
United States Patent

USOO7370183B2

(12) (10) Patent No.: US 7,370,183 B2
John et al. (45) Date of Patent: May 6, 2008

(54) BRANCH PREDICTOR COMPRISINGA 5,935,241 A * 8/1999 Shiell et al. T12/240
SPLT BRANCH HISTORY SHIFT REGISTER 6,108,775 A * 8/2000 Shiell et al. T12/240

(75) Inventors: Lizy K. John, Austin, TX (US); Tao OTHER PUBLICATIONS
Li, Gainesville, FL (US) Li et al. Improving Branch Predictability in Java Processing, Feb.

2001, University of Texas Project Publications.*
(73) Assignee: Board of Regents, The University of Li, T. et al. “Modeling and Evaluation of Control Flow Prediction

Texas System, Austin, TX (US) Schemes Using Complete System Simulation and Java Workloads',
Dept. of Electrical and Computer Engineering, the University of

(*) Notice: Subject to any disclaimer, the term of this Texas at Austin, 10 pages.
patent is extended or adjusted under 35 Li, T. et al. “Understanding and Improving Operating System
U.S.C. 154(b) by 283 days. Effects in Control Flow Prediction”. Dept. of Electrical and Com

uter Engineering, the University of Texas at Austin (2002), 13 p 9. 9. ty (2002)
(21) Appl. No.: 10/822,553 pageS.

(22) Filed: Apr. 12, 2004 * cited by examiner
Primary Examiner Tonia L. M. Dollinger O O y 9.

(65) Prior Publication Data (74) Attorney, Agent, or Firm—Schwegman, Lundberg &
US 2005/0114637 A1 May 26, 2005 Woessner P.A.

Related U.S. Application Data (57) ABSTRACT

(60) Provisional application No. 60/462.513, filed on Apr. An apparatus and a system, as well as a method and article,
11, 2003. - 0 may operate to predict a branch within a first operating

(51) Int. Cl. context, such as a user context, using a first strategy; and to
G06F 5/00 (2006.01) predict a branch within a second operating context, such as

(52) U.S. Cl 712/240 an operating system context, using a second strategy. In
Oa - bodiment tus and SVSt

(58) Field of Classification Search 712,240, ESENSE 71.2/239. 233 one or more Iirst storage locations to store branch nistory
s information associated with a first operating context, and See application file for complete search history. one ore more second storage locations to store branch

(56) References Cited history information associated with a second operating con

U.S. PATENT DOCUMENTS

5,577,217 A * 11/1996 Hoyt et al. T12/200

4. A.

L A.

text.

9 Claims, 4 Drawing Sheets

PROCESSORSTATUSREGISTER OSCONTENT
- A

D. ft. D USERCONTENT
r execution mode bit A.

a A KBSR K-BITOF2'ENTRIES
ibits -114 \ r\S

- e g as X --A8

O e- o O 8

BRANCHADDRESS R I

ibits
------- 137- s 4. fibits PREDICTION

R thus 4-1
s A e

R
A3A this 101 H

A. -

U-BHT OF 2, ENTRIES s
SPLTBRANCH A.
HISTORYTABLE

U.S. Patent May 6, 2008 Sheet 1 of 4 US 7,370,183 B2

NM
A -AT

22

PROCESSORSTATUS REGISTER OSCONTENT
A28 ABS

USER CONTENT

execution modebit A.

BHT OF2, ENTRIES 52

BRANCHADDRESS

ibits

FIG, IA

U.S. Patent May 6, 2008 Sheet 2 of 4 US 7,370,183 B2

22
OSCONTENT

A36
USER CONTENT

execution modebit AA
KBHT OF 2. ENTRIES
N AS

BRANCHADDRESS

ibits
5A

U-BHT OF ENTRIES
N--

SPLITBRANCH
HISTORYTABLE

FIG, IB

US 7,370,183 B2 Sheet 3 of 4 May 6, 2008 U.S. Patent

NOLOCGRd

NOLOCRd

(INIHANOI, ??

OI 29I/I NOLOICICI {{{{{S}{HIN[100 NOËLOHTAS NOILORHIGITH

U.S. Patent May 6, 2008 Sheet 4 of 4

2.
N 25

SEPARATE
USERANDOS
HISTORIES

A. 55

ACCESS READ/WRITE
HISTORIES HISTORIES

265

FIG 2

385
N 3R)

FIG 3

US 7,370,183 B2

US 7,370,183 B2
1.

