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Gene-ethanol interactions underlie craniofacial variability in a 
zebrafish model of FASD.  

 

Neil McCarthy, PhD  
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Supervisor:  Johann K. Eberhart 

 

Variation is common in human birth defects and this variability is 

influenced by genes and the environment. How genes and the environment 

interact in causing birth defect variability is a fundamental question in biology. I 

sought to investigate these interactions using a zebrafish model of fetal alcohol 

spectrum disorder. Fetal alcohol spectrum disorder (FASD) is an umbrella term 

that describes all ethanol-induced fetal defects. It is highly variable and also 

highly prevalent, with an estimated 1% of the population being affected. FASD 

can cause variable defects, including those affecting the craniofacial skeleton, a 

neural crest- and mesoderm-derived structure.  Although both timing and dosage 

can influence FASD variability, genetics is an underlying factor. Little is known of 

the genes that cause susceptibility to FASD, and so I sought to uncover these 

genes and the mechanism of their interaction with ethanol.  

Using a novel zebrafish genetic screen to uncover gene-ethanol 

interactions, we found a synergistic interaction between platelet-derived growth 

factor receptor alpha (pdgfra) and ethanol. Pdgfra is a receptor tyrosine kinase 

involved in cell migration, proliferation, and survival. Untreated pdgfra mutants 

display cleft palate. In a percentage of ethanol in which wildtype zebrafish are 
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unaffected, pdgfra mutants display exacerbated loss of the entire palatal 

skeleton. Furthermore, pdgfra heterozygotes display variable craniofacial 

defects, uncovering latent haploinsufficiency. Genetic analysis of a group of 

children with and without FASD suggests that this interaction is highly conserved. 

In zebrafish, further analysis of the mechanism of this pdgfra-ethanol interaction 

revealed a protective role of pdgfra to ethanol-induced neural crest cell death. 

Analysis of the Pdgfra downstream pathway PI3K/AKT/mTOR revealed an 

inhibitory effect of ethanol at the level of mTOR. Together, these data suggest 

that genes functioning in growth factor signaling could predispose to ethanol-

induced defects.  

Analysis of another growth factor signaling gene, fgf8a, supported this 

hypothesis. Ethanol interacts with fgf8a to cause posterior mesoderm-derived 

craniofacial defects. This phenotype can be recapitulated by blocking both fgf8a 

and fgf3, suggesting ethanol broadly attenuates growth factor signaling. Analysis 

of the fgf8a;fgf3 phenotype suggests that Fgf signaling is required for proper 

specification, via hyaluronan synthetase 2, of the mesoderm-derived posterior 

craniofacial skeleton. To test whether ethanol may also broadly attenuate Pdgf 

signaling, we analyzed pdgfra;pdgfrb mutant phenotypes and saw a 

recapitulation of the pdgfra-ethanol interaction. The synergistic pdgfra;pdgfrb 

phenotype may be due to a similar increase in neural crest cell death observed in 

the pdgfra-ethanol interaction. Together, these data reveal genes involved in 

growth factor signaling may act to protect against ethanol-induced craniofacial 

defects. 
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Chapter 1: General Introduction and Significance 
 

How genetics and the environment influence morphological variation is a 

fundamental biological question. The primary bulk of this variation is generated 

during development, where gene-environment interactions can sculpt the 

multicellular organism. In instances of impaired genetics and suboptimal 

environments, synergistic effects can result in a wide variety of birth defects. 

Nowhere is this clearer than in examples of teratogenesis.   

Teratogens are any environmental agent that can cause birth defects. One 

of the most well known teratogens is ethanol and fetal exposure to ethanol can 

cause fetal alcohol spectrum disorders (FASD, described in detail below). FASD 

is highly variable, with craniofacial tissues often damaged. While the timing and 

volume of ethanol exposure influence FASD variability, there is clear genetic 

susceptibility to FASD. What these predisposing FASD loci are is still an open 

question.  

To address this question, we utilized a zebrafish model of FASD, focusing 

on the craniofacial skeleton, to uncover and characterize gene-ethanol 

interactions. The broader significance of this research was to understand how 

genes and environment cause phenotypic variation in general, to broaden FASD 

diagnosis, and to provide mechanistic understanding of these gene-ethanol 

interactions that may help in future treatments of this incredibly prevalent birth 

defect.   
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1.I. Fetal Alcohol Spectrum Disorder  

Ethanol was first described as a human teratogen in 1968 (Lemoine et al., 1968), 

and diagnosed as Fetal Alcohol Syndrome in 1973 (Jones et al., 1973; Jones 

and Smith, 1973). Since then, a yet broader representation of the effects of 

ethanol on the developing fetus have been categorized and termed fetal alcohol 

spectrum disorders (FASD). FASD is reported to occur as frequently as 1:100 

(Sampson et al., 1997) live births in the US, with some world communities 

showing a prevalence of 20% (May et al., 2013), making alcohol consumption 

one of the most common causes of human birth defects.  

Alcohol’s teratogenic endpoints are very diverse. The most severe end of 

the spectrum of FASD show pre- and post-natal growth retardation, intellectual 

disability coupled with abnormal morphogenesis of the brain, and craniofacial 

defects, diagnosed as FAS (Calhou and Warren, 2007; Hoyme et al., 2005; 

Jones, 2011). The most mild end of the FASD spectrum involves neurological 

cognitive disorders that are sometimes manifest as late as adolescence (Calhoun 

and Warren, 2007). Other FASD defects include heart, ear, ocular, and limb-

associated malformations (Jones, 2011). The variability seen within FASD can be 

attributed to a number of factors, including the amount and timing of alcohol 

ingested by the mother during pregnancy, malnutrition, epigenetic changes, and 

underlying genetic susceptibility (Perkins et al., 2013). Recent research is 

beginning to shed new light on the latter. 

 

1.II. Gene-ethanol interactions (from McCarthy and Eberhart, 2014) 

Since as early as the 1970s, when the criteria for FAS diagnosis were 

established, underlying genetic factors have been considered to be important. 
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The most convincing evidence in humans for genetic susceptibility to FAS lies in 

the results of twin studies (Chasnoff, 1985). Monozygotic twins have been shown 

to be 100% concordant for FAS, while dizygotic twins, also sharing a common 

uterine environment, only displayed 63% concordance (Streissguth and 

Dehaene, 1993). The precise genetic players underlying susceptibility to FASD 

have remained elusive. Human FASD studies have primarily focused on 

candidate genes, including allelic variants of the alcohol dehydrogenase gene 

ADH1 (Etheredge et al., 2005; Mitchell et al., 2001; Romitti et al., 1999).  Other 

genes that may predispose to human FASD remain elusive. Thus, research has 

come to rely on animal models to direct our understanding of genetics underlying 

FASD. Pathways uncovered in animal models that are especially sensitive to 

ethanol teratogenesis are reviewed below.  

 
1.II.a. Metabolic Pathways 

Alcohol is metabolized first into acetaldehyde via alcohol dehydrogenase (ADH), 

catalase, and cyp2E1 (Deehan et al., 2013; Figure 1.1). Acetaldehyde is further 

catabolized into acetate, an important biosynthetic molecule, via acetaldehyde 

dehydrogenase. This pathway produces harmful byproducts, including 

acetaldehyde itself and reactive oxygen species. Because of this, how well a 

mother and the fetus can catabolize ethanol and its constituent metabolites may 

be an important factor in FASD.  

The first gene ever implicated in FASD was ADH.  In humans, different 

alleles of ADH1 encode for enzymes that catabolize ethanol at different rates. A 
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number of studies have linked these allele-specific ADH genes to FASD 

prevalence. In humans, it has been shown that the ADH1B2 and ADH1B3 alleles 

encode for enzymes with faster catabolism (Das et al., 2004; Green and Stoler, 

2007; Jacobson et al., 2006; May et al., 2007; McCarver et al., 1997; Viljoen et 

al., 2001). These alleles are underrepresented in FASD children and their 

mothers, suggesting that genes regulating ethanol catabolism may regulate 

FASD susceptibility. 

Animal studies provide clear evidence that this catabolic pathway is 

important in ethanol teratogenesis. Superoxide dismutase is an essential enzyme 

for clearing reactive oxygen species. In mice, maternal transgenic 

overexpression of Superoxide dismutase protects litters from ethanol-induced 

decreases in fetal body weight and viability (Wentzel and Eriksson, 2006). 

Furthermore, dams harboring a targeted mutation in Superoxide dismutase were 

found to have increased risk of fetal resorptions and decreased body weight of 

embryos exposed to ethanol. However, zygotic Superoxide dismutase genotype 

had no apparent effect on resorption rates or viability, suggesting that the 

mother’s ability to clear alcohol metabolites is important in susceptibility to 

ethanol-induced defects. Indeed, earlier mouse studies linked ethanol-

metabolizing activity and maternal genotype to increased incidences of ethanol-

induced fetal malformations and death (Chernoff, 1980; Gilliam and Irtenkauf, 

1990). However, these studies did acknowledge that maternal genotype was not 

the only influencing factor in susceptibility to ethanol teratogenesis. 
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Zygotic genotype can also generate susceptibility to ethanol teratogenesis 

alone or in combination with the maternal genotype. Acetaldehyde accumulation 

has been linked to DNA damage and increased oxidative stress, hallmarks of 

ethanol teratogenesis (Dong et al., 2009; Ramachandran et al., 2001; 

Ramachandran et al., 2003). To counteract these damaging byproducts, cells 

further catabolize acetaldehyde via Aldh and mobilize DNA repair enzymes such 

as Fanconi anaemia genes (Fancd) (Mirchandani and D’Andrea, 2006). 

Recently, the function of both Aldh2 and Fancd2 has been shown to be essential 

for protection against ethanol teratogenesis (Langevin et al., 2011; see Fig. 1.1). 

In this study, mouse pups exposed prenatally to alcohol have no increase in 

mortality if they are born to wild-type mothers, regardless of zygotic genotype. 

Similarly, female mice heterozygous for Aldh2 were able to have viable Aldh2-/-

;Fancd2-/- pups. However, in the presence of ethanol these pups had a decrease 

in viability and an increase in the prevalence of exencephaly and eye 

abnormalities. Furthermore, a small percentage of ethanol-treated Aldh2+/-

;Fancd2-/- pups also showed an increase in eye abnormalities and exencephaly. 

Collectively, these studies strongly suggest that in mammalian systems, 

teratogenesis caused by deficits in the ethanol catabolic pathway is the result of 

a complex interaction of maternal and zygotic genotypes. 

Together, these studies strongly suggest that proper alcohol catabolizing 

activity during pregnancy, in both the mother and the fetus, is an important factor 

in FASD susceptibility. Increased alcohol intake leads to an increase in 
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acetaldehyde and reactive oxygen species formation, which together, can lead to 

deleterious effects including DNA damage and cell death. Concurrent with a lack 

of proper catabolizing activity, susceptibility increases in mice lacking proper 

DNA-damage repair enzymes, such as Fancd2. In effect, these types of deficits 

most likely lead to cell death, however, it is unclear if this would be a tissue-

specific effect or not. Lastly, these studies promote the idea that FASD variability 

is most likely manifest as complex genetic interactions within the mother and/or 

the fetus.  

 

1.II.b. Sonic Hedgehog (Shh) pathway 

One of the most well-studied developmental signaling molecules is Sonic 

Hedgehog (Shh). Shh is a secreted glycoprotein first synthesized as a 45kDA 

precursor protein, which undergoes autocatalytic cleavage to produce a carboxy 

terminal fragment (Shh-C) and a 19kDa active fragment (Shh-N) (Stone et al., 

1996; see Figure 1.2). Shh-N is then further modified via addition of cholesterol 

and palmitate to form the functionally active Shh ligand (Mann and Beachy, 2000; 

Porter et al., 1996). Upon sterol modification, Shh is transported to the cell 

membrane via lipid rafts and released from the secreting cell (Mao et al., 2009). 

Shh signaling occurs when the ligand attaches to patched, releasing inhibition of 

smoothened, leading to activation of Gli transcription factors to regulate gene 

expression (Ruiz I Altaba et al., 2002).  
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Mutation of Shh pathway genes causes developmental deficits in 

numerous tissues. These defects include neural crest-specific cell death, 

misspecification of the dorsal-ventral axis of the neural tube and loss of midline 

craniofacial structures as occurs in the holoprosencephaly (HPE) spectrum 

(Chiang et al., 1996; Cordero et al., 2004; Eberhart et al., 2006; Jeong et al., 

2004; Pan et al., 2013; Roessler and Muenke, 2010; Wada et al., 2005). These 

same phenotypes can be present in children with FAS (Johnson and 

Rasmussen, 2010; Jones, 2011), suggesting that ethanol disrupts Shh signaling.  

There is an abundance of molecular evidence that ethanol alters the Shh 

pathway in both cell culture and animal models (see Fig. 1.2). Ethanol has been 

found to decrease the expression of Shh in chicken (Ahlgren et al., 2002; 

Brennan and Giles, 2013), mouse (Aoto et al. 2008), and zebrafish (Li et al., 

2007). Furthermore, co-application of exogenous Shh with ethanol has been 

shown to alleviate ethanol-induced defects (Ahlgren et al., 2002; Aoto et al., 

2008; Li et al., 2007; Loucks and Ahlgren, 2009; Zhang et al., 2011; Zhang et al., 

2012). In addition to altering levels of transcription, ethanol has also been shown 

to disrupt proper membrane fluidity and composition (Polley and Vemparala, 

2012), which might account for some of ethanol’s effects on the Shh pathway. In 

vitro studies have found that ethanol perturbs proper association of active Shh 

ligand with lipid rafts destined to the membrane (Mao et al., 2009). Ethanol 

exposure leads to a decrease in the amount of membrane-associated cholesterol 

(Li et al., 2007), which is vital for proper Shh signaling. Similar to the effects of 
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exogenous Shh ligand, supplemental cholesterol reduces the teratogenicity of 

ethanol (Li et al., 2007; Ehrlich et al., 2012). Additionally, microarray data 

suggests that differences in expression of polysaccharide genes, also important 

in membrane-based cell communication and function, partly contributes to strain 

sensitivity to ethanol-induced defects in mice (Downing et al., 2012). These data 

support the hypothesis that ethanol directly affects Shh-mediated and 

membrane-based signaling.  

While Shh has long been implicated in ethanol teratogenesis, only recently 

has a genetic interaction between ethanol and the Shh pathway been discovered 

(see Fig. 1.2). Ethanol interacts with the gene encoding the Shh co-receptor 

Cdon to cause HPE (Hong and Krauss, 2012). Cdon mutant mice have a low 

penetrance of minor holoprosencephaly phenotypes, and the strain background 

used in this study has been shown to be resistant to ethanol teratogenesis. 

However, ethanol-exposed Cdon mutant mouse embryos have defects in early 

midline patterning, Shh signaling, and increased susceptibility to HPE and 

craniofacial defects. For example, ethanol increased lobar HPE by 50% in 

treated Cdon mutants. Increased prevalence of cranial defects including those 

affecting the palate and premaxillary bones occurred as well. While ethanol 

exacerbated the phenotypes present in Cdon mutants, no defects in ethanol-

treated heterozygotes were reported, suggesting a weak interaction.  

Ethanol may interact more strongly with other members of the Shh 

signaling pathway. Ethanol exposure reveals haploinsufficiency in mice carrying 
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mutant alleles of Shh or Gli2 (Keitzman et al., unpublished). These ethanol-

treated heterozygous mice have variable craniofacial and HPE-like defects. 

Additional evidence in zebrafish supports Shh’s role in predisposing to ethanol 

teratogenesis. Ethanol acts synergistically with suboptimal morpholino 

knockdown of agrin, an extracellular membrane protein required for Shh-

mediated signaling, or of shh which results in variable eye defects, including 

reduced size, in zebrafish (Zhang et al., 2011; Zhang et al., 2012). Collectively, 

both in vitro and in vivo data suggest that ethanol may broadly perturb Shh 

signaling at multiple levels, and that genetic predisposition may exacerbate these 

molecular disruptions. 

 

1.II.c. Growth Factors 

Growth factor signaling pathways are major mediators of tissue growth, 

proliferation, and survival; all of which are processes disrupted by ethanol. 

Growth factor signaling involves ligand activation, receptor dimerization, and 

activation. Receptor activation signals through cytoplasmic effectors that function 

in activating downstream intracellular pathways important for numerous cellular 

roles (de la Monte and Wands, 2010; Hsuan and Tan, 1997; Tallquist and 

Kauzlauskas, 2004). One of the most well studied effectors with relevance for 

ethanol teratogenesis is Phosphoinositide-3 kinase (PI3K).  

PI3K functions partly through the AKT and mTOR pathways (McGough et 

al., 2009; Siegenthaler and Miller, 2005). PI3K phosphorylates inositol 



 10 

phospholipids to generate second messenger phosphoatidylinositol-3,4,5- 

triphosphates (PIP3). PIP3 levels are regulated via phosphatase and tensin 

homolog (PTEN), which converts PIP3 back into inactive PIP2. When PTEN is 

inactive, PIP3 activates AKT, which causes a cascade effect on a number of 

downstream constituents involved in cellular growth and survival including 

forkhead transcription factors, BCL-2, MDM2, and mTORC1 (Downward, 2004; 

Manning and Cantley, 2007). mTORC1 functions in cellular growth and survival 

via activation of elongation factors (EIF) and p70 S6 Kinase (Dobashi et al., 

2011). Disruption of this pathway at the level of PI3K, AKT, or mTOR leads to 

decreased cellular survival, proliferation, and growth (Cai et al., 2013; Kim et al. 

2013). 

Numerous in vitro studies show that ethanol exposure leads to decreased 

signaling through the PI3K/AKT/mTOR pathway. Microarray data showed a 

disparity in activation of genes in the PI3K pathway, including Akt and Pten, in 

mouse strains with differing sensitivity to ethanol-induced defects (Green et al., 

2007). PI3K activation is reduced in human neuronal cells exposed to ethanol (de 

la Monte et al., 2000), while in rat neuronal cell cultures ethanol causes a 

reduction in activated AKT (de la Monte and Wands, 2002). Ethanol decreases 

mTOR and S6 kinase phosphorylation in mouse myocytes (Hong-Brown et al., 

2006), similarly, in vivo studies in rat hearts show decreased mTOR 

phosphorylation in the presence of ethanol (Vary et al., 2008). It has also been 

shown that the activity of PTEN, which inhibits PI3K signaling, increases in cell 
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cultures exposed to ethanol (Xu et al., 2003). Furthermore, increasing growth 

factor signaling or PI3K activity has been shown to alleviate some ethanol-

induced defects (McGough et al., 2009; Siegenthaler and Miller, 2005; de la 

Monte et al., 2000; Jegou et al., 2013). Together, these data suggest that ethanol 

perturbs proper growth factor mediated PI3K/AKT/mTOR signaling, suggesting 

that variants in the PI3K pathway could underlie FASD.  

Many growth factor pathways use PI3K/mTOR signaling, so it might be 

predicted that gene-ethanol interactions will exist for these growth factors. In 

support of this model, transgenic expression of insulin-receptor, which signals via 

PI3K, protects against ethanol-induced motor deficits in Drosophila (McClure et 

al., 2011). It is possible that ethanol perturbs growth factor signaling at many 

levels. Ethanol has been shown to inhibit phosphorylation of Insulin-receptor in 

cell cultures (de la Monte et al., 1999) and rat liver (Sasaki et al., 1994). 

Numerous studies have shown that ethanol perturbs proper expression of a 

number of growth factors and their receptors. These include insulin-receptor, 

brain-derived growth factor, TGFB, and VEGF (de la Monte et al., 2000; Jegou et 

al., 2013; Feng et al., 2005). Collectively, these results show that growth factor 

signaling may be a major target of ethanol, underlying FASD susceptibility.  

 

1.II.d. Zebrafish as a FASD model system  

While these examples of gene-ethanol interactions strongly support a genetic 

susceptibility to FASD, they are likely just scratching the surface of gene-ethanol 
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interactions that exist. Furthermore, few of the above mentioned studies 

characterized the gene-ethanol interactions mechanistically, prompting further 

analysis and detail. To uncover other gene-ethanol interactions and to be able to 

describe the mechanism of these interactions, it prompts the use of the highly 

versatile model system Danio rerio, also known as the zebrafish.   

Zebrafish have been used to study the effects of ethanol since as early as 

1910 (Stockard, 1910). These early studies described relatively high ethanol 

concentrations causing cyclopia, a defect observed only in very severe cases of 

FAS (Cohen and Sulik, 1992; Johnston and Bronsky, 1995). Since then, 

zebrafish research has added to these initial findings showing similarities in more 

subtle FAS and FASD characteristics including neuronal (Blader and Strahle, 

1998; Joya et al., 2014), ocular (Dlugos and Rabin, 2007), heart (Dlugos and 

Rabin, 2010), and craniofacial (Ali et al., 2011) deficits.  While one study showed 

strain-specific defects to ethanol (Dlugos and Rabin, 2003), none of these 

studies sought to identify specific gene–ethanol interactions.  

Zebrafish is highly amenable to uncovering gene-ethanol interactions due 

to the ease of both forward and reverse genetics. Zebrafish allow for fast 

screening of genes for phenotypic traits because of their high fecundity and rapid 

maturation. Furthermore, because they fertilize their eggs externally, zebrafish 

allow for control over both the timing and dosage of ethanol (Fig. 1.3). 

Transgenics also allow for precise cell-tracking and tissue labeling to be 
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employed in investigating the mechanisms by which ethanol and genes interact 

to affect normal craniofacial development.  

1.III. Craniofacial Development 

The craniofacial skeleton is a vertebrate novelty. The evolutionary premise of the 

craniofacial skeleton is thought to be two-fold: 1) to house and protect the brain 

and head sensory organs; and, 2) to allow for a predatory lifestyle (Northcutt and 

Gans, 1983). The development of this structure is incredibly conserved across 

vertebrate species (Knight and Schilling, 2006), and, as such, analysis of 

craniofacial development in zebrafish informs our understanding of human 

development (Knight and Schilling, 2006).  

 

1.III.a. Evolution of Vertebrates 

 Vertebrates are a subphyla of chordata. The chordates all share distinct 

attributes that separate them from other phyla: 1) the appearance of the 

mesoderm-derived notochord, which is a structurally important organ that 

provides rigidity; 2) a dorsal neural tube, which will contribute to the expansion of 

the neural network including the brain; 3) somites, a mesoderm-derived tissue 

that forms along the anterior-posterior axis that functions to form muscles for 

movement; 4) a postanal tail; and, 5) pharyngeal slits (Satoh et al., 2012). 

Several characteristics separate vertebrates from invertebrate chordates 

including the generation of a vertebral column, and the formation of a craniofacial 

skeleton (Green et al., 2015; Knight and Schilling, 2006; Yu, 2010).  
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1.III.b. Development of the vertebrate craniofacial skeleton 

Although vertebrates include an incredible array of different organisms from fish, 

amphibians, birds and mammals, the development of the craniofacial skeleton is 

incredibly conserved across these species (Knight and Schilling, 2006). 

Craniofacial form strictly adheres to fundamental similarities among species due 

to a shared phylotypic stage (Schmidt and Starck. 2010; Galis and Metz, 2001). 

In vertebrates this stage is called the pharyngeal stage and it occurs following 

gastrulation, the time at which all three germ layers become specified (Wolpert, 

1992). It is characterized by the formation of the head, including the appearance 

of pharyngeal arches, eyes, and a swelling of the brain (Graham and Richardson, 

2012; Graham, 2001; Frisdal and Trainor, 2014). One of the most significant 

similarities between vertebrates at this stage is the appearance of the neural 

crest.  

 
1.III.c. The neural crest 

The neural crest is a multipotent tissue that is novel to vertebrates and is often 

dubbed the “fourth germ-layer” (Baker and Bronner-Fraser, 1997b; Hall, 2000; 

Green et al., 2015; Knight and Schilling, 2006; Sauka-Spengler et al., 2008; Yu, 

2010). As a multipotent cell type, the neural crest generates the peripheral 

nervous system, cardiomyocytes, melanocytes, and most of the craniofacial 

skeleton, among other tissues (Kunisada et al., 2014; Mayor and Theveneau, 

2013; Sauka-Spengler and Bronner-Fraser, 2010). Neural crest cells are 

specified at the boundary between the neural and non-neural ectoderm (Baker 

and Bronner-Fraser, 1997a; Basch et al., 2006). They then undergo an epithelial-
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to-mesenchymal transition, migrate, and collect into regions where they will 

terminally differentiate (Baker and Bronner-Fraser, 1997b; Hall, 2000; Knight and 

Schilling, 2006; Sauka-Spengler et al., 2008). In the anterior, cranial neural crest 

cells migrate in distinct streams to populate the reiterated pharyngeal arches. 

Within the pharyngeal arches neural crest cells are bounded by endodermal and 

ectodermal epithelia and surround a mesoderm core (Knight and Schilling, 2006).  

 Within the pharyngeal arch the neural crest rely on surrounding tissues, 

including all three germ layers, for proper patterning and morphogenesis (Couly 

et al., 2002; David et al., 2002; Kimmel et al., 2001; Knight and Schilling, 2006; 

Noden, 1983; Schilling et al., 2001; Seufert and Hall, 1990; Trainor and Krumlauf, 

2000). Patterning of the neural crest along the anterior-posterior and dorsal-

ventral axes is critical for craniofacial development and is regulated by numerous 

genes including Hox (Rijili et al., 1993; Trainor, 2003) and Dlx (Depew et al., 

2002; Takechi et al., 2012; Talbot et al., 2010) genes, respectively. Similarly, 

numerous signaling molecules including BMP (Alexander et al., 2011), Shh 

(Eberhart et al., 2006; Wada et al., 2005), and Wnt (Alexander et al., 2014; Le 

Pabic et al., 2014) shape individual skeletal elements. Occurring simultaneously 

during morphogenesis is the terminal differentiation of these neural crest cells 

into cartilage or bone (Kobayashi and Kronenberg, 2014). The embryological 

craniofacial structures that will eventually form are called the viscerocranium and 

the neurocranium.  
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The general organization of the embryonic craniofacial skeleton includes 

the viscerocranium, which gives rise to all of the jaw, pharyngeal, and inner ear 

skeleton, and the neurocranium, which will give rise to the palate, skull base, and 

skull vault. The palate and skull base are connected and demarcated into pre- 

and postchordal structures, respectively. The postchordal neurocranium forms 

along the notochord, and the prechordal forms anterior of the notochord. In 

mouse, chick, xenopus, and axolotl, the neural crest will contribute to all of the 

viscerocranial elements as well as the prechordal neurocranium (Chai et al., 

2000; Couly et al., 1993; Gross et al., 2008; Koentges and Lumsden, 1996; 

McBratney-Owen et al., 2008; Sefton et al., 2015). In chick and mouse, some 

regions of the postchordal neurocranium are also neural crest derived, forming 

connective sites with more anterior neural crest-derived structures (Koentges and 

Lumsden, 1996; McBratney-Owen et al., 2008). Studies in zebrafish confirm 

these findings (Crump et al., 2004; Eberhart et al., 2006; Wada et al., 2011), and 

a more in-depth analysis of the neural crest contributions to the zebrafish 

craniofacial skeleton will be reviewed later in more detail in this, and following, 

chapters. Regions of the craniofacial skeleton that are not generated by neural 

crest are mesoderm derived.  

