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Turbulence raises many issues such as fundamental questions in mathe-

matics, continuum mechanics in physics and various industrial problems. Tur-

bulence is characterized as a state of fluid flow that is influenced strongly by

nonlinear processes compared to dissipation. Turbulence of fluids with strong

rotation is of interest in turbo-machinery and geophysical flows that occur

in the earth’s atmosphere and oceans. Strong rotation can bring a turbulent

system into a quasi two-dimensional (2D) turbulence.

Rotation causes anisotropic turbulent motions on large scales. However,

on small scales the turbulence is believed to be homogeneous and isotropic

and that fluid motions are independent of rotation and large-scale topography.

Despite this general belief, in our experiments we find that the energy spectrum

in a rotating turbulent flow strongly depends on large-scale topography and a
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rotation.

A 2D fluid system with forcing and dissipation neglected has a Hamil-

tonian structure with conserved quantities. These conserved quantities con-

strain the dynamics of 2D fluid. For a long time, it has been quite mysterious

why only quadratic conserved quantities (energy and the square of vorticity)

should be important in a statistical mechanical description of turbulence, es-

pecially, in 2D turbulence, where there are an infinite number of conserved

quantities (the so-called Casimir invariants). Previous models of statistical

mechanics of 2D turbulence have not explicitly taken into account statistical

independence of macroscopic subparts, and consequently all or most of the

conserved quantities have been used. However, experimental results support

the use of only quadratic conserved quantities. Because of statistical inde-

pendence, we show that only quadratic conserved quantities are crucial in

statistical mechanics. In addition, we propose a statistical mechanical theory

based on new coordinates that define statistically independent subsystems,

and we compare the theory with experiments.

Hamiltonian and action principles elucidate the physics in various fields,

from quantum to plasma physics. Such a formulation has been used in plasma

physics for the Vlasov-Poisson system to obtain fluctuation spectra. For a

fluid, a similar process is possible. In this thesis, we use Hamiltonian principles

to formulate the analogous fluctuation spectrum in the fluid case and compare

it with experiments.
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Chapter 1

Introduction

Turbulence is an interesting subject, both because of its importance

for applications and because of the fundamental physics involved. It is usu-

ally characterized by the Reynolds number, which represents the relative size

of the nonlinear term to the dissipative term. Two systems with the same

Reynolds number and experimental geometry are thus argued to be the same

by rescaling properly. Flows with high Reynolds number are interpreted as

a dissipative dynamical system with a large number of degrees of freedom.

So, the flow is complex and chaotic in both space and time. Most symme-

tries (such as time-reversal, spatial symmetries, and so on) are broken at high

Reynolds number. However, the statistics of a flow become steady. Even

though large scale statistics depend on the geometry of the particular experi-

ment, small scale fluctuations can be statistically isotropic and homogeneous,

and thus symmetries can be statistically restored. In the statistical theory of

homogeneous and isotropic turbulence, statistical universal features have been

proposed and observed.

The experiment discussed in this thesis is designed to represent a plane-
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tary flow. Rotation and a sloped bottom mimic the revolution of a planet and

the variation of the Coriolis force with latitude, respectively. Due to rapid ro-

tation, the Taylor-Proudman theorem indicates that a flow becomes quasi-two

dimensional (quasi-2D). To characterize and investigate turbulence, we use

two sets of experimental measurements. One is the measurement of velocity

at one point with high temporal resolution. The other is the measurement of

velocity fields in a whole domain with low temporal resolution.

An inviscid two-dimensional (2D) flow has Hamiltonian structure and

satisfies Liouville’s theorem of constant volume in time. This suggests the

application of statistical mechanics to 2D flows. Equilibrium statistical me-

chanics describes equilibrium states of a system with a large number of ele-

ments and is used to obtain how a system depends on temperature and other

parameters. Our system can be interpreted as a macroscopic manifestation

of microscopic vortices. When a system is in a steady state, it will choose

one of the possible equilibrium states characterized by temperature and other

parameters. Selecting conserved quantities is the crucial step in statistical

mechanics.

In classical statistical mechanics, usually only quadratic quantities ex-

ist and are used. However, in 2D turbulence there are an infinite number

of conserved quantities, the so-called Casimir invariants
∫

|ω|ndx, where ω

is the vorticity [186]. We show that only quadratic invariants are additive

and statistically independent among macro-cells, while other invariants are

not. Previous applications of statistical mechanics to 2D flows do not take

into account statistical independence among macro-cells. In Chap. 5, we pro-

pose a statistical mechanics based on new coordinates that satisfies statistical

independence. Also, we explore the use of nonextensive entropy, instead of

2



extensive entropy in Chap. 6.

The fluctuation of a physical quantity can be described by the Hamil-

tonian structure of 2D flow together with statistical mechanics. We describe

calculation of general phase space fluctuations in continuous media such as

fluid systems, plasma systems, and so on. Following a novel way to calculate

the phase space fluctuation in a plasma system with a linearized Hamiltonian,

we expand this method in order to describe a fluid system. For a fluid system,

the phase space fluctuations are the fluctuations of vorticity. Details of this

are given in Chap. 7. These fluctuations might lead to self-similar statistics in

turbulence.

To characterize turbulence, the statistics of physical variables or energy

spectra are often used. First, most scales contain the self-similar statistics

of measured quantities such as velocity, temperature, and so on. Those self-

similar turbulent statistics can be described by many different methods. In

the study of the statistics of velocity differences, two methods are of interest;

one was proposed by Kolmogrov and Castaing [106, 47] and the other was by

Beck and Cohen [26]. The two methods are considered to be different since

they are based on the different theories. In Chap. 8, we discuss how these two

methods are related.

