
 

 

 

 

 

 

 

 

 

Copyright 

by 

Jessie Raye Bauer 

2018 

 

 

  



The Dissertation Committee for Jessie Raye Bauer Certifies that this is the 
approved version of the following dissertation: 

 
Exploring the Fundamentals of Early Causal Reasoning 

 

 

 

 

 

 

 

 

 

 

 

 
Committee: 
 
 
 
 
Jacqueline Woolley, Supervisor 

Amy E. Booth, Co-Supervisor 

Cristine Legare 

Elliot Tucker-Drob 



Exploring the Fundamentals of Early Causal Reasoning 

 

 

by 

Jessie Raye Bauer 

 

 

 

DISSERTATION 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

DOCTOR OF PHILOSOPHY 

 

 

The University of Texas at Austin 

May 2018 



Dedication 

 

For my mother and husband.  

I would also like to thank my dog, Klaus, without whom I would have finished writing 

this manuscript at least a year earlier. 

 

 



 v 

Acknowledgements 

 First, I would like to thank my supervisor, Amy Booth, for her consistent support 

and guidance. Over the course of three years, she has encouraged me to always be at my 

best, think deeply, and challenge myself. Second, I would like to thank my family for 

their encouragement over the years. I would like to thank my mom, who never doubted 

my abilities, supported me from afar, loves me unconditionally, and shaped me into the 

person I am today.  Thank you to my husband, who has been by my side and one of my 

biggest champions during my entire graduate school career. Thank you to Mary Abbe, 

Meghan, and Heather for their friendship and love. Thank you to my committee members 

for thoughtful discussions and helpful suggestions. Finally, I would like to thank the hard 

working and dedicated research assistants and families who made this study possible.   



 vi 

Abstract 

 

Exploring the Fundamentals of Early Causal Reasoning 

 

Jessie Raye Bauer, Ph.D.  

The University of Texas at Austin, 2018 

 

Supervisor: Jacqueline Woolley 

Co-Supervisor: Amy Booth 

 
The goal of this dissertation was to identify potential cognitive components of 

causal reasoning and to investigate their developmental trajectory in early childhood. We 

specifically focused on executive function (EF) as a potentially fundamental predictor of 

causal reasoning. While previous research has demonstrated that EF is related to 

achievement in other academic domains such as reading and math, relatively little 

attention has been paid to its relationship to scientific processes like causal reasoning, 

particularly in early childhood. To examine how EF potentially relates to the 

development of causal reasoning, we recruited 140 3-year-olds and 81 5-year-olds to 

complete three causal reasoning tasks, a battery of EF tasks, and additional cognitive 

measures. Results from a series of multiple regressions revealed that EF predicted 

contemporaneous causal reasoning, even after controlling for the influence of age, 

processing speed, and vocabulary knowledge. However, less variance than expected was 

accounted for by EF and additional covariates. We also found that a version of the 
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traditional “blicket detector” task did not correlate with our other two measures of causal 

reasoning, and was not predicted by EF. Although additional research will be required to 

further clarify these relationships, the current results suggest that EF has the potential to 

support causal reasoning. Results are discussed in the broader context of scientific 

literacy.   
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Chapter 1: Introduction 

The goal of this dissertation is to explore the cognitive components of early causal 

reasoning and to investigate their developmental trajectory in early childhood. We focus 

on early causal reasoning because it has the potential to serve as a critical foundation for 

scientific literacy.  Indeed, at the very core of scientific endeavors is an understanding of 

causality, underlying the ability to make predictions, test hypotheses, and interpret 

evidence. We know that even preschoolers are able to engage in at least some forms of 

causal reasoning (Gopnik & Schulz, 2007). Yet little is known about individual 

differences in these early emerging skills, or their relationships to other cognitive 

processes that are undergoing rapid development during this time.  

CAUSAL REASONING 

Causal reasoning is the process by which we make sense of relationships between 

objects and events, and learn about the structure of the world around us (Gopnik et al., 

2004; Kushnir, Gopnik, Schulz, & Danks, 2003). It is called upon in making inferences 

and deciding among competing courses of action in one’s daily life.  It is also essential 

for generating novel predictions, revising previously held beliefs, and executing 

successful interventions to test hypotheses in more formal contexts (e.g., Gopnik & 

Schulz, 2007). In this way, it is potentially foundational to scientific literacy. 

A wealth of empirical work has demonstrated that young children have a natural 

inclination to try to understand the causal nature of objects and events (Alvarez & Booth, 
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2014; Gopnik, 2000; Shultz, 1982). For example, when preschoolers inquire about novel 

objects, they most often want to know about causally relevant properties (e.g., the 

functions of objects) (Greif, Kemler Nelson, Keil, & Gutierrez, 2006; Kemler Nelson, 

Chan Egan, & Holt, 2004). Young children will also explore novel objects more if their 

causal structure is ambiguous than if it is expected (Cook, Goodman, & Schulz, 2011). 

 But how much do young children really understand about causality? Early 

“generative transmission” models highlighted children’s understanding of basic 

principles that underlie causal reasoning in the physical domain (Bullock, Gelman, & 

Baillargeon, 1982; Hagmayer, Sloman, Lagnado, & Waldmann, 2007; Shultz, 1982). For 

instance, research has shown that young children make use of the temporal priority 

principle (i.e., the assumption that causes must precede their effects) to interpret 

relationships between objects and events (Kun, 1978; McCormack & Hoerl, 2005, 2007; 

Shultz & Mendelson, 1975; Sophian & Huber, 1984). In one seminal experiment testing 

children’s understanding of this principle, Bullock and Gelman (1979) showed children a 

large box with two ramps on each side. Children first saw a marble roll down one ramp, 

followed by the release of a jack-in-the-box. Then they saw another marble roll down the 

opposite ramp. When asked which marble made jack jump, three-year-olds were less 

likely than 4- and 5-year olds to make the correct causal inference (i.e., to select the first 

marble). Children also are sensitive to spatial relations between possible potential causes 

and their effects (e.g., Bullock et al., 1982; Leslie & Keeble, 1987). For example, in a 

study by Kushnir & Gopnik (2007), three-year-olds were more likely to correctly 
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attribute causal properties to objects that were at some point spatially contiguous with a 

target object than to objects that never come into physical contact.  

A newer model of causal learning, based on Bayesian inference, extends beyond 

the generative transmission model and can account for children’s ability to reason about 

events without observable mechanisms, as well as to represent complex causal chains. 

Bayesian inference is a model of learning that allows children to use both prior domain 

specific knowledge (i.e., physical laws) and observed patterns of covariation in order to 

make accurate predictions and generate effective interventions (Gopnik et al., 2004; 

Schulz, Bonawitz, & Griffiths, 2007; Schulz & Gopnik, 2004; Sobel & Munro, 2009; 

Tenenbaum, Griffiths, & Kemp, 2006). This type of reasoning was demonstrated in a 

study by Gopnik and colleagues (2001) in which children were introduced to a “blicket 

detector” machine that activated (e.g., lit up or played music) when some objects (e.g., 

blickets), but not others, came in contact with it. As a group, children as young as three 

were able to correctly infer which objects were causal in accordance with the observed 

pattern of associations between the block placements and machine activations. In a 

subsequent experiment, children were able to not only identify the causal blocks, but also 

to infer and execute novel interventions thereon (i.e., make the machine go or stop, even 

when they were not explicitly shown how). Impressively, children were able to do this 

with only very brief observational experience. It should be noted that the anticipatory 

looking behavior of 8-month-olds suggests that the ability to engage in Bayesian 

inference begins to emerge in infancy (Sobel & Kirkham, 2006, 2007). However, when 

children must make novel interventions (i.e., make the machine go or stop) or make 
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inferences based on more complicated rules, a significant shift in performance is 

observed from 3 to 5 years of age (e.g., Fernbach, Macris, & Sobel, 2012; Sobel, 

Tenenbaum, & Gopnik, 2004).  

This later developmental shift is also evident in tasks that challenge children to 

draw upon existing knowledge to reason about more naturalistic causal sequences. For 

instance, Gelman, Bullock & Meck (1980) showed 3- and 4-year-olds pictures of events 

in which objects underwent changes (e.g., an intact cup next to the same cup but in a 

broken state). Children at both ages were able to choose the correct causal instrument 

(e.g., hammer) from an array of pictured alternatives. However, other work has found that 

4-year-olds were more successful than 3-year-olds in making inferences about complex 

state changes involving more than one dimension of transformation and/or atypically 

reversed causal transformations (e.g., a dirty shirt changing to a clean shirt) (Das Gupta 

& Bryant, 1989; Gelman, Bullock, & Meck, 1980). For example, in a study by Hong and 

colleagues (2005), they found a significant developmental shift in children’s performance 

on a causal reasoning task wherein only 10% of 3-year olds passed, compared to 52% of 

4.5-year olds. Other studies have demonstrated similar developmental results, especially 

as task complexity increases (Frye, Zelazo, Brooks, & Samuels, 1996; Frye, Zelazo, & 

Palfai, 1995) 

Perhaps not surprisingly, even more protracted developmental changes have been 

observed in more demanding measures of causal reasoning that involve explicit 

consideration of counterfactuals (i.e., situations that are inconsistent with reality). In one 

relevant study, Guajardo & Turley-Ames (2004) told children a story about a child 
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playing in a muddy backyard. The child in the story becomes thirsty, and then goes inside 

to get some juice. Consequently, the floor inside gets muddy. When asked what the child 

in the story could have done so that the floor would not have gotten dirty, four and five-

year-old children performed significantly better than three-year-olds in choosing among 

pre-formulated counterfactual solutions offered by the experimenter (e.g., they could 

have taken off their shoes before entering the house) (Guajardo & Turley-Ames, 2004; 

see also, Drayton, Turley-Ames & Guajardo, 2011). In order to provide a correct 

response on this task, young children needed to engage in a highly complex reasoning 

process in which they held certain events constant, while also manipulating others to 

determine causally relevant features. When, in subsequent work, children were required 

to produce, rather than simply select, appropriate counterfactuals (e.g., Harris, German & 

Mills, 1996) children struggled until 6 years of age (Beck, Burns, & Riggs, 2011; 

Rafetseder & Perner, 2014; Rafetseder, Renate, & Perner, 2010; Rafetseder, Schwitalla, 

& Perner, 2013). Other work has suggested that slower development might be 

particularly evident when children are asked to reason counterfactually about positive 

outcomes (e.g., she was not hungry at the end of her trip because she chose to eat a 

sandwich instead of only eating a piece of candy) (German, 1999). 

Taken together, these findings suggest that causal reasoning skills are present at 

an early age and undergo significant development throughout the preschool years. While 

three-year-old children were in general able to track objects and associated events, and 

use patterns of covariation to make causal inferences at above chance levels, they often 

failed to perform optimally. By five years of age, children made errors on causal 
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reasoning tasks far less frequently. Indeed, older children appeared able to go beyond 

adhering to simple causal principles in order to incorporate new evidence, revise 

previously held beliefs if necessary, and engage in complex reasoning.  

Despite the early development of causal reasoning and its potential for shaping 

long-term scientific literacy and academic achievement, we have little understanding of 

its structural origins. Specifically, is causal reasoning a unique capability that develops 

relatively independently or is it largely dependent on broader, more fundamental, 

cognitive abilities? Although we consider a number of potential contributors to the 

development of causal reasoning in this project, we will be particularly interested in 

executive function (EF). EF is an especially promising contributor based on its already 

established role in the development of core academic domains like reading and math 

(Best, Miller, & Naglieri, 2011; Brock, Rimm-Kaufman, Nathanson, & Grimm, 2009; St 

Clair-Thompson & Gathercole, 2006). Although its relevance to understanding processes 

in the scientific domain has received relatively little attention (Gropen, Clark-Chiarelli, 

Hoisington, & Ehrlich, 2011; Zaitchik, Iqbal, & Carey, 2014), EF has been associated 

with a broad array of related cognitive skills such as planning and goal directed problem 

solving (Best et al., 2011; Blair & Razza, 2007; Brock et al., 2009; Diamond, 2013). 

