
 

 

 

 

 

 

 

 

 

Copyright 

by 

Yi Tao 

2012 

 

 



 
76BThe Dissertation Committee for Yi Tao Certifies that this is the approved version of 

the following dissertation: 

 

 

77BTime reversal and plane-wave decomposition in seismic interferometry, 

inversion and imaging 

 

 

 

 

 
Committee: 
 

Mrinal K. Sen, Supervisor 

Robert H. Tatham 

Clark R. Wilson 

Kyle T. Spikes 

Yosio Nakamura 

Gail L. Christeson 



78BTime reversal and plane-wave decomposition in seismic interferometry, 

inversion and imaging 

 

 

85Bby 

79BYi Tao, B.S.; M.S. 

 

 

 

80BDissertation  

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

81BDoctor of Philosophy 

 

 

82BThe University of Texas at Austin 

83BDecember 2012 



86BDedication 

 

To my parents 

 

 



 v

87BAcknowledgements 

 

First, I would like to express my deep appreciation to my adviser Dr. Mrinal 

K. Sen for his excellent guidance, patience, encouragement and support throughout 

my graduate studies. I have benefited a lot from his profound knowledge in every 

aspect of geophysics. Thousands of times when I faced challenges, Mrinal’s 

suggestions, discussions and ideas have lead me to the right direction of geophysical 

research. Without him, this dissertation would never have produced. I would like to 

also thank Dr. Robert Tatham, Dr. Kyle Spikes, Dr. Clark Wilson, Dr. Yosio 

Nakamura and Dr. Gail Christeson for serving on my committee members and for 

continuous help on my research and this dissertation.  

I owe much gratitude to Dr. Steve Grand for teaching me to view the basic 

concepts of Geophysics in a different way. I thank Dr. Sergey Fomel for excellent 

advice about the programming with Madagascar tool. I also thank Dr. Paul Stoffa for 

helpful discussions and advices. I would like to also thank Nathan Bangs for his help 

in the interpretation of reflection seismic data. Thanks to Harm Van Avendonk for 

suggestions on OBS data. Thanks to Joost van der Neut and Pawan Bharadwaj for 

discussions on interferometry.  

I would like to thank ConocoPhillips Company for the opportunity to work as 

a summer intern during the summer of 2010 and 2011. It was a pleasure to work with 

the scientists there; their suggestions help me to think about the directions of this 

dissertation. I also thank ConocoPhillips fellowship and Spirit Scholars program, 

John and Elizabeth M. Teagle Fellowship and Chevron scholarship for the financial 

support during my stay at UTIG. 



 vi

Many thanks are due to my former and current colleagues and friends at 

Jackson School of Geosciences: Rui Zhang, Samik Sil. Ranjana Gosh, Mohammed 

Alhussain, Jonas De Basabe, Son Phan, Zeyu Zhao, Long Jin, Tianchong Hong, 

Ranjana Ghosh, Kumar Sundaram, Qi Ren, Yang Xue, Chaoshun Hu, Chunlei Chu, 

Ryan Lester, Sandy Suhardja, Sharif Morshed, Xiaolei Song, Siwei Li, Russel Carter, 

Shaoping Lu, Terence Campbell, Vladimir Bashkardin, Will Burnett, Yihua Cai, 

Ying Sun, Meijuan Jiang, Yu Xia, Yang Wang, Gang Luo and Kwon Taek Oh.  

I also thank Mark Wiederspahn, Thomas Hess and Kevin Johnson for their 

technical support. I thank Judy Sansom and Susan Beaubien from UTIG and Margo 

Grace, Phillip Guerrero and Debra Sue Trinque from DGS for their help.  

Finally, I would like to thank my parents for their love and patient support. 

My special thanks also go to Na Shan for her constant support and encouragement. 

 

 



 vii

84BTime reversal and plane-wave decomposition in seismic 

interferometry, inversion and imaging 

 

 

Yi Tao, PhD. 
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Supervisor:  Mrinal K. Sen 

 

This thesis concerns the study of time reversal and plane-wave decomposition 

in various geophysical applications. Time reversal is a key step in seismic 

interferometry, reverse time migration and full waveform inversion. The plane-wave 

transform, also known as the tau-p transform or slant-stack, can separate waves based 

on their ray parameters or their emergence angles at the surface.  

I propose a new approach to retrieve virtual full-wave seismic responses from 

crosscorrelating recorded seismic data in the plane-wave domain. Unlike a traditional 

approach where the correlogram is obtained from crosscorrelating recorded data, 

which contains the full range of ray parameters, this method directly chooses 

common ray parameters to cancel overlapping ray paths. Thus, it can sometime avoid 

spurious arrivals when the acquisition requirement of seismic interferometry is not 

strictly met. I demonstrate the method with synthetic examples and an ocean bottom 

seismometer data example. I show a multi-scale application of plane-wave based full 

waveform inversion (FWI) with the aid of frequency domain forward modeling.  

FWI uses the two-way wave-equation to produce high-resolution velocity models for 

seismic imaging. This technique is implemented by an adjoint-state approach, which 
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involves a time-reversal propagation of the residual wavefield at receivers, similar to 

seismic interferometry. With a plane-wave transformed gather, we can decompose the 

data by ray parameters and iteratively update the velocity model with selected ray 

parameters. This encoding approach can significantly reduce the number of shots and 

receivers required in gradient and Hessian calculations. Borrowing the idea of 

minimizing different data residual norms in FWI, I study the effect of different 

scaling methods to the receiver wavefield in the reverse time migration. I show that 

this type of scaling is able to significantly suppress outliers compared to conventional 

algorithms. I also show that scaling by its absolute norm generally produces better 

results than other approaches. I propose a robust stochastic time-lapse seismic 

inversion strategy with an application of monitoring Cranfield CO2 injection site. This 

workflow involves two steps. The first step is the baseline inversion using a hybrid 

starting model that combines a fractal prior and the low-frequency prior from well log 

data. The second step is to use a double-difference inversion scheme to focus on the 

local areas where time-lapse changes have occurred. Synthetic data and field data 

show the effectiveness of this method.  
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2BChapter 1: Introduction 

1.1 12BMOTIVATION 

Seismic waves carry a wealth of information. By studying the seismic waves 

typically recorded at the Earth’s surface, we are able to construct detailed images of the 

subsurface. This is the most cost-effective and reliable way to unravel the subsurface 

properties, to prospect oil and gas, and to predict natural hazards such as earthquakes and 

tsunamis. To derive more information from seismic waves, we need to use advanced 

geophysical tools. During the past decade, seismic interferometry, full waveform 

inversion (FWI) and reverse time migration (RTM) have become fairly popular in 

geophysical community. The study of these advanced techniques is fundamentally 

important in both academic and applied seismology. 

One common aspect of these techniques is that they all use a time reversal 

process. In this process, the seismic waves from a source inside a medium are first 

recorded by an array of receivers located at the boundary of the medium, and then they 

are reversed in time and back-propagated into the medium. This back-propagation results 

in an energy focusing at or near the original source location. This was demonstrated by 

Fink in 1997 through physical experiments and later was extensively studied in different 

disciplines (e.g., Snieder et al. 2002 used this approach to study scattered coda waves). 

For practical implementations in interferometry, however, this back-propagation process 

is accomplished with a reciprocity principle and a crosscorrelation procedure.   

Another common feature of these three methods is the fact that all of them are 

based on the full waveforms, i.e., they use both travel time and amplitude information. 

The travel time is related to long period (smooth) variation of the model parameters 

(typically velocity). The amplitude, on the other hand, is related to short period (rapid) 
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changes of the model parameters. Early stages of modern seismology relied mainly on 

travel time information (e.g., Oldham, 1906). Amplitude-related processing techniques 

began to become popular after 1980s when people realized that amplitude variation with 

offset (AVO) is important in exploration seismology (Ostrander, 1984). Compared to ray-

based imaging approaches, full waveform methods honor the basic physics of seismic 

propagation which include multiple scattering, attenuation and anisotropic effects. It can 

also maintain the band-limited frequency effects instead of using infinite-frequency rays. 

It is therefore no surprise that full wave methods are now being studied extensively.    

The main differences among the three methods are their distinct objectives and 

seemingly disconnected numerical implementations. Seismic interferometry is used to 

create virtual shot gathers (redatuming); FWI is used to derive elastic parameters (mostly 

velocity); and RTM is used to create an image section. In terms of implementation, the 

most significant difference is that both FWI and RTM require velocity information for 

wavefield extrapolation while interferometry does not require this information. Another 

difference is that FWI requires iterative processes to search for the optimal solution while 

interferometry and RTM are usually implemented as a one-step deterministic process.  

The plane-wave transform (also known as the p−τ transform or slant stack) is 

used to generate a p−τ  gather by applying a constant time shift to each offset trace and 

summing all offsets. This transform offers many advantages in multiple suppression (Liu 

et al., 2000), velocity analysis (Diebold and Stoffa, 1981), anisotropy analysis (Sen and 

Mukherjee 2003; Sil and Sen, 2009), direct inversion of plane-wave gather (Sen and 

Stoffa, 1991) and source-encoding for wave equation migration and inversion (Zhang et 

al., 2005, Vigh and Starr, 2008). In general, the p−τ domain is an excellent space for 

many geophysical applications. 
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For every inverse problem, non-uniqueness can be a challenge because even the 

data residual is small. Correspondingly, the inverted model can still be away from the 

“true” model. This situation can be improved if we consider building a good starting 

model and applying constraints in the inversion process.   

The objective of this thesis is to investigate the applications of plane-waves and 

time-reversal methods to seismic redatuming, inversion and migration problems. 

Challenges in inverse problems such as non-uniqueness are also considered in this thesis. 

I will develop new methods to facilitate better applications of these algorithms. I will use 

theoretical analysis, synthetic numerical experiments and field data examples to 

demonstrate this.  

13B1.2 FORWARD MODELING 

Because of the complexity of real seismic problems, analytical solutions (e.g., 

Lamb, 1904; Trifunac, 1971) of wave propagations are rarely used in practice. Instead, 

forward modeling with numerical algorithms is used to generate synthetic data from 

given model(s). Forward modeling is the basis for redatuming, inversion and migration. 

There are many algorithms for forward modeling with different numerical 

approximations, accuracies and computational costs. These algorithms have several 

advantages and disadvantages; the choice of an algorithm depends on the problems we 

want to solve. Mathematically, all seismic forward modeling operators can be generally 

written as 

d = F(m) ,                         (1.1) 

where m  are the model parameters - typically elastic parameters including P-wave 

velocity, S-wave velocity, density and so on; d  is the data and F  is the forward 

operator, which is typically nonlinear.   
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Perhaps the simplest forward modeling strategy for synthetic seismogram is the 

convolution model (e.g., Rowbotham et al., 2003; Hampson et al., 2005). This is used to 

generate flattened gathers that can match normal moveout (NMO) corrected common 

middle point (CMP) gathers or migrated gathers generated from acquired reflection 

seismic data. The convolution based forward modeling is used extensively in amplitude 

versus offset (AVO) analysis and in simultaneous inversion problems.  

In contrast to a convolution model that characterizes the amplitude information of 

seismic data, ray-based methods (Červený, 2001) describe travel time. They track the 

movement of individual points of the propagating wavefront based on the asymptotic 

assumption of high-frequency solution of the elastodynamic equation. These methods are 

extensively used in ray-based migration and tomography applications.  

Reflectivity modeling and wave equation modeling describe waveforms, i.e., both 

amplitude and travel time. Reflectivity modeling (e.g., Thomson, 1950; Kennett, 1983) is 

a semi-analytic approach that describes wave propagation in the frequency-wavenumber 

domain based on stratified earth assumption. Reflection/transmission coefficients are 

determined at the layer boundaries and the communication among layers is done with a 

propagator matrix approach. Full-wave signals including reflections, transmissions, 

converted waves and multiples, can be modeled with this approach.  

Two-way wave equation methods are ideal for tackling many challenging 

exploration and production problems. These methods are derived from the elastodynamic 

wave equations for heterogeneous media. They do not have the limitations of the ray-

based or 1D reflectivity methods. However, the grid size (or step length) of the 

propagation media should be small enough to satisfy the grid dispersion and stability 

conditions. Both FWI and RTM specifically require two-way wave equation methods as 

their forward modeling strategies. Seismic interferometry is not dependent on the forward 
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modeling methods. However, most of the numerical tests reported in literature are based 

on two-way wave equation methods.  

There are several numerical methods for solving seismic wave equation – they 

differ mainly based on the schemes used for spatial or temporal discretization. Three 

most common numerical methods are the finite difference method (FDM), finite element 

method (FEM) and boundary element method (BEM). FDM is based on the truncated 

Taylor series of the partial derivatives. Standard-grid formulation (Alford et al., 1974) 

and staggered-grid formulation (Levander, 1988) are the two most common FD methods. 

FEM is based on a weak form (integral formula) of the wave equation. Finite volume 

method (Dormy and Tarantola, 1995), spectral element method (Komatitsch and Vilotte, 

1998; De Basabe and Sen, 2007) and discontinuous Galerkin method (Rivière et al., 

1999; De Basabe et al., 2008) can be considered as variants or special cases of FEM. 

BEM is also based on the weak form of the wave equation but the discretization is done 

only along the interfaces and thus it only can be applied to piecewise heterogeneous 

media (Schuster, 1985).    

 In this dissertation I will use FDM for two-way wave equation wavefield 

simulations because of its simplicity to implement and acceptable computational cost. A 

time-domain approach is used for seismic interferometry and RTM and a frequency- 

domain approach is used for FWI. The time-domain approach uses an explicit time 

marching algorithm and is therefore easier to implement. The frequency-domain 

approach requires a solution of a linear system and thus it is harder to implement but it is 

faster for 2-D problems when a large number of sources are needed for wavefield 

simulations.  

Mathematically, the time-domain approach is to perform time marching on the 

following spatial discretized wave equation (isotropic case with no attenuation)   
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     ( ) ( ) ( )t t t+ =Mu Ku f&&  ,                        (1.2) 

where the matrices M  and K  denote the mass matrix and the stiffness matrix, 

respectively; the vector f  is the source term. We write M  and K  as matrices to 

compare the frequency-domain solution, but in practice these two matrices are rarely 

formed and local finite difference stencils are used instead. 

The frequency-domain modeling is based on the following space-discrete 

displacement formulation 

     2 ( ) ( ) ( )− + =Mu Ku fω ω ω ω  .                        (1.3) 

Equation 1.3 is the Fourier transformed version of equation 1.2. In order to solve 

this equation, M  and K should be allocated explicitly and a linear system should be 

solved.    

14B1.3 SEISMIC INTERFEROMETRY  

Seismic interferometry refers to the method to retrieve a new Green’s function 

between two different receivers from recorded wavefields. Similar to optical 

interferometry, which takes advantage of the interference pattern of the light beams to 

reveal the properties of the medium, seismic interferometry uses the interference pattern 

of seismic waves to study the elastic properties of the earth. The mathematical tool for 

this method in the time domain is crosscorrelation (Schuster, 2001; Schuster et al., 2004), 

crossconvolution (Curtis et al., 2006) or deconvolution (Vasconcelos et al., 2008a, 

2008b). The most commonly used approach is crosscorrelation. All of these approaches 

can be expressed in the following general form  

0d = R(d )  ,                        (1.4) 
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where 0d  and d  represent original data in the acquired geometry and interferometry 

data in the redatumed domain, respectively; R  is an operator in data space.   

Seismic interferometry can redatum the data from one type of acquisition 

geometry to another type of acquisition geometry. As suggested in equation 1.4, 

interferometry operates in the data domain. Thus, the redatuming operators used in 

interferometry do not require a velocity model, which is very different from the 

redatuming methods with equivalent source terms (Mulder, 2005).  

Application of this redatuming technique offers several advantages. First, ambient 

noise recordings could be turned into useful signals by generating new shot gathers. 

Second, source and/or receiver arrays can be redatumed to be closer to the target without 

knowing the velocity model and thus, complex overburden can be avoided using this 

technique. Third, it enables us to view the earth with different viewing apertures and 

angles. Finally, multiple scattered arrivals can be transformed into primary reflections to 

provide super-illumination, super-resolution and elimination of statics.  

The pioneering work of seismic interferometry can be attributed to Claerbout 

(1968). In that paper, Claerbout demonstrated that for a normal incidence plane wave in a 

stratified 1-D acoustic medium, by cross-correlating different transmitted signals from 

the free surface, one can get a new signal that appears to have propagated from one 

receiver to another receiver via subsurface. This wave, unlike the conventional reflected 

wave that has only causal part, contains a non-causal part and an infinite pulse. This work 

was extended to the elastic case with arbitrary incidence angle by Fraiser (1970). 

Wapenaar (2003, 2006) developed a theory for seismic interferometry based on seismic 

reciprocity. This is probably the most rigorous theoretical proof of seismic 
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interferometry. However, proof with wave modes separated reflectivity method is not 

well known to the geophysics community. I show this proof in Appendix A.  

