
Copyright

by

Mitchell Alan Davis

2011



The Thesis Committee for Mitchell Alan Davis

Certifies that this is the approved version of the following thesis:

Monte Carlo simulation of fluorescence imaging of

microvasculature

APPROVED BY

SUPERVISING COMMITTEE:

John Pearce, Supervisor

Andrew K. Dunn, Co-Supervisor



Monte Carlo simulation of fluorescence imaging of

microvasculature

by

Mitchell Alan Davis, B.S.Biomed.E.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2011



Dedicated to my family.



Acknowledgments

I would like to thank my advisor, Dr. Andrew Dunn, for all of his

assistance and guidance throughout all of this work. I am also grateful to all

of my lab-mates for their help and friendship during the course of completing

this work.

v



Monte Carlo simulation of fluorescence imaging of

microvasculature

Mitchell Alan Davis, M.S.E.

The University of Texas at Austin, 2011

Supervisors: John Pearce
Andrew K. Dunn

Little numerical analysis has been done on fluorescence lifetime imag-

ing in-vivo. Here, a 3D fluorescence Monte Carlo model is used to evaluate

a microvasculature geometry obtained via two-photon microscopy. I found

that a bulk-vascularization assumption does not provide an accurate picture

of penetration depth of the collected fluorescence signal. Instead the degree of

absorption difference between extravascular and intravascular space, as well as

the absorption difference between excitation and emission wavelengths must be

taken into account to determine the depth distribution. Additionally, I found

that using targeted illumination can provide for superior surface vessel sensi-

tivity over wide-field illumination, with small area detection offering an even

greater amount of sensitivity to surface vasculature. Depth sensitivity can be

enhanced by either increasing the detector area or increasing the illumination

area. Finally, it is shown that the excitation wavelength and vessel size can

affect intra-vessel sampling distribution, as well as the amount of signal that

originates from inside the vessel under targeted illumination conditions.
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Chapter 1

Introduction

Fluorescence imaging is a widely used method of measuring functional

and structural parameters which cannot be easily imaged using endogenous

chromophores. The specific uses of fluorophores and phosphors in-vivo vary

widely; a few examples include applications such as molecular imaging, cancer

imaging, and functional imaging of hemodynamic properties [16]. Correspond-

ingly, there are a number of delivery methods for fluorophores depending on

the application in question.

Several imaging methods require the topical application of fluorophores,

and subsequent diffusion through the tissue prior to imaging. An example of

this method is voltage sensitive dye (VSD) imaging, which is often used to

study neuronal firing by measuring calcium flux into and out of cells [5]. When

not considering the genetically expressed protein variants, These methods are

inherently limited by both the capability of the fluorophore to diffuse through

the tissue, and the need to excite the fluorophore and measure the emission

through the highly turbid tissue media. However, as these agents distribute

themselves in the tissue via diffusion, predicting the distribution of the agent

in the tissue can typically be done through the diffusion equation.
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Intravascular contrast agents do not suffer from the need to diffuse

through tissue. However, imaging is more difficult to model mathematically

as the fluorophore is no longer distributed in a smooth gradient, as is generally

the assumption in VSD imaging. Several analytical methods have been used

to model photon migration in an intravascular fluorescence imaging context.

All of these methods treat the tissue as a homogeneous medium, or a series

of homogeneous layers, where diffusion determines the depth and resolution

of imaging [2, 9, 23]. In the brain, these methods fail to consider the wide

variance in absorption between the intra- and extra-vascular space.

The purpose of this work is to analyze two common intravascular con-

trast agents used to measure hemodynamic parameters in the brain: porphyrin

and Indocyanine Green (ICG). Porphyrin-based contrast agents are oxygen

sensitive phosphorescent probes which have excitation maximums at 415 and

524nm, and an emission maximum at 690nm. ICG is a fluorescent probe used

to image blood flow and clearance, and has an absorption maximum in plasma

at approximately 800nm, and an emission maximum at 880nm. The dyes were

chosen so that several situations could be studied: visible wavelength excita-

tion with NIR emission, and NIR excitation with NIR emission.

Optical in-vivo pO2 measurements using oxygen-sensitive contrast agents

have recently become a popular method for evaluating physiological and dis-

ease models [1, 8, 11, 13, 22]. Optical imaging of pO2 in-vivo has the advantage

of having both high spatial resolution and high temporal resolution [31].

Fluorescence and phosphorescence imaging [18, 22, 26] in-vivo can be
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broadly classified based on the method of excitation: single photon methods

[1, 8, 15, 20, 23, 25, 27, 31] rely on diffusion of light into tissue to generate probe

emission, while two photon methods allow for depth-selected excitation at a

point inside the tissue [6, 19]. Single photon imaging can be further classified

into methods that use targeted excitation [15, 31], and methods that use wide-

field illumination [23].

Several methods have been developed to ensure that excitation is lo-

calized, including using scanning confocal microscopy [31] and a Digital Mi-

cromirror Device (DMD)[15]. The confocal system also confines the photons

detected to a small area in the tissue, while the DMD system integrates the

photons emitted from a large area on the tissue surface.