EXECUTIVE FUNCTION 

EF refers to a set of skills that control and regulate attention, action, and behavior 

(e.g., Best et al., 2011; Huizinga, Dolan, & van der Molen, 2006; Lee, Bull, & Ho, 2013; 

Lehto, Juujarvi, Kooistra, & Pulkkinen, 2003). For the purposes of this dissertation, we 
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follow Miyake et al (2000) and conceptualize EF as an integrative framework with 

partially dissociable factors (see also, (Garon, Bryson, & Smith, 2008). We focus on three 

well-recognized components of EF: working memory, inhibition, and cognitive 

flexibility.  

Here we define working memory as the ability to hold and manipulate 

information in mind (Baddeley & Hitch, 1994). The fundamental ability to hold 

information in mind emerges early. Indeed, evidence suggests that even infants can 

remember the location of objects hidden in the context of A-not-B type tasks (Diamond 

1985; Diamond 1995, Nelson et al. 2012). However, the ability to mentally manipulate 

that active information develops slowly over early childhood (e.g., Cowan et al. 2002, 

2011; Crone et al. 2006). Dual tasks, or tasks that require alternating between two 

activities that are contingent upon each other, are a common approach used to test 

working memory ability. One frequently used example involves asking adults to 

remember an increasing number of digits while answering comprehension questions 

(Baddeley & Hitch, 1974). In order to adapt these types of tasks for use with children, 

researchers have incorporated friendly puppets that use simple language to impart 

instructions. In the count and label task (Gordon & Olson, 1998), for instance, a puppet 

asked children to alternate between counting and naming familiar objects in front of 

them. A large study by Carlson (2005) showed that count and label performance 

improved with age, with 26, 55, 71, and 77% of 3-, younger 4-, older 4-, and 5-year olds 

passing this task, respectively.  
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The second component of EF, inhibition, involves effortful control of prepotent 

behaviors, thoughts and attention patterns (Diamond, 1990). Inhibition has a far more 

protracted developmental timeline than working memory (Diamond, 2013). Indeed, while 

limited inhibition skills emerge in early childhood, these undergo considerable 

subsequent development, even into adolescence. Broadly speaking, inhibition includes 

two distinct subcomponents: attentional and behavioral inhibition. Attentional inhibition 

requires selective attention, or filtering out irrelevant or distracting information. A 

common measure of attention inhibition is the Flanker task (e.g., Eriksen & Eriksen 

1974) wherein the participant is required to attend and respond to a central stimulus, 

while ignoring surrounding stimuli. The NIH-Toolbox (NIH-TB) includes a version of 

the flanker task for young children, in which they must indicate the direction that a 

central fish is swimming, while ignoring the directions of the other surrounding fish. 

Stroop tasks are another common method used to assess attentional inhibition. The black 

and white stroop task, for instance, requires that children inhibit the preponent response 

of naming the color on the card (e.g., saying “white” when they are shown a white card), 

while naming the opposite color (i.e., “black”). In contrast, behavioral inhibition is 

typically tested by setting up situations in which children must resist producing a 

prepotent action, like in a game of Simon Says (e.g., Hommel, 2011). For example, in the 

bear/dragon task (Reed, Pien, & Rothbart, 1984), which is adapted for particularly young 

children, the goal is to imitate the actions of a nice bear puppet, but not those of a mean 

dragon puppet. This task reveals significant developmental differences in preschoolers 
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wherein young 3-year-olds perform at chance, but reliably succeed by age five (Carlson, 

2005).  

Finally, the third component of EF, cognitive flexibility, is the ability to adjust to 

new tasks and demands, or to change perspectives (Diamond, 2013; Kushnir et al., 2003; 

Zelazo & Frye, 1997). Although cognitive flexibility can be observed in preschool 

populations, like other aspects of EF, it undergoes considerable development throughout 

early childhood. Cognitive flexibility in children is often measured with the Dimensional 

Change Card Sort Task (DCCS; Zelazo et al., 1996). In this task, children are asked to 

sort stimuli according to a rule (e.g., by color). Then, after children demonstrate mastery 

of the first rule, they are instructed to use a different rule (e.g., by shape). Children 

younger than four-and-a-half often perseverate (e.g., continue to sort by color) and have 

difficulty switching to sorting by the new rule.  

Although these three aspects of EF have been studied independently, it is 

important to note that they are highly interconnected and often difficult to disentangle, 

especially in young children. Indeed, some have argued that some of the most widely 

used measures of EF tap multiple components thereof. For example, the DCCS taps both 

working memory (by requiring that one hierarchical action rule be held in mind) and 

inhibitory control (by requiring that stimulus dimensions irrelevant to that rule be 

ignored), and thus is not purely a measure of cognitive flexibility (Carlson, 2005; 

Diamond, 2005; Doebel & Zelazo, 2015). Diamond (2013) goes further to argue that 

inhibition and working memory are fundamental precursors to cognitive flexibility. In 

studies aimed at formally describing the conceptual structure of EF in children, 
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researchers administered a large battery of EF tasks designed to tap all three potential 

dimensions (working memory, inhibition, and flexibility) to varying degrees. Factor 

analyses with preschoolers have yielded mixed results, though models where all the tasks 

load onto one common unifying factor have received the most support (Diamond, 2013; 

Hughes, 1998; Hughes & Ensor, 2011; M. R. Miller, Giesbrecht, Müller, McInerney, & 

Kerns, 2012; Wiebe, Espy, & Charak, 2008; Wiebe et al., 2011). It is not until middle 

childhood, around 8-11 years of age, that the three factors comprising EF appear to 

become clearly differentiated (e.g., Lehto et al., 2003). 

A helpful framework for understanding the development of EF is the interactive 

specialization model (ISM) (Johnson, 2011). According to the ISM, brain regions (and 

corresponding EF skills) are not initially finely tuned or optimally integrated. Instead, 

over time, brain regions associated with EF gradually become interconnected, allowing 

for quantitative developments in EF. Evidence suggests that rapid periods of growth in 

the prefrontal cortex (and its connections to other brain regions) are particularly relevant 

to understanding the development of EF (see Blair & Razza, 2007; Carlson, 2005; 

Diamond, 2002; Diamond, Carlson, & Beck, 2005; Müller, Zelazo, Hood, Leone, & 

Rohrer, 2004; Wiebe et al., 2011; Zelazo, 2006). Preschool represents one such period of 

rapid growth. As already reviewed, a wealth of evidence demonstrates that EF, as a 

whole, undergoes substantial quantitative development in efficiency during the preschool 

years (Carlson & Moses, 2001; Espy, Kaufmann, McDiarmid, & Glisky, 1999; Kirkham, 

Cruess, & Diamond, 2003). In addition, preschool has been described as a period of 

qualitative transition, marking a shift from reflexive (i.e., impulse driven) to reflective 
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(i.e., pausing to consider multiple choices) thoughts and behaviors (Carlson & Moses, 

2001). In other words, children begin to have some control over regulating their emotions 

and behaviors, and develop the ability to think through far-ranging possibilities before 

reaching a conclusion or initiating a response. This purported shift from reflexive to 

reflective thought is also consistent with Bayesian models in which preschool children 

develop the ability to consider and think through multiple possible predictions, and then 

select the best choice (Gopnik & Glymour, 2002; Gopnik et al., 2004). 

JOINT DEVELOPMENT OF EXECUTIVE FUNCTION AND CAUSAL REASONING  

Gropen, Clark-Chiarelli, Hoisington, & Ehrlich (2011) provide a theoretical 

framework that helps clarify how EF might support causal reasoning. The authors suggest 

that EF scaffolds a child’s ability to engage in the simultaneous representation of multiple 

nested rules and conditionals necessary for processing cause and effect relations in 

complex problem spaces (Anderson, 2002). More specifically, working memory might be 

important for causal reasoning because it allows us to bring together incoming perceptual 

information and past knowledge to resolve, and think creatively about, novel causal 

systems (Byrne, 2007). At the same time, inhibition might play a critical supporting role 

by helping to focus attention on relevant dimensions of the causal system and by 

suppressing, and allowing the revision of, prior beliefs (Gopnik, Sobel, Schulz, & 

Glymour, 2001; Legare, Gelman, & Wellman, 2010; Shultz, 1982; Wilkening & Sodian, 

2005). Empirical work has provided evidence for relationships between both the working 

memory and inhibition components of EF and general reasoning abilities in adults and 
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older children. For example, Handley et al. (2004) found that both working memory and 

inhibition positively predicted 10- to 11-year-olds’ performance on transitive and 

conditional reasoning tasks. Other work has shown that working memory and inhibition 

positively predicted performance on reasoning ability with premises that are empirically 

false (i.e., not dependent on prior knowledge or experience) in both children (Simoneau 

& Markovits, 2003) and young adults (Markovits & Doyon, 2004). While this literature 

does not address causal reasoning specifically, it is consistent with the idea that EF might 

be involved in advanced reasoning capabilities generally speaking.  

Work with younger children has more directly addressed relationships between 

EF and causal reasoning, specifically as instantiated in counterfactual reasoning tasks. 

For example, Guajardo, Parker & Turley Ames (2009) found that both representational 

flexibility and working memory correlated with 3, 4-, and 5-year olds’ counterfactual 

reasoning ability. Beck et al. (2009) failed to replicate this effect in 3- and 4-year-olds, 

but did report a significant relationship between inhibition and counterfactual reasoning 

performance in this age group (Beck et al., 2009; Kevin J Riggs & Beck, 2007). Although 

some have argued that these discrepancies indicate independence of counterfactual 

reasoning from the development of EF (Rafetseder et al., 2013), the weight of the 

evidence suggests to us that EF likely contributes to causal reasoning from its inception.  