15B1.4 FULL WAVEFORM INVERSION 

In the context of numerical mathematics, any non-linear inverse problem can be 

generally represented as (Menke, 1984) 

1−m = F (d)  .                        (1.5) 

As shown in equation 1.5, the purpose of inversion is to derive subsurface model 

parameters from seismic data. It generally involves a process to minimize a misfit 

function (also known as error function or cost function) between observed and forward 

modeled data. A myriad of geophysical inversion approaches have been developed over 

the last several decades. They can be grouped into different categories mainly by their 

forward modeling strategies.  

For FWI, the forward modeling usually refers to two-way wave equation 

waveform simulation methods. The purpose of FWI is to produce high-resolution elastic 

models for seismic imaging. Usually, the full elastic parameters of the subsurface for 

seismic imaging are reduced to a single parameter—acoustic or P-wave velocity. There 

are two main types of optimization approaches. The first one is a local optimization 

method based on the gradient of the misfit function. It usually requires a linearization of 

the non-linear problem based on the Born approximation. The second one is a global 

optimization method based on Monte Carlo simulations. It randomly calculates many 

models and decides the optimal model parameters and uncertainties with those 

calculations. So far, because of the computational cost and non-uniqueness, FWI has 

been implemented with an adjoint-state (Tarantola, 1984, Virieux and Operto, 2009) 

based local optimization method to iteratively update the model parameters.   
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16B1.5 REVERSE TIME MIGRATION 

Migration aims to recover the true structure of the subsurface from recorded 

seismic data by moving dipping reflectors to their true subsurface positions. 

Mathematically, a general description of the migration operators can be written as 

follows (Claerbout, 1992)  

T
migm = F (d)    ,                      (1.6) 

where migm  is the migration image; TF  is the migration operator, which is the adjoint 

of the forward modeling operator. The term migm  is different from the model 

parameterm because it has the same data size as NMO corrected data in the migrated 

gather, and the stacked image is created by stacking of the migrated data.    

Migration algorithms can be classified based on extrapolation schemes. RTM uses 

two-way wave equation as its wavefield extrapolation scheme. Migration algorithms can 

also be classified based on the processing sequence (post-stack and pre-stack) and 

operation domain (time and depth). RTM is a depth migration approach, typically applied 

to the pre-stack data. Similar to all other wave equation based migration algorithms, it 

requires forward propagation of the source wavefield, back propagation of the receiver 

wavefield and an application of an imaging condition. 

In addition to the general common and distinct features between interferometry 

and FWI, RTM can be specifically viewed as an interferometry process that requires 

subsurface velocity information and backward extrapolation. It can also be viewed as the 

gradient of the minimizing functionals (Tarantola, 1984, 1988; Mora, 1989).        

17B1.6 ORGANIZATION  

To give a complete description of the novel developments and applications I have 

made, this thesis is composed of the following chapters: 
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Chapter 2 describes an application of plane-wave transformation in the 

crosscorrelation-type seismic interferometry. I show synthetic examples for transmission 

to reflection retrieval and walkway vertical seismic profile (VSP) imaging of salt flank. I 

also show application of plane-wave for super-virtual seismic interferometry with 

synthetic data and real ocean bottom seismometer (OBS) data.  

Chapter 3 describes the frequency-domain full waveform inversion with plane-

wave encoded gradient and diagonal Hessian. This encoding can save computational cost 

because typically a ray parameter has wider illumination coverage than a shot gather. 

Chapter 4 provides detailed analysis of the scaling of the receiver wavefield to the 

migrated data. This approach borrows the idea from full waveform inversion and it can 

be used to suppress the non-Gaussian noises.  

Chapter 5 describes a robust stochastic time-lapse seismic inversion strategy with 

an application of monitoring a CO2 injection site. This workflow involves a baseline 

inversion using a hybrid starting model that combines a fractal prior and the low-

frequency prior from well log data. A second step of this workflow is to use a double-

difference inversion scheme.  

Chapter 6 contains the overall conclusions from my work. Possible future work is 

also described in this chapter. 
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3BChapter 2: Plane-wave based seismic interferometry  

18B2.1 ABSTRACT 

In this chapter, I present a new approach to retrieve virtual seismic responses from 

crosscorrelating acquired seismic data in the plane-wave domain. Using this method, 

slant stacking is first performed over shot or receiver locations of observed seismic data 

to produce plane-wave transformed gathers. Crosscorrelation is then performed by 

selecting traces with the same ray parameters from different shot or receiver locations of 

the plane-wave gathers. Unlike traditional crosscorrelation-type time-space domain 

interferometry where full range of ray parameters are used for each survey location, this 

method directly selects common ray parameters to cancel overlapping ray paths. This 

approach can be used to select certain ranges of ray parameters and therefore can retrieve 

energy only from certain directions. It can also avoid spurious arrivals in super-virtual 

interferometry, where unwanted arrivals such as reflections violate the requirement of 

conventional interferometry. Computation time can be saved with this approach since 

plane-wave transform usually results in a reduction of the original data volume. I 

demonstrate this method with synthetic and field OBS data examples. 

19B2.2 INTRODUCTION 

In recent years, seismic interferometry, also known as Green’s function retrieval, 

has grown into a thriving research area with many novel applications. Since it can 

redatum the seismic data from a given acquisition geometry to another source or receiver 

related geometry, and this redatuming does not require a velocity model, this technique 

has been applied extensively to controlled-source exploration data (e.g., Schuster, 2001; 

Wapenaar, 2006; Bakulin and Calvert 2006; Curtis, 2009). Another major type of data 

where seismic interferometry has been widely applied is passive seismic data with natural 
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sources (e.g., Rickett and Claerbout, 1999; Sabra et al., 2005; Draganov et al., 2007). For 

a comprehensive review of the theory and applications of seismic interferometry, the 

readers are referred to Schuster (2009), and Wapenaar et al. (2010a and 2010b). 

In classical interferometry, a virtual trace is obtained by crosscorrelating traces 

from two different receiver or source locations. Under high-frequency approximation, 

this process can be viewed as cancelation of common part of a ray path from a physical 

source to the two different receivers. This cancelation results in a raypath connecting a 

virtual source to a receiver (Schuster et al., 2004). A stacking operator is then applied to 

the correlogram to take advantage of contributions of all the sources. This entire process 

is done in the time-space ( t − x ) domain or in its equivalent frequency domain. However, 

in this domain, sources and receivers may be irregularly positioned and if a large number 

of traces need to be crosscorrelated, it can be computationally time consuming, especially 

when the crosscorrelation is done in time domain. 

Transforming seismic data from time-space domain to the plane-wave ( −pτ ) 

domain involves a mapping from original source and receiver distributions to ray 

parameter ( p ) distributions (e.g., Stoffa et al., 2006). This results in a regularized 

coordinate system even for irregular input data. This mapping is generally applicable to 

reflection seismic data, such as surface seismic profile (SSP) and vertical seismic profile 

(VSP), both of which are typically considered in seismic interferometry (Schuster and 

Zhou, 2006).  This mapping is also applicable to refraction geometry used in a recent 

work of super-virtual interferometry (Mallison et al., 2011). In the plane-wave domain, 

each ray parameter corresponds to a certain angle of incidence. This transformation offers 

several advantages and numerous methods have been investigated for seismic wave 

filtering (Tatham, 1989), multiple attenuation (Liu et al., 2000), seismic forward 
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modeling (Vigh and Starr, 2008), migration (Stoffa et al., 2006) and inversion (Sen et al., 

2003).  

In this chapter, I propose retrieving seismic responses based on crosscorrelation in 

the plane-wave domain. Classical interferometry automatically finds a ray from a 

stationary source, passing through two different receivers and cancels the common ray 

path. Plane-wave domain interferometry decomposes the data into different ray 

parameters and cancels the common ray paths by crosscorrelating the same ray 

parameters. I will demonstrate that this method can obtain results similar to those 

obtained in time-space domain, but it offers several advantages such as a regular 

coordinate system, computational efficiency and the flexibility to choose ray parameters 

for seismic data redatuming. 

20B2.3 THEORY 

Plane-wave transform, also known as −pτ transform or slant stack, has been 

investigated by many authors (e.g. Stoffa, 1989, Foster and Mosher 1992). The key idea 

of this transformation is to obtain “ray-parameter” gathers from common shot or common 

receiver gathers. It can be implemented either in time domain or in frequency domain. In 

the time domain, it involves summing of amplitudes along lines of constant slope called 

ray-parameters. In the frequency domain, this transform involves a phase shift 

determined by ray parameters and offsets and a summation over offsets. For acquisition 

geometries with surface sources and surface receivers or for transmission problems, the 

frequency domain version of plane-wave transform can be written as follows 

( | , ) ( | , ) exp( )d d i dω = ω ω∫p x h x ph h% ,             (2.1) 

where ( | , )d ωh x is the recorded data in the frequency domain, h is offset and 

= −r sh x x , x is the receiver position for a shot gather and it is the source position for a 
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receiver gather, ( | , )d ωp x% is the transformed plane-wave gather for a certain offset. The 

inverse plane-wave transform can be defined as 

 2( | , ) ( | , ) exp( )d d i d= −∫h x p x px p%ω ω ω ω , (2.2) 

For the interferometry problem considered here, plane-wave transform over either 

absolute receiver position rx or absolute source position sx  more helpful. The forward 

and inverse transform of a shot gather are given by 

( | , ) ( | , ) exp( )d d i d= ∫r s r s r r rp x x x p x x% ω ω ω ,        (2.3) 

2( | , ) ( | , ) exp( )d d i dω = ω ω − ω∫r s r s r r rx x p x p x p% .        (2.4) 

where ( | , )d ωr sx x  is a shot record with source coordinate sx and receiver 

coordinate rx . Similarly, for a receiver gather, we can use the following formulas 

( | , ) ( | , ) exp( )d d i d= ∫s r s r s s sp x x x p x x% ω ω ω .               (2.5) 

2( | , ) ( | , ) exp( )d d i d= −∫s r s r s s sx x p x p x p%ω ω ω ω .             (2.6) 

A general representation of the Green’s function retrieval process between two 

positions is based on the Rayleigh reciprocity theorem (Wapenaar 2004, Schuster 2009). 

In this dissertation, I use a far-field approximation and ignore the absolute amplitude. The 

retrieval of seismic response using interferometry relation in the frequency domain can be 

written as (e.g., Wapenaar et al. 2010a) 

 * *( , ) ( , ) ( | , ) ( , )d d d d d+ ≈ ∫B A B A A Bx | x x | x x x x | x xω ω ω ω ,        (2.7) 

where *( , )d A Bx | x ω represents the complex conjugate seismic wavefield with Bx  and 

Ax being the source and receiver coordinate, respectively. 
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Using equation 2.3 or equation 2.5, decomposition of seismic wavefield 

( , )d A Bx | x ω  into frequency-ray parameter ( −pω ) domain can be accomplished by 

summing the data over all the x positions, i.e., 

( , ) ( , ) exp( )d d i dω = ω ω∫A Ap | x x | x px x% ,                   (2.8) 

where the ray parameter p  depends on the survey position Ax . Similar to equation 2.4 

or 2.6, the inverse transform is defined as 
2( , ) ( , ) exp( )d d i dω = ω ω − ω∫A Ax | x p | x px p% .               (2.9) 

We can also define a plane-wave transform by summing over all offsets, but here 

we need the absolute survey positions to derive interferometry relations in the plane-wave 

domain. After this transform, the complex conjugate wavefield ( , )d ωAx | x  in the 

frequency domain is given by 
* 2 *( | , ) ( , ) exp( )Ad d i dω = ω ω ω∫Ax x p | x px p% .               (2.10) 

Inserting equation 2.10 into equation 2.7, we obtain 
*

2 *

( , ) ( , )

     ( , ) ( , )exp( ) .

d d

d d i d d

ω + ω

≈ ω ω ω ω∫ ∫
B A B A

A B

x | x x | x

p | x x | x px x p%
          (2.11) 

  Notice that ( , ) exp( )d i dω ω∫ Bx | x px x is a forward plane-wave transformation. 

Thus, we have 

*

2 *

( , ) ( , )

    ( | , ) ( , ) .

d d

d d d

ω + ω

= ω ω ω∫
B A B A

A B

x | x x | x

p x p | x p% %
             (2.12) 

When the absolute amplitude is not taken into account, the 2ω  filter ( 2 2/ t∂ ∂ in 

the time domain) in the right-hand side can be considered as processing filtering effect 

and can be ignored (Claerbout, 1985).  However, this filter is necessary to match the 
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frequency spectrum of the original data. Thus, equation 2.12 in the −pτ domain is 

equivalent to 

,),(~),|(~*                   

),(),(

2

2

px|pxp

x|xx|x

BA

ABAB

dtdtd
t

tdtd

∫ ⊗
∂
∂

≈

−+
              (2.13) 

where⊗ denotes crosscorrelation.  

Equation 2.13 suggests that analogous to t − x  domain, seismic interferometry 

can be performed in the −pτ  domain by crosscorrelating two p  traces which have the 

same p value but are from different positions. Following a procedure of summing over all 

p  traces, this will produce a virtual trace between the two points. 

Suppose that the input seismic data is a common shot gather. The steps to perform 

seismic interferometry in the tau-p domain can be described as follows: 

1. Input t-x domain shot gathers and sort them into common receiver 

gathers ( , , )d t r s . 

2. Transform the time-space domain data ( , , )d t r s  into plane wave data 

( , , )d r pτ  using equation 2.8.  

3. Select master trace A and slave trace B based on the fixed receiver positions A 

and B. Then decide the range of p  values to perform crosscorrelation and sum over all 

p  values. And then apply an 2ω  filter of the data if necessary. This results in a virtual 

seismic data that looks like A is the virtual source and B is the virtual receiver.  

4. Loop step 3 over all the receivers and output redatumed seismic data for further 

processing, e.g. migration.  

Plane wave interferometry can be understood by considering a simple example 

(Figure 2.1). Interferometric redatuming in the t − x domain can be explained by 

cancelation of overlapping stationary ray paths recorded at different receivers. The 

Green’s function between receivers B and A is retrieved by crosscorrelating a ray from 
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source S with cancelation of the common path. In the plane-wave domain, it may be more 

physically acceptable using asymptotic ray explanations.  There are several raypaths 

from source S to receivers B and A with many ray parameters; stationary condition in 

interferometry suggests that only those that have the same source ray parameter can lead 

to cancelation of overlapping ray paths (e.g., Schuster 2009). Thus, interferometry in the 

plane-wave domain is conducted by selecting the same source ray parameters from 

receivers B and A for crosscorrelation. Simply put, interferometry in the t − x  domain 

implies finding common path automatically from a given source-receiver geometry; in 

the plane-wave domain this common path corresponds to the same ray parameter. 

 

  

44BFigure 2.1: Crosscorrelating traces recorded at receiver locations B and A produces a new 
trace with virtual source at B, receiver at A. The canceled overlapping 
raypaths in the plane-wave domain corresponds to the same ray parameter. 

21B2.4 EXAMPLES 

35B2.4.1 Transmission to reflection retrieval 

My first example is a transmission to reflection retrieval example. The 2D 

acoustic subsurface model is shown in Figure 2.2 (modified from Draganov et al., 2006). 

This model consists of an irregular sea floor and a dipping layer. Six hundred transient 

sources are located at km 0.2=z with an equal distance of 10m; 600 receivers are 

laterally positioned at the surface. After redatuming, we will get virtual surface 

B A 

S 

B 

Same ray parameter 

A 
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acquisitioned marine data with both sources and receivers on the surface for this 

geometry. 

Original shot gathers are obtained numerically by 2-D finite difference modeling 

with absorbing boundary conditions. They are then sorted into common receiver gathers. 

The −pτ  transformed data using equation 2.2 for the first receiver gather (located at 

(0,0)) is shown in Figure 2.3 (right). The ray parameters range from -0.6 s/km to 0.6 

s/km. Full wave information from t − x  gather (Figure 2.3 left) is contained in this 

transformed gather. Interferometry is then performed over the −pτ  gather using step 3 

and step 4.  

 

 

45BFigure 2.2: An acoustic velocity structure for transmission to reflection retrieval for 
marine data. This model has a water layer with velocity=1.5 km/s, an 
irregular sea floor followed by a layer with velocity=2.0 km/s, velocity of 
the dipping layer is 3.0 km/s. 

An example crosscorrelogram of this model is shown in Figure 2.4. For x−t  

domain interferometry, this is obtained by first selecting a master trace with receiver 
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located at (3km, 0) for the first subsurface source and a slave trace with source and 

receiver at the same location, and then correlating these two traces. This procedure is 

repeated for all 600 sources to produce 600 correlation traces. For plane-wave 

interferometry, this is obtained simply by selecting the same ray parameter from 

−pτ transformed common receiver gather, autocorrelating it and then repeating for 

another ray parameter. While all 600 sources for x−t  domain interferometry needed to 

correlate to produce the correlation panel (Figure 2.4 left), for −pτ  domain 

interferometry (Figure 2.4 right), I can observe that most of the energy is produced within 

a certain range of ray parameters (about -0.3 s/km to 0.3 s/km for this case). This range 

corresponds to the stationary-phase region (Draganov et al., 2006). Also, note that the 

range of ray parameters in the correlation panel is smaller than the range of ray 

parameters in the receiver gather (about -0.5 s/km to 0.5 s/km).   