A model has been developed whereby fluorescence and phosphorescence

emission can be modeled in a realistic in-vivo geometry using excitation and

detection schemes currently being used[15, 24, 30]. The model is used to de-

termine the differences in phosphorescence emission distribution between a

realistic microvasculature geometry and bulk tissue geometry. The model is

further used to demonstrate the intra-vascular distribution of phosphorescence

emission based on the excitation wavelength. The in-vivo geometry is acquired

through the use of two-photon microscopy. The theory behind two-photon mi-

croscopy, as well as the properties which make it especially suited to providing

tissue geometry files for Monte Carlo simulation, are presented later in this

work.

The model uses a 3D fluorescence Monte Carlo method to evaluate
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an illumination and detection scheme in an arbitrary geometry[10, 12]. Simi-

lar non-fluorescence based techniques [14] have been used to study port-wine

stain in an epidermal geometry obtained via optical coherence tomography[3].

Geometries are specified by setting tissue optical properties in a 3D voxelized

grid. Optical properties for each voxel can be specified for both the excitation

light and the emitted light. The modeled excitation photons scatters through

the tissue and can either be absorbed in a voxel, whereby an emission event

may occur, or terminated if it reaches the boundary of the geometry. Emission

photons originate from the location of absorption and are generated moving at

random angles. The emission photons can then either scatter or be absorbed

based on an independent set of emission optical properties. The theory and

details of the Monte Carlo model are presented in detail in the next chapter.
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Chapter 2

Three dimensional fluorescence Monte Carlo

model

The Monte Carlo model used in this work is a 3D voxelized grid method

with fluorescence simulation capabilities. The code was originally adapted

from Monte Carlo Multiple Layer (MCML) code, which was developed by

Wang and Jaques in 1995 [28] and written in ANSI standard C. The Monte

Carlo model simulates the random propagation of photons through an arbi-

trary geometry with arbirtary optical properties by sampling the step size,

scattering, and absorption through the tissue by sampling the appropriate dis-

tributions. When a sufficient number of these photons have been simulated,

the result is a convergent distribution of photon propagation through tissue.

This chapter explains the geometries that the 3D Monte Carlo model is able

to use, as well as how photons are propagated through the geometry.

2.1 Model Geometry

Our 3D Monte Carlo adaptation uses a 3D voxelized grid where the

tissue optical properties can be set independently in each voxel. This allows for

a 3D variable resolution model of tissue that can be used to emulate true tissue
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geometries. In the scope of this work, a 3D stack of two-photon fluorescence

microscopy images were processed and converted to a geometry usable with

the fluorescence Monte Carlo model.

Specifically, the geometry is stored in memory as a 3D array of charac-

ters, each of which is 8 bits. Each character is a number from 0 to 255, which

specifies the tissue type contained in the voxel corresponding to the location in

the array. Optical properties are specified by the user in the input file to the

program, so when the simulation needs to look up the properties, it uses the

tissue type number in the geometry matrix to look up the optical properties.

Several parameters are specified in the optical properties for each voxel.

First, the absorption, scattering and anisotropy is specified for the photons

entering the geometry. Another set of optical properties are also set for each

voxel, which adds the capability to model fluorescence emission. For the emis-

sion optical properties, the scattering and absorption is set based on the wave-

length of the fluorescence emission, as well as the quantum efficiency (QE).

The QE determines the propability of a fluorescence emission event given an

absorption in each voxel. In areas where there are no fluorescent molecules,

the QE value is set to 0 to represent the lack of fluorescing capabilities in that

region.

2.2 Photon simulation

The 3D Monte Carlo algorithm is outlined in Fig 2.1. First, a photon

is generated at the top of the geometry at a user specified place. The location
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at which the photon enters the tissue is determined by a specified numerical

aperture and the focal distance from the top of the geometry. The beam

radius is calculated from those parameters, and an entrance point is randomly

generated either according to a gaussian or flat, “top hat”, distribution around

the center of the illumination region. The angle at which the photon enters

the tissue is determined by a line drawn from the focal point to the entrance

point, and is stored as the cosine of the angle in the x, y, and z directions.

2.2.1 Photon step size

The intialized photon is then moved in the direction specified by the

directional cosines on a number of mean free paths, s, into the tissue. The

distance the photon travels into the tissue is referred to as the step size, and

is sampled from an exponential distribution according to Beer’s law, as seen

in Eq. 2.1, where µt represents the total attenuation coefficient, which is the

sum of the absorption, µa, and scattering, mus, coefficients in the tissue.

P (s ≥ s1) = e−µts1 (2.1)

To generate a step size, first a uniform random number over [0,1], ξ,

is sampled using a psuedo random number generator. Eq. 2.2 is then used

to convert from a uniform distribution given by the psuedo random number

generator to an exponential distribution governed by Beer’s law.
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Figure 2.1: Flow diagram of 3D Fluorescence Monte Carlo simulation.
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s = −
ln(ξ)

µt

(2.2)

2.2.2 Voxel boundary interaction

Once s has been determined, the distance to the nearest voxel boundary

is calculated. If the distance to the boundary is less than the distance the

photon travels, the photon is moved to the boundary, and the distance moved is

subtracted from s. This is done so that if a different tissue type is present in the

adjacent voxel, the remaining step size can be recalculated based on the optical

properties in the new voxel. Once the remaining s has been calculated for the

new voxel, the distance to the next boundary is calculated and compared to

the step size remaining. If the photon will hit the boundary, it is moved there

as before and s is recalculated. If it does not hit a boundary, the photon is

moved the remainder of the distance s to it’s new location.