1.III.d. The cephalic mesoderm 

While the neural crest give rise to most of the craniofacial skeleton, there is also 

contribution by the cephalic mesoderm (Couly et al., 1993; McBratney-Owen et 

al., 2008). In mouse and chick, the cephalic mesoderm forms most of the 
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postchordal neurocranium around the tip of the notochord, as well as the 

posterior skull vault, forming sutures with the neural crest-derived anterior skull 

vault (Couly et al., 1993; McBratney-Owen et al., 2008). These processes occur 

after much of the organogenesis of the brain and other tissues have ceased 

(Balczerski et al., 2012). Although we know what craniofacial structures the 

cephalic mesoderm gives rise to, we know little of the morphogenetic pathways 

that direct this formation.  

 All mesoderm derives from a population of endomesoderm at the 

beginning of gastrulation (Cooke, 1989). The prechondrogenic cephalic 

mesoderm is among this group of cells and all mesoderm undergoes cellular 

movements as gastrulation proceeds (David, 2015; Denoyelle et al., 2001; 

Dumortier and Rohde and Heisenberg, 2007). At the end of gastrulation, the 

prechondrogenic cephalic mesoderm forms abutting the notochord, where they 

begin chondrogenic differentiation via interactions with surrounding tissues, and 

in mouse, this occurs in a posterior to anterior fashion (McBratney-Owen et al., 

2008). Like the neural crest, the cephalic mesoderm undergoes terminal 

chondrogenic differentiation. One of the few signaling pathways we know 

regulate the proper chondrogenic differentiation of the cephalic mesoderm is Shh 

(Balczerski et al., 2012). Early in development, Shh is initially expressed by the 

notochord, which later activates Shh in the ventral neural tube (Dessaud et al., 

2008). Balczerski and colleagues showed that Shh from the notochord was the 

signaling source required for the activation of the prechondrogenic and 

chondrogenic genes sox9a and col2a1a in the cephalic mesoderm, respectively. 

In chapter 3, I will revisit the development of postchordal neurocranial, adding the 

Fgf signaling pathway as an important contributor to this process.  
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1.III.e. Zebrafish craniofacial development and anatomy 

Zebrafish undergo similar events shared by all vertebrates that culminate into the 

formation of the head. In zebrafish, gastrulation begins at 6 hours post 

fertilization (hpf) and ends at 10 hpf. At this time point, precursors of the cephalic 

mesoderm have migrated to the notochord (Hammerschmidt et al., 2004), and 

the neural crest is being specified at the dorsal neural tube (Baker and Bronner-

Fraser, 1997a; Knight and Schilling, 2006). At 12 hpf, the cranial neural crest 

begin migrating and will populate the pharyngeal arches beginning at 

approximately 24 hpf (Eberhart et al., 2008). Here, they will undergo numerous 

genetic and morphogenetic programs to give rise to the embryonic structures of 

the craniofacial skeleton.  

In zebrafish, the craniofacial skeleton is readily observed as early as 4 

days post fertilization (Fig. 1.4; Schilling and Kimmel, 1997). The neurocranium 

can be split into prechordal and postchordal structures (Fig. 1.4). The prechordal 

structures include the ethmoid plate and the trabeculae, collectively called the 

palate (Fig. 1.4; Schilling and Kimmel, 1997; Swartz et al., 2011). The 

postchordal neurocranium is composed of the parachordals, the anterior 

basicapsular commissures, the posterior basicapsular commissures, the lateral 

commissures, the auditory capsule, and the occipital arches (Fig. 1.4; Schilling 

and Kimmel, 1997; van de beer, 1934). 

The viscerocranium is composed of numerous cartilage elements 

including Meckel’s cartilage, palatoquadrate, hyosymplectic, interhyal, 

ceratohyal, and ceratobranchial (Schilling and Kimmel, 1997). The first 

pharyngeal arch will give rise to the Meckels cartilage and the palatoquadrate, as 
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well as the ethmoid plate and trabeculae (Fig. 1.4; Crump et al., 2004), while the 

second arch will give rise to the hyosymplectic, interhyal and ceratohyal (Fig. 

1.4), and the more posterior arches (3-7) giving rise to the ceratobranchial 

cartilages (not shown). The postchordal neurocranium is primarily derived from 

cephalic mesoderm in all species examined, with data in zebrafish shown in 

chapter 3.   

 
1.IV. Growth factor signaling in craniofacial development 

Numerous genetic pathways regulate proper craniofacial development including 

both the Platelet-derived growth factor (Pdgf) and Fibroblast growth factor (Fgf) 

signaling families. Growth factor signaling pathways share common attributes 

including receptor activation and signal transduction (Fambrough et al., 1999; 

Pawson and Scott, 1997). The general makeup of a growth factor signaling 

pathway involves receptors and their ligands. The receptors are transmembrane, 

hosting an extracellular domain required for ligand binding, and an intracellular 

cytoplasmic domain that functions in signal transduction (Pawson and Scott, 

1997). Most growth factor receptors dimerize to function, which is activated by 

dimerization of ligands. After ligand binding, receptors auto-phosphorylate each 

other on their intracellular tyrosine kinase domains. This promotes the activation 

of multiple downstream pathways involved in a diversity of cellular functions 

including cellular migration, proliferation, morphogenesis, patterning, and survival 

(Lemmon and Schlessinger ,2010; Pawson and Scott, 1997; Tallquist and 

Kazlauskas, 2004). While numerous growth factor signaling pathways are 
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involved in proper craniofacial development, here, I will focus specifically on the 

Pdgf and Fgf signaling pathways.  

1.IV.a. Platelet-derived growth factor signaling 

The platelet-derived growth factor signaling family is composed of two receptors, 

alpha and beta, with four ligands in mouse and humans and six in zebrafish 

(Eberhart et al., 2008; Hoch and Soriano, 2003; Tallquist and Kazlauskas, 2004). 

The receptors can both homo- and heterodimerize and have ligand-preference 

for activation (Tallquist and Kazlauskas, 2004). Pdgfr’s contain two intracellular 

tyrosine kinase domains that can activate numerous intracellular pathways, 

namely PI3K, PLCg, Ras, and Src (Klinghoffer et al., 2002; Tallquist and 

Kazlauskas, 2004). Although both Pdgfra and Pdgfrb have similar intracellular 

activation domains, they function differently in development.  

Numerous genetic mutants have been generated to uncover the varying 

functions of the Pdgf receptors. Null mutants of both Pdgfra and Pdgfrb are 

embryonic lethal (Soriano, 1994; Soriano, 1997) and display differing 

phenotypes. Pdgfra knockout mice have severe developmental deficits, including 

those affecting heart, vertebrae, and craniofacial tissues (Soriano, 1997). Loss of 

the PI3K-activating tyrosine site of Pdgfra leads to phenotypes most similar to the 

null (Klinghoffer et al., 2002), suggesting that PI3K is the effector most vital for 

Pdgfra function in development. Pdgfrb knockout mice have defects in 

vasculogenesis, as well as defects in kidney and heart formation (Soriano, 1994). 

Of the two Pdgf receptors, Pdgfrb seems dispensible for proper craniofacial 

development. However, Pdgfra;Pdgfrb PI3K double mutants have defects closely 

mirroring the Pdgfra null knockout (Klinghoffer et al., 2002). The mechanism of 
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this interaction is still unclear and is the focus of chapter 4. How Pdgfra functions 

in the cranial neural crest, however, has been much more extensively studied.  

  In both mouse and zebrafish, Pdgfra is expressed in the migrating cranial 

neural crest (Eberhart et al., 2008; Liu et al., 2002; Schatteman et al., 1992), and 

reduced Pdgfra function results in cleft palate (Eberhart et al., 2008; Klinghoffer 

et al., 2002; Tallquist and Soriano, 2003). Furthermore, in humans, PDGFRA has 

been linked to congenital cleft palate (Rattanasopha et al., 2012). These data 

suggest a strong conservation of gene function across species. Mechanistically, 

palatal clefting is due to a neural crest migration defect in both mice and 

zebrafish (Eberhart et al. 2008, Vesudevan and Soriano, 2014), where the most 

anterior neural crest cells fail to properly populate the first pharyngeal arch 

(Eberhart et al., 2008). Pdgf ligands act as chemoattractants to the pdgfra-

expressing neural crest, and this allows for proper neural crest migration 

(Eberhart et al., 2008). In these genetic analyses, the functions of Pdgfra are 

observed when the environmental conditions are optimal. When placed in 

stressed conditions, such as ethanol, Pdgfra plays a second role in the neural 

crest beside migration, namely survival. This is the focus of chapter 2.   

 

1.IV.b. Fibroblast growth factor signaling 

Fibroblast growth factors (Fgf’s) are part of a large family of intercellular signaling 

molecules that consists of 4 receptors in all vertebrates with 22 ligands in mouse 

and human and 27 ligands in zebrafish (Itoh, 2007). They are crucial throughout 

development (Carter et al., 2014; Ornitz and Itoh, 2001; Thisse and Thisse, 

2005), including neural and mesoderm induction and specification (Sivak et al., 

2005), cartilage homeostasis (Ellman et al., 2013), as well as numerous aspects 
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of craniofacial development. For example, Fgf3 and Fgf8 are required for proper 

migration, survival, and patterning of the neural crest (Creuzet et al., 2004; 

Crump et al., 2004). Multiple Fgf receptors are implicated in cranial suture 

formation (Nie et al., 2006; Rice et al., 2000) and, furthermore, Fgfs are 

implicated in a number of congenital craniofacial disorders with reported skull 

base defects including Aperts, Crouzon, and DiGeorge Syndromes (Tokumaru et 

al., 1996; Aggarwal et al., 2006). While Fgfs function in early mesoderm 

induction, specification, and migration (Ornitz and Itoh, 2001; Sivak et al., 2005; 

Thisse and Thisse, 2005), no known role has been determined in the later-

forming cephalic mesoderm. This is the focus of chapter 3.   

 

1.V. Outline of dissertation 

The main goal of my dissertation research was to identify and characterize gene-

ethanol interactions. In short, I found that genes involved in growth factor 

signaling are especially vulnerable to ethanol teratogenesis. I focused on 

elucidating the ethanol interaction with platelet-derived growth factor receptor 

alpha (pdgfra), and, through this work, uncovered a second ethanol-interacting 

gene fibroblast growth factor 8a (fgf8a). Due to the nature of the fgf8a-ethanol 

interaction, I then focused my efforts in elucidating the function of Fgfs in 

craniofacial development.  

In an initial ethanol-sensitivity screen using known craniofacial mutants, 

we found a synergistic interaction between ethanol and pdgfra. Using a number 

of different assays, I found an increase in cranial neural crest cell death in 

ethanol-treated pdgfra mutants, and that pdgfra protects against this cell death 

via activation of the PI3K/AKT/mTOR pathway. I developed a two-hit model of 
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ethanol teratogenesis, where subteratogenic levels of ethanol and suboptimal 

levels of growth factor signaling synergize to cause FASD.  

Building on the hypothesis that reduced growth factor signaling 

predisposes to ethanol-induced defects, we tested a different growth factor 

signaling gene, fgf8a. It interacted with ethanol to cause a completely different 

craniofacial defect than that observed with pdgfra and ethanol. It caused the 

postchordal neurocranium to be lost. Due to the nature of this phenotype, I was 

interested in understanding the function of Fgfs in postchordal neurocranial 

development. Using a number of genetic, cell tracking, and in situ hybridization 

assays, I uncovered a hierarchy of genetic signaling pathways regulating the 

formation of the postchordal neurocranium. This involved Fgfs functioning in 

specification of the mesoderm precursors of this structure, and Shh functioning in 

later differentiation. 

Lastly, I wanted to revisit the function of Pdgf signaling in craniofacial 

development. There are two Pdgf receptors, alpha and beta, and it was unclear 

whether ethanol interacted with pdgfra alone to cause the exacerbated 

craniofacial defects, or whether ethanol broadly attenuated all Pdgf signaling, 

including pdgfrb. Using double pdgfra;pdgfrb mutants, we tested whether dual 

loss of pdgfra and pdgfrb could phenocopy the ethanol-treated pdgfra mutant 

phenotype. Indeed, we found that pdgfra and pdgfrb synergistically function in 

craniofacial development. I am currently determining the mechanism of this 

genetic interaction.   
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1.VI. Figures 

 

 
 

Figure 1.1: Ethanol metabolism leads to cell-damaging reactive oxygen species 

(ROS), increased DNA damage, and cell death; a problem exacerbated by 

Fancd2 deficiency. (Top panel) In wildtype animals, alcohol is catabolized to 

acetaldehyde, a potentially harmful degradation product. Its accumulation is 

prevented by further enzymatic degradation to acetate (represented by the solid 

line), via alcohol dehydrogenase 2 (Aldh2). The proper function of Aldh2 also 

prevents accumulation of reactive oxygen species (ROS), cell death, and DNA 

damage (represented by the dashed line).  Furthermore, Fancd2 functions in 

repairing DNA damage that may accrue during alcohol exposure. (Bottom panel) 

In Aldh2;Fancd2 double mutant fetuses carried by double heterozygous dams, 
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acetaldehyde is not degraded (represented by the dashed line), yielding an 

increase in ROS, cell death and DNA damage (represented by the solid line). 

Loss of Fancd2 may increase risk of DNA damage, and, with the effects of 

acetaldehyde accumulation, lead to FASD-like defects. Double-cross denotes 

members of the pathway implicated in ethanol-teratogenesis in human studies.  
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Figure 1.2: Ethanol has been shown to interact with several members of the Shh 

signaling pathway (denoted in red). In the producing cell, Shh mRNA is first 

translated into a precursor protein, which is then modified via glycosylation (Shh-

N). Shh-N is then packaged into lipid raft domains, in which Agrin also gets 

packaged, and is then shipped extracellularly to the receiving cell. Shh-N binds to 

Patched, which releases Smoothened to activate Gli transcription factors. Cdon 

is a co-receptor of Patched. Ethanol causes holoprosencephaly and craniofacial 

defects in Cdon mutant mouse embryos and heterozygous Gli2 and Shh mice 

(Keitzman et al., unpublished, red arrow). Injection of shh or agrin morpholinos 

results in ocular defects in zebrafish. Asterisks denote members of the pathway 

implicated in ethanol-teratogenesis. 
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Figure 1.3: Zebrafish screen to uncover gene-ethanol interactions. To test for 

ethanol sensitive genes, zebrafish with known mutations (marked by asterisk) 

were interbred to give rise to clutches that will be composed of wildtype, 

heterozygous, and mutant offspring. These were split into two groups, one 

treated with 1% ethanol at various times, and tested for ethanol sensitivity of 
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various morphological attributes at 24 hours post fertilization and/or 5 days post 

fertilization.  
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Figure 1.4: The zebrafish cranial neural crest and craniofacial skeleton. The 

panel on the far left shows a 24 hour post fertilization embryo labeling neural 

crest cells in white. These neural crest cells are formed into pharyngeal arches 

labeled 1-7. At 5 days post fertilization, zebrafish neural crest cells will give rise 

to corresponding neurocrania (middle panel) and viscerocrania (right panel) 

marked by coloration (red=first arch, yellow=second arch). The neurocranium is 

separated into prechordal (pre.) and postchordal (post.) regions, respectively. 

The prechordal neurocranium is called the palate. abc= anterior basicapsilur 

commissure, ch=ceratohyal, hs=hyosymplectic, ep=ethmoid plate, 

hs=hyosymplectic, ih=interhyal, lc=lateral commissure, Mc=Meckels cartilage, 

n=notochord, oa= occipital arch, pbc= posterior basicapsilur commissure, 

pc=parachordals, pq=paraquadrate, tr=trabeculae.  
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Chapter 2: Pdgfra protects against ethanol-induced craniofacial 

defects in a zebrafish model of FASD. (McCarthy et al., 2013) 

2.I. Abstract 

Human birth defects are highly variable and phenotypic variability can be 

influenced by both the environment and genetics. However, the synergistic 

interactions between these two variables are not well-understood. Fetal Alcohol 

Spectrum Disorders (FASD) is the umbrella term used to encompass  the wide 

range of outcomes following prenatal alcohol exposure. While FASD are caused 

by prenatal ethanol exposure, FASD are thought to be genetically modulated, 

although the genes regulating sensitivity to ethanol teratogenesis are largely 

unknown. In a small shelf screen for ethanol susceptibility loci, we found that 

platelet-derived growth factor receptor alpha (pdgfra) interacted synergistically 

with ethanol during zebrafish craniofacial development. Analysis of the PDGF 

family in a human FASD genome-wide dataset links PDGFRA to craniofacial 

phenotypes in FASD, prompting a mechanistic understanding of this interaction. 

In zebrafish, untreated pdgfra mutants have cleft palate due to defective neural 

crest cell migration, while pdgfra heterozygotes develop normally. Ethanol-

exposed pdgfra mutants have profound craniofacial defects that include the loss 

of the palatal skeleton and hypoplasia of the pharyngeal skeleton. Furthermore, 

ethanol treatment revealed latent haploinsufficiency, causing palatal defects in 

approximately 62% of pdgfra heterozygotes. Neural crest apoptosis partially 
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underlies these ethanol-induced defects in pdgfra mutants, demonstrating a 

protective role for Pdgfra. The PI3K/mTOR pathway mediates the protective 

functions of Pdgfra. Collectively, our results suggest a model where combined 

genetic and environmental inhibition of PI3K signaling leads to variability within 

FASD. 
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2.II. Introduction 

 
Phenotypic variability is typical in human disorders. This variability can be caused 

by a combination of genetic and environmental factors. While we have gained 

insight into these separate genetic and environmental influences, the synergistic 

interactions between the two are largely unknown. We sought to understand 

these interactions by examining the effects of embryonic alcohol exposure on 

craniofacial development using a zebrafish model.  

 Fetal alcohol spectrum disorders (FASD) encompass the range of defects 

associated with prenatal exposure to ethanol. By some estimates, FASD affect 

somewhere from 1% of the North American population (Sampson et al., 1997) to 

2-5% of the United States and Western Europe (May et al., 2005; May et al., 

2007). Defects and deficits associated with FASD are variable and lie along a 

continuum with the most severe form represented by Fetal Alcohol Syndrome 

(FAS), which is clinically diagnosed by growth retardation, deficiencies in brain 

growth (reduced head circumference and/or structural brain anomaly), and 

distinct facial features (microcephaly, short palpebral fissures, thin upper lip, 

and/or smooth philtrum) (Jones and Smith, 1973). Other craniofacial defects can 

arise in FAS, including cleft palate (Swayze et al., 1997). The variability of the 

defects found in FAS and FASD are partly attributed to the timing and dosage of 

fetal exposure to ethanol (Ali et al., 2011; Sulik, 2005; Sulik et al., 1986). 
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However, genetic factors are also likely to influence FASD, yet these influences 

are poorly understood.  

Several lines of evidence suggest a genetic component to FASD (Warren 

and Li, 2005). Different strains of mice, rats, chickens and zebrafish show 

differing sensitivity to ethanol exposure (Boehm et al., 1997; Debelak and Smith, 

2000; Dlugos and Rabin, 2003; Thomas et al., 1998). Recently, work in mouse 

has shown that the Hh pathway gene, Cdon, interacts with ethanol (Hong and 

Krauss, 2012). The Hh pathway has also recently been shown to interact with 

ethanol during zebrafish neural development (Zhang et al., 2013). In humans, the 

most compelling evidence for a genetic component to FASD is twin studies 

showing greater concordance for FAS between monozygotic than for dizygotic 

twins (Streissguth and Dehaene, 1993). In a small South African cohort, 

resistance to FAS associates with carrying the alcohol dehydrogenase (ADH) 

B*2 allele, which catabolizes alcohol at a faster rate than other ADH isozymes 

(Viljoen et al., 2001). Together, these studies provide evidence for gene-

environment interactions being involved in susceptibility to FASD.  

 The zebrafish provides an excellent model system in which to study gene-

ethanol interactions. Zebrafish eggs are fertilized externally, simplifying the 

analysis of zygotic genes that interact with ethanol. Furthermore, this external 

development allows for the precise timing and dosage of ethanol exposure. 

Zebrafish embryos display FASD defects when exposed to ethanol and the 

effects of ethanol timing and dosage have been well studied in zebrafish as far 
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back as 1910 (Ali et al., 2011; Arenzana et al., 2006; Dlugos and Rabin, 2003; 

Lockwood et al., 2004; Loucks and Carvan, 2004; Stockard, 1910).  Yet we know 

very little about how genetic factors influence ethanol-induced phenotypes, such 

as perturbations of proper craniofacial development.  

In all vertebrate species, the majority of the craniofacial skeleton derives 

from the cranial neural crest (Couly et al., 1993; Evans and Noden, 2006; Gross 

and Hanken, 2008; Knight and Schilling, 2006; LeLievre, 1978; Noden, 1978; 

Yoshida et al., 2008). Neural crest cells are generated between neural and non-

neural ectoderm. Neural crest cells undergo an epithelial-to-mesenchymal 

transition, which allows them to migrate into the periphery to form a wide variety 

of cell types (Theveneau and Mayor, 2012). In cranial regions these cells will 

migrate into serially reiterated structures called pharyngeal arches (Grevellec and 

Tucker, 2010). In the zebrafish, this occurs beginning at 10 hours post 

fertilization (hpf), and ends around 30 hpf (Eberhart et al., 2008). Morphogenetic 

processes within the pharyngeal arches will eventually shape the craniofacial 

skeleton by 5 days post fertilization (dpf). In the zebrafish, the first pharyngeal 

arch contributes to jaw structures including Meckel’s cartilage and the 

palatoquadrate, as well as palatal elements, including the ethmoid plate and 

trabeculae (Cubbage and Mabee, 1996; Kesteven, 1922; Shah et al., 1990; 

Swartz et al., 2011). The second arch contributes to the jaw support skeleton 

including the hyosymplectic, ceratohyal and interhyal. 
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From genetic screens and cell lineage analyses, a great deal has been 

learned concerning the genetic pathways controlling the development of these 

craniofacial elements. Numerous signaling pathways regulate craniofacial 

development, including the Platelet-derived growth factor (Pdgf) signaling 

pathway. Pdgfra is a receptor tyrosine kinase, known to regulate a number of 

processes including cellular migration, proliferation, and survival (Tallquist and 

Kazlauskas, 2004; Wu et al., 2008). A key effector of Pdgfra signaling is PI3K, 

which can regulate numerous cell behaviors, including migration via activation of 

small GTPases and survival and growth via activation of mTOR (Downward, 

2004; Klinghoffer et al., 2002; Zhou and Huang, 2010). In both mouse and 

zebrafish, most, if not all, cranial neural-crest cells express Pdgfra and Pdgfra 

function is required in the neural crest (Eberhart et al., 2008; Soriano, 1997; 

Tallquist and Soriano, 2003). While the precise function of Pdgfra is not known in 

mouse, in zebrafish Pdgfra is necessary for proper neural crest cell migration 

(Eberhart et al., 2008). 

The work described here uncovers a second role for pdgfra in the neural 

crest: protection against ethanol-induced teratogenesis. Testing five craniofacial 

mutants, cyp26b1, gata3, pdgfra , smad5, and smoothened, for dominant 

enhancement of ethanol teratogenesis we found that only pdgfra heterozygotes 

and mutants showed enhanced craniofacial defects after ethanol exposure. In a 

small human dataset with variable prenatal alcohol exposure, we find support for 

a gene-ethanol interaction with single nucleotide polymorphisms (SNPs) in PDGF 
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family members associating with different craniofacial phenotypes. In zebrafish, 

the susceptibility to craniofacial defects is at least partly due to neural crest cell 

apoptosis following ethanol exposure. The pdgfra-ethanol interaction is due to 

the combined genetic and environmental attenuation at or downstream of the 

mechanistic target of rapamycin (mTOR), part of the Phosphoinositide 3 kinase 

(PI3K) pathway. Collectively, our data show that genetic screens using zebrafish 

will have important implications in FASD research, both in uncovering genetic 

susceptibility loci and in characterizing the mechanisms underlying gene-ethanol 

interactions.  

 

2.III. Results 

2.III.a. pdgfra and ethanol synergistically interact 

We sought to identify gene-ethanol interactions that might underlie the 

craniofacial variability observed in FASD. We reasoned that some genetic loci 

that influence ethanol teratogenicity would cause craniofacial phenotypes when 

mutated. We initially screened five craniofacial mutants for ethanol sensitivity: 

smob577, cyp26b1b1024, gata3b1075, smad5b1100 and pdgfrab1059. For this initial 

screen, embryos were placed in media containing 1% ethanol from 6 hours post 

fertilization (hpf) until 5 dpf, when craniofacial phenotypes were examined. At this 

concentration, the tissue levels of ethanol are approximately 41 mM (188.6 

mg/dL or 0.18 BAC), as determined by headspace gas chromatography, and 

wild-type embryos are largely unaffected. This is a concentration of ethanol 
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achieved in binge drinkers (Lange and Voas, 2000). We found no clear 

differences in phenotypes between ethanol-treated and untreated smo, cyp26b1, 

gata3 or smad5 mutants nor any indication that ethanol caused 

haploinsufficiency in heterozygotes. In contrast, ethanol appeared to interact 

synergistically with the hypomorphic pdgfrab1059 allele, dramatically exacerbating 

mutant phenotypes and uncovering latent haploinsufficiency (Figs., 2.1 and 2.2, 

discussed in greater detail below). We partially rescued these ethanol-induced 

defects by elevating Pdgfra levels via pdgfra mRNA injection or morpholino 

knockdown of miR140, which negatively regulates pdgfra, (Fig. 2.3, Fig. 2.4, 

Eberhart et al., 2008), demonstrating specificity of the interaction. The variability 

that we observed in these rescues was consistent with the variation that we 

previously observed in rescuing untreated pdgfra mutants and our finding that the 

craniofacial skeleton is highly sensitive to the overall levels of Pdgfra (Eberhart et 

al., 2008). There are also likely to be between embryo differences in signal 

strength downstream of the receptor, such as altered Pten function, which would 

impact negative feedback into the signaling pathway (Carracedo and Pandolfi, 

2008) to add to the inherent variability in these rescue experiments. Collectively, 

these results show that ethanol interacts with a subset of gene products involved 

in craniofacial development. 

