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We study the classical dynamics of bound state and scattering trajectories of the chlorine atom interacting
with the HO molecule using a two-dimensional model in which the HO bond length is held fixed. The bound
state system forms the HOCl molecule and at low energies is predominantly integrable. Below dissociation a
number of bifurcations are observed, most notably a series of saddle-center bifurcations related to a 2:1 and at
higher energies 3:1 resonance between bend and stretch motions. At energies above dissociation the classical
phase space becomes dominated by a homoclinic tangle which induces a fractal distribution of singularities in
all scattering functions. The structure of the homoclinic tangle is examined directly using Poincaré surfaces of
section as well as indirectly through its influence on the time delay of the scattered chlorine atom and the
angular momentum of the scattered HO molecule.
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I. INTRODUCTION

When an atomic or molecular system has a classical coun-
terpart, the nonlinear dynamics of the classical system can
serve as a template for understanding the quantum dynamics
of the atomic or molecular system �1,2�. The presence of
chaos in the classical phase space can cause a range of en-
ergy eigenstates of the quantum system to spread throughout
the chaotic region of the classical phase space. If bifurca-
tions, leading to the formation of new periodic orbits, occur
in the classical system, new classes of energy eigenstates can
form in the quantum system �3–5�. Analogous effects can
occur in open systems such as intense laser-driven atomic or
molecular systems. For example, the interaction of the extra
electron in the chlorine ion Cl−, with neutral Cl, can be mod-
eled in terms of an inverted Gaussian potential with a single
bound state. When an intense laser field is applied to the
quantum system, the bound state becomes destabilized and
forms a quasibound state �a long-lived but unstable quantum
state�. As the laser intensity increases, a second quasibound
state is formed which helps to stabilize the electron in the
presence of the intense laser field �6�. The formation of the
second quasibound state has been linked directly to a bifur-
cation and the formation of new periodic orbits in the under-
lying classical phase space at energies well above the disso-
ciation energy of the electron �7�. It is interesting that, if the
same electron interacts with a Morse potential with a single
bound state, no analogous bifurcation occurs in the classical
phase space and no second quasibound state forms in the
quantum system with increasing laser intensity �7–9�.

Another effect of intense laser radiation acting on an
atomic system is the formation of chaotic invariant sets �ho-
moclinic or heteroclinic tangles� that extend far into the
asymptotic region of the classical phase space and induce a
fractal set of singularities into all dynamical quantities re-
lated to the scattering process �10–14�. Complicated bifurca-
tions and the resulting new periodic orbits are often embed-
ded in the chaotic sea that is associated with the heteroclinic
tangles and, potentially, can induce the formation of addi-

tional quasibound states in the quantum system �7,15�.
In this paper, we consider the classical scattering behavior

in a molecular system, where the internal degrees of freedom
of the molecule drive each other in a manner analogous to
the effect of a laser driving the electron described above. We
will focus on the scattering properties of the HOCl molecule.
Joyeux et al. �3� have shown that HOCl vibrational dynam-
ics, for energies at or below the HO+Cl dissociation energy,
can be well described by a model in which the HO bond is
held fixed. Indeed, the HO bond only begins to play an im-
portant role in HOCl dynamics at energies well above the
HO+Cl dissociation energy where the HClO isomer can be
formed. The work of Joyeux et al. focused on the bound state
energy regime below dissociation. The focus of this paper is
the HO+Cl classical scattering dynamics above dissociation,
although we also discuss some aspects of the bound state
regime.

Below dissociation HOCl dynamics is largely integrable.
It is only slightly below and above dissociation that large
scale chaos becomes mixed with regions of regular dynamics
in the classical phase space. Quantum mechanically, the
HO+Cl dissociation process involves decay rates with val-
ues that range over several orders of magnitude �4,16�, indi-
cating that there likely is a complex collection of quasibound
states that determine the dissociation of the molecule. It has
been shown in �7,17� that quasibound states can find support
on both periodic orbits above dissociation and on hetero-
clinic or homoclinic tangles in the chaotic region of the open
system. For this reason, the purpose of this paper is to pro-
vide a classical analysis of HO+Cl scattering dynamics.

In Sec. II we review the derivation of the kinetic energy
for HOCl in the case of zero total angular momentum and
introduce the two-dimensional potential energy surface
�PES� used in this study. The principle periodic orbits as well
as periodic orbits born out of subsequent bifurcations are
discussed in Sec. III. The evolution of these periodic orbits is
followed from low energy all the way to dissociation or until
the orbit becomes engulfed in chaos. Section IV examines
scattering dynamics. The homoclinic tangle which dominates
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phase space above dissociation is shown and its influence on
various scattering functions is examined. In Sec. V we sum-
marize our results and make some concluding remarks.