2.2.3 Scattering

When the photon arrives at the new location specified by s, scattering

and absorption events occur. Scattering is calculated in both the θ and φ di-

rections in the spherical coordinate system originating at the photon location.

In the θ direction, the scattering angle is determined by the Henyey-Green

scattering function, Eq. 2.3. The value, g, represents the anisotropy of the

scattering, a value near 1 represents almost completely forward scattering, -1

represents backward scattering, and 0 represents isotropic scattering. In tissue,
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for example, the anisotropy value is generally close to 1. In the φ direction,

the photon has an equal probability of scattering in all directions.

p(cosθ) =
1− g2

2(1− g2 − 2gcosθ)
(2.3)

Two uniformly sampled random numbers, ξ1 and ξ2, are used to deter-

mine the θ and φ directions of the scattering in each event. Eq. 2.4 represents

the conversion from the uniform distribution given by ξ1 to the distribution

governed by the Henyey-Greenstein scattering function. Eq. 2.5 represents the

transform from a uniform distribution over the range [0,1] to the range [0,2π],

which generates the uniformly sampled scattering angle in the φ direction.

cosθ =

{

1

2g
{1 + g2 − [ 1−g2

1−g−2gξ1
]} if g 6= 0

2ξ1 − 1 if g = 0
(2.4)

φ = 2πξ2 (2.5)

2.2.4 Absorption and fluorescent photon emission

In this model absorption is initially treated as an all or nothing event.

If a photon is absorbed in the tissue, then there is a probability, the quan-

tum efficiency (QE), that an emission photon will be generated. When this

happens, the optical properties of the tissue geometry change to the optical

properties of the tissue at the emission wavelength. The effect of an emitted
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photon is created by changing the anisotropy value, g, from Eqn 2.3, to 0. This

represents an isotropic scattering angle–which properly simulates the isotropic

emission from a fluorescent molecule. Once the isotropic scattering angle has

been calculated, g is set to the value that corresponds to the tissue properties

at the emission wavelength.

When the fluorescent photon is generated, the Monte Carlo simulation

also stops using µt to calculate the photon step size. Instead, the µt in Eq.

2.2 is replaced by the scattering coefficient, µs. The advantage of doing this

is that the absorption can be evaluated later in the post processing step. In

many cases, the scattering of a tissue volume does not change greatly as the

wavelength is changed. If the absorption can be done in post-processing, then

just one initial simulation can be used to generate results for a number of

different emission wavelengths, thereby saving a great deal of computational

time. This method has been exploited previously to increase the computational

efficiency of solving inverse problems using Monte Carlo simulations [10, 21].

2.2.5 Photon detection

Initially, the user also sets a center location, radius, and numerical

aperture of the area where the photons are detected. Photons which exit the

tissue at the top of the geometry, and fall within the guidelines specified by the

detector, are flagged to be stored. Photons which exit the tissue outside the

detector area are killed and not stored. Upon detection, the entire photon his-

tory, including the positions, scattering angles, the distance traveled through
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each tissue type, and origin of the fluorescence absorption event, are parsed.

As it is not feasible for limited storage reasons to store all of the movement of

every photon in the simulation, the user specifies a subset of the history data

to be stored for postprocessing.

2.3 Postprocessing

In the postprocessing phase, the Beer’s law absorption of the emitted

photon must be taken into account. While absorption of the incident excitation

photons is treated as an all-or-nothing event, the emission photons must be

weighted based on the distance they travel through each tissue in the geometry.

The contribution to the detected signal from fluorescent photons originating

at a point inside the tissue (x,y,z) is calculated as:

Id(x, y, z) =
∑

j

e−
∑

i µ
i
alij (2.6)

Where j represents the photons originating at point (x,y,z) in the tissue,

and i represents the tissue type inside the geometry. The distance each photon

travels within each tissue type, lij, is used, along with the absorption coefficient

µi
a in each tissue type, to generate the weight of each photon by Beer’s law.

This process is repeated for every point inside the geometry to build up a three

dimensional distribution of signal using photons that arrive at a user specified

detector location.

The depth-dependent, f(z), and depth-integrated, F (z) signal distri-
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butions, representing the depth profile of the fluorescence signals can also be

calculated. f(z), which is the probability of the collected signal originating

from a depth z in the geometry, is calculated from the signal intensity distri-

bution Id(x, y, z) using the following relation:

f(z) =

∫ ∫

Id(x, y, z)dxdy
∫ ∫ ∫

Id(x, y, z)dxdydz
(2.7)

F (z) can then be calculated by integrating f(z) from 0 to z, as in Eq.

2.8 and represents the amount of signal originating from the first zµm in the

geometry.

F (z) =

∫ z

0

f(z)dz (2.8)
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Chapter 3

Model geometry and optical properties

In this chapter, the geometry used in all the simulations performed in

this work, as well as the optical properties of the tissue at the wavelengths of

interest, are given.

The optical properties of porphyrin and ICG were used in the model.

The Monte Carlo model allowed for an arbitrary 3D voxelized geometry, where

each voxel could represent one of up to 255 different sets of optical properties

(µa, µ
′
s, g). Quantum efficiency can be set for the emission optical properties,

which determines the likelihood of phosphorescence emission upon absorption

of an incident excitation photon.

