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Abstract

Clinical trials have become a standard part of modern medicine, creating great in-

terest in the field of adaptive clinical trials. The goal of adaptive trials is greater

efficiency in the use of patients and time, higher probability of demonstrating treat-

ment effect, and more informative trials. This paper focuses on seamless phase II/III

trials, an adaptive trial consisting of two stages: the first stage compares multiple

treatment arms to a control and determines the appropriate arm, and the second

stage undertakes a more traditional comparison of this arm to a control arm. The

data from both stages is used in analysis of the treatment, with the goal of more

power than two separate trials where data is not shared. This paper begins with

a discussion of an established method of analyzing seamless trials, referred to as

the Posch method. Proofs are presented that conclude that the Posch method has

analytical control over type one error. This paper also introduces a new method

of analyzing seamless trials called the simulation method. This simulation method

relies on simulation of clinical trials under the null hypothesis to find critical values

that control type one error. This paper includes a model of the simulation method

as a first step in a potential proof that the simulation method has analytical control

over type one error. Power comparisons between the Posch method, the simulation

method, and two separate trials conclude that seamless trials are more powerful than
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separate trials, and the simulation method is slightly more powerful than the Posch

method when analyzing seamless trials. Power comparisons of separate trials and

the simulation method with a fixed sample size reveal that implementation of the

simulation method would result in larger phase II trials than when separate trials

are run. This paper serves as an initial step in establishing the simulation method

as a method of analyzing seamless phase II/III clinical trials.
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1

Background

Clinical trials study whether an intervention is effective in humans under certain

conditions. Many clinical trials test if a drug or medical device is effective in treating

a medical condition. Clinical trials have become a standard part of modern medicine

and the definitive tool for evaluating the effect of treatments. The importance of

clinical trials and ever increasing ethical and efficiency standards generates increasing

interest in the field of apaptive design or analyses guided by examination of the

accumulated data at an interim point in the trial. These adaptive features may

make clinical trials more efficient (fewer patients, shorter duration), more likely to

demonstrate the effect of treatments, or more informative (FDA (2010)).

Clinical trials of drugs are traditionally divided into four phases. In many cases,

in particular for chemotherapy, phase I trials aim to find the maximum safe dose

of a treatment. Phase II trials seek to establish efficacy (effectiveness) while pro-

tecting against toxicity and futility (continuing a trial that is unlikely to produce a
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significant result). Phase III trials, often called confirmatory trials, are usually large

patient trials (300-3,000 patients depending on disease) aimed at being the definitive

assessment of the efficacy of a drug. Phase IV studies are post-market studies that

continue studying a drug after it is placed on the market. (Berry et al. (2011))

In drug development, phase II trials are typically run with the goal of determining

the next step in the development process. The data from dose-finding phase II trials

is used to make decisions about whether a phase III trial should be run and which

dose(s) should be included. The length of time between phase II and phase III trials

can be quite lengthy; filled with regulatory meetings to design a phase III trial. If

a phase III trial is conducted, the data collected in phase II is ignored in evaluating

the same treatment in phase III. These issues lead to the desire for more adaptive

phase II/III trials. Seamless phase II/III trials are composed of two stages: the first

stage begins with a dose-finding phase II trial which leads ‘seamlessly’ to a phase III

trial which undertakes a more traditional comparison of a dose with a control arm.

The seamless design removes the time between trials, typically leading to a shorter

development time for the drug. Seamless phase II/III trials combine the data from

stage one and stage two to analyze the trial as a whole. The hope for this seamless

design is that combining the data from both trials will result in a more powerful and

efficient design than two separate trials. Although power is not the major concern

for regulatory agencies, trial sponsors find power very important. A more powerful

design lessens the risk of running a clinical trial.

The following notation will be used throughout the paper to refer to the design of

seamless phase II/II trials. The trial aims to study the elementary null hypotheses

Hi : θi “ θ0 where θi is the treatment effect of treatment i. Stage one begins with
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k treatment arms, Ti, i P t1, . . . , ku “ T1, compared to the placebo, T0. After stage

one, one treatment Tm,m P T1 is chosen to move on to stage two where it is compared

to T0. Data from stage one and stage two are combined to analyze the elementary

null hypothesis Hm. In this paper, our hypothesis tests are one-sided at level 0.025

because in a phase III trial there is scientific evidence that the treatment has an

effect greater than or equal to zero.

Seamless phase II/III trials are considered a type of confirmatory trial. Con-

firmatory trials are overseen by regulatory agencies with predetermined statistical

thresholds that the trial design must meet in order to be approved for public use.

The statistical hurdle that confirmatory trials must meet is to get a statistically sig-

nificant result at a specified type-I error level. In the first stage of seamless phase

II/III trial, multiple treatment arms are compared to a placebo. These multiple

comparisons may cause an inflated type-I error rate.

This paper discusses two methods of analyzing seamless phase II/III clinical trials.

Chapter 2 discusses the method of Posch et. al. (2005), an established method

which has analytical control over type-I error. Chapter 3 introduces a new method

of analyzing seamless phase II/III trials with simulation control of type-I error.
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2

Method of Posch, et al

2.1 Introduction

This section discusses the method of Posch et. al. (2005) of analyzing seamless

phase II/III clinical trials. For simplicity, we will refer to this method as the “Posch

method”. The seamless trial design is more complicated than a traditional single

phase trial. The Posch method develops procedures to address each of the involved

challenges. The three methods that make up the Posch method include the (i)

combination test method, (ii) the closed testing principle, and (iii) the Simes test.

The combination test is a procedure to combine the data from stage one and stage

two in order to assess the trial as a whole. The closed testing principle is a method

that allows investigators to control family-wise type-I error rate across a family of

hypotheses. The Simes test defines a p-value for the intersection of multiple (ideally)

independent hypotheses. That is, the Simes test allows us to control the overall
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type-I error rate for multiple independent hypotheses. Each of these methods will be

fully explained and partially proven in the following sections. In section 2.6, we will

combine all of these steps in an example clinical trial that uses the Posch method.

Finally, section 2.7 presents a discussion of the benefits and limitations of the Posch

method. The notation described in the Introduction will be used heavily throughout

this chapter.

2.2 Hypothesis tests and p-values

A combination test combines the evidence from stage one and two in a way to assess

the trial as a whole. Ordinarily, clinical trials are assessed with p-values. Consider

a two-stage test of a null hypothesis H. Let p be a p-value for H based only on

data from stage one, and q be a p-value for H based only on data from stage two.

Section 2.3 defines a combination function, Cpp, qq, that takes the p-values from each

stage and combines them into a p-value to evaluate the entire trial. Therefore, Cpp, qq

must satisfy the definition of a p-value, so we review p-values in this section.

Assume we are testing a hypothesis, denoted H0 for the null hypothesis. We

begin with our data, y1, . . . , yn, which are realizations of the i.i.d. random vari-

ables Y1, . . . , Yn. These random variables often follow a distribution indexed by a

parameter θ. A statistical test is based on a test statistic, T pyq, with some known

distribution under H0. Here T is a function of the data y “ py1, . . . , ynq. A test is

then constructed by defining a rejection region C, such that for T P C the conclusion

is to reject H0; and for T R C we fail to reject H0. Usually C is defined by a threshold

on T .
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Let p denote our p-value for this test. One definition of a p-value is

p “ P pT ě t|H0q (2.1)

Here P pA|H0q is a slight abuse of notation to indicate a probability under H0. In

words, the p-value is the probability that we have a test statistic equal to or more

extreme than the data we observed, assuming the null hypothesis is true. The fol-

lowing Lemma will be useful in explaining an alternate definition of p-values used in

this paper.

Lemma 1. Let u1 „ Up0, 1q (u1 has a standard uniform distribution). Then 1´u1 „

Up0, 1q.

Proof. By definition of a standard uniform distribution, P pu1 ď aq “ a for a P r0, 1s.

We can rewrite this as 1´P pu1 ą aq “ añ 1´P p1´u1 ą 1´aq “ añ P p1´u1 ď

1 ´ aq “ 1 ´ a. Let b “ 1 ´ a. We know that P p1 ´ u1 ď bq “ b for b P r0, 1s.

Therefore, 1´ u1 „ Up0, 1q.

Proposition 2. Assume the distribution function F ptq for the test statistic is con-

tinuous. Then the p-value p is a uniform random variable, p „ Up0, 1q, under the

null hypothesis.