BRANCH PREDICTOR COMPRISINGA
SPLT BRANCH HISTORY SHIFT REGISTER

PRIORITY CLAIM

This application claims the benefit of priority under 35
U.S.C. S 119(e) to U.S. Provisional Patent Application Ser.
No. 60/462.513, titled “Branch Prediction Apparatus, Sys
tems, and Methods, filed on Apr. 11, 2003, incorporated
herein by reference in its entirety.

STATEMENT OF GOVERNMENT RIGHTS

The invention was made, at least in part, with a grant from
the Government of the United States of America (grant NSF
EIA-9807 112 from the National Science Foundation). The
Government may have certain rights in the invention.

TECHNICAL FIELD

Various embodiments described herein relate generally to
program execution, including apparatus, systems, and meth
ods used to predict the outcome of branch operations.

BACKGROUND INFORMATION

Computer system performance may be highly dependent
on associated memory system operational efficiency. For
example, processing that stalls when data is unavailable can
render results at an unacceptably slow rate. Some micro
processors provide aggressive Support for Instruction level
Parallelism (ILP) and have deep pipelines to keep cycle
times low. However, the actual level of ILP and pipelining
performance delivered may depend on the accuracy of
branch prediction; mispredictions can stall/squash the pipe
line.
Many applications include a significant Operating Sytem

(OS) component, which can also affect control flow transfer
(i.e., branching) in the execution environment. For example,
exception-driven, intermittent invocation of OS code may
significantly increase branch misprediction in both user and
OS (e.g., kernel) code operating contexts. Thus, there is a
need to improve the accuracy of program branch prediction
mechanisms, especially for systems having a significant OS
system component, and/or systems using pipelined proces
SOS.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A, 1B, and 1C are block diagrams of apparatus
and systems according to various embodiments;

FIG. 2 is a flow chart illustrating several methods accord
ing to various embodiments; and

FIG. 3 is a block diagram of an article according to
various embodiments.

DETAILED DESCRIPTION

For the purposes of this document, the following defini
tions may be observed:
Branch History Information—can be information stored in a

branch history shift register or table; Branch History
Table—may contain branch history information and may
be used to make predictions with respect to appropriate
branches for program execution; Operating Context—can
include an operating system context (e.g., a kernel con
text), a user context, and others;

5

10

15

25

30

35

40

45

50

55

60

65

2
Split Branch History Table—a branch history table that has

branch history information separated according to various
operating contexts. For example, a split branch history
table may have one area set aside to store branch history
associated with an OS context, and another area set aside
to store branch history associated with a user context;

Storage Location—may be a bit within a register, a register,
or a series of registers; may also be one or more locations
in a table, as well as one or more locations in a memory,
including volatile and nonvolatile memories; and

Transceiver—may be a device including a transmitter and a
receiver, and may be used in place of either “transmitter
or “receiver throughout this document. In addition, any
where the term transceiver is used, “transmitter and/or
“receiver may be substituted.
Evaluating the suitability of hardware for executing a

given program application, as well as with respect to OS
performance, is an ongoing process. The three Subsystems
involved—application (workload), OS, and hardware—are
constantly evolving, sometimes quite independently. In par
ticular, it is worthwhile to note the increasing importance of
the OS in emerging application environments, since the
number of times OS services are invoked by various appli
cations continues to grow.

Recent studies indicate that invoked OS operations may in
fact contribute significantly to overall application execution
time. For example, in some commercial applications (e.g.,
databases and web services), OS components have been
observed to occupy as much as 55% of the execution time.
This may occur because many applications are multi
threaded, exercising the input/output (I/O) Subsystem exten
sively. This trend is likely to continue, and various solutions
to reduce the impact of OS components on performance
have been sought.