II. TWO-DIMENSIONAL MODEL OF HOCL

HOCl consists of H, O, and Cl atoms with masses mH, mO
and mCl. In the subsequent analysis, we shall assume that the
total angular momentum of the molecule, Ltot, is zero so all
motion occurs in the plane of the molecule. We introduce
laboratory coordinates �x� ,y� ,z�� and body-fixed coordinates
�x ,y ,z� whose origin is the center of mass of the molecule.
Because Ltot�0, we can assume that all of the dynamics
occurs in the �x� ,z�� and �x ,z� planes and that any angular
momentum vectors generated by internal rotations of the
molecule �such vectors must add to zero� lie along the y� and
y axes in the laboratory and body-fixed frames, respectively.
A sketch of HOCl relative to the laboratory and body frames
is shown in Fig. 1.

Let t1 be a vector of length R that connects the center of
mass of HO to Cl and t2 a vector of length ro that connects H
to O. The angle between t1 and t2 is � where �=0 for the
linear configuration H-O-Cl. The center of mass of the mol-
ecule lies along t1 a distance mdR /M from the Cl atom,
where md=mO+mH and M =mCl+mO+mH. Let rCl� , rH� , and
rO� denote the displacement of the Cl, H, and O atoms from
the laboratory frame origin. Let Rc.m.= �mClrCl� +mOrO�
+mHrH� � /M denote the displacement of the center of mass of
HOCl from the laboratory frame origin. Then,

rCl� = Rc.m. +
md

M
t1, rH� = Rc.m. −

mCl

M
t1 −

mO

md
t2,

rO� = Rc.m. −
mCl

M
t1 +

mH

md
t2. �1�

It is now straightforward to show that the kinetic energy is
given by

T =
mCl

2
ṙCl�2 +

mO

2
ṙO�

2 +
mH

2
ṙH�

2

=
M

2
Ṙc.m.

2 +
mClmd

2M
ṫ1

2 +
mHmO

2md
ṫ2

2. �2�

We assume that t1 lies along the body z axis and that the
body y axis is directed perpendicular to the plane of the
molecule. We can then write t1=Rẑ and t2=ro sin���x̂
+ro cos���ẑ. We further assume that the body frame �x ,z�
axes make an angle � with respect to the laboratory frame
�x� ,z�� axes so that if the two frames rotate relative to one

another, the angular velocity of rotation is �̇ŷ. Taking the HO
bond length to be fixed at ro so that ṙo=0, the time deriva-
tives of vectors t1 and t2 become �18�

ṫ1 = Ṙẑ + �̇ŷ � t1,

ṫ2 = ro�̇ cos���x̂ − ro�̇ sin���ẑ + �̇ŷ � t2. �3�

Substituting Eqs. �3� into Eq. �2� and dropping the center-of-
mass motion we obtain

T =
�1

2
�Ṙ2 + R2�̇2� +

�2

2
�ro

2�̇2 + 2ro
2�̇�̇ + ro

2�̇2� , �4�

where �1=mClmd /M = 595
52 u and �2=mOmH /md= 16

17u with u
the atomic mass unit.

In terms of the canonical momenta pR= �T

�Ṙ
=�1Ṙ, p�= �T

��̇

=�2ro
2��̇+ �̇�, and p�= �T

��̇
=�2ro

2��̇+ �̇�+�1R2�̇, the kinetic
energy takes the form

T =
pR

2

2�1
+

p�
2

2�2ro
2 +

p�
2

2�1R2 −
p�p�

�1R2 +
p�

2

2�1R2 . �5�

The total angular momentum of the molecule is given by

Ltot = �1t1 � ṫ1 + �2t2 � ṫ2 = p�ŷ . �6�

The condition Ltot=0 requires that p�=0. Note, however,

that L1=�1t1� ṫ1=�1R2�̇ŷ and L2=�2t2� ṫ2=�2ro
2��̇+ �̇�ŷ

need not be zero so that Cl and HO can rotate relative to one
another.

With p�=0 the Hamiltonian for HOCl can be written

H =
pR

2

2�1
+

p�
2

2�2ro
2 +

p�
2

2�1R2 + DeV�R,�� = E , �7�

where V�R ,�� is the potential energy of interaction between
the atoms in the HOCl molecule, and E is the total energy of
the system. The quantity ro=1.85a0, where a0=0.529 17
�10−10 m is the Bohr radius. The quantity De
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FIG. 1. �a� Relationship between laboratory frame coordinates
and Jacobi vectors t1, t2, and �. �b� Body-fixed and laboratory axes
differ by an angle � so that t1 always lies along the body z axis.
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=20 312.3 cm−1=2.518 eV=4.035�10−19 J is the dissocia-
tion energy of Cl from the HO complex. The potential energy
is given by

