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In recent years, there has been substantial interest in autonomous satel-

lite formations, driven by the new technologies that enable smaller and cheaper

spacecraft. Formation flying allows for mission designs, such as stereoscopic

imaging, that are impractical or impossible for a single satellite. Much of the

current work focuses upon small formations, which can be defined as four or

less satellites in a relatively tight grouping. Next generation formations may

be composed of more satellites spanning greater spatial distances. The large

formation problem becomes more difficult for several reasons, including an in-

creased amount of communication required between the satellites, and orbit

perturbations, which become more important as the formation size grows. The

purpose of this dissertation is to examine formation flying for large formations,

and determine whether or not generalizations can be made linking the large

and small formation regimes.
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In order to model formations with many satellites, a simulation environ-

ment was constructed in which different observers, controllers, and formation

architectures can be modelled. This dissertation focuses on a decentralized

control scheme, but the software is general enough to accommodate a variety

of control architectures. Validation of the large formation models is accom-

plished by initially modelling only a pair of satellites and comparing the results

against those found in the literature.

As a demonstration of the theoretical results, a real-time, closed-loop,

hardware-in-the-loop simulation was constructed using GPS receivers as the

measurement source. A large constellation, real-time simulation system was

developed that utilized the Internet to connect simulation equipment from

research centers in different locations.
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Chapter 1

Introduction

1.1 Background

Formation flying can be defined as the use of two or more vehicles

moving with specified dynamics for scientific, military, or commercial pur-

poses. Specific examples could be the docking of the Space Shuttle to the

Space Station, or the Space Shuttle capturing the Hubble Space Telescope.

While there have been numerous examples of formations with humans in-the-

loop, the number of unmanned satellite missions have been relatively few. The

disparity between these two mission types is due, in part, to the high cost of

manufacturing and maintaining multiple satellites.

In recent years there has been substantial interest in autonomous satel-

lite formations, driven by the new technologies that enable smaller and cheaper

spacecraft. The advantages of using formations are numerous, and include the

ability to distribute instruments among several spacecraft, thus eliminating

the possibility of a single point failure. Additionally, by placing sensors on

multiple platforms, new classes of missions that require simultaneous sens-

ing from different angles become possible. Table 1.1 lists several formation

missions that have been considered by the National Aeronautics and Space

Administration (NASA). Two of the missions listed, TECHSAT-21 and the

AQUA mission, are designed to be Earth observing formations whose mission

plans lie in tandem with the work documented in this paper.

1



Table 1.1: Actual and Proposed Formation Flying Missions.[22]

Projected Launch Mission

2000 Gravity Recovery and Climate Recovery (GRACE)*

2004 Techsat-21/AFRL

2004 ESSP-3-Cena (w/ Aqua)

2006 Magnetosphere Imaging Constellation (MAGIC)

2008 Laser Interferometer Space Antenna (LISA)

2011 Terrestrial Planet Finder (TPF)

15+ Planet Imager (PI)

* Launched in March 2002

The sophistication and complexity of the missions grow as one descends

the time line of Table 1.1. To ensure proper functionality of these formations,

our simulation ability must keep pace with the satellite design technology.

This work is designed to open the door to new formation testing strategies

that will accommodate flight hardware in a real-time setting.

1.1.1 TECHSAT-21

The Technology Satellite of the 21st Century (TECHSAT-21) is a for-

mation being driven by the Air Force Research Laboratory (AFRL). The Air

Force hopes to fully take advantage of the benefits of formation flying by con-

structing an array of small, lightweight satellites that can be reconfigured to

allow for multiple mission profiles. One of the keys to the mission is having

several platforms flying in a precise formation providing simultaneous mea-

surements from multiple positions [25]. While the proof-of-concept mission

may only consist of three satellites, the proposed Techsat-21 mission will be

2



comprised of 35 clusters of 8 satellites each [17]. The simulation system demon-

strated in this work would be ideal for the modelling of a control system with

real-time hardware integration.

1.1.2 A-TRAIN

The “A-Train” is an Earth observing formation that will consist of

five satellites: Aqua, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observations), CloudSat, Parasol (Polarization and Anisotropy of Re-

flectances for Atmospheric Sciences coupled with Observations from a Lidar),

and Aura. Mission constraints require an in-line formation with intersatellite

distances ranging from 100 km out to 6000 km [23]. The long baseline relative

navigation filter documented in this work could provide a good starting point

for developing a formation-wide autonomous control system.

1.2 Previous Work

The number of formation flying papers has increased dramatically over

the past five years. There are also numerous works available detailing the

relative navigation problem, which has been studied for decades. This section

focuses on some of the more recent works that are directly relevant to this

thesis.

Several papers have been written outlining the basic fundamentals of

formation flying. Bauer defines many of the key developments required for

formations, including sensor development and formation control strategies [2].

Sabol expands on this work by defining some basic satellite formation types

and the corresponding vehicle dynamics [24].

3



Ebinuma demonstrated the use of GPS for rendezvous by developing

a real-time hardware-in-the-loop feedback control system at the University of

Texas at Austin. The filter in this work estimated the absolute state of the each

satellite, and then differenced these states to generate the relative separation.

His development of the mathematical models is rigorous [9]. Ebinuma, Bishop,

and Lightsey published a condensed account of these results[10].

In another work, Ebinuma, Montenbruck, and Lightsey demonstrated

20 cm relative navigation accuracies for a pair of satellites separated by 10 km

[11]. They found that at this separation distance, only minimal gains were

achieved when their Kalman filter employed a 10x10 gravity model as opposed

to a simple model based upon Hill’s equations.

Binning used single-differenced carrier phase measurements and an in-

teger ambiguity search algorithm to explore navigation accuracies for 5 and 50

km baselines. His hardware-in-the-loop simulations generated an accuracy of

3 cm over a 50 km baseline using a dual frequency widelane integer resolution

method. [3].

Wolfe and Speyer examined the relative navigation problem with vehicle

separations near 100 km. They used differential carrier phase measurements

coupled with a Wald test to aid in the resolution of the integer ambiguities.

Their procedure yielded accuracies near 5 cm for a GPS carrier phase signal

with 1 cm of noise [29].

Gramling discusses the extension of formation flying algorithms from

low Earth orbits to high Earth orbits using GPS signals when available. The

algorithms detailed describe relative position estimation by differencing point

solutions as well as by differencing filtered solutions [14]. Further work by

Long compares accuracies in relative navigation for eccentric medium and

4



high Earth orbits. Their filter uses GPS measurements, cross link data, and

celestial object measurements to compute the states [19].

How has published several papers tackling the fundamental issues be-

hind formation design and control. Busse and How demonstrated sub-centimeter

navigation accuracy for a 1 km baseline using an adaptive Kalman filter and

differential carrier phase measurements [5].

Several papers were written in conjunction with the EO-1/Landsat-7

mission. Folta provides a good overview of the mission as well as the results

from the Autocon flight control system [13].

1.3 Research Contributions

The primary objective of this research was to construct a simulation

tool that could be used to evaluate estimation and control systems for large

formations in real-time utilizing actual hardware. In addition to the simu-

lation environment, a basic Kalman filter was developed for use in a wide

variety of satellite formations. A simple linear-quadratic control system was

also employed in order to close the loop.

1.3.1 Small Formation to Large Formation Generalization

In order to understand the differences between the small and large

formation cases, research was done to determine the strengths and weaknesses

of both types. A literature review was conducted in order to determine the best

way to construct a general Kalman filter that could leverage the simplicity of

the small formation plant against the increasingly complex relative dynamics

encountered with longer baselines.
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1.3.2 Extended Kalman Filter Design

An extended Kalman filter (EKF) was constructed for use in the Ex-

tended Formation Flying Testbed (EFFTB) developed in this work. The filter

uses the local Global Positioning System (GPS) measurements for its own ab-

solute state estimate, and measurements from a distant receiver for relative

navigation. The filter utilizes all three GPS observables: the pseudorange, the

carrier phase, and the Doppler shift. To reduce the effect of common error

sources, the relative measurements are all double-differenced prior to process-

ing. Special care was taken to include error sources such as the differential

ionospheric delay and the differential transmit time between receivers. These

error sources have a greater impact on missions with longer baselines.

1.3.3 Demonstration of a Generalized Kalman Filter

The Kalman filter design was tested over a variety of baselines ranging

from 1 km to 500 km. The 1 km simulation yielded sub-centimeter accuracies,

similar to works by Ebimuma and Binning [11] [3]. By slightly shifting the

gains, the filter exhibited 3-4 centimeter steady-state error levels at 100 km

spacing, comparable to Speyer’s work [29]. It was determined that the 500 km

baseline scenario exceeded the threshold of the filter’s ability due to the break-

down of the models implemented. By implementing a simple gain-scheduling

algorithm into the flight computer, this single filter could allow for a group of

satellites launched together to separate from the launch vehicle and position

themselves up to 400 km away with less than 50 cm of error.
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1.3.4 Construction of the Extended Formation Flying Testbed

A real-time, closed-loop, hardware in-the-loop simulation tool was de-

veloped to model formations with several satellites. Initially, this tool consisted

of a generic communications package that could accept any number of hard-

ware or software measurement sources. The observer and controller portions

of the code were added as subroutines, making it easy to swap in and out the

different modules. This allows for rapid implementation of different estimator

and controller combinations. The EFFTB could be used for Low Earth Or-

bits (LEO), High Earth Orbits (HEO), or even deep space missions, with the

appropriate propagator and measurement source substitutions.

1.3.5 GPS Specific Instance of the EFFTB

The general EFFTB architecture was adapted to use Spirent GPS sim-

ulators and Orion type GPS receivers in order to simulate a large LEO forma-

tion. The propagation machine was configured to feed the simulator reference

data at 10Hz, and subroutines were developed to read in and process the GPS

data correctly. The testbed was connected to a similar configuration of ma-

chines at Goddard Space Flight Center (GSFC) to generate a multiple satellite

formation transferring real-time measurements over the Internet.

1.4 Overview

Chapter 2 details the different time systems and reference frames used

in this work, and includes the mathematical descriptions on how to convert

back and forth between these systems.

Chapter 3 describes the GPS measurement models and differentiates
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between the measurements used for the absolute and relative navigation por-

tions. The GPS satellite propagation models are also outlined.

Chapter 4 presents the extended Kalman filter equations and the dy-

namic models used.

Chapter 5 diagrams the equations and implementation of the linear-

quadratic controller.

Chapter 6 outlines the hardware and software development of the Ex-

tended Formation Flying Testbed.

Chapter 7 describes the formation considered for this study, and presents

the results of the real-time simulation environment. Preliminary results val-

idating the filter and controller operation, as well as the validation of the

testbed architecture, are also presented.

Chapter 8 summarizes the research and includes conclusions and topics

for possible future work.
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Chapter 2

Reference Systems

2.1 Time Systems

There are three basic time systems utilized in this work. Coordinated

Universal Time (UTC) is the basic time used for computations and integration.

In order to convert from the Earth Centered Inertial (ECI) coordinate frame

and the Earth Centered Earth Fixed (ECEF), Greenwich Sidereal Time (GST)

is used. Finally, GPS time is used in conjunction with the corresponding

ephemerides to propagate the GPS satellites forward in time. The following

is a short list defining each system and the transformation equations.

2.1.1 Solar and Sidereal Times

Universal time (UT) is a solar time system defined by the Greenwich

Hour Angle (GHA) augmented by 12 hours of a fictitious sun uniformly or-

biting in the equatorial plane [15]. Sidereal time is defined by the hour angle

of the vernal equinox, and the sidereal time associated with the Greenwich

Meridian is called the Greenwich Sidereal Time [27]. Since the Earth’s rota-

tion rate is not constant, neither of these time systems are uniform. In order to

correct for some of this non-uniformity, the UT1 time system was introduced,

which accounts for the polar motion of the Earth.
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2.1.2 Atomic time

In order to meet the demands of the scientific community, the atomic

time standard was introduced. International Atomic Time (IAT) is based on

the quantum transitions of the Cesium-133 atom. The atomic second is based

upon a fixed number of these cycles.

2.1.3 Coordinated Universal Time

In 1972, UTC was introduced to tie the irregularity of the UT1 system

to the rigidity of the IAT system. In order to align the two systems, leap

seconds are added to both the UTC and IAT. UTC always differs from IAT

by an integer number of seconds, such that

IAT = UTC + 1.000n seconds (2.1)

The United States Naval Observatory (USNO) is tasked with the determina-

tion of this integer n, as well as the UT1-UTC corrections, and publishes them

in the International Earth Rotation Service (IERS) Bulletin-A.

2.1.4 GPS Time

GPS time is an atomic time system that is based on the number of

weeks elapsed from the GPS epoch, as well as the number of seconds into

the current GPS week. The GPS standard epoch date is January 6, 1980 at

midnight. GPS time is related to the IAT time system by a nominal 19 second

offset such that:

IAT = GPS + 19.000 seconds (2.2)

Substituting equation 2.2 into 2.1 results in:

UTC = GPS + 19.000− 1.000n seconds (2.3)
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According to the USNO, in 2003 the integer value was n = 32, which

yields a difference between UTC and GPS time of 13 seconds.

2.1.5 GPS Roll Over

In order to accurately convert between GPS time and other time sys-

tems, the GPS week must be accounted for. The week number starts at the

standard GPS epoch and is incremented until it reaches 1024, at which time

it is reset to 0. The first rollover occurred at midnight on August 21, 1999.

The GPS week number can be obtained from the first subframe of the GPS

navigation message.

2.2 Reference Frames

There are three different references systems used throughout this work.

The following subsections define those system and provide the appropriate

transformations.

2.2.1 Earth Centered Inertial Reference Frame (ECI)

The J2000 reference system is used predominantly throughout this dis-

sertation. This system is a geocentric equatorial frame defined at the epoch

January 1, 2000. The reference plane is constructed from the mean equatorial

plane of the Earth at the J2000 epoch. All of the orbit propagation and the

generation of the state transition matrix is performed in this frame. Table 2.1

describes the specifics of the coordinate system.
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Table 2.1: J2000 Reference System Definition

X Axis Mean vernal equinox at epoch

Y Axis Normal to x and z to form a right-handed system

Z Axis Normal to the mean equatorial plane of J2000

in the direction of the Earth’s mean spin

2.2.2 Earth Centered Earth Fixed Reference Frame (ECEF)

The ECEF frame differs from the ECI frame in that it is fixed in the

Earth, and the primary axis is always aligned with the Greenwich Meridian.