  

46BFigure 2.3: Common receiver gather for the first receiver (left) and its tau-p transformed 
gather (right). There are 200 ray parameters in the plane-wave gather from -
0.6 to 0.6 s/km. 
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Stacking of the crosscorrelogram in Figure 2.4 results in a reconstructed trace 

with source and receiver at the same surface location (3km, 0). From the 

crosscorrelogram, I can observe that with −pτ domain interferometry, there is some 

diffracted energy at the edge of the panel because of the finite aperture of seismic 

acquisition. This is because in reality, ideal interferometric geometries, which require that 

the medium be completely surrounded by physical sources (Wapenaar, 2004), are never 

satisfied. After stacking, these diffractions cancel out and the zero-offset trace using 

−pτ domain interferometry and t-x domain interferometry produce nearly identical 

results, both in travel time, normalized amplitude and frequency content (Figure 2.5).  

 

 

47BFigure 2.4: The crosscorrelogram for a master trace recorded at (3km,0) with a slave trace 
recorded at the same location for each subsurface position (only positive 
time is shown). Left: with time-space domain interferometry. Right: with 
plane-wave domain interferometry. 

Figures 2.6a and 2.6b show the retrieved surface reflection data for one virtual 

shot gather using interferometry in these two different domains. The virtual source is 
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located at (3km, 0) and virtual receivers are located along the surface so that I can see the 

symmetric two-sided seismic response. The two plots are generated using the same gain. 

There are no noticeable differences between the two except for the absolute amplitude. 

This suggests that when the distribution of sources and receivers is satisfied for 

interferometric redatuming, time-space domain interferometry and plane-wave domain 

interferometry should produce similar results. When the acquisition condition is satisfied, 

correlating the data using all available ray information at one receiver location with 

another receiver location (time-space domain) should give similar result as those obtained 

by correlating data that has the same ray parameter (plane-wave domain approach).  

 

 

48BFigure 2.5: Comparison of a virtual zero-offset event with both source and receiver 
located at (3km, 0).  Top: wiggle comparison. Each wiggle is obtained by a 
summation of the cross-correlogram in Figure 2.4. Bottom: the 
corresponding frequency spectrum. 
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49BFigure 2.6: (a) Redatumed shot record using time-space domain interferometry for a 
virtual source located at (3km, 0) and receivers along the surface. (b) 
redatumed shot record using plane-wave domain interferometry. (c) 
redatumed shot record using time-space domain interferometry for only 10 
real transient sources and 10 real receivers. (d) redatumed shot record using 
plane-wave domain interferometry. (c) and (d) has the same geometry as (a) 
and (b), except that the data is sparsely sampled. 
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When seismic data do not have adequate spatial sampling and sufficient 

acquisition aperture, −pτ transform is known to suffer from edge effects and numerical 

aliasing. However, seismic interferometry requires a range of ray parameters and when 

stacked together, such artifacts are not noticeable (Figures 2.6 (c) and (d)).  

One particular use of plane-wave domain interferometry is to select the range of 

ray parameters, which has the most dominant energy. This is useful when the recorded 

seismic data consist of significant amount of noise, e.g., random noise and surface-wave 

noise in land data. These noises should be suppressed because they might contribute to 

spurious arrivals in the redatumed events. Similar idea of retrieving seismic data using 

only dominant energy was also proposed by Vidal et al., (2011). However, their approach 

is based on the plane-wave transform of the virtual-source panel, which differs from my 

approach that is based on direct transform of the recorded data.   

I demonstrate this approach by simply adding random noise to the original 

recorded data. The synthetic shot gather is shown in Figure 2.7a. By analyzing the 

correlogram in the plane-wave domain (Figure 2.7b), we can observe that most of the 

dominated ray parameters are between -0.2 s/km to 0.2 s/km. Figure 2.7c shows the 

redatumed result using full range of ray parameters. This retrieval results in reflections 

and diffractions. While for this case the diffraction arrivals are true in the real modeled 

gather, in reality, we may be interested in retrieving reflections only. Figure 2.7d shows 

the results using a set of range-selected ray parameters. Reflections are correctly retrieved 

while the diffractions are suppressed.   
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50BFigure 2.7: (a) Synthetic noisy shot gather. (b) crosscorrelogram in the plane-wave 
domain. (c) redatumed virtual shot gather using full range of ray parameters. 
(d) redatumed virtual shot gather using only ray parameters between -0.2 
s/km and 0.2 s/km. 

 

b ) 
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36B2.4.2 VSP redatuming 

Another successful application of seismic interferometry is to redatum VSP data 

to SSP data or single well profile (SWP) data (Schuster 2009). For depth sampled data, 

−pτ transform can be used to map the data ( , )d t z from time-depth domain to the plane-

wave domain similar to surface seismic data. The forward and inverse transforms can be 

defined as: 
( , ) ( , ) exp( )d d z i z dz= ∫p p% ω ω ω ,               (2.14) 

2( , ) ( , ) exp( )d z d i z dω = ω ω − ω∫ p p p% .              (2.15) 

 

 

51BFigure 2.8: Walk-away VSP acquisition geometry for a synthetic test. The model is 
comprised of a background velocity of 2000 m/s with two salt bodies of 
velocity 4480 m/s.  

Using this transform, seismic interferometry can be performed in the plane-wave 

domain without any further assumptions to redatum the VSP data to either SSP or SWP 

data. Here I use a 2-D synthetic model (Figure 2.8) modified from Lu et al., (2008) to 

redatum walk-away VSP data to SWP data (borehole sources and borehole receivers). 

For simplicity, I remove the background velocity gradient of the original velocity profile 
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and use a constant background velocity instead. The objective here is to image the 

synthetic salt dome with velocities similar to those in Gulf of Mexico salt domes. 

Figure 2.9 compares retrieved SWP data using time-space domain interferometry 

and plane-wave domain interferometry with p values ranging from -0.6 s/km to 0.6 s/km. 

I can observe that despite some filtering effects present in the −pτ domain approach, 

these two methods in general produce nearly identical results.  

 

52BFigure 2.9: Comparison of redatumed downhole common shot gather using time-space 
domain interferometry (left) and plane-wave domain interferometry (right) 
for a virtual source located at the surface and receivers in the borehole. 

Another application of −pτ domain interferometry for VSP geometry is to 

separate left and right propagating waves using positive and negative ray parameters. 

Wavefield separation has already been used in seismic interferometry with up-down 

separation (Mehta et al., 2007).  For VSP geometry in Figure 2.8, if we want to image 

the salt dome on the right of the model, then most of the stationary-phase points are 

contributions by negative (or positive depending on definition) p values.  For the model 

shown in Figure 2.10, redatuming using full wave represents all the reflected data from 
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the whole subsurface geology. Waves coming from different parts of the model could 

intertwine with each other, and correspondingly affect the migrated image. With 

interferometry in the plane-wave domain, I can easily select only the ray parameters of 

interest to produce directional redatuming.  

 
53BFigure 2.10: A model shows the limitation of conventional interferometry. There are 

different ray paths from A to B, which can be either from the left object a or 
the right object b. If we migrate this data, we could not effectively delineate 
both of the objects. 

Figure 2.11 (left) compares redatumed shot gather using only negative p  values. 

The result is similar to that using the entire range of p values and is also similar to the 

result obtained by directly putting a source and receivers in the borehole (Figure 2.11 

right). After redatuming, I performed reverse time migration of the SWP data. The 

migration results with the full range of ray parameters and only negative ray parameters 

are shown in Figure 2.12 left and Figure 2.12 right, respectively. Both of these 

approaches could capture the edge of the salt dome correctly. I cannot observe many 

differences for this model, suggesting that I can effectively delineate the salt body with 

only a few ray parameters. Also, migration with only negative ray parameters might get a 
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slightly better image, e.g., it can suppress some anomalies at a depth of about 5km when 

using full range of ray parameters.  

 

54BFigure 2.11: Comparison of plane-wave domain interferometric redatumed record using 
only negative ray parameters (left) and directly putting source at surface and 
receivers in the borehole (right). 

 

55BFigure 2.12: Comparison of depth migrated redatumed data using full range of ray 
parameters (left) and using only negative ray parameters (right). 
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37B2.4.3 Super-virtual interferometry 

Super-virtual interferometry is a novel technique to increase the signal-to-noise 

ratio (SNR) of far-offset refracted waves (Bharadwaj et al., 2012). With this technique, 

the receiver spread of the refraction survey can be fully utilized if we are only interested 

in the travel time information. Virtual far-offset refraction arrivals are generated by first a 

crosscorrelation between adjacent refracted wave traces and summation to produce a 

virtual trace, and then by a convolution with the actual refraction traces. Mathematically, 

without retrieving the absolute amplitude, these two steps can be written as follows 

 
*( , ) ( | , ) ( , )virt

source

t t t dψ ≈ ψ ⊗ψ∫A B A Bx | x x x x | x x ,            (2.16)            

sup( , ) ( | , ) ( , )er virt

receiver

t t t d′ ′ ′ψ ≈ ψ ψ∫B A B Ax | x x x x | x x .           (2.17) 

where ( , )tψ A Bx | x  denotes the head wave contribution in the recorded 

data ( , )d tA Bx | x ,  ( , )virttψ B Ax | x is the virtual data by stacking the common receiver 

pair gather (CPG) (Dong et al., 2006), sup( , ) ertψ B Ax | x is the processed super-virtual 

head wave data. Note that the above relation works both for P-wave and shear wave.  

Virtual traces in the CPG gather are useful to distinguish between head wave and 

diving wave. This is because head wave corresponds to flat events while the diving 

waves are not flat. Equation 2.16 has a formula similar to that used in a conventional 

interferometry relation (equation 2.7). Thus, the plane-wave domain approach is also 

applicable for generation of the CPG gather.  

Figure 2.13 shows synthetic data in three panels containing a head wave, a 

reflection and both. In the super-virtual interferometry, only head wave arrivals are 

treated as correlated useful information. While I want to avoid artifacts by windowing 

only head wave arrivals, for real problems, presence of other arrivals such as reflections 
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and noise will result in spurious arrivals of the processed data. Thus, I generate synthetic 

data for four different scenarios; corresponding CPG gather using a time-space domain 

approach is shown in Figure 2.14. In comparison, CPG gather using a plane-wave based 

approach is shown in Figure 2.15.  
 

 

56BFigure 2.13: (a) Synthetic head wave. (b) synthetic reflection. (c) synthetic reflection plus 
head wave with a smaller amplitude. (d) similar to (c), but random noise is 
added. 

For the pure head wave case (Figure 2.13a), the CPG gather shows a perfectly flat 

event with a time-space domain approach (Figure 2.14a) and a focused point with a 

plane-wave domain approach (Figure 2.15a). For pure reflection case in Figure 2.13b, the 

far-offset reflection in the CPG gather shows a nearly flat event (Figure 2.14b), which 
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may be falsely identified as a refraction arrival. However, with a plane-wave domain 

approach, there is no focusing point for the reflection arrival (Figure 2.15b). For the case 

with both reflection and refraction (Figure 2.13c), with a time-space domain approach, 

the refraction event in the CPG gather (Figure 2.14c) is only in the white box area. Thus, 

it requires careful filtering and muting to get rid of reflection arrivals.  

 

57BFigure 2.14: CPG gather for the four models in Figure 13. It is generated by correlating 
two different common receiver gathers in the time-space domain. (a) head 
wave. (b) reflection. (c) head wave plus reflection. Head wave contribution 
is denoted by a white box. (d) similar to (c), but with random noise. 

In comparison, with a plane-wave domain approach, we could easily identify the 

focusing point in Figure 2.15c. Thus, we can easily suppress the influence of reflection 

arrivals.  In addition, if we zoom in, we can see a flat event passing through the focusing 

point. Therefore, we can choose a range of ray parameters to stack the CPG gather. When 
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the data are noisy (Figure 2.13d), refraction events in the CPG gather (Figure 2.14d) may 

be difficult to identify since the amplitude is very small. In comparison, however, with a 

plane-wave domain approach, we can suppress the noise in the CPG gather (Figure 

2.15d). This is because plane-wave transform involves stacking along ray parameters, 

which can attenuate random noise. 

 

58BFigure 2.15: CPG gather generated with a plane-wave based approach. No filtering is 
applied. (a) head wave. (b) reflection. (c) head wave plus reflection. (d) 
similar to (c), but with random noise. 

I apply this technique to one line (line 23) of Ocean Bottom Seismometer (OBS) 

survey data across Taiwan and the western Philippine Sea (McIntosh et al., 2005). The 

data are collected in four components (three component gimbaled 4.5 Hz geophones and 

a hydrophone). The seismic lines are shot with 100m spacing with a maximum of about 
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1500 shots. Initial data processing includes clock-drift correction, band-pass filtering and 

rotation of the horizontal component to radial and transverse components.  

 

      

59BFigure 2.16: An example OBS data. Horizontal component is shown. Two major 
refraction arrivals are Pn (refracted in the subducting slab) and PS (refracted 
shear wave). Right diagram shows the the ray-paths of the two different 
arrivals. 

Figure 2.16 shows a vertical geophone component at one OBS station (line 23, 

station number 32). The seismograms are plotted with a reduction velocity of 8.0 km/s, 

which flattens the Pn arrival. Another notable arrival at near offset is PS arrival, which is 

partially converted as shear arrival. The P-wave mode of PS arrival has likely converted 

into shear-mode before arriving at the crust-mantle boundary. However, we cannot make 

a conclusive judgment because we do not know the shear-wave velocity structure of this 

area. We can observe that shear-wave data is weaker and thus noisier than primary head 

waves. This is typical for most OBS surveys.  
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I then window the data around the PS arrivals in each component in each OBS 

gather with a muting window of about 3.0 s. After that, I cross-correlate traces recorded 

at two different OBS stations (station 32 and station 33) for each component to generate a 

CPG gather. A comparison of the radial horizontal component CPG gather obtained with 

a time-space domain approach and a plane-wave domain approach is shown in Figure 

2.17. To increase the coherency, I use the super-virtual gather at one location, which is 

suggested by Bharadwaj et al., (2011). CPG gather in the plane-wave domain shows a 

focused refraction event at about 2.5 s and also a flat event because of imperfect 

focusing.  

 

 

60BFigure 2.17: Comparison of the CPG gather obtained by correlating the radial horizontal 
component of the data at two stations. Super-virtual gather at one location is 
used to increase the coherency. Left: time-space domain approach. The flat 
event is marked in white box. Right: Plane-wave domain approach. 

Figure 2.18 shows a comparison of the original data (station number 32) with data 

processed with super-virtual interferometry for the horizontal component. The refraction 
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at far-offset (35km-50km) before processing (Figure 2.18a) is not clear, while in the 

super-virtual gather it is clearly visible (Figures 2.18b and 2.18c).  Results obtained 

using a time-space CPG gather and plane-wave CPG gather show similar improvements 

at far offsets. However, the plane-wave approach shows slightly better improvement in 

terms of the signal-noise ratio.  

 

 

 

61BFigure 2.18: Comparison of the original data and processed data with super-virtual 
interferometry. (a) original data. (b) super-virtual data with a time-space 
domain CPG gather. (c) super-virtual data with a plane-wave domain 
approach. 

b ) 

c ) 

a ) 
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22B2.5 CONCLUSIONS 

In this chapter I present a new redatuming method in the plane-wave domain for 

seismic interferometry. This method can be used in many applications of controlled 

source interferometry if plane-wave transform is applicable to that data. Mathematically, 

it can be easily explained by the cancelation of waves that have common ray parameters. 

Using synthetic data generated with finite differences, we demonstrate that our method is 

effective in reconstructing virtual seismic responses from SSP and VSP data. We also 

demonstrate the effectiveness of this method with synthetic refraction data and a real 

OBS data. 

 Compared with interferometry in the time-space domain, our method offers 

several advantages. It transforms irregularly acquired seismic data into a regular 

coordinate system. It allows us to flexibly choose ray parameters so that we can 

selectively redatum the events we are mostly interested in and perform directional 

redatuming. A CPG gather generated with this approach for super-virtual study can help 

to reduce the effects of undesired phases and random noise. It also can reduce the 

computational cost if a large number of traces need to be crosscorrelated.  
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4BChapter 3: Frequency-domain full waveform inversion with plane-wave 
data 

3.1 ABSTRACT 

In this chapter, I propose an efficient frequency-domain full waveform inversion 

(FWI) method using plane-wave encoded shot records. The forward modeling involves 

application of position dependent linear time shifts at all source locations. This is 

followed by propagation of wavefields into the medium from all shot points 

simultaneously. The gradient of the cost function needed in the FWI, is calculated first by 

transforming the densely sampled seismic data into frequency-ray parameter domain and 

then back-propagating the residual wavefield using an adjoint-state approach. I use a 

Gauss-Newton framework for model updating. The approximate Hessian matrix is 

formed with a plane-wave encoding strategy, which requires a summation over source 

and receiver ray parameters of the Green’s functions. Plane-wave encoding considerably 

reduces the computational burden and cross-talk artifacts are effectively suppressed by 

stacking over different ray parameters. It also has the advantage of directional 

illumination of the selected targets. Numerical examples show the accuracy and 

efficiency of our method. 