3.1 Three dimensional two-photon geometry

3.1.1 Two photon microscopy

Two-photon fluorescence microscopy utilizes a long-wavelength excita-

tion photon to generate spatially localized fluorescence. The caveat, however,

is that by using the longer wavelength, which in two-photon microscopy is

twice as long and has half the energy of the normal excitation wavelength, two

photons must be absorbed by a fluorescent molecule nearly simulatenously in

14



order to move an electron to a higher energy state. Due to this property, a

very high intensity, short pulsed beam must be focused down to a small area.

This temporal and spatial concentration of photons increases the probability

of a two-photon event occuring, and also inherantly allows for three dimen-

sional imaging. By scanning a focused beam in the x, y and z directions, a 3D

mapping of the fluorophores can be obtained.

Though modeling two-photon fluorescence imaging was not my objec-

tive, it nevertheless is a useful tool for generating models of tissue that can be

used as a geometry in which the photons may propagate in the Monte Carlo

simulation.

3.1.2 Geometry

3.1.2.1 Two-photon image acquisition

Scanning two-photon microscopy was used to generate depth resolved

stacks of microvasculature in a mouse (CD-1; male, 25.30 g). All experi-

mental procedures were approved by the Institutional Animal Care and Use

Committee (IACUC) at the University of Texas at Austin. The animals were

anesthetized by inhalation of 2.3% isoflurane in oxygen through a nose cone.

Body temperature was maintained at 37◦ C using a feedback controlled heating

plate (ATC100, World Percision Instruments, Sarasota, FL, USA) during the

experiment. The animals were fixed in a stereotaxic frame (Kopf Instruments,

Tujunga, CA, USA) and an 3mm x 3mm portion of the skull was removed

using a dental burr (IdealTM Micro-Drill, Fine Science tools, Foster City, CA,

15



USA). 50µL of 5% weight/volume Texas Red (Invitrogen, Eugene, OR, USA)

was administered through a retro-orbital injection. A 500µm x 500µm image

with a resolution of 1µm was taken in 2µm z-steps down to 400µm. Fig. 3.1

shows the two-photon stack used to generate the geometry.

3.1.2.2 Geometry creation

The geometry for the Monte Carlo model was then created by filtering

the images to smooth out heterogeneities in the vasculature. The smoothing

procedure was performed in order to remove the noise present in the image

due to the two-photon instrumentation.

As the x-y resolution was 1µm, and each image represented a tissue

section 2µm deeper into the tissue; interpolation was performed in order to

create equal resolution in the x, y and z directions. A spline interpolation was

performed between each image stacks to generate an image representing the

tissue corresponding to 1µm depth intervals. Note that these images do not

necessarily represent the true tissue, but this was nevertheless necessary as the

Monte Carlo simulation requires cubic voxels to be used to create a geometry

file, and a smooth interpolation was considered to be better than filling the

middle layers with a duplicate of either of the adjacent images.

The images were then thresholded to remove the intensity mapping

and create binary images representing “vasculature” or “no vasculature.” The

binary images were then converted to a geometry file by creating a 3D matrix of

the images. Optical properties representing the intravascular and extravascular
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Figure 3.1: 500µm by 500µm by 400µmmicrovasculature image stack acquired
by two-photon scanning microscopy.
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space were assigned to the appropriate sections of the 3D matrix.

3.1.3 Optical properties

The intravascular absorption coefficients were generated based on the

extinction coefficients of hemoglobin and porphyrin/ICG. Concentration of

hemoglobin and porphyrin in the vasculature were assumed to be 150mg/ml[17]

and 0.3 mg/ml[15] respectively. The concentration of ICG was 0.1 mg/ml.

Scattering coefficients were interpolated from NIR optical property measure-

ments performed by Bevilacqua et al [4] and integrating sphere measurements

by Friebel et al[7]. Extravascular absorption and scattering coefficients were

based on the in vitro integrating sphere measurements by Yaroslavsky et al[29].

It was necessary to use in vitro measurements of the extravascular tissue be-

cause blood was assumed to only be present in intravascular space. The in

vitro measurements were taken in the absence of blood. The quantum effi-

ciency was set to 1 for the intravascular space and 0 for the extravascular

space. Though realistically the quantum efficiency would be a small fraction

of the absorbed photons, the model allowed for 100% conversion of absorbed

excitation photons to emission photons to increase computational efficiency.

This simplification is valid because the goal is to predict spatial distribution

and relative intensity, not absolute intensity. Table 3.1 shows the optical prop-

erties used for the microvasculature geometry.
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Table 3.1: Optical properties for microvasculature geometry
µa (mm−1) µs’ (mm−1) g

Porphyrin

415nm
Intravascular 280 180 0.98
Extravascular 0.5 14 0.9
524nm
Intravascular 16.3 120 0.98
Extravascular 0.1 11.3 0.9
690nm
Intravascular 0.2 100 0.98
Extravascular 0.1 10 0.9
ICG

800nm
Intravascular 3.75 124 0.98
Extravascular 0.1 12.4 0.9
880nm
Intravascular 0.7 130 0.98
Extravascular 0.1 13 0.9

3.2 Homogeneous tissue geometry

Homogeneous tissue geometries were also created to compare against

the realistic geometry. These geometries were created by using a 500x500x400

voxel geometry wherein all voxels were assigned the same properties. Optical

properties were assigned by assuming that the only absorber was blood mixed

with porphyrin, the same assumption made for the intravascular properties in

the microvasculature geometry. The properties were then scaled by 0.01, 0.05

and 0.10 to represent a bulk-vascularization assumption of 1%, 5% and 10%

respectively. The optical properties in detail may be found in Tables 3.2, 3.3
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and 3.4.