Since it is rotating, it is not an inertial frame. The ECEF frame is used for

communicating with the GPS signal generator. Table 2.2 describes the ECEF

system unit vectors.

Table 2.2: ECEF Reference System Definition

X Axis Intersection of the Greenwich Meridian with the equator

Y Axis Normal to x and z to form a right-handed system

Z Axis Adopted geographic pole direction

2.2.3 Spacecraft Centered Frame

The U,V,W frame is a spacecraft centered frame that is used only for

presenting results. Table 2.3 describes the coordinate system. The unit vectors

comprising the UVW frame, denoted û, v̂, and ŵ can be generated from a

J2000 position using equations 2.4.

û =
r

|r|
v̂ = ŵ × û (2.4)
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ŵ =
r × ṙ

|r × ṙ|
where:

r = the position vector in the J2000 frame

ṙ = the velocity vector in the J2000 frame

Table 2.3: UVW Reference System Definition

U Axis Points along the radius vector to the satellite

V Axis Normal to U and W to complete a right hand system

W Axis Direction of the orbital angular momentum

13



Chapter 3

GPS Models and Measurements

3.1 GPS Observables

There are three main observables provided by the GPS system, and

all three are utilized within this work. This section details the pseudorange,

carrier phase, and doppler measurements and the errors associated with them.

3.1.1 Pseudorange Measurement

The pseudorange is simply the range between the GPS receiver and the

GPS satellite with offsets due to clock uncertainties and other measurement

error sources. For the measurement equations, superscripts will be used for

the GPS satellites, and subscripts will indicate the GPS receiver.

Since the true time is not known, the satellite transmit time (tS) and

the receiver acquire time (tR) are given by:

tS = T S + ∆tS (3.1)

tR = TR + ∆tR (3.2)

where the capital T’s are indicative of the true times, and ∆tS and ∆tR denote

the satellite and receiver clock error respectively. The pseudorange measure-

ment is simply the speed of light C times the difference between the receiver

clock and the satellite clock.

P (tR) = C(tR − tS) (3.3)
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Substituting equations 3.1 and 3.2 into 3.3 and rearranging yields:

P (tR) = C(TR − T S)− C(∆tR −∆tS) (3.4)

The first term on the right hand side of the equality is simply the true range

between the GPS satellite and receiver, which will be denoted as ρS
R. Equation

3.4 simplifies to:

P (tR) = ρS
R − C(∆tR −∆tS) (3.5)

The measurement generated in the receiver is at the acquired time tR

not the true time TR. Since the true time is not known, the geometric distance

is linearized about the acquired time by [9]:

ρS
R = ρS

R(tR −∆tR)

= ρS
R(tR)− ρ̇S

R(tR)∆tR (3.6)

Inserting this result into the equation 3.5 gives:

P (tR) = ρS
R(tR) + (C − ρ̇S

R)∆tR − C∆tS (3.7)

Equation 3.7 is the mathematical equation for the pseudorange in a vac-

uum with no other errors. When these additional error sources are accounted

for, the equation becomes:

P (tR) = ρS
R + (C − ρ̇S

R)∆tR − C∆tS + ∆E + ∆Iono + ξ (3.8)

where:

∆E = User Range Error

∆Iono = Ionospheric Delay

ξ = Pseudorange measurement noise
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Three possible error sources have been omitted from the equation, but

are documented here for completeness. Since this work only examines space-

craft orbits, the tropospheric delay can be neglected. Selective ability, the

slewing of the GPS clock and ephemeris data, was turned off on May 1, 2000,

and is therefore not accounted for. Finally the multipath error is not accounted

for, as this error is highly dependent on the application in which the receiver

is used.

3.1.1.1 User Range Error

The user range error is a combination of two error sources: the GPS

satellite clock correction error, and GPS satellite ephemeris error. Each GPS

satellite has an atomic clock on board for precise timekeeping. However, there

are slight drifts and biases to these clocks which are tracked by the GPS ground

segment. These offsets are broadcast in the form of curve fit coefficients in the

GPS message. However, since only terms through the first order are broadcast,

there is a slight error due to truncation.

The GPS ground segment also provides the GPS satellite ephemerides

which are broadcast in the almanac file. Slight errors in the satellite’s orbital

elements results in satellite position errors when propagated.

3.1.1.2 Ionospheric Delay

The ionosphere, which extends from approximately 50 km to 1000 km

above the Earth’s surface, acts as a dispersive medium with respect to the

GPS signals. The net affect on the measurement is that the pseudorange mea-
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surements are delayed, and therefore measured too long. The opposite affect

is observed the carrier phase measurements. Due to the variable nature of the

ionosphere, precise modelling of these group delays and advances is difficult.

3.1.2 Carrier Phase Measurement

The carrier phase measurement is a direct measurement of the phase

of the received signal. If we denote the phase of the received carrier signal as

ϕS and the phase of the reference carrier signal generated by the receiver as

ϕR, we can write [15]:

ϕR(tR) = ϕR(TR) + ϕ̇R∆tR (3.9)

ϕS(tS) = ϕS(T S) + ϕ̇S∆tS (3.10)

The time t is an epoch reckoned from an initial epoch t0 = 0. The carrier beat

phase ϕS
R(tR) can be defined as:

ϕS
R(tR) = ϕS(tS)− ϕR(tR)

= (ϕS(T S)− ϕR(TR)) + f∆tS − f∆tR (3.11)

where the L1 carrier frequency ϕ̇ has been replaced with f, and the appropriate

terms from equations 3.9 and 3.10 have substituted in. The term f/C can be

used to convert the geometric distance ρ into cycles. Doing so allows the true
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beat phase to be represented by:

ϕS(T S)− ϕR(TR) = − f

C
ρS

R(TR)

= − f

C
(ρS

R(tR)− ρ̇S
R(tR)∆tR) (3.12)

Substituting 3.12 into the first term in 3.11 gives the beat phase

ϕS
R(tR) = − f

C
ρS

R(tR)− f

[
1− ρ̇S

R(tR)

C

]
∆tR + f∆tS (3.13)

When the receiver is switched on the initial epoch is set, and the beat

phase is measured. The receiver is unable to determine the integer number of

whole phase cycles between the receiver and GPS satellite, only the portion

of the cycle it has measured. This cycle ambiguity N, remains a constant as

long as signal lock is not lost to the GPS satellite. Therefore, at some epoch

t, the beat phase can be represented by:

ϕS
R(t) = ∆ϕS

R|tt0 + N (3.14)

The term ∆ϕS
R represents the phase measured between the times t and

t0. The carrier phase measurement can be realized by substituting 3.13 into

3.14, denoting the observation as Φ, and assigning it a negative sign:

ΦS
R(tR) =

f

C
ρS

R(tR) + f(1− ρ̇S
R(tR)

C
)∆tR − f∆tS + N (3.15)

The carrier phase measurement is often represented in terms of range, so we

can scale it by λ = C
f

where λ is the carrier wavelength.

λΦS
R(tR) = ρS

R(tR) + (C − ρ̇S
R(tR))∆tR − C∆tS + λN (3.16)
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As with the pseudorange equation, when the error sources are added

in, the carrier phase becomes:

λΦS
R(tR) = ρS

R(tR) + (C − ρ̇S
R(tR))∆tR−C∆tS + λN + ∆E −∆Iono + ζ (3.17)

where ζ is the carrier phase measurement noise. It is worth noting that the

only qualitative differences between the pseudorange measurement and the

carrier phase measurement is the addition of the integer ambiguity term at

the end, and the opposite sign of the ionosphere delay.

3.1.3 Doppler Measurement

Since the transmitting satellite in the GPS constellation is always in

motion relative to the receiving body, the received frequency will be Doppler

shifted. In other words, the received frequency will differ from the transmitted

frequency due to the relative motion. The equation for the Doppler measure-

ment scaled to units of range can be obtained by differentiating equation 3.17

to obtain:

D(t) = λΦ̇ = ρ̇ + C(∆fR −∆fS)− ∆̇Iono + δ (3.18)

Where δ term is the noise in the Doppler measurement. The rate of change of

the ionospheric delay is often neglected in practical work.

3.2 Double-Differenced Observables

Many of the error sources described above are common mode, and will

cancel out when differenced, leaving a more accurate relative measurement.

For this reason, double-differenced carrier phase and doppler measurements

are utilized for the relative positioning portion of the filter. A schematic of

the double-difference process is diagramed in Figure 3.1. In the figure, SAT
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A receives measurements from GPS A and GPS B at the same epoch. SAT

A subtracts these measurements, creating a single-difference. At the same

epoch, SAT B performs the same single-difference. The double-difference is

performed by subtracting the two single-differences. The double-differenced

carrier phase and doppler measurements will be developed mathematically in

the following subsections.

Figure 3.1: Double-Difference.
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3.2.1 Double-Differenced Carrier Phase

If the carrier phase measurement between SAT A and GPS I is denoted

as ΦI
A, the measurement can be represented by:

λΦI
A(t) = ρI

A + (c− ρ̇I
A)∆tR,A − C∆tS,I + ∆E,I + ∆Iono,IA + λN I

A + ζI

A similar equation can be written for SAT A and GPS J :

λΦJ
A(t) = ρJ

A + (c− ρ̇J
A)∆tR,A − C∆tS,J + ∆E,J + ∆Iono,JA + λNJ

A + ζJ

Subtracting these equations yields the single difference equation for SAT A:

λΦIJ
A = (ρI

A−ρJ
A)−C∆tS,I+C∆tS,J+(∆Iono,IA−∆Iono,JA)+(λN I

A−λNJ
A)+(ζI

A−ζJ
A)

The receiver clock error terms have dropped out due to the differencing. A

similar equation can be written for the SAT B receiver:

λΦIJ
B = (ρI

B−ρJ
B)−C∆tS,I+C∆tS,J+(∆Iono,IB−∆Iono,JB)+(λN I

B−λNJ
B)+(ζI

B−ζJ
B)

performing the second differencing yields:

λΦIJ
AB = ((ρI

A − ρJ
A)− (ρI

B − ρJ
B)) + ((∆Iono,IA −∆Iono,JA)− (∆Iono,IB∆Iono,JB))

+(λN I
A − λNJ

A)− ((λN I
AB − λNJ

B)) + γ

where γ is the double differenced random errors. The GPS satellite clock errors

and the user range errors have dropped out, leaving the double differenced

ionosphere as the sole non-random error. For short intersatellite distances,

the path between the GPS satellites and the receivers are close enough that

this error is negligible.
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3.2.2 Double-Differenced Doppler

Following the above derivation, the Doppler equation is written for the

measurement between SAT A and GPS I.

DI
A(t) = ρ̇I

A + C(∆fR,A −∆fS,I)− ∆̇I
Iono,A + δI

A (3.19)

For the SAT A and GPS J combination:

DJ
A(t) = ρ̇J

A + C(∆fR,A −∆fS,J)− ∆̇J
Iono,A + δJ

A (3.20)

Taking the single-difference yields:

DIJ
A (t) = (ρ̇I

A − ρ̇J
A)− C(∆fS,I + ∆fS,J)− (∆̇I

Iono,A − ∆̇J
Iono,A) + (δI

A − δJ
A)

Writing the complementary equation for SAT B and subtracting gives the

double-differenced Doppler equation:

DIJ
AB(t) = ((ρ̇I

A − ρ̇J
A)− (ρ̇I

B − ρ̇J
B))− ((∆̇I

Iono,A − ∆̇J
Iono,A)

−(∆̇I
Iono,B − ∆̇J

Iono,B)) + (δI
A − δJ

A)− (δI
B − δJ

B)

3.2.3 GPS Satellite Propagation

In order to predict the location of the GPS satellites, the GPS receiver

uses the almanac data which is superimposed upon the GPS signal. The al-

manac data is updated at least every six days and contains orbital ephemerides

and satellite clock corrections. Table 3.1 provides an overview of the almanac

data elements [15].

The propagation of the elements from the almanac is straightforward,

and the ECEF satellite coordinates at time t can be readily obtained using

the following algorithm [20].
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Table 3.1: Almanac Information
Parameter Description

ID Satellite PRN number

Week Current GPS week

ta Reference epoch in seconds within current GPS week√
a Square root of the semi major axis

e Eccentricity

M0 Mean anomaly at reference epoch

ω Argument of Perigee

i Inclination

` Longitude of the node at the weekly epoch

Ω̇ Drift of the right ascention of the node

a0 Satellite clock offset

a1 Satellite clock drift

Determine the instantaneous longitude of the ascending node:

Ω = Ω0 + Ω̇(t− ta)− ωE(t− t0)

where t0 denotes the start of the current GPS week, and ωE is the rotation

rate of the Earth. Solve for the eccentric anomaly E using Kepler’s equation

E − e sin E = M0 +

√
GME

a3
(t− ta) (3.21)

The ECEF position is obtained via the following rotations:

rECEF = Rz(−Ω)Rx(−i)Rz(−ω)




a(cos(E)− e)

a
√

1− e2sin(E)
0


 (3.22)

where:
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Rz(−Ω) =




cos (−Ω) sin (−Ω) 0
− sin (−Ω) cos (−Ω) 0

0 0 1




Rx(−i) =




1 0 0
0 cos (−i) sin (−i)
0 − sin(−i) cos (−i)




Rz(−ω) =




cos (−ω) sin (−ω) 0
− sin (−ω) cos (−ω) 0

0 0 1




Special care must be taken to ensure that the geometric range used in

the measurement equations is the range generated using the receiver position

at tR and the GPS satellite position at time tS. This is accomplished by

applying the following iterative scheme [9].