Untreated pdgfra mutants have a loss of the ethmoid plate which leads to 

a significant reduction in the length of the palate (Fig. 2.1C, asterisk, Fig. 2.5) 

and have slightly smaller pharyngeal skeletal elements (Fig. 2.2C,G-I, Table 2.1). 
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Untreated heterozygous siblings develop normally (Fig. 2.1B, Fig. 2.2B,G-I, Fig. 

2.5, Table 2.1). Treatment with 1% ethanol from 10 hpf to 5 dpf had a minor 

effect on the neurocranium of wild-type embryos, with 11% of treated wild types 

having a reduced ethmoid-plate (Fig. 2.1D,G) and the overall length of the palate 

was not significantly reduced (Fig. 2.5). Treated wild-type embryos displayed a 

slightly smaller hyosymplectic (Fig. 2.2I, Table 2.1) cartilage, however, Meckel’s 

cartilage and the palatoquadrate appeared unaffected (Fig. 2.2G,H and Table 

2.1). Statistical analyses of the size of these elements showed that, indeed, only 

the hyosymplectic was reduced by ethanol. 

Ethanol-treatment caused craniofacial defects in 62% of pdgfra 

heterozygotes (Fig 2.1E,G), a dramatic increase compared to 11% of wild-type 

embryos with an identical treatment. Because heterozygous embryos rarely have 

craniofacial defects, this substantial increase in the number of embryos with 

craniofacial defects is specific to the pdgfra/ethanol interaction. The defects 

observed included gaps in the ethmoid-plate (asterisk and arrow in Fig. 2.1E) 

and breaks in the trabeculae (arrowheads in Fig. 2.1E). Ethanol-treated 

heterozygotes also displayed significantly shorter palates when compared to 

untreated heterozygotes and ethanol-treated wildtypes (Fig. 2.5A). 

Heterozygosity for pdgfra alone had no effect on the size of the palatal skeleton 

and ethanol caused a slight, nonsignificant, reduction to the palate in wild-type 

siblings (Fig. 2.5A).  The palatal skeleton was significantly reduced in ethanol-

treated pdgfra heterozygotes, compared to these two comparison groups. 
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Therefore, ethanol has a specific synergistic effect on palatal development in 

pdgfra heterozygotes. Furthermore, ethanol caused a statistically significant 

reduction in the size of the hyosymplectic cartilage in heterozygotes compared to 

ethanol-treated wildtypes and untreated heterozygotes (Fig. 2.2E,I and Table 

2.1). Because the hyosymplectic is reduced in ethanol treated wild-type embryos 

and untreated heterozygotes, this effect appears additive. These results show 

that the pdgfra and ethanol interact synergistically in palatal development and 

that the hyosymplectic is further reduced in ethanol-treated pdgfra heterozygotes 

as compared to treated wild-type embryos. 

In 100% of treated pdgfra mutants, as compared to approximately 10% of 

untreated mutants, the anterior neurocranium was completely lost (Fig. 2.1F). 

Not surprisingly, this loss led to a statistically significant decrease in the length of 

the palate, relative to treated wild-type embryos and untreated mutants (Fig. 2.5). 

The ethanol-treated mutant embryos also had a statistically significant reduction 

of the palatoquadrate, Meckel’s cartilage, and the hyosymplectic compared to 

untreated mutant and ethanol-treated wild-type and heterozygotes (Fig. 2.2F,G-I, 

and Table 2.1). All of the reductions observed in the ethanol-treated mutants are 

far beyond that predicted by an additive effect of ethanol-treatment in wild-types 

and loss of pdgfra without ethanol. Ectodermal and cardiac edema was also 

present in 100% of treated pdgfra mutants (not shown). Collectively, these 

results provide strong support that pdgfra and ethanol synergistically interact 

during craniofacial development.  
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The severity and variability of ethanol-induced defects is partly dependent 

on concentration and developmental timing (Ali et al., 2011; Sulik, 2005). 

Therefore, we tested these variables across ethanol-treated pdgfra genotypes. 

We initially tested 24-hour time windows for sensitivity and then narrowed down 

the sensitive window. While treatments initiating after 24 hpf had no effect, we 

found that a 1% ethanol treatment from 10-24 hpf is the shortest time window 

sufficient to fully recapitulate the mutant phenotypes obtained by treatment from 

10 hpf to 5 dpf (Fig. 2.1G, Fig. 2.2G-I, Fig. 2.5, Table 2.1). In heterozgyotes this 

shorter exposure still lead to significant differences in the neurocranium, in fact 

the difference in length between the treated wild-type and heterozygous embryos 

was even more marked (Fig. 2.1G, Fig. 2.5). No significant alterations to the 

hyosymplectic were observed (Fig. 2.2G-I, Table 2.1). These results suggest that 

the palatal skeleton is most sensitive to brief ethanol exposure. 

We tested lower ethanol concentrations to determine how sensitive pdgfra 

mutants and heterozygotes were to ethanol teratogenesis. Treatment with 0.5% 

ethanol, a tissue concentration of 19 mM (88 mg/dL), from 10 hpf to 5 dpf caused 

neurocranial defects in 3% and 13% of wild-type and heterozygotes, respectively 

(Fig. 2.1G). Under these conditions, 38% of pdgfra mutants completely lacked 

the palatal skeleton (Fig. 2.1G). This clear increase in the percentage of 

heterozygous and mutant embryos with palatal defects, is associated with 

reductions in the size of the crest-derived cartilages (Fig. 2.2G-I, Table 2.1), 

although these differences did not reach a level of significance. Shorter 
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treatments with 0.5% ethanol had no apparent effect (data not shown). Thus, 

attenuation of Pdgf signaling sensitizes embryos to ethanol-induced craniofacial 

defects, and this sensitivity occurs roughly when neural crest cells are migrating 

to and populating the pharyngeal arches, although migration does continue after 

24 hpf in zebrafish palatal development (Dougherty et al., 2013).  

We analyzed non-crest-derived cartilages to determine if ethanol had a 

general effect on cartilage development. First, we examined the posterior 

neurocranium because it is of presumed mesoderm origin. Surprisingly, we 

discovered a previously undescribed function of Pdgfra in posterior neurocranial 

development, with the size of the posterior neurocranium significantly reduced in 

untreated mutants, relative to wild-type embryos (Fig. 2.5). This requirement may 

relate to the requirement for Pdgfra function for migration and survival of early 

mesoderm precursors (Van Stry et al., 2005; Van Stry et al., 2004). As then 

would be expected, ethanol did interact with pdgfra in the development of these 

cartilages (Fig. 2.5) to generate an overall effect of microcephaly. Second, we 

analyzed cartilage of the pectoral fin and found no difference between ethanol-

treated mutants, ethanol-treated wild-type embryos and untreated mutants (Fig. 

2.6). This result suggests that there is no generalized chondrogenic defect in the 

ethanol-treated pdgfra mutants. Consistent with this, we found that colIIa was 

expressed appropriately in the posterior neurocranium of ethanol-treated 

mutants, although, as expected from the phenotype, no ethmoid plate or 

trabeculae condensations were present (Fig. 2.7). Collectively, these findings 
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show that proper development of the entire neurocranium requires Pdgfra 

function and that ethanol interacts synergistically with pdgfra having the most 

profound effects on the neural crest-derived skeleton, which we focus on here. 

The regulation and function of Pdgf signaling is highly conserved across 

vertebrate species, prompting us to seek evidence from a published human 

sample (Jones et al., 2006) for interactions between PDGF family members and 

prenatal ethanol exposure. We asked whether there was evidence for ethanol 

usage/SNP interaction on human craniofacial features. We tested members of 

the human PDGF family, including PDGFB, PDGFC, PDGFD, PDGFRA and 

PDGFRB, using a well-characterized sample from the US (See Table 2.2 for a 

complete list of the SNPs analyzed) (Mattson et al., 2010; Moore et al., 2007). 

Due to the small size of PDGFA (12,700 bp), no SNPs were genotyped or 

analyzed in this gene. The best evidence for gene-ethanol interactions in humans 

was found in the two PDGF Receptor genes. The most significant evidence for a 

gene-ethanol interaction was observed with 2 SNPs in PDGFRB, when analyzing 

midfacial depth (rs2304061; p=3.7x10-6 and rs1075846; p<3.5 x10-5). These 

SNPs are in modest linkage disequilibrium (r2=0.57). These SNPs were also 

moderately associated with lower facial depth (both p<9.9x10-4).  In addition, a 

single SNP in PDGFRA was associated with the measures of outer canthal width 

and midfacial depth (p=1.3 x10-4 and p=1.7 x10-4).  Together, these results 

provide evidence that zebrafish gene-ethanol interactions may be conserved in 

humans.   
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2.III.b. Neural crest cell apoptosis increases in ethanol-exposed pdgfra 

mutants. 

High doses of ethanol can cause neural crest cell apoptosis (Cartwright and 

Smith, 1995; Sulik, 2005), and Pdgf signaling has been implicated in mesoderm-

cell survival (Van Stry et al., 2005). We postulated that the craniofacial defects in 

ethanol-treated mutants and heterozygotes could be due, at least in part, to an 

increase in cranial neural crest cell death. In support of this model, treating 

pdgfra mutants with ethanol and caspase-inhibitor III partially rescued the 

ethanol-induced craniofacial defects (Fig. 2.8G, compare to Fig. 2.1C,F). We do 

not expect a full rescue with this treatment, because clefting of the ethmoid plate 

is due to a migratory defect (Eberhart et al., 2008). Thus, this partial rescue 

supports the model in which elevated apoptosis underlies some of the effect of 

ethanol on pdgfra mutants. 

We directly determined the levels of apoptosis using anti-active caspase 

immunohistochemistry in the neural crest cell labeling fli1:EGFP transgenic line. 

We quantified neural crest cell death in the first and second arch at 20 and 24 

hpf, encompassing the developmental time window in which pdgfra mutants are 

most sensitive to ethanol (Fig. 2.8A-D and A’-D’). We did not observe any 

increase in cell death in ethanol-treated groups at 20 hpf compared to untreated 

controls (not shown). At 24 hpf, there were low levels of neural crest cell death in 

all untreated genotypes, ranging from 1-2 cells/side of the embryo (Fig. 2.8E). 

The frequency of cell death was slightly increased in ethanol-treated wild-type 
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embryos (3.4 cells/side) and further increased in ethanol-treated heterozygotes 

(4.79 cells/side, Fig. 2.8E), although this effect was not clearly synergistic. In 

ethanol-treated pdgfra mutants, we found a statistically significant and non-

additive increase in apoptosis compared to all other groups (Fig. 2.8E, 10.3 

cells/side, tukey test *p-value=<0.01). In all ethanol-treated genotypes, there 

were frequently non-fli1:GFP-positive cells undergoing apoptosis just dorsal to 

the first arch, in the relative position of the trigeminal ganglion. There were, 

however, no global elevations in apoptosis at 24 hpf between ethanol-treated 

mutants and sibling counterparts compared to their untreated mutants and 

siblings (Fig. 2.9), suggesting that the pdgfra-ethanol interaction leads to an 

increase in neural-crest specific cell death. Quantification of the ratio of cell death 

compared to total cells showed a linear increase in all ethanol-treated groups at 

24 hpf (Fig. 2.8F). Ethanol-treatment did not reduce cell proliferation at 24 hpf in 

pdgfra mutants relative to untreated controls, however, we did observe a rise in 

cell proliferation in wild-type embryos (Fig. 2.10). This rise in proliferation may 

compensate for the slight increase of cell death at this time.  

While pdgfra mutants are most sensitive to ethanol from 10-24 hpf, the 

effects of ethanol could potentially continue after the treatment. Therefore, we 

analyzed cell death after a 6-hour recovery period from ethanol. Strikingly, we 

observed a significant and synergistic increase in cell death at 30 hpf, after 

ethanol was removed at 24 hpf in pdgfra mutants (14.2 cells/side, tukey test *p-

value=<0.01, Fig 2.8E). The trend for elevated cell death in pdgfra 
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heterozygotes, seen at 24 hpf, was abolished with just 6 hours recovery (Fig. 

2.8E,F). This timing of 24-30 hpf correlates with when Pdgfra ligands begin to be 

expressed in the epithelia adjacent to the neural crest (Eberhart et al., 2008). 

These data suggest that pdgfra protects against ethanol-induced neural crest cell 

death during neural crest condensation in the arches, and may be a 

compensatory mechanism against ethanol-induced cell death following ethanol 

exposure.  

Detailed fate maps of the pharyngeal arches in the zebrafish at 24 hpf 

allow us to directly compare the location of cell death to the skeletal structures 

disrupted across ethanol-treated pdgfra genotypes. At 24 hpf, neural-crest cells 

condensing on the roof of the oral ectoderm contribute to most of the anterior 

neurocranium (Crump et al., 2006; Eberhart et al., 2006). Also, cells located 

dorsally in the 1st and 2nd pharyngeal arches contribute to the palatoquadrate and 

hyosymplectic (Crump et al., 2004; Crump et al., 2006; Eberhart et al., 2006). 

These are the skeletal elements that were reduced to the greatest extent in 

ethanol-treated pdgfra mutants, and increased cell death in ethanol-treated 

mutants and heterozygotes occurred in these precursor regions (Fig. 2.11). The 

regions of enhanced cell death are also adjacent to the oral ectoderm and 

pharyngeal pouches, sources of ligands for Pdgfra (Eberhart et al., 2008). 

Collectively, these data show that the pdgfra-ethanol interaction causes an 

increase in neural crest cell death starting at 24 hpf, which contributes to the 

ethanol-induced craniofacial defects at 5 dpf. 
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2.III.c. Combined loss of Pdgf signaling and ethanol exposure impinges on 

mTOR signaling. 

In combination with our previous analyses (Eberhart et al., 2008), our results 

show that Pdgf signaling functions in both neural crest migration and protection 

from ethanol-induced apoptosis. A main pdgfra effector regulating cell survival 

and migration in vitro and in Xenopus mesoderm cells is Phosphoinositide 3 

kinase (PI3K) (Downward, 2004; Van Stry et al., 2005; Xiong et al., 2010). 

Additionally, PI3K is the major effector of Pdgfra regulating craniofacial 

development in mouse (Klinghoffer et al., 2002). In different in vitro analyses, 

ethanol has been suggested to downregulate several components of the PI3K 

pathway, including PI3K itself, AKT and mTOR, both downstream of PI3K (Guo 

et al., 2009; Hong-Brown et al., 2010; Vary et al., 2008; Xu et al., 2003). We 

hypothesized that PI3K signaling mediates Pdgfra protection from ethanol-

induced apoptosis. We increased PI3K signaling by injecting untreated and 

ethanol-treated hypomorphic pdgfra mutants with morpholinos against the 

negative regulator of PI3K, pten (Croushore et al., 2005). These injections left 

wild-type and heterozygous embryos largely unaffected as compared to controls 

(Figs. 2.12 and 2.13). Upregulating the PI3K pathway in either untreated or 

ethanol-treated mutants nearly fully rescued the palate defects when compared 

to untreated and ethanol-treated mutant controls (Fig. 2.14A-D). Injection of pten 

morpholinos also rescued the pharyngeal skeletal elements of ethanol-treated 

mutants to a nearly wild-type appearance (Fig. 2.14A’ compare D’).  
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We wanted to test whether activation of this pathway at the level of mTOR 

could also rescue the ethanol-induced mutant phenotypes. L-Leucine has been 

shown to increase mTOR activity, leading to a rise in cell growth and survival 

(Hong-Brown et al., 2012; Kimball and Jefferson, 2006). Supplementing ethanol 

with 50mM L-Leucine partially rescued the ethanol-treated phenotype (Fig. 

2.14E-F,E’-F’), and had no apparent affect on either untreated heterozygote or 

wildtype silbings (Fig. 2.15).  However, following a 10-24 hpf ethanol treatment 

with L-Leucine treatment alone from 24 to 48 hpf did not rescue ethanol-induced 

defects in mutants (Fig. 2.16, compare to Fig. 2.1). These data show that 

elevating either PI3K or mTOR signaling is sufficient to protect against ethanol-

induced craniofacial defects in a Pdgfra attenuated embryo.  

If the pdgfra/ethanol interaction is due to inhibition of the PI3K pathway 

downstream of Pdgfra, then pharmacological blockade of the PI3K pathway 

should recapitulate the ethanol defects in pdgfra mutants. Consistent with this 

model, treating pdgfra mutants with inhibitors of either PI3K (wortmannin) or 

mTOR (rapamycin) from 10 hpf to 24 hpf phenocopied the ethanol-induced 

defects of the palatal skeleton (Figs 2.17F,I,L and M, Fig. 2.18) and caused 

reductions in the pharyngeal skeleton compared to mutant controls and wild type- 

and heterozygous-treated counterparts (Fig. 2.19F,I,L-O). Furthermore, these 

treatments also uncovered latent haploinsufficiency, causing variable defects 

including those affecting the ethmoid plate and trabeculae (Fig. 2.17H,K,M). 

While there are subtle differences between the treatments that could be due to 
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dosage or mechanism of action, the overall pattern of pharyngeal reduction is 

highly similar across treatments (Fig. 2.19). These data suggest that attenuation 

of the PI3K-mTOR pathway may underlie the pdgfra/ethanol interaction.  

To directly test the effects of ethanol on the PI3K pathway in pdgfra 

mutants, we detected phosphorylated forms of the PI3K target, AKT, and the 

mTOR target, eIF4B (Fig. 2.20). Heads from untreated and ethanol-treated 

pdgfra mutants and siblings were collected at 24 hpf. Downstream of mTOR, 

ethanol-treated mutants showed a decrease in levels of phospho-eIF4B 

compared to untreated embryos and ethanol-treated controls (Fig. 2.20C,D). 

Upstream of mTOR, we observed an increase in levels of phospho-AKT in both 

ethanol-treated mutants and controls compared to their untreated counterparts 

(Fig. 2.20A,B). These data are consistent with a growing body of evidence, 

primarily in vitro and in cancer models, that shows that inhibiting mTOR leads to 

an increase in AKT phosphorylation (Carracedo and Pandolfi, 2008; Hsu et al., 

2011; Soares et al., 2013). To validate this feedback in the developing zebrafish, 

we assayed phospho-AKT levels in rapamycin-treated embryos. Indeed blocking 

mTOR led to an increase in levels of phosphorylated AKT in both mutants and 

wildtypes compared to DMSO-treated controls (Fig. 2.21), similar to the effects of 

ethanol. These data support a model in which ethanol, in combination with loss of 

Pdgf signaling, attenuates the activity of mTOR, leading to hypophosphorylation 

of targets such as eIF4B, but also an increase in phosphorylated AKT.  
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2.IV. Discussion 

Collectively, our results provide insight into the genetic susceptibility to ethanol-

induced defects. Using zebrafish, we show that attenuated Pdgf signaling and 

ethanol exposure synergistically interact to cause variable craniofacial defects. 

This interaction may be conserved in humans, through our analysis of the human 

datatset herein, although further analysis in humans is necessary to confirm this 

finding. We suggest a model in which attenuated growth factor signaling interacts 

with ethanol to reduce the activity of PI3K/mTOR signaling, at or downstream of 

mTOR thus causing developmental perturbations. At low levels of attenuation, 

whether from slight reduction in growth factor signaling or low doses of ethanol, 

the system can compensate. However, those embryos with reduced growth 

factor signaling, even reductions that would not cause defects alone, that receive 

a “second hit” via ethanol, can develop craniofacial defects.  

 

2.IV.a. Pdgfra regulates both neural-crest cell migration and protection 

from ethanol-induced apoptosis. 

Pdgf signaling is essential for midfacial development across vertebrate species 

(Eberhart et al., 2008; Soriano, 1997; Tallquist and Soriano, 2003). At least in 

zebrafish, Pdgfra regulates the appropriate migration of neural-crest cells that will 

generate the midfacial skeleton (Eberhart et al., 2008). It is only in the presence 

of ethanol that we reveal the requirement of Pdgfra signaling in neural-crest cell 

survival. The increased apoptosis in ethanol-treated pdgfra mutants could be 



 50 

attributed to the fact that the pdgrab1059/b1059 mutant allele is a hypomorph 

(Eberhart et al., 2008). In this model, the amount of Pdgfra signaling left in the 

hypomorph is sufficient for cellular survival. However, in the presence of ethanol, 

these signals no longer promote survival. This model is consistent with the 

finding that there is elevated cell death in Pdgfra null mice (Soriano, 1997). 

However, in a neural crest conditional Pdgfra mutant, apoptosis did not appear 

elevated (Tallquist and Soriano, 2003), which may suggest an alternate model. 

The pdgfra-ethanol interaction could be due to broad inhibition of mTOR 

signaling, across growth factor pathways. The zebrafish mutation project 

(http://www.sanger.ac.uk/Projects/D_rerio/zmp/) has identified a putative null 

pdgfra allele. Analysis of this mutant allele will aid in distinguishing between 

these two possibilities.  

 Proper Pdgfra signaling relies heavily on PI3K activation. In mouse, 

knockout of the PI3K-domain of Pdgfra leads to craniofacial defects, which mimic 

the full knockout phenotype (Klinghoffer et al., 2002). In frog, the PI3K domain of 

Pdgfra is necessary and sufficient for proper mesoderm migration and survival 

(Nagel et al., 2004; Van Stry et al., 2005). In our studies, increasing PI3K-

mediated signaling through pten morpholino knockdown leads to a near wild-type 

phenotype in both untreated and ethanol-treated pdgfra mutants. This finding 

suggests that increasing PI3K function in ethanol-treated pdgfra mutant embryos 

rescues both survival and migration, since the midline defects are due to a 

migratory defect.  
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While elevating PI3K signaling does rescue the defects in pdgfra mutants, 

understanding the precise mechanism will require additional studies. GTPases, 

which promote migration, and AKT, which supports survival and migration, rely 

on the PIP3 substrate of PI3K (Zhou and Huang, 2010). Thus, it is possible that 

the migratory and survival functions of Pdgfra are controlled by different signaling 

components immediately downstream of PI3K.  

mTOR most likely regulates cell survival and growth in ethanol-treated 

embryos. L-leucine supplementation does not rescue the midline defects in our 

pdgfra mutants, which are caused by a migratory defect. In ethanol-treated 

mutants, we observe a decrease in the levels of activated eIF4B and an increase 

in levels of activated AKT, suggesting that ethanol impairs growth signaling at the 

level of mTOR or below. Further evidence that ethanol may be impairing mTOR 

activity specifically is the finding that phosphorylated levels of AKT are increased 

in ethanol treatment. A similar increase in activated AKT is observed in our 

model via rapamycin treatment of pdgfra mutants. Blocking mTOR function may 

release inhibitory feedback loops; for example, pancreatic cancer cells treated 

with rapamycin show elevated levels of phosphorylated AKT compared to 

untreated controls (Soares et al., 2013). It is interesting to speculate that the 

upregulation of AKT in ethanol-treated siblings may buffer against deleterious 

phenotypes by elevating cell proliferation. However, a more extensive analysis of 

the PI3K and mTOR pathways will be necessary to fully understand how Pdgfra-

mediated migration and protection are controlled intracellularly. 
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2.IV.b. Ethanol may broadly disrupt growth-factor signaling pathways 

The interaction observed between ethanol and pdgfra supports a model in which 

PI3K-dependent growth-factor genes interact with ethanol. Notable among these 

genes is insulin receptor (Insr).  Insr functions in proper brain development. 

Reducing the expression of insr in newly born rat pups causes defects similar to 

those found in rat models of FASD (de la Monte et al., 2011). Increasing insulin 

receptor expression in a drosophila model of FASD rescues neurobehavioral 

defects caused by ethanol-exposure (McClure et al., 2011). These data, along 

with our observations of pdgfra, strongly suggest that growth factor genes play a 

significant role in the susceptibility to ethanol teratogenesis. Because growth 

factor signaling is used throughout development, attenuated growth factor 

signaling, along with ethanol exposure, could explain a large portion of the 

variability found in FASD. This model is consistent with the human dataset in 

which the phenotypes associated with gene/ethanol interactions are different 

between PDGFRA and PDGFRB. As the human dataset grows, it will be of great 

interest to further examine the extent of interactions between ethanol and PI3K-

dependent growth factors. 

 

2.IV.c. Zebrafish as a model of gene-environment interactions 

The zebrafish provides a powerful tool in uncovering both the genetics and the 

mechanisms involved in FASD susceptibility. Due to the vast array of genetic 
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resources available and the ease of administering ethanol to the externally 

fertilized embryos, it is feasible to screen hundreds of genes in a relatively short 

period of time. As we have done here, findings in zebrafish can be used to direct 

analyses in human datasets that may not yet be large enough for genome-wide 

power. We have found evidence for pdgfra-ethanol interactions in both zebrafish 

and human. Although the human dataset we analyzed is small, by focusing on a 

small number of genes the likelihood of detecting false associations was greatly 

decreased. After correcting for the testing of SNPs across five genes, and 

therefore five essentially independent tests, the associations we found in the 

genes encoding for the human PDGF receptors were significant, with all p-values 

< 0.01.  This significant association even withstands a more strict correction of 

treating all 118 SNPs as independent tests (0.05/118=4.2x10-4). Thus the 

zebrafish model has guided focused studies in a human dataset with variable 

alcohol exposure and allowed us to detect a gene-ethanol interaction that 

contributes to the observed variation in craniofacial measures. Importantly, due 

to the conservation of gene function across vertebrate species, we can then 

understand the mechanism of these interactions using the zebrafish model 

system. Collectively, our findings provide a predictive mechanistic model for at 

least some gene-ethanol interactions that underlie the craniofacial defects in 

FASD.  