V�R,�� = � 1

2.518 41
��1

2
��1 + tanh�6 − RClO��

� �
i=0

7

�
j=0

7

bi,j„	1 − exp�− 0.8�RClO − 3.2��
i+1 − 1…

�	1 − exp�− 0.1�RClH − 4.0��
 j , �8�

where RClO and RClH are the distances between Cl and O and
Cl and H, respectively. These distances are measured in units
of Bohr radii and are related to R and � by the triangle
equations

RClO =��mH

md
�2

ro
2 + R2 − 2�mH

md
�roR cos��� �9�

and

RClH =��mO

md
�2

ro
2 + R2 + 2�mO

md
�roR cos��� . �10�

The coefficients bi,j are given in Table I. The potential energy

minimum, V=−1, occurs at �R̄ClO=3.209 57, R̄ClH=3.99748�.
From Eqs. �9� and �10� this corresponds to �Rm=3.232 01,
�m=1.346 60�. A contour plot of the potential energy is
shown in Fig. 2.

The two-dimensional �2D� potential energy in Eq. �8� is
derived from the three-dimensional �3D� potential energy
studied extensively in �4� by setting RHO=ro=1.85a0. Joyeux
et al. have studied HOCl using a similarly derived 2D poten-
tial energy starting with the 3D potential energy in �19�.

Comparing the 2D PESs, Fig. 2 and Fig. 1 in �3�, both sur-
faces are symmetric about �=0, have a high wall at �=� and
a saddle point and potential hill along �=0. These potential
barriers at �=� and �=0 rise high above the HO+Cl disso-
ciation energy and play a significant role in the scattering
dynamics of Sec. IV. The PES saddle point in �3� occurs
approximately 1000 cm−1 lower in energy than the saddle
point in our surface. Small quantitative differences between
the surfaces such as this lead to some differences in the evo-
lution of bound periodic orbits. These differences will be
discussed in Sec. III as they arise. HOCl also has an isomer,
HClO, which is not included in either 2D PES. The isomer-
ization barrier lies high above the HO+Cl dissociation en-

TABLE I. Coefficients for HOCl potential.

j bj,0 bj,1 bj,2 bj,3

0 −1.08247�10−1 −1.45971�101 −1.54498�102 −6.85639�102

1 5.29617�100 −9.05238�10−1 1.60231�102 2.87197�103

2 −7.97769�10−1 3.54588�100 −2.02327�102 2.59771�102

3 6.77553�10−1 3.65210�101 −7.71768�102 −4.69590�103

4 −1.94808�100 5.52491�10−1 9.98501�102 −9.97391�103

5 −8.26970�10−1 −5.96464�101 1.18547�103 1.15942�104

6 1.72804�100 −5.68401�100 −1.50514�103 8.43773�103

7 −1.49334�100 4.00405�101 1.66305�102 −7.87303�103

j bj,4 bj,5 bj,6 bj,7

0 −1.27119�104 −1.32484�105 −5.33837�105 −7.76511�105

1 1.01590�104 −1.41755�104 3.34596�104 5.09881�105

2 4.47516�103 −9.60566�104 −5.47422�105 −5.91095�105

3 1.03525�105 7.47435�105 1.41575�106 1.16233�106

4 −1.23790�105 −3.71698�105 −6.89122�105 −3.46593�105

5 −1.02553�104 −5.72320�105 −5.10810�105 −1.31129�106

6 1.40564�105 5.48984�105 1.07966�106 6.00759�105

7 −2.10729�104 −1.54580�105 −5.36741�105 2.66176�105

3 4 5 63.5 4.5 5.5 6.5
R

0.5
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FIG. 2. Contour plot of the 2D PES. Contour spacing is
1000 cm−1 with the highest contour at 25 000 cm−1. HOCl equilib-
rium is Rm=3.232 01, �m=1.346 60, and E=0. Also shown are pe-
riodic orbits �R� and �B� at E=2000 cm−1.
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ergy �20� and the isomer does not play any role in the bound
or scattering dynamics considered here.

We can write the Hamiltonian in dimensionless form if we
write energies in terms of De and lengths in terms of a0. Then
H=DeH�, ro=ro�a0, R=R�a0, pR=�pR� /a0, p�=�p��, and t
=�t� /De where �=1.054 57�10−34 J s is Planck’s constant
divided by 2�. If we now drop the primes on the dimension-
less quantities we obtain

H =
1

2
� pR

2

�R
2 +

p�
2

��
2 +

p�
2

�R
2R2� + V�R,�� , �11�

where �R
2 =

�1a0
2De

�2 =1930.43 and ��
2=

md

�1
ro

2�R
2 =543.44.

III. BOUND STATE PERIODIC ORBITS

The bound state motion of the HO-Cl system can be di-
vided into two energy regimes: Energies below the saddle
point energy, 0	E	17 010 cm−1 and energies between the
saddle point energy and the dissociation energy,
17 010 cm−1	E	20 312 cm−1. We will discuss these two
regimes separately.