Another aspect of the problem deals with ILP and pipe
lining performance, which may depend greatly on being able
to accurately predict the control flow of a program. Thus,
branch prediction, in addition to OS effects, has been studied
extensively. For example, branches may have biased behav
ior such that certain branches are predicted to be usually
“taken or usually “not taken”. Branch history table (BHT)
counters can exploit this behavior to predict future outcomes
for a given branch. However, when branches showing dif
ferent biases are mapped into the same entry of the predictor
table, aliased branches update BHT counters with different
directions, leading to aliasing mispredictions. OS operations
may complicate the situation. For example, the OS may
affect control flow predictability by introducing additional
user/OS branch aliasing in branch predictor tables. In some
benchmark tests, kernel code operation has been noted to
nearly double misprediction rates.
To Summarize, user/OS branch aliasing can significantly

affect (and reduce) branch prediction accuracy. In some
circumstance, this may be attributed to exception-driven and
intermittent kernel branch execution that results in BHSR
(branch history shift register) branch history information
that is inaccurate. Moreover, user and kernel branches may
have a different bias distribution, which in turn spreads
user-kernel branch aliasing references across a wide range of
BHT entries. These observations motivate the need for
OS-aware branch prediction techniques.
To discover a mechanism that may alleviate the destruc

tive impact of OS branch execution on branch predictability,
consider that during the initial period of a context switch,
both user and kernel history patterns may coexist in history
capture structures. In Gshare (and other correlation based
predictors), shift registers (e.g., BHSRS) may operate to

US 7,370,183 B2
3

capture correlations between branches and/or branch history
tables (BHTs). One solution to the challenges described may
be to use separate shift registers to individually keep track of
branch correlation; another solution may be to utilize sepa
rate BHTS.

While the OS-aware mechanisms described herein may be
illustrated in the context of a Gshare predictor for reasons of
simplicity, it should be noted that various embodiments can
be applied to other correlation-based predictors as well. In
fact, the various embodiments disclosed herein may provide
Solutions that one can incorporate into almost any predictor
mechanism to alleviate the impact of the OS activity on
control flow prediction. For more information on Gshare
branch predictors, as well as other prediction mechanisms,
please see the following, incorporated herein by reference in
their entirety: Combining Branch Predictors, S. McFarling,
WRL Technical Note TN-36, Digital Equipment Corpora
tion, June, 1993; and The Interaction of Architecture and
Operating System Design, T. E. Anderson, et al., Proceed
ings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Sys
tems, pgs. 108-120, 1991.

Thus, various embodiments described herein may advo
cate separating branch prediction logic for user and kernel
modes to reduce, and perhaps eliminate interference
between the two. In some embodiments, this approach may
be integrated into existing prediction schemes without sig
nificant logic complication.

FIGS. 1A, 1B, and 1C are block diagrams of apparatus
and systems according to various embodiments. FIG. 1A
illustrates some embodiments of the invention using a split
or separated correlation history approach. FIG.1B illustrates
Some embodiments of the invention utilizing a split corre
lation history approach, combined with a split or separated
BHT. FIG. 1C illustrates some embodiments of the inven
tion where an OS-Aware Gshare branch predictor having a
split BHSR and split BHT is substituted for various com
ponents of the Multi-Hybrid, Agree, and Bi-Mode branch
prediction apparatus.

In some embodiments, the apparatus 100 may comprise a
first storage location 114 to store branch history information
118 associated with a first operating context 122 (e.g., an OS
context, including a kernel context) selected from a plurality
of operating contexts 128. The plurality of operating con
texts 128 may in turn be selected to form a preselected
grouping of operating contexts 128. In some embodiments,
the apparatus 100 may also have a second storage location
132 to store branch history information 134 associated with
a second operating context 136 (e.g., a user context) selected
from the plurality of operating contexts 128.

Referring specifically to FIG. 1B, it is to be noted that the
apparatus 100 may also make use of a split BHT 137
including a first storage location 138 to store branch history
information 118 associated with the first operating context
122 (e.g., an OS context, including a kernel context) selected
from a plurality of operating contexts 128 (e.g., a preselected
plurality). The apparatus 100 may also include a second
storage location 139 as a portion of a split BHT137 to store
branch history information 134 associated with a second
operating context 136 (e.g., a user context) selected from the
plurality of operating contexts 128. In either case (i.e.,
considering the apparatus 100 in FIG. 1A or 1B), the first
and second storage locations 114, 138 and 132, 139, respec
tively, may comprise a single location or a set of locations,
Such as a register, a memory location, a group of registers,
and/or a group of memory locations, or combinations
thereof.