3.2 INTRODUCTION 

During the past several decades, full waveform inversion (FWI) has become 

increasingly popular for velocity analysis in seismic exploration applications (e.g., 

Tarantola, 1984; Pratt et al., 1998; Pratt, 1999; Shin and Cha, 2008). This is because FWI 

utilizes both amplitude and travel time information from band-limited seismic 

wavefields. The forward problem is solved by the two-way wave equation, which can 

model full wave propagation effects including internal multiples. The FWI overcomes 

several limitations of some of the common imaging techniques such as those based on ray 
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theory and one-way wave equation and can provide high-resolution estimates of the 

medium parameters.  

Mathematically, FWI can be formulated as a nonlinear optimization problem that 

iteratively minimizes a misfit functional between observed seismic data and synthetic 

data. Up to now, FWI is implemented in a gradient-type inversion approach instead of a 

Monte Carlo random search framework. In the frequency domain, the misfit is a 

summation of residuals over all sources, receivers and frequencies. Thus, although 

gradient-based methods generally provide fast convergence with a good starting model, 

they are still computationally expensive mainly because a large number of sources need 

to be simulated at each iteration. Modern acquisitions with high-fold, short source and 

receiver interval and wide azimuthal coverage make the size of the dataset very large and 

therefore, the cost of computation is increased significantly.    

The simultaneous source encoding approach has been proposed to reduce the 

computational burden for the shot profile simulations required for time-domain prestack 

depth migration and FWI (Romero et al., 2000; Capdeville et al., 2005; Krebs et al., 

2009; Boonyasiriwat et al., 2010).  This approach is also implemented in the frequency-

domain FWI (Herrmann et al., 2009; Ben-Hadj-Ali et al., 2011). The key step of this 

approach is forming super-shots by summing densely distributed individual shots. A 

random phase delay is applied to each of the shot records before summation. This, 

however, results in strong incoherent cross-talk artifacts. The artifacts can be suppressed 

with stacking the super-shots. However, the performance of this suppression is dependent 

on the choice of the random shots. This approach is also more sensitive to random noise 

than conventional FWI method, with the degree of sensitivity dependent on the number 

of shots assembled (Ben-Hadj-Ali et al., 2011).   



 39

An alternative approach to reduce the computational cost is to decompose the 

densely acquired data into plane-wave domain and to select a limited number of ray 

parameters for modeling and inversion (Whitmore, 1995; Zhang et al., 2005; Liu et al., 

2006; Stoffa et al., 2006). In this approach, a linear phase delay is applied to each shot 

record to form the super-shot. The process of transforming the raw data into plane-wave 

gather is also known as slant-stacking since it sums amplitudes along a line of constant 

slope in the time-space domain (e.g., Stoffa 1989). Cross-talk artifacts are suppressed 

reasonably well with a sufficient number of ray parameters. The ray parameter is directly 

related to the take-off angle at the surface location and it can be selected based on an 

illumination analysis of the targets to be imaged, resulting in further saving of 

computational time. Plane-wave transformation also has the advantage of easily 

incorporating anisotropic analysis into the imaging process (Sen and Mukherjee 2003; Sil 

and Sen, 2009). Better imaging results can be obtained with split-spread receiver gathers, 

which are generated by the reciprocity principle (Liu et al., 2004).  

Vigh and Starr (2008) applied a time-domain plane-wave FWI with applications 

to synthetic data sets and a real 3D marine data. Compared with the standard FWI, 

computational time is reduced significantly with comparable quality of the inverted 

velocity model. Zhang and Wang (2009) proposed a different propagation scheme with a 

time-domain wave-equation approach applied to a similar plane-wave dataset. This 

approach has similar computation cost per iteration as the approach proposed by Vigh 

and Starr (2008).  

In this dissertation, we focus on the frequency domain methods and investigate 

some practical issues. A frequency-domain implementation of FWI remains an attractive 

approach since the coefficients of the allocated matrix can remain the same for different 
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shots. This domain also favors a natural choice of different groups of frequencies to avoid 

cycle skipping and to obtain multi-scale solutions (Virieux and Operto, 2009).  

Preconditioning FWI with the Hessian matrix can provide considerable 

improvement of convergence by scaling the perturbed model (e.g., Pratt et al., 1998). 

Inversion with the use of the Hessian matrix is known as a Gauss-Newton optimization 

procedure, which generally takes fewer iterations to attain quadratic convergence than 

pure gradient methods. Constructing the full Hessian matrix is prohibitively expensive for 

very large models. An approximate Hessian is normally used for practical applications 

(Shin et al., 2001).  Further reduction in the computational cost can be attained by using 

the diagonal part of the Hessian only. However, even the diagonal Hessian requires 

Ns Nr+  forward modeling steps, where Ns  equals the number of shots and Nr  

equals the number of receivers. A phase encoding scheme (Tang, 2009; Tang and Lee, 

2010) has been proposed to save computational time and disk storage for Hessian 

calculation.  

To improve on the efficiency and accuracy of this full-wave inverse problem, we 

propose performing FWI with frequency domain plane-wave data. With limited selected 

ray parameters of plane-wave data, computation time is saved both in forward modeling 

and back-propagation of residuals for gradient calculation. This approach simplifies the 

inversion procedure with an effective suppression of cross-talk artifacts. The space-

domain Hessian is formed using a plane-wave phase encoding approach, allowing 

efficient calculation with comparable results as those obtained with the standard method. 

Unlike random phase-encoding approach, this method is not sensitive to random noise. 

This approach can also be easily applied to marine geometry, which requires special 

treatment with a random phase encoding method (Krebs et al., 2009). 
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This chapter is organized as follows. We first review the conventional FWI 

approach and introduce our plane-wave encoding scheme for gradient and Hessian 

calculations. Next, we show some numerical examples to demonstrate the validity and 

efficiency of our method. 

3.3 METHODOLOGY 

Three primary steps comprise our method. The first involves slant stacking and 

temporal Fourier transform, which provides a frequency-domain plane-wave gather from 

recorded seismic data. This step uses data from different sources and compresses them 

into a regularized super-shot. Second, the synthetic data are simulated with a distance 

dependent linear time shift at all receiver locations. This delay is determined by the ray 

parameter in consideration, which can be determined by the take-off angle at the surface 

location. Similar approach is adopted for back propagation of the residuals. Third, the 

diagonal Hessian is formed with a plane-wave encoding approach. These are then used in 

model update in which the optimal step length is determined by a line search. The above 

process is repeated for multiple groups of frequencies until convergence is reached. 

3.3.1 Frequency-domain plane-wave data 

For a recorded time-domain shot gather, frequency-domain plane-wave data is 

obtained first through a plane-wave transformation, also known as p−τ  transform 

(e.g., Stoffa 1989; Foster and Mosher, 1992).  This transform can be implemented either 

in the time-domain or in the frequency-domain. In the frequency-domain, it involves a 

phase shift to each trace that is dependent on the offset and ray-parameter. This is 

followed by a stacking operator as follows 

( | , ) ( | , ) exp( ( ))u u i d= −∫ s sp x x x p x x x% ω ω ω ,               (3.1) 
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where ( | , )u sx x ω is the frequency-domain recorded data, ( | , )u ωp x% is the transformed 

plane-wave gather, x is the receiver position for a shot gather.  

Note that in the time-domain, this transform needs to be modified by applying a 

time-shift to transform the data from p−τ  domain to “physical” time-ray parameter 

( t p− ) domain to match the modeling strategy discussed next (Whitmore, 1995). Also, 

application of the reciprocity principle can produce a split-spread receiver gather, which 

helps to overcome the aliasing problem in plane-wave composition (Liu et al., 2006).  

In a conventional frequency-domain FWI framework, the forward modeling step 

is a simulation of the wavefield propagated from a surface location sx , which for a 

variable density acoustic medium, is governed by the following equation  

21 ( , ) ( ) ( , ) ( ) ( )
( )

u u f⎛ ⎞
∇⋅ ∇ + = −⎜ ⎟
⎝ ⎠

sx x x x x
x

ω ω κ ω ω δ
ρ

,        (3.2) 

where ( , )u x ω represents the scalar pressure wavefield in the frequency domain, ( )xρ  is 

the mass density, ( )xκ is the compressibility, and ( )f ω  is the frequency domain source 

signature.  

After discretizing the model with a finite difference or finite element scheme, 

equation 3.2 can be rewritten in a matrix form as follows (e.g., Marfurt 1984) 

( , ) ( , ) ( ) ( )u f= − sA x x x xω ω ω δ ,                  (3.3) 

where ( , )A x ω  is the complex impedance matrix. This matrix is typically sparse and 

symmetric, though it can be non-symmetric for many boundary conditions (Hustedt et al., 

2004). Because of the pattern of the matrix, equation 3.3 can be solved  with a scientific 

linear solver package such as the Multifrontal massively parallel solver (MUMPS) 

(Amestory et al., 2006, Operto et al., 2007) and Portable Extendable Toolkit for Scientific 

Computation (PETSc) (Balay et al., 2001). We adopt the direct solver approach with 

MUMPS to speed up the computation.  
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The modeled plane-wave gather is obtained with a linear source, which is 

obtained by using all the sources simultaneously each with a phase shift along the surface 

seismic line (Whitmore, 1995). Correspondingly, the forward problem can be formulated 

as 

    ( , ) ( , , ) ( , , , ) ( ) ( )u f= −∑
s

s s
x

A x x p x x p x xω ω ϕ ω ω δ ,         (3.4) 

with the ith component of ( , , , )ϕ ωsx x p  given by 

( )
( )

0

max

exp (         0 
( , , , )

exp ( )    0
i i

i

i i

i s i

i s i

i s i

i p x x p
x x p

i p x x p

ω
ϕ ω

ω

⎧ − ≥⎪= ⎨
− <⎪⎩

,             (3.5) 

where  0i
x  and maxi

x   are the ith component of the start and end receiver locations, 

respectively.  

Mathematically, equation 3.4 is the same as the time-domain approach. However, 

a frequency-domain implementation does not need temporal interpolation and has the 

flexibility to include frequency scaling and phase rotation, which is useful when the 

source wavelet is not well estimated at first and when frequency-dependent processing is 

needed to obtain optimal results (Whitmore, 1995). 

3.3.2 Gauss-Newton inversion strategy 

Like other inverse problems, FWI is formulated as an optimization problem 

searching for the minimum of a suitably defined misfit functional that measures the 

difference between the observed and calculated data. A regularization term is necessary 

to make the inversion better posed (Menke, 1984). In the least-square sense, where L-2 

norm is used for the misfit functional, this problem is stated as 

 min ( )E
m

m  such that ( ) 0F =m ，                  (3.6) 

with  
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( ) ( )*1( )
2

TT
d prior m priorE ⎡ ⎤= Δ Δ + − −⎢ ⎥⎣ ⎦∑∑∑

s r

*

x x
m d W d m m W m m

ω

λ ,  (3.7) 

and 

obs calΔ = −d d d ,                       (3.8) 

where m  is the model, Δd  is data residual between the observe data obsd  and 

calculated data cald , TΔd and *Δd  are the transpose and complex conjugate of the data 

residual, respectively; dW  and mW  are the inverses of the data and model covariance 

matrices respectively; priorm is the prior information about the model known from travel 

time tomography, for example; λ is a damping factor to weigh the data space and model 

space errors.  

The above nonlinear problem is linearized by expanding the misfit function in a 

generalized Taylor’s series about a reference model 0m . Assuming that the Hessian 

(second partial derivative of the data with respect to model parameters) can be 

constructed easily, the model perturbation can be obtained by the following Gauss-

Newton framework formula (Pratt et al., 1998) 
12

1
2

1 *Re
       =

Re

m

T
m d

E E
−

−

−

⎛ ⎞⎛ ⎞∂ ∂
Δ = − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

⎡ ⎤Δ⎣ ⎦−
+

m I W
m m

W J W d
H I

λ

λ

,                      (3.9) 

where J  is the Fréchet derivative of the data with respect to model parameters, H  is 

the Hessian matrix and *T
d=H J W J , I is the identity matrix ( Re  means the real part), 

and 1
m
−W  acts as a smoothing operator (Virieux and Operto, 2009). 

Under Born approximation, the gradient is obtained by taking the partial 

derivative of the perturbed misfit functional with respect to the perturbed model. It can be 

explicitly expressed as (Sirgue and Pratt, 2004, Tromp et al., 2005) 
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, 

(3.10) 

where  ( , , )G sx x ω  is the Green’s function at the space location x with a source term at 

sx , ( , )dW rx x and *( , , )dΔ r sx x ω are the elements of the matrix dW  and *Δd , *
dΔW d  

is the weighted data residual and ‘*’ is complex conjugation. 

Efficient calculation of the gradient is based on the well-known adjoint state 

approach, where the forward-propagated source wavefield is crosscorrelated with the 

back-propagated data residual. In practice, the source wavefield is usually simulated for 

every source location and the back-propagated residual wavefield is usually simulated 

simultaneously for all the receiver locations. Under such a framework, the gradient can 

be written as (e.g., Plessix and Mulder, 2004) 

  
2

*
3

2 ( )( ) Re ( , , ) ( , , )
( )

E fg S R
vω

ω ω ω ω
⎧ ⎫∂ −

= = Δ⎨ ⎬∂ ⎩ ⎭
∑∑

s

s s
x

x x x x x
m x

,        (3.11) 

where ( , , )S sx x ω  is the forward simulated source wavefield at a particular shot 

location and ( , , )RΔ sx x ω  is the reverse-time propagated data residual for all the 

receiver locations. The gradient can be expressed as the crosscorrelation between the 

forward simulated wavefield and back propagated data residual at the zero lag time.  

The full Hessian matrix is never formed explicitly for practical implementations 

because of the prohibitive computation cost. Instead, the second-order term, which 

accounts for multiple scattering effects, is often neglected. The first-order term 

(approximate Hessian), which is due to single scattering, can be explicitly written as 

(Plessix and Mulder 2004; Tang, 2009) 
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where ( , )i jH x xα is the approximate Hessian. The rows of the Hessian can be interpreted 

as source and receiver illumination energy. Preconditioning the gradient with the 

approximate Hessian can remove the geometrical amplitude decay of the Green’s 

functions. Therefore, it can scale the deep perturbations constrained by far-offset data and 

shallow perturbations constrained by near-offset data (Pratt et al., 1998). The diagonal 

part of the Hessian can be interpreted as the resolution of individual model parameters. 

The off-diagonal part of the Hessian can be viewed as the trade-off between different 

parameters. Large off-diagonal elements indicate large uncertainties for parameter 

estimation since the misfit functional can remain unchanged when changes of some 

parameters are compensated with changes of other parameters.  

Computing this Hessian is still expensive for present real data applications since it 

requires Ns Nr×  forward simulations to obtain the source-side and receiver-side 

Green’s functions, with Ns  and Nr  representing the number of shots and number of 

receivers, respectively. To further reduce the computational burden, the diagonal part of 
the Hessian ( i j=x x ) can be used. It is given by 
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,       (3.13) 

where 0 ( )H x is used to represent the diagonal Hessian, the L-2 norm of the complex 

scalar vector 2 *( ) ( ) ( )f f f=ω ω ω , the same relation holds for ( , , )G sx x ω  and 

( , , )G rx x ω . The diagonal Hessian is the autocorrelation of the partial derivative of the 

source-side and receiver-side Green’s functions. This can still provide a good 

approximation to scale the gradient when the off-diagonal elements are relatively small. 
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The computation cost of the diagonal Hessian requires Ns Nr+  forward simulation, 

which is equivalent to the calculation of the gradient.     

3.3.3 Plane-wave encoding strategy 

The computational cost of FWI can be reduced significantly by incorporating the 

plane-wave forward modeling strategy because of reduction in the number of wavefield 

simulations. The source wavefield, back-propagated residual wavefield and the source 

and receiver Green’s functions are calculated using equations 3.4 and 3.5. After 

numerical simulations, plane-wave encoded gradient can be written as 
2

*
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g f S R
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x x p x p
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where sp  is the source ray parameter. It corresponds to the take-off angle of the receiver 

gather. Equation 3.14 is equivalent to shot-profile gradient (Appendix B). However, the 

summation in plane-wave gradient is over ray parameters instead of shot locations, which 

can considerably reduce the number of simulations when a large number of sources are 

simulated in a conventional FWI.  