By examining some of the most prominent measures of causal reasoning used 

with children, it might be possible to isolate potential points of EFs’ influence. For 

example, working memory might be necessary for keeping track of block placements and 

machine activations in “blicket detector” tasks (Gopnik, 2000). It might also be important 



 13 

for integrating that observed evidence with prior knowledge (e.g., about the importance 

of contingency in determining causes). Inhibition might also be required for suppressing 

compelling alternatives (i.e., non-blickets) in the process of inferring which object caused 

the observed sequence of activations. Similarly, when faced with the forced choice 

decisions typical of causal inference tasks, inhibition might be essential to ignoring the 

incorrect lures. Cognitive flexibility might also be key when reasoning about reverse 

transformations that are misaligned with prototypic experiences (and, therefore, 

expectations). And working memory might be particularly important for reasoning about 

more complex state changes. For example, inferring the cause of an intact cup changing 

into a broken and wet cup will require more working memory than inferring the cause of 

an intact cup more simply changing into a broken cup. Indeed, Hong et al. (2005) found 

that children’s performance declined as the complexity of causal relations increased (e.g., 

from if-then to if-if-then), especially for younger children. EF also likely contributes to 

the ability to reason counterfactually about causal scenarios. For example, working 

memory might play a role in generating plausible alternative scenarios or explanations 

while also holding what actually happened in mind (Robinson & Beck, 2000). Inhibitory 

control and cognitive flexibility might be particularly important in temporarily ignoring 

what is known to be true in order to consider alternatives (Bonawitz et al., 2011; Cook et 

al., 2011; Legare, 2012; Marcis & Sobel, 2017). In sum, both causal reasoning and EF 

undergo significant developments between three and five years of age (e.g., Gopnik & 

Sobel, 2000; Hong et al., 2005), and both evidence and theory suggest that these skills 

might be related in preschoolers, older children, and adults. 
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THE CURRENT STUDY  

Broadly construed, the goal of the current study is to begin specifying candidate 

foundations of causal reasoning in children. In pursuit of this goal, we will consider 

whether causal reasoning develops independently as a unique cognitive capacity or 

whether it develops in tandem with domain-general processing skills. More specifically, 

this study will focus on EF as an especially promising candidate for supporting the 

development of causal reasoning. Indeed, the studies reviewed above all demonstrate 

some relationship of EF to causal (or broader) reasoning ability despite the varied 

methodological differences (e.g., varying numbers and types of EF measures) and 

different age groups tested. We therefore hypothesize that the development of causal 

reasoning will rest on parallel developments in EF. Although our study design cannot 

directly test this contingency, we can evaluate its plausibility by examining correlations 

between measures of EF and causal reasoning across a period of rapid developmental 

change.  We will evaluate patterns of covariation using structural equation modeling 

(SEM) and regression approaches. This investigation is important because, although 

previous work has begun to explore relationships between EF and causal reasoning at 

different developmental time points, the evidence remains inconclusive. The current work 

will help to clarify inconsistencies in the literature and specify the potential for EF to 

support the development of causal reasoning.  
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Chapter 2: Methods 

PARTICIPANTS  

Data for this study was collected as part of a larger longitudinal study 

investigating the development of children’s interest in causal information. Our study 

sample included 221 children (81 = 5-year-olds, 140 = 3-year-olds) from the Austin, 

Texas area. Participating children were three or five years of age at the first session (M3 = 

40.89 mo; SD3 = 3.15 mo, range = 36.14-47.27 mo, 77= female; M5 = 65.19 mo; SD5 = 

3.79 mo, range = 56.24-71.98 mo, 45 = female).  Children did not have any diagnosed 

developmental delays or disorders, and they understood English “well” or “very well” as 

reported by a parent.  

The sample was racially, ethnically, and socioeconomically representative of our 

recruitment area. Based on parent report, 12.67% of participating children were African 

American, 68.78% were White, 4.07% were Asian or Pacific Islander, and 14.48% were 

classified as multiple races or other. About 32.13% of these children were also identified 

by their parents as being Hispanic or Latino.  

With respect to maternal education, 0.9% of mothers reported not completing 

high school, 18.55% held a high school degree, 12.67% completed some college or 

additional training beyond high school, 38.91% had a four-year bachelor’s degree, 

26.24% held a master’s degree or higher, and 2.71% declined to report their level of 

education.  
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PROCEDURE 

Data for this study were collected over two to three sessions lasting approximately 

45-60 minutes each. Sessions were audio-visually recorded for offline coding of 

participant responses and verification of protocol fidelity. The first session for three-year-

olds took place at a local children’s museum. The remaining sessions took place in our 

laboratory in a colorfully decorated room at a child-sized table. At the first session, parent 

consent was obtained and children were assessed on receptive language (Picture 

Vocabulary Test). Parents also completed a demographic interview as part of the larger 

longitudinal study that included questions concerning parental education, race and 

ethnicity, as well as household composition, income, and literacy environment. Children 

completed EF and causal reasoning measures during the two subsequent laboratory 

sessions. In the first laboratory session, children completed the cause-effect association, 

black/white stroop, flanker, causal inference, digit span, and count/label tasks. At the 

second laboratory session, children completed the counterfactual reasoning task, DCCS, 

bear/dragon, and Processing Speed tasks. The testing sessions for the 5-year-olds were 

identical, except the receptive language measure was also administered at the first 

laboratory session. 
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MEASURES 

Measuring Executive Function 

We used several measures of EF tapping working memory, inhibitory control, and 

cognitive flexibility. 

Working Memory 

The count and label task was used to assess working memory, or the ability to 

hold and manipulate information in one’s mind (Baddeley & Hitch, 1994; Gordon & 

Olson, 1998). We chose this particular test because it is one of few options available that 

is developmentally appropriate for very young children (Carlson, 2005). In this task, 

children were shown three objects (e.g., a key, a cup, and a toy dog) and asked to label 

them. Then the experimenter suggested that they count the objects (e.g., “one”, “two”, 

“three”). Then they demonstrated how to count the objects and label them each in turn 

(e.g., “one is a key, two is a cup, three is a dog”) and asked the child to try. Children were 

assigned a score of either 0 (for incorrect responses) or a score of 1 (for correct 

responses) on each of two trials. This task took approximately 2 minutes to administer. 

The outcome variable is a raw score ranging from 0-2.  

Inhibitory Control 

The NIH-TB Flanker Inhibitory Control and Attention Test (Flanker; Zelazo et 

al., 2013) was used to evaluate children’s inhibitory control of visual attention (Gershon 
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et al., 2013). During each trial of this task, which was presented on an iPad, a central 

target fish was flanked by similar stimuli on the left and right. Children were instructed to 

indicate the direction of the central stimulus by pressing a left or right arrow button on 

the screen. On congruent trials, the flanker fish faced the same direction as the target fish. 

On incongruent trials, they faced the opposite direction, requiring the child to inhibit their 

attention to the flanker fish. Total administration time for the adaptive test is 

approximately 5 minutes. The flanker task was normed on a sample of 174 children. 

Zelazo and colleagues (2013) reported the NIH-TB Flanker positively correlated with the 

WPPSI–III Block Design in 3 to 6 year olds (r = .60) and D-KEFS Inhibition raw scores 

in 8 to 15 year olds (r = .34). The outcome variable reported is an uncorrected standard 

score based on either accuracy or, if a child achieved greater than 80% accuracy, a 

combination of accuracy and reaction time (normative mean = 100, SD = 15). 

In the black and white stroop task (Vendetti, Kamawar, Podjarny, & Astle, 2015), 

children were shown a white card and a black card. Children were instructed that in this 

game they are to say “black” for the white card and “white” for the black card. After a 

brief warm-up, there were 21 test trials with each card presented (from beneath the table) 

in a fixed, pseudorandom order and shown for one second. There were no breaks or rule 

reminders and self-corrected answers were not counted. If children did not respond 

within the one-second window, the experimenter prompted them to make their best guess. 

If children could not remember or were not sure, we did not score the trial.  This task 

took approximately 2 minutes to administer. Therefore, the dependent variable is 

proportion trials correct, with a continuous range from 0-1.  
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In the bear/dragon task (Reed et al., 1984), the experimenter introduced children 

to a “nice” bear puppet and a “naughty” dragon puppet. Children were told they are to do 

what the bear asks them to do (e.g., “touch your nose!”) but not to do what the dragon 

asks. After practicing, there were 10 test trials with the bear and dragon commands in 

alternating order. All actions involved hand movements. The variable of interest in this 

task is an index of self-control measured by the number of dragon trials where the child 

succeeded in inhibiting an action. This task also took approximately 2 minutes to 

administer. Children received a score of either a 0 (for movement) or a 1 (no movement) 

for each dragon trial for a possible range of 0 to 5. 

Cognitive Flexibility 

The NIH-TB Dimensional Change Card Sort Test (DCCS; Zelazo et al., 2013) 

was used to evaluate cognitive flexibility, or the ability to adjust to new tasks and 

demands (Bullock et al., 1982). On each trial of the NIH-TB DCCS, a target visual 

stimulus must be matched to one of two stimuli according to shape or color. Children first 

received a block of trials in which one dimension (e.g., shape) was relevant to this 

decision, and then a second block (switch) in which the other dimension (e.g., color) was 

critical. Those who succeeded following the switch also received a mixed block, in which 

shape was relevant on most trials, with occasional and unpredictable shifts to color. The 

relevant criterion word, “color” or “shape,” was simultaneously presented in visual and 

auditory form. Total administration time for the adaptive test is approximately 5 minutes. 

This task was normed on a sample of 166 children, and Zelazo et al. (2013) reported 
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significant correlations with the WPPSI–III Block Design in 3 to 6 year olds (r = .69), 

and D-KEFS Inhibition raw scores in 8 to 15 year olds (r = .64). Similar to the NIH-TB 

Flanker task, if children achieve 80% accuracy or higher, the algorithm weights accuracy 

and reaction time in the uncorrected standard score (normative mean = 100, SD = 15). 

Measuring Causal Reasoning 

Causal reasoning was assessed with three measures that tapped cause-effect 

association, causal inference, or counterfactual reasoning. 

Tracking Cause-Effect Associations 

 Four boxes (“blicket detectors”) measuring 8 x 4 x 4 inches were constructed out 

of cardboard (Gopnik & Sobel, 2000; Gopnik et al., 2001) (see Figure 2). The first box 

was painted blue and had a gear toy affixed to the top that spun when the box was 

activated. The second box, painted yellow with blue polka dots, produced a continuous 

playful noise when activated. The third box was painted green and had a laminated 

yellow cartoon cat figure mounted on the front. When activated, a small light bulb inside 

the box illuminated, making the cat’s glow. The fourth box was painted silver and had a 

puppy cartoon on the front. When activated, a motor within the box slowly turned the 

puppy back and forth.  

The experimenter introduced the task to the children by saying, “I have some 

special boxes with me! Some blocks make the boxes go, and some blocks don't do 

anything to the boxes. They don’t turn them on at all! Do you think you can help me 
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figure out how the boxes work?”  A single block was then introduced with a unique novel 

name and was placed on the box to no effect (e.g., “This one is a duffin. This one doesn’t 

do anything to our boxes.”). The first block (“duffin”) was then removed and the second 

block (e.g., a “buttle”) was introduced and then placed on the box, which led to its 

activation. Finally, while the box was still activated, the experimenter also placed the 

non-causal block (the “duffin”) back on the box while simultaneously saying, “let’s put 

both on together!” The box remained active while both blocks were on the box. The 

experimenter then asked the child, “Now I need your help! How can we make the box 

stop?” In order to respond correctly, children had to keep track of which object was more 

reliably associated with activation of the box and remove it. If a response was not 

immediately forthcoming, children were further prompted (e.g., “Can you tell me which 

one?” or “Which one do you think?”) until they offered an answer. This same procedure 

was repeated for the remaining three trials. This task took approximately 5-7 minutes to 

administer. Children were assigned a score of 1 if they chose the correct block and a 

score of 0 if they chose the incorrect block on each of the four trials. Although the 

experimenter discouraged children from choosing both blocks by holding both blocks 

down with their hands and asking the child to choose just one, children did not always 

comply, therefore leading to the occasional uncodable trial. In these rare circumstances, 

we excluded the trial from analysis. Therefore, the outcome variable is proportion trials 

correct with scores ranging from 0-1.  

 



 22 

Figure 1. Example Trial from the Cause-Effect Association Task. 

 

 
 
Note. Panel 1: “This is a special machine! Panel 2: “Here is one that doesn’t make it go, 
it’s called a mab.” Panel 3: “Here is one that makes it go, it’s called a veep.” Panel 4: 
“Let’s put both on and watch it again! Now I need your help! How can we make the box 
stop?” 

Generating Causal Inferences 

 This task, modeled after previous studies (Das Gupta & Bryant, 1989) involved 

eight trials (see Table 1). On each trial, children were shown a timeline of photographs in 

which objects underwent changes (e.g., a broken flowerpot next to a whole flowerpot). 