5

10

15

25

30

35

40

45

50

55

60

65

4
Thus, in Some embodiments, and apparatus 100 may

comprise one or more first storage locations 114 to store
branch history information 118 associated with a first oper
ating context 122, and one or more second storage locations
132 to store branch history information 134 associated with
a second operating context 136. The first and second oper
ating contexts 122, 136 may be selected from a preselected
plurality or grouping of operating contexts 128. For
example, in some embodiments, the preselected plurality of
operating contexts 128 may include at least one of a user
context, an operating system context, and other contexts.

In some embodiments, the first and second storage loca
tions 114, 132 may be included in first and second desig
nated portions of a memory 141, respectively. The desig
nated portions of the memory 141 may, or may not overlap.
As noted previously, the first and second storage locations
114, 132 may each comprise one or more registers, as well
as one or more bits within a single register.

In some embodiments, the apparatus 100 may include a
BHT 137 having a dynamically switched input 143 coupled
to at least one bit included in the first storage location and
at least one bit included in the second storage location. The
dynamically Switched input 143 can be switched according
to an indication of the current operating context included in
the preselected plurality of operating contexts provided by a
processor status register (PSR) 147. The split BHT137 may
also be capable of receiving an indication 151 of a selected
branch address modified by the indication of the current
operating context.

In some embodiments, the apparatus 100 may include a
split BHT 137 having a first portion to receive at least one
bit included in the first storage location 114 and a second
portion to receive at least one bit included in the second
storage location 132. The apparatus 100 may also include a
PSR 147 to provide an indication of a current operating
context including the preselected plurality of operating
contexts 128 to a prediction resource coupled to the split
BHT 137.

In some embodiments, an apparatus 100 may include a
first storage location (or a first set of storage locations) 114
to store branch history information associated with an
execution of a plurality of instructions, such as operating
system instructions; and a second storage location (or a
second set of storage locations) 132 to store branch history
information associated with an execution of a plurality of
instructions. Such as user instructions. The first and second
storage locations 114, 132 may be located in a single
physical location, or in separate locations.
The first storage location (or first set of storage locations)

114 may be used to store branch history information asso
ciated with a first operating context 122, and the second
storage location (or second set of storage locations) 132 may
be used to store branch history information associated with
a second operating context 136. The first and second oper
ating contexts 122, 136 may be selected from any number of
contexts. In some embodiments, the apparatus 100 may
include a BHT137 having a dynamically switched input 143
coupled to the first storage location 114 and the second
storage location 132. Other embodiments may be realized.

For example, a system 140 may include an apparatus 100,
similar to or identical to the apparatus 100 described previ
ously, as well as a processor 142 to execute a plurality of
instructions within a first operating context 122 and a second
operating context 136, each selected from the plurality of
operating contexts 128. The first storage location 114 may be
used to store branch history information associated with the
first operating context 122, and the second storage location

US 7,370,183 B2
5

132 may be used to store branch history information asso
ciated with the second operating context 136.

In some embodiments, the system 140 may include a
memory 141 coupled to the processor 142, the memory 141
including the first storage location 114 and the second
storage location 132. The memory 141, in turn, may include
one or more shift registers. The system 140 may include a
PSR 147 (e.g., included in the processor 142) to provide an
indication of a current operating context included in the
plurality of operating contexts. The system 140 may also
include a split BHT 137 including the first storage location
114 and the second storage location 132, wherein the split
BHT 137 is coupled to the processor 142.
The processor 142 may in turn comprise a microproces

Sor, a digital computer, a digital signal processor, or a hybrid
(digital/analog) computer. The processor 142 may be
coupled to a network adapter 144 and/and or a wireless
transceiver 148. The system 140 may include multiple
processors 142, including one or more pipelined processors.
The transceiver 148 may be coupled to an energy conduit
149, including any type of device or apparatus having the
capability to transmit and/or receive energy to and/or from
space. Examples of Such energy conduits include antennas,
infra-red transmitters, infra-red receivers, photo-emitters
(e.g., light emitting diodes), photo-receptors (e.g., a photo
cell), and charge-coupled devices, among others.

In some embodiments, a device 150. Such as a computer,
a memory system, a magnetic or optical disk, some other
storage device, and/or any type of electronic device or
system, may comprise a machine-accessible medium Such as
a memory 160 (e.g., a memory including an electrical,
optical, or electromagnetic conductor) having associated
data 170 (e.g. computer program instructions), which when
accessed, results in a machine performing various activities.
These activities may include, for example, accessing branch
history information associated with a current operating
context from a plurality of designated branch history storage
locations, wherein each one of the plurality of designated
branch history storage locations is associated with a corre
sponding plurality of operating contexts including the cur
rent operating context.