Similar to the gradient calculation, the diagonal Hessian can also exploit a plane-

wave phase encoding strategy to reduce computational burden. Using an algorithm 

similar to wave-equation shot-profile migration, we can obtain the receiver-side phase-

encoded Hessian as follows 
24
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We further consider a simultaneous encoding of source and receiver-side Green’s 

functions with plane-wave simulations. This computing process can be easily 

implemented. It requires only two forward wavefield simulations: one for source plane-
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wave wavefiled and the other for receiver plane-wave wavefield. Mathematically, it can 

be written as   
24
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Details of the derivation of equations 3.15 and 3.16 are given in Appendix C. 

Equations 3.13, 3.15 and 3.16 have similar forms, but they differ from each other in the 

propagation scheme and in the number of forward simulations required. Assuming that a 

survey has Ns  shots and Nr  receivers, Table 3.1 compares the number of simulation 

steps needed for approximate Hessian and diagonal part of the approximate Hessian, 

respectively. Nw  is the number of frequencies required for the simulation. Unlike 

random phase encoding approach, where the number of simulations varies for marine 

geometry and for land-acquisition or ocean bottom seismometer (OBS) geometry, plane-

wave encoding approach provides the same number irrespective of the number of shots 

and receivers used. The number of simulations, however, depends on how many ray 

parameters are selected. The number of plane-waves can be determined by the imaging 

targets and by the maximum dips present in the shot and receiver gathers.      

Any kind of inversion approach in a Gauss-Newton framework can be applied for 

optimization. For simplicity, we use a steepest decent approach to update the velocity 

model. This method exploits a parabolic or cubic search algorithm with a modification of 

the fixed length model perturbation of equation 3.9. The model update can be written as    

( )1

1 1
1 0 1( ) ( ) ( ) ( )

kk k k m kH g
−

− −
− −= + +m x m x x I W xα λ .        (3.17) 

where kα  is a scalar for the k th iteration. It is defined by line searching along the 

preconditioned gradient direction.  
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Table 3.1: Cost comparison of the number of wavefield simulations for different 
scenarios. 

 

 Direct 
computation 

Plane wave,  
receiver side 

Plane wave, 
simultaneous 

Approximate 
Hessian Nw Ns Nr× × rNw Ns Np× × s rNw Np Np× ×  

Diagonal  
Hessian ( )Nw Ns Nr+ ( )rNw Ns Np+ ( )s rNw Np Np+  

 

A multi-scale solution is obtained through the inversion of discrete frequencies. 

Groups of frequencies are selected and two successive loops are formed. The first loop is 

over a group of frequencies, and the second loop is over the frequencies of the frequency 

group (Brossier et al., 2009). Inverted model of the previous frequency loop is used as the 

starting model for the new loop. The stopping criterion for each iteration is given by  

( , ) ( , )
( , )

obs cal

cal

−
=

d x d x
d x
ω ω

ε
ω

 .                    (3.18) 

If ε  is big, computational time can be saved. On the other hand, if ε  is small, a 

more accurate data fitting can be obtained. In this dissertation, we use 0.001=ε  and 

this value is fixed for all iterations and for each frequency group.  

3.4 NUMERICAL EXAMPLES 

In this section, I will demonstrate the numerical applications of our approach with 

synthetic examples. The synthetic examples are based on a 2D profile of the SEG/EAGE 

Overthrust model (Figure 3.1). Analysis of effects of different ray parameters on the 

gradient is presented to demonstrate the dip-selective advantage of our method. In other 

words, the gradient calculation can be benefited from plane-wave decomposition by 

focusing the image on selected targets. Calculation of the Hessian with plane-wave 

encoding is more powerful since only approximated Hessian with a few ray parameters 

are necessary to ensure the illumination compensation of the gradient. I analyze the 
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effectiveness of the encoding schemes with selective ray parameters. I finally show the 

inversion results from our examples with different strategies on the selection of the ray 

parameters.  

3.4.1 Dip-selective gradient 

 

 

Figure 3.1: A 2-D profile of the Overthrust model. (a) P-wave velocity of the true model. 
(b) Initial model used to generate the gradient and for inversion in this 
dissertation.  

The P-wave velocities of the true model and initial model  (a smoothed version 

of the true model) are shown in Figure 3.1. This model has 187×801 grids with 25m of 

b) 

a) 
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horizontal and vertical grid intervals. While a 2-D example is presented for simplicity, 

extension of all the following analysis to a bigger model and to 3-D is trivial. Similar to 

Ben-Hadj-Ali et al. (2011) we use seven different frequencies ranging from 3 Hz to 20 

Hz. The range of ray parameters is defined by the maximum dip of the recorded data. The 

range for the ray parameters used in this dissertation is[ 0.4 s/km, 0.4 s/km]− . 

 

 

Figure 3.2: Monochromatic frequency (f=20 Hz) seismic data (a) in the source-receiver 
domain. (b) ray parameter-receiver domain. 

A single frequency data for shot-domain modeling and plane-wave domain is 

shown in Figure 3.2. The sparsity in the shot-domain does not exist in the plane-wave 

domain. The effect of a single ray parameter to the gradient is shown in Figure 3.3. The 

gradient shown here is the first iteration with the initial model in Figure 3.1b. Though a 

sequential calculation for each frequency or each frequency band is typically required for 

the inversion process, the gradient is summed over all the frequencies for a better display. 

Each ray parameter is related to the take-off angle at the surface location, it contributes to 

the gradient with directional illumination. More energy is focused on the left side of the 

a) b) 
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model for a negative ray parameter (Figure 3.3b) and more illumination on the right side 

of the model for a positive ray parameter (Figure 3.3d). A zero ray parameter (Figure 3c) 

tends to provide balanced illumination on both sides of the model. For reference, the 

gradient with 81 ray parameters is shown in Figure 3.3a.  

 

 
Figure 3.3: Plane-wave gradient at the first iteration with different choice of parameters. 

(a) 81 source and receiver ray parameters; (b) single source ray 
parameter 0.3 s/kmsp = − ; (c) 0  s/kmsp = ; (d) 0.3 s/kmsp = . 

Figure 3.4 shows how the number of ray parameters affects the gradient 

calculation. For only zero ray parameter (zero offset section), there are plenty of artifacts 

that are generated by the footprints of plane-wave encoding (Figure 3.4a). For 9 ray 

parameters (Figure 3.4b), the artifacts reduce substantially. For 41 ray parameters (Figure 

3.4c), the artifacts become unnoticeable compared with 81 ray parameters (Figure 3.4d). 

This provides a qualitative way to define the number of ray-parameters to be used in the 

inversion. For this problem, we assess that 41 ray parameters are adequate for inversion, 

a) b) 

c) d) 



 53

provided that the 41 ray parameters are enough for Hessian calculation. Another 

quantitative requirement of the number of ray parameters can be written as (Zhang et al., 

2005) 

max max min(sin sin )
p

LfN
v
−

≥
α α ,                    (3.19) 

where pN  is the number of ray parameters. L is the distance of the receiver gather, 

maxf  is the maximum frequency for inversion, minα  and maxα  are the minimum and 

maximum take-off angles, respectively, v  is the velocity at the surface location. 
 

 

 
Figure 3.4: The effect of the ranges of ray parameters on the plane-wave gradient. (a) 1 

source ray parameter ( 0 s/kmsp = ); (b) 9 source ray parameters equally 
distributed from 0.4 s/km− to 0.4 s/km ; (c) 41 source ray parameters; (d) 81 
source ray parameters. 

 

c) d) 

b) a) 



 54

3.4.2 Plane-wave encoded Hessian  

To test the effect of directional illumination for the source and receiver plane-

wave encoded Hessian, we first apply this strategy to a medium with a constant velocity 

gradient. The background velocity is described by v(z) = 2000+ 0.4z. The diagonal 

Hessian for a single frequency at 3 Hz is shown in Figure 3.5.  

In addition, the Hessian for the true Overthrust model is shown in Figure 3.6. 

Unlike the gradient calculation where only a single ray parameter is used, the Hessian is 

calculated with one source ray parameter and all receiver ray parameters. Similar to the 

gradient, single ray parameter contributes to directional illumination of the model. This 

decomposition process can be used for directional choice of the ray parameters for the 

inversion.  

 

 

 
Figure 3.5: Diagonal Hessian for a constant velocity gradient model with different 

selection of parameters. (a) 101 source and 101 receiver ray parameters; (b) 
single source ray parameter 0.3 s/kmsp = − and 101 receiver ray parameters; 
(c) 0  s/kmsp = ; (d) 0.3 s/kmsp = . 

 

b) a) 

c) d) 
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Figure 3.6: Diagonal Hessian for the true model with different selection of parameters. 

(a) 81 source and receiver ray parameters; (b) single source ray 
parameter 0.3 s/kmsp = −  and 81 receiver ray parameters; (c) 0  s/kmsp = ; 
(d) 0.3 s/kmsp = . 

 

Plane-wave encoding provides a good approximation of the Hessian (Figure 3.7). 

For the plane-wave 9 source and receiver ray parameters (Figure 3.7b), this 

approximation has notable artifacts. For 41 source and receiver ray parameters, theses 

artifacts are very small (Figure 3.7c). 81 source and receiver ray parameters (Figure 3.7d) 

produce visually identical results as the true Hessian calculated with 401 sources and 401 

receivers (Figure 3.7a). This also confirms that 41 ray parameters may be enough for this 

problem. Note that if the off-diagonal parts of the Hessian are needed for the accuracy 

requirement, plane-wave encoding is more appealing because significant amount of 

computational time can be saved.  

 

 

d) c) 

a) b) 
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Figure 3.7: Comparison of the diagonal Hessian for the true model with different 

parameters. (a) true Hessian with 401 sources and 401 receivers; (b) plane-
wave Hessian with 9 source and receiver ray parameters; (c) plane-wave 
Hessian with 41 source and receiver ray parameters; (d) plane-wave Hessian 
with 81 source and receiver ray parameters. 

3.4.3 Inversion of the Overthrust model 

 We employ a sequential inversion approach for each frequency component. 

Inverted result from the previous step is used as the starting model for the next step and 

so on. Figure 3.8b shows the inverted model with 9 source and receiver ray parameters. 

The gradient only requires decomposing the receiver gather into source ray parameters. 

The receiver ray parameters are used for Hessian calculation. For each iteration, only 9 

wavefield simulations are needed for the gradient and also 9 simulations for the Hessian 

when the reciprocity is considered. From the inverted result, we can see that with only 9 

ray parameters, promising result can be obtained. However, it still has some errors (more 

on the shallow part) because the gradient is not preconditioned very well. With 41 ray 

parameters (Figure 3.8c), the inverted result is almost comparable with the result using 

b) a) 

c) d) 
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401 sources and 401 receivers (Figure 3.8a). Ben-Hadj-Ali et al. (2011) used 199 sources 

and 200 receivers and showed similar results as Figure 3.8a. 

 

 

 
Figure 3.8: Inverted P-wave velocity model with (a) shot domain approach with 401 

sources and 401 receivers; (b) plane-wave domain with 9 source and 
receiver ray parameters; (c) plane-wave Hessian with 41 source and receiver 
ray parameters. 

a) 

c) 

b) 
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Figure 3.9 plots the normalized data residuals as a function of the iteration 

number. For a lower frequency, the error converges faster and using more iterations does 

not reduce the error much. For a higher frequency, since the starting model is already 

close to the true model, a slow search process is shown in this plot. Figure 3.10 shows the 

time domain plane-wave gather for 0 s/kmsp =  and 0.3 s/kmsp = , respectively. This 

is obtained by an inverse Fourier Transform of the frequency domain data. While little 

structure can be observed from the starting model, the inverted model shows features that 

are similar to those of the true model.   
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Figure 3.9: Normalized error versus iterations for three different frequencies. 

3.5 CONCLUSIONS 

In this chapter, I have presented a plane-wave encoding strategy for efficient 

frequency-domain full waveform inversion (FWI). This approach employs a 

simultaneous-shot approach for gradient calculation and a source and receiver encoding 

scheme for Hessian calculation. Compared to random phase encoding approach, it does 
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not introduce strong cross-talk artifacts. Efficiency of this method is achieved by the use 

of a limited range of ray parameters for wavefield simulations. This encoding is robust 

with respect to noise. Directional illumination can be obtained with the selection of ray 

parameters, which may result in more savings of the computational time. Compared to 

time domain methods, frequency domain forward modeling can model multiple 

frequencies efficiently. Thus, this approach provides an efficient and robust tool for full 

waveform inversion.  

 

 

 
Figure 3.10: Time domain plane-wave gather for (a) 0 s/kmsp =  and (b) 0.3 s/kmsp = . 

Left: true model. Middle: initial model. Right: Inverted model. 
 

 

 

 

a) 

b) 
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Chapter 4: Suppressing non-Gaussian noises with scaled receiver 

wavefield for reverse time migration 

23B4.1 ABSTRACT 

Numerical implementation of the gradient of the cost function in a gradient-based 

full waveform inversion (FWI) is essentially a migration operator used in wave equation 

migration. In FWI, minimizing different data residual norms results in different 

weighting strategies of data residuals at receiver locations prior to back propagation into 

the medium. In this dissertation, we propose different scaling methods to the receiver 

wavefield and compare their performances. Using time-domain reverse time migration 

(RTM), I show that compared to conventional algorithms, this type of scaling is able to 

significantly suppress non-Gaussian noise, i.e., outliers. Numerical tests also show that 

scaling by its absolute norm produces better results than other approaches.  

24B4.2 INTRODUCTION 

Migration/inversion using the wave equation honors the physical basis of seismic 

wave propagation. Unlike the ray-based migration/inversion, they retain band-limited 

frequency effects instead of using infinite-frequency rays and inherently include multi-

arrivals. Migration/inversion with two-way wave equation that takes advantage of the full 

wave information is known as reverse time migration (RTM) (e.g., Baysal et al., 1983; 

Symes, 2007; Zhang and Zhang, 2009) and full waveform inversion (FWI) (e.g., 

Tarantola, 1987; Virieux and Operto, 2009). Both can handle challenging geological 

structures with no limit of dips or overhangs, and thus are able to provide an accurate 

high-resolution migrated image and velocity model for quantitative imaging of the 

Earth’s subsurface. 
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Despite the general success of RTM, it is also known for producing artifacts when 

uninterested arrivals (e.g. head waves, diving waves and backscattered waves) correlate 

(Guitton et al., 2007). In addition, field data usually contains outliers such as non-

Gaussian noise and high-amplitude anomalies. With a conventional back-propagation 

approach, the noise and the signal have equal chance to enter the medium. Thus, outliers 

will affect the quality of the image obtained by wave equation imaging methods. To 

enhance the migrated image, the noise footprint is usually reduced by stacking multi-fold 

data and by careful preprocessing. However, enhancing the image by novel imaging 

methods offers better chances to produce high quality results.  

Common approaches to suppress noise in the migrated image typically rely on 

applying different imaging conditions. Fletcher et al. (2005) suggested application of a 

directional damping factor to remove the imaging noise. Yoon and Marfurt (2006) 

proposed a Poynting-vector imaging condition. Costa et al. (2009) further utilized the 

Poynting-vector information for obliquity correction. Zhang and Sun (2009) proposed to 

obtain true-amplitude imaging and mute artifacts with prestack angle gathers. Yan and 

Xie (2009) used wavefield separation to decompose the data into plane-wave components 

in the angle domain. Liu et al. (2011) decomposed the extrapolated wavefields into one-

way wavefileds and selected different components to crosscorrelate. However, all of 

these methods are concentrated on removing unwanted arrivals such as diving waves and 

backscattered waves, and not on outlier noise.     

Some reports reveal that improved noise attenuation in geophysical inversion can 

be obtained from L1-norm (Tarantola, 1987), and a hybrid L1/L2-norm (Huber 1973, 

Bube and Langan, 1997, Guitton and Symes, 2003).  Recently, these norms have 

successfully been incorporated in frequency domain FWI (Pyun et al., 2009, Ha et al, 

2009 and Brossier et al., 2010). It is known that the process to obtain the gradient of the 
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misfit function with an adjoint-state approach is equivalent to one-step wave equation 

migration (Tarantola, 1984; 1988, Shin et al., 2001). The only difference is that FWI 

back-propagates residual receiver wavefield and wave equation migration back-

propagates the receiver wavefield (Mora 1998).  Based on this, Lee et al. (2011) 

proposes a frequency domain RTM with an L-1 norm gradient calculation procedure of 

FWI to weigh the receiver wavefield.  

In this chapter, I extend Lee et al.’s approach to include different weight factors 

and to apply these factors using a time-domain RTM. This procedure closely resembles 

conventional imaging procedures, except that the back-propagated receiver wavefield is 

scaled. This approach does not introduce significant additional cost except for a mapping 

from time domain data to frequency domain at the correlation or imaging stage only, 

which is negligible compared to the cost of calculation of source and receiver Green’s 

functions. The synthetic examples show that this method can indeed suppress outlier 

noise much better than the conventional approaches. 

