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ABSTRACT   

Recent advance in controlling optical forces using nanostructures suggests that nanoscale optical waveguides are capable 
of generating coherent acoustic phonons efficiently through a combination of radiation pressure and electrostriction. We 
discuss the critical roles of group velocity in such processes. This photon-phonon coupling would allow an acoustic 
intermediary to perform on-chip optical delay with a capacity 105 greater than photonic delay lines of the same size.   
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1. INTRODUCTION  
Most nonlinear optical materials allow optical photons to be coupled to acoustic phonons at sufficiently high power via a 
third order Brillouin process. Phonons travel at the speed of sound, much slower than the speed of light, and can carry 
coherent information. Over the past several decades, electrostrictively mediated stimulated Brillouin processes have been 
well understood in bulk media and microscale waveguides, such as optical fibers. Such a process has allowed coherent 
phonon generation [1–3], novel slow-light cells [4,5], efficient and tailorable ultrahigh-frequency phonon generation [6–
8], and signal processing schemes [9–11].  Cavity-based nano-optomechanical devices have recently been developed to 
enhance radiation pressures  and the related Brillouin processes, in applications of phonon lasers[12], and phononic 
signal processing[13].   

Here, we present a generalized multi-scale theory of photon-phonon coupling, valid at both micro- and nano-scales. This 
theory is used to rigorously treat traveling-wave SBS processes within the nanoscale waveguides: radically enhanced 
internal optical forces  and high confinement phonon modes produced within such nanoscale systems are found to yield 
SBS gain coefficients which are 105-106 × larger than within typical silica optical fibers[14,15]. In contrast to microscale 
optical fibers and waveguides, both radiation pressure and electrostrictive optical forces play critical role in enhancing 
photon-phonon interactions at nanoscale, yielding a 100× stronger parametric gain than predicted by micro-scale SBS 
theories. Highly confined phonons, within nanoscale systems, are found to produce dominant forward-SBS processes, 
which are typically forbidden within guided-wave systems[16].  Comparison with exact relations reveals excellent 
agreement.   
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2. RADIATION PRESSURE AND ITS SCALING IN NANOSCALE WAVEGUIDES  
In this section, we apply Response Theory of Optical Forces (RTOF), originally proposed in Ref. [17], to derive optical 
forces accurately from the amplitude and the phase responses: Forces produced by coherent electromagnetic fields 
internal to a mechanically-variable optical system are linked to the external optical responses of the system, especially to 
the change in group delay as a response to deformation of the waveguide.  Unlike first-principle methods, such as 
surface integrals over the Maxwell stress tensor, RTOF method does not rely on the knowledge of the complex 
electromagnetic field profiles internal and often unique to the optical system. This reduction provides a unified 
understanding to a great many systems: provided that the optical responses are identical, these disparate electromagnetic 
systems produce exactly the same forces, even with drastically different internal field profiles. In the context of step-
index waveguides, we use its transmission function ( ) ( ) qiS q e φ=  to describe the optical response of a deformable 
waveguide. Here, q is a generalized coordinate that represents the scaling parameter of the waveguide boundary [18,19]. 
The complex amplitude of the output waves, ( )b q , is related to that of the incident waves  a , as ( ) ( )·b q S aq= .  The 

normalized wave amplitudes are related to the incident optical power iP  and output power oP as 2 ia P=  and  
2 ob P= . [20]  

 
Fig. 1. Schematic of a single-port optical system with a single degree of freedom. q represents a geometric change to the 
optical waveguide.  
 