It is noted that in the apparatus 100 and system 140
described herein may be implemented in the form of a
Gshare predictor. The disclosed embodiments can be applied
to other correlation-based predictors as well. For example, a
Gshare predictor with split correlation history shift registers
(e.g., a split BHSR predictor) 152 can be seen in FIG. 1A.
The split BHSR predictor 152 may operate so that two
dedicated BHSRs (i.e., U-BHSR for user context and
K-BHSR for kernel context) are used to gather branch
correlation patterns and to generate BHT indexing. By using
K-BHSR for kernel branches, the split BHSR predictor may
overcome the loss of branch history patterns in kernel mode.
The split BHSR predictor 152 may operate to dynamically
switch between BHSRs (e.g., the U-BHSR and the
K-BHSR) when a context switch occurs, preventing BHT
indexing ambiguity during the initial stages of a context
switch.
The proposed split BHSR predictor 152 aims to preserve

accurate BHT counter indexing during a context switch.
However, user/OS aliasing may still occur when user and
kernel branches have the same XORed (exclusive-ORed)
global history pattern, but opposite biases. Due to different
branch bias distributions, user and kernel branches can
update BHT counters in different manners. To reduce
destructive user/OS branch aliasing in BHT, the split BHT
137 for user and kernel code, which yields a split BHT

5

10

15

25

30

35

40

45

50

55

60

65

6
predictor 154, can be used. This split BHT predictor 154
may reduce or even eliminate destructive user/OS aliasing
by using separate correlation and history information with
respect to user mode and kernel mode. It is also observed
that when BHTs are split into user and kernel parts, the
kernel BHT can be smaller than the user BHT because there
may be fewer active branch sites in kernel.

Separating kernel branches can be accomplished at run
time by using the PSR 147. In some embodiments, a set of
PSR bits associated with a microprocessor may be used to
record and identify kernel-user execution mode or privilege
level. For example, a MIPS RI 10000 processor may use the
KSU field in its PSR to identify the current execution mode,
and the Intel(R) IA-64 Itanium processor may use its PSR.cp1
field to determine one of four privilege levels (e.g., levels
0-3).
The corresponding PSR field can be used to select the

appropriate predictor. For example, at runtime, instructions
from a fetch unit may be filtered into an active part of the
prediction resource (e.g., user or kernel, depending on the
execution mode).
As mentioned previously, OS-aware prediction tech

niques may be integrated with other predictors. For example,
Multi-Hybrid, Agree, and Bi-Mode schemes do contain
mechanisms tailored for branches with heterogeneous char
acteristics and/or de-aliasing. All these predictors may con
tain a Gshare predictor and/or Gshare indexing. To integrate
the proposed mechanisms, a conventional Gshare compo
nent may be replaced with the proposed OS-aware (split
BHSRG share) split BHSR predictor 152 and/or the (split
Gshare) split BHT predictor 154. For more information on
the Multi-Hybrid, Agree, and Bi-Mode prediction schemes,
please see the following references, incorporated herein by
reference in their entirety: Using Hybrid Branch Predictors
to Improve Branch Prediction Accuracy in the Presence of
Context Switches, M. Evers et al., Proceedings of the 23rd
Annual International Symposium on Computer Architec
ture, pgs. 3-11, 1996: The Agree Predictor: A Mechanism for
Reducing Negative Branch History Interference, E. Sprangle
et al., Proceedings of the 24th Annual International Sym
posium on Computer Architecture, pgs. 284-291, 1997; and
The Bi-Mode Branch Predictor, C. C. Lee et al., Proceedings
of the 30th Annual IEEE/ACM International Symposium on
Microarchitecture, pgs. 4-13, 1997.
Some embodiments, such as those having a split BHSR

predictor 152 (see FIG. 1A), may be constructed so as to
separate the BHSRs. In some embodiments, including those
having a split BHT predictor 154 (see FIG. 1B), partitioning
of the BHT 137 between user code and OS code or kernel
code may occur statically, or may happen dynamically (e.g.,
as needed).
The apparatus 100, storage locations 114, 132, 138, 139,

branch history information 118, 134, operating contexts 122,
136, plurality of operating contexts 128, split BHT 137,
system 140, memories 141, 160, processor 142, input 143,
network adapter 144, PSR 147, transceiver 148, energy
conduit 149, device 150, indication 151, split BHSR pre
dictor 152, split BHT predictor 154, and data 170 may all be
characterized as “modules' herein. Such modules may
include hardware circuitry, and/or one or more processors
and/or memory circuits, software program modules, includ
ing objects and collections of objects, and/or firmware, and
combinations thereof, as desired by the architect of the
apparatus 100 and the system 140, and as appropriate for
particular implementations of various embodiments.