The experimenter first described the pictures in general terms (“First it looked like this, 

then I did something to it, and now it looks like this.”). Then, children were shown 

photographs of four possible instruments (e.g., hammer, light bulb, paintbrush, glue) and 

were asked to choose the one that caused the change. This task took approximately 5 

minutes to administer. The outcome variable is the total number of trials answered 

correctly out of eight. 
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Table 1. Stimuli Used In The Causal Inference Task.  
Stimuli Choices 
Practice Items  
Tomato à Sliced Tomato whisk, spatula, measuring cups, knife 
Sweater with Hole à Sewn Sweater teapot, roller-skate, mug, needle and 

thread 
Test Items (Forwards)  
Spilled Dirt à Swept Dirt chair, tissue box, clock, broom 
Raw Egg à Cooked Egg  blender, drying rack, napkin holder, stove 
Messy Hair à Brushed Hair   sponge, toothbrush, rolling pin, hairbrush 
Torn Paper à Taped Paper keys, toy blocks, crayons, tape 
Test Items (Backwards)  
Wet Pan à Dry Pan  sink, microwave, calculator, tape 
Chalkboard with Writing à Erased 
Chalkboard 

chalk, scissors, stapler, eraser 

Broken Flowerpot à Glued Flowerpot hammer, light bulb, paintbrush, glue 
Stained Shirt à Clean Shirt  ketchup, purse, iron, detergent 
Note. Based on Das Gupta and Bryant (1989). 

Figure 2. Example Trial from the Causal Inference Task. 

 

 

 

Counterfactual Reasoning 

In this task, modeled after Guajardo & Turley-Ames (2004), children were 

presented with four vignettes and asked to reason counterfactually about each situation. 

For example, in one story, children were asked to imagine that they are playing outside in 

a muddy yard. Then they imagine that they get really thirsty, so they go inside their house 

for a drink and dirty the kitchen floor in the process. Children were then asked, “What 
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could you have done so the floor would not have gotten dirty?” In order to respond 

correctly, children had to mentally represent what would have had to have happened in 

the past to produce a different outcome. This task took approximately 5 minutes to 

administer. Children were assigned a score of 1 if they generated a counterfactual 

statement (e.g., take off my shoes) on each of four trials. They were otherwise assigned a 

score 0 for each trial. The outcome variable is therefore a score with a range of 0-4.  

Figure 3. Example Trial from the Counterfactual Reasoning Task. 

  
Note. Panel 1: “Imagine that you are playing outside in the muddy yard.” Panel 2: “You 
are thirsty so you go inside to the kitchen to get a drink of juice.” Panel 3: “You walk 
through the mud, you step over the doormat, and you keep your shoes on. Because your 
shoes are muddy you get dirt all over the floor!” Test question: “What could you have 
done so the kitchen floor would not have gotten dirty?”  
 

Measuring Other Cognitive Factors 

Two different measures from the NIH Toolbox Cognition Battery (Bauer & 

Zelazo, 2014; Zelazo et al., 2013) were used to measure different aspects of cognition.  

Receptive Vocabulary 

The NIH-TB Picture Vocabulary Test (PVT; Gershon et al., 2013) is a measure of 

receptive vocabulary administered in a computerized adaptive format on an iPad. During 
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this task, children were presented with an audio recording of a word while four pictures 

simultaneously appeared on the screen. On each trial, children were asked to select the 

picture that most closely matched the meaning of the word that was said. The child was 

presented with two practice trials with feedback, followed by 25 test trials. Total 

administration time for the adaptive test is approximately 5 minutes. Initial item-level 

calibration was conducted online with 3,190 children ages 3 to 17 (Gershon et al., 2013). 

The version of the PVT used in this study was normed on a sample of 120 3-6-year-old 

children and correlates strongly (r = .9, p < .001) with the Peabody Picture Vocabulary 

Test 4th Edition (Gershon et al., 2013; Weintraub et al., 2013). As is the case for the other 

NIH-TB tasks, the NIH-PVT also yields an uncorrected standard score (normative mean 

= 100, SD = 15). 

Processing Speed 

On each trial of the NIH-TB Pattern Comparison Processing Speed Test 

(Processing Speed; Carlozzi, Tulsky, Kail, & Beaumont, 2013)) requires participants to 

discern whether two side-by-side pictures are the same or not. Younger children make 

this decision by choosing either a “smiley face” (corresponding to a “yes” response) or a 

“frowny face” (corresponding to a “no” response). In this task, the dependent variable is 

an uncorrected standard score based on the raw number of trials answered correctly in a 

90s period (normative mean = 100, SD = 15). 
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CODING  

Trained researchers scored the cause-effect association, causal inference, 

counterfactual reasoning, count and label, black and white stroop, and bear/dragon tasks 

offline using video recordings. For all tasks, a second coder assessed 20% of files to 

ensure reliability of coding. The coders also assessed videos for fidelity to protocol on the 

bases of general procedures and adherence to a script (if applicable). In addition, for the 

counterfactual reasoning task, each video was initially transcribed and coded by a blind 

researcher, then a second researcher coded the transcript. There was excellent agreement 

for the dichotomous coding scheme used for the counterfactual reasoning task (Cohen's κ 

= .93 and .95, for 3- and 5-year-olds, respectively). All four measures from the NIH-TB 

were automatically scored. Participant data were coded and managed using REDCap 

(Research Electronic Data Capture) hosted at University of Texas at Austin (Harris et al., 

2009). REDCap is a secure, web-based application designed to support data capture for 

research studies. 
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Chapter 3: Results 

MISSING DATA 

Rates of missing data range from 0% to 16.28% (see Table 2) across tasks.  

Three-Year-Olds 

We excluded 28 3-year-olds who did not meet the age criterion (n = 1), poor 

overall behavior (n = 7), not meeting the English language requirement. We also removed 

participants with less than half of the causal reasoning measures (n = 5), EF measures (n 

= 13), or both (n = 2). Additional task level data was excluded on a case-by-case basis 

because children received an attention/behavior score of a 1 or 2 (Processing Speed: n = 

3; count/label: n = 6; flanker: n = 3; stroop: n = 3; bear/dragon: n = 2; DCCS; n = 3; 

causal inference: n = 3; counterfactual reasoning: n = 2), and failure to pass training trials 

(Processing Speed: n = 3; flanker: n = 3; stroop: n = 3; DCCS: n = 8).  We lost additional 

task data due to experimenter error (NIH-Processing Speed: n = 7; count/label: n = 4; 

stroop: n = 1; bear/dragon: n = 4; counterfactual reasoning: n = 2), and attrition 

(Processing Speed: n = 4; flanker: n = 2; stroop: n = 3; bear/dragon: n = 6; DCCS: n = 5; 

causal inference: n = 2; counterfactual reasoning: n = 5).  

Five-Year-Olds 

We excluded 15 5-year-olds with a clinical diagnosis (n = 2), not meeting the age 

criterion (n = 1), and failure to return to the second session (n = 12). We also removed 
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participants with less than half of the causal reasoning measures (n = 2). Additional task 

level data was excluded on a case-by-case basis because children received an 

attention/behavior score of a 1 or 2 (CEA: n = 1), and failure to pass training trials 

(flanker: n = 1; DCCS: n = 1).  We lost additional task data due to experimenter error 

(CEA: n = 1; count/label: n = 1; stroop: n = 1; counterfactual reasoning: n = 8; flanker: n 

= 2; bear/dragon: n = 3; PVT: n = 6).  

Table 2. Rates of Missingness for Each Study Variable for Final Sample.  

 % Missing 
Variable 3-year-olds 5-year-olds 
Vocabulary 0 9.23                 
Processing Speed 16.28 4.62 
Count/Label 12.07 1.54 
Flanker 6.90 4.62 
Stroop 11.21 1.54 
Bear/Dragon 12.07 4.62 
DCCS 15.52 1.54 
CEA 0.86 6.15                
CI 6.90                  0 
CFR 8.62 12.31 
Note. DCCS = Dimensional Change Card Sort; CI = causal inference; CFR = 
counterfactual reasoning; CEA = cause-effect association.  

DATA ANALYSIS PLAN 

Missing Data  

To handle missing data in our regression analyses, we employed multiple 

imputation (MI) using the “mice” package that also runs in RStudio (Brand, 1999; van 

Buuren & Groothuis-Oudshoorn, 2011). MI (Brand, 1999; Rubin & Schenker, 1986; 
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Schafer, 1997) allowed us to retain as many subjects as possible by replacing missing 

values with unbiased estimates based on the observed data (Little & Rubin, 2002). We 

imputed 9 and 5 datasets for 3- and 5-year olds, respectively based on the 

recommendation to impute the number of datasets equal to the average percent of missing 

data (Bodner, 2008; Royston & White, 2011; White, Royston, & Wood, 2011). We also 

imputed using 30 iterations, based on recommended procedures from simulation work 

(Brand, 1999; Van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006; van Buuren & 

Groothuis-Oudshoorn, 2011) 

Treatment of Variables 

First, we scaled individual EF and causal reasoning measures (M = 0, range: -3, 3) 

for each age group separately. Then, we created a composite EF variable from all of the 

EF tasks including count/label, flanker, stroop, bear/dragon, and DCCS tasks. Based on a 

priori hypotheses and patterns of bivariate correlation observed in the data, our dependent 

causal reasoning variable for all analyses is a composite of causal inference and 

counterfactual reasoning. The cause-effect association task was analyzed separately due 

to its failure to correlate with either of the other causal reasoning measures. We 

controlled for other potential contributors to causal reasoning including child age, 

vocabulary, and processing speed by adding them into the models as covariates.  
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Data Analysis 

All data analyses were conducted using RStudio (R version 1.0.136; RStudio 

Team, 2016; R Core Team, 2016). Recall that our core goal was to evaluate whether 

causal reasoning is related to EF, and to specify how this relationship changes over time. 

Note that we initially intended to use structural equation modeling (SEM) techniques to 

model the structure of causal reasoning and EF relative to one another. However, because 

our final sample size was smaller than originally planned (especially for the 5-year-olds), 

we opted for a multiple regression approach, which was more amenable to our current 

sample size. For the interested reader, results from the originally planned, but 

underpowered, SEM approach can be found in the Appendix. Because we were interested 

in exploring potential developmental changes in the relation between EF and causal 

reasoning, we present results from the 3- and 5-year old samples separately. 

DESCRIPTIVE STATISTICS 

The means, standard deviations, and ranges for age, vocabulary, EF measures, and 

causal reasoning measures are displayed in Tables 3 and 4. Simple bivariate correlations 

between these variables of interest are presented in Tables 5 and 6. Please recall that, 

because children occasionally did not provide a clear response on a single trial during the 

cause-effect association and stroop tasks, we use proportion correct (ranging from 0-1) as 

our dependent variable for these tasks. Because sex did not correlate with any of the 

tasks, it is not included, and was not considered in further analyses.  
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Table 3. Descriptive Statistics for Three-Year-Old Data After Imputation.  

Variables Mean SD Min Max 
Age 40.97 3.17 36.17 47.27 
Vocabulary 57.26 6.37 37 88 
Processing Speed 48.29 8.42 31 74 
Count/Label 0.79 0.90 0 2 
Flanker 38.75 12.93   22 87 
Stroopa 0.44 0.33 0 1.00 
Bear/Dragon 3.66 1.93 0 5 
DCCS 47.80 13.53    34 84 
CEAa 0.64 0.32 0 1 
CI 4.71 1.84 0 8 
CFR 1.35 1.32 0 4 
Note. DCCS = Dimensional Change Card Sort; CEA = cause-effect association; CI = 
causal inference; CFR = counterfactual reasoning. aProportion correct.  