For the upcoming discussion this property is a convenient alternative definition of

a p-value. We use it in place of Equation 2.1 as the defining property. A short ‘proof’

of this definition follows. We previously defined a p-value as p “ P pT ě t|H0q. We

can rewrite this as p “ 1´P pT ă t|H0q. A cumulative distribution function (cdf) F of

a random variable X is a function given by FXpxq “ P pX ď xq. Let F0 be the cdf of T

6



under H0. It follows that p “ 1´F0ptq. All cdf’s are monotonic, increasing, and right-

continuous, therefore p “ P pT ě t|H0q “ P pF0pT q ě F0ptqq “ 1´ P pF0pT q ă F0ptqq

It follows that p “ 1´ F0ptq “ 1´ P pF0pT q ă F0ptqq and we conclude that

P pF0pT q ă F0ptqq “ F0ptq

By definition, F0pT q follows a uniform distribution. Since a cdf results in values

from 0 to 1, we known F0pT q has a standard uniform distribution. By Lemma 1,

1´ F0pT q „ Up0, 1q, and therefore p „ Up0, 1q.

2.3 Combination tests

Cpp, qq must satisfy the definition of a p-value and be a function of the data that is

Up0, 1q under the null hypothesis.

The result of Cpp, qq is used to determine the following decision function:

φCpp, qq “

"

1 Cpp, qq ď α
0 otherwise

If φC “ 1, then we reject the null hypothesis. If φC “ 0, we fail to reject the null

hypothesis. Cpp, qq is used to combine the data from both stages, and then then φC

evaluates the entire trial. The combination function is the weighted inverse normal

combination function, defined as follows:

Cpp, qq :“ 1´ ΦrvΦ´1p1´ pq ` wΦ´1p1´ qqs

where v, w denote pre-defined weights such that v2`w2 “ 1, and Φ is the cumulative

distribution function of the standard normal distribution and Φ´1 is its quantile. We

will use the following lemma to prove that Cpp, qq satisfies the definition of a p-value.
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Lemma 3. Let X1 „ Npµ1, σ
2
1q and X2 „ Npµ2, σ

2
2q be independent random vari-

ables. Then Y “ aX1 ` bX2 „ Npaµ1 ` bµ2, a
2σ2

1 ` b
2σ2

2q.

Proof. We will use the moment generating functions (mgf) to find the mean and

variance of Y . The moment generating function for a variable with Npµ, σ2q distri-

bution is Mptq “ etµ`
1
2
σ2t2 . Therefore, MX1ptq “ etµ1`

1
2
σ2
1t

2
and MX2ptq “ etµ2`

1
2
σ2
2t

2
.

One important quality of mgf’s is that for independent random variables X and Y

with mgf Mx and My, respectively,

MaX`bY ptq “MXpatq ˆMY pbtq

We can use this fact to find the moment generating function of Y ,

MY ptq “MaX1`bX2ptq “MX1patqMX2pbtq “

“ epatqµ1`
1
2
σ2
1patq

2

epbtqµ2`
1
2
σ2
2pbtq

2

“ etpaµ1`bµ2q`
1
2
t2pa2σ2

1`b
2σ2

2q

This result is recognizable as the moment generating function for a normally dis-

tributed variable with mean aµ1 ` bµ2 and variance a2σ2
1 ` b

2σ2
2. Since distributions

have unique moment generating functions, we conclude that Y „ Npaµ1 ` bµ2,

a2σ2
1 ` b

2σ2
2q.

Theorem 4. Cpp, qq is a p-value.

Proof. We must show that Cpp, qq „ Up0, 1q when the null hypothesis is true. As-

sume that the null hypothesis is true, and definition 2 tells us that that p-values p

and q have standard uniform distributions. Therefore, by Lemma 1, 1´ p and 1´ q

also have standard uniform distributions. We know that Φ´1 : Up0, 1q Ñ Np0, 1q, so

Φ´1p1´pq takes the standard uniform 1´p and results in a Np0, 1q random variable,
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as does Φ´1p1´ qq. Therefore, vΦ´1p1´ pq `wΦ´1p1´ qq is the linear combination

of two Np0, 1q random variables.

By Lemma 3, vΦ´1p1 ´ pq ` wΦ´1p1 ´ qq „ Np0, v2 ` w2q “ Np0, 1q. (Recall

that we defined v, w so that v2 ` w2 “ 1). Let W “ vΦ´1p1 ´ pq ` vΦ´1p1 ´ qq (so

W „ Np0, 1q). We know that Φ : Np0, 1q Ñ Up0, 1q, so Φ sends a Np0, 1q variable to

Up0, 1q. Therefore ΦpW q „ Up0, 1q and 1´ΦpW q „ Up0, 1q by Lemma 1. Therefore,

Cpp, qq “ 1´ ΦpW q „ Up0, 1q.

2.4 Closed testing principle

The closed testing principle is a general method to control family wise type-I error

rate in the strong sense. The goal of this seamless trial is to test a set of elementary

null hypothesis denoted by Hi : θi “ 0, i P T1 “ t1, . . . , ku. In this paper, our tests of

hypotheses will be a one-sided test with α “ 0.025. If we test each Hj at significance

level .025, we risk inflating the type-I error rate above our pre-specified 0.025 level.

This inflated type-I error rate creates the need for closed testing procedures which

strongly control the familywise error rate (FWER). Strong FWER is defined as the

maximum probability of rejecting at least one true null hypothesis regardless of the

configuration of true or false hypotheses (Posch et al. (2005)).

Definition 1. An intersection hypothesis is defined as HS “
Ş

iPS Hi,S Ă T1.

Definition 2. Consider a family HH of hypotheses that are closed under intersec-

tion. That is, for any two Hi, Hj P HH also the intersection Hi X Hj P HH.

Let φipXq P t0, 1u denote a nominal level alpha test for each hypothesis. That is,

P pφipXq “ 1|Hiq “ α. Instead of using φi to decide rejection, the closed testing
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principle specifies the following rule:

Reject Hi if and only if φjpXq “ 1 for all Hj Ă Hi.

Note that φi controls type-I error rate for individual tests, but not family-wise

error rate. We do not use φi itself to define the desired test. Instead, the closed

testing principle allows us to use these individual φi to construct a test that controls

the overall family-wise error rate. For example, consider stage one has 3 treatment

arms, and T1 moves on to stage two while the other arms are dropped. After stage

two, we want to test H1 : θ1 “ 0. The intersection hypotheses are all hypotheses that

also include treatment 1 such as H1, Ht1,2u : tθ1 “ θ2 “ 0u, Ht1,3u : tθ1 “ θ3 “ 0u,

and Ht1,2,3u : tθ1 “ θ2 “ θ3 “ 0u. In order to reject the elementary null hypothesis,

H1, with strong control at level 0.025, each of the intersection hypotheses has to be

rejected at 0.025.

Theorem 5. The closed testing principle controls the probability of committing any

type-1 error at α.

Proof. Let A denote the event that any true Hi is rejected under the closed testing

method. Next, let Hr denote the intersection of all true Hi. By assumption Hr is

true, since it is the intersection of all true Hi. Let B “ tφr “ 1u. By assumption,

P pBq “ α, since Hr is true. Also A Ă B since the closed testing principle only

rejects Hi if all Hj Ă Hi are rejected, and by construction Hr Ă Hi for all true Hi.

Thus AXB “ A and we have

P pAq “ P pAXBq ď P pBqppA|Bq ď α

10
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Figure 2.1: Illustration of Simes test

To understand the closed testing principle, consider the following example. In

stage one, we test 3 treatments and decide to move on to stage two with T1. We want

to test H1 : θ1 “ 0. In order to reject H1, we have to first look at the intersection

hypotheses. The intersection hypotheses of H1 are tH1, Hp1,2q, Hp1,3q, Hp1,2,3qu because

each of these hypotheses also tests whether θ1 “ 0. We test φp1,2,3qpXq, φp1,2qpXq,

and φp1,3qpXq. If any of these functions return a 0, we fail to reject H1, and we did

not commit a type-I error. If all of these functions return a 1, then we can finally

test φ1pXq. If φ1pXq “ 1, we reject H1. If φ1pXq “ 0, we fail to reject H1. A type-I

error can only be committed if and only if H1 is true and φ1pXq “ 1.

When we apply the closed testing principle, we define combination tests for all

intersection hypotheses. Recall that in the second stage, no data is available for

dropped treatment arms. When we are testing an intersection hypothesis HS , some

of the treatments in S may have no data from T2. Let qS denote the second stage

p-value for HS . We define qI as follows:

qS “ qS
Ş

T2

where q∅ “ 1. These are conservative p-values for HS

11



2.5 p-values for intersection hypothesis

As seen in section 2.4, the closed testing principle uses α-level tests φβ to control the

FWER in testing a family of hypotheses. The scheme required level-alpha tests for

all intersections Hi. There are many possible ways to define such level-alpha tests.