A. Below the saddle point

The dynamics of the HO-Cl system, below the saddle
point, is largely integrable in character. The angular motion
of Cl about HO, which predominantly involves the coordi-
nate �, we call “bend” motion, and is close to harmonic for
the entire range of energies from the potential minimum to
the saddle point. The radial motion of Cl relative to HO,
which predominantly involves the coordinate R, we call
“stretch” motion. This motion is anharmonic with a fre-
quency that decreases with energy for energies from E=0 up
to about E=12 000 cm−1 �all energies are given relative to
the PES minimum�.

Periodic orbits �POs� are located using a shooting method.
Starting at a point in phase space, x0
= 	R�0� ,��0� , pR�0� , p��0�
, this point is integrated forward in
time through a period T to find x�T�. If x�T�−x0=0 then x0 is
a point on a PO. If x�T�−x0�0, a Newton-Raphson root
finding algorithm is used to find a new x0� to bring x�T��
−x0� closer to zero �21�. If the initial x0 lies within a stable
island surrounding a PO this algorithm generally converges
on the PO within a few iterations. In addition, this method
automatically constructs the Monodromy matrix, �x�T� /�x0,
whose trace and eigenvalues give information about the sta-
bility and bifurcations of the PO �21–23�.

At very low energies, near the potential minimum, there
exist two principle periodic orbits corresponding to normal
mode motion. These principle POs are shown in Fig. 2 at
energy E=2000 cm−1. The PO �R�, extends approximately
parallel to the body z axis and consists primarily of changes
in R, the distance of the Cl atom from the HO center of mass.
The PO �B�, consists primarily of rotation of Cl about the
HO complex. At low energies bend and stretch motions are
only weakly coupled. As energy is increased �R� and �B�
initially extend further along their original �normal mode�
directions. Because the potential is anharmonic in R the fre-

quency of �R� decreases approximately linearly with increas-
ing energy as shown in Fig. 3. Near E=7500 cm−1 the fre-
quency of �R� becomes equal to one-half the frequency of
�B�. This results in a 2:1 Fermi resonance between bend and
stretch motions. Once �R� tunes into resonance, bend and
stretch motions become strongly coupled for this PO causing
�R� to abandon its original direction and take on progres-
sively more of a horseshoe shape as energy is added to this
PO. This behavior can be clearly seen in Figs. 4�a� and 4�b�.
PO �B� is unaffected by the Fermi resonance and continues
to extend along its original direction as its energy is in-
creased.

In Figs 5�a� and 5�b�, we show Poincaré surfaces of sec-
tion �SOS� of the stretch and bend motions for energy E
=14 000 cm−1. The stretch SOS is generated by plotting

[R]

[B]

[D] [2B]
[B ]

[2R]
[DD ]
[DD]

0

b

Energy (cm )-1

ω
(c
m
)

-1

5000 10000 15000 20000
100

300

500

700

FIG. 3. Bifurcation diagram showing frequency versus energy
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�R , pR� every time ��=�m , p��0�. The bend SOS is obtained
by plotting �� , p�� every time �R=Rm , pR�0�. At energies
below about 10 000 cm−1 �R� and �B� each produce a single
island in each SOS. At higher energies �R� produces a two
island chain in the stretch SOS as shown in Fig. 5�a�. The
appearance of the second island is the result of the horseshoe
shape that �R� acquires as it reaches the 2:1 Fermi resonance
�Figs 4�a� and 4�b��.

Just below 13 900 cm−1 a pair of stable and unstable POs
are born out of a saddle-center �sometimes referred to as a
saddle-node �24�� bifurcation. The stable PO, �D�, shown in
Fig. 4�a�, is first born as a mixture of bend and stretch mo-
tions similar to �R�. However, �D� quickly loses its bend
character as its energy increases as seen in Fig. 4�b�. �D� thus
replaces �R� as the PO representing almost pure stretch mo-
tion. It is labeled “D” because it provides the dominant path-
way leading to dissociation of Cl from the HO complex.
Figures 5�a� and 5�b� show that the saddle-center bifurcation
also leads to the first appearance of chaos on the scale of the
SOS, as a thin layer develops around the separatrix associ-
ated with the unstable PO born at the saddle-center bifurca-
tion. At around 14 500 cm−1 �B� undergoes a period doubling
bifurcation into �2B� taking on an inverted “V” shape. �2B�
remains stable until just above the saddle-point energy.

B. Saddle point to dissociation

In Figs. 5�c�–5�f�, we show Poincaré surfaces of section
�SOS� of the stretch and bend motions for energies
17 020 cm−1 and 20 150 cm−1. As energy increases, �R� con-
tinues to increase its bend character until undergoing a pe-
riod doubling bifurcation into �2R� �Fig. 4�c�� approximately
200 cm−1 below dissociation. �2R� remains stable up to dis-
sociation.