For a single-port system illustrated in Figure 1, the optical response simplifies to a scalar form, where only phase 
response can be altered. Such a system include waveguides that are excited by a single spatial mode, which retains their 
translational symmetry when deform by optical forces. In comparison to the more general forms involving amplitude 
responses and scattering matrices[21], this simplification allows us to obtain the resulting optical force[17] 
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Here we consider the simple case where only a single mechanical degree of freedom exists (Fig. 1), represented by a 
generalized coordinate q. Under such an optical force, one can consider a virtual displacement of the waveguide 
boundaries, such as a uniform scaling transformation of the form β′→ = ⋅r r r . An infinitesimal change in the 
scaling factor δβ is equivalent to a reduction in the critical dimensions of the waveguide, for example a a aδβ′ = − ⋅ . 

This infinitesimal geometric transformation corresponds to a change in total energy (or virtual work) EMU ,  associated 
with the motion of the waveguide boundaries against optical and mechanical forces. The change in the electromagnetic 
energy is found to be 
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Through the scaling law of Maxwell equation[15], one can further simplify this relation in terms of the group velocity 
and the phase velocity of the underlying mode. For a rectangular waveguide, seen in Figure 2, we can find the spatially 
averaged radiation pressure acting on the lateral and the horizontal boundaries to be 

 ( ) ( )( / )x y g p i wgp p n n P c A+ = − ⋅  (3) 
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pressures can be seen to be 2 410 10− ×  larger than within optical fibers[15], yielding forces and stresses exceeding 
those of electrostriction[14].   

The field induced electrostrictive stress distribution produced by the TE-like mode can be rigorously formulated in terms 
of the photoelastic tensor components of the core medium using the principle of virtual work[14]. Within cubic media 

such as silicon, the electrostrictively induced body stress becomes 4
1

1 ·
2

es
kl o ijkl i jn p E Eσ = − ò [14], yielding spatially 

averaged es
xxσ  and es

yyσ  stress components of 4 23.3 10 / /N m W− ×   and 4 22.1 10 / /N m W× respectively; such 
stress values are comparable to those produced by radiation pressure.  The electrostrictively induced force density is 
computed from the divergence of es

klσ  as es es
l k klf σ= −∂ , yielding the computed transverse force distributions seen in 

Fig. 3 e-h, and a vanishing longitudinal force density, es
zf .  In contrast to radiation pressure, electrostriction produces 

large optical forces within the waveguide volume and at its boundaries. 

 
Fig. 3. (a) and (c) show time-averaged force densities f and f generated by radiation pressure. (b) and (d) are schematics 
showing dominant forces in plots (a) and (c).  (e) and (g) show time-averaged force densities f and f  generated by 
electrostriction. (f) and (h) are schematics showing dominant forces in plots (e) and (g). 

 

Through Brillouin processes, a high frequency pump photon of frequency, ω , produces a red-shifted Stokes photon 
(ω ) and an acoustic phonon (Ω) via a third order parametric process. Energy and momentum conservation  require that

p sω ω= +Ω , and = +p sk k K , where pk , sk and K  are the pump, Stokes and phonon wave-vectors 
respectively.  For waveguides, translational invariance limits the pump and Stokes photon (and phonon) momenta to a 
single axis.  Thus, the only possible scattering processes are forward SBS (FSBS), with co-linear Stokes and pump 
waves, and backward SBS (BSBS) where Stokes and pump waves are contra-directionally coupled.  Except in a few 
special cases[24,25], forward SBS is generally impossible to observe.  However, within nano-scale waveguides, we 
show that FSBS processes are no longer forbidden. 

The magnitude of photon-phonon coupling through Brillouin processes can be completely modeled by way of rigorously 
coupled electromagnetic and elastic-wave models.  Through such models, optical forces mediate the coupling of energy 
between optical and phononic domains.  Growth of the parametrically generated optical Stokes wave is described by the 
canonical relation[22], 

 / ·s B p sdP dz G P P= . (4) 
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Here, P (P ) is the power carried by the guided Stokes-wave (or pump-wave) , and GB is the stimulated Brillouin 
scattering gain coefficient.   