The signal transmission time is solved using:

tS,n+1 = tR − |rS(tS,n)− rR(tR)|
C

where rS, rR are the GPS and receiver states respectively and tS,n is the nth

approximation for tS, the signal transmit time from the GPS satellite. The

iteration continues until:

|tS,n+1 − tS,n| < ε

The default value for the tolerance ε is 1e-12 which yields less than 1 mm of

accuracy for the range measurement. Usually no more than 3 iterations are

required for convergence.
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Chapter 4

Kalman Filter Design

4.1 General Formation Description

The design of any particular formation is mission dependent, and sev-

eral very interesting formation designs have been developed. In order to gen-

eralize this work, it is assumed that each satellite will generate a relative

navigation solution with respect to one common satellite. This vehicle, which

will be labelled the master satellite, shares its measurements with each of the

remaining satellites, which are designated as nodes[5]. The nodes use these

measurements to generate a relative state estimate at each epoch. While this

assumption may be impractical in some missions, many formations, such as

a multi-vehicle space telescope, emphasize the relative distances from some

central craft.

One of the advantages in this scenario is that, for estimation purposes,

the formation flying problem breaks down into several relative navigation prob-

lems that can be examined independently. As described in Section 4.6, all of

the measurement equations are rewritten to remove the necessity of estimating

the absolute position of the hub, though its state is reconstructed from the

node state and the relative position at every epoch. Figure 4.1 details the

layout of the absolute and relative vectors.
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Figure 4.1: Problem Setup.

4.2 Filter State

The estimation state vector X at each node can be written as:

X =




r
∆r
b

ḃ
λN
B



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where:

r = Absolute state of the node

∆r = Relative state between the node and hub

b = Receiver clock offset

ḃ = Receiver clock frequency offset

λN = Double-Differenced integer ambiguities

B = GPS clock offset

Each of the states are developed more completely in the following subsections.

4.2.1 Absolute And Relative States

Each node satellite estimates its own absolute state as well as the rel-

ative state to the hub:

[
r

∆r

]
=




x
y
z
ẋ
ẏ
ż

∆x
∆y
∆z
∆ẋ
∆ẏ
∆ż




where each of these elements are realized in the ECI reference frame. For

simplicity, the GPS receiver is assumed to be located at the center of mass

of each satellite. While estimation of the attitude is crucial to a formation

mission, it will be left for future research.
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4.2.2 Receiver Clock and Frequency Offset State

The GPS receiver typically has a quartz crystal clock on board, making

it much less accurate than the ones in the GPS satellites. In order to compen-

sate for these clock errors in the pseudorange and doppler measurements, the

receiver clock and frequency offsets must be estimated. This may be achieved

by means of a second order Gauss-Markov process.

The Orion GPS receivers used for this research are enabled with a

clock-steering algorithm. This code slightly changes the TIC, the receiver’s

fundamental time unit, so that the GPS receiver is always aligned to the GPS

time. This makes exchanging measurements much more feasible. Since the

receiver clock is no longer drifting freely, the commonly used receiver clock

model no longer applies. Instantaneous changes in the receiver clock are not

reflected in the clock’s frequency, creating a situation where the two states

vary independently. It was empirically determined that the clock error could

be successfully modelled using a constant offset b and a constant frequency

offset ḃ. These states are modelled as uncorrelated random walk processes.

4.2.3 Double-Differenced Ambiguity State

The double-differenced ambiguity state is defined by:

λN =




λN12
AB

λN13
AB
...

λN
1(n−1)
AB




where n is the number of GPS satellites tracked by both GPS receivers.
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4.2.4 GPS Clock Offset

As described in Section 3.1.1.1, there is a slight error in the transmitted

GPS clock model due to the truncation of the model down to the first order.

This error can be accurately modelled as a constant bias for each GPS satellite

tracked.

B =




B1
A

B2
A
...

Bn
A




This error is common mode, and cancels out for the double-differenced mea-

surements. Consequently, the B state is needed for the pseudorange measure-

ment only.

4.3 Kalman Filter

The feedback control system that makes up the software portion of the

EFFTB requires the implementation of an estimator and a controller. The

backbone of the software is general enough to allow for many combinations of

those elements. Many different estimator architectures have been developed

for the relative navigation problem, such as the centralized, decentralized, and

partially centralized formation. Instead of developing a filter that provides

the “best” results for a single baseline length, a different approach was taken

in this dissertation. A Kalman filter has been developed which yields good

results over a wide variety of baselines. Thus some accuracy has been traded

for a more versatile filter design.

Each satellite in the formation will run its own EKF for absolute and

relative state estimation. The filter functions as a weighting scheme between

the current measurement set and the dynamic model. The filtering can be
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broken up into several distinct stages for clarity, and the mathematical de-

scriptions will be developed accordingly.

4.3.1 State Vector Construction

Due to the chosen estimation strategy, the number of estimated states

changes with the addition or removal of each GPS satellite. Therefore, if the

number of GPS satellites tracked changes, the state vector must be resized to

account for the appropriate number of tracked satellites. The error-covariance

matrix must be rescaled accordingly as well. The hub state is also recon-

structed from the current state parameters.

4.3.2 Propagation

The propagation step is used to bridge the gap in time between suc-

cessive measurements. In an extended Kalman filter, the state is propagated

by the direct integration of the non-linear dynamic equations. The state error

covariance is propagated forward using a state transition matrix. If we denote

Xk(+) as the state vector at time k after the measurement, and Xk+1(−) as

the state vector at time k+1 before the measurement, then the propagation

algorithm is presented as:

1. Propagate the position and velocity vectors for the absolute states by

integrating the non-linear dynamical model, which is provided in section

4.4.1. The states are integrated using a Runge-Kutta 4th order numerical

integrator.

r̈ = aE + ap (4.1)

where aE is the acceleration due to the Earth’s gravity and ap is the
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desired perturbative forces.

2. The relative state is not propagated directly. Instead, the reconstructed

hub state is propagated forward to the current epoch via Equation 4.1.

The relative state is then formed by subtracting the current node state

from the hub state.

3. The remaining terms in the state are modelled as constants, so their

values are changed only by the inclusion of process noise during the

propagation step.

4. The state error covariance matrix contains the estimates for the closeness

of the fit with the actual observations [27]. The diagonal terms are the

variances of the estimate of the state parameters. The square roots of

the variances are the standard deviations for each element of the state

space. For a properly working filter, the errors in the problem must

be accurately reflected by the entries in the covariance matrix. The

error covariance must be propagated during this step. The state error

covariance matrix, Pk at time tk is defined by the expectation operator

as:

Pk = E

{[
X̂k −Xk

] [
X̂k −Xk

]T
}

(4.2)

The update equation for the covariance is given by:

Pk+1(−) = Φ(tk+1,k)Pk(+)ΦT (tk+1,k) + Qk+1 (4.3)

The generation of the state transition matrix Φ(tk+1,k) and the covari-

ance propagation strategy are discussed in Section 4.4.2. The process

noise matrix Q is used as a tuning parameter.
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4.3.3 Initialization

Each state of the EKF must be initialized before it is processed the

first time. The node state is initialized from the GPS position fix solution

at the initial epoch. The initial hub position is also set to its position fix

solution, and the initial relative state is set to the difference between the two.

The double-differenced ambiguity term is initialized as the difference between

the double-differenced pseudorange and the double-differenced carrier phase

measurements. The remainder of the states are initialized to zero.

4.3.4 Measurement Update

Once the state vector and error covariance matrix are propagated to

the current time, the updated state vector Xk(+) and the updated covariance

matrix Pk(+) can be computed. The update requires the construction of the

measurement noise covariance matrix Rk. The measurement equation matrix

G is covered in section 5.5.

1. The predicted measurement is generated by evaluating the non-linear

measurement models along the current state:

(Ŷ k) = G(X̂, tk) (4.4)

The residual vector is computed as the difference between the measure-

ment and the predicted measurement:

zk = Yk − (Ŷ k) (4.5)

where the hat denotes an estimated quantity. The Hk matrix is gener-

ated by taking the partial derivative of the measurement equations with
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respect to the state. These partial derivatives are presented in Appendix

B.

Hk =
∂G

∂X
|X=X̂k(−) (4.6)

2. The error covariance is updated using the numerically stable Joseph for-

mula:

Pk(+) = (I−KkHk)Pk(−)(I−KkHk)
T + KkRkK

T
k (4.7)

where the Kalman gain is given by:

Kk = Pk(−)HT
k (HkPk(−)HT

k + Rk)
−1 (4.8)

The state update also uses the Kalman gain:

X̂k(+) = X̂k(−) + Kkz (4.9)

4.4 Dynamic Model and State Transition Matrix

In an EKF, the state is propagated forward using the non-linear dif-

ferential equations. The covariance matrix, however, uses a state transition

matrix for propagation. The following sections provides the full non-linear

differential equations and the state transition matrix structure.

4.4.1 Dynamic Model

One of the potential benefits for formation flying is to be able to create

several smaller, cheaper, less-capable nodes to replace large monolithic satel-

lites. With this philosophy in mind, the dynamic model was intentionally left

relatively simple, which reduces the computational burden. The acceleration
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equations contain the gravitational attraction of the Earth, the J2 zonal har-

monic, and the atmospheric drag effect with an exponential air density model.

These equations are detailed in Equation 4.10.

ẍ = −µx

r3

[
1− 3

2
J2

(
RE

r

)2 (
5
z2

r2
− 1

)]
− 1

2
CD

A

M
ρV (ẋ + ωEy)

ÿ = −µy

r3

[
1− 3

2
J2

(
RE

r

)2 (
5
z2

r2
− 1

)]
− 1

2
CD

A

M
ρV (ẏ − ωEx)(4.10)

z̈ = −µz

r3

[
1− 3

2
J2

(
RE

r

)2 (
5
z2

r2
− 3

)]
− 1

2
CD

A

M
ρV ż

where ωE is the rotation rate of the Earth, RE is the Earth’s radius, Cd is

the drag coefficient of the satellite, m is the satellite’s mass, and A is the

instantaneous cross-sectional area. The magnitude of the relative wind, V,

can be computed from:

V =
√

ẋ2 + 2ωEẋy + ω2
Ey2 + ẏ2 − 2ωEẏx + ω2

Ey2 + ż2 (4.11)

The value of ρ, the atmospheric density, is generated using an exponentially

varying model [27]:

ρ = ρ0e
−(r−r0/H) (4.12)

Here:

ρ0 = 3.725x10−12(kg/m3)

r = current altitude(m)

r0 = reference altitude = 400000(m)

H = scale height = 58515(m)
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4.4.2 State Transition Matrix

While much of the state is propagated directly via the dynamic equa-

tions, the covariance matrix must be propagated forward through the use of a

state transition matrix. The state transition matrix used to propagate between

the two times tk and tk+1 satisfies:

Φ̇(tk+1, tk) = A(tk)Φ(tk+1, tk)

Φ(tk, tk) = I (4.13)

A(tk) =
∂F

∂X
|X=X̂k(−) (4.14)

(4.15)

where I is the appropriately sized identity matrix and F is the set of dynamical

equations. The state transition matrix has the block diagonal form:

Φ =




ΦAbs 0 · · · 0
0 ΦRel 0
... Φb

...
0 Φ∆N 0
0 0 · · · ΦB




(4.16)

each submatrix is described in the following subsections.

4.4.2.1 Absolute State Acceleration Partial Derivatives ΦAbs

The acceleration partial derivatives are found by taking the partial

derivatives of equation 4.10 with respect to the state. The equations for de-

velopment of the absolute partial derivatives are provided in Appendix A.
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4.4.2.2 Relative State Acceleration Partial Derivatives ΦRel

The relative state is not propagated directly, and the following approx-

imation is made in order to generate the state transition matrix. The relative

state at time tk+1 can be written as:

∆r(tk+1) = ΦN(tk+1,k)xN −ΦH(tk+1,k)xH (4.17)

If we assume that, for separations under a certain threshold, the accelerations

felt by the hub spacecraft are approximately equal to those of the node space-

craft, then we can say that the relative state transition matrix block can be

generated from the partial differential equations of either the node or the hub.

This approximation is validated by evaluating the partial differential equations

numerically and comparing them to the non-linear models. The results of this

analysis are presented in Appendix C.

4.4.2.3 Receiver Clock States Partial Derivatives Φb

The receiver clock and frequency offsets are modelled as random-walk

processes. The contribution to the state transition matrix is given by:

Φb(tk+1, tk) =

[
1 0
0 1

]
(4.18)

4.4.2.4 Double-Differenced Ambiguity Partial Derivatives Φ∆N

The double-differenced ambiguity terms are modelled as random-walk

processes. Though theory describes these ambiguities as integers, their values

are not constrained as such. Their partial derivative submatrix has the form:

Φ∆N(tk+1, tk) = I (4.19)
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For N GPS satellites, there are (N-1) double-differenced ambiguity terms to

estimate at every epoch.

4.4.2.5 GPS Clock Error Model ΦB

The GPS satellite clock error is modelled as a random-walk process.

Φ∆B(tk+1, tk) = I (4.20)

Each GPS satellite tracked requires one offset parameter.

4.5 Process Noise Matrix

As the time progresses into the simulation, the covariance matrix will

begin to converge. The filter will be increasingly less sensitive to the new

measurements. To overcome this effect, process noise is added in the form of

the process noise matrix Q. This matrix also accounts for the errors in the

dynamical model. The Q matrix can be represented in the block diagonal

form:

Qk =




QR 0 0 0
0 Qb 0
... QB

...
0 · · · · · · QN


 (4.21)

Each submatrix is described below.
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4.5.1 Absolute and Relative State Process Noise

The process noise covariance matrix for the absolute and relative state

is defined by:

QR =

∫ tk+1

tk

Φ(tk+1, τ)S(τ)ΦT (tk+1, τ)dτ (4.22)

where S(t) is the process noise spectral density matrix. If the state transition

matrix can be assumed constant over the time span ∆t, the process noise

matrix can be written in discrete form:

QR = S(τ) (4.23)

and the absolute and relative state process noise contributions are defined as:

QR =

[
QRa 0

0 QRr

]
(4.24)

where QRa and QRr correspond to the absolute state and relative state process

noise respectively. These matrices can be written as:

QRa =




σ2
xABS

0 0 0 0 0
0 σ2

yABS
0 0 0

0 0 σ2
zABS

0 0 0
0 0 0 σ2

ẋABS
0 0

0 0 0 0 σ2
ẏABS

0
0 0 0 0 0 σ2

żABS




(4.25)

and:

QRr =




σ2
xREL

0 0 0 0 0
0 σ2

yREL
0 0 0

0 0 σ2
zREL

0 0 0
0 0 0 σ2

ẋREL
0 0

0 0 0 0 σ2
ẏREL

0
0 0 0 0 0 σ2

żREL




(4.26)
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4.5.2 GPS Receiver Clock Process Noise

The process noise covariance for the receiver clock model is:

Qb =

[
σ2

b 0
0 σ2

ḃ

]
(4.27)

The σ2
b and σ2

ḃ
represent the variance for the clock and frequency offsets.