Although we have focused on the craniofacial aspect of FASD, the 

zebrafish also provides an excellent model in which to study the neural aspects 
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of this disorder. The brain is the most commonly affected organ in FASD, with 

defects to the cerebellum and oligodendrocytes being common (Hoyme et al., 

2005; Swayze et al., 1997). Further analysis of our pdgfra-ethanol interaction 

could reveal more subtle neural-specific defects.  Pdgfra is important for 

oligodendrocyte maturation and migration in mouse (McKinnon et al., 2005), 

although the function of pdgfra in zebrafish oligodendrocyte development has not 

been tested. It would be of interest to determine if oligodendrocytes are disrupted 

in ethanol-treated pdgfra mutants.  

Due to its genetic tractability the zebrafish has long been a valuable model 

system for understanding developmental processes. We currently understand an 

enormous amount regarding the genetics regulating development from work in 

numerous model systems. Due to the level of this understanding, we are now 

well poised to gain substantial knowledge about how the environment impinges 

on the genetic networks underlying development (so called Eco-Devo). Our work 

here and recent work examining gene-environment interactions underlying 

ototoxicity (Coffin et al., 2010) demonstrate that the same characteristics (e.g. 

genetic amenability, ease of imaging and external fertilization) that make 

zebrafish useful for understanding development make it useful for understanding 

Eco-Devo.  
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2.V. Materials and Methods 

2.V.a. Danio rerio (zebrafish) care and use 

All embryos were raised and cared for using established protocols  (Westerfield, 

1993) with IACUC approval from the University of Texas at 

Austin. Tg(fli1:EGFP)y1 transgenic embryos express GFP in neural crest cells 

shortly after the onset of migration, and in the vasculature (Lawson and 

Weinstein, 2002). Here they are called fli1:EGFP throughout the text. Embryos 

were treated in EM with 1.0% and 0.5% ethanol, 1.5uM wortmannin (W1628, 

Sigma) ; 3uM rapamycin (S1120, Selleck); and 25uM caspase inhibitor 3 

(Cat#264155, Calbiochem). L-leucine has been used at 100mM in zebrafish 

(Payne et al., 2012), we found that a 50mM solution was sufficient to provide 

rescue in our experiments. The pdgfrab1059, (Eberhart et al., 2008), smad5b1100 

(Sheehan-Rooney et al., 2013) and smob577 (Varga et al., 2001) alleles have 

been described. The gata3b1075 and cyp26b1b1024 alleles were recovered from a 

forward genetic screen at the University of Oregon and will be described in detail 

elsewhere. 

2.V.b. Morpholino and RNA injection 

Gene Tools (Philomath, OR, USA, http://www.gene-tools.com) supplied 

morpholino oligonucleotides ptena and ptenb (Croushore et al., 2005) as well as 

mir140 MO (Eberhart et al., 2008). We injected one or two-cell stage zebrafish 

embryos with approximately 3 nl of morpholinos with working concentrations of: 

3.5 mg/ml ptena/ptenb, and 1.2 mM mir140. pdgfra mRNA was made using the 
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mMessenger mMachine and Poly A cloning kits (Ambion, Austin, TX). Stock 

solutions (concentration approximately 300 ug/ml) were either injected 

(approximately 3 nl) directly or diluted at ratios of 1:10 and 1:20 into 1-cell stage 

embryos.  

2.V.c. Immunohistochemistry 

Embryos were fixed and prepared for immunohistochemistry following the 

procedure outlined in (Maves et al., 2002). Primary antibody solution (anti-active 

caspase III, G748A, Promega; phospho-Histone H3, 012M4830, Sigma) was 

added at a 1:300 dilution in blocking solution, and embryos were incubated 

overnight at 4C on a shaker. Embryos were then washed 3X 20 minutes in 

PBDTx at room temperature. Embryos were incubated with secondary antibody 

(Alexa Fluor 568 anti-rabbit IgG, A10042, Invitrogen) at a dilution of 1:300 in 

blocking solution for 5 hours, covered, at room temperature. Embryos were 

washed 1-2X in PBS, and neural-crest cell death was viewed and quantified 

using a Zeiss LSM 710 confocal. For quantification of the ratio of cell death, 

embryos were counter stained with ToPro (Invitrogen) and all nuclei within a 

single representative z plane were counted. The z plane was aligned through the 

lateral 1st and 2nd arches such that the oral ectoderm and 1st pouch, but not the 

mesodermal cores, were visible. 

2.V.d. Immunoblotting  

Tissue samples were harvested from the pdgfrab1059;fli:EGFP line. Mutants were 

visually sorted from wild-type/heterozygotes by their neural crest cell migration 
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defect (Eberhart et al., 2008). Embryos were euthanized, dechorionated and then 

deyolked using a fire-pulled glass pipette. Heads were separated from the tail at 

the posterior end of the otic vesicle. Heads were collected in a 1.5 ml 

microcentrifuge tube. Samples were placed in HKET buffer (25 mM HEPES HCl 

7.4; 150 mM KCl; 1 mM EDTA; 1% Triton-X) with a protease inhibitor cocktail mix 

(complete Mini, 04 693 124 001, Roche), homogenized, centrifuged at 15,000 

rpm for 15 min at 4C, and the resulting lysate removed and quantified using the 

Pierce BCA protei assay kit (#23227, Thermo Scientific). Lysates were analyzed 

by electrophoresis using the NUPAGE SDS-PAGE gel system (Invitrogen). After 

electrophoresis, proteins were transferred to a nitrocellulose membrane and 

blocked by immersion in PBST (phosphate-buffered saline containing 0.1% 

Tween-20 and 5% BSA) overnight at 4C. The membranes were then incubated 

overnight in 4C with the following antibodies: AKT (#4691, Cell Signaling), pAKT 

(#4060, Cell Signaling), eIF4B (#3592, Cell Signaling), peIF4B (#3591, Cell 

Signaling), and b-actin (#4967, Cell Signaling). After 3 successive 10 min PBST 

washes, membranes were incubated at room temperature for 1 hour in 

secondary antibody (anti-rabbit for all antibodies; #7074, Cell Signaling). 

Membranes were washed 3X 10 min in PBST, and treated for 5 minutes in 

SuperSignal West Pico Chemiluminescent Substrate (#34077, Thermo Scientific) 

and exposed on UV film. Membranes were reprobed using stripping buffer 

containing 0.2 M Glycine, 0.05% Tween-20, pH 2.5 for 30 min. at 70C. 

Membranes were washed 2X with TBST, reblocked for 1 hour at room 
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temperature, and placed in primary antibody. ImageJ was used to quantify blots 

(Schneider et al., 2012).   

2.V.e. Cartilage and Bone staining and area measurements 

Five day postfertilization (dpf) zebrafish embryos were stained with Alcian Blue 

and Alizarin Red (Walker and Kimmel, 2007), then flat mounted (Kimmel et al., 

1998). Images were taken with a Zeiss Axio Imager-AI microscope, and palate 

and neurocranial lengths and widths and jaw and jaw-support elements were 

measured using AxiovisionLE software (AxioVs40 V4.7.1.0). All graphs were 

made in Microsoft Excel 2011.  

2.V.f. Confocal microscopy and figure processing 

Confocal z-stacks were collected on a Zeiss LSM 710 using Zen software. 

Images were processed in Adobe Photoshop CS.  

2.V.g. Statistical Analysis 

Origin 7.0 was used for oneway ANOVA and Tukey’s range test for the cell 

death, cell death ratio, palate and neurocranial and pharyngeal arch 

measurement analysis, statistical significance was set at 0.05. Graphpad Prism 

5.02 was used for the gas chromatography data.  

2.V.h. Measurement of ethanol concentration using headspace gas 

chromatography 

To determine ethanol tissue concentration relative to media exposure, 

headspace gas chromatography (GC) was utilized. Embryos were exposed to 

ethanol in media at 1% or .5%. Samples were taken at 1 hour and 14 hours post 
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ethanol exposure coordinating with 11 hours and 24 hpf, respectively. Additional 

embryos were removed from ethanol at 14 hours post ethanol exposure, washed 

three times with fresh media and allowed to equilibrate in fresh media for one 

hour where samples were again taken. Samples consisted of 10-pooled embryos 

that were quickly rinsed in fresh media and treated with 50 µL of Pronase (2 mg / 

mL) for 10 minutes to aid in the removal of the chorion. 450 µL of 5 M NaCl was 

then added to each sample and the samples were vortexed for 10 minutes to 

homogenate the embryos. For each sample, an aliquot of 10 µL was transferred 

to a 2 mL GC vial and sealed with a PTFE silicon septum and plastic cap. For 

each time point, a media reference sample was also collected, diluted 10 fold in 5 

M NaCl and a 10 µL aliquot was transferred to a 2 mL GC vial and sealed. A 

Varian CP 3800 gas chromatograph with flame ionization detection and a Varian 

CP 8400 headspace autosampler, heated to 58°C, was used to analyze the 

concentrations of ethanol in the samples. The stationary phase was an HP 

Innowax capillary column (30 m × 0.53 mm × 1.0 µm film thickness) and helium 

was the mobile phase. Resulting ethanol peaks were recorded using Varian Star 

Chromatography Workstation software, and calibration was achieved using 

external standards from .3125 to 40 mM ethanol in 5 M NaCl. Ethanol 

concentration in the embryos samples were compared to media controls by a 

paired t-test in Graphpad Prism 5.02 (Graphpad Software Inc., La Jolla, CA). 
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2.V.i. Human sample 

The published data were collected as part of an ongoing international 

consortium, the Collaborative Initiative on Fetal Alcohol Spectrum Disorders 

(CIFASD). Participants were recruited from three sites (San Diego and Los 

Angeles, California and Atlanta, Georgia). This study was approved by the 

Institutional Review Board at each site. All participants and/or their 

parent(s)/legal guardian(s) provided written informed consent. 

As part of the study visit, each participant was examined by a trained 

dysmorphologist who completed a standardized, uniform assessment (Jones et 

al., 2006). Patients with a recognizable craniofacial syndrome other than FAS 

were excluded. An objective classification system, based solely on structural 

features (palpebral fissure, philtrum, and vermillion border) and growth deficiency 

(head size and height and/or weight) consistent with the revised Institute of 

Medicine criteria (Hoyme et al., 2005), was used to classify subjects. Under this 

scheme, a participant could receive a preliminary diagnosis of FAS, no FAS, or 

deferred (Jones et al., 2006). Alcohol exposure data were collected at the 

interview, or from a review of available study data. The extent of reported 

prenatal alcohol exposure information was then classified into one of three 

categories: none, minimal (> 1 drink/week average and never more than two 

drinks on any one occasion during pregnancy), and greater than minimal (>4 

drinks/occasion at least once/week or >3 drinks/week).  Alcohol exposure was 
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confirmed via review of records or maternal report, if available (Mattson et al., 

2010).  

As part of the study visit, a three-dimensional facial image was collected 

using the 3dMD system (3dMD, Atlanta, Georgia).  Landmarks were identified on 

the 3D model and used to obtain linear measurements. Replication of landmark 

placement was required, with less than 2 mm difference per linear measurement.  

If the tolerance criterion was not met, a third measurement was taken and the 

average of the two closest measurements was chosen for analysis. For bilateral 

measurements, only the left side was used in analyses.  Although a set of sixteen 

standard anthropometric measurements (Moore et al., 2007) were obtained, for 

this study we only utilized a subset: inner canthal width, outer canthal width, 

lower facial height, lower facial depth and midfacial depth – which best modeled 

the craniofacial defects seen in the zebrafish model. 

Genomewide single nucleotide polymorphism (SNP) genotyping was 

completed at the Johns Hopkins GRCF SNP Center using OmniExpress genome 

array, which includes over 700,000 SNPs. Standard review of both sample and 

SNP was performed (see supplemental text). Race and ethnicity were reported 

by the participant or the parent/guardian as part of the study visit and were then 

confirmed based on the SNP genotypes using a principal component analysis 

(see Supplemental Text for more details). To reduce phenotypic heterogeneity 

due to race, we limited the analyses to those subjects who based on their SNP 

genotypes were of European American descent (n=102). 
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The regulation and function of Pdgf signaling is highly conserved across 

vertebrate species; therefore, we identified the SNPs within each of the 5 genes 

in the PDGF pathway. Due to the small size of PDGFA (12,700 bp), no SNPs 

were genotyped or analyzed in this gene, therefore, we could only test the role of 

5 of the 6 genes in the PDFG pathway. Univariate analysis was performed for 

each SNP using linear regression framework to test whether the SNP genotype x 

alcohol exposure interaction accounted for a significant proportion of the variation 

in the 5 key anthropometric measures. Within the model we also included the 

main effects of SNP genotype and alcohol exposure. All measures were 

corrected for age and gender.  We utilized a Bonferroni correction for the number 

of genes (5 genes) being tested, which resulted in a significance threshold of 

0.01 (0.05/5). 

2.V.j. Ethics Statement 

Data were collected as part of an ongoing international consortium, the 

Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD). 

Participants were recruited from three sites (San Diego and Los Angeles, 

California and Atlanta, Georgia). This study was approved by the Institutional 

Review Board at each site. All participants and/or their parent(s)/legal 

guardian(s) provided written informed consent. All embryos were raised and 

cared for using established protocols with IACUC approval (Westerfield, 1993).  
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2V.k. Human GWAS 

Genotyping was performed at the Center for Inherited Disease Research (CIDR).  

All DNA sources consisted of saliva samples.  A total of 731,442 SNPs were 

genotyped on the OmniExpress array, of which 728,140 SNPs passed CIDR 

genotyping control and were released for analysis.  Out of the 240 samples 

submitted for genotyping, three samples were dropped by CIDR due to poor 

quality genotyping.  Two additional samples were dropped due to chromosomal 

abnormalities.  All remaining individuals were genotyped on at least 98% of the 

SNPs.  All samples were examined for cryptic relatedness and population 

stratification.   There were 16 half-sibling pairs and 37 full sibling pairs in the 

sample.   A principal component-based analysis was performed in eigenstrat 

(Price et al., 2006) on both the sample data and HapMap reference samples to 

assign subjects to racial groups.  The final European American sample consisted 

of 102 individuals, of which 102 had both a 3D image and alcohol exposure 

information. 

SNPs were included for analysis if the call rate was greater than 98% in 

the entire sample, and SNPs were removed if the minor allele frequency was less 

than 0.01 or if there was significant deviation from Hardy Weinberg equilibrium 

(p<10-6).  The final dataset consisted of 688,359, of which 118 were analyzed in 

the PDGF pathway. 
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2.VII. Figures  

 

Figure 2.1: Ethanol exacerbates pdgfra mutant neurocranial defects and reveals 

haploinsufficiency. (A-F) show flat-mounted dorsal views of 5 dpf zebrafish 

neurocrania, stained for cartilage and bone using Alcian Blue and Alizarin Red, 

respectively. Anterior is to the left. (A) Control wild-type neurocranium. (B) 
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Control pdgfra heterozygotes develop normally. (C) Untreated pdgfra mutants 

have clefting of the ethmoid plate (asterisk), although the trabeculae are still 

present. (D-E) Neurocrania of embryos treated with 1.0% ethanol from 10 hours 

post fertilization (hpf) to 5 days post fertilization (dpf). (D) Wild-type embryos are 

predominantly normal following ethanol treatment. (E) Ethanol-treated pdgfra 

heterozygotes display variable palatal defects, including partial clefting of the 

ethmoid plate (asterisk), holes in the ethmoid plate (arrow) and breaks in the 

trabeculae (arrowhead). (F) Ethanol-exposed mutants have an invariant and 

complete loss of the palatal skeleton. (G) Quantification of palatal defects across 

genotypes and treatments: control (no ethanol), 0.5% ethanol from 10 hpf to 5 

dpf, 1.0% ethanol from 10 hpf to 5 dpf, and 1.0% ethanol from 10-24 hpf. The 

zebrafish palate consists of the ethmoid plate, ep and trabeculae, tr. 
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Figure 2.2: Ethanol induces pharyngeal hypoplasia in pdgfra mutants. (A-F) show 

flat mounted jaw and jaw support elements, anterior to the left, stained for 

cartilage and bone with Alcian Blue and Alizarin Red, respectively. Untreated 

control (A) wild-type, (B) pdgfra heterozygous and (C) pdgfra mutant embryos all 

have normally shaped cartilages. (D & E) Treatment with 1.0% ethanol from 10 

hpf to 5 dpf does not effect the overall shape of cartilages in (D) wild-type or (E) 

pdgfra heterozygous embryos. (F) Ethanol treatment greatly disrupts the shape 

of the palatoquadrate and hyosymplectic cartilages in pdgfra mutants. (G-I) 

Graphs show the quantification of the average area of the (G) Meckel’s (mc), (H) 

palatoquadrate (pq) and (I) hyosymplectic (hs) cartilages (standard error bars are 

depicted at 1.5 SEM, see Supplemental Table 1 for full ANOVA statistical 
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analysis). wild-type,light bar; pdgfra heterozygote, gray bar; pdgfra mutants, dark 

bar. Jaw cartilages are Meckel’s cartilage (mc) and the palatoquadrate (pq). Jaw 

support cartilages are the hyosymplectic (hs) and the ceratohyal (ch). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 69 

Figure 2.3: pdgfra mRNA partially rescues the ethanol-induced defects. (A-C) 

show pdgfra mutant (-/-) 5 dpf neurocrania, and (A’-C’) are the corresponding jaw 

and jaw support elements collectively stained for cartilage and bone using Alcian 

Blue and Alizarin Red, respectively. Anterior is to the left. (A,A’) Untreated control 

pdgfra mutant; (B, B’) 1.0% ethanol-treated pdgfra mutant from 10-24 hpf, (C, C’) 

pdgfra mRNA injection partially rescues the trabeculae (D, arrowhead), jaw and 

jaw support defects in 1.0% ethanol-treated pdgfra mutants (note particularly the 

shape of the cartilage elements in D’).  
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Figure 2.4: mirn140 morpholino protects pdgfra mutants against ethanol-induced 

defects. (A-I) show dorsal views of 5 dpf zebrafish neurocrania stained for 

cartilage and bone using Alcian Blue and Alizarin Red, respectively. Anterior is to 

the left. (A-C) Untreated control embryos of each genotype. (D-F) Embryos from 

each genotype treated with 1.0% ethanol from 10-24 hpf. (G-I) Embryos injected 

with mirn140 morpholino (MO) and treated with 1.0% ethanol from 10-24 hpf. 

Arrowhead points to the distal tip of the trabeculae in the mutants in each 

treatment. Figure provided by Mary E. Swartz.  
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Figure 2.5: Ethanol-treatment causes a decrease in overall neurocranial length 

and width in pdgfra mutants.  Graphs depict the average (A) palate length, (B) 
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posterior neurocranial length, and (C) neurocranial width in micrometers. X-axis 

on all graphs denote either untreated, 0.5% ethanol from 10 hpf-5dpf, 1% ethanol 

from 10 hpf to 5 dpf, or 1% ethanol from 10 hpf to 24 hpf (standard error bars are 

depicted at 1.5 SEM, non-overlapping bars indicate significant differences; 

Moses, 1987). Wild-type, light bar; pdgfra heterozygote, gray bar; mutant, dark 

bar. (D) Depicts alcian and alizarin stained 5 dpf untreated wildtype 

neurocranium. Palate length was measured from the most anterior part of the 

ethmoid plate (ep) to the ends of the trabeculae (tr). The posterior neurocranium 

was measured from the most posterior part of the occipital arches (oc) to the 

ends of the trabeculae (tr). Neurocranial width was measured between the most 

lateral edges of the lateral commissures (lc). (E) Statistical analyses comparing 

the genotype/ethanol interactions to individual genotype and treatment controls. 

“Y” denotes a significant difference. Wildtype (+/+) comparisons denote if there is 

a difference between treated and untreated wild-type embryos. pnc; posterior 

neurocranium. 
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Figure 2.6: Ethanol treatment does not disrupt the pectoral fin in pdgfra mutants. 

Panels A-D depict fin cartilage elements, proximal to the left, stained for cartilage 

and bone using Alcian Blue and Alizarin Red, respectively. Untreated (A) 

wildtype and ethanol-treated (B) wildtype. Untreated (C) pdgfra mutant and 

ethanol-treated (D) pdgfra mutant. Ethanol treatment of 1.0% from 10 to 24 hpf.  
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Figure 2.7: colIIa expression is unaffected in cartilage elements not lost in 

ethanol-treated pdgfra mutants. (A-H) show ventral views of 48 hpf colIIa in situ 

hybridization images with anterior to the left. (A, C, E, G) show the oral ectoderm 

(outline in white dots) showing ventral cartilage structures. (B, D, F, H) show the 

neurocranium. White arrows point the complete neurocranium in untreated and 

ethanol-treated wildtype siblings. Dark arrows label the most anterior region of 

the neurocranium in untreated and ethanol-treated mutants. Figure provided by 

Mary E. Swartz.  
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Figure 2.8: Ethanol-treated pdgfra mutants exhibit an increase in neural crest cell 

death. (A-D) are confocal images of 24 hpf anti-active caspase 3-stained 

fli1;EGFP embryos . (A’-D’) show the active-caspase 3 staining only. Anterior is 

to the left. (A-A’) Untreated pdgfra mutants have low levels of neural crest 

apoptosis. (B-B’) Low levels of neural crest apoptosis are also present in ethanol-

treated wild-type embryos treated with 1.0% ethanol from 10-24 hpdf. (C-C’) 

Ethanol treatment causes a slight increase in neural crest cell death in 
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heterozygotes. (D-D’) pdgfra mutants have greatly elevated levels of neural crest 

apoptosis. (E) Graph depicts quantification of cell death across genotypes at 24 

hpf and 30 hpf after ethanol was removed at 24 hpf (Untreated control=dark bars, 

ethanol=light bars). Ethanol-treated pdgfra mutants show significant cell death 

compared to all other genotypes (One-way ANOVA, *p=<.05). (F) Graph depicts 

quantification of the ratio of cell death compared to total cell numbers across 

genotypes (Untreated control=dark bars, ethanol=light bars). (G) 5 dpf pdgfra 

mutant treated with 1.0% ethanol and 25 µM caspase inhibitor from 10-24 hpf 

and stained for cartilage and bone using Alcian Blue and Alizarin Red, 

respectively. Anterior is to the left. Arrowheads denote partial rescue of the 

trabeculae (compare 4F with 1C and 1F).  
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Figure 2.9: Ethanol treatment does not cause developmental delay or global 

increases in cell death in pdgfra mutants. (A,C,E,G, A’,C’,E’,G’) show 24 hpf 

embryos, anterior to the left, stained for active caspase 3. There is no 
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widespread elevation of apoptosis in the head or trunk of ethanol treated pdgfra 

mutants as compared to other groups. The trunk and yolk are outlined by white 

dots in A”,B”,C” and D”. (B,D,F,H) DIC images of ethanol treated and untreated 

pdgfra mutants and siblings show that ethanol treated pdgfra mutants are not 

developmentally delayed and have no gross morphological defects at 24 hpf. 

With the exception of the ethmoid plate and the trabeculae, all precartilage 

condensations are present in ethanol-treated pdgfra mutants. 
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Figure 2.10: Neural crest-specific proliferation is not reduced in ethanol-treated 

pdgfra mutants. Graph depicts average number of pHH3-positive neural crest 

cells in untreated (white bar) versus ethanol-treated (gray bar) wild-type (+/+) and 

mutant (-/-) embryos.  
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Figure 2.11: At 24 hpf ethanol-induced cell death occurs in pharyngeal arch 

areas destined to contribute to the jaw and jaw support elements. (A-D) depict 24 

hpf embryos, anterior to the left. Each dot marks the relative position of an 

apoptotic neural crest cell. (A) Untreated controls, yellow marks the first 

pharyngeal arch, grey marks the second pharyngeal arch.  (B-D) 1.0% ethanol-

treatment from 10-24 hpf in (B) wild-types, (C) pdgfra heterozygotes, and (D) 

pdgfra mutants. Cell death is enriched in areas fated to become the palatal 



 81 

skeleton and dorsal pharyngeal arch skeletal elements. Wild-type, blue dots; 

pdgfra heterozygote, red dots; pdgfra mutant, green dots. 
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Figure 2.12: pten morpholino injection does not alter neurocranial development in 

untreated and ethanol-treated wild-type and pdgfra heterozygotes. (A-H) show 

dorsal views of 5 dpf zebrafish neurocrania, stained for cartilage and bone using 

Alcian Blue and Alizarin Red, respectively. Anterior is to the left. (A-B) Untreated 
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controls. (C-D) 1.0% ethanol treatment from 10-24 hpf. (E-F) pten morpholino 

injections. (G-H) pten morpholino injections with 1.0% ethanol treatment from 10-

24 hpf. The palate consists of the ethmoid plate, ep and trabeculae, tr.  
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Figure 2.13: pten morpholino injections do not alter jaw and jaw support 

development in untreated and ethanol-treated wild-type and pdgfra 

heterozygotes. (A-H) Flat mount views of 5 dpf zebrafish jaw and jaw supports, 

stained for cartilage and bone using Alcian Blue and Alizarin Red, respectively. 

Anterior is to the left. (A-B) Untreated controls. (C-D) 1.0% ethanol treatment 

from 10-24 hpf. (E-F) pten morpholino injections. (G-H) pten morpholino 

injections with 1.0% ethanol treatment from 10-24 hpf. Meckel’s cartilage, mc; 

palatoquadrate, pq; hyosymplectic, hs; ceratohyal, ch.  
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Figure 2.14: Injection of pten morpholino rescues the craniofacial defects in 

ethanol-treated pdgfra mutants. (A-D) show 5 dpf pdgfra mutant (-/-) neurocrania 

and (A’-D’) are the corresponding pharyngeal skeletal elements, stained for 

cartilage and bone using Alcian Blue and Alizarin Red, respectively. Anterior is to 

the left. (A-A’) Untreated mutants have clefting of the ethmoid plate, asterisk. (B, 

B’) Treatment with 1.0% ethanol from 10-24 hpf causes loss of the palatal 

skeleton and hypoplasia of the pharyngeal skeleton. (C-D’) Injection of pten 

morpholino (MO) rescues the craniofacial phenotypes of both (C-C’) untreated 

and (D-D’) ethanol exposed pdgfra mutants. Arrowheads mark the partially 

rescued ethmoid plates.  
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Figure 2.15: L-leucine does not alter the craniofacial skeleton of untreated and 

ethanol-treated wild-type and pdgfra heterozygotes. 5 dpf Alcian Blue and 

Alizarin Red stained flat mounted (A-H) neurocrania and (A’-H’) jaw and jaw 

supports. (A,A’,E,E’) Untreated controls. (B,B’,F,F’) 1.0% ethanol treatment from 

10-24 hpf. (C,C’,G,G’) 50 mM L-leucine treatment from 10-24 hpf. (D,D’,H,H’) 50 

mM L-leucine with 1.0% ethanol treatment from 10-24 hpf. Anterior is to the left. 
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Figure 2.16: L-leucine treatment from 24 to 48 hpf does not rescue the ethanol-

induced defects in 10-24 hpf treated mutants. Flat mounted 5 dpf Alcian Blue and 

Alizarin Red stained (A-C) neurocrania and (A’-C’) jaw and jaw supports, Ethanol 

was administered from 10-24hpf and 50mM L-leucine was added from 24-48 hpf. 