This paper uses the Simes test (Simes (1986)).

During a statistical test on a hypothesis, H, a rejection region, R, is defined. If

our data lies in R, then we reject H, and if our data is outside of R, then we fail

to reject H. The Simes test defines a rejection region such that the probability the

data lies in R under the null hypothesis is less than or equal to α.

According to the the closed testing principle, in order to reject an elementary hy-

pothesis, Hj, j P T1 at level α, for all subsets S Ă T1 that contain j, the intersection

hypothesis HS must be rejected at level α. The Simes test evaluates an intersection

hypothesis HS . Denote the number of treatments in S by s.

The Simes test defines R as follows:

R :“ tany ppiq ď
i

s
α|i P S u “ tany

s

i
ppiq ď α|i P S u “ tmin

iPS

s

i
ppiq ď αu

Two illustrations of the Simes test is shown in Figure 2.1. Each figure shows five

ordered p-values. The red dotted line is the Simes cutoff which is shown as a line

with slope α{s “ α{5. In Figure 2.1A, every p-value is above the line. Therefore each

ppiq ą αi{5, so our data does not lie in the rejection region and we fail to reject our

null hypothesis. An alternate situation is depicted in Figure 2.1B, where pp3q ă 3{5α.

Therefore, the data does lie in the rejection region, and we reject our null hypothesis.

Let Pp1q, . . . , Ppnq be the ordered p-values for testing hypothesesH0 “ tHp1q, . . . , Hpnqu.
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The Simes test says that H0 is rejected if ppjq ď jα{n for any j “ 1, . . . , n.

Theorem 6. Let Pp1q, . . . , Ppnq be order statistics of n Uniformp0, 1q random vari-

ables, and let Anpαq “ P tPpjq ą jα{n|j “ 1, . . . , nu. Then Anpαq “ 1´ α.

Proof. We will complete this proof by induction. We begin with the case that n “ 1.

Thus, A1pαq “ P pPp1q ą αq “ 1 ´ α because Pp1q is a standard uniform random

variable.

Assume the theorem is true for n´ 1, and we will show that the theorem follows

for n. Our assumption is that An´1pαq “ 1´α, and we must show that Anpαq “ 1´α.

First, note the joint pdf of the Ppiq is fPp1q,...,Ppnqppp1q, . . . , ppnqq “ 1ppp1qď...ďppnqq. We

define random variables W1, . . . ,Wn so that Wi “ Ppiq{Ppnq, i P p1, n ´ 1q and

Wn “ Ppnq. Claim 1 : W1, . . . ,Wn´1 are n ´ 1 independent and identically dis-

tributed Up0, 1q random variables that are independent from Wn. To show this, we

use the following property of functions of random variables found in Ross (2010).

Let Y1, . . . , Yk be functions of the random variables X1, . . . , Xk which have joint pdf

fX1,...,Xk
. Say Y1 “ g1pX1, . . . , Xkq, . . . , Yk “ gkpX1, . . . , Xkq, and assume g1, . . . , gk

are invertible functions. Then, the joint pdf of Y1, . . . , Yk is fY1,...,Ykpy1, . . . , ykq “

fX1,...,Xk
px1, . . . , xkq|Jpx1, . . . , xkq|

´1 where J is the Jacobian and xi “ g´1i py1, . . . , ykq

(Ross (2010)). We use this fact to find the joint pdf of the Wi’s which is

fW1,...,Wnpw1, . . . , wnq “ fPp1q,...,Ppnqppp1q, . . . , ppnqq|Jppp1q, . . . , ppnq|
´1

where ppiq “ T´1pwiq.

The Jacobian is equal to:
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Jppp1q, . . . , ppnqq “ det

¨

˚

˚

˚

˝

1{ppnq 0 ¨ ¨ ¨ 0
0 1{ppnq ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 1

˛

‹

‹

‹

‚

“

´

1
ppnq

¯n´1

Therefore, |Jppp1q, . . . , ppnq|
´1 “ pn´1

pnq , and

fW1,...,Wnpw1, . . . , wnq “ 1pw1wnď...ďwn´1wnďwnqw
n´1
n “ 1pw1ď...ďwn´1qw

n´1
n

Because we can factor the joint pdf, this proves that Wn is independent from

W1, . . . ,Wn´1. The joint pdf for W1, . . . ,Wn´1 is 1pw1ď...ďwn´1q, which proves that

these are n´ 1 iid Up0, 1q random variables. So, we have shown Claim 1 is true. We

know by definition that,

Anpαq “ PrpPpjq ą jα{n, j “ 1, . . . , nq (2.2)

“ PrpPp1q ą
α

n
, . . . , Ppn´1q ą

pn´ 1qα

n
, Ppnq ą αq (2.3)

“ Pr
´Pp1q
Ppnq

ą
α

nPpnq
, . . . ,

Ppn´1q
Ppnq

ą
pn´ 1qα

nPpnq
, 1 ą

α

Ppnq

¯

(2.4)

“ PrpW1 ą
α

nPpnq
, . . . ,Wn´1 ą

pn´ 1qα

nPpnq
,Wn ą αq (2.5)

“ Pr
´

W1 ą
α

nPpnq
, . . . ,Wn´1 ą

pn´ 1qα

nPpnq

¯

ˆ PrpWn ą αq (2.6)

“ An´1

´

pn´ 1qα

nPpnq

¯

ˆ PrpWn ą αq (2.7)

Step 6 follows because Wn is independent of W1, . . . ,Wn´1. According to Ross (2010),

the density function of a uniform order statistic Xpjq is

fXpjqpxq “
n!

pn´ 1q!pn´ jq!
xj´1p1´ xqn´j

14



Using this equation, fWpnqpxq “ nxn´1. Therefore, we know that

Anpαq “

ż 1

α

An´1

´αpn´ 1q

pn

¯

npn´1dp

We assumed, by induction that An´1pαq “ 1´ α, so we can simplify this to

Anpαq “

ż 1

α

´

1´
αpn´ 1q

pn

¯

npn´1dp “

ż 1

α

npn´1 ´ αpn´ 1qpn´2dp

“

”

pn ´ αpn´1
ı1

α

“ p1´ αq ´ pαn ´ ααn´1q “ p1´ αq

Therefore, Anpαq “ 1´ α for all n.

2.6 Example Study Using the Posch Method

This section puts all of the steps together to illustrate use of the Posch method in a

seamless phase II/III clinical study. This example is loosely based on the ADVENT

trial of the drug Crofelemer designed by Cytel (Chaturvedi and Mehta (2014)). In

this example, we will test our hypotheses with a one-sided test at α “ .025 level.

Stage one of the study compares 3 dosages of a drug, tT1, T2, T3u, to the placebo,

T0. After stage one, we compute a p-value for each treatment, and the p-value for

treatment Ti is denoted as pi. The stage one p-values are p1 “ .0019, p2 “ .0563, and

p3 “ .0024. Because p1 is the smallest p-value, we will continue to stage two with T1

and a placebo and the rest of the arms will be dropped. In stage two, we randomize

patients to T1 and T0, and again calculate a p-value for T1 based on the stage two

data. This study results in a second stage p-value for T1 of q1 “ .1690.
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Now we have all of our information for the study, and we will begin using the

Posch method to analyze the data. Since T1 moved to stage 2, this analysis is testing

the hypothesis H1 : θ1 ą θ0 at the overall .025 level. Recall that the closed testing

principle says that we must reject the intersection hypotheses at α “ 0.025 before

we can reject H1.

To test every intersection hypothesis, we will calculate first and second stage p-

values for each intersection hypothesis, then use the combination function to get the

overall p-value for that intersection hypothesis. The intersection hypotheses we must

test are tHt1,2u, Ht1,3u, Ht1,2,3uu.

We will reject Ht1,2u only if Cppp1,2q, qp1,2qq ă .025. Similarly we will only reject

Ht1,3u only if Cppp1,3q, qp1,3qq ă .025, and we will rejectHt1,2,3u only if Cppp1,2,3q, qp1,2,3qq ă

.025. We will use the Simes test to compute pp1,2q, pp1,2q, pp1,2,3q, the adjusted stage

one p-values.

pp1,2q “ mint2 minpp1, p2q,maxpp1, p2qu “ 0.0038

pp1,3q “ mint2 minpp1, p3q,maxpp1, p3qu “ 0.0024

pp1,2,3q “ mint3 minpp1, p2, p3q, 2medpp1, p2, p3q,maxpp1, p2, p3qu “ 0.0036

As shown in Section 2.4, our adjusted stage two p-values are q1 “ qp1,2q “ qp1,3q “

qp1,2,3q “ 0.1690.