This model is valid only for the receiver used in this experiment, due to the

decoupling of the clock states by the clock steering algorithm.

4.5.3 Double-Differenced Ambiguities Process Noise

The process noise covariance block for the double-differenced ambiguity

terms have the form:

QN = Iσ2
N (4.28)

where I is an (n− 1)× (n− 1) identity matrix, and σ2
N is the variance for the

double differenced ambiguities.

4.5.4 GPS Satellite Clock Bias

The process noise covariance entries for the GPS satellite clock bias

also have a diagonal form:

QB = Iσ2
B (4.29)

where I is an (n) × (n) identity matrix, and σ2
B is the variance of the GPS

clock bias.

4.6 GPS Measurement Equations

Sections 3.1 and 3.2 describe the basic formulation for the measure-

ments utilized by the filter. The partial derivative of these equations, which
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are required for the measurement update portion of the filter, are provided in

Appendix B.

4.6.1 Undifferenced Measurement Equations

The undifferenced measurement equations are very similar to the the-

oretical ones presented in Section 3.1. The pseudorange filter model is:

P (tR) = ρS
R + b + B + ∆Iono (4.30)

where B is the scaled GPS clock state offset, b is the scaled receiver clock state

offset, and PIono is the pseudorange ionospheric delay. The ionosphere calcu-

lation uses a simplified model which consists of a shell of constant thickness

and uniform electron distribution. The delay is calculated as [26]:

∆Iono =
82.1TEC

F 2
C

√
sin2(EL) + 0.076 + sin2(EL)

(4.31)

where:

TEC = 2e17 Constant Total Electron Count

FC = 1575.42e6 Frequency of the carrier Signal

EL = Elevation of the GPS satellite from a local horizon

The equation for the Doppler model is given by:

D(t) = ρ̇S
R + ḃ (4.32)

where ḃ is the receiver clock frequency state.

4.6.2 Double-Differenced Measurement Equations

In order to remove the necessity of estimating the absolute state of the

hub satellite, the measurement for the relative states are rewritten in terms of
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the node state and the relative state. If we define our system such that:

∆r(t) = rH(t)− rN(t) (4.33)

then the absolute state of the hub can be represented by:

rH(t) = ∆r(t) + rN(t) (4.34)

Plugging this expression for the hub into the double-differenced measurement

equations yields the following:

δλΦIJ
AB(t) =

[
(|rA

GPS(t− τ)−∆r(t)− rN(t)|)− (|rA
GPS(t− τ)− rN(t)|)]−

[
(|rB

GPS(t− τ)−∆r(t)− rN(t)|)− (|rB
GPS(t− τ)− rN(t)|)]−

δ∆Iono + δλN

where the δ notation signifies a double-difference such that:

δλN = (λNA
H − λNA

N )− (λNB
H − λNB

N ) (4.35)

Similarly, the double-differenced Doppler equation has the form:

δDIJ
AB(t) = (ṙA

GPS(t− τ)−∆ṙ(t)− ṙN(t)) · (rA
GPS(t− τ)−∆r(t)− rN(t))

(|rA
GPS(t− τ)−∆r(t)− rN(t)|) −

(ṙB
GPS(t− τ)−∆ṙ(t)− ṙN(t)) · (rB

GPS(t− τ)−∆r(t)− rN(t))

(|rB
GPS(t− τ)−∆r(t)− rN(t)|)

4.7 Measurement Noise Covariance

The measurement noise covariance matrix represents the uncertainty

in the measurement model. The measurement noise covariance matrix, R has

the block diagonal structure:

Rk =




RP 0 0 0
0 RD 0 0
0 0 RδλΦ 0
0 0 0 RδD



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where RP ,RD,RδλΦ,RδD, correspond to the pseudorange, doppler, double-

differenced carrier phase, and double-differenced doppler measurements re-

spectively.

4.7.1 Pseudorange Measurement

The raw pseudorange measurements are inherently uncorrelated, yield-

ing a diagonal block matrix:

RP =




σ2
ξ · · · 0
...

. . .
...

0 · · · σ2
ξ




where σ2
ξ is the standard deviation of the pseudorange error.

4.7.2 Doppler Measurement

The doppler measurements are also uncorrelated, and have a similar

diagonal structure:

RD =




σ2
δ · · · 0
...

. . .
...

0 · · · σ2
δ




where σ2
δ is the standard deviation of the doppler error.

4.7.3 Double-Differenced Carrier Phase Measurement

While the raw carrier phase measurements are uncorrelated, the double-

differenced measurements are correlated with each other. If we write two
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double-differenced carrier phase measurements in matrix representation:

[
ΦAB

NH

ΦAC
NH

]
=

[
1 −1 1 −1 0 0
1 −1 0 0 1 −1

]




ϕA
N

ϕA
H

ϕB
N

ϕB
H

ϕC
N

ϕC
H



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The covariance matrix would be generated by:

RδλΦ =

[
1 −1 1 −1 0 0
1 −1 0 0 1 −1

]




σ2
δλΦ 0 0 0 0 0
0 σ2

δλΦ 0 0 0 0
0 0 σ2

δλΦ 0 0 0
0 0 0 σ2

δλΦ 0 0
0 0 0 0 σ2

δλΦ 0
0 0 0 0 0 σ2

δλΦ



·




1 −1
1 −1
1 0
−1 0
0 1
0 −1




where σ2
δλΦ is the spectral density of the double-differenced carrier phase mea-

surement. Performing the matrix multiplication yields:

RδλΦ = σ2
δλΦ

[
4 2
2 4

]

This pattern continues as more measurements are added. The double-differenced

doppler measurements are likewise correlated, and their measurement error co-

variance block structures must be generated with 4 on the diagonals and 2s in

all other elements.
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Chapter 5

Control System

The EFFTB uses a linear quadratic regulator (LQR) to maintain the

desired separation between the formation satellites. The following section

outlines the development and implementation of the LQR used in this work.

5.1 Controller Development

While most natural processes can be represented with continuous func-

tions, controlling these systems is usually a discrete time process. Since an

optimal controller is desired, a cost function J(t) is constructed such that:

J(t) =

∫ tf

t

[xT
∗ (t)W(t)x∗(t) + uT (t)V(t)u(t)]dt + xT

∗ (tf )Sf (tf )x∗(tf ) (5.1)

The control vector u(t) is said to be optimal if it minimizes this cost function.

In this equation, x∗ is the difference between the current trajectory and some

reference trajectory. The matrices W(t),V(t), and Sf (t) represent the state

penalty matrix, the control penalty matrix, and the terminal penalty matrix

respectively. These matrices are used as design parameters to produce the

desired performance.

The solution is given by [4]:

u(t) = L(t)x(t)
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where x is the state vector at time t. The matrix L(t) is determined by:

L(t) = V−1(t)BTS(t)

(5.2)

where B is a matrix mapping the control to the state. The matrix S(t) can

be solved using a Ricatti equation:

Ṡ(t) = S(t)BV−1(t)BTS(t)− S(t)A(t)−AT (t)S(t) + W(t)

S(tf ) = Sf

It is worth noting that the Riccati equation can be solved by backwards prop-

agation as a discrete process. Letting ti+1 correspond to the final epoch, and

ti be the epoch just previous, the recursion relationship can be written as [8]:

Li = − [
Vd(ti+1, ti) + [Bd(ti+1, ti)]

TSi+1Bd(ti+1, ti)
]−1 ×

[Bd(ti+1, ti)]
TSi+1Φ(ti+1, ti)

Si = [Φ(ti+1, ti)]
TSi+1Φ(ti+1, ti)−

(Li)
T

[
Vd(ti+1, ti) + [Bd(ti+1, ti)]

TSi+1Bd(ti+1, ti)
]
Li + Wd(ti+1, ti)

If u(t) is held constant over the interval t− ti then:

Bd(t, ti) =

∫ t

ti

Φ(t, τ)B(τ)dτ

Wd(ti+1, ti) =

∫ ti+1

ti

Φ(t, ti)
TW(t)Φ(t, ti)dτ

Vd(ti+1, ti) =

∫ ti+1

ti

[Bd(t, ti)
TW(t)Bd(t, ti) + V(t)]dτ

The matrix Φ(ti+1, ti) is the state transition matrix, and its generation

is discussed in Section 4.4.2.
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5.2 Controller Implementation

Since the type of controller was not critical to the overall simulation, a

simple tracking controller was implemented. In this scenario, the controller’s

job is to maintain a constant distance between the node and the hub satellite.

The controller makes use of the absolute position and velocity estimates, and

returns a maneuver to the node. The algorithm for the generation of the

control vector is:

1. The absolute position of both the hub and the node spacecraft are prop-

agated 30 seconds into the future. This is the epoch at which the control

will be applied, and will be designated tc. The 30 second buffer window

allows ample time for the controller to run and the control vector to be

distributed to the Remote Control Machine (defined in section 6.1.4).

2. The node spacecraft constructs the absolute state of the hub by differ-

encing its own absolute state estimate and the relative state estimate.

The reconstructed hub’s absolute state is then used to generate a UVW

reference frame centered at the hub spacecraft.

3. The desired relative state is constructed as an offset in this UVW frame.

In this work, a 100 km separation was added in the v̂ direction to form

the desired state.

4. The node’s estimate of the hub position is then used to rotate the desired

state back into the inertial reference frame. It should be noted that each

node will have a slightly different estimate of the hub’s position, and

therefore a different UVW frame. The result of this offset is that the

desired trajectory for each node will vary slightly from the ideal 100 km

separation.
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5. The desired state is propagated forward to some epoch in the future, tf ,

at which Sf is defined. An arbitrary coasting period of five minutes was

chosen for this controller. Accordingly, the desired state is integrated 5

minutes into the future, and the Ricatti equation is back propagated 5

minutes as well. At the end of the coasting window, a new control is

calculated and the process continues.

6. The Ricatti Equation is solved by back propagating from the epoch tf to

the control epoch tc in one second increments. The state transition ma-

trix used in this procedure is generated using the same plant formulation

that the filter used.

7. The back propagation yields the L(tc) matrix, which is used to find the

control vector at time tc.

The algorithm presented was selected arbitrarily, and may not be effi-

cient enough for actual flight hardware. One option to conserve computational

time would be to generate an entire orbit worth of gains and store them in

RAM. This would alleviate having to perform the back propagation every 5

minutes.

5.3 Offline Controller Tuning

An empirical approach was selected to determine the control parame-

ters that would optimize the linear controller. A “cheap” controller was used

to simplify the search space for the desired values. In this situation, the ter-

minal penalty matrix Sf was set to zero. The state penalty matrix was set

to an identity matrix, and the control penalty matrix was constructed as the
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appropriately sized identity matrix premultiplied by the scalar parameter α.

This scalar was adjusted until the desired results were obtained.

The controller was tested offline by providing it with simulated absolute

state estimates. In order to verify that the controller could track the desired

position without error, the input states were noise free. The node satellite

was offset from the desired initial state according to the values given in Table

5.2. The simulation spanned one orbit, and a control vector was output every

300 seconds. The maneuvers were assumed to be ideal, and always along the

inertial axes.

Figure 5.1 depicts a case where the control penalty matrix α has a value

of 5e6. This value is too high and does not allow enough actuation effort to

drive the tracking error to zero. The tracking error is defined as the difference

between the estimated state and the desired state. With an α value of 5e5,

there is too little penalty applied and the controller consistently overshoots the

desired trajectory. This can be seen in Figure 5.2. With the desired control

solution bracketed, the α value was adjusted slightly until the results shown

in Figure 5.3 were achieved. The design parameters are summarized in Table

5.1.

Table 5.1: Controller Design Parameters

Parameter Value

Sf 0

W 0

V 1e6
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Figure 5.1: Tracking Error With Too Much Control Penalty.

The controller targets a desired absolute position based upon the prop-

agated absolute state estimates. A typical pseudorange-based filtered GPS

solution contains approximately two to three meters of error per axis. There-

fore, to study the predicted controller performance, the simulated absolute

states in this offline test were augmented with two meters of white noise be-

fore being sent to the controller. Figure 5.4 demonstrates that the controller

has a 20 meter limit on its tracking accuracy. It should be emphasized that

this is due to the relatively low accuracy of the absolute states sent to the

controller. If more emphasis was placed upon improving this accuracy, the

overall tracking error would decrease accordingly. This fact is verified in Fig-

ure 5.5, where the estimated state noise is approximately one-half meter and

the tracking error drops to within a few meters.
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Figure 5.2: Tracking Error With Too Little Control Penalty.

As a final verification step, the maneuver window was decreased to ten

seconds, and the noise on the absolute state was returned to two meters. With

a ten second control window, the errors induced by lengthy propagation of in-

accurate states are minimized, and the controller is able to track the desired

trajectory to within the two meter input noise. Figure 5.6 demonstrates this

tracking capability, and verifies that no stray tracking errors are leaking into

the solution.