(A, A’) wildtype; (B,B’) heterozygote; (C, C’) mutant. Anterior is to the left. 
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Figure 2.17: Both wortmannin and rapamycin phenocopy the effects of ethanol 

on pdgfra mutants. (A-L) show 5 dpf zebrafish neurocrania stained for cartilage 

and bone using Alcian Blue and Alizarin Red, respectively. Anterior is to the left. 
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Embryos were treated from 10-24 hpf with (A-C) DMSO, (D-F) 1.0% ethanol, (G-

I) 1.5 µM wortmannin or (J-L) 3 µM rapamycin.  Asterisks denote ethmoid-plate 

defects (ep), arrowheads denote trabeculae defects (tr). (M) Graph of percent 

defects found in all three genotypes, across treatments. Unaffected denotes a 

wild-type phenotype, ep denotes ethmoid-plate defects (e.g. arrow and asterisk 

in K), tr denotes trabeculae defects (e.g. arrowhead in H). The zebrafish palate 

consists of the ethmoid plate, ep and trabeculae, tr. 
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Figure 2.18: Both wortmannin- and rapamycin-treated pdgfra mutants show a 

decrease in overall neurocranial length and width. Embryos were treated from 

10-24 hpf with either DMSO, 1.0% ethanol, 1.5 µM wortmannin or 3 µM 

rapamycin. Inhibition of either PI3K or mTOR phenocopies the effects of ethanol. 

Graphs depict the average (A) palate length, (B) posterior neurocranial length, 

and (C) neurocranial width in microns (standard error bars are 1.5 SEM, non-

overlapping bars indicate significance; Moses, 1987). Wild-type, light bar; pdgfra 

heterozygote, gray bar; mutant, dark bar. (D) An Alcian Blue and Alizarin Red 

stained 5 dpf untreated wildtype neurocranium. Palate length was measured from 

the most anterior part of the ethmoid plate (ep) to the ends of the trabeculae (tr). 
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The posterior neurocranium was measured from the most posterior part of the 

occipital arches (oc) to the ends of the trabeculae (tr). Neurocranial width was 

measured between the most lateral edges of the lateral commissures (lc). D, 

DMSO; E, ethanol; W, wortmannin, R, rapamycin. 
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Figure 2.19: Treating pdgfra mutants with wortmannin or rapamycin induces 

pharyngeal skeleton hypoplasia. (A-L) show jaw and jaw support elements, 

anterior to the left, stained for cartilage and bone using Alcian Blue and Alizarin 

Red, respectively. Embryos were treated from 10-24 hpf with either (A-C) DMSO, 

(D-F) 1.0% ethanol, (G-I) 1.5 µM wortmannin or (J-L) 3 µM rapamycin. Inhibition 

of either PI3K or mTOR phenocopies the effects of ethanol. (M-O) Graphs depict 

the average area sizes of (M) the Meckel’s, mc (N) palatoquadrate, pq and (O) 

hyosymplectic, hs cartilages. X-axis on all graphs denote  D, DMSO; E, ethanol; 

W, wortmannin, R, rapamycin (standard error bars are depicted at 1.5 SEM, see 
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Supplemental Table 1 for full ANOVA statistical analysis). Wild-type, light bar; 

pdgfra heterozygote, gray bar; mutant, dark bar. Meckel’s cartilage, mc; 

palatoquadrate, pq; hyosymplectic, hs; ceratohyal, ch. 
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Figure 2.20: Ethanol affects phosphorylation of AKT and pEIF4B in ethanol-

treated pdgfra mutants. Tissue samples consist of 24 hpf harvested pdgfra 

mutant (-/-) and mixed pdgfra heterozygote/wild-type (+/?) heads in either 

untreated control or 1.0% ethanol treatment from 10-24 hpf. (A) Immunoblot was 

stripped and reprobed for total AKT, phospho-AKT (pAKT), and bactin for total 

loading control. Both ethanol-treated pdgfra heterozygote/wildtype and  pdgfra 

mutants have elevated levels of phospho-AKT compared to untreated 

counterparts. (B) Immunoblot was stripped and reprobed for total eIF4B (teIF4B), 

phospho-eIF4B (peIF4B), and bactin for loading control. pdgfra mutants have 

decreased levels of phospho-eIF4B compared to untreated mutants and both 

untreated and ethanol-treated heterozygote/wildtype samples.  
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Figure 2.21: Rapamycin-treatment leads to an increase in phosphorylated AKT in 

both pdgfra mutants and siblings as compared to DMSO-treated controls.  Tissue 

samples consist of 24 hpf harvested pdgfra mutant (-/-) and sibling (+/?) heads 

from embryos of either DMSO or 3mM rapamycin treatment from 10-24 hpf. (A) 

Immunoblot was stripped and reprobed for total AKT, phospho-AKT (pAKT), and 

b-actin as a loading control. Rapamycin treatment caused elevated levels of 

phospho-AKT compared to untreated counterparts. (B) Graph of the 

quantification of pAKT to total AKT across 3 immunoblots. 
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2.VIII. Tables 

  Mc pq hs 
0.50%       

+/+ N N N 
+/- N N N 
-/- N N N 

1.00%       
+/+ N N Y 
+/- N N Y 
-/- Y Y Y 

10-24       
+/+ N N N 
+/- N N N 
-/- Y Y Y 

 
 
Table 2.1: ANOVA statistics describing significant differences of skeletal 

elements across genotype and treatments. Tables are categorized by skeletal 

elements Meckel’s (mc), palatoquadrate (pq), and hyosympletctic (hs). ”Y” 

denotes a significant difference between the genotype/ethanol interaction relative 

to the genotype and ethanol treatment alone. wt, wild type; het, heterozygous; 

mut, mutant. Treatments are: unt, untreated; 0.5%, 0.5% ethanol from 10 hpf-5 

dpf; 1%, 1% ethanol from 10 hpf-5 dpf; 10-24, 1% ethanol from 10-24 hpf.  
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Table 2.2: Human SNP-ethanol interactions produce craniofacial measurement 

changes. Significant SNP-ethanol interactions associated with changes in 

craniofacial measurements are highlighted in yellow. Chr, chromosome; SNP, 

single-nucleotide polymorphism identification number; BP, base-pair; MAF, minor 
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allele frequency; ICW, inner canthal width; OCW, outer canthal width; LFH, lower 

facial height; LFD, lower facial depth; MFD, mid-facial depth (Mattson et al., 

2010; Moore et al., 2007). Analysis by Leah Wetherill and Tatiana M. Foroud.  
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Chapter 3: An Fgf-Shh signaling hierarchy regulates early 

specification of the zebrafish skull.1 

3.I. Abstract 

The neurocranium generates most of the craniofacial skeleton and consists of 

prechordal and postchordal regions. Although development of the prechordal is 

well studied, little is known of the postchordal region. Here we characterize a 

signaling hierarchy necessary for postchordal neurocranial development 

involving Fibroblast growth factor (Fgf) signaling for early specification of 

mesodermally-derived progenitor cells. The expression of hyaluron synthetase 2 

(has2) in the cephalic mesoderm requires Fgf signaling and Has2 function, in 

turn, is critical for postchordal neurocranial development. While Hedgehog (Hh)-

deficient embryos also lack a postchordal neurocranium, this is due to a later 

defect in chondrocyte differentiation. Inhibitor studies demonstrate that 

postchordal neurocranial development requires early Fgf and later Hh signaling. 

Collectively, our results provide a mechanistic understanding of early postchordal 

neurocranial development and demonstrate a hierarchy of signaling between Fgf 

and Hh in the development of this structure. 

1 Authors: Neil McCarthy1, Julien Y. Bertrand3, and Johann K. Eberhart1,2. 

1Department of Molecular Biosciences; Institute of cell and molecular biology, Waggoner Center for 

Alcohol and Alcohol Addiction Research, University of Texas, Austin, Texas. 

2Department of Molecular Biosciences; Institue of Neurobiology, University of Texas, Austin, Texas.  

3Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland.  
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3.II. Introduction  

The neurocranium is an embryonic structure that generates essential craniofacial 

structures including the skull vault, skull base, and palate. The palate and skull 

base are connected and demarcate the prechordal, or anterior, and postchordal, 

or posterior, regions of the neurocranium, respectively. Extensive fate mapping in 

tetrapod species demonstrate that the neural crest and mesoderm contribute to 

the prechordal and postchordal neurocranium, respectively (Couly et al., 1992 

and 1993; Crump et al., 2004; Eberhart et al., 2006; Gross et al., 2008; Koentges 

and Lumsden, 1996; McBratney-Owen et al., 2008; Wada et al., 2011). Despite 

our knowledge of the tissue origins of the neurocranium, mechanistic studies of 

development have overwhelmingly focused on the prechordal neurocranium, 

while the postchordal region has been left largely neglected.  

For proper formation, the neurocranium requires the orchestration of 

numerous signaling and morphogenetic events, and is dependent on interactions 

with surrounding neural as well as non-neural ectoderm, mesoderm, and 

endoderm (Alexander et al., 2011; Kimmel et al., 2001; Marcucio et al., 2011; 

Noden and Trainor, 2005; Richtsmeier and Flaherty, 2013). The complexity of 

these interactions implicates the involvement of multiple signaling molecules in 

neurocranial development. Much progress has been made in elucidating those 

factors that induce craniofacial formation and patterning. These factors include 

many signaling pathways, including Shh, Fgf, Bmp, and Wnt (Alexander et al., 

2014; Marcucio, 2005; Richtsmeier et al., 2013; Wada et al, 2005; Wilson and 
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Tucker, 2004). No one single factor can direct craniofacial formation; instead, 

they interact in spatial and temporal hierarchies that coordinate craniofacial 

growth and development.  

While we know of many of the signaling hierarchies in the neural-crest 

derived-portions of the craniofacial skeleton, little is known of the mesoderm-

derived portions. Hosokawa et al showed that development of the posterior skull 

vault, a mesoderm-derived structure, involves a signaling hierarchy between 

TGF-B and Msx2 (Hosokawa et al., 2007). In mouse, chick, and zebrafish, Shh is 

a critical midline signal necessary for chondrocyte differentiation in the 

postchordal neurocranium, as well as other regions of the skull (Balczerski et al., 

2012; Eberhart et al., 2006; Wada et al., 2005). Specification of the early cephalic 

mesoderm, however, is refractory to sonic hedgehog signaling (Balcezerski et al., 

2012), suggesting that other signals are necessary for early cephalic mesoderm 

specification. Due to their proximity to the postchordal neurocranium and their 

importance in numerous aspects of craniofacial development, the Fibroblast 

growth factor (Fgf) family is a prime candidate for this function. 

Fgfs are part of a large family of intercellular signaling molecules (Itoh, 

2007) that emanate from multiple tissue sources in the head.  They are also 

crucial in numerous aspects of craniofacial development, including the proper 

migration, survival, and patterning of the neural crest (Creuzet et al., 2004; 

Crump et al., 2006; Hu et al., 2009; Wilson and Tucker, 2004) as well as cranial 

suture formation (Nie et al., 2006; Rice et al., 2000). Furthermore, Fgfs are 
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implicated in a number of congenital craniofacial disorders with reported skull 

base defects including Aperts and Crouzon (Aggarwal et al., 2006; Tokumaru et 

al., 1996). In a screen for gene-ethanol interactions, it was found that fgf8a and 

ethanol interact to affect postchordal neurocranial structures that could be 

recapitulated with rapamycin, an inhibitor of mTOR which is a constituent of 

growth factor signaling (Fig 3.1C and 3.1D compared to 3.1B; McCarthy et al., 

2013). Ethanol seems to broadly attenuate growth factor signaling (McCarthy et 

al., 2013), suggesting that the postchordal defects in the fgf8a-ethanol interaction 

are due to attenuated Fgf signaling. However, it is unclear what role Fgfs play in 

early postchordal neurocranial development in the absence of ethanol.  

Here, we characterize a signaling hierarchy required for proper 

postchordal neurocranial development involving Fgf and Shh signaling. Loss of 

function of both fgf3 and fgf8a lead to a striking loss of the postchordal 

neurocranium that can be rescued by restoring Fgf3 and Fgf8a signaling centers 

in the brain and mesoderm. We go on to precisely describe, for the first time, the 

dual tissue origins of the zebrafish neurocranium. The zebrafish postchordal 

neurocranium has small pockets of neural crest-derived areas occurring in a 

mostly mesodermally-derived structure. In situ analysis reveals that both the 

early cephalic mesoderm marker hyaluron synthetase 2 (has2) and markers for 

chondrocytes are lost in fgf3;fgf8a knockdown embryos, and that has2 is required 

for postchordal neurocranial development in an Fgf-dependent manner. 

Examination of Hh loss-of-function embryos reveals that Hh signaling is 
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dispensable for specification of head mesoderm. These results provide evidence 

of an early signaling interaction required for proper postchordal neurocranial 

development. 

 

3.III. Results 

3.III.a. The postchordal neurocranium requires fgf8a and fgf3.  

The neurocranium can be split into anterior and posterior halves (dashed line in 

Fig. 3.2A). While much research has been directed at the development of the 

neural crest-derived prechordal neurocranium (Fig. 3.2A, prech.), little is known 

of the development of the postchordal neurocranium (Fig. 3.2A, postch.). The 

postchordal neurocranium includes the parachordal cartilages (pc), which abut 

the notochord (n); as well as the anterior and posterior basicapsular 

commissures (abc & pbc, respectively) which encircle the developing ear, the 

lateral commissures (lc), and the occipital arches (oc) (Fig. 3.2A; de Beer, 1937). 

Due to its development adjacent to the notochord and the hindbrain, we 

reasoned that signals from one or both of these structures could influence 

posterior neurocranial development.  

Fgf8 and Fgf3 signal cooperatively to pattern the hindbrain, making these 

two Fgfs prime candidates for our analyses. We used a combination of genetic 

and morpholino-based loss of function of these Fgf ligands, each of which 

resulted in similar results (Fig. 3.2 and 3.3). Whereas neither fgf8a nor fgf3 

single-mutants show any profound postchordal neurocranial defects (Fig. 3.2B 
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and 3.2C compared to 3.2A), the vast majority of the postchordal neurocranium 

is absent in double fgf8a;fgf3 mutants (Fig. 3.2E, arrowhead), with only the 

prechordal neurocranium and occipital arches remaining. Furthermore, even the 

loss of a single allele of fgf3 in an fgf8a mutant background gives rise to variable 

postchordal neurocranial defects, including anterior basicapsular and 

parachordal cartilage loss (Fig. 3.2D, arrowheads). These mutants also have 

severe viscerocranial defects (not shown, Crump et al., 2004). Because, at least, 

fgf8a is maternally expressed (Reifers et al., 1998), we extended our analyses 

using the well-characterized morpholinos against each of these Fgfs (Crump et 

al., 2004; Liu et al., 2003; Maves et al., 2002).  

Morpholinos targeting either fgf8a or fgf3 injected into fgf3 or fgf8a 

mutants, respectively, recapitulated postchordal neurocranial defects observed in 

the double mutants (Fig. 3.3). Embryos injected with fgf3 morpholinos display 

infrequent loss of the anterior basicapsular commissure (24%, n=6/24, Fig. 3.3), 

however the remainder of the neurocranium in these embryos is well developed. 

Embryos injected with fgf3 morpholinos also consistently display fused otoliths 

(Fig. 3.2) as well as variable viscerocranial defects, including fusions of Meckel’s 

cartilage and the palatoquadrate, and loss of the ceratobranchial cartilages (data 

not shown; Crump et al., 2004). As in our mutant analysis, we found strong 

synergy between fgf8a and fgf3 in development of the postchordal neurocranium.  

In contrast to phenotypes in single mutants, the postchordal neurocranium 

is lost in fgf3 morpholino-injected fgf8a mutants (100%, n=21/21, Fig. 3.2). The 
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ethmoid plate and trabeculae are retained, albeit reduced, in these embryos 

(n=21/21). Viscerocranial defects also occur in these embryos, including variable 

hyosymplectic loss, severe reductions and fusions of Meckel’s cartilage and the 

palatoquadrate (data not shown; Crump et al. 2004). Lastly, we could 

recapitulate the postchordal neurocranial loss in fgf8a morpholino-injected fgf3 

mutants (Fig. 3.2). Together, these data show fgf3 and fgf8a synergize during 

postchordal neurocranial development.  

Fgf signaling occurs through four receptors (Itoh et al., 2002); however, 

they are expressed in multiple tissues throughout development (Sivak et al., 

2005; Thisse and Thisse, 2005). To understand which receptor is involved in 

postchordal neurocranial development, we used the fgf8a mutant line and a 

suboptimal dose of morpholino to target each receptor individually. While fgfr1, 

fgfr2, and fgfr4 knockdowns in the fgf8a mutant background caused variable ear 

and viscerocranial defects, no postchordal neurocranial defects were found (not 

shown). However, a suboptimal dose of fgfr3 morpholino injected into fgf8a 

mutants showed variable defects to the postchordal neurocranium that mirrored 

those seen in fgf8a;fgf3 double loss-of-function embryos (Fig. 3.4). These data 

suggest that Fgfr3 is a strong candidate for Fgf-mediated postchordal 

neurocranial development.  
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3.III.b. The mesoderm and neural ectoderm are Fgf sources required for 

postchordal neurocranium formation.  

Fgf signaling is required throughout development, forming numerous centers of 

activity including the mesoderm and neural ectoderm early, and the endoderm 

and otic placode later (Crump et al., 2004; Sivak et al., 2005; Thisse and Thisse, 

2005). To investigate the required Fgf signaling source for postchordal formation, 

we generated genetic chimeras to re-introduce Fgf signaling from wild-type donor 

tissues in fgf3;fgf8 knockdown hosts. We tested four tissue sources: the 

mesoderm, neural ectoderm, endoderm, and otic placode (Fig. 3.5). While 

neither endoderm nor otic placode transplants restored the neurocranium 

(n=0/12 for endoderm, n=0/9 for otic placode, Fig. 3.5A-A’’, 3.5B-B’’), we 

observed a partial rescue of the postchordal neurocranium in embryos receiving 

either mesoderm or neural ectoderm transplants (n=4/7 for mesoderm, n=8/16 

for neural ectoderm, Fig. 3.5C-C’’, 3.5D-D’’, 3.5H). In these transplants most of 

the parachordal cartilage and anterior basicapsular commissure were present, 

but rescue was incomplete, suggesting that both tissues might be required. To 

test this dual requirement, double mesoderm and neural ectoderm transplants 

were performed, and indeed, complete rescue of the postchordal neurocrania on 

the transplanted side in fgf3;fgf8a loss-of-function hosts was attained (n=4/12 for 

full rescue, n=3/12 for partial rescue, Fig. 3.5E-E’’, 3.5H). Together, these data 

suggest that Fgf signaling from the mesoderm and neural ectoderm cooperate 

during formation of the postchordal neurocranium.   



 107 

The otic placode is induced by Fgf signaling from the neural ectoderm 

(Leger and Brand, 2002; Sai and Ladher, 2015), so it is possible that we restored 

these signals by our neural ectoderm transplants. Thus, the partial rescue by 

neural ectoderm could be due to the otic placode. To directly test this possibility, 

we injected embryos with dlx3b and foxi1 morpholinos which results in the loss of 

the otic placode (Solomon et al., 2002; Solomon et al., 2003). While injection of 

both dlx3b and foxi1 caused complete loss of the otic placode at 24 hpf (Fig. 3.6), 

only the anterior basicapsular commissure was missing or reduced in these 

embryos (Fig. 3.6). These data show that while the otic placode may provide 

signals required for the anterior basicapsular commissure, defects to the otic 

placode itself do not explain the extensive loss of the postchordal neurocranium 

found in fgf3;fgf8 loss of function embryos.  

 

3.III.c. The postchordal neurocranium is primarily mesoderm-derived.  

Deeper analysis of the role of Fgf signaling in postchordal development requires 

a detailed characterization of the precursors to this structure. However, the 

origins of the postchordal neurocranium are unknown in zebrafish. To fully 

characterize any neural crest contribution to the postchordal neurocranium, we 

utilized three neural-crest labeling transgenic lines, sox10:KikGR, sox10:Kaede, 

and sox10:Cre;ubi:RSG (Balczerski et al., 2012; Dougherty et al., 2013; Kague et 

al., 2012). The sox10:KikGR and sox10:Kaede embryos were photoconverted at 

24 hpf to label all neural crest cells, while the sox10:Cre;ubi:RSG line genetically 



 108 

labels neural crest cell descendants (Kague et al., 2012). Results in all 3 lines 

were identical, with extensive labeling in the ethmoid plate (ep) and trabeculae 

(tr) of the prechordal neurocranium (Fig. 3.7A-D, 3.7G, data not shown; Eberhart 

et al., 2006; Kague et al., 2012; Wada et al., 2005). We also observed highly 

localized labeling within postchordal structures. Labeled areas included the 

lateral auditory capsule as well as the lateral and anterior-most region of the 

anterior basicapsular commissure (Fig. 3.7A-D, 3.7G). It is of interest that this 

precise region articulates with the second arch crest-derived hyosympletic of the 

viscerocranium (Crump et al., 2004).  

The first and second arches are composed of Hox-negative and Hox-

positive neural crest cells, respectively (Crump et al., 2006). These arches 

undergo dynamic morphogenetic movements that involve numerous neural crest-

specific cellular rearrangements (Crump et al., 2004; Crump et al., 2006; 

Eberhart et al., 2006). To elucidate which pharyngeal arch contributes neural 

crest cells to the postchordal neurocranium, we performed fate mapping with 

sox10:Kaede embryos. We photoconverted either the first or second arch at 26 

hpf (Fig. 3.8; Crump et al., 2006), and found that the second arch crest 

contributed to the lateral auditory capsule (Fig. 3.8), while the first arch crest 

contributed to the lateral and anterior most region of the anterior basicapsular 

commissure (Fig. 3.8). Together, these results show that Hox-negative and Hox-

positive neural crest cells contribute to adjacent regions of the postchordal 

neurocranium. 
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In both mouse and chicken, mesoderm contributes significantly to the 

posterior neurocranium. We used the mesoderm-labeling drl:CreERT2;ubi:switch 

line to track mesoderm derivatives in zebrafish (Fig. 3.9; Mosimann et al., 2011). 

Tamoxifen was added from 6 hpf to 24 hpf to induce Cre- excision. We find a 

pattern of labeling perfectly complimentary to that generated by the neural crest 

(Fig. 3.7E–G). The parachordal cartilages, posterior basicapsular commissures, 

and occipital arches appear to be completely of mesoderm origin (Fig. 3.7E-G). 

The regions of the anterior basicapsular commissure that were not labeled by 

neural crest are also of mesoderm origin (Fig. 3.7E-G). The lateral commissure 

was the only structure where neural crest and mesoderm cells appear to mix 

(Fig. 3.7). Collectively, these data provide a high-resolution fate map of neural 

crest and mesoderm contribution to the neurocranium and suggest that, even in 

regions of dual origin, there is little mixing between these cell types. 

In order to determine what happens to this mesoderm population in Fgf 

loss-of-function embryos, a detailed fate map of these postchordal progenitor 

cells was necessary. We used Kaede photoconversion to label and track groups 

of cells from 24 hpf to 4 days post fertilization (dpf), when the postchordal 

neurocranium is well formed in zebrafish (Fig. 3.10A-D). We injected fli1:EGFP 

embryos with Kaede mRNA and labeled head mesoderm just dorsal to the 

pharyngeal arches for our analyses (Schilling and Kimmel, 1994). In the images, 

the intense EGFP fluorescence masks the much dimmer green Kaede 

fluorescence so only the red, photoconverted, Kaede is apparent. We find that at 
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24 hpf, the progenitors of the postchordal neurocranium are positioned within the 

head in relative accord to their location at 4 dpf (Fig. 3.10E and 3.10E’, see Fig. 

3.11 for individual data). Overall, no relative change in position of these labeled 

cells occurred between 24 hpf and 4 dpf. Cells labeled anterior of the otic 

capsule (o.c.) maintain this position at 4 dpf (Fig. 3.10E and 3.10E’, dark grey 

shade). Those cells labeled more medial and posterior to the otic capsule at 24 

hpf populate areas medial and posterior 4 dpf (Fig. 3.10E and 3.10E’, gray and 

light gray shades). During this same time period, neural crest cells appear to 

undergo extensive cell rearrangements in forming skeletal structures (Crump et 

al., 2006; Le Pabic et al., 2014). We find little dispersion of labeled mesoderm 

cells, suggesting a lack of similar rearrangements in the mesoderm-derived 

skeleton. Together, these data show that the progenitors of the postchordal 

neurocranium are appropriately positioned along the anterior to posterior axis at 

24 hpf.  

 

3.III.d. Proper specification of the head paraxial mesoderm requires Fgf 

signaling.  

Our fate map of the postchordal neurocranium shows that these cartilage 

precursors are in place by 24 hpf. To investigate whether these precursors are 

present in embryos lacking fgf3 and fgf8a, we analyzed the expression of the 

prechondrogenic marker sox9a and the cartilage marker col2a1a. Compared to 

un-injected and control morpholino-injected fgf8a mutants, fgf3;fgf8a double loss 
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of function embryos display a loss of col2a1a in the cephalic mesoderm (Fig. 

3.12D, compared to 3.12A-C, asterisks; Piotrowski et al. 2000). The notochord 

staining for col2a1a is retained in double loss-of-function embryos, demonstrating 

specificity of the effect (Fig. 3.12D, arrowheads denote anterior notochord). 

Furthermore, the pre-cartilage marker sox9a is also lost in these fgf3 morpholino-

injected fgf8a mutants (Fig. 3.12H, compared to 3.12E-G). Together, these data 

suggest that the head paraxial mesoderm that will generate these cartilages is 

either mislocalized or improperly specified when Fgf signaling is attenuated. 