Table 4. Descriptive Statistics for Five-Year-Old Data After Imputation. 

Variables Mean SD Min Max 
Age 65.21 3.56 60.22 71.98 
Vocabulary 68.09 7.71 52 91 
Processing Speed 64.57 10.88 43 88 
Count/Label 1.62 0.70 0 2 
Flanker 68.80 17.26 24 92 
Stroopa 0.66 0.29 0 1 
Bear/Dragon 4.72 0.78 0 5 
DCCS 71.60 16.21 38 96 
CEAa 0.90 0.19 0.25 1 
CI 6.98 1.19 2 8 
CFR 2.80 1.33 0 4 
Note. DCCS = Dimensional Change Card Sort; CEA = cause-effect association; CI = 
causal inference; CFR = counterfactual reasoning. aProportion correct.  
 

Three-Year-Olds  

 
Although some measures of EF were positively related to each other, several 

correlations were small or non-significant (See Table 5). Indeed, the only significant 
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correlations observed among EF measures were between the flanker task and both the 

count and label and DCCS tasks. With respect to the causal reasoning measures, 

counterfactual reasoning and causal inference emerged as significant correlates of each 

other. Correlations between these causal reasoning measures and EF measures were also 

evident, albeit more consistently for causal inference than for counterfactual reasoning. 

Specifically, causal inference correlated significantly with flanker, stroop and 

bear/dragon, while counterfactual reasoning correlated only with count/label. Somewhat 

surprisingly, performance on the cause-effect association (i.e., blicket) task failed to 

correlate with any key measures of EF or causal reasoning, with the exception of the 

DCCS. Note that both children’s receptive vocabulary and processing speed correlated 

with measures of causal reasoning, thereby necessitating that we control for their 

influence in our analyses.  
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Table 5. Correlations Between Main Study Variables for Three-Year-Olds After 

Imputation. 

 
Note. Simple correlation coefficients are shown; CEA = cause-effect association; CI = 
causal inference; CFR = counterfactual reasoning; Speed = processing speed; †p<0.1; 

*p<0.05; **p<0.01; ***p<0.001. 

Five-Year-Olds 

Patterns of correlations were similar for the 5-year-olds, with a few exceptions 

(see Table 6). First, the DCCS now correlated with flanker, in addition to count and 

label. Second, counterfactual reasoning now correlated with flanker and bear/dragon, in 

addition to count/label. 

 

 

 Age Vocab. Speed Count Flanker Stroop Bear DCCS CEA CI 
Age           
Vocab. 0.25**           
Speed 0.26*  0.25**          
Count 0.22*  0.17†  0.44***        
Flanker 0.25**  0.23*  0.07 0.3**        
Stroop 0.13 -0.16†  0.09 0.19† 0.2†       
Bear 0.18† 0.22*  0.27*  0.21†  0.06 0.05     
DCCS 0.16 0.04 -0.14 0.08 0.23*  0.09 0.08    
CEA 0.1 -0.04 -0.27*  -0.03 0.11 -0.01 -0.06 0.22*    
CI 0.3**  0.41*** 0.15 0.18†  0.25**  0.23*  0.19*  0.07 0.04  

 CFR 0.35**  0.18† 0.23*  0.27**  0.15 0.07 0.19†    0.08 -0.16†  0.26**  
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Table 6. Correlations Between Main Study Variables for Five-Year-Olds After 

Imputation. 

 Age Vocab. Speed Count Flanker Stroop Bear DCCS CEA CI 
Age           
Vocab. 0.24†           
Speed 0.05 0.11         
Count 0.27*  0.48*** 0.39**         
Flanker 0.32**  0.3*  0.42*** 0.29*        
Stroop 0.3*  0.13 -0.01 0.16 0.25†       
Bear 0.11 0.24† 0.1 0.18 0.24† 0.24†     
DCCS 0.11 0.48*** 0.32*  0.34**  0.45*** 0.13 0.23†     
CEA -0.06 0.09 0.08 0.16 -0.09 0.11 -0.03 0.29*    
CI 0.31*  0.53*** 0.36**  0.4*** 0.51*** 0.33**  0.43*** 0.32**  -0.1  
CFR 0.28*  0.41*** 0.35**  0.5*** 0.28*  0.11 0.26*  0.2 0.05 0.42*** 

Note. Simple correlation coefficients are shown; CEA = cause-effect association; CI = 
causal inference; CFR = counterfactual reasoning; Speed = processing speed; †p<0.1; 

*p<0.05; **p<0.01; ***p<0.001. 

MULTIPLE REGRESSION ANALYSES 

Three-Year-Olds 

A linear regression was used to determine whether EF accounted for a significant 

proportion of variance in children’s causal reasoning in 3-year-olds. Child age, 

vocabulary, and processing speed were entered as covariates. The model accounted for a 

significant proportion of variance, R2 = 0.30, F(4, 647.17)1 = 10.45, p < .001. All 

variables except processing speed were significant predictors of causal reasoning (see 

Table 7).  

                                                
1 The F-test was calculated using the function micombine.F from the ‘miceadds’ package in R. The 
function uses a combination of F statistics for multiply imputed datasets using a chi square approximation.  
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Table 7. Regression Results for Three-Year-Olds Predicting the Causal Reasoning 

Composite Variable. 

 Dependent variable: CR composite variable 

Variable B SE(B) t-value p-value 
Age 0.25 (0.09) 2.70 0.01 
Vocabulary 0.25 (0.09) 2.79 0.01 
Processing Speed 0.07 (0.10) 0.68 0.50 
EF  0.23 (0.09) 2.56 0.01 

Note. R2 = 0.30; B = unstandardized coefficients for standardized variables; standard 
errors are reported in parentheses; CR = causal reasoning; EF = executive function. 

 
A second regression analysis was run with the cause-effect association task as the 

dependent variable. Child age, vocabulary, and processing speed were again entered as 

covariates. The model accounted for a small, but significant proportion of variance in the 

cause-effect association task, R2 = 0.12, F(4, 319.96)1 = 3.278,  p = 0.01. Only processing 

speed was a significant predictor of cause-effect association (See Table 8). 

Table 8. Regression Results for Three-Year-Olds Predicting the Cause-Effect 

Association Task.  

 Dependent variable: Cause-effect association task 
Variable B SE(B) t-value p-value 

Age 0.15 (0.10) 1.46 0.15 
Vocabulary -0.02 (0.10) -0.19 0.85 
Processing Speed -0.35 (0.10) -3.41 0.00 
EF  0.12 (0.10) 1.17 0.24 
Note. R2 = 0.12; B = unstandardized coefficients for standardized variables; standard 
errors are reported in parentheses; EF = executive function. 
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Five-Year-Olds 

A second set of linear regressions were used to determine whether EF accounted 

for a significant proportion of variance in 5-year-olds’ causal reasoning skills. In the first 

model, age, vocabulary, and processing speed were entered as covariates, and our 

composite causal reasoning variable served as the dependent variable. The model 

accounted for significant proportion of variance, R2 = 0.54, F(4, 21.61)1 = 12.01, p < 

.001. All variables except child age were significant predictors (see Table 9).  

Table 9. Regression Results for Five-Year-Olds Predicting the Causal Reasoning 

Composite Variable. 

 Dependent variable: CR Composite Variable 

Variable B SE(B) t-value p-value 
Age 0.15 (0.10) 1.50 0.14 
Vocabulary 0.32 (0.11) 2.90 0.01 
Processing Speed 0.26 (0.10) 2.56 0.01 
EF  0.31 (0.12) 2.53 0.01 

Note. R2 = 0.54; B = unstandardized coefficients for standardized variables; standard 
errors are reported in parentheses; CR = causal reasoning; EF = executive function. 

 
A second regression analysis was run with the cause-effect association task as the 

dependent variable. Child age, vocabulary, and processing speed were again entered as 

covariates. The model did not account for a significant proportion of variance in the 

cause-effect association task, R2 = 0.03, F(4, 88.24)1 = 0.34, p = 0.85. None of the 

variables emerged as significant predictors (see Table 10).  
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Table 10. Regression Results for Five-Year-Olds Predicting the Cause-Effect 

Association Task. 

 Dependent variable: Cause-effect association task 

Variable B SE(B) t-value p-value 
Age -0.11 (0.16) -0.69 0.50 
Vocabulary  0.06 (0.16) 0.35 0.72 
Processing Speed -0.01 (0.16) -0.08 0.94 
EF  0.13 (0.17) 0.74 0.46 

Note. R2 = .03; B = unstandardized coefficients for standardized variables; standard errors 
are reported in parentheses; EF = executive function. 
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Chapter 4: Discussion 

In this study, we examined whether EF has the potential to support the emergence 

of causal reasoning by evaluating patterns of correlation across a marked developmental 

transition. As hypothesized, we found that EF was a significant predictor of both 3- and 

5-year olds’ causal reasoning ability, as measured by a causal inference/counterfactual 

reasoning composite. Our results are in line with previous work that has shown that 

working memory capacity (Drayton, Turley-Ames, & Guajardo, 2011; Guajardo et al., 

2009) and inhibition (Beck, Riggs, & Gorniak, 2009) in young children are related to 

their performance on counterfactual reasoning tasks. Similar relationships between EF 

and general reasoning abilities have also been shown in older children, adolescents (De 

Neys & Everaerts, 2008; Handley et al., 2004; Simoneau & Markovits, 2003), and young 

adults (e.g., Markovits & Doyon, 2004). However, these previous studies are limited in 

that they each only illuminate the relationship between one or two measures of EF (i.e., 

working memory or inhibition) and a single reasoning measure. This study is the first to 

our knowledge to systematically examine relations among three factors of EF (i.e., 

working memory, inhibition, and cognitive flexibility) and three distinct measures of 

causal reasoning (i.e., cause-effect association, causal inference and counterfactual 

reasoning) in a cross-sectional sample of young children. 

In addition to confirming and elaborating upon earlier empirical work, our results 

are consistent with theoretical conceptions of EF and its relation to causal reasoning. For 

instance, as suggested by Gropen et al. (2011), the development of working memory 
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might support the ability to compare representations of prior knowledge with observed 

evidence while also holding broad causal rules and potential actions in mind. Inhibition 

might also be important for helping children to focus on relevant information and revise 

previous beliefs in light of newly observed, and possibly conflicting, evidence (Gropen et 

al., 2011). In this way, children with stronger working memory and inhibition might more 

efficiently acquire causal knowledge and skills. Cognitive flexibility might also 

contribute by supporting children’s ability to consider multiple possible courses of action 

and potential outcomes, as well as to apply and extend learned causal principles to novel 

circumstances. Recent work from Gopnik and colleagues (2017) specifically 

demonstrates how cognitive flexibility can enhance causal learning by keeping the child’s 

mind open to new explanations, and therefore, novel insight.  