5.4 Formation Control Architecture

Just as there are many different types of controllers, there are several

different ways to implement a control architecture for a formation. Three such

architectures are the centralized controller, decentralized controller, and a hy-
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Figure 5.3: Tracking Error With Appropriate Penalty.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−80

−60

−40

−20

0

20

40

60

80
Tracking Error With 2 Meters of Feedback Error

Time (s)

T
ra

ck
in

g 
E

rr
or

 (
m

)

Figure 5.4: Tracking With 2 m Of Measurement Noise at 300 Sec.
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Figure 5.5: Tracking With .5 m Of Measurement Noise at 300 Sec.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−60

−40

−20

0

20

40

60

80
Tracking Error With 2 Meters of Feedback Error

Time (s)

T
ra

ck
in

g 
E

rr
or

 (
m

)

Figure 5.6: Tracking With 2 m Of Feedback Noise at 10 Sec.
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Table 5.2: Initial Node Absolute State Offset From The Desired Trajectory

State Deviation

u 75 m

v -50 m

w 50 m

u̇ .01 m/s

v̇ -.05 m/s

ẇ .2 m/s

brid controller that leverages the strengths of the centralized and decentralized

controllers[7]. These architectures are illustrated in Figure 5.7.

A form of decentralized architecture was implemented for this work,

and is depicted in Figure 5.8. The simulation environment was designed to

allow for rapid adaptation to any of these architecture types, and would make

an excellent tool to study the benefits and drawbacks of each technique.
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Figure 5.7: Control Architectures
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Figure 5.8: Implemented Decentralized Architecture
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Chapter 6

Extended Formation Flying Testbed

The EFFTB is a combination of hardware and software that allows for

the simulation of multiple vehicles in a real-time closed-loop hardware-in-the-

loop situation. Each of the major components is described in the following

subsections.

6.1 Hardware Description

The EFFTB hardware was customized for a Low Earth Orbit (LEO)

using GPS navigation signals. The design of the testbed was generalized to

allow for multiple measurement sources and dynamic inputs. For example, to

accommodate a deep space formation, the GPS simulator/receiver measure-

ment source could be replaced with a simulated star tracker, and the dynamic

modelling software could be replaced with the appropriate equations of mo-

tion. In this way, the EFFTB can be used to simulate nearly any proposed

formation. The following descriptions detail the hardware as configured for

this work. Figure 6.1 illustrates this hardware design.

6.1.1 GPS Signal Simulator

The heart of the simulation setup is the GPS signal simulator. Each of

the participating installations is required to have at least one such simulator
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Figure 6.1: Hardware Setup.
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onsite. The GPS laboratory at the University of Texas at Austin/Center

for Space Research (UTCSR) uses a Spirent STR4760 GPS signal simulator.

This simulator is capable of simulating L1 signals for two vehicles on up to 16

channels each. All of the environmental variables affecting the GPS signals,

such as ionospheric delay and GPS clock errors, are controlled by the simulator.

The main goal of the EFFTB is to overcome the limitations of two RF outputs

on this simulator by connecting several such simulators together.

6.1.2 Orion GPS Receivers

The Orion type GPS receiver was chosen to provide measurements. The

Orion receiver is based on the terrestrial GPS receiver built around the Zarlink

GP2000 chipset [1]. The Orion receiver is capable of tracking 12 satellites on

Figure 6.2: Orion Receivers.

the L1 frequency. In order to optimize the receiver performance for space

use, several modifications were made to the receiver [21]. These modifications

include the fixes related to the implicit assumption of a low speed vehicle in the

Doppler prediction and the correction of the time tagging error [11]. In order to

facilitate measurement exchange between receivers, a clock steering algorithm

has been implemented in the receiver which aligns the measurement epochs
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and the navigation solutions to the integer GPS second. The Orion also utilizes

a 3rd order phase lock loop (PLL) assisted by a 2nd order frequency lock loop

(FLL) to improve the accuracy of the integrated carrier phase measurement.

6.1.3 Master Control Computer

The Master Control Computer (MCC) functions as the nerve center of

the EFFTB. As denoted in 6.3 this is the only machine that doesn’t have to

be collocated with the simulation equipment. The functions of the MCC are

described below:

1. Formation Initialization

The MCC possesses the initialization data for all of the GPS receivers

and the Remote Control Machines. When the simulation is initialized,

the MCC sends out the appropriate two-line element set to the each

node. The ECEF position of each node as well as its mass and area

characteristics are then sent to the Remote Control Computer for prop-

agation.

2. Simulation Activation

In order to keep the dynamic environments at all facilities within a sec-

ond of each other, an electronic activation has been designed. Once all

of the initialization is completed, the MCC sends out a pulse alerting

each machine that the simulation has begun. Upon receiving this pulse,

the Node Computers upload the two-line elements into their respective

receivers, and the Remote Control Computers begin to propagate the

equations of motion and feed the simulator the trajectory data. Accord-

ingly, the difference between the start times at each facility is simply the

60



signal transmit time through the internet.

3. Data Relay

In order to emulate a true broadcast environment via hardwired cables, a

mock communication system has been developed. In this simulation, no

node has the ability to communicate directly with any other node. All

packets are instead sent to the MCC, which then rebroadcasts them to all

of the nodes. The communication system on each node must be robust

enough to recognize the information sent to it, identify the relevant data

and reject the rest. The MCC also routes the control information directly

to the Remote Control Computer.

4. Data Logging

The MCC computer allows for a convenient central point for data logging

and archiving. This requires extra effort on the part of the node to

distribute the position and covariance information for the state, but it

relieves the user of the inconvenience of collecting multiple files on several

different systems.

6.1.4 Remote Control Computer

The Remote Control Computer (RCC) is responsible for generating

the dynamics for the simulation. While the Spirent simulator is capable of

performing this task, the closed-loop environment requires an external data

source. The RCC is initialized with each of the node’s initial positions, and

propagates them forward at 10 Hz according to the user defined environment

variables. At the appropriate time, the RCC augments the node’s velocity

vector with the ∆v provided by the Node Computer. The RCC smooths this
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impulse by integrating it over one second. Ten times each second the RCC

sends the trajectory information to the simulator, which then generates the

appropriate GPS signals. The RCC at each location runs independently of the

remainder of the RCC’s. As long as the filter update intervals are sufficiently

large, strict time synchronization of these machines is not necessary. However,

if a rapid update rate is required, the RCC or the simulators may need to be

driven by a precise clock in order to maintain system wide synchronization.

6.1.5 Hub Computer

The satellite that is designated the hub is only required to broadcast

its measurements at each epoch. The Hub Computer (HC) extracts the pseu-

dorange, doppler and carrier phase measurements from the receiver, as well

as the position fix solution, and forwards the data on to the MCC. The MCC

then distributes the measurements to the formation

6.1.6 Node Computer

The Node Computer (NC) performs all of the estimation and control

computations. One NC can administer multiple GPS receivers, each utilizing

its own instance of the node software. When the NC communication routine

detects measurements with identical time-tags, it invokes the estimator to de-

termine the current state. If it is time to perform a station keeping maneuver,

the node calculates this maneuver and sends it to the RC.
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6.2 Software Description

The EFFTB code was developed in standard C. The primary utility is

the generality of the code structure. The NC software was developed with the

estimator and controller being subroutines called by the main shell. The sub-

routines can easily be swapped out with other, more sophisticated programs.

The RC requires only a control vector, and is impartial to how it is generated.

The RC software can easily be modified to write to a device other than the

GPS signal generator. The overall flow of the software is illustrated in 6.3,

where the dashed arrows represent data transfer.
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Figure 6.3: Software Flowchart.
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Chapter 7

Results

This chapter details the results obtained from the simulation environ-

ment for three satellite separation distances. These tests include runs made

in offline simulations as well as the filter and controller performances when

inserted into the EFFTB. Tuning parameters for both the observer and con-

troller are also documented.

7.1 Offline Filter Validation

The Kalman filter was tuned using measurement data from the GPS

receivers and processed in an offline environment. In these tests only two

satellites were used, the node satellite and the hub satellite. The simulator

settings for the “truth” environment are listed in Table 7.1. Since the goal

was to focus on how the intersatellite distances affect the navigation error,

the GPS clock and ephemerides errors in the GPS simulator were disabled.

To evaluate the filter’s performance over various distances, three candidate

distances were chosen. The satellites were placed in the same orbit plane with

an inclination of 87 degrees and altitude of approximately 600 km. Spacing of

the nodes was accomplished by adjusting the the true anomaly. The true ECI

initial conditions for each of these cases are provided in Table 7.2.

The initial error covariance matrix is diagonal, and the initialization
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Table 7.1: Simulator Environment Settings.

Parameter Setting

Earth Gravity Model 10x10

Cross Sectional Area 2 m2

CD 2

Mass 100 Kg

GPS Clock Error Off

GPS Ephemerides Errors Off

Ionosphere Constant Thickness with Sinusoidal Variation

Table 7.2: True Initial Conditions: November 6 2001 00:00:00 GPS.
Hub Node 1 km Node 100 km Node 500 km

X m -4.81976e6 -4.81980e6 -4.82294e6 -4.82531e6

Y 4.81976e6 4.81972e6 4.81555e6 4.78837e6

Z 0.00000 0.00099e6 0.09975e6 0.49837e6

Vx m/s -0.28313e3 -0.28234e3 -0.20390e3 0.11332e3

Vy -0.28313e3 -0.28393e3 -0.36231e3 -0.67808e3

Vz 7.64046e3 7.64046e3 7.63964e3 7.61998e3

parameters are listed in Table 7.3.

The error covariance terms for the GPS ephemerides errors and the double-

differenced integer ambiguities must be reset with the inclusion of each new

GPS satellite. This is accomplished by resetting the corresponding diagonal

element and zeroing out the associated row and column elements in the error

covariance matrix.

To examine the filter performance, and perform the necessary tuning,
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Table 7.3: Error Covariance Initialization
State Value

u, v, w m 400

u̇, v̇, ẇ m/s 1

∆u, ∆v, ∆w m 400

∆u̇, ∆v̇∆ẇ m/s 1

b m/s 10

ḃ m/s2 1

∆λN m 25

B m 100

GPS data was analyzed offline. The data were generated using the internal

propagator in the GPS simulator. Two Orion receivers were utilized to process

the measurements, which were then saved to text files. These text files were

used as input to the filter to generate the results in this section.

7.1.1 Filter Performance at 1 Hz

To determine the optimal performance, the measurement update rate

was set at 1 Hz. Figures 7.1 and 7.2 show the absolute position and velocity

errors for the node spacecraft. Since the absolute states are independent of

the relative distances, these figures are not repeated for the longer baselines.

It was observed that the accuracy of the absolute position is typical for a

GPS pseudorange based navigation solution. The jumps in the error and error

covariance are caused by the introduction and removal of satellites from the

solution. The accuracies for the absolute states are listed in Table 7.4. The

accuracy of the relative state is not strongly correlated with the accuracy of

the absolute states. For short baselines, it was shown that the estimation of
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Table 7.4: Absolute State Error in û, v̂, ŵ frame (mean ± std)

State Accuracy

u m −0.0034± 3.4934

v −0.0450± 3.0136

w −0.0004± 2.4191

u̇ m/s 0.0703± 0.0335

v̇ −0.0185± 0.0267

ẇ −0.0092± 0.0415

the absolute state could be replaced by simply propagating the absolute state

forward with little lack of accuracy [28].

The relative accuracies were determined by generating an ensemble

average over five simulation runs for each baseline length. The results are de-

picted in Figures 7.3 - 7.8. The filter parameters for each baseline are detailed

in Table 7.5. It should be noted that the large process noise values for the

clock bias and drift reflect the inability to accurately model these states. Table

7.6 details the steady-state accuracies for these simulations.

The errors at the one kilometer baseline are comparable to those found

in current literature [29] [11]. The convergence for the relative position is de-

pendent on the correct resolution of the double differenced integer ambiguity

states. For the one second update rate, this convergence takes approximately

1000 seconds. For the 1 km and 100 km case, once these integers are deter-

mined, the solution is only slightly disturbed by the inclusion of new satellite
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Figure 7.1: Ensemble Mean Absolute Position Actual and Formal Errors.
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Figure 7.2: Ensemble Mean Absolute Velocity Actual and Formal Errors.
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Figure 7.3: 1 km Ensemble Mean Relative Position
Actual and Formal Errors/1 Second Update.
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Figure 7.4: 1 km Ensemble Mean Relative Velocity
Actual and Formal Errors/1 Second Update.
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Figure 7.5: 100 km Ensemble Mean Relative Position
Actual and Formal Errors/1 Second Update.
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Figure 7.6: 100 km Ensemble Mean Relative Velocity
Actual and Formal Errors/1 Second Update.
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Figure 7.7: 500 km Ensemble Mean Relative Position
Actual and Formal Errors/1 Second Update.
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Figure 7.8: 500 km Ensemble Mean Relative Velocity
Actual and Formal Errors/1 Second Update.
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Table 7.5: Process Noise Settings: 1Hz Update

Parameter 1 km Case 100 km Case 500 km Case

σ2
rABS

m2 1e-2 1e-2 1e-1

σ2
vABS

m2

s2 5e-5 5e-5 1e-5

σ2
rREL

m2 1e-6 1e-6 1e-7

σ2
vREL

m2

s2 1e-7 1e-7 1e-6

σ2
b m2 1e6 1e6 1e6

σ2
ḃ

m2

s2 1e6 1e6 1e6

σ2
λN m2 1e-6 1e-5 1e-5

σ2
B m2 1e-5 1e-5 1e-5

Table 7.6: Relative State Error: 1 Sec. Update Rate (mean ± std)

State 1 km Case 100 km Case 500 km Case

∆u m −0.0024± 0.0044 −0.0478± 0.0149 −0.0307± 0.0644

∆v 0.0041± 0.0105 −0.0114± 0.0324 0.0989± 0.0627

∆w 0.012± 0.0063 0.0310± 0.02376 −0.0501± 0.0281

∆u̇ m/s 0.00001± 0.0002 −0.0000± 0.0001 0.0001± 0.0005

∆v̇ −0.00001± 0.0002 −0.0001± 0.0002 0.0000± 0.0005

∆ẇ 0.00002± 0.0001 0.0000± 0.0002 −0.0000± 0.0001

pairs.

The 500 km ensemble does not converge as well as the other two sce-

narios. In two of the simulations, the filter struggled to accurately estimate

the ambiguities in the face of the greater differential ionosphere delay error.