Now, we use the combination function to find the p-value for both stages for each

intersection hypothesis.

Cppp1,2q, qp1,2qq “ 1´Φr
a

1{2Φ´1p1´.0038q`
a

1{2Φ´1p1´.1690qs “ 0.00514 ă 0.025

Cppp1,3q, qp1,3qq “ 1´Φr
a

1{2Φ´1p1´.0024q`
a

1{2Φ´1p1´.1690qs “ 0.00382 ă 0.025
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Cppp1,2,3q, qp1,2,3qq “ 1´Φr
a

1{2Φ´1p1´.0036q`
a

1{2Φ´1p1´.1690qs “ 0.00503 ă 0.025

Since all of these p-values are less than 0.025, we can reject Hp1,2q, Hp1,3q, Hp1,2,3q.

Because we have rejected all of the intersection hypotheses, we can now test H1.

We test hypothesis H1 at the local 0.025 level using the combination function

with p1 and q1.

Cp.0019, .1690q “ 1´ Φr
a

1{2Φ´1p1´ .0019q `
a

1{2Φ´1p1´ .1690qs “ 0.0032

Since .0032 ă .025, we can reject H1 at the overall 0.025 level, based on the closed

testing principle.

2.7 Discussion

In this section, we have proven that the Posch method has analytical control over

type-I error. This type-I control is achieved through the use of the conservative tests

(Simes, Bonferroni test). These conservative methods may sacrifice power in order

to guarantee type-I error is controlled. There is criticism of the Posch method for

violating the Likelihood Principle. The Likelihood Principle states that in an

inference about θ, after x is observed, all relevant experimental information should

be contained in the likelihood function for x (Berry et al. (2011)). Furthermore,

two likelihood functions contain the same information if they are proportion to one

another. The Posch method violates the Likelihood Principle because the same data

may result in different conclusions. For example, consider scenario 1 where patient

A is in a stage 1 of size n1 and patient B is in a stage 2 of size n2. Then consider

scenario 2 where patient A and patient B switch stages. Our inferences from the

data would be different, even though our data is the same but in a different order.
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This difference results form the weighting of each stage in the combination function

Cpp, qq. If stage 1 has many more patients than stage 2, the weighting process will

give more importance to a patient from stage 1. In the following section, we introduce

an alternate method for analyzing seamless trials.
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3

Simulation Controlled Adaptive Trials

3.1 Introduction

In this section, I propose a new method of analyzing seamless phase II/III clinical

trials. This method, referred to as the simulation method, simulates clinical trials

under the null hypothesis in order to find a value that controls type-I error for these

simulated trials. As discussed earlier, regulatory agencies expect confirmatory trials

to control type-I error at a specified level. In section 2, we proved that the Posch

method has analytical control over type-I error. Currently, we cannot prove that

the simulation method has analytical control over type-I error. Up to this point,

simulated control of type-I error has not been as trusted in the industry as analytical

control. Instead of using simulation methods to analyze seamless trials, analytical

methods, or, more likely, separate trials, are relied upon. If a general formula to

describe the result of this simulation method were found, it may lead to greater
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acceptance of simulation methods in analyzing clinical trials. In this chapter, I

introduce the simulation method in section 3.2. Then, section 3.3 describes the

general results of the simulation method. Next, section 3.3.1 attempts to find a model

of the simulation method. Section 3.3.2 includes power comparisons between the

simulation method, the Posch method, and two separate trials. Finally, section 3.3.3

discusses implications of usage of the simulation method in the drug development

process.

3.2 Method

The null hypothesis tested during a seamless phase II/III clinical trial is Hm : θm “ 0

with alternative hypothesis Ha : θm ą 0. We are performing a one-sided test with

α “ 0.025. Our data comes from stage one with k arms with n1 patients per arm,

and stage two with Tm and T0 with n2 patients each. Tm is the arm chosen to move

on from stage one to stage two. From this data, we compute a test statistic with the

formula

Zm “
Ycomb ´ Y0
1

n1`n2
` 1

n1`n2

where Ycomb and Y0 are summaries of the data. We will define details later. We

use the simulation method to find the critical value to compare Zm to in order to

control the type-I error rate at α. We denote this critical Z value obtained through

simulation as Zsim. If Zm ą Zsim, we reject Hm. If Zm ă Zsim, then we fail to reject

Hm. In this section, we will explain the method used to find Zsim. The goal of this

simulation method is to find a critical value Zsim such that

P pZm ą Zsim|Hmq “ α
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Zsim is found by simulating clinical trials under Hm and finding the test statistic at

the p1´ αqth percentile. Let θ̂ipdataq denote an estimate of θi.

The simulation method is as follows:

1. Simulate stage one values of θ̂ipdataq for i P 0, 1, . . . , k under the null hypoth-

esis. Each θi „ Np0, 1{n1q. Let n1 “ 1 for ease of computation. Let Y1rjs

denote the stage one value of θj.

2. Identify Tm “ maxiPT1pY1q. This is the best performing treatment arm from

stage one, and the dose which will move to stage two.

3. Simulate stage two values of θ̂m and θ̂0 under the null hypothesis. Each θi „

Np0, 1{n2q for i “ 0, . . . ,m. Let Y2rjs denote the stage two values of θj.

4. Combine the data for Tm from stage one and two by finding a weighted average

of Y1rms and Y2rms.

Ycomb “
n1Y1rms ` n2Y2rms

n1 ` n2

Combine the data for the control, T0, from stage one and two by finding the

weighted average of Y1r0s and Y2r0s.

Y0 “
n1Y1r0s ` n2Y2r0s

n1 ` n2

5. Calculate the Z statistic for Tm:

Zm “
Ycomb ´ Y0

b

1
n1`n2

` 1
n1`n2
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6. Repeat Step (1)-(5) N times, and let Mz denote the N resulting Zm values.

Order Mz from smallest to largest. Define Zsim as the p1 ´ αqN -th percentile

value of Zm in Mz.

The R code for this simulation can be found in Appendix A. For all simulations

in this paper, I set α “ 0.025. This method returns a value of Zsim such that

P pZm ą Zsim|Hmq ď 0.025.

3.3 Results

This section discusses the results of the simulation method. First, we start with a

simple example to show how to interpret Zsim. In this example, let k “ 4 and n2 “ 1.

Because n1 “ 1 in our simulation method, n2 can be thought of as a multiple of n1.

In this example we are testing the situation where arms in stage one and stage two

have the same number of patients because n2 “ n1. When I run the simulation 5,000

times with k “ 4 and n2 “ 1, the value of Zsim “ 2.3301. A success in the seamless

trial would occur if Zm ą 2.3301. If the null hypothesis is true, the probability of a

type-I error when using 2.3301 as the critical Z value should be less than 0.025.

Figure 3.1A shows the results of the simulation method for on n2 “ 0, . . . , 100

for different values of k. Figure 3.1B shows the results of the simulation method for

on n2 “ 0, . . . , 25 for different values of k. Every simulation of Zsim was done with

10,000 simulations runs. If n2 “ .5, that means that arms in stage two have half

as many patients as treatment arms in stage one. Similarly, n2 “ 10 means that

stage two arms have 10 times as many patients as stage one treatment arms. In

practice, values of n2 will usually be between 0 and 25, but we include higher values

to completely illustrate the relationship between Zsim and n2. In these figures, the
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(A)

(B)

Figure 3.1: Results of the simulation method. (A) n2 “ r0, 100s (B) n2 “ r0, 25s
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different colors of dots correspond to different values of k. As the graph shows, when

k “ 1, no multiplicity correction is needed, so we can use the cutoff Z˚ “ 1.96 for

α “ .025. As k increases, the number of choices in stage one increases, so the critical

value needed to control type-I error, Zsim, increases.

3.3.1 Modeling Zsim

In this section, we attempt to model Zsim based on n2 and k. A model of Zsim could

serve several purposes. First of all, a model is much simpler than a large simulation.

Rather than running a lengthy simulation, we can plug n2 into a model and find

a value of Zsim immediately. Second, fitting a curve to Zsim formalizes borrowing

strength across n2 and k. We end up pooling information from simulations for similar

values of n2 and k. Furthermore, a model of the critical Z˚ needed to control type-

I error based on n2 may give more credibility to the simulation method possibly

leading to greater acceptance of the simulation method. A model may also motivate

a mathematical proof that the simulation method analytically controls type-I error.