Despite this apparent alignment of our findings with existing data and theory, the 

amount of variance accounted for by EF in the current study was actually substantially 

less than anticipated. In this context, it is important to note that although prior research 

has generally shown aspects of EF to be related to performance on causal reasoning tasks, 

a careful examination of the literature reveals some departures from this pattern. For 

example, Beck (2009) did not find a relationship between working memory and 

counterfactual reasoning (although they did detect a relationship between inhibition and 

counterfactual reasoning) in 3-4-year-old children. Likewise, Buchsbaum, Bridgers, 

Weisberg & Gopnik (2012), found no correlation between a stroop inhibition task and 

counterfactual reasoning in 3-4-year old children.  
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What might explain these patterns of results? One possibility is that causal 

reasoning is related to EF in more nuanced ways than previously thought. Although the 

bulk of the evidence suggests that EF is not yet differentiated into distinct componential 

skills in preschoolers, some have argued that a two-factor model best accounts for their 

performance (M. R. Miller et al., 2012). If true, some aspects of EF might be more 

influential than others, even at this early point in development. Indeed, some differential 

effects of this sort have been reported in the literature. For example, although Drayton et 

al. (2001) found a consistent relationship between inhibition and counterfactual reasoning 

across both 3- and 5-year-old age groups, working memory only played a significant role 

in explaining performance in the older age group. In the current study, we instead 

observed an increasing correlational relationship between inhibition and counterfactual 

reasoning with age. We might not have replicated Drayton et al.’s (2011) findings 

because we used a different measure of working memory which had a limited range, 

thereby potentially limiting its sensitivity to individual variability. Regardless, both 

findings hint at subtle complexities in the relationship between EF and causal reasoning 

that will require further attention in future research. 

The relationship between early EF and causal reasoning might be further 

complicated by opposing influences, with some elements of EF supporting, and others 

interfering with, different aspects of causal reasoning performance. For example, while 

inhibition and cognitive flexibility together might be important for focusing a child’s 

attention and suppressing prepotent responses in favor of considering alternative 

solutions and predictions, it is also possible that less inhibition might free children to 
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fully exercise the flexibility to think creatively and consider additional possibilities from 

a larger hypothesis space (Gopnik et al., 2017). For example, in the tasks used in the 

current study, less inhibition might have allowed children to generate more creative or 

additional counterfactual solutions. Although intriguing, bringing full clarity to these 

potentially complex relationships is unfortunately beyond the scope of the current study. 

In future work, it will be important to add measures of divergent thinking to the slate of 

tasks under consideration to more directly test children’s creatively.  

Regardless of these nuances, the relatively weak relationship between EF and 

causal reasoning observed in the current work highlights the importance of keeping other 

factors in mind when considering the potential origins of causal reasoning. For example, 

vocabulary predicted significant variance in both age groups. This was not surprising 

given the heavy language demands of some of our tasks, and counterfactual reasoning in 

particular. A wealth of work has already established a strong relationship between 

counterfactual reasoning and language (e.g., Beck et al., 2009; Guajardo et al., 2009). 

The causal inference task also clearly relies on conceptual knowledge of objects, which 

one could argue goes hand-in-hand with vocabulary. Verbal ability might also be 

contributing in a deeper way to causal reasoning by providing a platform for new ways of 

thinking. For example, by scaffolding the transition from reflexive (i.e., reacting with 

impulsive responses) to reflective thought and action (i.e., pausing to consider multiple 

choices before acting) (Carlson & Moses, 2001). Verbal ability might also help children 

develop the ability to think abstractly, talk through larger problem spaces, and generate 

counterfactual scenarios.  
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Processing speed was also a significant predictor of causal reasoning at 5, but not 

3, years of age. Processing speed is considered important for many aspects of thought and 

learning as it supports the ability to focus attention on, quickly discriminate between, and 

sequentially order, information. Indeed, processing speed was recently found to be 

significantly related to preschoolers’ performance on EF tasks (Willoughby, Blair, Kuhn, 

& Magnus, 2018). Processing speed might be expected to have a particularly strong 

relation to tasks that include a reaction time component (e.g., flanker, DCCS). This 

pattern was in fact observed for the 5-year-olds, but not the 3-year-olds, in the current 

study. This is likely because the NIH-Toolbox incorporates reaction time into their 

scoring algorithm only after a participant achieves greater than 80% accuracy on more 

advanced levels of the tasks. Our 3-year-old participants were much less likely to reach 

this level of performance in the flanker and DCCS tasks, thereby leaving less opportunity 

for processing speed to influence their score. Note, however, that the influence of 

processing speed on causal reasoning might well transcend the parameters of any 

particular task. Faster processing speeds might help children more efficiently observe 

new data, retrieve relevant knowledge, and integrate these into potential solutions before 

key information is lost to interference or decay (Fry & Hale, 1996; Jensen, 1993; Kail & 

Ferrer, 2007; Kail & Park, 1994; L. T. Miller & Vernon, 1997). Consistent with this 

possibility, we observed strong correlations between processing speed and working 

memory in the current study at both 3 and 5 years of age.  

But even when considered in total, the measures included in our models only 

accounted for 30 and 54% of the variance in causal reasoning (for 3- and 5-year-olds, 
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respectively). This degree of unaccounted for variance could be taken as evidence that 

causal reasoning is a unique capability that is not wholly emergent from more 

fundamental cognitive skills, and therefore develops with some degree of independence. 

Before reaching this conclusion, however, it will be important to consider other potential 

contributors to the development of causal reasoning that were not assessed in this study. 

What might these be? One possibility is that causal reasoning is influenced by a child’s 

causal stance, or their preference for, and interest in, causal information. In light of recent 

work demonstrating individual differences in preschoolers’ causal stance (Alvarez & 

Booth, 2016), it is possible that children who are more drawn to and interested in causal 

information also become more practiced and proficient in reasoning causally, or are more 

motivated to engage in tasks that involve causal reasoning.  

In order to fully understand the development of causal reasoning, it will also be 

important to consider environmental factors that might shape individual skills. For 

example, the degree to which a child engages in pretend play might be related to causal 

reasoning ability. Indeed, some have argued that pretend play, in and of itself, is a special 

case of counterfactual reasoning, as they both require considering alternatives that are 

inconsistent with reality (Amsel & Smalley, 2000; Dias & Harris, 1990; Guajardo & 

Turley-Ames, 2004; Kevin J. Riggs, Peterson, Robinson, & Mitchell, 1998; Sobel, 2006). 

In any case, pretend play is likely an important setting for practicing this skill in real-

world contexts. The ability to engage in pretend play emerges during the second year of 

life, and is therefore certainly in place early enough to be a viable developmental 

precursor to causal reasoning (Fein, 1981; Leslie, 1987). In their exploration of this 
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potential relationship, Buchsbaum et al. (2012) found that preschoolers made similar 

inferences about a causal system in both counterfactual and pretend play scenarios. 

Interestingly, they also found that pretend play accounted for significant variance in 

counterfactual reasoning above and beyond what was accounted for by EF. This 

experiential factor (i.e., practice with pretend play) might therefore be able to account for 

additional variance in causal reasoning that was not captured by EF and our covariates in 

the current work.  

CAUSE-EFFECT ASSOCIATION TASK 

 Notably, despite replicating previously reported levels of performance on our 

measure of cause-and-effect association (e.g., Gopnik et al., 2001), this task was not 

associated with our other measures of causal reasoning (i.e., causal inference or 

counterfactual reasoning) in any of our analyses. This is surprising given that “blicket 

detector” tasks are often used as a classic demonstration of children’s early causal 

reasoning abilities (e.g., Gopnik & Sobel, 2000; Kloos & Sloutsky, 2005; Sobel & 

Legare, 2014). One reason for the dissociation observed here might be that children 

performed at a high level on the cause-effect association task at both ages. This might 

indicate the task was too easy for the children in our sample, and therefore not 

sufficiently demanding on EF resources in a detectible way. Another reason might be that 

the cause-effect association task only required children to isolate arbitrary relationships 

between observable physical objects and events, while our causal inference and 

counterfactual reasoning tasks required that children focus on specific mechanisms to 
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reason about meaningful causal relations. Moreover, while our cause-effect association 

task did require children to generate a novel intervention, it might not have tapped the 

complex Bayesian reasoning processes needed in similar tasks described in the literature 

(e.g., backward blocking or forward screening off). It is possible that a different version, 

which requires these more sophisticated Bayesian inferencing skills, might have been 

more tightly related to our other measures of causal reasoning. Consistent with this 

possibility, Weisberg and Gopnik (2013) specifically argue that the ability to think 

counterfactually (i.e., consider multiple possibilities, manipulate potential causes, and 

generate conclusions) is necessary to allow children to create and learn from causal 

Bayesian models (Gopnik & Tenenbaum, 2007; Griffiths, Chater, Kemp, Perfors, & 

Tenenbaum, 2010; Schulz, Kushnir, & Gopnik, 2007). However, because some evidence 

suggests that the ability to use counterfactual reasoning to scaffold learning new causal 

mechanisms does not emerge until the age of four (Schulz, Gopnik, & Glymour, 2007), 

this relationship might not be evident in the youngest children studied here.  

 Also contrary to our hypotheses, we found that EF was not a significant predictor 

of either 3- or 5-year olds’ performance on the cause-effect association task. Again, these 

results might be because we lacked sufficient variance due to high levels of performance 

on the cause-effect association task. That said, some converging evidence that “blicket”-

like tasks might not be integrally dependent on EF comes from a recent study that 

assessed groups of high and low socioeconomic status (SES) children on a more 

challenging “blicket detector” based causal learning task (Wente et al., 2017). 

Specifically, Wente and colleagues (2017) found that the low SES group performed 
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similarly to their high SES peers on the causal learning task, despite lower EF scores. 

Although further research using a variety of “blicket detector” type tasks will be 

necessary to clarify these relationships, the current results suggest that the ability to 

detect cause-effect relations on the basis of arbitrary spatiotemporal contingencies is 

conceptually distinct from other aspects of causal reasoning, and does not rely heavily on 

EF skills. 

LIMITATIONS 

Although this study advances the field by exploring the relationship between EF 

and causal reasoning in preschoolers, there are clearly some limitations. For example, 

high rates of attrition and off-task behavior resulted in a large amount of missing data. 

We addressed this issue to the best of our ability by imputing complete and unbiased 

datasets for our regression analyses, but replication will be important for confirming the 

resulting analyses. From a methodological perspective, we were also limited in the 

number of causal reasoning measures both 3- and 5-year olds could successfully 

complete while skirting floor and ceiling effects, respectively. As a result, some of our 

measures (e.g., counterfactual reasoning and count and label) produced a restricted range 

of scores. Other tasks were too difficult for children (e.g., backward digit span) and 

contributed to the aforementioned missing data. Our small sample sizes also limited the 

analytic approaches available to us, specifically making it difficult to confidently 

interpret our structural equation model analysis (see Appendix).  
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Future studies with older children and additional measures will be crucial to 

further specify the relationship between more complex, and potentially more sensitive, 

measures of causal reasoning and EF. With this in mind, we are currently following the 

3-year-olds tested here longitudinally through first grade. This will also allow us to 

address another limitation of this study, which is that we used a correlational design to 

examine relationships between EF and causal reasoning skills. A longitudinal design will 

allow us to explore possible moderation and mediation effects and also hold the effects of 

experiential factors (i.e., causal stance, pretend play, divergent thinking) constant. To the 

extent that EF and causal reasoning are malleable skills, intervention studies targeting 

these skills will serve to definitively test whether there is a causal relation. 