The ensemble averaging reflects this difficulty in larger errors. Another factor

limiting the accuracy at the long baseline is the number of common view GPS

satellites available. The number of satellites utilized in the double difference is

illustrated in Figure 7.9. While the 500 km baseline has five or more satellites
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Figure 7.9: Common View GPS Satellites.

in view for a majority of the time, there is a ten minute time period where

there are four or fewer satellites available. It is apparent that the filter as

constructed has a maximum relative baseline length near 500 km.

7.1.2 Filter Performance at 5 Seconds

In an actual distributed system, a one second update rate may pose

too heavy of a burden on the computer and communication systems. Accord-

ingly, the measurement update rate of the filter was slowed to 5 seconds. The

filter gains were adjusted to account for the larger emphasis placed upon the

dynamical models. The process noise covariance values are listed in 7.7. The

ensemble results for the five second update rate are displayed in 7.10-7.15.
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Table 7.7: Process Noise Settings: 0.2 Hz Update

Parameter 1 km Case 100 km Case 500 km Case

σ2
rABS

m2 1e-2 1e-1 1e-1

σ2
vABS

m2

s2 5e-4 5e-4 1e-4

σ2
rREL

m2 1e-5 1e-4 1e-4

σ2
vREL

m2

s2 1e-5 1e-6 1e-5

σ2
b m2 1e6 1e6 1e6

σ2
ḃ

m2

s2 1e6 1e6 1e6

σ2
λN m2 1e-6 1e-5 1e-4

σ2
B m2 1e-5 1e-5 1e-5
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Figure 7.10: 1 km Ensemble Mean Relative Position
Actual and Formal Errors/5 Second Update.
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Figure 7.11: 1 km Ensemble MeanRelative Velocity
Actual and Formal Errors/5 Second Update.
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Figure 7.12: 100 km Ensemble Mean Relative Position
Actual and Formal Errors/5 Second Update.
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Figure 7.13: 100 km Ensemble Mean Relative Velocity
Actual and Formal Errors/5 Second Update.
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Figure 7.14: 500 km Ensemble Mean Relative Position
Actual and Formal Errors/5 Second Update.
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Figure 7.15: 500 km Ensemble Mean Relative Velocity
Actual and Formal Errors/5 Second Update.

Table 7.8: Relative State Error: 5 Sec. Update Rate (mean ± std)

State 1 km Case 100 km Case 500 km Case

∆u m 0.0295± 0.0129 −0.0116± 0.0566 −0.0127± 0.2237

∆v 0.0035± 0.0048 −0.0310± 0.0317 0.2308± 0.2141

∆w 0.0122± 0.0001 0.0718± 0.0252 0.2308± 0.0676

∆u̇ m/s 0.0000± 0.0001 −0.0000± 0.0001 0.0000± 0.0016

∆v̇ −0.00001± 0.0002 0.0001± 0.0000 0.0004± 0.0005

∆ẇ 0.00000± 0.0001 0.0001± 0.0003 −0.0001± 0.0008

78



Decreasing the update rate had little impact on the overall accuracies

of 1 km and 100 km simulations. The steady state position noise levels are still

better than 2 cm and 6 cm respectively. The inability of the filter to correctly

resolve the double differenced integer ambiguities became more pronounced

for the 500 km simulation. The large jump around 4000 seconds occurred in

one of the runs when the number of common view satellites dropped to three,

causing the relative position estimate to jump dramatically.

7.1.3 Cycle Slips

The integer ambiguity, as described in Chapter 3, is the number of

whole carrier waves between the GPS satellite and the receiver. As long as

the receiver keeps locked on the carrier, this integer is constant. If the receiver

momentarily loses the carrier signal, the ambiguity may change by one or more

whole cycles, resulting in a cycle slip. This slip would then have to be detected

and accounted for in the filter in order to correctly process the carrier-phase

measurement.

The Orion receivers manufactured at UT/CSR are prone to incur cycle

slips, possibly due to the hardware fabrication process, or perhaps the hard-

ware or software itself. These jumps usually manifest themselves in the form

of a half-cycle slip. Since the carrier signal has a 19 cm wavelength, a half-

cycle slip causes a 10 cm jump in the observed measurement. These slips are

shown in Figure 7.24. Each spike occurring at a multiple near 10 cm indicates

a cycle slip. Longer spikes indicate a poorly initialized ambiguity, which was

reset during the next measurement update.

In order to minimize the impact of these slips, the filter checks the

residuals for outliers at each measurement update. If a residual is greater than
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9 cm, it is excluded from the solution. If this satellite combination generates

two successive outliers, the filter assumes that a cycle slip has occurred. On

the next measurement update, the ambiguity term and the corresponding error

covariance element are reinitialized. The drawback to this method occurs when

the one reference GPS satellite, the satellite against which all of the others

are differenced, experiences a cycle slip. That error then saturates all of the

double-differenced carrier phase measurements. When passing through the

filter, all of the phase measurements are considered outliers, and the filter is left

with no carrier-phase measurements for two time steps. A double-differencing

algorithm which computed the differences successively would rectify this design

weakness.

7.1.4 Best Case Filter Performance

In order to establish the best case filter performance, the two most

stable Orion receivers were used, minimizing the impact of cycle slips. Figures

7.16-7.23 show these single run simulations for both the one second and the

five second update rate. The accuracy for each scenario is listed in Table 7.9.
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Figure 7.16: Best Case 1 km Relative Position
Actual and Formal Errors/1 Second Update.
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Figure 7.17: Best Case 1 km Relative Velocity
Actual and Formal Errors/1 Second Update.
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Figure 7.18: Best Case 100 km Relative Position
Actual and Formal Errors/1 Second Update.
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Figure 7.19: Best Case 100 km Relative Velocity
Actual and Formal Errors/1 Second Update.
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Figure 7.20: Best Case 1 km Relative Position
Actual and Formal Errors/5 Second Update.
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Figure 7.21: Best Case 1 km Relative Velocity
Actual and Formal Errors/5 Second Update.
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Figure 7.22: Best Case 100 km Relative Position
Actual and Formal Errors/5 Second Update.
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Figure 7.23: Best Case 100 km Relative Velocity
Actual and Formal Errors/5 Second Update.
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Figure 7.24: Cycle Slip Visualization.
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Figure 7.25: Best Case Cycle Slip Profile.
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Table 7.9: Relative State Error: Best Case Filter Runs (mean ± std)

State 1 km Case 100 km Case

1 Second

∆u m −0.0018± 0.0034 0.0062± 0.0197

∆v −0.0015± 0.0026 −0.0292± 0.0157

∆w −0.0053± 0.0025 −0.0030± 0.0123

∆u̇ m/s 0.0000± 0.0001 −0.0000± 0.0002

∆v̇ −0.000± 0.0002 0.0000± 0.0003

∆ẇ 0.0000± 0.0002 0.0000± 0.0001

5 Second

∆u m −0.0025± 0.0029 0.0131± 0.0122

∆v −0.0033± 0.0024 −0.0042± 0.0155

∆w −0.0097± 0.0008 −0.0069± 0.0124

∆u̇ m/s 0.0000± 0.0002 0.0001± 0.0003

∆v̇ −0.0000± 0.0005 −0.0006± 0.0006

∆ẇ 0.00000± 0.0002 0.0003± 0.0004

Table 7.9 illustrates the filter performance when the cycle slips are kept

to a minimum, as depicted in Figure 7.25. These accuracies range from two

to five times lower than the ensemble runs, which combined data with varying

amounts of cycle slips. Accordingly, in order to maximize the filter’s efficiency,

GPS receivers which have a minimal cycle slip rate should be chosen.

7.1.5 Receiver Clock Model Validation

As described in Chapter 4, the GPS receiver clock and receiver offsets

are modelled as random variables that are disconnected. Traditionally, the

frequency offset is modelled as the derivative of the clock offset state. The

clock steering performed by the Orion disconnects these states, which requires
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them to be modelled independently. Figures 7.26 and 7.27 show the typical

estimation values for the two clock parameters. It is apparent that there is

little correlation between the figures, which validates the modelling approach.
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Figure 7.26: GPS Clock Offset Estimation.
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Figure 7.27: GPS Frequency Offset Estimation.

7.2 Extended Formation Flying Testbed Results

In order to test robustness of the navigation and control routines, they

were inserted into the EFFTB communication package. The fidelity of the

algorithms were tested by requiring them to process real time data at a 5

second update rate, and generate control vectors at 300 second intervals. A

benchmark test was performed in the GPS Laboratory at UT/CSR. This result

was then used to analyze the results generated from tests spanning the internet.

7.2.1 Two Satellite Local Simulation

Since the GPS simulator at UT/CSR is limited to two spacecraft, initial

EFFTB tests were conducted with one hub spacecraft and one node craft.

This testing allowed for the verification of the communication links, and the

validation of the filter and controller in the real-time environment. Figure 7.28
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and Figure 7.29 demonstrate the relative position and velocity errors, which

are summarized in Table 7.11.

Table 7.10: Relative State Error: EFFTB 2 Satellite Simulation (mean ± std)

State Steady State Error

∆u (m) 0.0435± 0.0621

∆v 0.0300± 0.0345

∆w −0.0126± 0.0604

∆u̇ (m/s) −0.0000± 0.0002

∆v̇ −0.0001± 0.0003

∆ẇ 0.0000± 0.0004

The filter performs very closely to the predicted laboratory results.

Excluding the large jump at 3500 seconds, the steady state noise is around 3

cm. The spike in estimation error is caused by a large (35 cm/s) maneuver

commanded by the controller. The filter treats the delta-v as an impulse, while

the truth environment integrates the maneuver over one second. Additionally,

the large maneuver causes the receiver to lose lock on all of the GPS satellites,

so the filter processes no relative measurements for 10 seconds while it resets

the ambiguity terms. During these 10 seconds, the filter’s dynamic model and

the truth model drift apart, yielding the error shown in the plot. It is also

shown that within 400 seconds, the solution has once again converged.

The tracking errors are shown in Figure 7.30. The controller performed

as in the offline cases, exhibiting a 20 meter tracking error over the simulation

period. Figure 7.31 illustrates the control effort generated by the controller.

The maneuvers are typically on the order of 5 cm/s in any direction, but can

grow as high as 30 cm/s. It is apparent that such a control scheme would be

very costly in fuel, and may not be an optimal control strategy.
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Figure 7.28: Ensemble Mean Relative Position
Error Actual and Formal Errors at 100 km.
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Figure 7.29: Ensemble Mean Relative Velocity
Actual and Formal Errors at 100 km.
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Figure 7.30: Ensemble Mean Tracking Error with 300 Sec Window
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Figure 7.31: Ensemble Mean Actuation Effort in the û, v̂, ŵ frame
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The controller passes the maneuver back to the filter to update its

dynamical model. Since no error is superimposed upon this velocity vector, the

covariance envelope is not widened during the burns. This can be visualized in

Figure 7.28, especially around the 3600 second mark. A degree of uncertainty

should be added to the solution to compensate for the the misrepresentation

of the maneuver, requiring an increase of the covariance around the control

time.

7.2.2 Multi-Satellite Formation

The full EFFTB was tested by coupling the Spirent GPS signal gener-

ator located at UT/CSR with the 4 RF signal simulator hosted at Goddard

Space Flight Center’s Formation Flying Testbed. Several small modifications

were performed on the communication environment in order to comply with

network security policies at both sites.

The formation scenario implemented for the final phase of testing was

similar to the set of conditions presented earlier. The four node spacecraft were

distributed approximately 100 km from the hub spacecraft in either a leading

or trailing position. The results of four real-time data sets were averaged to

generate Figures 7.32 and 7.33. Both the relative position and velocity errors

were consistent with the previous results, implying that it is not necessary

to maintain exact synchronization between the two simulation environments.

The typical offset between the two environment computers was on the order of

one second, well below the 5 second filter update rate. For applications requir-

ing estimates closer to 1Hz, time synchronization devices would be required at

both laboratories.

A set of four simulations was run with the controller enabled. The
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Figure 7.32: Full Simulation Environment Ensemble Mean Relative Position
Actual and Formal Errors

scenario contained five satellites, the hub and four node spacecraft. Such a

situation would have been previously impossible without a 5 RF GPS simu-

lator. The controller was again set to burn every 300 seconds, and the initial

offsets from the desired trajectory were also held the same. The relative po-

sition and velocity errors are illustrated in Figures 7.34 and 7.35 respectively.

It is apparent that the ensemble averaging of the 16 individual runs helped to

smooth out many of the large jumps seen in Figure 7.28. The tracking error

shown in 7.36, also demonstrates a somewhat smoother nature. The EFFTB

communication system had no difficulties in routing messages to any of the

nodes, and seamlessly linked the two laboratories.

Figure 7.37 illustrates the average control effort exhausted over the four

controlled simulations. The total control effort is detailed in Table 7.12. On

average, it would require three meters/second of control per orbit to maintain

93



0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.01

−0.005

0

0.005

0.01
UVW relative velocity error Plots: 100 Km Separation

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.01

−0.005

0

0.005

0.01

er
ro

r 
(m

/s
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.01

−0.005

0

0.005

0.01

Time (s)

Figure 7.33: Full Simulation Environment Ensemble Mean Relative Velocity
Actual and Formal Errors

the desired spacing of this orbit. This expenditure would be prohibitively high

for most formation missions. The point of this example was to demonstrate a

proof of control capability using this navigation system rather than to recom-

mend a specific guidance method, which would be application dependent.
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Table 7.11: Relative State Error: EFFTB 5 Satellite Simulation (mean ± std)

Non-Controlled State Steady State Error

∆u (m) 0.0114± 0.0699

∆v −0.0559± 0.0458

∆w 0.0323± 0.0312

∆u̇ (m/s) 0.00000± 0.0002

∆v̇ −0.00002± 0.0001

∆ẇ 0.00006± 0.0003

Controlled State Steady State Error

∆u (m) −0.0612± 0.0710

∆v −0.0943± 0.0556

∆w 0.0037± 0.0962

∆u̇ (m/s) 0.00000± 0.0005

∆v̇ 0.00001± 0.0004

∆ẇ 0.00016± 0.0007
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Figure 7.34: Ensemble Mean Relative Position
Actual and Formal Errors With Control Effort
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Figure 7.35: Ensemble Mean Relative Velocity
Actual and Formal Errors With Control Effort
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Figure 7.36: Ensemble Mean Tracking Error
in the û, v̂, ŵ frame

0 500 1000 1500 2000 2500 3000 3500

−0.2

−0.1

0

0.1

0.2

Control Effort

0 500 1000 1500 2000 2500 3000 3500

−0.2

−0.1

0

0.1

0.2

C
on

tr
ol

 E
ffo

rt
 (

m
/s

)

0 500 1000 1500 2000 2500 3000 3500

−0.2

−0.1

0

0.1

0.2

Time (s)

Figure 7.37: Ensemble Mean Actuation Effort
in the û, v̂, ŵ frame
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Table 7.12: Control Effort in the û, v̂, ŵ frame

State Control Effort

u m/s 0.8952

v 0.777885

w 1.144059

Total 2.817145
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Chapter 8

Conclusion

The purpose of this work was to develop a general formation navigation

filter capability. The filter possesses high accuracy relative position estimation

over a variety of inter-satellite distances and number of satellites included in

the formation. This filter was tested in a real-time closed-loop hardware-

in-the-loop tesbed which was developed to utilize the internet to exchange

measurements. A summary of the results is presented in the following section.