Above 17 010 cm−1 it becomes possible for trajectories to
cross the PES saddle at �R ,��= �3.16,0� and the bend poten-
tial becomes a double-well potential. Trajectories can begin
to transition between the potential well at �Rm ,�m� to the
identical potential well at �Rm ,−�m�. This causes �2B� to un-
dergo a period doubling into �4B� executing a �2B� PO in the
�Rm ,�m� potential well followed by a �2B� PO in the
�Rm ,−�m� well. The ��0 portion of �4B� is shown in Fig.
4�b� with the ��0 half being a reflection about the R axis.
The separatrix associated with an unstable PO sitting at the
PES saddle point separates trajectories that sample both po-
tential wells and trajectories confined to a single well. The
�B� family period doublings lead to a significant portion of
the SOS becoming chaotic as shown in Figs. 5�c� and 5�d�.
As energy increases �4B� very quickly becomes engulfed in
this chaotic sea. Period doublings of the �B� family of POs
occur at slightly lower energies in �3�. This is attributed pri-
marily to the lower energy saddle in their PES.

PO �D� continues to stretch radially along in the dissocia-
tion channel until going unstable through a period doubling
at approximately 19 800 cm−1. The period doubled orbit
�2D� very quickly becomes unstable as energy increases. Just
above 20 000 cm−1 another saddle-center bifurcation, this
time associated with a 3:1 resonance between bend and
stretch motions, gives birth to a stable PO �DD�. Figure 4�c�
shows that �DD� replaces �D� as the PO governing the dis-
sociation channel. As energy increases �DD� continues to
stretch further along the dissociation channel until going un-
stable approximately 100 cm−1 below dissociation. As the
energy E approaches the dissociation energy De the fre-
quency of stretch motions goes to zero. Bend and stretch
motions thus pass through all n :1 resonances as HOCl ap-
proaches dissociation. This suggests a possible cascade of
saddle-center bifurcations. However, due to the majority of
phase space becoming engulfed in chaos no further bifurca-
tions below the dissociation energy could be located using
the shooting method.

The �B�, �R�, and �D� families of POs are the most physi-
cally relevant in terms of representing underlying bend and
stretch motions and supporting quantum wave functions �3�.
However, they are not the only POs present in HOCl. The
most significant PO not yet mentioned is �DDb� shown in
Fig. 4�c�. �DDb� is born out of a saddle-center bifurcation
near E=19 650 cm−1 and remains stable up to approximately
100 cm−1 below dissociation. While �DDb� is not present in
�3�, Figs. 5�e� and 5�f� show that in the present model of
HOCl �DDb� has a noticeable presence in the classical phase
space and could be expected to support quantum wave func-
tions. There is also a second saddle-center bifurcation occur-
ring at nearly the same energy and same position in phase
space as the �DDb� bifurcation however the stable PO born at
this bifurcation very quickly goes unstable and is unlikely to
have any influence in the quantum domain.

IV. SCATTERING DYNAMICS

For energies above dissociation the dynamics of the
HO-Cl complex is governed by the stable and unstable mani-
folds associated with an unstable PO at R=
. As R→
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FIG. 5. Poincaré surfaces of section for �a�,�b� E=14 000 cm−1,
�c�,�d� E=17 020 cm−1 and �e�,�f� E=20 150 cm−1. Outer energy
contours are calculated explicitly rather than being generated by
integrating a single trajectory.
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�asymptotic region� V�R ,��→De and the Hamiltonian has a
PO at �R=
, pR=0�. The Monodromy matrix for this PO has
all eigenvalues equal to one making the orbit locally para-
bolic �14,25�. The stable and unstable manifolds of this PO
form a homoclinic tangle in phase space. To construct the
tangle we add an additional intersection condition to the
stretch SOS: ��=−�m, p��0�. Plotting �R, pR� any time �
crosses ��m with p��0 shows the dynamics in both poten-
tial wells in a single plot. Often it is convenient to choose the
SOS to be along a symmetry line of the potential so that the
stable and unstable manifolds are symmetric about pR=0. In
HOCl the potential hill at �=0 rises high above the dissocia-
tion energy. Thus, while the stable and unstable manifolds
would be symmetric in a �=0 SOS they would also be dis-
continuous in the region of the potential hill. For this reason
we choose the �= ��m SOS despite its lack of symmetry.