Table 3.2: Optical properties for 1% homogeneous geometry
µa (mm−1) µs’ (mm−1) g

Porphyrin

415nm 2.8 14 0.9
524nm 0.163 11.3 0.9
690nm 0.001 10 0.9
ICG

800nm 0.0375 12.4 0.9
880nm 0.007 13 0.9

Table 3.3: Optical properties for 5% homogeneous geometry
µa (mm−1) µs’ (mm−1) g

Porphyrin

415nm 14 14 0.9
524nm 0.815 11.3 0.9
690nm 0.01 10 0.9
ICG

800nm 0.287 12.4 0.9
880nm 0.035 13 0.9

3.3 Single vessel geometry

Additional geometries were created to determine the effect of targeting

a single vessel. A 3mm x 3mm x 3mm cubic geometry with a single vessel

running down the top center was created. The size of the vessel was varied

from 25µm to 200µm in 25µm increments. The optical properties were set

according to the values found in Table 3.5. Outside the vessel, the tissue was

assumed to be homogeneous with a bulk volume fraction of approximately
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Table 3.4: Optical properties for 10% homogeneous geometry
µa (mm−1) µs’ (mm−1) g

Porphyrin 28 14 0.9
524nm 1.63 11.3 0.9
690nm 0.02 10 0.9
ICG

800nm 0.375 12.4 0.9
880nm 0.07 13 0.9

5%. Fig. 3.2 shows an example single vessel geometry, where the geometry is

collapsed along the dimension of the vessel.
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Table 3.5: Optical properties for single vessel geometry
µa (mm−1) µs’ (mm−1) g QE

Porphyrin

415nm
Intravascular 280 180 0.98 -
Extravascular 14 14 0.9 -
524nm
Intravascular 16.3 120 0.98 -
Extravascular 0.815 11.3 0.9 -
690nm
Intravascular 0.2 100 0.98 1
Extravascular 0.01 10 0.9 0
ICG

800nm
Intravascular 3.75 124 0.98 -
Extravascular 0.287 12.4 0.9 -
880nm
Intravascular 0.7 130 0.98 1
Extravascular 0.035 13 0.9 0
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Figure 3.2: Geometry file used for single vessel simulations. The 3D matrix of
values is integrated along the y dimension to provide an easier viewing angle.
The square at the top-center of the geometry represents the vessel.
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Chapter 4

Accuracy of the bulk-vascularized tissue

assumption

The first consideration of this work was to analyze the difference in

the origin of emission between an in vivo microvasculature geometry, and the

more typically used assumption of homogeneous tissue with a volume fraction

of absorbers. First, the simulations used to determine the accuracy of the

homogeneous tissue assumption will be presented, followed by the results and

a discussion of their implications.

4.1 Simulations

In the microvasculature geometry, a widefield illumination and small

detection method were simulated. A 400µm diameter, slightly diverging (NA

= 0.01) cone of light was used as the illumination. The detector was a 50µm

x 50µm square at the top-center of the geometry. Imaging techniques which

rely on a full surface illumination and a camera for detection operate on a

similar principle. The small detection volume can be thought of as a single

pixel in a camera. This illumination and detection scheme will henceforth be

referred to as the “camera” scheme.
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For each of the three homogeneous tissue geometries, 1%, 5%, and 10%

blood volume fraction, simulations were performed using 415nm and 524nm

excitation wavelengths. As with the microvasculature geometries, a wide-field

illumination method with a small area detector was used. f(z) and F (z) were

calculated from the signal distribution, Id(x, y, z) using Eqns. 2.7 and 2.8, and

used to compare the homogeneous and microvascular geometries.

4.2 Results and Discussion

The comparison between the microvasculature geometry and the ho-

mogeneous tissue geometry can be seen in Fig. 4.1. The left column of Fig.

4.1 shows the depth-dependent signal distribution, f(z), of the collected signal

distribution, calculated using Eq. 2.7. The right column of Fig. 4.1 shows the

depth-integrated signal distribution, F (z), of the collected signal as a function

of depth–a value of 0.3 at 100µm, therefore, would mean that 30% of the

fluorescence signal originated from the top 100µm of the geometry.

For reference, measurements of the volume of the microvasculature ge-

ometry showed that the approximate volume fraction of blood vessels was

3.5%. Homogenous geometries of 1%, 5%, and 10% for 415nm and 524nm

excitation and 5% and 10% for 800nm excitation are shown to demonstrate

that the results do not match a realistic geometry in most cases. The results

suggest that the accuracy of a bulk-vascularized tissue assumption is strongly

dependent on the excitation wavelength of the fluorophore.