It should also be understood that the apparatus and
systems of various embodiments can be used in applications

US 7,370,183 B2
7

other than desktop computers and workstations, and thus,
the various embodiments disclosed herein are not to be so
limited. The illustrations of an apparatus 100 and system 140
are intended to provide a general understanding of the
structure of various embodiments, and they are not intended
to serve as a complete description of all the elements and
features of apparatus and systems that might make use of the
structures described herein.

Applications that may include the novel apparatus and
systems of various embodiments include electronic circuitry
used in high-speed computers, communication and signal
processing circuitry, modems, processor modules, embed
ded processors, data Switches, and application-specific mod
ules, including multilayer, multi-chip modules. Such appa
ratus and systems may further be included as Sub
components within a variety of electronic systems, such as
televisions, cellular telephones, personal computers, per
Sonal digital assistants (PDAs), workstations, radios, video
players, vehicles, and others.

FIG. 2 is a flow chart illustrating several methods accord
ing to various embodiments. For example, in Some embodi
ments of the invention, a method 211 may include separating
branch history information according to various operating
contexts at block 215. Such as separating branch history
information according to an OS context (e.g., a kernel
context) and a user context at block 225. Other operating
contexts may also be used as a basis for separation.
The method 211 may also include determining the current

operating context from among various operating contexts,
including a preselected grouping of operating contexts, at
block 235. For example, the method 211 may include
determining the current operating context based on a type of
instruction previously executed.
The method 211 may continue with accessing branch

history information associated with the current operating
context from a plurality of designated branch history storage
locations (e.g., registers and/or BHTs, or a split BHT),
wherein each one of the plurality of designated branch
history storage locations may be associated with a corre
sponding plurality of operating contexts (e.g., OS contexts,
user contexts, etc.) including the current operating context,
at block 245. Thus, for example, the method 211 may
include storing branch history information associated with a
first operating context included in the plurality of operating
contexts in a first location (or set of locations) included in
the plurality of designated branch history storage locations.
The method 211 may also include storing branch history
information associated with a second operating context
included in the plurality of operating contexts in a second
location (or set of locations) included in the plurality of
designated branch history storage locations. The first and
second locations may be included in a pair of registers. In
Some embodiments, several (e.g., each) of the plurality of
designated branch history storage locations may be included
in a Substantially contiguous series of memory locations
forming an addressable memory block.

Accessing the histories may include reading (e.g., retriev
ing) and/or writing (e.g., storing) the histories at block 255.
The method 211 may also include predicting branches at
block 265. Thus, for example, the method 211 may include
determining a course of action based on a condition of
branch history information associated with a selected con
text, further associated with a selected one of the plurality of
designated branch history storage locations.

In some embodiments, a method 211 may comprise
separating a first branch history from a second branch
history at block 225. The method 211 may include accessing

5

10

15

25

30

35

40

45

50

55

60

65

8
the first branch history (e.g., associated with a first operating
context, perhaps including a plurality of user instructions),
and accessing a second branch history (e.g., associated with
a second operating context, perhaps including the execution
of a plurality of operating system instructions) at block 245.

In some embodiments, the method 211 may further
include predicting a branch within the first operating context
based upon information stored in the first branch history at
block 265. The method 211 may also include predicting a
branch within the second operating context based upon
information stored in the second branch history at block 265.

In some embodiments, the method 211 may include
separating a first branch history associated with a first
operating context from a second branch history associated
with a second operating context at block 215. The method
211 may also include predicting a branch within a first
operating context using a first strategy, and predicting a
branch within a second operating context using a second
strategy at block 265. In some embodiments, the first
operating context may comprise a user context, and the
second operating context may comprise an operating system
context. The first strategy may include accessing a branch
history associated with a user context, and the second
strategy may include accessing a branch history associated
with an operating system context.