To directly address if head paraxial mesoderm is mislocalized in Fgf loss-

of-function embryos, we tracked endomesoderm progenitor cells from the 

initiation of gastrulation (6 hpf) to the end of gastrulation (10 hpf) via Kaede 

photoconversion. We elaborated on established fate-maps of the mesoderm to 

label and track postchordal progenitor cells (Kimmel et al., 1990; Schilling and 

Kimmel, 1994). We injected embryos with Kaede mRNA, photoconverted 

endomesoderm cells adjacent to the shield at 6 hpf (Fig. 3.13A-B), and imaged 

their progression adjacent to the notochord at 10 hpf (Fig. 3.13C).  These labeled 

cells were then confirmed to contribute to the postchordal neurocranium at 4 dpf 

(Fig. 3.13D). Similar to control and Fgf single loss-of-function embryos, 

mesoderm cells in fgf3;fgf8a morpholino-injected embryos migrated to the 

notochord by 10hpf (Fig. 3.13H compared to 3.13E-G).  These results 

demonstrate that head paraxial mesoderm does migrate to its location lateral to 

the notochord in Fgf loss-of-function embryos and suggest that the postchordal 
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neurocranial defects may be due to a failure in specification of this population of 

head mesoderm cells.  

Because the head paraxial mesoderm expresses sox9a and col2a1a 

relatively early in development, we hypothesized that some genes important in 

chondrocyte maturation would be early markers of this population of head 

paraxial mesoderm. Hyaluronan synthetase 2 (has2) is required for hyaluronic 

acid synthesis (Bakkers et al., 2003; Moffatt et al., 2011; Necas et al., 2008; 

Weigel et al., 1997; Yoshida et al., 2000). Hyaluronic acid is an important 

extracellular glycosaminoglycan involved in numerous cellular processes 

including chondrocyte maturation (Moffatt et al., 2011; Necas et al., 2008). 

Mouse Has2 knockouts display cephalic mesoderm defects (Camenisch et al., 

2000) and in chick limb mesodermal cells, fetal bovine chondrocytes, mouse ear 

placodal cells, and breast cancer cells, Has2 is positively regulated by Fgf 

signaling (Bohrer et al., 2014; Hamerman et al., 1986; Munaim et al., 1991; 

Urness et al., 2010). These data suggest that has2 might not only be a marker of 

head paraxial mesoderm, but may also be important in the generation of the Fgf 

loss-of-function phenotype.  

Our earlier analysis revealed that localization of the head paraxial 

mesoderm was unperturbed in fgf3;fgf8 knockdown embryos at 10 hpf. However, 

by 10 hpf, has2-positive cells abutting the notochord in the most anterior region, 

where the postchordal neurocranium is developing, are lost in fgf3;fgf8 

knockdown embryos (Fig. 3.14D-D’, compared to 3.14A-C, 3.14A’-C’). No gross 
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alterations in earlier has2 expression, at 6 hpf, could be ascertained in fgf3;fgf8 

knockdown embryos (Fig. 3.15). This suggests that early cephalic mesoderm is 

not properly specified when Fgf signaling is attenuated.  

Chondrocyte maturation has been shown to rely on has2 function, 

however, it was unclear whether loss of has2 contributed directly to the 

postchordal neurocranial defects in fgf3;fgf8 knockdown embryos. Utilizing a 

previously published morpholino targeting has2 (Bakkers et al., 2004), we 

injected fgf8a mutants with a suboptimal dose of the has2 morpholino. Wildtype 

siblings are largely unaffected in the posterior neurocranium (Fig 3.14G 

compared to 3.14E), as are control morpholino-injected fgf8a mutants (Fig 3.14F 

compared to 3.14E). However, has2 morpholino-injected fgf8a mutants display 

partial loss of the postchordal neurocranium (Fig. 3.14H, arrowheads). These 

data suggest that the exacerbated postchordal neurocranial defects observed in 

fgf3;fgf8 knockdown embryos is, at least, partially due to loss of has2.  

The major function of Has2 is in the synthesis of hyaluronic acid (Bakkers 

et al., 2003; Moffatt et al., 2011; Necas et al., 2008; Weigel et al., 1997; Yoshida 

et al., 2000). To test the requirement of this function of has2, we treated fgf8a 

mutants with a suboptimal concentration of 4-methylumbelliferon (4-MU; Sigma-

Aldrich), which is known to inhibit hyaluronic acid production (Garcia-Vilas et al., 

2013). Treating fgf8a mutants with 4-MU between 6 and 10 hpf did not result in 

appreciable postchordal neurocranial defects (not shown). However, when 

treated between 10 and 30 hpf, 4 MU-treated fgf8a mutants display loss of 
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col2a1a expression at 30 hpf and, at 5 dpf, disruption of mesodermal-derived 

portions of the postchordal neurocranium, as compared to control-treated fgf8a 

mutants and 4 MU-treated wildtype siblings (Fig. 3.16). Collectively, these data 

suggest that the postchordal neurocranial defects found in Fgf-compromised 

embryos is dependent on hyaluronic acid production following gastrulation. 

Due to the loss of has2 expression at 10 hpf in fgf3;fgf8a knockdown 

embryos, we reasoned that Fgf signaling would be required early for postchordal 

neurocranial development. Using a suboptimal dose of SU5402 (Tocris 

Biosciences) from 6 to 10 hpf on fgf8a mutants and siblings, we found that, while 

SU5402-treated wildtypes showed normal neurocranial development (Fig. 3.17B 

compared to 3.17A and 3.17E), both heterozygote and mutant fgf8a zebrafish 

showed postchordal neurocranial defects, affecting the anterior basicapsular 

commissure in heterozygotes, and the entirety of the postchordal neurocranium 

in mutants (Fig. 3.17D compared to 3.17A-C, 3.17E). Furthermore, has2 

expression at 10 hpf in SU5402-treated fgf8a mutants is completely absent in the 

region of the developing postchordal neurocranium (compare Fig. 3.17I to 3.17F 

and 3.17G). These data strongly suggest that Fgf signaling is required during 

gastrulation, between 6 and 10 hpf, for postchordal neurocranial formation and 

specification.  
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3.III.e. The notochord is dispensible in the formation of the postchordal 

neurocranium 

Our data shows that Fgf signaling, originating from the mesoderm and neural 

ectoderm, is required in the development of the postchordal neurocranium. 

Previous reports have shown the importance of Shh signaling from the notochord 

in this process (Balczerski et al., 2012). Considering our data, Fgf and Shh 

together may form a signaling hierarchy required for postchordal neurocranial 

development. Thus, we investigated the function of the notochord and Shh in the 

formation of the postchordal neurocranium.  

To directly ask whether the maintenance of a notochord is necessary for 

cephalic mesoderm induction and postchordal neurocranial formation, we 

analyzed brachyury mutants (previously known as no tail), which transfate the 

notochord early in development (Amacher et al., 2002). However, brachyury 

mutants express has2 at 10 hpf (Fig. 3.18B-B’, compared to 3.18A-A’), col2a1a 

at 24 hpf (Fig. 3.18D), and retain a postchordal neurocranium (Fig. 3.18F, 

compared to 3.18E). These data show that notochord maintenance is 

dispensable for the formation of the postchordal neurocranium.  

In brachyury mutants, midline sources of Hh remain. To directly test the 

involvement of Hh signaling in posterior neurocranial development, we analyzed 

smo mutants, which lack all Hh signaling and a postchordal neurocranium (Varga 

et al., 2001). In smo mutants, we find that has2 expression in the region of the 

postchordal neurocranium is present (Fig. 3.19B-B’ compared to 3.19A-A’), but 
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there are severe reductions in cells expressing the chondrocyte marker col2a1a 

(Fig. 3.19D compared to 3.19C, Eberhart et al., 2006; Wada et al., 2005). Our 

smo data suggests that Hh signaling is required for differentiation of 

chondrocytes in the mesoderm-derived postchordal neurocranium after 10 hpf.  

To directly test the temporal requirement of Hh in the formation of the 

posterior neurocranium, we utilized the pan-Hh inhibitor cyclopamine (Toronto 

Research Chemicals; Hirsinger et al., 2004). Treating wildtype embryos from 6 to 

10 hpf with cyclopamine did not alter has2 expression at 10 hpf in the anterior 

region of the embryo (Fig. 3.20B and 3.20B’ compared to 3.20A and 3.20A’). In 

these same embryos, col2a1a expression at 24 hpf remained as well (Fig. 3.20D 

compared to 3.20C), albeit to a potentially lesser degree. However, blocking Hh 

signaling between 10 and 24 hpf resulted in the complete of of col2a1a 

expression (Fig. 3.20E). Together, these data demonstrate that Hh signaling is 

required for cartilage differentiation, but not early specification of mesoderm-

derived postchordal neurocranial progenitors.  

 

3.IV. Discussion 

Here we describe a hierarchy of genetic signaling required for the specification 

and differentiation of the postchordal neurocranium in zebrafish. The postchordal 

neurocranium is a structure primarily derived from mesoderm, and is lost in 

embryos with attenuated Fgf or Shh signaling. Fgf signaling plays an early role in 

the specification of head mesoderm via has2, and the loss of has2 and 
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subsequent hyaluronic acid production is at least partly causative of the 

postchordal neurocranial defects. Shh signaling is then required for the later 

differentiation of sox9a and col2a1a-expressing chondrocytes in the postchordal 

neurocranium. Together, these results reveal a previously unknown genetic 

signaling hierarchy required in the development of the postchordal neurocranium.    

 

3.IV.a. The dual origin of the zebrafish neurocranium 

The zebrafish neurocranium originates from the neural crest and mesoderm. 

Frog, mouse, and chick fate-maps show similar neurocranial contributions 

(Couley et al., 1993; Gross and Hanken, 2008; Jiang et al., 2002; Koentges and 

Lumsden, 1996; McBratney-Owen et al., 2010). Our results strongly suggest that 

the ancestral pattern of neurocranial contribution is neural crest being largely 

restricted to prechordal regions, and mesoderm only providing contributions to 

postchordal regions. The prechordal neurocranium is exclusively of neural-crest 

origin. This region of the neurocranium has received a good deal of 

characterization in zebrafish (Eberhart et al., 2006; Kague et al., 2012; Mongera 

et al., 2013; Wada et al., 2005), therefore, here we will focus on the postchordal 

neurocranium.  

Using a pan-mesodermal Cre-transgenic line driven by draculin, we found 

that the majority of the postchordal neurocranium is mesoderm derived. In mouse 

and chick, the postchordal neurocranium is also primarily mesoderm-derived 

(Couley et al., 1992 and 1993; Koentges and Lumsden, 1996; McBratney-Owen 
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et al., 2008). This data is lacking in frog, however, in neural-crest labeling fate-

map studies, non-neural crest derived cartilages are all positioned in the 

postchordal neurocranium (Gross and Hanken, 2008).  

More effort has been spent in mapping the neural crest-derived portions of 

the skull (Couley et al., 1993; Gross and Hanken, 2008; Kague et al., 2012; 

Koentges and Lumsden, 1996; Jiang et al., 2002; McBratney-Owen et al., 2010). 

Our fate mapping has defined the precise postchordal structures that neural crest 

cells contribute to in zebrafish, including the most lateral regions of the 

basicapsular commissures, the lateral auditory capsule, and the parts of the 

lateral commissures. These areas are important for articulations with the jaw 

support element the hyosymplectic, as well as muscle attachment sites 

(Koentges and Lumsden, 1996). Furthermore, Hox-negative and Hox-positive 

neural crest contribute to distinct regions of the postchordal neurocranium. Along 

with results in chick (Koentges and Lumsden, 1996), this finding suggests an 

evolutionarily conserved function of neural crest in forming attachment sites in 

the postchordal neurocranium with the neural crest-derived jaw, jaw supports, 

and muscle attachment sites (Koentges and Lumsden, 1996).  

 

3.IV.b. Fibroblast growth factor signaling in the zebrafish neurocranium 

The vertebrate neurocranium is the product of the mesoderm and the cranial 

neural crest, yet requires interactions between multiple tissues. An important 

regulator of the development of the neural crest-derived portion of the 
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neurocranium is Fibroblast growth factor signaling (Creuzet et al., 2004; Crump 

et al., 2006; Monsoro-Burq et al., 2003). Our data reveals a second, and much 

earlier, role for Fgf signaling in the mesoderm-derived postchordal neurocranium.  

We show that loss of function of both fgf3 and fgf8a causes a severe 

defect in postchordal neurocranial development. The phenotypic differences 

between the fgf8a;fgf3 double mutant and the fgf3 morpholino-injected fgf8a 

mutants may be explained by the retention of maternally-supplied Fgfs early in 

development in the fgf8a;fgf3 double mutants (Reifers et al., 1998). Analysis of 

downstream constituents of Fgf signaling, including sprouty genes, may show the 

phenotypic differences are due to genotypic ones. However, these analyses 

show that loss of function of Fgf signaling causes defects to the postchordal 

neurocranium. 

 The root of this defect lies in the misspecification of cephalic mesoderm at 

the end of gastrulation via downregulated expression of the chondrocyte-

regulator hyaluronan-synthetase 2 (has2), which is essential for hyaluronic acid 

production. In fgf8a mutants, loss of has2 or hyaluronic acid, led to perturbed 

postchordal neurocranial defects similar to fgf3;fgf8 loss of function embryos. 

How Fgfs function to activate has2 expression remains to be elucidated. Fgf 

signaling could maintain has2 expression directly, via STAT3 activation 

(Saavalainen et al., 2005).  Indeed, Fgf receptors have been shown to activate 

HAS2 function in breast cancer cells via STAT3 (Bohrer et al., 2014). Our 

analysis suggests Fgfr3 could work in this capacity, as knockdown in an fgf8a-
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mutant recapitulates postchordal neurocranial defects. Elucidating the pathway 

that activates has2 in an fgfr3-dependent fashion will be of ongoing interest.  

 

3.IV.c. A signaling hierarchy orchestrates the specification and 

differentiation of the postchordal neurocranium 

Proper craniofacial development relies on complex hierarchies of signaling 

pathways. Our analysis implicates Fgf signaling from the mesoderm and 

neuroectoderm is a major regulator of postchordal neurocranial development. 

Otic placode development is dependent upon signals from the neuroectoderm 

(Leger and Brand, 2002; Sai and Ladher, 2015), which could confound our otic 

placode transplantation results. However, loss of the otic placode itself only 

results in variable anterior basicapsular commissure loss, not the severe 

postchordal neurocranial loss phenotype observed in fgf3;fgf8 knockdown 

embryos. Thus, the mesoderm and neuroectoderm appear to be the most 

important sources of Fgf for postchordal development. 

Other studies have purported that the notochord is also vital in postchordal 

neurocranial formation and that shh emanating from this structure mediates the 

formation of the postchordal neurocranium via chondrogenesis of the paraxial 

mesoderm (Balzcerski et al., 2012). Consistent with this report, we find a loss of 

differentiated chondrocytes in the postchordal neurocranium. In contrast, has2 

expression was retained in both smoothened mutants, which completely lack Hh 

signaling (Varga et al., 2001), and in embryos treated with cyclopamine from 6-
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10 hpf. This shows that, unlike Fgf signaling, Hh signaling is dispensible in early 

specification of postchordal neurocranium precursors, but is important in their 

terminal differentiation.  

The notochord has been thought to be a critical source of Shh for posterior 

neurocranial development (Balzcerski et al., 2012). Analysis of brachyury 

mutants, which transfate the notochord during gastrulation (Amacher et al., 2002; 

Halpern et al., 1993), showed that the postchordal neurocranium was fully 

developed and included a chondrocytic region expanded into the area where the 

notochord develops. Due to the retention of shh expression in brachyury 

mutants, this suggests that the notochord is not a structural requirement for 

postchordal neurocranial development, but instead serves purely a signaling 

function, either through maintenance of the shh signal or by some other 

unexplained mechanism.  

Our findings now place Fgf signaling prior to Hh in the formation of the 

postchordal neurocranium. Cephalic mesoderm is first specified in an Fgf-

dependent manner beginning at 10 hpf via activation of has2. Temporal-loss of 

Fgf signaling via SU5402 treatment also shows that Fgf signaling is required 

early, from 6 to 10 hpf, for has2 activation. Loss of has2 ultimately results in the 

loss of the chondrogenic program resulting in postchordal neurocranial defects in 

Fgf loss-of-function embryos. Shh, on the other hand, is not required for this early 

activation of has2, but supports proper chondrogenic differentiation of this group 
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of cells. Together, these results clarify the temporal and genetic control required 

for proper postchordal neurocranial development in zebrafish.  

 

3.V. Materials and Methods 

3.V.a. Fish husbandry and care 

All embryos were raised and cared for using established protocols (Westerfield, 

1993) with IACUC approval from the University of Texas at Austin. The fgf8ati282a 

 (Brand et al., 1996), fgf3t24149(Herzog et al., 2004), brachyury b195 

 (Schulte-Merker et al., 1994), smoothenedb577(Varga et al., 2001), sox10:Cre 

(Kague et al., 2012), sox10:KikGR (Balczerski et al, 2012), sox10:kaede 

(Dougherty et al., 2013), ubi:switch (Mosimann et al., 2011), and ubi:RSG 

(Kikuchi et al., 2010) alleles have all been described previously. The drl:CreERT2 

line was generated using a 3.8kb draculin promoter upstream of the ATG start 

site. Primers used to amplify this promoter were: 

for1: ATTGCGGCCGCTTCAATTGTGGTTGAGCAGTC 

rev1: ATTACTAGTCCAAGTGTGAATTGGGATCG. The 3.8KB fragment was 

amplified with iProof polymerase (BioRad), then cloned into TOPO-Blunt 

(Invitrogen). After verification, the promoter was sub cloned into the Tol2 vector 

(Kawakami et al., 2004) upstream of the CRE-ERT2 (Feil et al, PNAS 1996). The 

Tol2-drl-creert2 vector was co-injected with Tol2 mRNA into AB* in order to 

establish a founder line. Tamoxifen was added from 10-24 hours post fertilization 

on the drl:CreERT2 line, and the sox10:KikGR and sox10:kaede lines were UV-
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activated at 24 hours post fertilization using DAPI-filter attached to a Zeiss LSM 

710. Embryos were treated in embryo media with 5 µM SU5402 (Tocris 

Biosciences) from 6 to 10 hpf, and 100 µM cyclopamine (Toronto Research 

Chemicals) or 1 mM 4-methyllumbiferone (Sigma-Aldrich) from 6 to 10 and 10 to 

24 hpf. 

3.V.b. Morpholino and RNA injection 

Approximately 5 nl of morpholinos (Gene Tools), working concentrations of 5 

mg/ml of a combination of fgf3b and fgf3c morpholinos with sequences 

5’GGTCCCATCAAAGAAGTATCATTTG3’ and 

5’TCTGCTGGAATAGAAAGAGCTGGC3’, respectively (Maves et al., 2002), of a 

combination of fgf8aE212 and fgf8aE313 with sequences 

5’TAGGATGCTCTTACCATGAACGTCG3’ and 

5’CACATACCTTGCCAATCAGTTTCCC3’ (Draper et al., 2001), and control 

morpholinos with sequence 5’CCTCTTACCTCAGTTACAATTTATA3’ were 

injected into one- or two-cell stage embryos of fgf8a and fgf3 lines. 

Approximately 3 nl of a working concentration of 3 mg/ml of fgfr3 morpholino with 

sequence 5’AAATGAGGTGTAATGTCTGACCTGT3’ was injected into fgf8a 

mutants. This dose was suboptimal, as it did not cause any defects to wildtype-

injected embryos. This is a splice-blocking morpholino targeting the first exon-

intron boundary of fgfr3. To validate the targeting of this morpholino, whole 

embryo RNA extracts were isolated from uninjected and fgfr3 morpholino-

injected zebrafish at 24 hpf using Trizol extraction (Invitrogen). cDNA pools were 
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then synthesized using Superscript First-Strand Synthesis System (Invitrogen). 

To detect changes in mRNA transcripts in morphant embryos, PCR was 

performed on cDNA pools using the gene-specific primers spanning the 

morpholino-targeted exon-intron boundary ForTACAGTGCACACCTGCTGTC 

and revAGCCAATGGATACTGGGCG giving a final size of 491 bp in wildtype. 

Other morpholinos used that were previously described: fgfr1: 5’-

GCAGCAGCGTGGTCTTCATTATCAT-3’(Scholpp et al., 2004); fgfr2: 5’-

GTCGAACCTCGAACGGGAAAGCGTA-3’(Nakayama et al., 2008); fgfr4: 5’-

ATATCTGCTGGAGTAAAAAATGAGG-3’(Nakayama et al., 2008); dlx3b: 5’- 

ATATGTCGGTCCACTCATCCTTTAAT-3’ (Solomon et al., 2002); foxi1: 5’- 

TAATCCGCTCTCCCTCCAGAAACAT-3’ (Solomon et al., 2003) 

; and, has2, which required dual injection of two morpholinos: 5’- 

AGCAGCTCTTTGGAGATGTCCCGTT-3’ and 5’- 

CGTTAGTTGAACAGGGATGCTGTCC-3’ (Bakkers et al., 2004).  

Kaede mRNA was injected into one-cell stage embryos, with or without 

morpholinos, and UV activated at either 6 or 24 hpf using a Zeiss LSM 710 

Confocal microscope.  

3.V.c. Cartilage and bone staining  

Five and four day postfertilization (dpf) zebrafish embryos were stained with 

Alcian blue and Alizarin Red (Walker and Kimmel, 2007), and then were either 

flat mounted (Kimmel et al., 1998) or had the viscerocrania removed for imaging. 
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Images were taken with a Zeiss Axio Imager-AI microscope. Graphs were made 

in Microsoft Excel 2011. 

3.V.d. Confocal Microscopy and figure processing 

Confocal z-stacks were collected on a Zeiss LSM 710 using Zen software. 

Images were processed in Adobe Photoshop CS. Kaede and tissue fate maps 

were generated in Adobe Photoshop CS by overlaying images gathered on the 

Zeiss confocal. Graphs were generated using Microsoft Excel 2011. 

3.V.e. In Situ Hybridization 

RNA in situ hybridization was performed as reported in Miller et al. (2000). AB 

wildtype, fgf8a, fgf3;fgf8a morpholino, brachyury, and smoothened embryos were 

treated with 0.0015% PTU (1-phenyl 2- thiourea) to inhibit the production of 

melanin (Westerfield et al., 1993). Probes used were sox9a (Yan et al., 2002), 

col2a1a (Yan et al., 1995), and the has2 probe was generated using primers 

For:ACAAGTCACTGGCCCTATGC and Rev:GGTAGGTAATGGGCGTCTCG 

(NCBI ref# NM_153650.2). DIC images of in situ hybridizations were collected on 

a Zeiss Axioimager. 

3.V.f. Cell transplants 

Genetic mosaics were generated as described elsewhere (Crump et al., 2004; 

Maves et al., 2002; Stafford et al., 2006). For neural and otic placode tissue 

transplants, embryos were injected at the 1-2 cell stage with 2.5% Rhodamine 

Alexa 568 dextran. At shield stage (6 hpf), donor cells were removed and placed 

into corresponding areas in fgf3;fgf8 morpholino-injected hosts using previously 
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described fate maps (Kimmel et al., 1990 and Woo and Fraser, 1995). Mesoderm 

transplants were performed at shield stage (4 hpf) using donor tissue cells 

located at the margin and moved to the margins of fgf3;fgf8 morpholino-injected 

hosts (Kimmel et al., 1990). For endoderm transplants, donor 1 cell stage 

embryos were injected with a mixture of 2.5% Rhoadmine Alexa 568 dextran and 

sox32 mRNA and donor cells located at the margin at shield were transplanted 

into the margin of fgf3;fgf8 morpholino-injected hosts (Stafford et al., 2006). For 

double mesoderm and neural transplants, donor tissue from 2.5% Rhodamine 

Alexa 568 dextran injected hosts was transplanted at both sphere (taking cells 

from the margin) and shield (taking cells from the neural ectoderm-forming 

region) into fgf3;fgf8 morpholino-injected hosts. At 24 hpf, all hosts were 

screened using a LeicaM216F fluorescence stereomicroscope for substantial and 

tissue-specific contributions of donor tissue for subsequent analysis.  
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3.VII. Figures 

 
 
Figure 3.1: fgf8a mutants interact with ethanol to cause postchordal neurocranial 

defects. (A-D) Wholemounted zebrafish neurocrania at 5 days post fertilization. 

Anterior is to the left. Untreated (A) wildtype and (B) fgf8a mutants showing 

normal neurocranial development, compared to an (C) fgf8a mutant treated with 

ethanol showing variable postchordal neurocranial defects (arrowheads) and (D) 

fgf8a mutant treated with rapamycin showing variable postchordal neurocranial 

defects (arrowheads).  
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Figure 3.2: The postchordal neurocranium requires Fgf signaling. (A-E) 

Wholemounted zebrafish neurocrania with the viscerocrania removed at 5 days 

post fertilization. Anterior is to the left. (A) Wildtype, showing the prechordal 

versus postchordal regions of the neurocranium demarcated by a dashed line, 

(B) fgf8a mutant, (C) and fgf3 mutant embryos display normal neurocrania. (D) 

Variable neurocranial defects occur in 63% (n=5/8) of fgf8a-/-;fgf3+/- embryos 

(arrowheads). (E) The postchordal neurocranium in fgf8a-/-;fgf3-/- embryos is 

almost completely absent in 83% (n=5/6) of embryos, including the parachordals, 

anterior and posterior basicapsular commissure and the lateral commissures 

(arrowhead). abc- anterior basicapsular commissure, lc- lateral commissure, n- 

notochord, oc- occipital arch, pbc- posterior basicapsular commissure, pc- 

parachordals, prech.=prechordal neurocranium, postch.= postchordal 

neurocranium. scale bar=20 µm. 
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Figure 3.3: Loss of Fgf signaling causes postchordal neurocranial defects. (A-J) 

Wholemount zebrafish neurocrania at 5 days post fertilization, with the 

viscerocrania removed. Anterior is to the left. Wildtype embryos injected with (B) 

control or (C) fgf3-morpholinos develop normal posterior neurocranial structures 

compared to (A) uninjected controls. (D and E) Un-injected and control 

morpholino-injected fgf8a mutants display normal posterior neurocranial 

development compared to (A) wildtype controls, but (F) develop severe posterior 

neurocranial loss when injected with fgf3 morpholino. (G) Wildtype injected with 

fgf8 morpholino, (H) fgf3 mutants, and (I) control morpholino-injected fgf3 

mutants display normal neurocranial development however, (J) fgf8 morpholino-

injected fgf3 mutants display severe postchordal neurocranial scale bar=20 µm.  
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Figure 3.4: Fgfr3 and Fgf8 interact in postchordal neurocranial development. (A-

D) Wholemounted zebrafish neurocrania with viscerocrania removed at 5 days 

post fertilization. Anterior is to the left. (A and C) Control morpholino-injected 

wildtypes and fgf8a mutants display normal craniofacial development. (B) 

Injecting a suboptimal dose of fgfr3 morpholino does not affect craniofacial 

development in wildtype, however, (D) in fgf8a mutants causes variable 

postchordal neurocranial defects (arrowheads). (E) Gel showing RT-PCR 

analysis of the exon-intron boundary of fgfr3 targeted by the splice-blocking 

morpholino with cDNA isolated from either uninjected (C) or fgfr3-morpholino (M) 

injected embryos at 24 hours post fertilization (L denotes ladder). scale bar=20 

µm. 
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Figure 3.5: The mesoderm and neural ectoderm are Fgf sources required for 

postchordal neurocranial formation. (A-E, A’-E’) 24 hours post fertilization 

confocal images of transplanted wildtype tissues into fgf3;fgf8 morpholino-

injected hosts with and without DIC, respectively; (A’’-E’’) corresponding 4 days 
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post fertilization (dpf) neurocranial wholemounts with viscerocrania removed. 