CONCLUSIONS AND PRACTICAL IMPLICATIONS  

In summary, this study found that EF significantly predicted causal reasoning 

performance across a period of rapid developmental change in both sets of skills from 3- 

to 5-years of age. However, a significant amount of variance in children’s causal 

reasoning performance remained unaccounted for by EF and our other cognitive 

covariates (i.e., vocabulary and processing speed), thereby leaving open the possibility 

that some aspect of causal reasoning develops as a distinct capability. This was 

particularly true of the cause-effect association task, for which no association to EF (or to 

our other causal reasoning tasks) was detected. These results provide an important 

foundation for understanding the development of causal reasoning in the context of 

broader cognitive skills. As noted in the introduction, causal reasoning (i.e., making 
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predictions, revising hypotheses) is likely a critical component of scientific literacy 

(Bauer & Booth, under review). Despite research demonstrating that achievement gaps in 

science begin to form before children even enter school (Greenfield et al., 2009), 

preschool classrooms typically do not focus on science. In part, achievement gaps in 

science may persist because we still know little about what knowledge and skills are 

fundamental to scientific literacy, and therefore would be most usefully targeted in early 

education. This study has begun to address this limitation by examining the 

developmental relationship between causal reasoning and EF, two possible underlying 

contributors to scientific understanding. As we build upon this foundational work, we 

will strive to clarify further the relationships between EF and causal reasoning skills, as 

well as the potential contributions of other factors (e.g., causal stance, pretend play). 

Indeed, we have begun to do so in the context of a longitudinal design, and hope 

ultimately to incorporate intervention methods to clarify whether observed relationships 

are causal in nature.   
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Appendix  

STRUCTURAL EQUATION MODELING ANALYSES 

 We initially proposed to investigate the relationship between causal reasoning and 

EF using a structural equation modeling (SEM) framework. However, due to an 

unanticipated smaller sample size (especially for the 5-year-olds), we were unable to 

achieve adequate model fit, and thus could not calculate interpretable statistics using this 

approach. We therefore reported results from a simpler regression approach in the main 

body of this paper. For the sake of completeness, however, results from the originally 

planned SEM analyses are reported below.  

Missing Data 

First, to handle missing data in our multi-group SEM, we used the “lavaan” 

package that employs full information maximum likelihood estimation (“FIML”), 

allowing us to retain as many subjects as possible. “FIML” has been shown to produce 

unbiased parameter estimates and standard errors (Collins, Schafer, & Kam, 2001; 

Enders, 2006; Enders & Bandalos, 2001). In addition, we used maximum likelihood 

estimation with robust Huber-White standard errors (“MLR”) and a scaled test statistic.  

Assessing Model Fit 

The χ2 statistic provides a global index of model fit, where a non-significant 

χ2 value suggests adequate model fit (Brown, 2014; Schumaker & Deshler, 2003). 
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Additional indexes used for model fit and comparison included the Root Mean Square 

Error of Approximation (RMSEA; Browne & Cudeck, 1993), the Comparative Fit Index 

(CFI), and the Akaike Information Criterion (AIC). An RMSEA value less than 0.06 and 

CFI values above .95 indicate adequate fit (Hu & Bentler, 1999).  

Multi-Group Structural Equation Model 

In order to test whether the relationship between EF and causal reasoning 

measures shifted from 3- to 5-years of age, we first compared a multi-group structural 

equation model in which we constrained all the regression coefficients constrained to be 

equal to another model where the coefficients were allowed to vary freely. If the model 

where the coefficients were constrained to be equal fit the data better, then we could 

conclude there were no significant differences between the values of the regression 

coefficients between age groups. This would provide evidence that the development of 

EF (and our covariates) and CR might be parallel.  

The model with all the regression parameters freely estimated fit the data poorly: 

CFI = .65; TLI = 0.53; RMSEA = 0.13, CI = 0.10, 0.15; AIC = 4567.54; SRMR = .14, 

according to fit criteria suggested by Hu and Bentler (1999). In addition, the overall chi-

square was significant, χ2(64) = 183.93; p < .001. The fit indices for the constrained 

model also indicated a poor fit; CFI = .56; TLI = 0.42; RMSEA = 0.14, CI = 0.12, 0.17; 

AIC = 5013.05; SRMR= 0.15. In addition, the overall chi-square was significant, χ2(64) = 

211.12; p < .001. Since the freely estimated model had a relatively better fit, this model 

was used for interpretation. The model showed that there were no significant differences 
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in any of the regression coefficients between the 3- and 5-year-old age groups (see Table 

A1), though processing speed trended towards significance. Caution is required in 

interpreting these results due to the poor model fit observed. 

Table 11. Multiple-Group SEM Analysis.  

 Dependent variable: CR latent variable  
Variable ΔB SE(B) Δβ z-value p-value 
Age 0.08 0.11 0.18 0.71     0.48 
Vocabulary  -0.08 0.11 -0.09 -0.73 0.47 
Processing Speed -0.18 0.10 -0.31 -1.84 0.07 
EF  0.02 0.47 -0.04 0.05 0.96 
Note: This table shows the differences in regression coefficients between the 3- and 5-
year-old age groups, with 3-year-olds serving as the reference group; CR = causal 
reasoning; EF = executive function.  
 

Figure 4.   Multiple Group SEM Diagrams for Freely Estimated Models. 

A.  
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B. 

 
Note. Panel A. Three-year-olds; Panel B. Five-year-olds; standardized coefficients are 
shown; CR = causal reasoning; EF = executive function; Fln = Flanker; Str = stroop; 
DCC = DCCS; Ber = bear/dragon; Cnt = count/label; Inf = causal inference, CFR = 
counterfactual reasoning; P.S. = processing speed; Vcb = vocabulary. 

ANALYSIS OF SUPPLEMENTARY COGNITIVE MEASURES 

We initially proposed to examine additional measures of working memory 

including measures from the Wechsler Preschool and Primary Scale of Intelligence 

Fourth Edition and forward and backward digit span. However, after further reflection 

and consultation with the literature, we determined that these measures (with the 

exception of backward digit span), actually tapped short-term memory rather than 

working memory. Because we did not have any hypotheses regarding the relationship 

between children’s short-term memory and causal reasoning ability, we did not include 

these measures in our primary analyses. Even though the backward digit span task did tap 

working memory, we chose to exclude it from our primary analyses as well because the 
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majority of children (especially from our 3-year-old sample) could not successfully 

complete even the practice trials. Nevertheless, descriptions, and correlations between, 

these measures and our primary measures are reported below. 

 

Measures 

Wechsler Preschool and Primary Scale of Intelligence (Fourth Edition) 

Two subtests from the Wechsler Preschool 4th Edition (WPPSI-IV; Wechsler, 

2012) were used to assess short-term memory. In the Picture memory subtest, participants 

viewed one or more pictures for a specified time and then select these pictures within a 

field of distracting pictures on the response page. The Picture Memory subtest measures 

visual working memory using the familiarize–recognize paradigm, for which a set of 

stimuli is viewed and then recognized from among a set of responses. In the Zoo 

Location subtest, participants viewed one or more animal cards placed on zoo map for a 

limited time and then must place each card in the previously viewed location.  The Zoo 

Locations subtest measures visual spatial working memory using the observe–perform 

paradigm, wherein some action or actions are observed and then repeated. The dependent 

variable in Zoo Locations is an age adjusted and scaled score based on the raw number of 

trials competed correctly.  

Forward and Backward Digit Span 

In this task (Davis & Pratt, 1995), the experimenter introduced children to a 
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puppet named Mr. Bear, a friendly puppet who wants to play a number game. Children 

first completed forward digit span as a warm up. For forward digit span, children were 

instructed to repeat the numbers Mr. Bear said. Two practice trials were administered and 

feedback was given if children misunderstood the rules. The experimenter ended the task 

and moved on to backwards digit span when children failed two consecutive items within 

a trial block. For backwards digit span, the experimenter began the task by saying, “Mr. 

Bear has another number game to play! Now, instead of repeating after Mr. Bear, now 

you’re going to say what he says backwards!” The experimenter demonstrated by making 

Mr. Bear say “1, 2.” She then modeled the correct answer by saying, “2, 1.” Children 

were then invited to try (using the same example) and another practice trial. The practice 

and next four trials had two digits, and then the number of digits increased until children 

answered incorrectly on two consecutive items within a trial block.  

Descriptive Statistics  

The means, standard deviations, and ranges for measures of short-term memory 

are shown in Tables A2 and A4. Simple bivariate correlations between these variables of 

interest are presented in Tables A3 and A5. Please note that we do not report scores for 

backward digit span for the 3-year-old group as the majority of children were unable to 

successfully pass the practice trials on this task.  

For the 3-year-olds, all three measures of short-term memory (WPPSI-picture 

memory, WPPSI-zoo locations and digit span) correlated with counterfactual reasoning 
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performance. Digit span also correlated significantly with performance on the causal 

inference tasks. No correlations to the cause-effect association task were observed.  

Table 12. Descriptive Statistics for Supplemental Short-Term Memory Measures for 

Three-Year-Old Data After Imputation.  

Variables Mean SD Min Max 
WPPSI-IV PM 10.52 4.89 0 21 
WPPSI-IV ZL 7.38 2.68 0 12 
Forward Digit Span 3.50 1.76 0 7 
Note. WPPSI PM = WPPSI-IV picture memory; WPPSI ZL = WPPSI-IV zoo locations. 

Table 13. Correlations Between Short-Term Memory Variables for Three-Year-Old 

Data After Imputation. 

 
WPPSI PM WPPSI ZL Digit Span 

Age 0.3**  0.14 0.22*  
Gender 0.13 -0.02 -0.01 
Vocab. 0.34*** 0.21*  0.3**  
Speed 0.35**  0.23*  0.26**  
Count 0.23*  0.38**  0.34*** 
Flanker 0.36*** 0.34*** 0.32*** 
Stroop 0.01 0.25*  0.17 
Bear 0.15 0.21*  0.21† 
DCCS 0.27*  0.15 0.14 
CEA 0.07 0.04 -0.05 
CI 0.11 0.19† 0.32**  
CFR 0.32**  0.23*  0.25*  
WPPSI PM 

 
0.4*** 0.25*  

WPPSI ZL 
  

0.19† 
Note. Simple correlation coefficients are shown; count = count/label; bear = bear/dragon; 
speed = processing speed; CEA = cause-effect association; CI = causal inference; CFR = 
counterfactual reasoning; WPPSI PM = WPPSI-IV picture memory; WPPSI ZL = 
WPPSI-IV zoo locations; CBQ Surg. = CBQ Surgency; CBQ Eff. = CBQ Effortful 
Control; Mat. Ed. = maternal education;  †p<0.1; *p<0.05; **p<0.01; ***p<0.001. 
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For the 5-year-olds, no correlations between short-term memory and causal 

reasoning measures were evident. However, the one supplemental measure of working 

memory included here (i.e., backward digit span), correlated significantly with 

performance on the causal inference task.  

Table 14. Descriptive Statistics for Supplemental Short-Term Memory Measures for 

Five-Year-Old Data After Imputation. 

Variables Mean SD Min Max 
WPPSI-IV PM 15.75 5.42 2 28 
WPPSI-IV ZL 9.68 2.56 1 13 
Forward Digit Span 5.75 1.55 2 9 
Backward Digit Span 3.60 2.07 0 7 
Note. WPPSI PM = WPPSI-IV picture memory; WPPSI ZL = WPPSI-IV zoo locations. 
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Table 15. Correlations Between Short-Term Memory Variables for Five-Year-Old 

Data After Imputation. 