It should be noted that the methods described herein do
not have to be executed in the order described, or in any
particular order. Moreover, various activities described with
respect to the methods identified herein can be executed in
serial or parallel fashion. For the purposes of this document,
the terms “information' and “data” may be used inter
changeably. Information, including parameters, commands,
operands, and other data, can be sent and received in the
form of one or more carrier waves.
Upon reading and comprehending the content of this

disclosure, one of ordinary skill in the art will understand the
manner in which a Software program can be launched from
a computer-readable medium in a computer-based system to
execute the functions defined in the software program. One
of ordinary skill in the art will further understand the various
programming languages that may be employed to create one
or more software programs designed to implement and
perform the methods disclosed herein. The programs may be
structured in an object-orientated format using an object
oriented language Such as Java or C++. Alternatively, the
programs can be structured in a procedure-orientated format
using a procedural language. Such as assembly or C. The
Software components may communicate using any of a
number of mechanisms well-known to those skilled in the
art, such as application program interfaces or inter-process
communication techniques, including remote procedure
calls. The teachings of various embodiments are not limited
to any particular programming language or environment,
including Hypertext Markup Language (HTML) and Exten
sible Markup Language (XML). Thus, other embodiments
may be realized.

FIG. 3 is a block diagram of an article 385 according to
various embodiments, such as a computer, a memory sys
tem, a magnetic or optical disk, some other storage device,
and/or any type of electronic device or system. The article
385 (similar to or identical to the device 150 of FIGS. 1A
and 1B) may comprise a processor 387 (similar to or
identical to the processor 142 of FIGS. 1A and 1B) coupled
to a machine-accessible medium such as a memory 389
(e.g., a memory including an electrical, optical, or electro
magnetic conductor, similar to or identical to the memory
141 of FIGS. 1A and 1B) having associated information 391

US 7,370,183 B2

(e.g., computer program instructions, and/or other data,
similar to or identical to the data 170 of FIGS. 1A and 1B)),
which when accessed, results in a machine (e.g., the pro
cessor 142, 387) performing Such actions as accessing
branch history information associated with a current oper
ating context from a plurality of designated branch history
storage locations, wherein each one of the plurality of
designated branch history storage locations is associated
with a corresponding plurality of operating contexts includ
ing the current operating context.

Other actions may include determining the current oper
ating context based on a type of instruction previously
executed, as well as storing branch history information
associated with a first operating context included in the
plurality of operating contexts in a first location included in
the plurality of designated branch history storage locations,
and storing branch history information associated with a
second operating context included in the plurality of oper
ating contexts in a second location included in the plurality
of designated branch history storage locations. Several (e.g.,
each one) of the plurality of designated branch history
storage locations may be included in a Substantially con
tiguous series of memory locations forming an addressable
memory block.

Further actions may include predicting a branch within a
first operating context using a first strategy, and predicting a
branch within a second operating context using a second
strategy. Additional actions may include separating a first
branch history associated with the first operating context
from a second branch history associated with the second
operating context. In some embodiments, the first operating
context may include a user context, and the second operating
context may include an operating system context. As noted
previously, the first strategy may include accessing a branch
history associated with a user context, and the second
strategy may include accessing a branch history associated
with an operating system context.

Implementing the apparatus, systems, and methods
described herein may result in reducing the amount of
user/OS branch aliasing experienced during execution of
various applications without adding extra hardware for
branch de-aliasing. As a consequence, the number of
resources consumed may be reduced.

For example, testing has demonstrated the potential, using
a 32,000 entry BHT, of an OS-aware Gshare-based split
BHSR predictor and split BHT predictor to reduce mispre
diction by 34% and 22%, respectively. OS-aware split
BHSR and split BHT Multi-Hybrid, Agree and Bi-Mode
predictors may yield up to 23%, 27% and 9% prediction
accuracy improvement respectively. Other advantages that
can be obtained by implementing various embodiments may
be observed by referring to Understanding and Improving
Operating System Effects in Control Flow Prediction, by Li,
et al., Proceedings of the Tenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, October 2002, incorporated herein by
reference in its entirety.
The accompanying drawings that form a part hereof show

by way of illustration, and not of limitation, specific embodi
ments in which the subject matter may be practiced. The
embodiments illustrated are described in sufficient detail to
enable those skilled in the art to practice the teachings
disclosed herein. Other embodiments may be utilized and
derived therefrom, such that structural and logical substitu
tions and changes may be made without departing from the
scope of this disclosure. This Detailed Description, there
fore, is not to be taken in a limiting sense, and the scope of

10

15

25

30

35

40

45

50

55

60

65

10
various embodiments is defined only by the appended
claims, along with the full range of equivalents to which
Such claims are entitled.