25B4.3 METHODOLOGY 

4.3.1 Conventional time-domain reverse time migration 

RTM is typically performed on individual common-shot records and then a 

stacking operator is applied on each individual migrated data to produce the final image. 

For simplicity, we consider the following acoustic wave equation for source wavefield 

and receiver wavefield extrapolation  

 
2

2

1 ( , )( , ) ( ) ( ) ( )
( )

u tu t f t
t

⎛ ⎞ ∂
∇⋅ ∇ − = −⎜ ⎟ ∂⎝ ⎠

s
xx x x x

x
κ δ

ρ
,           (4.1) 
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where ( , )u tx is the pressure wavefield in the time domain, ( )xρ  is the mass density, 

( )xκ is the compressibility, i.e., the inverse of bulk modulus, and ( )f t  is the time 

domain source signature.  

After constructing the source wavefield forward in time and the recorded receiver 

wavefield backward in time with equation 4.1, an imaging condition is applied to 

combine these two different wavefields (e.g., McMechan, 1983, Whitmore, 1983, Baysal 

et al., 1983). Like other migration methods, various imaging conditions can be applied to 

retrieve the reflectivity information of the subsurface. For simplicity, we utilize a 

conventional crosscorrelation imaging condition (Claerbout, 1971)  

  ( ) ( , , ) ( , , )
t

I R t S t=∑∑
s

s s
x

x x x x x ,                   (4.2) 

where ( )I x  is the migrated image at a space location x  in the subsurface, 

( , , )S tsx x and ( , , )R tsx x are the forward propagated source wavefield and backward 

propagated receiver wavefield, respectively.  

In equation 4.2, both source and receiver wavefields at the subsurface location x  

depend on the source location sx . Equation 4.2 also indicates that the recorded wavefield 

at each receiver location in the survey should be back-propagated simultaneously to 

obtain ( , , )R tsx x . Using this propagation scheme, the contribution of the amplitude in the 

image space for each trace is based on the recorded amplitude in the data space. Because 

no division is required, this approach in general is robust. Random noises can be 

suppressed with a stacking operator of the migrated gathers. However, it is not effective 

in suppressing the non-Gaussian type noises, i.e., outliers.   

4.3.2 Inversion for data with outliers 

As mentioned, FWI is closely related to migration by the fact that each iteration 

can be viewed as a migration process with a model updating strategy. Similar to the work 
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reported by Lee et al. (2011) for frequency domain RTM with an L-1 norm type scaling, 

we begin our scaling approaches by revisiting the FWI approaches for the data with 

outliers.  

A standard FWI procedure is a minimization of the least squares norm cost 

function (Pratt 1998, Virieux and Operato, 2009). This norm is the square product of 

difference between the observed seismic data and calculated data. To introduce the FWI 
methods for outliers, we use the following general pL  norm of the misfit function  

pL obs calp p
E = Δ = −d d d ,                   (4.3) 

where E  is the misfit function, obsd and cald are the recorded and synthetic data, 

respectively. To effectively invert the data with outliers, p  is typically smaller than two. 

Under Born approximation, the gradient of equation 4.3 can be obtained by 

differentiating the misfit function with respect to model parameters. For 2L  norm ( p=2), 

the gradient is 

2
,T

Lg J= Δd                              (4.4)  

where J is the 0HFréchet derivative matrix, T  denotes a transpose operator, 

obs calΔ = −d d d . For efficient calculation of the gradient, J  is never formed explicitly. 

Instead, an adjoint-state approach (Tromp et al., 2005, Plessix, 2006) is routinely used. 

TJ is the migration operator which naturally leads to a crosscorrelation between the 

source wavefield and back propagated receiver wavefield at zero-lag time.  

The gradient of L-1 norm misfit function can be calculated as follows (Tarantola, 

1987, Brossier et al., 2010)  

1

1 ( ) ,
( )

T
Lg J F − ⎛ ⎞Δ ω
= ⎜ ⎟⎜ ⎟Δ ω⎝ ⎠

d
d

                     (4.5) 
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where ( )ωd is frequency domain data, and 1F − means inverse Fourier transform. Note 

that treating the real and imaginary parts of ( )ωd  in equation 4.3 separately results in the 

following formula (Pyun et al., 2009, Lee et al. (2011) ) 

[ ]( ) [ ]( )( )1

1 sgn Re ( ) sgn Im ( )T
Lg J F i−= Δ ω + Δ ωd d ,          (4.6) 

where Re  means the real part and Im means the imaginary part, sgn is the signum 

function.  

A hybrid L1/L2 norm can be obtained using a Huber’s criterion (Huber 1973). 

Another approach for a hybrid L1/L2 norm is given by Bube and Langan (1997).  The 

gradient for a Huber norm can be written as follows 

  ( )1

                               ( )
( ) / ( )  ( )Huber

T

L T

J
g

J F −

⎧ δ Δ ω ≤ ε⎪= ⎨ Δ ω Δ ω Δ ω > ε⎪⎩

d d
d d d

                (4.7) 

where ε  is a threshold parameter. 

4.3.3 Migration with scaled receiver wavefield 

Incorporating the above ideas from FWI, a new approach for reverse time imaging 

is proposed as follows 

 1 ( )( )
( )

TI J F −
α

⎛ ⎞ω
= ⎜ ⎟

⎜ ⎟ω + ξ⎝ ⎠

SRx
SR

,                  (4.8) 

where α is a parameter to scale the amplitude of the receiver wavefield ( )ωR , ξ is a 

regularization parameter to stabilize division,  S  is a smoothing operator necessary for 

noisy data to removing the random oscillations and I is the migrated image. This 

operator acts on the frequency domain data and we use a moving average smoothing for 

simplicity. For real data where noise attenuation is typically applied before migration, 

this operator is not necessary. When 0α = , it corresponds to the conventional imaging 

procedure; when 1α = , it is the L-1 norm case as in FWI; when combining the two above 
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cases together, we can also get a hybrid solution as Huber norm does. Also, when 2α = , 

it corresponds to the case of a student’s t-distribution of the a posteriori distribution from 

a statistical point of view of the FWI minimizing functional (Aravkin et al., 2011).  

Logarithmic wavefield scaling used in frequency domain FWI (Shin and Min, 

2006), can also be used here for RTM with the migration approach described as follows 

( )
( )

1 ln ( )
( ) .

ln ( )
TI J F −

α

⎛ ⎞ω⎜ ⎟=
⎜ ⎟ω +ξ⎝ ⎠

SR
x

SR
                  (4.9) 

From equations 4.8 and 4.9 we observe that the method proposed here differs 

from conventional methods with a scaling factor to the amplitude. In a conventional 

method, the outliers, typically presented by amplitude anomalies, have equal chance as 

other traces to enter into the image domain. However, after amplitude scaling, the 

anomalies are either normalized or somehow scaled; therefore our method is more outlier 

resistant.  

Although the conventional crosscorrelation imaging condition is applied to form 

an image from the source wavefield and receiver wavefield, this method applies to any 

other imaging conditions such as deconvolution imaging condition and  time-shifting 

imaging conditions (Sava and Fomel, 2006). This approach also applies to angle gathers 

(Xu et al., 2011), plane-wave data (Vigh and Starr, 2008), and one-way wave equation 

migration methods (Muder et al., 2004).  

26B4.4 EXAMPLES 

4.4.1 Non-Gaussian random noise 

Our first application is that of a simple layered (1-D) model (Figure 4.1). A single 

source and single receiver numerical experiment is performed to analyze the sensitivity of 

the anomaly of the recorded data. This will generate a migration kernel, which represents 
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the contribution of individual source and receiver to the migrated image. The source is 

located at (750m, 30m) and the receiver is located at (2250m, 30m). We follow the 

approach of Roth and Korn (1993) to generate non-Gaussian random noise. This type of 

random media has zero mean and a particular variance related to its autocorrelation 

function. We use an exponential autocorrelation function defined as follows 

( )( )
2

2 2 2 2

4( , )
1 1x z

x z

abk k
a k b k

φ = ε
+ +

,               (4.10) 

where φ  is the spatial autocorrelation function, ε  is the variance, xk and zk are the 

horizontal and vertical wavenumber, respectively, a  and b are the horizontal and 

vertical correlation length, respectively. 

 

 

Figure 4.1: A layered medium used to generate synthetic data. The model has 300×300 
grids with a uniform horizontal and vertical spacing. Velocity for each layer 
is 2500m/s, 2600m/s and 2650m/s, respectively. 
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     Figure 4.2 shows the wiggle plot of the synthetic trace of two reflectors with direct 

wave removed. The amplitude of the random noise is comparable to that of the signal of 

the trace. This is used to simulate high anomalies of the real seismic data.  

 

Figure 4.2: Wiggle plot of the normalized receiver data for two reflectors. Top: Noise-
free data. Bottom: Noisy data. 

Figure 4.3 shows the migration kernel of the reflections without any filtering. For 

a clean data (Figure 4.3a), the migrated image has two circular events. With a 

conventional approach (Figure 4.3b), where the back-propagated wavefield is the 

recorded receiver data, it generates low frequency artifacts plus high-amplitude spurious 

events. When the receiver wavefield is scaled for back-propagation by its absolute norm 

(L-1 norm) (Figure 4.3c), the artifacts shown in Figure 4.3b are eliminated. With a hybrid 

approach (Figure 4.3d) similar to hybrid norm used in FWI, we can obtain cleaner results 

than that obtained by the conventional method, but still there are some artifacts in the 

migrated image. Note that, however, the hybrid approach uses a parameter defined by the 

amplitude of the seismic data here. When the parameter changes, we can obtain similar 

results as that obtained with scaling by its absolute norm. Scaling with logarithmic 

wavefield (Figure 4.3e) produces better results than the conventional approach. However, 

the amplitude of the second reflector is affected by other two elliptical events.  
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Figure 4.3: Migration kernel of the two reflections for the single source and single 
receiver experiment. (a) migration of clean data; (b) noisy data with 
conventional method; (c) noisy data with a L-1 norm scaling approach; (d) 
noisy data with a hybrid norm scaling approach; (e) noisy data scaling on 
logarithmic data. 
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Figure 4.4: Snapshot of the back-propagated receiver wavefield for a source located at the 
middle of the surface. 1) t=0.6s; 2) t=1.5s; 3) t=2.1s. (a) migration of clean 
data; (b) noisy data with conventional method; (c) noisy data with a L-1 
norm scaling approach; (d) noisy data with a hybrid norm scaling approach; 
(e) noisy data scaling on logarithmic data. 

Figure 4.4 shows the snapshot of the back-propagated receiver wavefield for the 

forward propagated source located at the middle of the surface. Different scenarios of 

different scaling approaches are shown for t=0.6s, 1.5s and 2.1s. We observe that when 

non-Gaussian noise is added, standard back-propagation approach does not provide 

desired results because we cannot see obvious coherent events on the snapshots. On the 

other hand, coherent events are pronounced with an absolute norm scaling and hybrid 

approach, with slight difference in background amplitude. For this case, the logarithm 

1) 

2) 

3) 
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wavefield approach can retain coherent events, but also introduces some migration 

artifacts. 
 

   

Figure 4.5: Synthetic seismogram for one shot gather with direct wave removed. (a) 
noise-free seismogram; (b) non-Gaussian noise; (c) noisy seismogram by 
adding (a) and (b). 

The common shot gather for this 1-D model is shown in Figure 4.5. Two 

parameters for the random perturbations of the data are the horizontal correlation length 

and vertical correlation length, which construct the anisotropic structure. 

Correspondingly, the noise does not obtain Gaussian statistics and can be considered as 

outliers here. The results of the migrated image after a Laplace filter are shown in Figure 

4.6. Unlike the example in Figure 4.3, where the wavefield at a single receiver is used, 

here the data at all the receiver locations are back-propagated simultaneously. This is the 

practical implementation strategy of RTM for a full acquisition geometry.  
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Figure 4.6: Migrated image for a layered medium. (a) migration of clean data; (b) noisy 
data with conventional method; (c) noisy data with a L-1 norm scaling 
approach; (d) noisy data with a hybrid norm scaling approach; (e) noisy data 
scaling on logarithmic data. 

Conventional approach (Figure 4.6b) introduces high amplitude artifacts after the 

second reflector and significantly changes the wavelet of the second reflector. When 

scaled by its absolute norm (Figure 4.6c), we can obtain cleaner results. A hybrid 
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approach (Figure 4.6d) can also remove the artifacts but still shows some anomaly at a 

depth about 2.5 km. Spurious reflectors are created when scaling with logarithmic 

wavefield (Figure 4.6e). 
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Figure 4.7: The acoustic velocity profile for the Marmousi model. 

 

4.4.2 Random noise with isolated outliers 

We then illustrate the use of our approach with random noise and isolated outliers 

for the data generated with Marmousi model (Figure 4.7). Figure 4.8 shows a shot record 

with the shot located at the middle of the surface. The outliers for the shot record are 

generated first by adding non-Gaussian random noise and then by adding an isolated 

rectangular hole with high amplitude anomaly (Figure 4.8b). This is to simulate 

extremely poorly processed raw data. Noise is added to each shot record and common 

image gathers are formed by migrating the shot record separately followed by a stacking 

to produce the final image.  
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Figure 4.8: A common shot gather for the Marmousi model. Left: clean data; Right: noisy 
data with non-Gaussian random noises and a rectangular outlier. 

Snapshot for the receiver wavefield of the Marmousi model is shown in Figure 

4.9. The forward source location is also at the middle of the surface. Since the amplitudes 

of different snapshots are different, we apply different gains for each group of snapshots. 

For this type of outliers, the four different methods provide similar results near the 

beginning and near the end of back-propagation process, with slight differences of the 

random noise (Figures 4.9.1 and 4.9.3). However, significant difference appears when the 

outlier record enters the medium (Figure 4.9.2). With a standard approach, most of the 

signal is contaminated by the noise. With a hybrid approach, the amplitude of the noise is 

reduced, but it still behaves as a high amplitude anomaly. With the strategy of scaling by 

its absolute norm, the amplitude is suppressed reasonably well. The logarithm wavefield 

approach also can suppress the outlier amplitude, but introduces some artifacts.  
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Figure 4.9: Snapshot of the back-propagated receiver wavefield for the Marmousi model. 
The source is located at the middle of the surface. 1) t=0.8s; 2) t=1.6s; 3) 
t=2.4s. (a) with conventional method; (b) with scaling by receiver data’s 
absolute norm (L-1 norm approach); (c) with a hybrid norm scaling 
approach; (d) with scaling on the logarithmic wavefield. 

 

3) 

2) 

1) 
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Figure 4.10: Reverse-time migrated image for the Marmousi model. (a) with 
conventional method; (b) with scaling by receiver data’s absolute norm (L-1 
norm approach); (c) with a hybrid norm scaling approach; (d) with scaling 
on the logarithmic wavefield. 

(c) 

(b) 

(a) 

(d) 
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Figure 4.10 shows the migrated image from the noisy shot records. With a 

conventional approach (Figure 4.10a), we can observe anomalies in the right upper part 

of the model, namely, two dipping events at depths of about 0.5 km and 1.2 km shown as 

red arrows. Also, upper part of the image has been affected by the random noise. When 

the receiver wavefield is scaled to its absolute norm (Figure 4.10b), the high amplitude 

anomaly and the random noise have been removed.  The Migrated image with a hybrid 

scaling approach (Figure 4.10c) shows similar benefits to remove the outliers, but still 

shows little energy of the artifacts shown with the red arrow.  With scaling on a 

logarithmic wavefield (Figure 4.10d), comparable results as L-1 norm scaling is obtained 

after stacking all the shots. Logarithmic scaling works better for Marmousi model than 

for a layered model. This is because the scaling depends on the complexity of the model 

and characteristics of the noises. Scaling with any approach can produce better image 

than conventional approach. This suggests that scaling the receiver wavefield can be a 

good alternative to conventional approach for migration of poorly processed data.  

27B4.5 CONCLUSIONS 

I have applied a robust imaging approach for prestack reverse time depth 

migration. This method borrows ideas from full waveform inversion and is based on 

back-propagation of the amplitude scaled receiver wavefield. While synthetic examples 

show that a conventional approach is very sensitive to non-Gaussian outliers of the 

seismic data, migration artifacts can be significantly reduced with scaled wavefield. 

Amongst all these methods, scaling by its absolute norm, in general, is most resistant to 

outliers. However, a quantitative comparison depends on the problems we solve and the 

parameters we choose. 
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The additional cost here is forward transforming the data into frequency-domain 

and inverse transforming them back to time-domain. This is negligible considering the 

cost of wavefield simulation. I restricted the analysis here to 2-D acoustic problems; 

however, extending this approach to 3D and to elastic cases is trivial. 