The 415nm excitation case shown in Fig. 4.1(a) shows that the homo-
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genenous tissue assumption significantly underestimates the depth from which

the collected signal originates. Even a 1% vascularized assumption shows 90%

of the signal originating from the first 100µm, whereas the simulation shows

that 90% of the signal comes from the first 250µm. Differences in signal dis-

tribution can be attributed to the large difference between the intra and extra

vascular absorption coefficients. Fig. 5.1(a) shows that a significant portion of

hte signal fromes from surface vasculature over the illumination area and the

first vessel below the detector, at 40µm below the tissue. Excitation photons

experience a small amount of absorption outside of the blood vessels, which

allows them to scatter around blood vessels and penetrate deeper into the tis-

sue. The emission photons, being Stokes-shifted into the near infrared region,

are not strongly absorbed in any tissue and can return to the surface without

much attenuation from absorption.

524nm and 800nm excitation produced very different results. Fig.

4.1(c-d) shows that with 524nm excitation the microvasculature geometry sim-

ulation gives a depth-dependent signal distribution less than that of even a

10% vacularized homogeneous tissue geometry. While the 524nm excitation

case still shows shallower penetration than would be expected given the 3.5%

vascularized geometry used, the error is less dramatic than the 800nm case.

800nm excitation with 880nm emission, shown in Fig. 4.1(e-f) again produced

the opposite result from the 415nm excitation, where the depth penetration

is significantly less than what would be expected. 1% vacularization was not

shown, as 90% of the signal originated from the first 7-8cm, which is far deeper
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than the approximately 400µm depth penetration exhibited by the photons in

the microvasculature geometry.

Based on the results, it appears that the depth penetration in a re-

alistic geometry relative to the homogenous geometry assumption strongly

correlates with the amount of difference between the absorption of blood and

contrast agent at the excitation wavelength and the emission wavelength. A

large excitation-emission absorption difference, such as the 415nm to 690nm

in porphyrin, causes the depth of penetration to be greater than what the

homogeneous assumption would predict. A smaller difference, on the other

hand, appeared to produce the opposite effect, with the homogeneous tissue

assumption significantly overpredicting the depth of the collected signal dis-

tribution.

4.3 Conclusion

Here, I show that using a homogeneous geometry assumption to ap-

proximate the depth-distribution of the collected fluorescence signal is not an

accurate method. A more complex model, involving both the difference in

blood absorption at the excitation and emission wavelengths, as well as the

difference in absorption coefficients in the fluorescing region compared to the

non-fluorescing region is required to provide a more accurate picture of depth

penetration.
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Figure 4.1: PDF and CDF of collected signal using homogenous, bulk-
vascularized tissue assumption and comparison to wide-field illumination with
small area detection using (a-b) 415nm, (c-d) 524nm and (e-f) 800nm excita-
tion. Note that the x-axis in (a-b) is different from (c-f).
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Chapter 5

Evaluation of illumination and detection

schemes

5.1 Simulations

For each excitation wavelength (415nm, 524nm and 800nm) the mi-

crovascular geometry was used for three illumination and detection schemes.

The “camera” illumination and detection scheme described previously was

used for the comparison, in addition to two other methods referred to as the

“targeted” method and the “confocal” method.

The second method consisted of a 20µm diameter illumination area

and a detector which captured all emission photons exiting the surface of

the tissue. This scheme mimics selective illumination of a small area of the

tissue and integration of all fluorescent photons exiting the tissue, similar to

approaches that utilize structured excitation with single point detectors[15].

This scheme will be referred to as the “targeted” illumination and detection

scheme.

The third method was a hybrid of the previous two, which is similar to

the scanning confocal method. The illumination source was a 20µm diameter

beam with an NA of 0.01, while the detector was a 50µm x 50µm square at the
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top-center of the geometry. This method is similar to the results provided when

the laser scanning confocal method[31] is used, and as such will be referred to

as the “confocal” scheme.

The results of the three illumination schemes were then compared to de-

termine the effect of choosing a targeted illumination scheme over a wide-field

illumination scheme, as well as a wide field detector (i.e. PMT or APD) over

a point detector (i.e. camera pixel) based on the desired signal distribution.

To provide a comparison between the schemes, both the depth-dependent

and depth-integrated signal distributions for each excitation and emission

wavelength pair were calculated according to Eqns. 2.7 and 2.8. Additionally,

the 3D rendering of the signal distribution for the camera scheme, Id(x, y, z),

was generated to demonstrate the effects of using a widefield illumination

method.

5.2 Results and Discussion

Figure 5.1 shows the depth dependence of the detected signals for the

three imaging geometries. Fig. 5.1(a) shows the depth-dependent signal distri-

bution, f(z), in the microvasculature geometry using the camera illumination

and detection scheme at 415nm, 524nm and 800nm excitation. Fig. 5.1(c)

shows f(z) when using a wide-field illumination method with a small detec-

tion area on the surface of the tissue, and Fig. 5.1(e) shows f(z) in the case

of the confocal illumination and detection scheme. Figs. 5.1(b), 5.1(d) and

5.1(f), on the right column, show the depth-integrated signal distribution,
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F(z), at each depth in the tissue under the illumination and detection scheme

corresponding to Figs. 5.1(a), 5.1(c) and 5.1(e).

The depth-dependent signal distribution plots represent the probability

of the collected fluorescent photons originating from each depth in the tissue.

From Fig. 5.1(a), there is approximately 0% probability of photons originating

from 100µm into the tissue, while there is a 0.5% chance of photons originat-

ing from 100µm into the tissue in the 1% and microvasculature geometries.