Modeling Zsim with logpn2q

The results of our simulation, shown in Figure 3.3, appear to show an approximately

logarithmic relationship between Zsim and n2. For each k “ 2, 3, 4, 5, we create a

linear model of Zsim based on logpn2q. The results of each linear model is shown

in Table 3.1 and Figure 3.2. In Figure 3.2, the points are the actual values of Zsim

from our simulation method, and the lines show the linear model we fit to these

results. The model fits reasonably well, and the values of R2 are high, but the model

underestimates values of Zsim when logpn2q is close to zero and large. In actual
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Figure 3.2: Relationship between Zsim and logpn2q.

clinical trials, our value of n2 will usually be between zero and 5, so it is important

that our model fits at small values of n2. Underestimating these values of Zsim at low

n2 would lead to a loss of control over type-I error. In the next section, we attempt

to find a model with a better fit of Zsim at low values of n2.

Modeling Zsim as a weighted average of 1.96 and Bonferroni critical Z-value

For this model, I try to provide a better fit for the low values of n2. The simulation

method produces values of Zsim that are bounded between 1.96 and the Bonferroni
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Model β0 β1 R2

k “ 2 2.1475 -0.0338 0.9233
k “ 3 2.2505 -0.0535 0.9607
k “ 4 2.3183 -0.0662 0.97
k “ 5 2.3646 -0.0749 0.9653

Table 3.1: Summary of models Zsim “ β0 ` β1logpn2q for k “ 2, 3, 4, 5

Figure 3.3: Relationship between w and n2.
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Model β0 β1 R2

k “ 2 0.2824699 0.1455681 0.9445
k “ 3 0.2861188 0.1455137 0.9744
k “ 4 0.2874319 0.1466722 0.9858
k “ 5 0.2945057 0.1456999 0.9826

Table 3.2: Summary of models w “ β0 ` β1 logpn2q for k “ 2, 3, 4, 5

Figure 3.4: Comparison of simulated Zsim (points) and predicted Zsim (lines)
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critical Z-value for k arms. As n2 increases, Zsim gets closer to 1.96. As n2 gets

closer to zero, the value of Zsim approaches the Bonferroni corrected Z value.

Recall that the Bonferroni correction with k arms in stage one would compare

each p-value to α{k rather than α. The critical Bonferroni Z value would then be

Φ´1p1´ .025{kq. The Bonferroni correction is more conservative than the simulation

method, so the Bonferroni Z value will always be larger than Zsim for the same values

of k and n2. For example, for 3 arms, the Bonferroni Z value is Φ´1p1 ´ .025{3q “

2.39398. After 100,000 simulations with 3 arms, we find that Zsim “ 2.340666

when n2 is very close to zero. When n2 “ 10000000, then Zsim “ 1.971483. This

relationship holds for all values of k.

Since Zsim is bounded by these two numbers, I can model Zsim as a weighted

average of 1.96 and Zbonf (the Bonferroni corrected Z value). The weight given to

1.96 would be a function of n2. I will use the following function to estimate Zsim.

Zsim “ w1.96` p1´ wqZbonf for w P r0, 1s (3.1)

Here w is the weight placed on 1.96, and 1´ w is the weight placed on Zbonf . After

running the simulation method, and plugging in values of Zsim into this formula, we

can solve for an estimate of w from the data. This estimate of ŵ is

ŵ “
Zsim ´ Zbonf
1.96´ Zbonf

Figure 3.3 shows a plot of ŵ against n2. The color of each point corresponds to the

number of arms in the trial, but as the plot shows, the relationship between ŵ and

n2 seems to be the same regardless of the number of arms.

Our goal is to find a model for Zsim based on n2. We can model w with n2, and
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then plug this value of w into Equation 3.1 to model Zsim. First, I created a linear

model of w based on logpn2q for k “ 2, 3, 4, 5. The result of each of these models is

approximately

w “ .29` .146 logpn2q

The exact values for k “ 2, 3, 4, 5 are shown in Table 3.2. The fitted lines can be

seen in Figure 3.3. The model of Zsim becomes

Zsim “ 1.96p.29` .146 logpn2qq ` Zbonf p1´ p.29` .146 logpn2qqq

This model can be used to predict Zsim based on k and n2. The predicted Zsim

are shown with simulated Zsim in Figure 3.4. The fit is very good for all values of k.

In future work, this model could be the basis of a proof that the simulation method

controls type-I error rate at α.

3.3.2 Power Comparisons

In this section, I compare the power of a seamless trial using the Posch method versus

a seamless trial using the simulation method, and separate phase II and III trials.

As discussed earlier, the motivation for seamless phase II/III trials is to gain more

power than separate trials.

The power of each method is calculated by simulation in R. The code for each

method can be found in Appendix A. Every power calculation is based on a scenario

that represents the ‘truth’. Before calculating the power, we must choose the true

treatment effect size of each k arms that we would like to test. In reality, we do

not know the true effect size of each arm, so we test many different scenarios to get

an idea of the power of each method under different circumstances. The power is
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defined as the probability of rejecting the null hypothesis under an assumed effect

(in HA). We estimate the power using Monte Carlo simulations as the proportion of

times that the method correctly rejects the null hypothesis given a true scenario S.

I now consider several different scenarios, and show the resulting power of each

method in the given scenario. Every computation that follows is based on 5,000

simulations. Notation for scenarios will be S “ pθ1, θ2, . . . , θkq. Scenario S denotes

a trial with k arms where θi is the treatment effect of Ti. For example, S1 “ p0, 0, 1q

represents a trial with 3 treatment arms. The treatment effect of two of the arms is

zero, and the treatment effect of the third arm is 1. Note that the control arm is not

included in S, and the placebo always has a treatment effect of 0.

The figures in Table 3.3.1 show scenarios where only one arm is non-zero. Each

figure shows power comparisons for a different number of arms. In each graph, the

simulation method is slightly better than the other two methods. Between the other

two methods, the Posch method has higher power for k “ 2, 3, both methods perform

about the same for k “ 4, and then the separate trials overtakes Posch for k “ 5, 6.

Although there are slight differences between each method, no method performs

drastically better than another.

The figures in Table 3.3.1 show scenarios where each arm has linearly increasing

treatment effect. This would be a common scenario in a clinical trial where the

different arms indicate increasing dosages of a drug. Each figure shows a different

number of arms, beginning with 2 arms and increasing to 6 arms. For each figure,

the Posch method and simulation method have higher power than separate trials.

The simulation method performs very slightly better than the Posch method, but

not significantly better in any scenario.
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Detailed tables of exact power for the above scenarios can be found at the end of

the chapter. For each scenario, these tables show values of n2 “ .5, 1, 2, 5, which are

values of n2 that would be commonly seen in a clinical trial. These tables also include

the probability that each arm is selected as the ‘best’ treatment in stage one for each

arm. Also included for each scenario is the probability that the trial results in a

success for each arm. A success means that the arm was chosen as the best in stage

one, and then null hypothesis was rejected after stage two. Based on these tables,

it seems like the probability that each method selects an arm is the same for each

method. For the Posch method and the seamless method, the probability of success

is around the same for each arm besides the arm with the maximum treatment effect.

The simulation method’s slightly superior power seems to come from higher power

in rejecting the arm with the maximum treatment effect.

3.3.3 Implications for Drug Development

In this section, I consider the implications of using seamless trials with the simulation

method rather than separate trials. I will set a fixed sample size for the entire

seamless trial and both separate trials. The sample size of patients in stage one is

pk ` 1qn1 because each arm (including control) has n1 patients. The sample size of

patients in stage two is 2n2 because both arms Tm and T0 have n2 patients on them.

Therefore, the entire sample size for both trials is pk`1qn1`2n2. For a fixed sample

size, I set this equal to a fixed value, in this case I have used 10.

pk ` 1qn1 ` 2n2 “ 10

Note that different values of total sample size will affect the meaning of the effect

sizes in power comparisons. The power charts in this section cannot be compared to
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power charts in section 3.3.2.

For this fixed sample size, the goal is to find the most powerful division of patients

into stage one and stage two. I simulate power for different values of W1 such that

W1rpk ` 1qn1s ` p1´W1qr2n2s “ 10

W1

”

pk ` 1qn2

10

ı

` p1´W1q

”2n2

10

ı

“ 1

Now, W1 can be interpreted as the percentage of the fixed samples size in stage one

(or phase II for separate trials).

The goal of the following simulations is to find the optimal weight to give to

stage one to produce the maximum power for both methods. The results of these

simulations are shown in Table 3.5. The figures in Table 3.3.3 show scenarios where

only one treatment arm is effective, and the different numbers of k. The figures

in Table 3.3.3 show power results for scenarios with linearly increasing treatment

effects, and different numbers of k. For each scenario, the power of a seamless trial

with simulation method is higher than the power of separate trials regardless of W1.