The discussion in this chapter is based on a regular reverse time migration 

approach. However, for plane-wave RTM (can be implemented similar to the plane-wave 

gradient calculation in Chapter 3), I expect that the sensitivity of non-Gaussian noise to 

the scaling of receiver wavefield should give similar results.  
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5B Chapter 5: A robust stochastic inversion workflow for time-lapse data: 
hybrid starting model and double-difference inversion  

28B5.1 ABSTRACT 

Non-uniqueness presents challenges to seismic inverse problems, especially for 

time-lapse inversion where multiple inversions are needed for different vintages of 

seismic data. For time-lapse applications, the focus typically is to detect relatively small 

changes in seismic attributes at limited locations and to relate these differences to 

changes in the underlying physical properties. In this chapter, I propose a robust 

inversion workflow where the baseline inversion uses a starting model, which combines a 

fractal prior and the low-frequency prior from well log data. This starting model provides 

an estimate of the null space based on fractal statistics of well data. To further focus on 

the localized changes, the inverted prior from the baseline model and the difference 

between two time-lapse data are summed together to produce the virtual time-lapse 

seismic data. This is known as double-difference inversion, which focuses primarily on 

the areas where time-lapse changes occur. The misfit function uses both data and model 

norms so that the ill-posedness of the inverse problem can be regularized. The seismic 

data are pre-processed using a local correlation based warping algorithm to register the 

time-lapse datasets. Finally, very fast simulated annealing, a non-linear global search 

method, is used to minimize the misfit function. I demonstrate the effectiveness of our 

method with synthetic data and field data from Cranfield site used for CO2 sequestration 

studies.  

29B5.2 INTRODUCTION 

Time-lapse (4D) seismic data is an important tool to monitor temporal changes of 

reservoir properties associated with hydrocarbon production and environmental 

engineering. With the improvement of the data fidelity and repeatability in seismic 
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acquisition, processing and interpretation, 4D seismic data is now used routinely for 

many reservoir management tasks. Successful applications of time-lapse data have been 

reported worldwide for different types of reservoirs (Koster et al., 2000; Landrø et al., 

2001; Lumley 2001; Hall et al., 2006; Vedanti and Sen, 2009). Future 4D seismic 

technology is expected to be more sensitive to small dynamic reservoir changes induced 

by fluid flow and to provide more quantitative interpretations (Calvert, 2005).   

Seismic inversion is an important tool for quantitative interpretation of time-lapse 

seismic data. It minimizes the misfit between observed and modeled seismic data and 

converts the seismic information into elastic properties such as P-wave velocity, S-wave 

velocity and density (e.g., Sen, 2006). There are many different types of seismic 

inversion. They differ mainly from each other by the forward modeling strategy and the 

usage of travel time and/or amplitude information. Travel time is sensitive to smooth 

changes or low-frequency variations that are important in defining the geometrical 

structures at a large scale. Seismic amplitude, on the other hand, is affected by small-

scale heterogeneities or high-frequency variations within the seismic resolution range. 

Travel time tomography (e.g., Ivansson, 1985; Grand, 1987) uses ray tracing as its 

forward modeling method and uses only travel time information from seismic data. Full 

waveform inversion (e.g., Tarantola, 1984; Pratt et al., 1998; Sen and Roy 2003) uses 

wave equation modeling approaches and both travel time and amplitude information. 

Despite the general success of this method within the seismic imaging community in the 

last several decades, it is still not applicable at the reservoir characterization scale 

because of its high computational demands and the local minimum issue. Up to now, 

seismic inversion with a convolution model as its forward modeling scheme (e.g., 

Rowbotham et al., 2003; Hampson et al., 2005), is still the most effective and efficient 

approach for reservoir characterization. This approach typically uses NMO corrected 
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angle gathers and focuses primarily on the amplitude variation with angle in pre-defined 

seismic horizons. Under this framework, high-frequency well log data are combined with 

seismic data to obtain considerably high resolution and geologically continuous elastic 

properties.  

 Time-lapse seismic inversion requires robust algorithms because accurate 

differences in elastic properties are needed to map dynamic reservoir parameters. High-

resolution inversion algorithms (Zhang and Castagna, 2011) are typically necessary 

because small elastic changes are helpful for further quantitative petrophysical analysis. 

In general, a robust inversion algorithm depends on the starting model (e.g., Tao and Sen, 

2012). A fractal starting model extracts the self-similar or self-affine statistics of well 

logs. It is an effective approach to estimate the high-frequency components not 

constrained by band-limited seismic data (Srivastava and Sen, 2009 and 2010). This 

approach overcomes the limitation of random Gaussian statistics in building a high-

frequency starting model such as Bayesian search criterion (Tarantola 2005) and Markov-

chain Monte Carlo methods (Sen and Stoffa, 1991, 1995; Hong and Sen, 2011). Some 

aliased estimates, especially at the beginning and end of the well logs can be improved 

with a combination of the fractal model and a low-frequency starting model (Tao et al., 

2011). When a stochastic optimization approach, such as very fast simulated annealing 

(VFSA) is used, reliable high resolution elastic properties can be obtained from seismic 

data. This approach can be directly extended to the inversion of 4D seismic data. 

 A conventional time-lapse inversion workflow requires two separate inversions 

and a subtraction of the two different inverted datasets to obtain a difference image. 

Because of noise characteristics and different non-linear search processes, this inversion 

method can introduce spurious structures instead of real time-lapse signatures in the 

difference image. Double-difference inversion (Watanabe et al., 2004, Denli and Huang, 
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2009, Zheng et al., 2011) uses the inverted results from the inversion of baseline data and 

the difference of the two time-lapse datasets for the inversion of the repeat data. In the 

second inversion process, inverted elastic properties are taken as prior constraints. Thus, 

it focuses mainly on the residual data where temporal changes have occurred while 

keeping other places constant.  

In this chapter, we report a robust workflow for the stochastic inversion of time-

lapse datasets. This workflow uses the hybrid starting model as a priori constraint for the 

baseline data and double difference inversion for the repeat data. A local correlation 

based warping algorithm is used to register the time-lapse datasets to improve on the 

consistency of time-lapse signatures. VFSA is used as the non-linear global search 

approach to find the minimum of the misfit function. This approach is justified by 

synthetic data and by comparison with the conventional inversion workflow. We further 

demonstrate the feasibility of this approach with a field dataset from Cranfield CO2 

sequestration site. 

30B5.3 METHODOLOGY 

38B5.3.1 Hybrid starting model 

Synthesizing well logs with fractal statistics is justified by the fact that self-

similar and self-affine statistics can be approximated by fractal heterogeneities (Hewett 

1986; Stefani and Gopa, 2001; Browaeys and Fomel, 2009). Within a fractal framework, 

elastic and petrophysical properties of the subsurface can be represented by a smooth 

background trend at a large scale plus fluctuations at finer scales    

 0( ) ( ) ( )f f= +r r rσ , (5.1) 
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where ( )f r  is any elastic or petrophysical parameter, 0 ( )f r  is the background 

parameter which can be defined deterministically, and ( )rσ  is the spatial fluctuation 

which can be synthesized stochastically.   

The fractal series ( )σ r  has a zero expectation value, a determined spatial 

covariance and a power-law dependence of its Fourier spectrum 

( )P k k −= β   ,                    (5.2) 

where ( )P k  is the energy spectrum, k  is the wavenumber and β  is a scaling factor 

that is linearly related to the Hurst coefficient H (Hurst et al., 1965). Specifically, 

12 −= Hβ  is for fractal Gaussian noise and 12 += Hβ  is for fractal Brownian 

motion.  

To examine if a time signal or a space signal has strong or weak fractal behavior, 

spectral analysis is used, and the value of β  is examined. The correlation of adjacent 

points is measured as persistence. For a signal with 0=β , the energy spectrum is 

independent of frequency and the signal consists of uncorrelated random noise. When 

0>β , the signal is positively correlated and the data is persistent. When 0<β , the 

signal is anti-correlated and anti-persistent. 

Figure 5.1 shows four different velocity curves and Figure 5.2 shows the 

corresponding log-log Fourier spectrum. Although only velocity is shown here, spectra of 

other parameters, such as density, impedance, permeability and porosity, can also be 

depicted this way. Figure 5.1a is a blocky velocity model that represents layered strata 

that can generate seismic reflections. A blocky model consists of piecewise Heaviside 

functions while its amplitude spectrum is a superposition of sinc functions (Figure 5.2a). 

Figure 5.1b is a smoothed low-frequency background velocity trend that can be used as a 

low-frequency starting model for inversion. Its spectrum does not have perturbations and 

it typically cannot be accurately synthesized by a fractal series (Figure 5.2b). For a 
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typical well log shown in Figure 5.1c, fractal statistics provide a good approximation of it 

considering power-law dependence of its spectrum (Figure 5.2c). A random series 

(Figure 5.1d) can be considered as a special case of a fractal series when the least-square-

fit slope of its log-log spectrum equals one (Figure 5.2d).  

 

 

 

62BFigure 5.1: (a) A blocky heterogeneous velocity curve; (b) a smooth low frequency 
velocity trend derived from a well log; (c) P-wave velocity from a real well 
log data; (d) random velocity perturbations. 
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63BFigure 5.2: Log-log spectra for (a) A blocky velocity; (b) a smooth velocity; (c) P-wave 
velocity from a real well log data; (d) random velocity perturbations. A 
linear trend is estimated for (c) and (d). 

To describe a given well log data using fractal statistics, three parameters should 

be estimated from the well log data: the expectation, the standard deviation and the Hurst 

coefficient. Expectation and standard deviation can be easily estimated. To estimate the 

Hurst coefficient, several methods are available. Following Srivastava and Sen (2009), 

we use a method known as rescaled range analysis 
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   ,                       (5.3) 

where R and S are the range and standard deviation, respectively, of the given dataset. N 

is the number of sampling points. If we plot log(R/S) versus log(N/2), we obtain a 

straight line with the slope that is the Hurst coefficient (H).  

After H is estimated, I synthesize the log curve with a fractal Gaussian series. 

This involves a process to generate random perturbations with an estimated auto-

covariance and H (Srivastava and Sen, 2010). The auto-covariance of the fractal Gaussian 

noise can be given by   

( )2 2 22( ) 0.5 1 2 1H H Ht t t t= + − + −A σ  ,                (5.4) 

where A is the auto-covariance, σ is the standard deviation of the well log data.  

 A fractal initial model typically has the same frequency range as that of the well 

log data. This provides a good estimate of the null space. However, this method can 

introduce spurious frequency components when the well log does not strictly satisfy 

fractal statistics. Random realizations of well data can also bring frequency uncertainties 

into the model space. This can be compensated for with a hybrid model approach. 

Suppose we have the low-frequency model 1m  and the fractal model 2m , the hybrid 

starting modelm is given by 

1 2(1 )= + −m m mα α    ,                   (5.5) 

where α  is a weight number such that 0 1≤ ≤α . Setting 0.5=α  gives the low-

frequency trend and high-frequency components equal weight. 

Figure 5.3 shows a comparison between synthetic well logs generated using the 

fractal method and the hybrid method. Compared to the real impedance log, the pure 

fractal model has some deviations, especially at the start and end depths of the log. The 
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root mean square error is 19.4 km/s*g/cc for the pure fractal model, and is 10.5 

km/s*g/cc for the hybrid model. Our hybrid model better matches the true answer.  

 

 

64BFigure 5.3: Comparison of synthetic well log P-impedance (red) with real well log data 
(black). Left: fractal model. Right: hybrid mode 

 

39B5.3.2 Forward modeling and optimization scheme 

This chapter uses a convolution model as its forward modeling scheme. The 

modeling assumes a layered Earth. Inversion of the seismic data is based on a trace-by-

trace approach and can be applied to 3D datasets with horizon constraints. The forward 

model is given by
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( , ) ( )* ( , ) ( )t t t t= +S w R nθ θ  ,                    (5.6) 

where ( , )tS θ  is the observed seismic data, typically an angle gather in a prestack case; 

( )tw is the source wavelet, and ( )tn  is the noise; ( , )tR θ  is the reflectivity, and the 

angle-dependent reflectivity can be given by a linear approximation of the Zoeppritz 

equations (e.g. Fatti et al., 1994). A full Zeoprittz equation with 1D reflectivity modeling 

can also be used (e.g. Sen and Roy, 2003). This chapter uses the convolution model for 

numerical simplicity and efficiency.   

Most real inverse problems are ill-posed. Regularization is necessary to make the 

inversion process more robust. Similar to Srivastava and Sen (2010), we choose the 

misfit function between the observed and calculated data as   

1 0 2

2 obs cal
new obs cal

obs cal obs cal

M
−

= + − + −
− + +
∑ ∑ ∑∑ ∑

d d
m m A A

d d d d
ε ε   ,    (5.7)              

where obsd and cald  are the observed and calculated seismic data, respectively; newm and 

0m are the model parameter of new iteration and the starting model, respectively; 

obsA and calA  are the observed and calculated autocorrelation series; 1ε  and 2ε  are 

weighting factors.  

The optimization method used in this chapter is VFSA. VFSA is an efficient 

global searching algorithm with its ability to identify optimal parameters for non-linear 

problems (Sen and Stoffa, 1995). This algorithm requires the model space to be 

subdivided into equally spaced intervals. Within different iterations, the temperature, i.e., 

the control parameter, is selected based on an exponentially decaying cooling schedule. 

Starting from an initial model, which is typically random but here it is a fractal based 

hybrid model, a new model is accepted by evaluating the probability of the misfit 

function. This search process is typically known as the Metropolis algorithm (Metropolis 
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et al., 1953). The best-fit model is accepted by repeating this inversion process to reduce 

the bias of sampling in the model space. In theory, global optimization based on Monte 

Carlo searching can be applied to other computationally intensive inverse problems such 

as full waveform inversion with two-way wave equation forward modeling (e.g., 

Tarantola, 1984). However, because the number of forward calculations is typically 

prohibitively large, global optimization methods are still considered impractical for those 

problems.  

40B5.3.3 Double-difference inversion  

Double-difference inversion for 4D seismic data has been applied in travel time 

tomography (Waldhauser and Ellsworth, 2000) and full waveform inversion problems 

(Watanabe et al., 2004; Denli and Huang, 2009). Here we extend this idea to the 

stochastic time-lapse inversion.  

Conventional inversion strategy for time-lapse data involves two independent 

inversions. Changes in the underlying elastic properties are given by a subtraction 

between those model parameters. This can be written as  

repeat base= −m m mδ  ,                      (5.8) 

where mδ  is the time-lapse changes of the model parameters. repeatm  and basem are the 

inverted model parameters for the repeat data and baseline data, respectively. The two 

different inversions typically require a same inversion workflow to ensure that the 

inversion process itself does not introduce time-lapse difference. However, because of 

non-uniqueness, independent inversions of these two different datasets may converge into 

different results that are not true time-lapse signatures.  

Similar to joint 4D inversion proposed by Johnson et al. (2009), where 

geophysical parameters are used to constrain the inversion of hydrogeologic data, 
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inverted parameters from the baseline data is used as a constraint for the repeat data for 

double-difference inversion. The observed repeat data is replaced by the simulated data 

of the baseline model and the residual data 

_ ( )obs repeat base obsf= + Δd m d  ,                      (9) 

where ( )basef m  is the calculated data for the baseline model. obsdΔ is the residual data 

between two different datasets and _ _obs obs repeat obs baseΔ = −d d d .  

This method is equivalent to conventional time-lapse inversion if the inversion 

performed on the baseline data does not truly match the observed data (Zheng et al., 

2011). However, data matching cannot be perfect for real inverse problems. 

Correspondingly, the inverted time-lapse difference for double-difference inversion and 

conventional approach are typically different. Because obsΔd corresponds to the localized 

changes in the time-lapse survey, this method only inverts for the actual differences in the 

seismic data. Therefore, it better constrains the inversion of the repeat data.  

41B 5.3.4 Local correlation-based warping 

Seismic data for time-lapse purposes are typically processed through multiple 

independent workflows. At any step, if not processed properly, artifacts can be brought 

into the final image. Although modern acquisition techniques have increased the 

repeatability of time-lapse datasets, acquisition can still introduce unwanted artifacts. To 

correctly identify the time-lapse signature, we use a warping method to isolate the 

changes at the reservoir interval from its surrounding environments. Warping was firstly 

investigated as a cross equalization method on 4D seismic image registration (Rickett and 

Lumley 2001; Druzhinin and MacBeth, 2001).  

In this chapter, the warping method is applied on the repeat data based on a 

maximum local correlation trend (Fomel, 2007; Fomel and Jin, 2009). This approach 
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involves the calculation of the local correlation, followed by squeezing and stretching the 

stacked image of the repeat data with reference to the baseline data. This is a trace-by-

trace approach, which implements a shaping regularization to stabilize the local-

correlation output. The maximum local-correlation trend is picked automatically as same 

as semblance picking in velocity analysis (Fomel, 2009).  

31B5.4 NUMERICAL EXAMPLES 

42B5.4.1 Synthetic validation 

Synthetic examples are used to validate the effectiveness of our inversion 

workflow. Since this inversion requires an initial model with high-frequency components, 

we create 1D synthetic data and 2D synthetic data based on the hybrid initial model from 

Hampson-Russell’s demonstration datasets (Srivastava and Sen, 2010). This impedance 

model also involves extrapolating the impedance well log based on picked horizons. 