Figures 6�a� and 6�b� show the stable and unstable mani-
folds, respectively, which form the homoclinic tangle, in the
stretch SOS at E=21 000 cm−1. This energy is chosen to be
within the energy range for which quantum calculations of
quasibound states have been performed �4,16�. The stable
and unstable manifolds form a line of trajectories that sepa-
rates trajectories that monotonically approach R=
 from tra-
jectories that exhibit one or more turning points. This defin-
ing characteristic is used to locate the zeroth-order tendril of
the stable �t0

s� and unstable �t0
u� manifolds. Using the Hamil-

tonian in Eq. �11� the zeroth-order stable �unstable� tendril is
integrated backward �forward� in time to find each trajecto-
ry’s next intersection with the SOS to produce the first-order
tendril t1

s �t1
u�. Continuing in this way we obtain the second-

order tendrils t2
s and t2

u. Already at second order the tangle
displays a great deal of structure. Figure 7�a� shows an en-
largement of the boxed region in Fig. 6�a�. A further enlarge-

ment in Fig. 7�b� shows the central structure of Fig. 7�a�
repeated in what at first appears to be a single line. The first-
and second-order tendrils stretch into the asymptotic region
with both tendrils exhibiting multiple folds. Figure 8 illus-
trates this behavior schematically showing an exaggerated
sketch of the first-order stable tendril winding back and forth
between the asymptotic region and smaller R values. This
winding is due to the potential wall at �=� and the potential
hill at �=0. As the stable and unstable manifolds evolve
towards smaller R values they are repeatedly deflected by
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FIG. 6. �Color online� Stable �a� and unstable �b� manifolds of
the PO at �R=
, pR=0� that form the homoclinic tangle at energy
E=21 000 cm−1. Zeroth-, first-, and second-order tendrils, denoted
t0, t1, and t2 are shown in black, dashed blue, and red, respectively.
Numbered stars in �a� indicate successive intersections of a single
scattering trajectory with the SOS. The trajectory intersects the SOS
three times between t0

u and t0
s indicating a step number of 3.
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FIG. 7. �Color online� �a� Enlargement of the boxed region in
Fig. 6�a�. Inset shows that what appears to be a single line is actu-
ally a pair of very closely spaced lines. An enlargement of the far
right-hand line in the inset would show it to be a pair of closely
spaced lines as well. �b� Enlargement of the “b” box in �a� showing
the central structure of �a� repeated on a smaller scale. Areas en-
closed by neighboring segments of the stable manifold which are
bounded above by t0

u and stretch into the asymptotic region form
gaps which determine the dynamics of scattering trajectories. First-
and second-order stable gaps, G1

s and G2
s , enclosed by first- and

second-order stable tendrils, respectively, are indicated. Line L is
the seventh iterate �seventh intersection with the SOS� of scattering
trajectories used in Figs. 11 and 12. The star in �b� indicates the
scattering trajectory shown in Fig. 6�a�.

FIG. 8. Schematic of the first-order stable tendril showing mul-
tiple folds as the tendril winds between the asymptotic region and
the zero-order unstable tendril. Multiple folds are observed for all
energies at which the 2D model of HOCl is valid. The structure of
the homoclinic tangle shows qualitative changes only for E
�25 000 cm−1. Arrows indicate the direction the tendrils evolve
when integrated forward in time.
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collisions with these potential barriers. These deflections
dominate the structure of the homoclinic tangle. Similar be-
havior has been observed in coupled Morse and harmonic
oscillators �26� and for an electron scattering off a magnetic
dipole �12�.

Beyond second order, the tendrils become too compli-
cated and too closely spaced to be adequately resolved in a
SOS. In Fig. 9 we follow 1000 trajectories, initially lying on
the zeroth-order stable tendril, that are integrated backward
in time through approximately 20 intersections with the SOS.
Although none of the detailed structure of the stable mani-
fold can be resolved, Fig. 9 shows that the homoclinic tangle
densely fills the majority of the energetically accessible
phase space except for a small island of stability near
�R , pR�= �3.26,−14.55� and an infinity of smaller surround-
ing islands not visible on the scale of the SOS. The stable PO
at the center of this island, �B0�, is shown in Fig. 10�a� and
represents chlorine oscillating back and forth across the PES
saddle between the two potential wells at positive and nega-
tive values of �. �B0� is born out of a saddle-center bifurca-
tion just below the dissociation energy and exists for all en-
ergies up to above 25 000 cm−1. The area of the stable region

surrounding �B0� in the stretch SOS ranges from 1 to 2 times
Planck’s constant for 22 000 cm−1�E�23 300 cm−1. In the
bend SOS the stable region is a thin crescent shape with an
area of approximately Planck’s constant in this same energy
range. Given the volume of this stable region in phase space
�B0� is expected to support long-lived quasibound states.