When W1 is close to zero, the power is about the same for both methods. The

power of separate trials drops off significantly as W1 increases, approaching zero as

W1 approaches 1. The power of the simulation method is much more stable with a

slight drop in power as W1 approaches 1. The power of seamless trials drops slightly

more as k increases because the number of choices in stage one increases. For all k,

the value of W1 that results in the highest power for seamless trials is slightly larger

than the value of W1 that results in a maximum power for separate trials. If clinical

trials begin applying the seamless trial with simulation method, then these clinical

trials would benefit from slightly larger stage one trials than are traditionally used.
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One reason for this result is that the simulation method does a better job of choosing

a correct arm in stage one than the separate trials.

3.4 Conclusions

In Chapter 2, I showed that the method of Posch has analytical control over type-

1 error. Currently, this is an advantage of the Posch method over the simulation

method. The simulation method has not been proven to have analytical control over

type-1 error. The models included in this paper may serve as an initial step in future

work of proving the simulation method has analytical control. Simulated control of

type-1 error is not strong enough control because we cannot simulate every possible

‘true’ scenario. If the truth violated our assumptions made in the simulation method,

then the type-1 error rate may be inflated. The results of the power analyses showed

that the simulation method and Posch method have very similar results when arms

have linearly increasing treatment effects. Both methods perform better than two

separate trials. When only one arm has a non-zero treatment effect, this increase in

power is diminished and each method performs about the same in terms of power.

When considering the maximum power of simulation method and separate trials with

a fixed sample size, I conclude that the simulation method would result in designs

with a slightly larger phase II (stage one) trial. This paper serves as the first stepping

stone for the simulation method for seamless trials in the drug development world.
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Table 3.3: Power comparisons with one effective treatment arm of simulation method
(black), Posch method (red), separate trials (green)
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Table 3.4: Power comparisons with linearly increasing treatment effects of simulation
method (black), Posch method (red), separate trials (green)
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Scenario Max Power Seamless Seamless W1 Max Power Separate Separate W1

(0, 2) 0.7738 .3 0.7176 .18
(0, 0, 2) 0.6724 .42 0.6232 .24

(0, 0, 0, 2) 0.5872 .40 0.5426 .35
(0, 0, 0, 0, 2) 0.5086 .42 0.4958 .36

(0, 0, 0, 0, 0, 2) 0.4610 .42 0.4428 .35
(1, 2) 0.7392 .375 0.6806 .12

(.67, 1.33 , 2) 0.6584 .34 0.6120 .14
(.5, 1, 1.5, 2) 0.6062 .15 0.5872 .125

(.4, .8, 1.2, 1.6, 2) 0.5814 .21 0.5436 .06
(.33, .67, 1, 1.33, 1.67, 2) 0.5574 .175 0.5292 .105

Table 3.5: The maximum power for each scenario for the seamless trial and separate
trials and their respective weight W1 which produces the maximum power.
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Table 3.6: Power comparisons with one effective treatment arm of the simulation
method (gray) and separate trials (green) based on the proportion of weight on
stage one. The ‘X’ indicates maximum power of each method.
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Table 3.7: Power comparisons with linearly increasing treatment effects of simulation
method (gray) and separate trials (green) based on the proportion of weight on stage
one. The ‘X’ indicates maximum power of each method.
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Appendix A

Detailed Power Tables
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Table A.1: Power Per Arm for Scenario (0, 2)

Method Power Select 1 Select 2 Success 1 Success 2
n2 “ .5
Posch 0.3046 0.0834 0.9166 0.0065 0.2981

Simulation 0.3219 0.0797 0.9203 0.0036 0.3183
Separate 0.155 0.0732 0.9268 0.0022 0.1528
n2 “ 1
Posch 0.3984 0.0792 0.9208 0.0067 0.3917

Simulation 0.4266 0.0871 0.9129 0.0057 0.4209
Separate 0.2725 0.0819 0.9181 0.0021 0.2704
n2 “ 2
Posch 0.5731 0.0790 0.9210 0.0046 0.5685

Simulation 0.5908 0.0776 0.9224 0.0038 0.5870
Separate 0.476 0.0790 0.9210 0.0024 0.4746
n2 “ 5
Posch 0.8388 0.0751 0.9249 0.0029 0.8359

Simulation 0.8509 0.0802 0.9198 0.0027 0.8475
Separate 0.8118 0.0816 0.9184 0.0017 0.8101

Table A.2: Power Per Arm for Scenario (0, 0, 2)

Method Power Select 1 Select 2 Select 3 Success 1 Success 2 Success 3
n2 “ .5
Posch 0.2499 0.0663 0.0704 0.8633 0.0024 0.0040 0.2435

Simulation 0.2706 0.0700 0.0688 0.8612 0.0034 0.0023 0.2649
Separate 0.1499 0.0668 0.0675 0.8657 0.0021 0.0012 0.1466
n2 “ 1
Posch 0.3299 0.0647 0.0658 0.8695 0.0031 0.0024 0.3244

Simulation 0.361 0.0658 0.0672 0.8670 0.0037 0.0029 0.3544
Separate 0.2561 0.0699 0.0648 0.8653 0.0015 0.0018 0.2528
n2 “ 2
Posch 0.4974 0.0631 0.0696 0.8673 0.0031 0.0023 0.4920

Simulation 0.5386 0.0681 0.0677 0.8642 0.0020 0.0028 0.5338
Separate 0.4487 0.0665 0.0643 0.8692 0.0019 0.0016 0.4452
n2 “ 5
Posch 0.7639 0.0678 0.0701 0.8621 0.0021 0.0027 0.7591

Simulation 0.7965 0.0697 0.0695 0.8608 0.0018 0.0032 0.7915
Separate 0.7735 0.0703 0.0611 0.8686 0.0016 0.0018 0.7701

Table A.3: Power Per Arm for Scenario (0, 0, 0, 2)

Method Power Select 1 Select 2 Select 3 Select 4 Success 1 Success 2 Success 3 Success 4
n2 “ .5
Posch 0.2201 0.0569 0.0559 0.0626 0.8246 0.0026 0.0028 0.0034 0.2113

Simulation 0.2412 0.0594 0.0595 0.0623 0.8188 0.0028 0.0024 0.0029 0.2331
Separate 0.1417 0.0615 0.0546 0.0566 0.8273 0.0017 0.0017 0.0016 0.1373
n2 “ 1
Posch 0.2965 0.061 0.0568 0.0579 0.8243 0.0032 0.0026 0.0022 0.2885

Simulation 0.3364 0.0592 0.0635 0.0559 0.8214 0.0023 0.0031 0.0024 0.3286
Separate 0.2413 0.064 0.0618 0.0589 0.8153 0.0016 0.0016 0.0005 0.2376
n2 “ 2
Posch 0.4403 0.055 0.0601 0.0622 0.8227 0.0021 0.0021 0.0025 0.4336

Simulation 0.5049 0.0579 0.0595 0.058 0.8246 0.0022 0.0022 0.0022 0.4983
Separate 0.4265 0.0595 0.0559 0.0554 0.8292 0.0022 0.0009 0.0017 0.4217
n2 “ 5
Posch 0.7258 0.0527 0.0617 0.0575 0.8281 0.0019 0.0023 0.0025 0.7191

Simulation 0.7501 0.0586 0.0584 0.0637 0.8193 0.0023 0.0014 0.0029 0.7435
Separate 0.738 0.0563 0.0587 0.06 0.825 0.0021 0.001 0.0024 0.7325
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Table A.4: Power Per Arm for Scenario (0, 0, 0, 0, 2)

Method Power Select 1 Select 2 Select 3 Select 4 Select 5 Success 1 Success 2 Success 3 Success 4 Success 5
n2 “ .5
Posch 0.2008 0.0513 0.0493 0.0531 0.0535 0.7928 0.0025 0.0014 0.0019 0.0017 0.1933

Simulation 0.2316 0.051 0.0536 0.0518 0.0496 0.794 0.0027 0.0035 0.003 0.002 0.2204
Separate 0.1436 0.055 0.0495 0.0555 0.0502 0.7898 0.0014 0.0011 0.0015 0.0015 0.1381
n2 “ 1
Posch 0.2666 0.0567 0.0547 0.0543 0.0501 0.7842 0.002 0.0021 0.0022 0.0023 0.258

Simulation 0.3203 0.0524 0.0503 0.0534 0.0535 0.7904 0.0026 0.0021 0.0029 0.0023 0.3104
Separate 0.241 0.048 0.0532 0.0545 0.0566 0.7877 0.0012 0.0014 0.0013 0.0016 0.2355
n2 “ 2
Posch 0.403 0.0517 0.0546 0.0534 0.0533 0.787 0.0022 0.0018 0.0016 0.0019 0.3955