Thus, although specific embodiments have been illus
trated and described herein, it should be appreciated that any
arrangement calculated to achieve the same purpose may be
substituted for the specific embodiments shown. This dis
closure is intended to cover any and all adaptations or
variations of various embodiments. Combinations of the
above embodiments, and other embodiments not specifically
described herein, will be apparent to those of skill in the art
upon reviewing the above description.
The Abstract of the Disclosure is provided to comply with

37 C.F.R.S 1.72(b), requiring an abstract that will allow the
reader to quickly ascertain the nature of the technical dis
closure. It is submitted with the understanding that it will not
be used to interpret or limit the scope or meaning of the
claims. In addition, in the foregoing Detailed Description, it
can be seen that various features are grouped together in a
single embodiment for the purpose of streamlining the
disclosure. This method of disclosure is not to be interpreted
as reflecting an intention that the claimed embodiments
require more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive
Subject matter lies in less than all features of a single
disclosed embodiment. Thus the following claims are
hereby incorporated into the Detailed Description, with each
claim standing on its own as a separate embodiment.
What is claimed is:
1. A branch prediction apparatus, comprising:
an agree branch predictor having at least one split branch

history shift register comprising at least a first branch
history shift register to store correlated branch history
information associated with an execution of a plurality
of user instructions, and at least a second branch history
shift register to store correlated branch history infor
mation associated with an execution of a plurality of
operating system instructions, wherein the first branch
history shift register and the second branch history shift
register are separated.

2. The branch prediction apparatus of claim 1, further
comprising:

a Gshare branch predictor comprising the first branch
history shift register and the second branch history shift
register.

3. A branch prediction apparatus, comprising:
an agree branch predictor having at least one split branch

history Gishare branch predictor comprising a first
branch history shift register to store correlated branch
history information associated with a first operating
context selected from a preselected plurality of oper
ating contexts, and a second branch history shift reg
ister included in the Gshare branch predictor, wherein
the second branch history shift register is to store
correlated branch history information associated with a
second operating context selected from the preselected
plurality of operating contexts.

4. A branch prediction apparatus, comprising:
a multi-hybrid branch predictor having at least one split

branch history shift register comprising at least a first
branch history shift register to store correlated branch
history information associated with an execution of a
plurality of user instructions, and at least a second
branch history shift register to store correlated branch
history information associated with an execution of a
plurality of operating system instructions, wherein the

5.

US 7,370,183 B2
11

first branch history shift register and the second branch
history shift register are separated.
The branch prediction apparatus of claim 4, further

comprising:
a Gshare branch predictor comprising the first branch 5

6.

history shift register and the second branch history shift
register.
A branch prediction apparatus, comprising:

a multi-hybrid branch predictor having at least one split

a

branch history Gishare branch predictor comprising a
first branch history shift register to store correlated
branch history information associated with a first oper
ating context selected from a preselected plurality of
operating contexts, and a second branch history shift
register included in the Gshare branch predictor,
wherein the second branch history shift register is to
store correlated branch history information associated
with a second operating context selected from the
preselected plurality of operating contexts.

. A branch prediction apparatus, comprising:
bi-mode branch predictor having at least one split
branch history shift register comprising at least a first
branch history shift register to store correlated branch
history information associated with an execution of a
plurality of user instructions, and at least a second

10

15

12
branch history shift register to store correlated branch
history information associated with an execution of a
plurality of operating system instructions, wherein the
first branch history shift register and the second branch
history shift register are separated.

8. The branch prediction apparatus of claim 7, further
comprising:

a Gshare branch predictor comprising the first branch
history shift register and the second branch history shift
register.

. A branch prediction apparatus, comprising:
bi-mode branch predictor having at least one split
branch history Gishare branch predictor comprising a
first branch history shift register to store correlated
branch history information associated with a first oper
ating context selected from a preselected plurality of
operating contexts, and a second branch history shift
register included in the Gshare branch predictor,
wherein the second branch history shift register is to
store correlated branch history information associated
with a second operating context selected from the
preselected plurality of operating contexts.