Probing the structure of the homoclinic tangle beyond
second order requires the use of scattering functions. We
examine two important examples of scattering functions:
Time delay and asymptotic HO angular momentum. Time
delay, �T, is the amount of time the incoming chlorine atom
spends “caught” in the homoclinic tangle before returning to
the asymptotic region. We define �T as

�T = T −
�1�Rin − 8�

�pR,in�
−

�1�Rout − 8�
�pR,out�

, �12�

where T is the time for the chlorine atom to approach from
the asymptotic region, scatter and return to the asymptotic
region. Because we are interested only in the time spent scat-
tering, that is the time spent caught in the tangle, we subtract
the times spent traversing the asymptotic region. Defining
the asymptotic region as R�8 these times are given by
�1�Rin−8�

�pR,in� and
�1�Rout−8�

�pR,out�
where pR,in and pR,out are the values of

pR when R crosses Rin and Rout �defined below�.
The asymptotic HO angular momentum is the angular

momentum of the HO complex after the chlorine atom has
scattered and returned to the asymptotic region. The angular
momentum of HO relative to its center of mass is given
simply by L2= p�ŷ. To see how time delay and the HO an-
gular momentum vary from one scattering trajectory to an-
other we take a collection of initial conditions in the
asymptotic region each with Rin=Rout=12, pR,in=−2, p�

=5.9726 and a range of value of � that is specified below.
This corresponds to scattering trajectories starting just out-
side �below� the unstable manifold, each with E
=21 000 cm−1. Each initial condition can then be uniquely
labeled by its reduced phase �25�,

� = � −
Rp��1

pRro
2�2

= � −
R

pR
�1
 , �13�

where 
� �H
�p�

as R→
. The reduced phase is the phase dif-
ference between motion in the � and R directions. Because
energy, pR, p�, and � are all conserved quantities under H in
the asymptotic region, the structure of time delay and HO
angular momentum is independent of the choice of Rin and
Rout as long as they both lie in the asymptotic region.

Because � and �+2� describe the same initial condition,
time delay and HO angular momentum are functions of
� mod 2�. We focus on a narrow range of � corresponding
to −1.731 65	�	−1.730 36 for which the scattering trajec-
tories, when integrated forward in time, cut completely
across a bundle of stable tendrils as shown in Fig. 7�b�. Fig-
ure 11 shows the asymptotic HO angular momentum and
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FIG. 9. SOS produced by integrating 1000 trajectories initially
on the zeroth-order stable tendril backward in time through several
intersections with the SOS. The large chaotic region filled by these
trajectories indicates that the homoclinic tangle densely fills the
majority of the energetically accessible phase space except for a
small region of stability surrounding PO �B0� at �R=3.26, pR

=−14.55�.
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FIG. 10. �a� PO �B0� at the center of the region of stability in
Fig. 9. �b� A typical scattering trajectory passing several times over
the PES saddle connecting potential wells at positive and negative
values of �. �c� Symmetric trajectories �one solid one dashed� indi-
cated by arrows in Fig. 12. �d� Same as �c� showing trajectories
only just before and just after collision with �=0 potential barrier.
The solid and dashed trajectories are deflected symmetrically up-
ward and downward, respectively, from the potential barrier.
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time delay for these trajectories. For certain ranges of re-
duced phase, both LHO and �T vary continuously while for
other ranges both vary erratically. Both LHO and �T contain
singularities at values of � for which the incoming trajectory
intersects the stable manifold. These “singular” trajectories
become caught in the homoclinic tangle forever having an
infinite delay time and an undefined asymptotic HO angular
momentum because the trajectory never returns to the
asymptotic region. The singularities in plots of LHO and �T
have the same structure as the set of intersections between t0

u

and the stable manifold. The singularities form a fractal set
with measure zero.

The structure of the homoclinic tangle can be character-
ized by the gaps formed by intersections of tendrils of the
stable manifold with the zeroth-order unstable tendril. An
nth-order stable gap, sometimes referred to as a lobe or turn-
stile, is the area enclosed by the nth-order stable tendril and
the zeroth-order unstable tendril. First- and second-order
stable gaps are illustrated in Fig. 7. Because the nth-order
stable tendril is formed by integrating each trajectory on the
�n−1�th-order stable tendril backward in time and finding
each trajectory’s next intersection with the SOS it is not sur-
prising that every scattering trajectory that intersects the SOS

inside an nth-order stable gap, when integrated forward in
time, will have its next intersection with the SOS inside an
�n−1�th-order stable gap �27�. If a scattering trajectory ini-
tially lies within an nth-order stable gap it moves to an �n
−1�th-order stable gap on each successive intersection with
the SOS. Eventually intersecting the SOS inside the first-
order stable gap, the trajectory’s next intersection with the
SOS will be above the zeroth-order stable tendril signaling
the trajectory’s return towards the asymptotic region. The
scattering dynamics of Cl is completely determined by the
gap structure formed by the stable manifold. This gap struc-
ture is most easily investigated by constructing a step num-
ber for a collection of scattering trajectories. The step num-
ber counts the number of times a trajectory intersects the
SOS in between the trajectory’s last intersection below t0

u and
its first intersection above t0

s . This is illustrated in Fig. 6�a�
for a scattering trajectory with step number=3. When we
integrate this trajectory forward in time it intersects the SOS
three times above t0

u before intersecting above t0
s .