Seismic dataset is created by convolving a wavelet with the reflectivity derived from the 

impedance model.  

Figure 5.4 shows the 1-D P-impedance well log data and its corresponding 

inverted result. The time-lapse impedance model is created by putting an impedance 

difference of 1860 m/s*g/cc from 1.02s to 1.05s. This is used to simulate the effect of 

injected CO2. We use a constant impedance difference for all the sampling points within 

a reservoir interval to simplify the fluid substitution and to quantitatively analyze how 

our inversion workflow resolves the wedge model in the following 2-D model. From the 

inverted result of the baseline model, we observe that, in general, stochastic inversion 

using a hybrid initial model can provide effective estimate of the true impedance, despite 

some mismatches because of the tuning effects of seismic data. 
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65BFigure 5.4: Left: P-impedance log data of the baseline model (back) and the time-lapse 
model (red); Right: Comparison of inverted impedance (red) for the baseline 
model with the true model (black).   

Figure 5.5 shows the inverted best-fit P-impedance difference of the 1D model 

using a conventional approach (two separate independent inversions) and double-

difference inversion. Both approaches detect the decreased impedance change due to CO2 

injection. However, the magnitude of the impedance difference with the conventional 

approach is smaller than the true difference, and there are some deviations outside the 

target interval. In comparison, inversion with the double-difference approach produces 

better matching of the target interval and fewer deviations outside of it. For stochastic 

inversion, multiple realizations produce slightly different inverted results because the 

optimization strategy randomly selects different model parameters. Figure 5.5b shows 20 

realizations of the inverted differences. We observe that the deviations for different 
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inversions are quite small, especially for the double-difference inversion. This suggests 

that our inversion workflow is stable. 

 

 

 

66BFigure 5.5: (a) Comparison of the inverted impedance difference with conventional 
approach (left) and the double-difference inversion approach (right); (b) 
multiple realizations of (a). For all of those plots, black denotes the true 
difference and red denotes the inverted difference.  

a) 

b) 
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67BFigure 5.6: P-impedance plots for (a) baseline model; (b) time-lapse model; (c) inverted 
base line model; (d) inverted time-lapse model with conventional approach; 
(e) inverted time-lapse model with double-difference inversion. 

 

a) 

b) 

c) 

d) 

e) 

d) 
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68BFigure 5.7: Comparison of the subtracted P-impedance with conventional approach and 

with double-difference inversion. (a) True difference; (b) inverted difference 
with conventional approach; (c) inverted difference with double-difference 
inversion.  

  Figure 5.6 shows 2D true impedance models and their corresponding inverted 

models with the two approaches. Figure 5.7 shows the impedance differences. The 

geometry is a wedge model to test how our algorithm can resolve the tuning effects of 

thin-bed layers. Similar to the 1D scenario, for each case, inverted impedance model is 

close to the true model. Although the inverted difference becomes smaller than the true 

answer when the layer becomes thinner, both of the approaches could resolve the wedge 

model very well. The inverted difference with a double-difference inversion approach 

matches the shape of the wedge better than conventional approach. Double-difference 

a) 

b) 

c) 
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inversion also shows better match in terms of amplitude of the difference inside the 

wedge model and better constrains the deviations outside the places where temporal 

changes occur.  

43B5.4.2 Field data applications 

The field data used in this study comes from Cranfield in southwest Mississippi. 

The Gulf Coast Carbon Center (GCCC) at the University of Texas used this site for CO2 

injection at twenty-three drilled well locations. The injection interval is the lower 

Tuscaloosa formation from 3012m to 3142m below the surface. From year 2008 to year 

2010, a cumulative mass of 2.2 million metric tons was injected. To monitor this CO2 

injection process, pre-injection seismic data was acquired in the year 2007 before the CO2 

injection, and post-injection seismic data was acquired in the year 2010 (Hovorka et al., 

2011). The injection interval of the lower Tuscaloosa formation at Cranfield appears as a 

thin bed layer with the thickness around 15 meters, and no overburden (low-velocity and 

high pressure) emission is detected from the in situ well-log measurements. This leads to 

an assumption that the time shifts at this Cranfield datasets are aliasing because injected 

CO2 will not change the thin bed characteristics of the injection interval. This confirms 

that a warping method is necessary to identify the true time-lapse signature for this 

dataset.  

Figure 5.8 shows a cross-section of the pre-injection seismic data and the 

calculated time-lapse differences. For comparison, the differences calculated using the 

warped and non-warped post-injection data are shown. Within the injection interval (the 

two picked horizons in Figure 8b and 8c), the original difference (Figure 8b) shows the 

opposite sign of the amplitude for different crossline locations. There is some mis-

alignment of the time-lapse signatures for the previous processing. After warping, 
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seismic differences become laterally continuous for all the crossline locations. This is 

because the time-shift has been separated from amplitude changes (Fomel and Jin, 2009). 

We think warping might help improve the fidelity of time-lapse interpretation. However, 

we cannot rule out the possibilities that data without warping are more close to the true 

time-lapse signatures because of the heterogeneities in the injection interval.  

 

 

 

69BFigure 5.8: A cross-section of (a) Pre-injection seismic data; (b) Time-lapse difference 
without warping; (c) with local-correlation based warping. Two horizons are 
overlaid to this plot. The white denotes the top sand and base denotes the 
bottom sand of the injection interval.   

a) 

b) 

c) 
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Well-to-seismic analysis was performed to find optimal wavelets, which ensure 

well log data ties well with seismic section. The extracted wavelet and its corresponding 

spectrum are shown in Figure 5.9. This wavelet is close to zero phase. After pre-

processing with warping and wavelet extraction, the well log data was resampled to the 

seismic sampling interval and extrapolated to the entire seismic section with the guidance 

of picked horizons. A hybrid starting model was then built based on the extrapolated well 

logs and used for the inversion of the pre-injection data. 

 

 

70BFigure 5.9: Wavelet used for the Cranfield datasets. Left: wiggle plot of the wavelet; 
Right: its corresponding spectrum.  

  Figure 5.10 shows the inverted P-impedance for the pre-injection data. There is 

one well located in this seismic section. A comparison of the inverted result at the well 

location is shown on the right. In general, the inverted impedance agrees with the true 

impedance. Within the injection interval, the impedance is apparently lower than the 

surrounding environment. The convergence history at the well location is shown in 
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Figure 5.11. This resembles a typical convergence history of the VFSA optimization 

scheme. At the beginning, the misfit has some fluctuations. After 400 iterations, this 

searching is close to the global minimum and begins a slow searching process. The 

observed seismic data and inverted seismic data are shown in Figure 5.12. Most of the 

key features of the observed seismic data are captured by the simulated data using the 

inverted impedance. 
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71BFigure 5.10: Inverted P-impedance for the pre-injection data (left). Right shows the true 
impedance (scaled to the seismic data sampling interval) and inverted result 
at the well location.   

Figure 5.13 shows the subtracted P-impedance for different scenarios.  Within 

the injection interval, there are some discrepancies between the conventional approach 

(Figures 5.13a and 5.13b) and double-difference inversion (Figures 5.13c and 5.13d). The 

most notable discrepancy is that the inverted difference for double difference inversion 

has a longer time span. As analyzed by the synthetic examples, we think that the inverted 

results with a double difference approach can better capture the true time-lapse 

well 
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difference. Also, conventional inversion (Figures 5.13a and 5.13b) has some fluctuations 

of the inverted difference outside the CO2 injection interval. Similar to the seismic data, 

misalignment of the impedance difference exist for the non-warped seismic data (Figures 

5.13a and 5.13c). Inverted results show same negative change of P-impedance across the 

picked horizons. This is consistent with the existing geological knowledge of this area, 

which suggests that rock properties within the injection interval are laterally consistent. 

There is an impedance decrease below the picked top sand horizon on the inverted 

warped result (Figures 5.13b and 5.13d). This confirms the conjecture that most CO2 

accumulates at the top of the injection interval.  
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72BFigure 5.11: Normalized misfit versus number of iterations at the well location.  

32B5.5  CONCLUSIONS 

In this chapter, I have presented a robust stochastic time-lapse inversion strategy. 

This workflow involves two key steps. The first step is to invert the baseline model with 

a hybrid starting model which combines the fractal prior and low-frequency prior of the 

well log data. The second step is to use a double-difference inversion scheme to focus on 

the local areas where time-lapse changes have occurred. I find that double difference 
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inversion is able to capture the time-lapse differences better than conventional separate 

inversion approach. Synthetic and real data example shows that inversion with double 

difference data could focus on the places where time-lapse signatures have occurred. In 

addition, inversions with warped data show continuous change of the reservoir properties.  

 

 

 

73BFigure 5.12: Comparison of the pre-injection seismic data and inverted result. (a) 
Observed seismic data; (b) simulated data with inverted P-impedance. 

 

a) 

b) 
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74BFigure 5.13: Comparison of inverted time-lapse differences for four different scenarios. 
(a) Conventional inversion of the data without warping; (b) double-
difference inversion of the data without warping; (c) conventional inversion 
of the data with warping; (d) double-difference inversion of the data with 
warping.  

 

 

 

 

 

a) b) 

c) d) 



 103

6BChapter 6: Conclusions and future directions 

6.1 33BSUMMARY  

I have presented novel applications of time reversal and plane-wave 

decompositions in seismic interferometry, full waveform inversion and reverse time 

migration. These three methods are currently the primary research focus areas in seismic 

exploration. The methods developed in this dissertation can have several applcations, 

particularly for full wave applications in exploration geophysics. I have also shown an 

example of using prior information for robust time-lapse seismic inversion.   

With the goal of utilizing the advantages of plane-wave transformation such as 

data reduction, directionality and focusing of direct wave, I developed a plane-wave 

based seismic interferometry method in chapter 2. I proved that the full redatumed 

seismic response can be retrieved in the plane-wave domain using a selected range of ray 

parameters. I tested the effectiveness of this method with transmission to reflection data 

retrieval, and VSP data for salt flank imaging. Results showed that with full ray 

parameters this approach is equivalent to conventional time-space domain approach but 

usually it can reduce the computational cost. The directionality with a choice of different 

ray parameters, which corresponds to the take-off angle at the surface, can also be used 

for better illumination of seismic interferometry. I also showed that this approach can be 

used to suppress artifacts of the CPG gather in super virtual interferometry and used this 

approach to a real OBS dataset. Far offset refractions have been significantly improved 

with this approach. 

 In chapter 3, I applied the plane-wave modeling approach to frequency domain 

full waveform inversion. This modeling strategy can be used both for the gradient and for 

the Hessian - the two key components needed for FWI. This is implemented as a multi-

scale approach, which inverts discrete frequencies sequentially from low frequencies to 
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high frequencies. The inversion is carried out by a Gauss-Newton framework with a 

diagonal Hessian that is used to compensate for the source and receiver illuminations. 

Plane-wave encoding considerably reduces the computational burden and cross-talk 

artifacts are effectively suppressed by stacking over different ray parameters. Using a 2-D 

Overthrust example, I show that comparable results are obtained with my approach and 

with conventional shot-domain approach.   

In chapter 4, I use the idea from the gradient calculation of FWI for time-domain 

reverse time migration. This is possible because numerical implementation of the 

gradient of the cost function in FWI is very similar as in RTM. L-p norms for FWI have 

been reported for better inversion result when the data contain outliers. RTM does not 

solve any data minimization problem, so “norm” in RTM does not make sense. However, 

these norms can be considered for scaling of the back-propagated receiver wavefield 

before applying the imaging condition. I tested this approach with different scaling 

strategies for non-Gaussian type noises. I found that in general scaling by its absolute 

norm (L-1 norm) produces better results than other approaches.  

In chapter 5, I proposed a robust stochastic time-lapse seismic inversion strategy 

with an application of monitoring Cranfield CO2 injection site. The key idea in this 

chapter is to use prior information to constrain the inversion process. This idea can also 

be used for other inversion algorithms, not only for the simultaneous inversion problem 

in this chapter. This inversion consists of two key steps with two types of prior 

information. The first step is the baseline inversion, which uses the fractal based hybrid 

prior from the well data to estimate the null space. The second step is to use the prior 

from the inverted parameters from the first step. The second step is known as double-

difference inversion. With synthetic data, I showed that double-difference inversion 

obtains better result than a conventional two-pass approach. For the field data from 
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Cranfield site, the inverted results show time-lapse impedance changes that are consistent 

with CO2 injection effects.  

6.2 34BFUTURE RESEARCH  

The interferometry relation used in this dissertation is based on the cross-

correlation approach. Interferometry with a deconvolution approach and with plane-wave 

transformed data can be used to extend the scope of this dissertation. Other future 

research in plane-wave based seismic interferometry can be other applications where tau-

p transform is applicable.    

For plane-wave full waveform inversion and for reverse time migration, one 

direct application is to apply this approach to a real dataset and extend it to 3-D. For real 

data, we should use the “physical” time instead of the delay time to match the simulated 

plane-wave data. Incorporating elastic, attenuation and anisotropic effects can be 

interesting and challenging research topics as well. Various regularization, 

parameterization and optimization approaches can be incorporated for better performance 

of FWI for particular applications.   
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7BAppendix A: Proof of seismic interferometry using reflectivity method 

 

 

 

75BFigure A.1: The model to transform free surface recorded transmission responses to 
reflection responses. 

Consider a model (Figure A.1) consisting of a free surface and a layer with 

incident plane waves P or SV from the deep. Received up-going wave UW  at the free 

surface consists of the 0UW  (direct wave), 1UW  (first reflection), and 2UW  (second 

reflection). Kennett (1983) derived the following formula. 
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where FR is the surface reflection matrix. UT , DT , UR  and DR  are the generalized 

transmission and reflection response from 0z = to Nz z= . U means up going waves, D 

means down going waves. The term [ ] 1−− FDRRI  includes all the multiples propagated 

in the region bounded by the free surface and the boundary of the last layer.  
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For the elastic case or P-SV wave modes case, the transmission matrix can be 

written as  
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where HGFED ,,,, are cosine-dependent terms (Aki and Richards, 2002).  Using the 

above equation, the transmission matrix can be explicitly written as 
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where p  is the ray parameter . Equations A.8 and A.9 suggest that U
T

D TT = . 
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Similarly, for the reflection matrix, it can be expressively written as  
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After matrix multiplication, we could get 
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For lossless media case, the energy flux of the seismic wave before and after 

propagating in the region should be equal. Then we have the following identity:  
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where * is the conjugate transpose. We can also get this identity 

* * *
D UD F U F+= +W W I R V V R                           (A.13) 

Equation A.12 or A.13 is the interferometric relation, which suggests that the 

autocorrelation of the transmitted wave equals the waves received at the surface plus its 

time-reversed version plus a delta function.  
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8BAppendix B: Proof of the equivalence of shot-profile and plane-wave 
gradient 

Incorporating the plane-wave encoding strategy, the forward simulation of the 

source wavefield is the solution to equations 3.4 and 3.5. It can be written as 
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where ( , , )S sx x ω  is the source wavefield for the shot location at ( sx ,0) simulated with 

the shot-profile wave equation; ( , , )S x p% ω  is the source wavefield with the plane-wave 

simulation.  

Similarly, the back propagated data residual can be expressed as 
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After crosscorrelating the source wavefield and residual receiver wavefield, the 

gradient, with the ray parameter being p , can be written as follows  
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where 1x  and 2x  represent different shot locations for the source wavefiled and 

residual receiver wavefield. 

Note that  
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Stacking equation A-3 over all ray parameters results in the plane-wave domain 

gradient  
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Thus, we have proved that  

( ) ( )g g=x x% .                               (B-6) 

However, real application of the gradient calculation is to simultaneously back-

propagate the residual wavefield at all the receiver locations. This will result in some 

different filtering effects between plane-wave encoded gradient and shot-profile gradient. 

 

9BAppendix C: Proof of the equivalence of shot-profile and plane-wave 
encoded diagonal Hessian 

For writing simplicity, the proof shown below is based on the diagonal Hessian. 

However, it does not involve any modification to extend to the full Hessian matrix.  

Similar to the relationship between the shot-profile and plane-wave extrapolated 

wavefield in the gradient calculation, the Green’s function satisfies 
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The receiver-side plane-wave encoded Hessian is expressed as  
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with 
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Integrating the equation C-3 over ray parameters, we get 
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Equation C-4 shows the equivalence of the receiver-side plane-wave encoded 

Hessian and shot-profile Hessian.  

A simultaneous plane-wave encoding uses both source and receiver ray 

parameters. It can be formulated as    
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   with ( , , )Kr rx p% ω  given in equation C-3 and ( , , )Ks sx p% ω  given as follows 
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3 4
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The integration relationship in C-3 also holds for ( , , )Ks sx p% ω , i.e. 
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Thus 
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 Equation C-9 proves the equivalence of the source and receiver plane-wave 

encoded Hessian and shot-profile Hessian.  
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