Finally, directions for future work are indicated.

8.1 Summary of Results

The study of large satellite formations can be divided into two cat-

egories: formations with large intersatellite spacings and formations with a

large number of satellites. It was desired to look at both of these problems

as generally as possible, and show that both are feasible for future formation

missions using GPS sensor measurements.

The problem of relative navigation over large baselines was examined

first. In order to strike a balance between filter complexity and accuracy, a

plant model with atmospheric drag and J2 gravity perturbation was imple-

mented. All of the GPS observables were used in a filter state that estimated

both the relative position and the absolute position of the host satellite.

It was found that the filter performed quite well over a large range of
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baselines. It was determined that for shorter baselines, the accuracy of the

absolute position had little impact on the overall relative solution. For the

relative solution at the 1Hz update rate, both the 1 km separation and the

100 km separation had steady state noise of less than a few centimeters over

an ensemble of runs. The 1 km results were consistent with other works, vali-

dating the filter design, and displaying its robustness at multiple baselines. At

500 km, the models, primarily the ionospheric delay model, began to degrade

in such a way that the integer ambiguity states became difficult to determine.

This led to a drop in performance, signaling the limit of the design outlined

here.

When the measurement update rate was increased to 5 seconds, neither

the 1 km nor the 100 km estimator accuracies decreased significantly. In gen-

eral, the steady state errors doubled, but left them still below 10 centimeters.

One of the problems that was faced in processing the actual GPS data

was the handling of cycle slips. The slips occurred sporadically in some of

the receivers that were used in the testing, and more frequently in others.

Simulations with a large number of slips had a much slower relative solution

convergence rate, and higher overall navigation error. It was shown that for

a run with minimal cycle slips, the 1 km spacing had steady state error no

larger than 1 centimeter, and the 100 km case maintained error less than 2

centimeters. These results validate the estimator design and emphasize the

importance of the hardware performance on the final results.

A simple linear controller was developed in order to close the loop in

the EFFTB. The purpose of the controller was to demonstrate the closed-loop

hardware-in-the-loop system performance for a representative formation fly-

ing mission. The designed controller was able to accurately control the system

with no feedback error, and when the controller update interval was reduced
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to 10 seconds, it was able to track small amounts of measurement error pre-

cisely. When the absolute state filter feedback was simulated by adding 3

meters of feedback noise, the accuracy of the controller dropped to 20 meters.

This was determined to be the result of the less accurate absolute position

solution being propagated forward in time to generate the desired trajectory.

It was shown that if the absolute position error was reduced to .5 meters, the

controller accuracy improved to within a couple of meters.

The Extended Formation Flying Testbed (EFFTB) was developed to

link hardware from remote sites in order to simulate formations with many

satellites. This was done because it is unrealistic to locate all of the testing

resources that are required for a large formation at one facility. The commu-

nication package was designed to allow for many combinations of hardware or

software components required for testing. Once developed, it was specialized

to accommodate Orion GPS receivers and the Spirent GPS signal simulators

used in this test program. This instance of the EFFTB makes use of several

different programs running simultaneously on different machines to emulate

a satellite formation in orbit. Data is passed back and forth in a broadcast

fashion to mimic space communications. Every effort was made to keep the

simulation environment as authentic as possible.

The long baseline filter and the linear controller were inserted into the

testbed architecture in order to verify the offline results. Since the 500 km

baseline demonstrated to be at the limit of applicability for this filter, the

focus was placed on the 100 km filter. It was found that the steady state error

was on the order of 5 centimeters, only 3 times as noisy as the offline case.

The decrease in performance is due to the addition of the controller, which

caused small jumps in the relative position error when the control effort was

large. The tracking error had a 20 meter error band, as predicted in the offline
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testing. Both the controller and the estimator performed comparably in the

real-time testing and in the offline studies, verifying the design and utility of

this navigation system.

There was no appreciable decrease in accuracy when the simulation en-

vironment was extended to include other GPS simulators located at a different

facility. The synchronization between the two simulation systems did not play

a critical role in the relative navigation, assuming the update rate was greater

than the anticipated time offset. Using the newly-developed tool, closed-loop

simulations can be created which span multiple environments, allowing the

study of navigation and control on truly large formations.

8.2 Future Work

The results presented in the previous section suggest that the filter de-

sign is robust up to 500 km, but a few simplicities were included that may

increase the errors from the values stated here.

8.2.1 Ionosphere Study

Future work should be done examining the effects of the ionosphere, es-

pecially at longer baselines. The Spirent simulator can produce various smooth

ionosphere models, which may not accurately represent the actual space envi-

ronment. This filter design should be tested against a more realistic ionosphere

model to further examine its effects on the ambiguity resolution.
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8.2.2 Multi-Path Study

GPS multi-path error was neglected during this study, but could serve

as a major error source. This error is highly dependent on the satellite’s shape,

and cannot easily be modelled in a general sense. It may be helpful to take

a single satellite, and analyze the impact that multi-path would have on it,

generating some insight into the effect on the filter’s performance.

8.2.3 Attitude Modelling and Control

The main piece that is missing from this formation simulation is the at-

titude determination and control capabilities. It was assumed that the control

was always performed along the X,Y,Z inertial axis, regardless of the satellite’s

orientation. The inclusion of attitude modelling would open a new realm of

reality to the testbed. This work is anticipated to be performed in the near

future at UT/CSR.

8.2.4 Formation Control

The EFFTB can be used as a tool to investigate the control of a for-

mation as a single entity. The different control architectures can be studied to

determine which is most appropriate for a given mission. With the addition

of more accurate thruster models, formation fuel consumption and mission life

can also be studied.
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8.2.5 EFFTB Extension

The EFFTB was designed to be a general purpose simulation tool.

Future work could include the developing of different instances that use other

simulated measurements instead of the GPS simulator/receiver combination.

In doing so, missions such as High Earth Orbit (HEO) or deep space missions

can be considered and modelled. The last step could be to connect flight

computers to the EFFTB in order to encompass the limited computation power

experienced in space.
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Appendix A

Dynamic Equation Partial Derivatives

A.1 Dynamic Equation Partial Derivatives
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∂ż
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∂ẍ

∂y
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µxy

r5
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)]
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A
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ρV

y(ẋ + ωEy)
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CD

A
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ρ
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V ωE +

ωE(ẋ + ωEy)2

V
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∂ẍ

∂z
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r2
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+
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CD

A
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ρV

z(ẋ + ωEy)

rH
∂ẍ

∂ẋ
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CD
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ρ
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V +

(ẋ + ωEy)2

V
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∂ẍ

∂ẏ
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ρ

(ẏ − ωEx)(ẋ + ωEy)
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∂ẍ

∂ż
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CD

A
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∂ÿ

∂x
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CD

A
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ρ
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∂ÿ

∂y
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∂ÿ

∂z
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µyz
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(
RE
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CD

A
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∂ÿ

∂ẋ
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A
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ρ
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∂ẏ
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∂ż
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∂z̈

∂ẋ
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CD
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ρ
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∂ẏ
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∂ż
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Appendix B

Measurement Equation Partial Derivatives

B.1 Pseudorange Partial Derivatives

∂P
∂ẋ

= 0 ∂P
∂ẏ

= 0 ∂P
∂ż

= 0
∂P
∂∆x

= 0 ∂P
∂∆y

= 0 ∂P
∂∆z

= 0
∂P
∂∆ẋ

= 0 ∂P
∂∆ẏ

= 0 ∂P
∂∆ż

= 0
∂P
∂ḃ

= 0 ∂P
∂N

= 0 ∂P
∂B

= 0

∂P

∂x
= −(rx,GPS − rx)

|rGPS − r|
∂P

∂y
= −(ry,GPS − ry)

|rGPS − r|
∂P

∂z
= −(rz,GPS − rz)

|rGPS − r|
∂P

∂b
= 1
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B.2 Doppler Partial Derivatives

∂D
∂∆x

= 0 ∂D
∂∆y

= 0 ∂D
∂∆z

= 0
∂D
∂∆ẋ

= 0 ∂D
∂∆ẏ

= 0 ∂D
∂∆ż

= 0
∂P
∂b

= 0 ∂P
∂N

= 0 ∂P
∂B

= 0

∂D

∂x
=

(ṙx − ṙx,GPS)

|rGPS − r|
∂D

∂y
=

(ṙy − ṙy,GPS)

|rGPS − r|
∂D

∂z
=

(ṙz − ṙz,GPS)

|rGPS − r|
∂D

∂ẋ
=

(rx − rx,GPS)

|r − rGPS|
∂D

∂ẏ
=

(ry − ry,GPS)

|r − rGPS|
∂D

∂ż
=

(rz − rz,GPS)

|r − rGPS|
∂D

∂ḃ
= 1
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B.3 Double-Differenced Carrier Phase Partial Deriva-
tives

∂λΦ
∂ẋ

= 0 ∂λΦ
∂ẏ

= 0 ∂λΦ
∂ż

= 0
∂λΦ
∂∆ẋ

= 0 ∂λΦ
∂∆ẏ

= 0 ∂λΦ
∂∆ż

= 0
∂λΦ
∂b

= 0 ∂λΦ
∂ḃ

= 0 ∂λΦ
∂B

= 0

∂λΦ

∂x
=

[
−rA

GPS,x + ∆rx + rx

|rA
GPS −∆r − r| +

(rA
GPS,x − rx)

|rA
GPS − r|

]

−
[
−rB

GPS,x + r∆x + rx

|rB
GPS −∆r − r| +

(rB
GPS,x − rx)

|rB
GPS − r|

]

∂λΦ

∂y
=

[
−rA

GPS,y + ∆ry + ry

|rA
GPS −∆r − r| +

(rA
GPS,y − ry)

|rA
GPS − r|

]

−
[
−rB

GPS,y + r∆y + ry

|rB
GPS −∆r − r| +

(rB
GPS,y − ry)

|rB
GPS − r|

]

∂λΦ

∂z
=

[
−rA

GPS,z + ∆rz + ry

|rA
GPS −∆r − r| +

(rA
GPS,z − rz)

|rA
GPS − r|

]

−
[
−rB

GPS,z + r∆z + rz

|rB
GPS −∆r − r| +

(rB
GPS,z − rz)

|rB
GPS − r|

]

∂λΦ

∂∆x
=

[
−rA

GPS,x + ∆rx + rx

| − rGPS + ∆r + r

]

−
[
−rB

GPS,x + ∆rx + rx

| − rB
GPS + ∆rx + rx

]

112



∂λΦ

∂∆y
=

[
−rA

GPS,y + ∆ry + ry

| − rGPS + ∆r + r

]

−
[
−rB

GPS,y + ∆ry + ry

| − rB
GPS + ∆ry + ry

]

∂λΦ

∂∆z
=

[
−rA

GPS,z + ∆rz + rz

| − rGPS + ∆r + r

]

−
[
−rB

GPS,z + ∆rz + rz

| − rB
GPS + ∆rz + rz

]

∂λΦ

∂λN
= 1
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B.4 Double-Differenced Doppler Partial Derivatives

∂DAB
IJ

∂b
= 0

∂DAB
IJ

∂ḃ
= 0

∂DAB
IJ

∂N
= 0

∂DAB
IJ

∂B
= 0

∂DAB
IJ

∂x
=

−ṙA
GPS,x + ∆ṙx + ṙx

(| − rA
GPS + ∆r + r|)

+
−rA

GPS,x + ∆rx + rx

(| − rA
GPS + ∆r + r|)3

(−ṙA
GPS + ∆ṙ + ṙ) · (−rA

GPS + ∆r + r)

−
[
−rA

GPS,x + rx

−|ṙA
GPS + ṙ| +

rA
GPS,x − rx

−|ṙA
GPS + ṙ|

]
(−ṙA

GPS + ṙ) · (−rA
GPS + r)

−ṙB
GPS,x + ∆ṙx + ṙx

(| − rB
GPS + ∆r + r|)

+
−rB

GPS,x + ∆rx + rx

(| − rB
GPS + ∆r + r|)3

(−ṙB
GPS + ∆ṙ + ṙ) · (−rB

GPS + ∆r + r)

−
[
−rB

GPS,x + rx

−|ṙB
GPS + ṙ| +

rB
GPS,x − rx

−|ṙB
GPS + ṙ|

]
(−ṙB

GPS + ṙ) · (−rB
GPS + r)

∂DAB
IJ

∂y
=

−ṙA
GPS,y + ∆ṙy + ṙy

(| − rA
GPS + ∆r + r|)

+
−rA

GPS,y + ∆ry + ry

(| − rA
GPS + ∆r + r|)3

(−ṙA
GPS + ∆ṙ + ṙ) · (−rA

GPS + ∆r + r)

−
[
−rA

GPS,y + ry

−|ṙA
GPS + ṙ| +

rA
GPS,y − ry

−|ṙA
GPS + ṙ|

]
(−ṙA

GPS + ṙ) · (−rA
GPS + r)

