Beamlet laser 

at Sandia National Laboratories and describe how the various diagnostics fielded during 

these experiments work.  Diagnostics fielded include several types of interferometers as 

well as a schlieren telescope.   

Finally, I describe the results of the various experiments we performed.  The first 

result of the experiments was the confirmation that radiation plays a role in the blast 

waves we produce and that the amount of radiation varied with the atomic number of the 

background gas used in the experiment.  The next experimental result is that the drive 

laser used to create our blast waves creates a warm channel in the background gas in the 

region of its focal cone that affects the evolution of the blast wave that area.  The final 

experimental result is the measurement of the evolution of perturbations induced by 

means of regularly spaced wire arrays on blast waves traveling in a number of different 

background gasses.  The variation of background gas and spacing of the wire arrays 

allowed variation of the two main variables expected to control the evolution of the 

induced perturbations: the mode number of the perturbation and the polytropic index of 

the shocked gas.  The comparison of our experimental results to theory showed general 

agreement with the published theory. 
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8.2   Future Work 

 

There are a number of directions in which this work could be potentially extended.  

Since the original theoretical work of Vishniac et al.17-19 was developed to understand 

structure on supernova remnants, it would be useful to make the experiments more 

closely match these phenomena.  The two main paths toward doing this are to further 

examine cases where growth of perturbations is expected and to look at perturbation 

evolution in collisionless shocks.  In addition, it may strengthen the conclusions 

contained herein if data were collected over a wider range of perturbation mode numbers. 

 

8.2.1 Growth of Perturbations 

 

The most obvious next step in continuing these experiments would be to further 

examine perturbations under conditions where growth is expected.  The mixed gas data 

presented in chapter 7 hints at growth, but the signal to noise ratio is poor and there is no 

readily available equation of state for such a mixed gas to enable easy modeling.  There 

are two potential ways that these problems can be avoided.  More data on the mixed gas 

would allow us to statistically overcome the poor signal to noise ratio and draw stronger 

conclusions about whether or not growth is occurring.  Alternatively, instead of a mixed 

gas, blast waves could be created in krypton gas, for which the equation of state is 

known.  This gas has a slightly lower atomic number than xenon (36 as compared to 54) 

but still a significantly higher one than nitrogen (atomic number 7).  The radiation from 

such blast waves should then have an intermediate amount of radiation, and may act 
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much like blast waves in the mixed gas.  Since the equation of state for krypton gas is 

known, it should be possible to model blast waves in krypton which would further 

strengthen the comparison to theory. 

 

8.2.2 Collisionless Shocks 

 

The other major means by which this work could be brought more in line with the 

astrophysical case is to look at collisionless shocks.  By reducing the pressure of 

background gas in the chamber to less than one Torr (thus also reducing the gas’ density 

and increasing the mean free path of gas particles) and applying a large magnetic field 

(greater than 1 Tesla), the ion gyroradius of the gas could be brought below the mean free 

path of the particles.  This would cause the major energy dissipation mechanism in a blast 

wave traveling through this low density gas to become magnetic turbulence instead of 

particle collisions and bring the experiment closer in line with the astrophysical situation 

since all SNRs are collisionless shocks.  Performing this experiment would allow the 

impact of magnetic fields on the evolution of perturbations to be discerned.  In addition, 

by using techniques such as Faraday rotation38, the structure of the magnetic fields in 

these blast waves could be explored.  This in itself would be of interest in the 

astrophysical community.  Finally, it is believed that many cosmic rays have their origin 

in supernova remnants due to the interplay of the shock and the magnetic field44.  By 

creating a similar type of shock we could look for ion acceleration and study the physics 

of cosmic rays. 
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8.2.3 Extension of Mode Numbers 

 

Acquiring data from a larger number of perturbation mode numbers would 

strengthen the conclusions presented in this work.  Looking at higher mode number 

would be difficult as the features would be smaller compared to the overall blast wave 

and either the resolution of the optical setup would have to be improved or one small 

section of the blast wave would have to be focused on.  The difficulty with choosing one 

section to focus on is that this section would constantly move with time, meaning the 

region of focus would have to change with every shot.  If one were instead to look at 

lower mode number perturbations, it might be more practical.  In order to look at lower 

mode number perturbations, a larger angular region of the blast wave would need to be 

examined in order to induce enough wavelengths of the perturbation to avoid any edge 

effects and limit the induced modal content.  This would require redesigning the target 

and wire array.  The target would need to be become more mass limited in order to 

remove the low mode number noise in the blast wave.  One way to do this would be to 

change the target to a flat plastic disk with a radius similar to that of the current wire 

target (0.5 mm) but a thickness that is substantially smaller (0.1 mm or less).  This would 

lessen the ellipticity of the created blast waves and the low mode number noise.  The wire 

array would have to be redesigned to allow for a larger angular fraction of the blast wave 

to be perturbed and pass through the array.  This could possibly be done by designing an 

array with two flat circular plates attached by a single bar and machined with matching 

grooves for stringing the wires through. 
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8.3   Conclusions 

 

The field of laboratory astrophysics is rapidly growing thanks to our ability to access 

ever more exotic states of matter in the laboratory.  As our observational ability continues 

to grow, we increasingly rely on complex computer codes to understand the wealth of 

phenomena we see.  Validation and verification of these codes is important if we are to 

believe their results and this task is only possible through comparison with the results of 

experiments designed to simulate some aspect of an astrophysical phenomenon.  As the 

field of laboratory astrophysics continues to grow, we will be able to understand more 

and more of the amazing phenomena we see throughout the universe. 
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