Figure 11�c� shows step number as a function of reduced
phase for the trajectories comprising line L in Fig. 7�b�. Be-
cause a trajectory moves from a nth-order stable gap to a
�n−1�th-order stable gap on each “step” a trajectory with
step number=n must lie in a stable gap of order n+1 in Fig.
7�b�. Higher-order steps in Fig. 11�c� thus reveal gaps
formed by higher-order tendrils which cannot be resolved in
a SOS. Comparing time delay and step number shows that
every continuous region in time delay corresponds to a given
step in step number. Using step number, any continuous re-
gion in time delay �or any other scattering function� can be
labeled by what order gap the trajectories originate. Examin-
ing ever smaller ranges of � with ever higher resolution will
reveal smaller regions of continuity corresponding to smaller
gaps, ad infinitum.

We return to the importance of the potential barriers at
�=� and �=0 by considering which potential well, �= +�m
or �=−�m, scattering trajectories first enter. Because Ltot
�0 the HO complex will rotate if the chlorine approaches
with a nonzero impact parameter �nonzero angular momen-
tum�. If the incoming chlorine meets the HO complex end
on, �=� or �=0, the chlorine may be completely reflected or
may scatter off one or both potential barriers before entering
a potential well. For each scattering trajectory we plot �
when the trajectory first crosses R=3.75. The resulting Fig.
12 shows a fractal structure which is symmetric about the
center with �→−�. This symmetry can be easily understood
by looking at a pair of symmetric trajectories. Figures 10�c�
and 10�d� show one such pair of trajectories indicated by
arrows in Fig. 12. Initially the trajectories are almost identi-
cal however upon collision with the �=0 potential barrier
one trajectory is deflected upwards and the other downwards.
Because the PES is symmetric about �=0 the trajectories
continue to evolve identically differing only in the sign of �.
The scattering trajectory exactly in the center of Fig. 12 �the
midpoint of line L in Fig. 7�b�� is reflected from the �=0
barier parallel to the � axis. All other scattering trajectories
occur in symmetric pairs.

By considering total angular momentum zero and the HO
bond length held fixed HOCl is reduced to two degrees of
freedom. In systems with more degrees of freedom the cha-
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FIG. 11. �a� Asymptotic HO angular momentum, �b� time delay,
and �c� step number for 5000 scattering trajectories comprising line
L in Fig. 7�b�. Regions of continuity in LHO and �T occur at the
same intervals of � indicating that every scattering function con-
tains the same fractal structure corresponding to the set of intersec-
tions between the stable manifold and the zero-order unstable ten-
dril. Given the step number for any trajectory the order of the gap
the trajectory sits in Fig. 7�b� is given simply by �step number +1�.
In this way all regions of continuity in �T are labeled by what order
stable gap the trajectories initially sit in.
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otic scattering in phase space is directed by the stable and
unstable manifolds associated with normally hyperbolic in-
variant manifolds �28�. These form dividing surfaces be-
tween trajectories of qualitatively different scattering behav-
ior �29�. These structures are the higher dimensional
counterparts of the fixed points and their stable and unstable
manifolds in our 2D Poincaré surfaces of section.

V. CONCLUSIONS

Below dissociation the HO-Cl dissociation channel is
governed by periodic orbits born out of saddle-center bifur-
cations. These bifurcations giving rise to the �D� and �DD�
periodic orbits have been associated with the formation of

new quantum states with probabilities localized along the
dissociation channel �3�.

Above dissociation the homoclinic tangle that determines
the HO+Cl scattering dynamics has a very convoluted and
somewhat constricted structure due to the high potential
walls in the HO-Cl potential energy surface forming a nar-
row entrance channel for the incoming chlorine atom. The
high potential walls cause reflections of the Cl off the HO
complex and multiple folds in the homoclinic tangle. The
narrow entrance channel causes the internal structure of the
homoclinic tangle to be compressed and difficult to resolve
numerically.

The phase space above dissociation is dominated by the
homoclinic tangle and chaos that stretch well into the
asymptotic region. However, embedded in the chaotic sea,
there exists a stable bendlike periodic orbit and a surround-
ing island structure that classically cannot dissociate, even
above the dissociation energy. Quantum mechanically this
structure appears to be large enough to support quantum
states that will have fairly long lifetimes, but will eventually
tunnel out and cause dissociation. The structure and lifetime
of quantum mechanical quasibound states in HO-Cl and their
connection to the classical dynamics presented here will be
investigated in a future paper.
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