We assume that optical powers (particle fluxes)  (Φ  ), Φ , corresponding to optical pump ( ) and a Stokes 
waves  are coupled by acoustic phonons of frequency (Ω) and power (particle flux) PΩ (ΦΩ). In describing the 
parametric conversion, we invoke particle conservation (the Manley-Rowe relations) yielding,  

 / / / .s pd dz d dz d dzΩΦ = Φ = − Φ  (5) 

This equation is applicable to non-dissipative systems where both photon and phonon fluxes are conserved.   

If phonon dissipation is present, particle flux is no longer conserved. However, particle conservation can be used to 
determine phonon generation rates, despite high phonon losses.  For instance, the rate of Stokes photon generation (δR ) 
within a short segment of waveguide, , is ( / ) s sR d dz zδ δ= Φ ⋅ . In the limit of small  , Eq. (4) becomes 

 [ ]/ / ·( ) · ·s s B p sdP dz R z G P Pδ δ ωΩ= =h . (6) 

Here, s s sP ω= Φ h  was used, where h is Planck's constant. From the time-varying optical force density ( ( , ))tΩf r , 

produced by the interference between pump and stokes waves, Rδ Ω  is computed from the generated elastic wave power 
as  

 
1 · ( , )· ( , )VR t t dVδδ Ω = < >
Ω
∫ Ωf r u r&

h
 

Here, ( , )tu r& is the displacement velocity distribution of the elastic body in response to ( , )tΩf r , ...< >  denotes time 

the average over a period of harmonic motion, and integration is taken over, Vδ , the volume of the waveguide segment.  
Hence, in the limit of small zδ , GB  is given by 

 
1 1( ) · ( , )· ( , )

·
s

B V
p s

G t t dV
z P P δ
ω

δ
Ω = < >

Ω
∫ Ωf r u r&  (7) 

This remarkably simple expression treats photon-phonon coupling at any length scales, provided that valid constitutive 
relations for dielectric and elastic media exist. This result is applicable to both translationally invariant and periodic 
waveguides of arbitrary form.  Note, ( , )tΩf r  is a generalized optical force density, including all or any optical forces 
forces (e.g. radiation pressure, electrostriction, magnetostriction), as discussed in the earlier sections. 

Limiting our attention to the special case of a translationally invariant waveguide, it is convenient to express the force 
(velocity) distribution in complex notation as  

 ( )( , ) [ ( , )· ]i Kz tt Re e −Ω=Ω Ωf r f x y%  

 ( )( , ) [ , ] ( )· i Kz tt Re e −Ω=Ω Ωu r u x y&& %  

Defining a power normalized force density, ( , )n
Kf x y% , where ( , ) ( , )·2· s pP P= n

Ω Kf x y f x y% % , Eq. (7) simplifies to 
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 *( ) · ( , )· ( , ) ·s
B wg

G Re dAω ⎡ ⎤Ω = ⎣ ⎦Ω ∫
n
Kf x y u x y% &%  (8) 

Eq. (8) is a surprisingly simple and general exact solution for SBS within translationally invariant waveguides of 
arbitrary cross-section. Next, we consider the optical forces within nanoscale waveguides similar to Fig. 3.   

We have previously shown that both radiation pressure and electrostrictive forces grow to tremendous values within high 
refractive index waveguides at nanoscales[14,15]. Due to the large fractional energy density carried by the longitudinal 
Ez electric field, and the high waveguide dispersion, radiation pressures are 102-104× larger than within optical fibers, 
yielding forces and stresses exceeding those of electrostriction.   

The distributions of electrostrictive and radiation pressure induced forces, within nanoscale waveguides, are distinct. 
Radiation pressure induced optical forces ( )rpf  are exactly localized to the discontinuous dielectric boundary of the 

step-index waveguide[14,15], while the electrostrictive forces ( rpf ) are determined by the tensor photoelastic material 
properties, producing complex spatial distributions within the waveguide volume. Both depend sharply on nanoscale 
waveguide geometry and yield vanishing longitudinal forces under single mode excitation of a translationally invariant 
waveguide[14,15]. 