−ṙB
GPS,y + ∆ṙy + ṙy

(| − rB
GPS + ∆r + r|)

+
−rB

GPS,y + ∆ry + ry

(| − rB
GPS + ∆r + r|)3

(−ṙB
GPS + ∆ṙ + ṙ) · (−rB

GPS + ∆r + r)

−
[
−rB

GPS,y + ry

−|ṙB
GPS + ṙ| +

rB
GPS,y − ry

−|ṙB
GPS + ṙ|

]
(−ṙB

GPS + ṙ) · (−rB
GPS + r)
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∂DAB
IJ

∂z
=

−ṙA
GPS,z + ∆ṙz + ṙz

(| − rA
GPS + ∆r + r|)

+
−rA

GPS,z + ∆rz + rz

(| − rA
GPS + ∆r + r|)3

(−ṙA
GPS + ∆ṙ + ṙ) · (−rA

GPS + ∆r + r)

−
[
−rA

GPS,z + rz

−|ṙA
GPS + ṙ| +

rA
GPS,z − rz

−|ṙA
GPS + ṙ|

]
(−ṙA

GPS + ṙ) · (−rA
GPS + r)

−ṙB
GPS,z + ∆ṙz + ṙz

(| − rB
GPS + ∆r + r|)

+
−rB

GPS,z + ∆rz + rz

(| − rB
GPS + ∆r + r|)3

(−ṙB
GPS + ∆ṙ + ṙ) · (−rB

GPS + ∆r + r)

−
[
−rB

GPS,z + rz

−|ṙB
GPS + ṙ| +

rB
GPS,z − rz

−|ṙB
GPS + ṙ|

]
(−ṙB

GPS + ṙ) · (−rB
GPS + r)

∂DAB
IJ

∂ẋ
=

[
−rA

GPS,x + ∆rx + rx

| − rA
GPS + ∆r + r| −

−rA
GPS,x + rx

|rA
GPS + r|

]

−
[
−rB

GPS,x + ∆rx + rx

| − rB
GPS + ∆r + r| −

−rB
GPS,x + rx

|rB
GPS + r|

]

∂DAB
IJ

∂ẏ
=

[
−rA

GPS,y + ∆ry + ry

| − rA
GPS + ∆r + r| −

−rA
GPS,y + ry

|rA
GPS + r|

]

−
[
−rB

GPS,y + ∆ry + ry

| − rB
GPS + ∆r + r| −

−rB
GPS,y + ry

|rB
GPS + r|

]

∂DAB
IJ

∂ż
=

[
−rA

GPS,z + ∆rz + rz

| − rA
GPS + ∆r + r| −

−rA
GPS,z + rz

|rA
GPS + r|

]

−
[
−rB

GPS,z + ∆rz + rz

| − rB
GPS + ∆r + r| −

−rB
GPS,z + rz

|rB
GPS + r|

]
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∂DAB
IJ

∂∆x
=

−ṙA
GPS,x + ∆ṙx + ṙ

(| − rA
GPS + ∆r + r|)3

+

[
−rA

GPS,x −∆rx − rx

| − rA
GPS + ∆r + r|

]
(ṙA

GPS −∆ṙ − ṙ) · (rA
GPS −∆r − r)

−ṙB
GPS,x + ∆ṙx + ṙ

(| − rB
GPS + ∆r + r|)3

+

[
−rB

GPS,x −∆rx − rx

| − rB
GPS + ∆r + r|

]
(ṙB

GPS −∆ṙ − ṙ) · (rB
GPS −∆r − r)

∂DAB
IJ

∂∆y
=

−ṙA
GPS,y + ∆ṙy + ṙ

(| − rA
GPS + ∆r + r|)3

+

[
−rA

GPS,y −∆ry − ry

| − rA
GPS + ∆r + r|

]
(ṙA

GPS −∆ṙ − ṙ) · (rA
GPS −∆r − r)

−ṙB
GPS,y + ∆ṙy + ṙ

(| − rB
GPS + ∆r + r|)3

+

[
−rB

GPS,y −∆ry − ry

| − rB
GPS + ∆r + r|

]
(ṙB

GPS −∆ṙ − ṙ) · (rB
GPS −∆r − r)

∂DAB
IJ

∂∆z
=

−ṙA
GPS,z + ∆ṙz + ṙ

(| − rA
GPS + ∆r + r|)3

+

[
−rA

GPS,z −∆rz − rz

| − rA
GPS + ∆r + r|

]
(ṙA

GPS −∆ṙ − ṙ) · (rA
GPS −∆r − r)

−ṙB
GPS,z + ∆ṙz + ṙ

(| − rB
GPS + ∆r + r|)3

+

[
−rB

GPS,z −∆rz − rz

| − rB
GPS + ∆r + r|

]
(ṙB

GPS −∆ṙ − ṙ) · (rB
GPS −∆r − r)
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∂DAB
IJ

∂∆ẋ
=

[
−rA

GPS,x + ∆rx + rx

−|rA
GPS + ∆r + r|

]
−

[
−rB

GPS,x + ∆rx + rx

−|rB
GPS + ∆r + r|

]

∂DAB
IJ

∂∆ẏ
=

[
−rA

GPS,y + ∆ry + ry

−|rA
GPS + ∆r + r|

]
−

[
−rB

GPS,y + ∆ry + ry

−|rB
GPS + ∆r + r|

]

∂DAB
IJ

∂∆ż
=

[
−rA

GPS,z + ∆rz + rz

−|rA
GPS + ∆r + r|

]
−

[
−rB

GPS,z + ∆rz + rz

−|rB
GPS + ∆r + r|

]
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Appendix C

Filter Verification Procedures

To ensure proper functionality of the EKF, several tests were per-

formed. These tests and their results are provided for completeness.

C.1 Verification of the Dynamic Partial Derivative Ma-
trix

In order to verify the proper construction of the dynamic partial deriva-

tive matrix, its entries are compared to the complimentary quantities generated

from taking the finite differences of the non-linear differential equations. From

the discussion in Chapter 5, the dynamic partial derivative matrix is generated

from:

A(t) =
∂F

∂x
|x0

This can be compared to the approximate value computed from the forward

difference formula:

∂F

∂xi

≈ fi(x1, x2, . . . , xi + h, . . . , xn)− fi(x1, x2, . . . , xi, . . . , xn)

h

where fi is the ith state element that is being examined, and h is a small

number. The non-trivial results of this comparison, performed for a 100 Km

satellite separation, are detailed in Table C.1 and Table C.2.
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Table C.1: Dynamic Partial Differential Equation Validation

Derivative A Matrix Entry Numerical Derivative Difference

∂ẍ
∂x

4.43337762E-07 4.43339843E-07 -2.08117E-12
∂ẍ
∂y

-1.63758144E-06 -1.63757952E-06 -1.92069E-12
∂ẍ
∂z

-9.26468001E-07 -9.26466901E-07 -1.10075E-12
∂ẍ
∂ẋ

-3.18904346E-10 -3.18917300E-10 1.29539E-14
∂ẍ
∂ẏ

1.96743068E-11 1.96751108E-11 -8.04001E-16
∂ẍ
∂ż

-7.35739287E-11 -7.35734433E-11 -4.85365E-16
∂ÿ
∂x

-1.63757938E-06 -1.63757938E-06 1.30301E-17
∂ÿ
∂y

3.15532103E-07 3.15532141E-07 -3.82064E-14
∂ÿ
∂z

8.91018701E-07 8.9101873243E-07 -3.15294E-14
∂ÿ
∂ẋ

1.96743068E-11 1.96751123E-11 -8.05459E-16
∂ÿ
∂ẏ

-3.16468679E-10 -3.1647196713E-10 3.28765E-15
∂ÿ
∂ż

6.91435351E-11 6.91432569544E-11 2.78177E-16
∂z̈
∂x

-9.26494804E-07 9.26494814E-07 9.75885E-15
∂z̈
∂y

8.91045651E-07 8.91045641E-07 1.02093E-14
∂z̈
∂z

-7.58869552E-07 -7.58869605E-07 5.29765E-14
∂z̈
∂ẋ

-7.35739287E-11 -7.35734404E-11 -4.88296E-16
∂z̈
∂ẏ

6.91435351E-11 6.91432596E-11 2.75518E-16
∂z̈
∂ż

-5.56539317E-10 -5.56536974E-10 -2.34303E-15
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Table C.2: Dynamic Partial Differential Equation Validation Cont.

Derivative A Matrix Entry Numerical Derivative Difference

∂∆ẍ
∂x

4.25051620E-07 4.25051613E-07 6.58033E-15
∂∆ẍ
∂y

-1.61680315E-06 -1.61680318E-06 3.25156E-14
∂∆ẍ
∂z

-9.58182648E-07 -9.58182615E-07 -3.27764E-14
∂∆ẍ
∂ẋ

-3.20395142E-10 -3.20378886E-10 -1.62555E-14
∂∆ẍ
∂ẏ

2.12700884E-11 2.12727721E-11 -2.68365E-15
∂∆ẍ
∂ż

-7.59046096E-11 -7.58928249E-11 -1.17847E-14
∂∆ÿ
∂x

-1.61680111E-06 -1.61680339E-06 2.28546E-12
∂∆ÿ
∂y

2.92706778E-07 2.92708944E-07 -2.16553E-12
∂∆ÿ
∂z

9.19767672E-07 9.19769109E-07 -1.43745E-12
∂∆ÿ
∂ẋ

2.12700884E-11 2.12727633E-11 -2.67489E-15
∂∆ÿ
∂ẏ

-3.17854490E-10 -3.17858283E-10 3.79343E-15
∂∆ÿ
∂ż

7.15372075E-11 7.15292774E-11 7.93010E-15
∂∆z̈
∂x

-9.58210700E-07 -9.58210693E-07 -6.92870E-15
∂∆z̈
∂x

9.19795839E-07 9.19795864E-07 -2.43985E-14
∂∆z̈
∂x

-7.17760550E-07 -7.17760552E-07 2.18525E-15
∂∆z̈
∂x

-7.58941111E-11 -7.58930910E-11 -1.02002E-15
∂∆z̈
∂x

7.15267089E-11 7.15293743E-11 -2.66539E-15
∂∆z̈
∂x

-5.53001301E-10 -5.52997605E-10 -3.69589E-15

C.2 Verification of the Measurement Partial Derivative
Matrix

The measurement partial derivative matrix was verified as in Section

C.1. The non-trivial results are listed in Table C.3.
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Table C.3: Measurement Partial Differential Equation Validation

Derivative H Matrix Entry Numerical Derivative Difference

∂P
∂x

7.84860376E-01 7.84860260E-01 1.15618E-07
∂P
∂y

-3.44975293E-01 -3.44975283E-01 -1.00706E-08
∂P
∂z

-5.14768327E-01 -5.14768323E-01 -4.35421E-09
∂D
∂x

1.64229470E-04 1.64229470E-04 1.65339E-13
∂D
∂y

-1.73000219E-04 -1.73000200E-04 -1.96636E-11
∂D
∂z

3.66335628E-04 3.66335629E-04 -1.16779E-12
∂D
∂ẋ

7.84860260E-01 7.84860260E-01 -5.08993E-12
∂D
∂ẏ

-3.44975283E-01 -3.44975283E-01 -1.92002E-12
∂D
∂ż

-5.14768323E-01 -5.14768323E-01 1.13600E-11
∂δλΦ
∂x

-2.02226288E-03 -2.02246146E-03 1.98578E-07
∂δλΦ

∂y
6.38032661E-04 6.37983933E-04 4.87274E-08

∂δλΦ
∂z

5.45557807E-04 5.45673565E-04 -1.15758E-07
∂δλΦ
∂∆x

-1.73277916E+00 -1.73277916E+00 -4.49096E-09
∂δλΦ
∂∆y

1.76946906E-01 1.76946894E-01 1.24717E-08
∂δλΦ
∂∆z

2.38128883E-01 2.38128962E-01 -7.85587E-08
∂δD
∂x

6.16708027E-06 6.16705936E-06 2.09169E-11
∂δD
∂y

-3.09217499E-07 -3.09234916E-07 1.74173E-11
∂δD
∂z

-1.81840626E-06 -1.81841582E-06 9.56467E-12
∂δD
∂ẋ

-2.02246147E-03 -2.02246146E-03 -7.15000E-12
∂δD
∂ẏ

6.37983912E-04 6.37983933E-04 -2.14815E-11
∂δD
∂ż

5.45673581E-04 5.45673565E-04 1.56880E-11
∂δD
∂∆x

-2.44516126E-04 -2.44516132E-04 5.69595E-12
∂δD
∂∆y

4.78947935E-06 4.78946488E-06 1.44737E-11
∂δD
∂∆z

2.90376513E-05 2.90376732E-05 -2.18656E-11
∂δD
∂∆ẋ

-1.73277918E+00 -1.73277918E+00 6.41998E-12
∂δD
∂∆ẏ

1.76946888E-01 1.76946888E-01 -5.44001E-12
∂δD
∂∆ż

2.38128946E-01 2.38128946E-01 -5.42000E-12
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C.3 Verification of Measurement Noise Settings

Verification of the measurement noise settings in the filter was achieved

by comparing the standard deviation on the measurement residuals to the one-

sigma setting used in the filter. Figure C.1 illustrates the residuals over one

orbit, and Table C.4 provides the comparison of the filter settings.
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Figure C.1: Measurement Residuals

122



Table C.4: Measurement Noise Verification.
Measurement Residuals Filter Setting

P(m) 0.8099 1
D(m/s) 0.1981 .25
δλΦ (m) 0.0012 .004
δD (m/s) 0.1055 .15

C.4 Covariance Update Verification

In order to verify the covariance update process was reducing the co-

variance, it was plotted before and after the update. A typical result for the

absolute case are depicted in Figure C.2. Figure C.3 illustrates a relative po-

sition covariance update. In both sets of figures, the blue dots are pre-update

covariances and the red dots are after the update.
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Figure C.2: Absolute Position Covariances Updates
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Figure C.3: Relative State Covariance Updates
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