Simulation 0.4622 0.0536 0.0531 0.0525 0.0544 0.7864 0.002 0.0019 0.002 0.0014 0.4549
Separate 0.4092 0.054 0.0559 0.0556 0.0542 0.7803 0.0015 0.0017 0.0012 0.0008 0.404
n2 “ 5
Posch 0.6786 0.0518 0.0553 0.0559 0.0497 0.7873 0.0011 0.0019 0.0013 0.0013 0.673

Simulation 0.7262 0.0506 0.0533 0.0519 0.0513 0.7929 0.0017 0.0016 0.0019 0.0013 0.7197
Separate 0.7036 0.053 0.0522 0.0513 0.0529 0.7906 0.0009 0.0014 0.0017 0.001 0.6986

Table A.5: Power Per Arm for Scenario (0, 0, 0, 0, 0, 2)

Method Power Select 1 Select 2 Select 3 Select 4 Select 5 Select 6 Success 1 Success 2 Success 3 Success 4 Success 5 Success 6
n2 “ .5
Posch 0.1783 0.0454 0.0506 0.0469 0.0483 0.0475 0.7613 0.0013 0.0015 0.0022 0.001 0.0017 0.1706

Simulation 0.2213 0.0496 0.0444 0.0483 0.0485 0.0475 0.7617 0.002 0.0023 0.0026 0.002 0.0022 0.2102
Separate 0.1327 0.0462 0.0526 0.0508 0.0461 0.0462 0.7581 0.0014 0.0013 0.0016 0.0007 0.0012 0.1265
n2 “ 1
Posch 0.2448 0.0499 0.049 0.0474 0.0457 0.0487 0.7593 0.0015 0.0013 0.0019 0.0015 0.0018 0.2368

Simulation 0.3 0.0515 0.0444 0.0507 0.0492 0.0483 0.7559 0.0015 0.0014 0.0015 0.0014 0.0027 0.2915
Separate 0.2352 0.0501 0.0501 0.0508 0.0483 0.0461 0.7546 0.0009 0.0015 0.001 0.0012 0.0007 0.2299
n2 “ 2
Posch 0.3748 0.0493 0.047 0.0491 0.0452 0.0472 0.7622 0.0013 0.0014 0.0019 0.0012 0.0016 0.3674
Sim 0.4477 0.0467 0.046 0.0472 0.0556 0.0483 0.7562 0.0016 0.0019 0.0014 0.0021 0.0027 0.438

Separate 0.4026 0.0442 0.0488 0.0438 0.0498 0.0534 0.76 0.001 0.0022 0.0011 0.0012 0.0015 0.3956
n2 “ 5
Posch 0.6381 0.0493 0.0509 0.0451 0.05 0.0492 0.7555 0.0009 0.0016 0.0021 0.0016 0.0012 0.6307
Sim 0.6917 0.048 0.0487 0.0483 0.0481 0.0549 0.752 0.0014 0.0011 0.0017 0.0024 0.0017 0.6834

Separate 0.6812 0.0456 0.0481 0.0486 0.0512 0.0476 0.7589 0.0009 0.0009 0.0013 0.0008 0.0008 0.6765

Table A.6: Power Per Arm for Scenario (1, 2)

Method Power Select 1 Select 2 Success 1 Success 2
n2 “ .5
Posch 0.3303 0.2378 0.7622 0.0447 0.2856
Sim 0.3408 0.2328 0.7672 0.0448 0.296

Separate 0.1388 0.2389 0.7611 0.0171 0.1217
n2 “ 1
Posch 0.4141 0.2454 0.7546 0.0567 0.3574
Sim 0.4294 0.2407 0.7593 0.0515 0.3779

Separate 0.2525 0.2383 0.7617 0.0242 0.2283
n2 “ 2
Posch 0.5613 0.2415 0.7583 0.0727 0.4886
Sim 0.5825 0.2407 0.7593 0.072 0.5105

Separate 0.434 0.2416 0.7584 0.0424 0.3916
n2 “ 5
Posch 0.8107 0.2354 0.7646 0.1055 0.7052
Sim 0.8204 0.2397 0.7603 0.112 0.7084

Separate 0.7643 0.2371 0.7629 0.0836 0.6807
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Table A.7: Power Per Arm for Scenario (.67, 1.33, 2)

Method Power Select 1 Select 2 Select 3 Success 1 Success 2 Success 3
n2 “ .5
Posch 0.3037 0.1001 0.2829 0.617 0.0157 0.0717 0.2163
Sim 0.3104 0.1074 0.2724 0.6202 0.0148 0.066 0.2296

Separate 0.1328 0.1041 0.2704 0.6255 0.0049 0.0248 0.1031
n2 “ 1
Posch 0.3871 0.1089 0.275 0.6161 0.0178 0.0842 0.2851
Sim 0.4014 0.1048 0.2766 0.6186 0.0171 0.0844 0.2999

Separate 0.2334 0.1069 0.2836 0.6095 0.008 0.0459 0.1795
n2 “ 2
Posch 0.511 0.1046 0.2856 0.6098 0.0179 0.1106 0.3825
Sim 0.5417 0.1088 0.275 0.6162 0.0221 0.1109 0.4087

Separate 0.4023 0.1077 0.2841 0.6082 0.0123 0.0741 0.3159
n2 “ 5
Posch 0.7684 0.1062 0.2828 0.611 0.0291 0.1811 0.5582
Sim 0.7792 0.105 0.2839 0.6111 0.0268 0.1859 0.5665

Separate 0.7172 0.1056 0.2788 0.6156 0.0184 0.1554 0.5434

Table A.8: Power Per Arm for Scenario (.5, 1, 1.5, 2)

Method Power Select 1 Select 2 Select 3 Select 4 Success 1 Success 2 Success 3 Success 4
n2 “ .5
Posch 0.2888 0.0609 0.1408 0.2802 0.5181 0.0077 0.0265 0.0719 0.1827
Sim 0.3039 0.0595 0.1366 0.2854 0.5185 0.0078 0.0269 0.0845 0.1847

Separate 0.136 0.0573 0.14 0.2791 0.5236 0.0029 0.0113 0.0348 0.087
n2 “ 1
Posch 0.357 0.0636 0.1384 0.2773 0.5207 0.0075 0.0284 0.0908 0.2303
Sim 0.378 0.0576 0.1354 0.2946 0.5124 0.0065 0.0284 0.0967 0.2464

Separate 0.2201 0.0574 0.1373 0.2799 0.5254 0.003 0.0132 0.0538 0.1501
n2 “ 2
Posch 0.4889 0.0656 0.1388 0.2777 0.5179 0.0097 0.0369 0.1237 0.3186
Sim 0.5042 0.0627 0.1373 0.2847 0.5153 0.0084 0.035 0.1271 0.3337

Separate 0.3827 0.0608 0.1375 0.2768 0.5249 0.004 0.0257 0.0893 0.2637
n2 “ 5
Posch 0.753 0.0583 0.1347 0.2791 0.5279 0.0096 0.0609 0.2035 0.479
Sim 0.7657 0.061 0.1356 0.2845 0.5189 0.0111 0.0609 0.2119 0.4818

Separate 0.7028 0.0624 0.1411 0.2825 0.514 0.0066 0.0494 0.1878 0.459

Table A.9: Power Per Arm for Scenario (.4, .8, 1.2, 1.6, 2)

Method Power Select 1 Select 2 Select 3 Select 4 Select 5 Success 1 Success 2 Success 3 Success 4 Success 5
n2 “ .5
Posch 0.2722 0.0398 0.0849 0.1537 0.273 0.4486 0.0038 0.0126 0.0325 0.0698 0.1535
Sim 0.3057 0.0406 0.0787 0.1578 0.2689 0.454 0.0053 0.014 0.0353 0.0799 0.1712

Separate 0.1202 0.0399 0.0826 0.1516 0.2782 0.4477 0.001 0.005 0.0138 0.0316 0.0688
n2 “ 1
Posch 0.3343 0.039 0.0855 0.1481 0.2775 0.4499 0.0032 0.0161 0.0369 0.0938 0.1843
Sim 0.3831 0.039 0.0835 0.1495 0.2711 0.4569 0.0046 0.014 0.0394 0.1059 0.2192