Next we consider silicon waveguide geometry (mode-field) seen in Fig. 3, corresponding to a core (cladding) refractive 
index of n1=3.5 (n2=1) and material photoelastic constants , , 0.09, 0.017, 0.054  consistent with 
those of bulk silicon. Here, are the photoelastic tensor components ( ) represented in contracted notation, and the 
[100] crystal symmetry direction (of this cubic system) coincides with the x-axis.   

In treating the SBS within this waveguide, the complex time-harmonic optical force distributions, 
( , ) ( , )·2· s pP P= n

Ω Kf x y f x y% % , were computed from electromagnetic FEM models (as in Ref [14,15]), and used to drive 

an elastic wave FEM model to compute Ω  versus frequency of excitation.  For simplicity, a constant phononic 
material loss-Q of 1000 is assumed. Since both the electrostriction and radiation pressure produce symmetric force 
distributions, only symmetric elastic waves can be excited through either FSBS or BSBS processes. The first five 
symmetric elastic modes are plotted in Fig. 4b, for comparison FSBS and BSBS gain spectra of Fig. 4a and c. 

Through FSBS processes | | / gv≅ ΩK , where vg  is the group velocity of the optical mode within the waveguide.  Since 

| |K  is nearly zero,  transverse optical forces from radiation pressure and electrostriction dictate the parametric photon-
phonon coupling.  In stark contrast to microscale systems,  this suspended waveguide produces high confinement guided 
elastic waves at | | 0=K , with vanishing group velocity. Through FSBS, strong coupling to the S2 and S5 elastic modes 
are found (see colored insets of Fig. 4a).  

In constrast, for BSBS processess, phonon wave-vector | | 2· | |≅ pK k , results in longitudinal electrostrictive forces  of 
comparable magnitude to the transverse forces generated by both radiation pressure and electrostriction. In this case, 
simulations yield the SBS gain spectrum seen in Fig. 4c.  Again, the separate contributions to the SBS gain produced by 
electrostriction (blue) and radiation pressure (green) are shown to constructively interfere at 13.8 GHz to yield a 
radically enhanced SBS gain of 2.4×104  m-1W-1.  The coherent combination of these forces produce efficient coupling to 
the S1 and S4  modes of Fig. 4b. 
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Note, the velocity amplitude of the elastic displacement field, and therefore GB, increase linearly with phononic loss-Q 
(quadratically on the optical force).  Furthermore, the thermoelastic damping limit of bulk silicon corresponds to 

4,000Q ≅  ( 40,000Q ≅ ) at 13GHz frequencies about 300 K  (4 K), indicating that GB could reach values of 
4 1 19.6 10 m W− −×  ( 5 1 19.6 10 m W− −× ) under ideal experimental conditions. Such radically enhanced SBS processes 

are 5 610 10− ×  larger than within typical silica optical fibers, meaning that a nanoscale waveguide of 100 m length 
could produce SBS nonlinearities comparable to 10-100 meters of silica fiber.   

4. INTRODUCTION  
In conclusion, we have developed a generalized multi-scale theory of photon-phonon coupling (or stimulated Brillouin 
processes), applicable at any length scale, provided that valid constitutive relations for dielectric and elastic media exist. 
We applied this theory to traveling-wave SBS processes within the nanoscale waveguides, revealing that radically 
enhanced internal optical forces and high confinement phonon modes produced within nanoscale systems yield SBS gain 
coefficients which are 105-106 × larger than within typical silica optical fibers and 100× stronger parametric gain than 
predicted by micro-scale SBS theories, paving the way for on-chip coherent phonon generation with a bandwidth 
relevant to signal processing and optical buffering.  Localized phononic resonances, within nanoscale systems, were 
shown to produce dominant forward-SBS processes, typically forbidden within guided-wave systems.     
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