Transplanted side of neurocrania is marked with a T, and control side with a C. 

(F and G) 4 dpf postchordal neurocrania of uninjected and fgf3;fgf8 morpholino 

injected,embryos respectively. Anterior is to the left. (A,A’,A’’) Endoderm 

transplants, (B,B’,B’’) otic placode transplants, (C,C’,C’’) mesoderm only, 

(D,D’,D’’) neural ectoderm only, and (E,E’,E’’) mesoderm and neural ectoderm 

double-transplants. Endoderm and otic placode transplants fail to rescue the 

posterior neurocranium (compare A’’ and B’’ to F and G). Transplantation of 

mesoderm or neural ectoderm alone partially rescues the postchordal 

neurocranium (compare C’’ and D’’ to F and G). Transplantation of mesoderm 

and neural ectoderm together can fully rescue the postchordal neurocranium on 

the side of the embryo receiving the transplant (compare E’’ to F and G). 

Quantification of partial or full rescue is shown in graph H. scale bars=100 µm in 

A-E and scale bar=20 µm in A’’.  
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Figure 3.6: The postchordal neurocranium is primarily intact in dlx3b;foxi1 

knockdown embryos. (A-B) DIC images of 24 hpf embryos and (A’B’) the same 

embryo at 5 dpf wholemounted neurocrania with viscerocrania removed. Anterior 

is to the left. (A-A’) Un-injected control embryos show an otic placode at 24 hpf 

(arrowhead) and normal posterior neurocrnaium at 5 dpf. (B-B’) dlx3b;foxi1 

double morpholino-injected embryos lack an otic placode at 24 hpf, but retain 

most of the posterior neurocranium at 5 dpf (arrowheads point to missing anterior 

basicapsular commissure). abc- anterior basicapsular commissure, scale bar= 20 

µm.  
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Figure 3.7: The zebrafish postchordal neurocranium is derived from both 

mesoderm and neural crest tissues. (A-F) Confocal images of 5 days post 

fertilization flatmounted zebrafish neurocrania of (A,B) sox10:KikGR, (C, D) 

sox10:Cre;ubiRSG, and (E,F) dra:CreERT2;ubi:switch. Anterior is to the left. In 

C-D the red and green channels have been switched for clarity in comparisons to 
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A & B. (B, D, F) Lineage-traced cells only, neurocrania outlined in white. (A-D) 

Neural crest contributes to the prechordal elements the ethmoid plate and 

trabeculae, as well as the lateral and anterior regions of the anterior basicapsular 

commissures and the lateral auditory capsules. (E-F) Mesoderm contributes the 

parachordals, anterior and posterior basicapsular commissure, the occipital arch, 

and the lateral commissures. Schematic of results shown in G (n>10 for each 

transgenic line). abc- anterior basicapsular commissure, ac- auditory capsule, 

ep- ethmoid plate, lc- lateral commissure, n- notochord, oc- occipital arch, pbc- 

posterior basicapsular commissure, pc- parachordals, tr-trabeculae. scale bar=50 

µm.  
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Figure 3.8: Mandibular- and hyoid-specific neural crest contributions to the 

postchordal neurocranium. (A-D’) Confocal images of sox10:kaede embryos at 

(A,C) 24 hours post fertilization and (B,B’, D, D’) 6 days post fertilization. Anterior 

is to the left in all images. (A) Photoconverted first arch neural crest cells, red 

fluorescence, contribute to the lateral anterior basicapsular commissure (B,B’, 

arrowhead, inset in B shows relative region shown in B and D). (C) 

Photoconverted second arch cells, red fluorescence, contribute to the lateral 

auditory capsule, with cells also labeled in the hyosymplectic, a second arch 

viscerocranial structure (D,D’). abc- anterior basicapsular commissure, ac- 

auditory capsule, hs- hyosymplectic, lc- lateral commissure.  
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Figure 3.9: cre expression in the drl:CreERT2 line confirms mesoderm-specific 

labeling at 6 hours post fertilization (hpf). All panels show Cre expression in 

drl:CreERT2 line at (A-A’) 6 hpf (lateral and dorsal views, respectively), (B) 8 hpf, 

(C) 12 hpf, (D) 14 hpf, and (E) 24 hpf.  Figure by Julien Y. Bertrand.  
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Figure 3.10: Fate-mapping of head mesoderm shows the anterior/posterior 

organization of postchordal cells is set by 24 hours post fertilization (hpf). (A-C) 

Confocal images of a Kaede-injected embryo at (A) 24 hpf and (B,C) 4 days post 

fertilization (dpf). Anterior is to the left. (A) At 24 hpf Kaede was photoconverted, 

shown in red (the remaining green Kaede is not evident due to the intense green 

fluorescence from the fli1:EGFP transgene), and (B) at 4 dpf, this same embryo 

shows labeling in the postchordal neurocranium (inset shows relative position in 

the neurocranium of magnified view). (C) Red channel only, the neurocrania is 

outlined in white. (D) Schematic of panel C, with red cells depicting the 

photoconverted region. (E and E’) Graphical representation of Kaede-mediated 
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fate mapping at 24 hpf and 4 dpf. Inset in E’ shows relative position of magnified 

neurocrania. Question mark denotes a region that remained unlabeled in our 

analyses. ac- auditory capsule, o.c.-otic capsule. Scale bars=10 µm in A and 20 

µm in C. 
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Figure 3.11: Individual kaede photoconversion fate mapping data points. (A and 

B) Graphical representation of data points of Kaede photoconversion. Anterior is 

to the left. (A) Circles denote photoconverted regions of Kaede-injected embryos 

at 24 hours post fertilization. (B) Corresponding colors demonstrate the location 

of converted cells at 5 days post fertilization. ac-auditory capsule, o.c.-otic 

capsule. 
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Figure 3.12: Cartilage and pre-cartilage markers col2a1a and sox9a are absent 

at 24 hours post fertilization (hpf) in fgf3;fgf8a knockdown embryos. (A-H) Images 

of 24 hpf embryos labeled with (A-D) col2a1a and (E-H) sox9a riboprobe. Dorsal 

view with anterior to the left, arrowhead denotes the anterior limit of the 

notochord. (A,E) Wildtype, (B,F) fgf8a mutant, and (C,G) fgf3 morpholino 

embryos display normal expression of both col2a1a and sox9a. However, (D,H) 

fgf3 morpholino-injected fgf8a mutants lose the expression of both col2a1a and 

sox9a (asterisk). scale bar=20 µm.  
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Figure 3.13: Kaede photoconverted endomesoderm postchordal-progenitor cells 

migrate appropriately in fgf3;fgf8a knockdown embryos. (A) Schematic of 6 hours 

post fertilization (hpf) zebrafish embryo showing the region of the embryo 

photoconverted in all subsequent experiments, dorsal to the right. (B-D) DIC 

confocal images showing the photoconverted area at 6 hpf (B, magnified region 

outlined in A), 10 hpf (C), and 4 days post fertilization (dpf) (D). Cells have 

migrated adjacent to the notochord by 10 hpf and contributed to the postchordal 

neurocranium at 4 dpf. At 10 hpf, cells in (E) control, (F) fgf8, (G) fgf3, and (H) 
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fgf3;fgf8 double morpholino-injected embryos are appropriately positioned 

(compared to C). scale bar= 20 µm.  
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Figure 3.14: Loss of has2 in Fgf knockdown embryos contributes to the 

postchordal neurocranial loss phenotype. (A-D, A’-D’) Images of 10 hours post 

fertilization embryos labeled with has2 riboprobe. Dorsal view and anterior to the 

left in all images. (E-H) Wholemounted zebrafish neurocrania with the 

viscerocrania removed at 5 days post fertilization. Anterior is to the left.  (A’-D’) 

Magnified areas of region outlined in (A-D). (A,A’) Uninjected wildtype, (B,B’) 

fgf8a mutants, and (C,C’) fgf3 morpholino-injected wildtype display normal 

expression of has2, however, (D,D’) fgf3 morpholino-injected fgf8a mutants 

exhibit loss of expression of has2 in the presumptive postchordal neurocrania (D 
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and D’). (E) Control morpholino-injected wildtype and (F) fgf8a mutants, as well 

as (G) has2 morpholino-injected wildtypes retain the postchordal neurocranium. 

However, (H) has2 morpholino-injected fgf8a mutants have a substantial loss of 

the postchordal neurocranium (arrowheads). n=notochord. scale bar=10 µm in A 

and 50 µm in A’ and 20 µm in E.  
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Figure 3.15: Expression of has2 at 6 hours post fertilization does not require 

fgf3;fgf8 function. (A,B) has2 expression at 6 hpf in (A) control and (B) fgf3;fgf8a 

morpholino-injected embryos. Dorsal view. 
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Figure 3.16: Inhibition of hyaluronic acid in fgf8a mutants causes postchordal 

neurocranial defects. (A-D) Images of 30 hpf embryos stained with col2a1a 

riboprobe. Dorsal view, with anterior to the left. (E-H) Wholemount zebrafish 
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neurocrania at 5 days post fertilization, with the viscerocrania removed. Anterior 

is to the left. (A) Control-, (B) 4-MU-treated wildtype and (C) control-treated fgf8a 

siblings display normal col2a1a staining in the pre-postchordal neurocranium, 

however, (D) 4-MU-treated fgf8a mutants show a loss of col2a1a expression at 

the end of the treatment window (10-30 hpf). (E) Control- and (F) 4-MU-treated 

wildtype from 10 to 30 hours post fertilization, and (G) untreated fgf8a mutants 

have normal posterior neurocrania. However, (H) the mesoderm-derived regions 

of the neurocrania are lost in 4-MU treated fgf8a mutants (arrowheads). (I) 

Quantification of postchordal neurocranial defects including none (see E), ABC 

loss, or variable postchordal neurocranial loss (p. nc. loss) in control and 4-MU-

treated wildtype (fgf8a+/+), heterozygous (fgf8a+/-) and mutant (fgf8a-/-) 

embryos. abc- anterior basicapsular commissure, n- notochord, oc- occipital 

arch, pc- parachordals, pbc- posterior basicapsular commissure. Scale bar= 50 

µm in A, 20 µm in E. 
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Figure 3.17: Postchordal neurocranial development requires Fgf signaling during 

gastrulation. (A-D) Wholemount zebrafish neurocrania, anterior is to the left. (A 

and B) Wildtype neurocrania treated with DMSO or SU5402 develop normally. 

(C) DMSO-treated fgf8a mutants are also unaffected, however, (D) those treated 

with SU5402 from 6 to 10 hpf develop severe postchordal neurocranial loss. (E) 

Quantification of postchordal neurocranial defects including none (see A), ABC 

loss, or complete postchordal neurocranial loss (p. nc. loss) in DMSO and 

SU5402 treated wildtype (fgf8a+/+), heterozygous (fgf8a+/-) and mutant (fgf8a-/-) 

embryos. (F-H) DMSO-treated wildtype and fgf8a mutants and SU5402-treated 

wildtype express has2 appropriately; however, (I) SU5402-treated fgf8a mutants 

display a loss of expression of has2 in postchordal neurocranial precursors 
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(arrowhead denotes most anterior expression). abc- anterior basicapsular 

commissure, lc- lateral commissure, n- notochord, oc- occipital arch, pc- 

parachordals, pbc- posterior basicapsular commissure. scale bar=20 µm in A and 

scale 10 µm in F.  
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Figure 3.18: Postchordal neurocranial development does not require brachury 

function or a notochord. Anterior is to the left in all panels. (A-B, A’-B’) 

hyaluronan synthetase 2 (has2) is expressed in cephalic regions at 10 hours post 

fertilization (hpf) in both wildtypes and brachury mutants. (C and D) The late 

chondrogenic marker col2a1a at 24 hpf appears in both brachury mutants and 

siblings in the forming postchordal area of the developing embryo (compare D to 

C, arrowhead in C denotes anterior notochord). (E and F) At 5 days post 

fertilization, postchordal neurocrania of brachury mutants are normal, sans 
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notochord, compared to siblings (compare F to E). scale bar=10 µm in A and 50 

µm in A’ and C and 20 µm in E.  
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Figure 3.19: Chondrocyte differentiation but not early cephalic mesoderm 

specification requires Hh signaling. All panels are anterior to the left. (A-B, A’-B’) 

At 10 hours post fertilization (hpf), the early mesoderm marker has2 is expressed 

similarly in the anterior region of smoothened mutants and wildtypes (Compare B 

to A, B’ to A’). (C and D) However, smoothened mutants display a marked 

reduction in col2a1a expression in the forming postchordal neurocranium at 28 

hpf compared to siblings (compare D to C, arrowhead denotes anterior 

notochord). scale bar=10 µm in A and 50 µm in A’.  
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Figure 3.20: Hh signaling is required after Fgf signaling for postchordal 

neurocranial development. The expression of has2 is retained following either (A-

A’) DMSO or (B-B’) cyclopamine treatment from 6-10 hours post fertilization 

(hpf). (C-D) DMSO- and cyclopamine-treated embryos from 6-10 hpf show 

expression of col2a1a at 24 hpf, however, (E) cyclopamine-treated embryos from 

10-24 hpf show a loss of col2a1a expression in the postchordal neurocranium at 

24 hpf. Arrowheads denote the anterior limit of the notochord.  
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Chapter 4: pdgfra and pdgfrb synergistically interact in 

craniofacial development.1 

4.I. Abstract  

The cranial neural crest is the primary tissue source of the craniofacial skeleton 

and platelet-derived growth factors (Pdgf) are critically important in neural crest 

development. The Pdgf signaling family consists of two receptors, alpha and 

beta, of which pdgfra has a primary role in neural crest migration. It is unclear, 

however, the role pdgfrb plays in the neural crest, or whether pdgfra and pdgfrb 

have a synergistic role in craniofacial development. Using both pharmacological 

and genetic analyses, we find that loss of both pdgfra and pdgfrb in zebrafish 

results in exacerbated craniofacial phenotypes unobserved in either pdgfra or 

pdgfrb knockdown alone. Data in mouse suggests this synergistic relationship is 

conserved. In zebrafish, this phenotype is attributed to an increase in neural crest 

cell apoptosis, revealing an uncharacterized role of Pdgf signaling in the neural 

crest.  

1Authors: Neil McCarthy1, Jenna Rozacky1, Michelle D. Tallquist3, and Johann K. 

Eberhart1,2.  

1Department of Molecular Biosciences; Institute of cell and molecular biology, Waggoner 

Center for Alcohol and Alcohol Addiction Research, University of Texas, Austin, Texas. 

2Institute of Neurobiology, University of Texas, Austin, Texas.  

3Department of Medicine, University of Hawaii, Honolulu, Hawaii. 
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4.II. Introduction  

The craniofacial skeleton is derived primarily from the neural crest, and defects 

involving the neural crest lead to highly prevalent craniofacial abnormalities 

(Wilkie and Morriss-Kay, 2001; Stanier and Moore, 2004; Trainor, 2010). The 

neural crest is a pluripotent population of cells that are derived from the dorsal 

neural tube and migrate in distinct streams to the periphery of the embryo (Baker 

and Bronner-Fraser, 1997a; Basch et al., 2006). In cranial regions of the embryo, 

neural crest cells migrate into regions called pharyngeal arches (Baker and 

Bronner-Fraser, 1997a; Basch et al., 2006). These, in turn, will undergo 

morphogenetic events that result in the formation of the facial skeleton (Knight 

and Schilling, 2006). The proper induction, migration, proliferation, and survival of 

the neural crest require multiple signaling pathways, including the platelet-

derived growth factor (Pdgf) pathway (Soriano, 1997; Eberhart et al., 2008; 

Tallquist and Soriano, 2003).  

 The Pdgf signaling family consists of two receptors, alpha and beta, and 

four ligands in human and mouse, and six ligands in zebrafish (Bestholtz et al., 

2001; Tallquist and Kazlauskas, 2004; Eberhart et al., 2008). Ligands and 

receptors both homo- or heterodimerize, and upon ligand binding, 

autophosphorylation of intracellular receptor tyrosine residues occurs (Tallquist 

and Kazlauskas, 2004). This phosphorylation triggers the activation of numerous 

pathways, primarily PI3K and PLCγ, involved in processes including cell 

migration, proliferation, and survival (Tallquist and Kazlauskas, 2004). Pdgf 
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signaling is important throughout development in numerous tissues including the 

gonads, lung, intestine, skin, central nervous system, skeleton, vasculature, and 

both cardiac and cranial neural crest (Tallquist and Kazlauskas, 2004).  

Multiple studies have focused on the role Pdgfra plays in the cranial neural 

crest. Pdgfra is expressed in both premigratory and migratory neural crest cell 

populations in mouse and zebrafish (Eberhart et al., 2008; Liu et al., 2002; 

Schatteman et al., 1992). In mouse, conditional loss of Pdgfra in the neural crest 

leads to numerous cranial defects including cleft palate, a shortened skull, absent 

hyoid bone, and incomplete ossification of the basosphenoid, presphenoid, and 

alisphenoid bones (Tallquist et al., 2003).  A hypomorphic mutant of pdgfra in 

zebrafish has cleft palate as well (Eberhart et al., 2008), which is attributed to 

disrupted migration of  neural crest cells. This migratory defect has also been 

observed in mouse (Vasudevan and Soriano, 2014), highlighting the conserved 

function of this gene across species. While pdgfra is strongly implicated in 

craniofacial development, pdgfrb is currently not.    

Pdgfrb knockout mice exhibit kidney, heart, and hematological defects 

(Soriano, 1994; Mellgren et al., 2008), but no overt craniofacial abnormalities. 

Mutations specific to the PI3K-domains of both Pdgfra and Pdgfrb result in 

craniofacial defects more severe than a Pdgfra null (Klinghoffer et al., 2002). 

Furthermore, in the epicardium, Pdgfra and Pdgfrb play redundant roles in proper 

epithelial-to-mesenchymal transition (Smith et al., 2011). Collectively, these 
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results suggest that, in certain tissues, these receptors have synergistic 

functions.  

 Here, we sought to investigate the roles of the Pdgf receptors in neural 

crest development. While loss of pdgfrb does not cause any overt craniofacial 

defects, pdgfra hypomorphic mutant zebrafish show cleft palate. Double 

pdgfra;pdgfrb mutants show exacerbated defects, even when compared to a 

pdgfra hypomorphic mutant. Data in mouse reveals a conservation of this 

interaction. Using a broad Pdgf Inhibitor, Pdgf Inhibitor V, we show that 

craniofacial development requires Pdgf activity from the initiation of neural crest 

migration to early pharyngeal arch formation. Using in situ analysis, we observe 

that neural crest cells express both pdgfra and pdgfrb as they are populating the 

pharyngeal arches. The exacerbated phenotype observed in zebrafish double 

pdgfra;pdgfrb mutants may be due to increased neural crest cell death, revealing 

a previously unknown compensatory role of Pdgf receptors in neural crest cell 

survival.   

 

4.III. Results  

4.III.a. Dual knockdown of pdgfra and pdgfrb leads to exacerbated 

craniofacial defects. 

To investigate whether pdgfra and pdgfrb interact synergistically in craniofacial 

development, we generated pdgfra;pdgfrb double mutants. While pdgfrb-mutant 

embryos develop normal craniofacial skeletons (Fig. 4.1B, 4.1F, 4.1I, compared 
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to Fig. 4.1A, 4.1E), pdgfra mutant embryos exhibit cleft palate where the ethmoid 

plate fails to fuse, resulting in shorter neurocranial lengths (Fig. 4.1E,astericks, 

4.1I; Eberhart et al., 2008; McCarthy et al., 2013). Viscerocranial elements are 

quantifiably smaller as well, including the Meckel’s, palatoquadrate, pterygoid 

process, hyosymplectic, and symplectic cartilages (Fig. 4.1G, Table 4.1).  

While loss of a single allele of pdgfrb has no effect on the phenotype of 

pdgfra mutants, analysis of double pdgfra;pdgfrb mutants reveals a significantly 

reduced palate (Fig. 4.1D, arrowheads, 4.1I, Table 4.1) compared to all other 

genotypes. Neurocranial width and symplectic length are also reduced in double 

pdgfra;pdgfrb mutants compared to all other genotypes (Fig. 4.1G, Table 4.1). 

Other defects observed in double mutants include cartilage loss between the 

polar cartilages and the posterior basicapsular commissure, and loss of 

notochord ossification (Fig. 4.1G, arrows and arrowheads). Together, these data 

show that loss of both Pdgf receptors results in a synergistic interaction affecting 

the craniofacial skeleton. 

 Previous reports show conservation of pdgfra function across species 

(Eberhart et al., 2006; Tallquist et al., 2003; Vasudevan and Soriano, 2014). 

While loss of the PI3K domains of both Pdgfra and Pdgfrb genetically interact to 

recapitulate the defects observed in Pdgfra null mutants (Klinghoffer et al., 2002), 

it is unclear whether Pdgfra and Pdgfrb interact in the neural crest specifically, or 

the breadth of Pdgf signaling function in craniofacial development. To test this, 

we generated neural crest conditional Pdgfra;Pdgfrb null mice via Wnt1:Cre 
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mediated excision. Indeed, these mice have exacerbated craniofacial defects 

including reduced basisphenoid, alisphenoid, and hyoid bones (Fig. 4.2C 

compared to Fig. 4.2A and 4.2B, Fig. 4.2D) compared to either single mutant 

alone. These data reveal conservation of the Pdgfra;Pdgfrb interaction in 

craniofacial development. 

 

4.III.b. Pdgf activity is required between 6 and 30 hours post fertilization for 

proper craniofacial development.  

To determine when craniofacial development requires Pdgf function, we utilized 

PDGF Inhibitor V (Sigma), which broadly inhibits Pdgf activity. In an initial dose 

response analysis, three concentrations of inhibitor were tested on wild-type fish, 

1, 1.5, and 2 uM, at a broad time window from 6 hours post fertilization (hpf), or 

the beginning of gastrulation, to 30 hpf, when most neural crest cells have 

condensed within the pharyngeal arches. A concentration of 1 µM did not cause 

any gross craniofacial defects (data not shown) and 2 µM resulted in an increase 

in embryo death (data not shown). The most consistent and penetrant 

phenotypes occurred at a concentration of 1.5uM (Fig. 4.3). At high 

concentrations, this inhibitor has been shown to inhibit Kit function, required in 

melanocyte formation. However, we did not observe any gross alterations to 

melanocytes, suggesting that at this concentration the inhibition is most likely 

specific to Pdgf (Fig. 4.4).  
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 We next narrowed the window required for Pdgf function in craniofacial 

development. In these analyses the craniofacial phenotypes were marked as 

either unaffected, variable neurocranial defects, or complete loss of the palate 

(see Fig. 4.3A-C). A time window of inhibitor treatment from 12 to 30 hpf shows 

more severe defects compared to a time window of 18 to 30 hpf (Fig. 4.3). These 

data suggest that the function of Pdgf is required during a time window that 

encompasses both neural crest migration and pharyngeal arch formation. 

 

4.III.c. pdgfra and pdgfrb have overlapping expression in the head 

beginning at 20 hours post fertilization.  

Our previous analyses show that both receptors function synergistically in proper 

craniofacial development, and that this function is required between 6 and 30 hpf. 

We know that pdgfra is expressed and required cell-autonomously in the neural 

crest for proper craniofacial development (Eberhart et al., 2008). It was unclear, 

however, when or where pdgfrb was expressed during the crucial time window 

Pdgf is required. To test whether pdgfrb is expressed in the neural crest, we used 

fluorescence in situ of pdgfrb in a fli1:EGFP transgenic, which labels the neural 

crest and vasculature, to look for co-localization. Indeed, at both 24 and 36 hpf, 

pdgfrb expression occurs in the neural crest and the vasculature (Fig. 4.5A-A’, 

4.5B-B’; Wiens et al., 2010). These data show that pdgfrb is expressed in the 

neural crest during the time window that Pdgf signaling is required.    

 To pinpoint the timing of dual expression of pdgfra and pdgfrb in the 
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neural crest, we used double fluorescent in situ analysis. Prior to 20 hpf, we 

detect no overlap in the expression of pdgfra and pdgfrb (not shown). By 20 and 

24 hpf, both pdgfra and pdgfrb are expressed throughout the first and second 

arches (Fig. 4.6A-A’’, 4.6B-B’’). This is dual expression remains even at 36 hpf 

(Fig. 3.6C-C’’). The data suggest that neural crest cells express both pdgfra and 

pdgfrb during the window that Pdgf function is required for craniofacial 

development.  

 

4.III.d. Loss of both pdgfra and pdgfrb results in increased neural crest cell 

death. 

Loss of both pdgfra and pdgfrb led to markedly more severe craniofacial 

phenotypes compared to either loss of pdgfra or pdgfrb alone. Cell death is not 

observed by a singular loss of pdgfra (McCarthy et al., 2013). However, ethanol 

treatment causes increased neural crest cell death in pdgfra mutants (McCarthy 

et al., 2013), demonstrating that in certain contexts Pdgf signaling is critical for 

neural crest cell survival. Therefore, we analyzed cell death at 24 hpf in double 

pdgfra;pdgfrb mutants and compared them to the single mutants. Consistent with 

our previous results, pdgfra mutants do not exhibit any increase in cell death 

(McCarthy et al., 2013), but in the absence of both receptors, we see a 

synergistic and significant increase in cell death (Fig. 4.7B-B’, 4.7A-A’, 4.7C). 