Separate 0.2143 0.0358 0.0835 0.1564 0.2713 0.453 0.0012 0.0069 0.019 0.0567 0.1305
n2 “ 2
Posch 0.4736 0.0374 0.0807 0.1597 0.2685 0.4537 0.0043 0.0154 0.0509 0.1297 0.2733
Sim 0.5091 0.0356 0.0786 0.1566 0.275 0.4542 0.0039 0.0172 0.0549 0.1361 0.297

Separate 0.3789 0.0411 0.0832 0.1548 0.2658 0.4551 0.0026 0.0107 0.0364 0.0974 0.2318
n2 “ 5
Posch 0.7286 0.0368 0.0805 0.1564 0.2721 0.4542 0.0049 0.0251 0.0841 0.2071 0.4074
Sim 0.7637 0.0389 0.0808 0.153 0.2751 0.4522 0.007 0.0277 0.0892 0.2168 0.423

Separate 0.6901 0.0408 0.0783 0.1593 0.2736 0.448 0.0037 0.019 0.0777 0.1961 0.3936
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Table A.10: Power Per Arm for Scenario (.33, .67, 1, 1.33, 1.67, 2)

Method Power Select 1 Select 2 Select 3 Select 4 Select 5 Select 6 Success 1 Success 2 Success 3 Success 4 Success 5 Success 6
n2 “ .5
Posch 0.2618 0.0284 0.055 0.0923 0.1657 0.2666 0.392 0.003 0.0081 0.0163 0.0357 0.0722 0.1265
Sim 0.2935 0.0288 0.0531 0.0993 0.1671 0.2544 0.3973 0.0048 0.0084 0.0204 0.0402 0.0784 0.1413

Separate 0.1268 0.0287 0.0516 0.0975 0.1632 0.2597 0.3993 0.0008 0.0031 0.0077 0.0175 0.0296 0.0681
n2 “ 1
Posch 0.3335 0.0279 0.0552 0.0965 0.1587 0.2643 0.3974 0.0028 0.0092 0.0176 0.0439 0.0898 0.1702
Sim 0.3687 0.0258 0.0537 0.0929 0.1611 0.2532 0.4133 0.0024 0.0076 0.0213 0.0456 0.0957 0.1961

Separate 0.214 0.0292 0.0523 0.1038 0.1615 0.249 0.4042 0.0017 0.0034 0.0096 0.0291 0.0548 0.1154
n2 “ 2
Posch 0.4584 0.0291 0.0503 0.0928 0.1631 0.2622 0.4025 0.0024 0.0078 0.0205 0.0605 0.1216 0.2456
Sim 0.51 0.0267 0.0472 0.0933 0.1605 0.2566 0.4157 0.0027 0.0096 0.025 0.0627 0.1403 0.2697

Separate 0.3732 0.0273 0.052 0.0984 0.1598 0.2542 0.4083 0.001 0.0045 0.0154 0.0438 0.0965 0.212
n2 “ 5
Posch 0.7195 0.0292 0.0529 0.0956 0.1651 0.2644 0.3927 0.0035 0.0122 0.04 0.0996 0.2115 0.3527
Sim 0.7531 0.0279 0.0507 0.0961 0.1536 0.2699 0.4018 0.0039 0.0141 0.0425 0.0989 0.221 0.3727

Separate 0.6876 0.0267 0.0579 0.0923 0.159 0.267 0.3971 0.0022 0.0095 0.0348 0.0893 0.2017 0.3501
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Appendix B

R code

The following R code creates a function ‘fTypeOne’ which returns Zsim based on the

following input:

• n2 = the number of patients per arm in stage two

• nsim = the number of simulations to run

• k = the number of arms tested in stage one

1 fTypeOne = function(n2 , nsim , k){

2 y=numeric(k+1)

3 ts = numeric(nsim)

4 for(i in 1:nsim){

5 y[1:(k+1)] = rnorm(k+1, 0, 1)

6 y2 = rnorm(k+1, 0, sd=1/sqrt(n2))

7 yy=(y + n2*y2)/(1 + n2)

8

9 zz=(yy[2:(k+1)] - yy[1])/sqrt(1/(1+n2)+1/(1+n2))

10

11 ts[i]=zz[which.max(y[2:(k+1)])]

12 }

13 return(quantile(ts , .975))

14 }
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The following code creates a function ‘fPower’ that returns the power of the simula-

tion method based on the following input:

• x is a vector of the true treatment effects for each arm. If phase two has three

arms, and example of x is p.5, 1, 1.5q

• n2 is the number of patients per arm in stage two

• ns is the number of simulations to run

1 fPower = function(x, n2 , ns){

2 k=length(x)

3 y = numeric(k+1)

4 y2 = numeric(k+1)

5 rejTrue = numeric(ns)

6 pMat = numeric(ns)

7 zVal = fTypeOne(n2 , 100000 , k)

8 for (sims in 1:ns){

9 y[2:(k+1)] = rnorm(k, x, sd=1)

10 y[1]= rnorm(1, 0, sd=1)

11

12 y2[2:(k+1)]= rnorm(k, x, sd=1/sqrt(n2))

13 y2[1]= rnorm(1, 0, sd=1/sqrt(n2))

14

15 yy = (y + n2*y2)/(1+n2)

16 zz = (yy[2:(k+1)] - yy[1])/sqrt(1/(1+n2) + 1/(1+n2))

17 best = which.max(y[2:(k+1)])

18

19 rejTrue[sims]= (zz[best] > zVal)

20 }

21 p = sum(rejTrue)/ns

22 return(p)

23 }

The following code creates a function ‘simesPower’ which simulates the Posch method

using the Simes test, and returns the power of the method based on the following

input:

• x is a vector of the treatment effects for each arm in stage one

• n2 is the number of patients per arm in stage two
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• ns is the number of simulations to run

1 simesPower = function(x, n2 , ns){

2 k=length(x)

3 y1 = numeric(k+1)

4 y2 = numeric(k+1)

5 ts = numeric(ns)

6 rejTrue = numeric(ns)

7

8 for (sims in 1:ns){

9 y1[2:(k+1)] = rnorm(k, x, sd=1)

10 y1[1] = rnorm(1, 0, sd=1)

11

12 y2[2:(k+1)]= rnorm(k, x, sd=1/sqrt(n2))

13 y2[1]= rnorm(1, 0, sd=1/sqrt(n2))

14

15 z1 = (y1[2:(k+1)]-y1[1])/sqrt (2)

16 z2 = (y2[2:(k+1)]-y2[1])/sqrt ((2/n2))

17 pval1 = 1 - pnorm(z1)

18 pval2 = 1 - pnorm(z2)

19

20 w1 = sqrt(1/(1+n2))

21 w2 = sqrt(n2/(1+n2))

22 best = which.max(y1[2:(k+1)])

23 pbest = min(pval1)

24 sortedP = sort(pval1 , index.return = TRUE)

25

26 stage2 = pval2[best]

27

28 combFunction = function(p1 , p2){ return (1 - pnorm(w1*qnorm(1-p1)

+w2*qnorm(1-p2))) }

29

30 pvalVector = numeric(k)

31

32 pvalVector [1] = combFunction(pbest , stage2)

33 if(k > 1){

34 for(j in 2:k){

35 pList=numeric(j)

36 pList [1] = j * pbest

37 for(i in 2: length(pList))

38 {

39 pList[i] = (j / i) * sortedP$x[k-j+i]

40 }

41 pvalVector[j] = combFunction(min(pList), stage2)

42 }

43 }
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45 rejTrue[sims]= (max(pvalVector) < .025)

46 }

47 p = sum(rejTrue)/ns

48 return(p)

49 }

The following code creates a function ‘sepPower’ which simulates a trial with separate

phase II/III, and returns the power of the method based on the following input:

• x is a vector of the treatment effects for each arm in stage one

• n2 is the number of patients per arm in stage two

• ns is the number of simulations to run

1 sepPower = function(x, n2 , ns){

2 k=length(x)

3 y1 = numeric(k+1)

4 y2 = numeric(k+1)

5 ts = numeric(ns)

6 rejTrue = numeric(ns)

7 pMat = numeric(ns)

8 for (sims in 1:ns){

9 y1[2:(k+1)] = rnorm(k, x, sd=1)

10 y1[1] = rnorm(1, 0, sd=1)

11

12 y2[2:(k+1)]= rnorm(k, x, sd=1/sqrt(n2))

13 y2[1]= rnorm(1, 0, sd=1/sqrt(n2))

14

15 z2 = (y2[2:(k+1)] - y2[1])/sqrt ((2/n2))

16 best = which.max(y1[2:(k+1)])

17

18 rejTrue[sims] = (z2[best] > 1.96)

19 }

20 p = sum(rejTrue) / ns

21 return(p)

22 }
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