 WPPSI PM WPPSI ZL Digit Span Backward 
Digit Span 

Age 0.07 0.04 0.17 0.3*  
Gender -0.05 0.1 -0.03 -0.04 
Vocab. 0.42*** 0.01 0.27*  0.34**  
Speed 0.26*  0.16 0.04 0.34**  
Count 0.29*  -0.1 0.25† 0.38**  
Flanker 0.18 0.17 0.24† 0.41**  
Stroop 0.05 0.02 0.26†  0.36**  
Bear 0.18 0.07 0.02 -0.01 
DCCS 0.35**  -0.01 0.27*  0.25*  
CEA -0.04 -0.17 0.24† 0.17 
CI 0.18 0.12 0.1 0.25*  
CFR 0.24† -0.17 0.1 0.23†  
WPPSI PM - 0.31*  0.16 0.19 
WPPSI ZL  - -0.09 -0.09 
Digit Span   - 0.44*** 

Note. Simple correlation coefficients are shown; count = count/label; bear = bear/dragon; 
speed = processing speed; CEA = cause-effect association; CI = causal inference; CFR = 
counterfactual reasoning; WPPSI PM = WPPSI-IV picture memory; WPPSI ZL = 
WPPSI-IV zoo locations; CBQ Surg. = CBQ Surgency; CBQ Eff. = CBQ Effortful 
Control; Mat. Ed. = maternal education;  †p<0.1; *p<0.05; **p<0.01; ***p<0.001. 

ANALYSIS OF SUPPLEMENTAL PARENT REPORT MEASURES 

Although in our original research plan, we intended to consider parent report 

measures of child characteristics along with our direct assessments, after consultation 

with experts and further review of the literature, we determined these measures were not 

appropriate for our purposes. Specifically, we learned that they were intended for clinical 

purposes and were unlikely to be sufficiently sensitive to detect subtle variations within a 

sample of typically developing children. The fact that we removed children from our 
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analyses who exhibited poor behavior and attention during our assessments might well 

have further stripped the sensitivity of these measures, thereby diminishing their 

usefulness for our purposes. Nevertheless, we present descriptions of these measures, and 

their correlations to our key factors of interest below. 

Measures  

Behavior Rating Inventory of Executive Function Preschool Version 

 Parents independently completed the Behavior Rating Inventory of Executive 

Function Preschool Version (BRIEF-P; Gioia, Isquith, Retzlaff, & Espy, 2002), a parent 

report of executive function. This survey evaluates five aspects of executive functioning 

including Inhibition, Shifting, Emotional Control, Working Memory, and 

Planning/Organizing. Total time to complete this survey was approximately 10 minutes. 

The outcome variable obtained is a standardized global executive percentile score.  

 

Children’s Behavior Questionnaire 

The Children’s Behavior Questionnaire (CBQ; Putnam, 2006) is an assessment of 

temperament intended for use with preschool aged children. The CBQ Very Short form 

consists of 36 items. The CBQ was administered by a trained research assistant or 

completed independently by a parent. Parents rated children’s behaviors on a likert scale 

ranging from 1-7 (where 1 corresponds to “extremely untrue of your child,” and 

“extremely untrue of your child”. Total administration time was approximately 10 
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minutes.  This task was scored by taking the means of items relevant to each sub-domain 

including Negative Affectivity, Surgency, and Effortful Control.  

Descriptive Statistics 

The means, standard deviations, and ranges for supplemental parent survey data 

are shown in Tables A6 and A7. Simple bivariate correlations between these variables of 

interest are presented in Tables A8 and A9. 

Table 16. Descriptive Statistics for Parent Report Measures for Three-Year-Old Data 

After Imputation. 

Variables Mean SD Min Max 
CBQ Surgency 4.45 0.79 2.17 6.58 
CBQ Effortful Control 5.23 0.70 2.75 6.42 
BRIEF-P Global Score 46.93 27 0 99 
Note. BRIEF-P Global Executive Score is a percentage.  

Table 17. Descriptive Statistics for Parent Report Measures for Five-Year-Old Data 

After Imputation. 

Variables Mean SD Min Max 
CBQ Surgency 4.46 0.84 2.58 6.25 
CBQ Effortful Control 5.57 0.64 4.25 6.83 
BRIEF-P Global Score 38.69 28.43 0 99 
Note. BRIEF-P Global Executive Score is a percentage. 
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Table 18.  Correlations Between Parent Report Measures for Three-Year-Old Data 

After Imputation. 

 
CBQ Surg. CBQ Eff. BRIEF 

Age -0.13 0.06 0 
Gender 0.08 -0.11 -0.05 
Vocab. 0.02 0.27**  0.23*  
Speed 0.14 -0.03 -0.05 
Count -0.1 0.02 0 
Flanker -0.14 0.17† 0.18† 
Stroop -0.1 -0.07 0.03 
Bear 0.09 0.1 0.04 
DCCS -0.33*** 0.25*  -0.1 
CEA -0.11 0.12 -0.01 
CI 0 0.11 0.23*  
CFR 0.07 0.15 0.06 
WPPSI PM -0.07 0.13 0.17 
WPPSI ZL -0.2*  0.06 0.22*  
Digit Span 0.02 0.12 0.36*** 
CBQ Surg. 

 
-0.18† 0.11 

CBQ Eff.  
 

0.04 
Note. Simple correlation coefficients are shown; count = count/label; bear = bear/dragon; 
speed = processing speed; CEA = cause-effect association; CI = causal inference; CFR = 
counterfactual reasoning; WPPSI PM = WPPSI-IV picture memory; WPPSI ZL = 
WPPSI-IV zoo locations; CBQ Surg. = CBQ Surgency; CBQ Eff. = CBQ Effortful 
Control; Mat. Ed. = maternal education;  †p<0.1; *p<0.05; **p<0.01; ***p<0.001. 
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Table 19.  Correlations Between Parent Report Variables for Five-Year-Old Data 

After Imputation. 

 CBQ Surg. CBQ Eff. BRIEF 
Age 0.22† 0.06 0.09 
Gender 0.06 -0.4*** 0.02 
Vocab. 0.05 -0.1 0.18 
Speed 0.12 0.16 -0.12 
Count 0.06 0 -0.03 
Flanker 0.17 0.3*  -0.07 
Stroop 0.03 0.26*  0.03 
Bear 0.03 0.21 -0.04 
DCCS 0.06 0.26*  0.01 
CEA 0.11 0.01 -0.06 
CI 0.15 0.18 0.17 
CFR 0.17 0.12 -0.1 
WPPSI PM -0.02 0.04 0.03 
WPPSI ZL -0.02 -0.07 0.02 
Digit -0.08 0.21 0.15 
Backward Digit 0 0.02 -0.04 
CBQ Surg. - 0.06 -0.04 
CBQ Eff.  - -0.15 

Note. Simple correlation coefficients are shown; count = count/label; bear = bear/dragon; 
speed = processing speed; CEA = cause-effect association; CI = causal inference; CFR = 
counterfactual reasoning; WPPSI PM = WPPSI-IV picture memory; WPPSI ZL = 
WPPSI-IV zoo locations; CBQ Surg. = CBQ Surgency; CBQ Eff. = CBQ Effortful 
Control; Mat. Ed. = maternal education;  †p<0.1; *p<0.05; **p<0.01; ***p<0.001. 

ANALYSIS OF SUPPLEMENTAL ENVIRONMENTAL FACTORS 

Here we also present correlations between an additional parent survey of home 

environment, as well as maternal education, and our primary variables. Although these 

measures were not a core component of our proposed plan, they may be enlightening 

with respect to individual differences in causal reasoning ability. Relevant descriptions of 

measures and correlations with our other key measures are reported below.  
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Measures  

StimQ-Preschool  

The StimQ-Preschool (StimQ; Mendelsohn, Dreyer, Tamis-LeMonda, & Ahuja, 

1999) measures the cognitive home environment across the preschool period. The form 

consists of four subscales: Availability of Learning Materials, Reading, Parental 

Involvement in Developmental Advance, and Parental Verbal Responsivity. The outcome 

variable obtained is a standardized total score. 

Maternal Education 

Parents reported their highest degree obtained. We categorized maternal education 

into 5 discrete categories: (1) no high school degree, (2) high school degree, (3) some 

college or additional training beyond high school, (4) four-year bachelor’s degree, (5) 

master’s degree or higher. Very few parents (2.71%) declined to report the mother’s 

highest level of education. 

Descriptive Statistics  

The means, standard deviations, and ranges for the StimQ and maternal education 

are shown in Tables A10 and A11. Simple bivariate correlations between these variables 

of interest are presented in Tables A12 and A13.  Of note, the StimQ was significantly 

correlated with causal inference and marginally correlated with counterfactual reasoning 
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for the 3-year-olds, but not for 5-year-olds. Maternal education was not correlated with 

any of the causal reasoning measures for either group.   

Table 20. Descriptive Statistics for Environmental Measures for Three-Year-Old Data 

After Imputation. 

Variables Mean SD Min Max 
StimQ Total Score 42.22 4.36 29 49 
Maternal Education 3.16 1.45 0 5 

 

Table 21. Descriptive Statistics for Environmental Measures for Five-Year-Old Data 

After Imputation. 

Variables Mean SD Min Max 
StimQ Total Score 44.26 4.76 20 49 
Maternal Education 3.09 1.48 1 5 
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Table 22. Correlations Between Environmental Measures for Three-Year-Old Data 

After Imputation. 

 
StimQ Mat. Ed. 

Age 0.27**  0.02 
Gender 0.12 -0.01 
Vocab. 0.31**  0.15 
Speed 0.19† 0.21*  
Count 0.24*  0.24*  
Flanker 0.13 -0.03 
Stroop 0.05 0.05 
Bear 0.16 0.12 
DCCS 0.26**  -0.03 
CEA -0.02 -0.09 
CI 0.38*** -0.05 
CFR 0.17† 0.08 
WPPSI PM 0.31**  0.15 
WPPSI ZL 0.15 0.08 
Digit Span 0.18† 0.28**  
CBQ Surg. -0.01 0.11 
CBQ Eff. 0.22*  -0.06 
BRIEF 0.01 -0.14 
StimQ 

 
0.12 

Note. Simple correlation coefficients are shown; count = count/label; bear = bear/dragon; 
speed = processing speed; CEA = cause-effect association; CI = causal inference; CFR = 
counterfactual reasoning; WPPSI PM = WPPSI-IV picture memory; WPPSI ZL = 
WPPSI-IV zoo locations; CBQ Surg. = CBQ Surgency; CBQ Eff. = CBQ Effortful 
Control; Mat. Ed. = maternal education;  †p<0.1; *p<0.05; **p<0.01; ***p<0.001. 
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Table 23. Correlations Between Environmental Variables for Five-Year-Old Data 

After Imputation. 

 StimQ Mat.Ed.  
Age 0.01 -0.08 
Gender -0.11 -0.22†  
Vocab. -0.1 0.03 
Speed -0.05 0.1 
Count 0.15 0.25*  
Flanker -0.07 0.2 
Stroop 0.22 0.27*  
Bear 0.13 0.32**  
DCCS -0.11 0.09 
CEA -0.11 0.1 
CI 0.02 0.14 
CFR -0.07 0.1 
WPPSI PM 0.22 0.17 
WPPSI ZL 0.05 -0.04 
Digit 0.24† 0.27*  
Backward Digit 0.2 0.14 
CBQ Surg. -0.17 -0.12 
CBQ Eff. 0.18 0.23† 
BRIEF 0.11 0.02 
StimQ  0.31*  

Note. Simple correlation coefficients are shown; count = count/label; bear = bear/dragon; 
speed = processing speed; CEA = cause-effect association; CI = causal inference; CFR = 
counterfactual reasoning; WPPSI PM = WPPSI-IV picture memory; WPPSI ZL = 
WPPSI-IV zoo locations; CBQ Surg. = CBQ Surgency; CBQ Eff. = CBQ Effortful 
Control; Mat. Ed. = maternal education;  †p<0.1; *p<0.05; **p<0.01; ***p<0.001. 
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