The depth-integrated plots, on the other hand, represent the total amount of

fluorescence originating from above a depth, zµm, in the tissue. In Fig. 5.1(b),

for example, 50% of collected fluorescence originates from the first 5-10µm in

the 5% and 10% homogeneous tissues, about 25µm in the 1% homogeneneous

tissue, and the first 100µm in the realistic in vivo microvasculature geometry.

Given the results, it is clear that the best spatial localization is obtained

when using the confocal illumination and detection scheme. The strong peak

at approximately 40µm represents an approximately 20µmwide vessel directly

below the surface position of the illumination beam. This shows that given

a low numerical aperture (NA) beam, surface vasculature can be strongly

emphasized by localizing both the illumination and the detection positions.

Using targeted or point illumination with a wide-area detector gener-

ates a strongly wavelength-dependent signal distribution. When using 415nm

excitation, the signal distribution is similar to the distribution obtained when

using the confocal scheme. However, when 524nm or 800nm excitation light

is used, the first vessel encountered did not represent a significant fraction
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Figure 5.1: (a) Depth-dependent (f(z)) and (b) depth-integrated (F (z)) signal
distribution for the targeted illumination and detection scheme; (c) and (d)
are f(z) and F (z) using the camera scheme, and (e) and (f) are f(z) and F (z)
using the confocal scheme.
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of the total measured signal. This observation could be useful in selecting a

wavelength for excitation, depending on the goal or target of imaging. With

porphyrin, for example, either the surface vasculature can be emphasized by

using 415nm excitation light, or higher depth sensitivity can be obtained by

using 524nm excitation light.

Lastly, the camera scheme shown in Fig. 5.1(c-d), is the least sensitive

method of the three to surface vasculature, with only a small fraction of the

total collected signal originating from directly under the detector area. Re-

gardless of the excitation wavelength used, the light entering the detector is

not representative of the surface vasculature below the detector area. This is

an important observation, as often the surface vasculature will be visible on

the camera which is detecting the fluorescence, and it is easy to mistake the

signal received as coming from the surface vessels. However, even in the case

of the 415nm excitation light, less than 10% of the detected signal originated

from the vessel below the detector area.

Figs. 5.2, 5.3 and 5.4 show 3D renderings of the origin of detected

fluorescence generated using the camera illumination and detection scheme,

as generated by weighting each detected photon according to Eq. 2.6. The

total signal was then normalized to generate a 3D PDF of the signal using

1µm x 1µm bins. The simuation demonstrates that when a large area on

the surface is illuminated, the fluorescence signal collected at the surface can

originate not only from deeper in the tissue under the detector area, but also

from areas near the surface that are not under the detector: similar to what
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Figure 5.2: 3D rendering of fluorescence signal distribution using wide-field
illumination with small area detection for 415nm excitation. The geometry is
a 400µm deep.
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Figure 5.3: 3D rendering of fluorescence signal distribution using wide-field
illumination with small area detection for 524nm excitation. The geometry is
a 400µm deep.
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Figure 5.4: 3D rendering of fluorescence signal distribution using wide-field
illumination with small area detection for 524nm excitation. The geometry is
a 800µm deep.
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is seen with source-detector separations. The renderings also provide a good

visual aid to explain the peaks in Fig. 5.1(a), 5.1(c) and 5.1(e). The peaks

at the surface correspond to the signal detected from the surface vasculature

under the entire illumination area, while the peaks at 40µm correspond to the

first vessel directly beneth the detector surface.

The results suggest that techniques that prioritize accurate imaging of

microvasculature should aim to focus the excitation light on the tissue of in-

terest. If the excitation light has a small NA (nearly collimated), then the

emitted light will represent vasculature at a number of different depths, de-

pendent on the distance between the surface and the first vessel the excitation

light meets. In Fig. 5.1(f), for example, the excitation photons scatter down to

40µm before encountering a blood vessel. Techniques that utilize depth selec-

tion independently of illumination would benefit from taking this observation

into consideration.

5.3 Conclusion

Three illumination and detection schemes used in fluorescence imaging

have been evaluated to determine the effect of imaging technique on the origin

of the collected signal. Targeted illumination schemes offer a more focused

signal distribution over wide field illumination. Using a camera with targeted

illumination in particular offers very strong localization of signal to the sur-

face vasculature, while wide-area detection can provide more depth-weighted

signals. Wide-area illumination with small area detection offers the greatest
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depth weighting of the three illumination and detection schemes that were

evaluated, but at the cost of including fluorescence from near the surface over

the entire illumination region.
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Chapter 6

Intra-vessel distribution of fluorescence

emission

The purpose of modeling fluorescence emission from a single vessel is

primarily to provide a more accurate picture regarding what happens when a

vessel is targeted with excitation light. The primary question is: if a surface

vessel is targeted, will the fluorescence signal returning from the tissue be

representative of that vessel? Though this is similar to the simulations done

in the previous chapter, with the targeted illumination schemes, here I look at

vessels that are on the surface of the tissue. Examples where this is the case

in the brain would be the dural vessels, which lie along the top of the surface

of the cerebrum.