Cell proliferation was not affected when comparing these two groups (data not 

shown). Loss of pdgfrb alone also does not cause any increase in cell death 
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compared to wildtype siblings (neural crest cell death: pdgfrb-/-  mean=1.29, 

pdgfrb+/+  mean=2.5, p=0.175). At 30 hpf, both cell death and proliferation are 

unaffected in double pdgfra;pdgfrb mutants compared to all other genotypes (not 

shown). Together, these data suggest that cell death may contribute to the 

exacerbated craniofacial phenotype observed in double pdgfra;pdgfrb mutants.  

 

4.IV. Discussion and future directions  

We show that pdgfra and pdgfrb synergistically interact during craniofacial 

development. Loss of both receptors leads to exacerbated neurocranial and 

viscerocranial defects in zebrafish, and neural crest conditional Pdgfra;Pdgfrb 

knockouts in mouse similarly reveal exacerbated craniofacial defects not 

observed in either single knockout alone. This suggests a high conservation of 

the Pdgfra;Pdgfrb interaction across species. In zebrafish, we go on to show that 

loss of Pdgf function during a time window when both receptors are expressed in 

the neural crest, is critical for proper craniofacial development. Finally, we find 

evidence that implicates neural crest cell death as a possible factor in the 

exacerbated phenotype observed in pdgfra;pdgfrb mutants.  

 Numerous publications have uncovered the functional role Pdgfra plays in 

craniofacial development (Eberhart et al., 2008; Hoch and Soriano, 2003; 

Tallquist and Kazlauskas, 2004; Vasudevan and Soriano, 2014). Pdgfrb, on the 

other hand, has never been observed to cause craniofacial defects (Soriano, 

1994; Wiens et al., 2010). Loss of the PI3K domains of both Pdgfra and Pdgfrb 
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genetically interacted to cause craniofacial defects as severe as a Pdgfra null 

(Klinghoffer et al., 2002). However, it remained unclear to what extent both Pdgf 

receptors functioned in craniofacial development and in the neural crest 

specifically. Here, we show that in neural crest-conditional Pdgfra;Pdgfrb mutant 

embryos, a more exacerbated craniofacial phenotype is observed compared to 

either Pdgfra or Pdgfrb neural crest-conditional knockouts alone. While Pdgfra 

can completely compensate for loss of Pdgfrb, our data suggests that in neural 

crest-conditional Pdgfra mutants, Pdgfrb has partial compensatory function. It will 

be of interest to see whether a specific tyrosine kinase residue of Pdgfrb allows 

this partial compensation. Data from Klinghoffer et al. would suggest that the 

PI3K activating-residue would be a strong contender for this role (Klinghoffer et 

al., 2002).  

 Our data implicates Pdgf to be important in craniofacial development in a 

window encompassing gastrulation to pharyngeal arch condensation. Future 

studies will aim to further assess the minimal window of Pdgf requirement for 

craniofacial development. Pdgfra is required for proper neural crest migration 

(Eberhart et al., 2008; Vasudevan and Soriano, 2014), and in zebrafish, this 

occurs beginning at 12 hpf. Inhibiting Pdgf signaling between 12 and 30 hpf 

resulted in less severe craniofacial defects compared to the 6 to 30 hpf time 

window. This could be due to the fact that inhibitor activity is often delayed 

compared to administration of the inhibitor. Thus, the timing that Pdgf function is 
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required could be condensed from just prior to migration, beginning at 10 hpf, to 

30 hpf.  

 While the inhibitor analysis suggests a broad time when Pdgf signaling is 

required in craniofacial development, our in situ expression analysis reveals a 

much more condensed window of time when pdgfra and pdgfrb are co-expressed 

in the neural crest. Indeed, our double fluorescent in situ analysis reveals pdgfra 

and pdgfrb co-expression occurring in the arches beginning at 20 hpf. We know 

that pdgfra is expressed and required in the neural crest beginning at the time of 

neural crest migration at 12 hpf (Eberhart et al., 2008), while our data shows 

pdgfrb expression in the neural crest beginning around 20 and 24 hpf. Thus, if 

the synergistic effects of pdgfra and pdgfrb are specific to the neural crest, it 

would suggest that pdgfrb is dispensable for early neural crest migration. It will 

be of interest to determine the extent of overlap of expression between pdgfra 

and pdgfrb in the neural crest, which may implicate the timing of the interaction 

between these two receptors.  

 The craniofacial defects associated with pdgfra loss-of-function embryos 

are due to neural crest migratory defects (Eberhart et al., 2008; Vasudevan and 

Soriano, 2014). At this point, it is unclear whether there is a further exacerbation 

of neural crest migration in pdgfra;pdgfrb double mutants. However, our in situ 

analysis suggests that pdgfrb may be dispensable for early migration of the 

neural crest. We did observe increased cell death in the neural crest beginning at 

24 hpf in our pdgfra;pdgfrb double mutants compared to single pdgfra mutants. 
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This is a time when we know both receptors are expressed in the neural crest. In 

the future, we will test the involvement of cell death in the craniofacial phenotype 

by blocking apoptosis in pdgfra;pdgfrb double mutants. Finally, it will be important 

to investigate whether a similar mechanism in mouse occurs, to lend further 

support of the conserved nature of Pdgf signaling in the craniofacial skeleton of 

vertebrates.  

  

4.V. Materials and methods  

4.V.a. Zebrafish care and use 

All embryos were raised and cared for using established protocols with IACUC 

approval. Lines used in this study include the pdgfrab1059(Eberhart et al., 2008), 

pdgfrbum148(Kok et al., 2014), and the transgenic Tg(fli1:EGFP)y1(Lawson and 

Weinstein, 2002) called fli1:EGFP in the text. Embryos were treated with 1, 1.5, 

and 2 µM Pdgf Inhibitor V (Calbiochem) from a 10mM stock in DMSO diluted in 

embryo medium.  

4.V.b. Mice 

Mouse lines used include pdgfrafl;fl(Tallquist et al., 2003), pdgfrbfl;fl(Richarte et al., 

2007), and Wnt1:Cre (Danielian et al., 1998). Skeletal preparations were 

performed as described (Klinghoffer et al., 2002).  

4.V.c. Immunohistochemistry and In situ hybridization 

Embryos were fixed and processed as described previously (Maves et al., 2002; 

McCarthy et al., 2013) using anti-active caspase 3 (Promega) and anti-phospho 
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histone H3 (Sigma) primary antibodies with AlexaFluor 568 secondary 

antibodies. Fluorescent in situ hybridization was performed as described 

previously (Jowett and Yan, 1996). Were performed, cell death was counted 

using anti-active caspase 3- positive neural crest cells, marked via fli:eGFP, and 

a students T-test was performed for statistical analysis.  

4.V.d. Zebrafish cartilage staining 

5 day old embryos were stained with Alcian Blue and Alizarin Red for cartilage 

and bone (Walker and Kimmel, 2007), then flat mounted (Kimmel et al., 1998). 

Images were taken with a Zeiss Axio Imager-AI scope and measurements of 

neurocranial and viscerocranial elements were performed as described 

(McCarthy et al., 2013). All graphs were made using Microsoft Excel 2011. We 

used ANOVA and Tukey-Kramer post-hoc test for all statistical analysis.  

4.V.e. Confocal microscopy and figure processing 

Confocal z-stacks were collected on a Zeiss LSM 710 using Zeb software. All 

images were processed in Adobe Photoshop CS.   
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4.VI. Figures  

 

 

Figure 4.1: pdgfra and pdgfrb synergistically interact in craniofacial development. 

(A-D) 5 dpf flatmounted zebrafish neurocrania and (E-H) viscerocrania. Anterior 

is to the left. (A,E) Wildtype and (B,F) pdgfrb mutants display normal craniofacial 

skeletons, while (C,G) pdgfra mutants display a shortened neurocrania, cleft 

palate (asterisk) and smaller viscerocranial elements. (D,H) pdgfra;pdgfrb double 

mutants display synergistic reductions of the neurocranium (arrowheads) and 

loss of the posterior neurocranium between the parachordals and the posterior 

basicapsular commissure (arrows) compared to pdgfra, pdgfrb, and wildtype 
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siblings.(I) Graph depicting neurocranial length measured from the tip of the 

anterior palate to the posterior base of the neurocranium. Similar bar shading 

represents not statistically significant (ANOVA, p=<0.5). ep=ethmoid plate, 

tr=trabeculae, pbc=posterior basicapsular commissure, pc= parachordals. scale 

bar= 20 um. 
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Figure 4.2: Synergistic skeletal abnormalities observed in 

pdgfrafl/fl;pdgfrbfl/fl;wnt1:Cre mice. (A-C) A ventral view of the skull derived from 

E16.5 embryos with corresponding genotypes listed below each panel. Anterior 

is up. (D) Individual craniofacial skeletal elements dissected and flatmounted in 

one wildtype and three pdgfrafl/fl;pdgfrb+/+;wnt1:Cre+ and 

pdgfrafl/fl;pdgfrbfl/fl;wnt1:Cre+ mice. In pdgfrafl/fl;pdgfrbfl/fl;wnt1:Cre+ the alisphenoid 

and basisphenoid is reduced, while the hyoid fails to form compared to 
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pdgfrafl/fl;pdgfrb+/+;wnt1:Cre+ mice. as=alisphenoid, bs=basisphenoid, hy= hyoid, 

ps=palatal shelf. Figure by Michelle D. Tallquist.  
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Figure 4.3: Pdgf signaling is required between 6 and 30 hours post fertilization for 

proper craniofacial development. (A-C) 5 dpf wholemounted zebrafish treated 

with 1.5 µM PDGF inhibitor V and stained for cartilage and bone, anterior is to 

the left. (A) Wildtype, (B) mild, showing reduced palate (asterisk) and broken 

trabeculae (arrowhead) and (C) severe reductions in the neurocrania 

(arrowhead) of PDGF inhibitor V treated embryos. Graph depicts percentage of 

embryos treated with PDGF inhibitor V at varying time windows and resulting 

phenotypes observed shown in shaded bars that correspond to the phenotypes 

in A-C.   
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Figure 4.4: PDGF Inhibitor V treatment does not affect melanocyte formation. (A-

B) Full-mount DIC images of 40 hpf zebrafish embryos treated with either DMSO 

or 1.5 µM PDGF inhibitor V from 6 to 30 hpf, anterior is to the left.  
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Figure 4.5: The neural crest expresses pdgfrb in zebrafish at 24 and 36 hours 

post fertilization. (A-A’) A 24 hpf fli1:EGFP transgenic embryo and labeled for 

pdgfrb mRNA via fluorescence in situ hybridization, anterior is to the left.  (B-B’) 

A 36 hpf fli1:EGFP transgenic embryo and labeled for pdgfrb mRNA via 

fluorescence in situ hybridization, anterior is to the left. Scale bar= 20 µm. 
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Figure 4.6: Neural crest cells express both pdgfra and pdgfrb beginning at 20 

hours post fertilization. (A-A’’) A 20, (B-B;;) 24, and (C-C’’) 36 hpf embryo stained 

for both pdgfra and pdgfrb mRNA via fluorescence in situ hybridization. scale 

bar= 20 µm.  
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Figure 4.7: pdgfra;pdgfrb mutants show increased neural crest cell death at 24 

hours post fertilization. (A-A’, B-B’) 24 hpf fli1:EGFP (pseudo-colored blue) 

zebrafish embryo with corresponding genotypes listed left of panels, stained for 

active caspase 3 (shown in grey). Anterior is to the left. (C) Graph representing 

number of active caspase 3 positive neural crest cells in corresponding 

genotypes (Students T-test, p=<0.5). scale bar= 20 µm.  
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4.VII. Tables 

 

Table 4.1: pdgfra;pdfgfrb double mutants show statistically significant differences 

in craniofacial measurements. Compared to all other genotypes, excluding 

pdgfra-/-;pdgfrb+/+, pdgfra-/-;pdgfrb+/-, and pdgfra-/-;pdgfrb-/- genotypes, pdgfra-

/-;pdgfrb+/+, pdgfra-/-;pdgfrb+/-, and pdgfra-/-;pdgfrb-/- genotypes have 

statistically significant differences in neurocranium (nc) length, nc width, Meckels 

cartilage area (Mc), palatoquadrate area (pq), length of pterygoid process, 

hyosymplectic area, and symplectic length, but not in ceratohyal (ch) area. 

Pdgfra-/-;pdgfrb-/- genotypes have significantly different nc length, nc width, and 

sympectic length when compared to pdgfra-/-;pdgfrb+/+ and pdgfra-/-;pdgfrb+/- 

genotypes.  Y= statistically significant, N= not statistically significant (ANOVA, 

p=<0.5).   
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Chapter 5: Summary and future directions 

 

The variability and severity of birth defects are modulated by both genetics and 

the environment (Carinci et al., 2007; Das et al., 2004; Green et al., 2004; 

Jacobson et al., 2006; Wu et al., 2014). A highly prevalent and variable birth 

defect is FASD. Although it is environmentally induced, genetics contributes to 

the risk for FASD (Das et al., 2004; Green et al., 2004; Jacobson et al., 2006). 

My work has provided important insight into the role genetics plays in the 

variability and susceptibility to ethanol-induced craniofacial defects.  

 I helped develop a zebrafish model to uncover gene-ethanol interactions 

and apply these findings to humans. In chapter 2, I showed that pdgfra interacts 

with ethanol in zebrafish and found support for this interaction in a human 

dataset. In zebrafish, not only does ethanol increase the severity of the mutant 

phenotype, it causes haploinsufficiency in heterozygous siblings. My findings 

demonstrated that pdgfra and ethanol synergistically interact, due to a role for 

Pdgfra in protecting against ethanol-induced neural crest apoptosis. I showed 

that the mechanism of the interaction was due to combinatorial inhibition of the 

PI3K/mTOR pathway. Collectively, how pdgfra functioned in an optimal (control) 

environment did not translate to how it functioned in a less desirable environment 

(ethanol). Thus, phenotypes generated by synergistic gene-ethanol interactions 

are not readily predicted by mutant phenotypes in other contexts. In fact, it 
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suggests that the function of a gene can only ever be completely cataloged when 

tested in multiple environmental contexts, including ethanol.     

 My work with pdgfra suggested that ethanol may interact synergistically 

with other growth factor pathways and so I tested if fgf8a mutants were ethanol 

sensitive. While the pdgfra and ethanol interaction caused defects specific to 

neural-crest derivatives of the craniofacial skeleton, ethanol disrupted 

postchordal, mesoderm-derived, structures in fgf8a mutants. Because the 

development of this portion of the skull is very poorly characterized, I focused my 

efforts to understand Fgf function in the normal development of this structure in 

chapter 3. I recapitulated the fgf8a-ethanol phenotype by blocking both fgf8a and 

fgf3. I found that Fgf signaling from the brain and mesoderm was essential to 

specify the precursors of the postchordal neurocranium. Following this 

specification, Shh signaling was essential for proper differentiation of the 

postchordal mesoderm precursors. The neural ectoderm is the most likely source 

of Shh signaling, as the notochord appears dispensible for proper postchordal 

neurocranial formation.  These results provided clarity into the mechanism of how 

Fgfs function in proper postchordal neurocranial development, and provided new 

developmental insights into this relatively neglected organ in research. As the 

fgf8a;fgf3 and fgf8a-ethanol interactions showed mirroring phenotypes, it 

suggested that ethanol may broadly attenuate growth factor signaling pathways. 

Thus, the pdgfra-ethanol interaction may, in part, be due to combinatorial loss of 

signaling across Pdgf receptors. I tested this in chapter 4.  
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There are two Pdgf receptors and, unlike pdgfra, pdgfrb has not been 

implicated in craniofacial development. However, through genetic analysis, I 

found that double pdgfra;pdgfrb mutants have a more severe craniofacial 

phenotype compared to either a pdgfra or pdgfrb mutant alone. Conservation of 

this interaction was shown in mouse. Lastly, data in zebrafish shows that cell 

death might contribute to the severe craniofacial phenotype found in 

pdgfra;pdgfrb double mutants. The full mechanism of this interaction and whether 

it fully phenocopies the ethanol-pdgfra interaction is still of ongoing interest.  

Collectively, my dissertation focuses on how growth factor signaling and 

the environmental ethanol exposure can synergistically interact during 

craniofacial development. Specifically, I focused on pdgfra and fgf8a as ethanol-

sensitive genes. While I did uncover a specific mechanism involving 

PI3K/AKT/mTOR signaling as the target of the pdgfra-ethanol interaction, this still 

needs to be tested in my fgf8a-ethanol interaction. Also, I focused on the 

craniofacial defects associated with these gene-ethanol interactions. Significant 

neurological defects are present in FASD (Calhoun and Warren, 2997; Hoyme et 

al., 2005; Jones, 2011; Moore et al., 2014), and we know that both pdgfra and 

fgf8a have functions in brain development (Echevarria et al., 2005; Zhu et al., 

2014). Future studies will be aimed at elucidating whether these gene-ethanol 

interactions cause neurological defects. Furthermore, there are numerous genes 

involved in growth factor signaling that may interact with ethanol. These will need 

to be tested to further support my hypothesis that genes involved in growth factor 
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signaling broadly interact with ethanol. Lastly, with the data that I have 

generated, it would be of high interest to propose therapeutic treatments for 

FASD specifically targeting growth factor signaling genes in especially prone 

individuals.   

 

5.I. FUTURE DIRECTIONS 

5.I.a. Mechanistic understanding of the fgf8a-ethanol interaction 

Two main questions remain concerning the fgf8a-ethanol interaction: 1) Is the 

fgf8a-ethanol interaction caused by a mechanism similar to the pdgfra-ethanol 

interaction? and, 2) Is the cause of the postchordal neurocranial loss the same 

between the fgf8a-ethanol interaction and the fgf8a;fgf3 interaction? Based on 

my pdgfra-ethanol work, I hypothesized that ethanol interacts with genes 

involved in activation of growth factor signaling at the level of mTOR. Similarly, 

Fgf receptors activate growth factor signaling and so the fgf8a-ethanol interaction 

may impede proper Fgf function at the level of mTOR. 

 I have already shown that blocking mTOR in fgf8a mutants recapitulates 

the ethanol-induced fgf8a defects. This supports my theory that ethanol impedes 

proper growth factor signaling at the level of mTOR, however, further analysis is 

required. Direct evidence that mTOR function is disrupted in the fgf8a-ethanol 

would require protein analysis showing decreased phosphorylated forms of 

downstream constituents. My model predicts that increasing mTOR signaling, via 

L-Leucine supplementation, would rescue fgf8a mutants treated with ethanol.  I 
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would test whether cell death contributes to the ethanol-induced fgf8a effects by 

staining for active caspase-3 in the Dra:Cre transgenic background, which labels 

cephalic mesoderm. If ethanol inhibits growth factor signaling downstream of 

receptor activation at the level of mTOR, I would expect to observe cell death in 

cephalic mesoderm. Collectively, these results would support my hypothesis that 

ethanol broadly interacts with growth factor signaling pathways through 

synergistic inhibition of mTOR signaling leading to apoptosis.  

In the case that mTOR is inhibited, but cell survival appears unaffected, it 

would suggest that the fgf8a-ethanol interaction is due to a similar 

misspecification defect found in fgf8a;fgf3 double mutants. My work in chapter 3 

showed that the cephalic paraxial mesoderm was misspecified in fgf3;fgf8a 

double mutants, as evidenced by a loss of has2 expression. I would perform 

protein analysis on Fgf3 and Fgf8 ligands to determine if they are directly 

decreased in ethanol, because studies using NIH 3T3 cells suggests that mTOR 

targets translation of fgf10 ligand directly (Hertzler-Schaefer et al. 2014). If the 

mechanism occurs through mTOR, I would expect to see a rescue of 

specification with increased mTOR activity in ethanol-treated fgf8a mutants. 

Collectively, these results would demonstrate that ethanol can disrupt distinct 

cellular processes, apoptosis versus specification, via the same mechanism of 

mTOR inhibition.  

The other alternative is that the fgf8a-ethanol interaction is independent of 

mTOR inhibition. Ethanol has been shown to reduce Erk activity (Sanna et al., 
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2002), a major effector of Fgf signaling. This could be easily tested via Erk 

inhibitor analyses recapitulating the fgf8a-ethanol interaction. Although my overall 

hypothesis predicts growth factor signaling genes to interact with ethanol at the 

level of mTOR, due to the many signaling pathways growth factors feed into, 

ethanol may in fact interact with them through multiple mechanisms.  

   

5.I.b. Other defects associated with gene-ethanol interactions 

My work has focused primarily on craniofacial defects associated with gene-

ethanol interactions. However, FASD also causes debilitating neurological 

defects (Calhoun and Warren, 2997; Hoyme et al., 2005; Jones, 2011; Moore et 

al., 2014). Furthermore, both pdgfra and fgf8a have functions in neural tissues. 

For instance Pdgfra is critical in developing oligodendrocytes (Zhu et al., 2014) 

and Fgf8 is necessary to pattern brain regions, including the midbrain-hindbrain 

boundary and rhombomere 4 (Echevarria et al., 2005). Experiments that could be 

utilized to elucidate whether ethanol disrupts the neurological functions of these 

genes include histological analysis of brain regions and immunohistochemistry of 

markers of neural cell types including the oligodendrocyte marker O4+ 

(Ackerman et al., 2015), and the hindbrain-marker Kitb (Staudt et al., 2015). 

There are also numerous transgenic zebrafish lines labeling neural-specific cell 

types and regions that could be utilized to investigate neurological defects in 4D 

in these gene-ethanol interactions, including the oligodendroycte and purkinje 

neuron labeling transgenic olig2:RFP (Shin et al., 2003) and the neuroepithelial 
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transgenic nestin:EGFP (Kaslin et al., 2009). There is a possibility, however, that 

more subtle behavioral defects could be caused by these gene ethanol 

interactions, rather than physical defects.  

 To test whether gene-ethanol interactions can disrupt behavior, new 

behavioral analyses that have just recently been characterized in zebrafish FASD 

models can be utiilzed (Fernandes et al., 2015a, Fernandes et al., 2015b). In 

these tests, wild-type zebrafish exposed to a subteratogenic level of ethanol at 

an early developmental timepoint showed behavioral deficits months later 

(Fernandes et al., 2015a). Since both pdgfra and fgf8a mutants are embryonic 

lethal, only heterozygous siblings exposed to ethanol could be tested for gene-

ethanol behavior deficits. Whether genetic background influences enhancement 

of ethanol-induced behavioral deficits remains to be seen. These experiments 

are currently underway.  

 

5.I.c. Screening for ethanol sensitivity in other growth factor signaling 

genes 

My dissertation shows genes involved in growth factor signaling interact with 

ethanol. At least for pdgfra, this interaction occurs at the level of mTOR, and so 

mutations in any gene involved in activating this pathway could potentially show 

an interaction with ethanol. Furthermore, any gene, which naturally functions to 

inhibit this pathway, could protect against ethanol teratogenesis. The easiest and 
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quickest way to uncover these genes would be to perform zebrafish genetic 

screens.   

Many thousand zebrafish mutants are available and genome-editing 

technologies have advanced to where generating new zebrafish mutants is 

straightforward. Genes that I would hypothesize to interact with ethanol would be 

those involved in the transduction of the mTOR pathway, including mTOR, 

eIF4B, upstream activator AKT as well as the PI3K inhibitor pten. There are 

numerous growth factor signaling genes that should be tested as well, including 

those implicated in my work, including pdgfrb as well as the Pdgf ligands, and 

fgfr3 and fgf3. Studies, in mostly in vitro assays, have implicated ethanol 

interacting with other growth factor genes, including insulin-like receptor 

(McClure et al., 2011; de la Monte et al., 1999; Sasaki et al., 1994), BDNF (de la 

Monte, 2000), TGFB (Jegou et al., 2013), and VEGF (Feng et al., 2005). Lastly, 

our efforts focusing on growth factor genes interacting with ethanol could be 

focused through our collaboration with the Foroud lab, whom have generated 

human data on gene by ethanol interactions.  

 

5.I.d. Developing treatments and therapies to mitigate ethanol 

teratogenesis 

A driving motivation in the health sciences is improving health care. FASD affects 

nearly 1% of the population (Sampson et al., 1997). With unplanned pregnancies 

accounting for nearly 50% of all pregnancies (Finer and Henshaw, 2006), fetal 
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exposure to ethanol is a problem that will not likely end soon. How do we mitigate 

the effects of ethanol on fetus health?  

 Numerous studies have focused on the importance of nutrition in reducing 

ethanol effects on the fetus (see review Young et al., 2014). Research has also 

shown that supplementation with either retinoic acid (Marrs et al., 2010), choline 

(Hunt, 2012), or shh (Aoto et al., 2008; Li et al., 2007) can reduce ethanol-

induced defects in various animal models. However, application of shh would be 

difficult to implement, and data on retinoic acid suggests these supplements may 

not be advisable to use during pregnancy (Arnhold et al., 2002). My work adds L-

Leucine to this list of potential therapeutic supplements and is not likely to cause 

birth defects on its own. Whereas my study focused on L-leucine 

supplementation rescuing ethanol-induced defects in a genetic-dependent 

context, these other studies were more general in the supplementation of these 

nutrients/genes in wildtype genetic backgrounds with high doses of ethanol. 

Thus, it may be important in the future to consider genetic background in 

implementing appropriate treatments.  

Although my hypothesis that growth factor signaling genes are especially 

sensitive to ethanol needs to be further tested, it is possible to imagine 

treatments being implemented in the future to help reduce the effects of ethanol 

during pregnancy by targeting growth factor genes. The majority of work focusing 

on growth factors in the clinical setting is in their inhibition, primarily because of 

their upregulation in cancer (Brooks et al., 2012; Demoulin and Essaghir, 2014). 
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There are a few cases where growth factors are used therapeutically, namely in 

wound healing aspects (Finnson et al., 2013; Greenhalgh et al., 1990; Penn et 

al., 2012). With the coming age of personalized medicine, numerous aspects of 

health including genetics will be considered to determine appropriate treatments 

and therapeutics to a given disease or life-state. Given the paucity of information 

available on gene-environment interactions, continued work in animal models, 

including zebrafish, will be critical to our understanding of the human condition.  
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