6.1 Simulations

The objective of the single vessel geometry was to determine the pen-

etration of excitation light into underlying tissue, and thus to determine how

much of the captured signal can be attributed to the targeted vessel. As such,

the illumination area was a circle with a diameter that matched the diame-

ter of the vessel in each geometry. Vessel diameters of 25, 50, 75, 100, 150,
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and 200µm were used. Simulations were performed using 415nm, 524nm and

800nm illumination and a wide-field detector. Outside of the vessel, a 5%

volume fraction of vascularization was used so that a measure of the amount

of excitation light penetrating through the vessel could be easily measured.

6.2 Results and Discussion

Fig. 6.1 shows the results of single vessel geometry simulations at

524nm and 415nm illumination. Figs. 6.1(a) and 6.1(b) show a simulation

result when the vessel size was set to 100µm. The 3D distribution of the

signal, Id(x, y, z) was integrated along the length of the vessel to generate

the images in Figs. 6.1(a) and 6.1(b). A figure demonstrating single vessel

penetration of 800nm excitation light is not shown, as it visually appears

similar to the 524nm excitation case. Fig. 6.1(c) shows the fraction of the total

collected signal which originated inside the 100µm vessel at each of the three

excitation wavelengths. A targeted surface vessel with a diameter of 100µm,

for example, will produce a signal that is 100% representative of the vessel

fluorescence at 415nm, 80% representative of vessel fluorescence at 524nm,

and 50% representative of vessel fluorescence at 800nm.

At 415nm, seen in Fig. 6.1(c), the intra-vessel absorption was high

enough to completely prevent the excitation light from penetrating through to

deeper tissues. The absorption also prevented the excitation light from being

able to sample the entire vessel. This could effect measurements where an

average across the vessel diameter would provide a more accurate measurement

40



of a given parameter than just the value near the vessel wall. The 524nm

illumination light was able to sample the entire vessel, but at smaller vessel

sizes the light also penetrated through the vessel and sampled a significant

amount of tissue outside the vessel in question. At 800nm, the results are

similar to the 524nm excitation case in Fig. 6.1(b), though as expected more

light is able to penetrate through the vessel. Note that while these results

demonstrate that using 415nm illumination can allow for strong emphasis of

surface vasculature in the targeted illumination scheme, Fig. 4.1 also suggests

that using this wavelength can result in emphasized surface vasculature in all

three of the illumination and detection schemes evaluated.
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Figure 6.1: 100µm single vessel geometry with (a) 415nm targeted illumi-
nation and (b) 524nm targeted illumination. (c) Amount of detected signal
originating from inside the vessel as a function of vessel diameter.
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6.3 Conclusion

Here, I examined intra-vessel sampling and demonstrated that when

using an excitation wavelength that is strongly absorbed by blood, the col-

lected signal originates from only the top-surface of the targeted vessels. This

may need to be taken into account if using a lifetime imaging method that will

produce different results near the vessel walls–a wavelength which is absorbed

by blood less may be more useful to provide a signal which is integrated across

the vessel diameter.
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Chapter 7

Conclusion and future work

In this work, several characteristics of fluorescence lifetime imaging in

the brain that have not to my knowledge been previously investigated were

studied.

First, it was shown that using a homogeneous geometry assumption

to approximate the depth-distribution of the collected fluorescence signal is

not an accurate method. A more complex model, involving both the differ-

ence in absorption at the excitation and emission wavelenths, as well as the

difference in absorption coefficients in the fluorescing region compared to the

non-fluorescing region is required to provide a more accurate picture of depth

penetration.

Additionally, three illumination and detection schemes used in fluores-

cence imaging were examined. Targeted illumination schemes offer a more

focused signal distribution over wide field illumination. Using a camera with

targeted illumination, in particular, offers very strong localization of signal to

the surface vasculature, while wide-area detection can provide more depth-

weighted signals. Wide-area illumination with small area detection offers the

greatest depth-weighting of the three illumination and detection schemes that
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were evaluated, but at the cost of including fluorescence from near-the-surface

over the entire illumination region.

Lastly, I examined intra-vessel sampling and demonstrated that when

using an excitation wavelength that is strongly absorbed by blood, the col-

lected signal originates from only the top-surface of the targeted vessels. This

may need to be taken into account if using a lifetime imaging method that will

produce different results near the vessel walls–a wavelength which is absorbed

by blood less may be more useful to provide a signal which is integrated across

the vessel diameter.

It is my hope that these results will aid design considerations when

building or purchasing an instrument to do intravascular fluorescence imaging.

In the future, I would like to perform a more intensive study of the flu-

orescence imaging dynamics by using arbitrary excitation and emission wave-

lengths. If the absorption properties of the constrast agent may be disregarded,

as is often the case in blood since it is such a strong absorber, then the optical

properties across the entire visible spectrum may be easily calculated. The dif-

ficulty, however, lies with the computational time required to run that many

simulations. One simulation would need to be run for each excitation wave-

length desired, though the emission wavelength would be changable through

postprocessing. As an example, to simulate the 800nm excitation case using

the camera scheme, over 10 billion photons were used to generate a conver-

gent fluorescence distribution. This simulation took approximately 6 days of

compute time to run.
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As computational time is the biggest limiter of a larger, more intensive

study of this kind, the next step would be to parallelize the fluorescence Monte

Carlo code. I plan to do this by implementing the algorithm in CUDA C,

which by moving the computation to a graphics processing unit (GPU), has

the potential to speed up the simulation run times several orders of magnitude.
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