The energy spectrum is important for representations of the dynamical

features of turbulence. A turbulent flow has eddies with a spectrum of sizes

and with a certain scaling law. This scaling law persists until a system has a

constant energy transfer rate across a certain scale size. Rather than the well-

known Kraichnan’s energy spectrum (E(k) ∼ k−5/3 if k is less than the forcing

wavenumber and E(k) ∼ k−3 if k is larger than the forcing wavenumber),

an anomalous spectrum is observed in our experiments. The full range of

3



the energy spectrum is discussed in Chap. 9, where experimental results are

presented.
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Chapter 2

Review of Theory and

Literature

Theoretically, one can establish the equation of motion for fluid motions

based on Newton’s laws. However, the completed equation of motion is hard to

solve due to the closure problem. Therefore, various approximated equations

are used in many applications. Each approximated equation is used for differ-

ent applications (See the section 2.1). Experimentally, there are two general

ways to analyze the flow. One is to study the statistics. Usually, the velocity

statistics is feasible to be obtained in turbulent flows. The other is energy

spectrum which contains the spatial information. Details are discussed in the

section 2.2. Hamiltonian formulation enables us to understand the structure

in equations and to find the similarity between the fluid and other continuum

systems (such as plasma). The basic property of the Hamiltonian structure

in the fluid is discussed in the section 2.3. Once the Hamiltonian structure is

known and a system consists of many fluid elements, the statistical mechanics

5



emerges naturally. Historically, there are many attempts to use statistical me-

chanics to describe the turbulence motion. Short descriptions and its failure

and success are given in the section 2.4.

2.1 Various Approximations

We can study hydrodynamics in the various levels of the approximated

equation. The full description of hydrodynamics is difficult to handle. So,

many scientists use physically relevant assumptions to simplify the equation

of motion and analyze the fluid motion explicitly. From now, we denote the

vector field as the bold font such as v := (vx, vy, vz) at a point x := (x, y, z).

2.1.1 Navier-Stokes Equation

For a Newtonian fluid, when density does not change, Navier-Stokes

equation[154] from Newton’s second law to a fluid element for an incompress-

ible fluid is

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P ′ + ν∇2v + Fv (2.1)

∇ · v = 0 (2.2)

where Fv is the external acceleration, P ′ is the pressure, ρ is the density

and ν is the kinematic viscosity. The kinematic viscosity depends on the

molecular property of the fluid. At 20 oC, for water, ν is 0.01 cm2/cm−1 and

0.15 cm2/cm−1 for air. In the case of rotating system and constant density,

6



the governing equation in the rotating frame will be

∂v

∂t
+ (v · ∇)v = −1

ρ
∇(P ′ +

ρΩ2r2

2
− ρgz) + ν∇2v − 2Ω× v + fv

= −1

ρ
∇P + ν∇2v − 2Ω× v + fv (2.3)

∇ · v = 0 (2.4)

where fv is an acceleration by external forcing, −2Ω×v is Coriollis acceleration,

∇(ρgz) is the gradient of the gravitational potential,∇(ρΩ
2r2

2
) is the centrifugal

acceleration and the redefined pressure is P = P ′+ ρΩ2r2

2
−ρgz. Equation (2.3)

and (2.4) together with initial boundary conditions are complete to solve since

there are four unknown functions (vx, vy, vz, P ) and four equations (3 in Eq.

(2.3) and 1 in Eq. (2.4)). However, the uniqueness and existence of solution

in Eq. (2.3) and (2.4) are an open question. Also, the above equations have

a closure problem in statistical sense. For example, if one tries to write down

an equation for correlation of second order as
∫

vi(x)vj(x
′)dxdx′, then the

third-order correlation is needed, and so on. This iteration never ends. In the

kinetic theory, it is analogue to BBGKY hierarchy [221].

The curl of the velocity field is known as the vorticity ω. Taking the

curl of Eq. 2.1 and using the incompressibility condition as in Eq. (2.2) leads

to
∂ω

∂t
+ (v · ∇)ω + (ω · ∇)v = ν∇2ω + Fω , (2.5)

where Fω is the vorticity forcing. In the rotating turbulence, the Coriolis force

term disappears when we take the curl in the Navier-Stokes equation. The

second term represents the advection of the vorticity by the velocity. The

third term shows the vortex stretching, which is the crucial process to transfer

the energy in turbulence. However, this third term is absent in two dimensional

flow.
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2.1.2 Inviscid Model

To study some statistical properties, we may not need a full under-

standing of Navier-Stokes equation. First approximation model is the “invis-

cid model ”. Small viscous effect and forcing make this model efficient. The

inviscid model is written as

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P − 2Ω× v . (2.6)

Eq. (2.6) still contains a nonlinear term ((v · ∇)v). We might expect to learn

some nonlinear behaviors of flow from this model. Taking the curl to Eq. (2.6),

we obtain the vorticity equation,

∂ω

∂t
+ (v · ∇)ω = ω · ∇v . (2.7)

For the two dimensional flow, we introduce a scalar function which can be

related with two-dimensional velocity (v⊥ := (vx, vy)) and one-dimensional

vorticity (ω = ω·êz) in a easier way. The vanishing of the divergence of velocity

(∇⊥ · v⊥) in the two-dimensional plane enables us to define a streamfunction

ψ(x⊥) (where x⊥ is the position on a two dimensional plane ) such that

v⊥ = êz ×∇⊥ψ =

(

∂ψ

∂y
,−∂ψ

∂x

)

. (2.8)

Here, ẑ is the perpendicular direction to the two-dimensional plane. Hence,

the vorticity equation in two-dimensional space is given as

∂ω

∂t
+ (v⊥ · ∇⊥)ω = 0 . (2.9)

It leads to the conservation of vorticity. Along the trajectories of fluid particles,

the vorticity is constant without any forcing and dissipation. Sometimes, this
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property of vorticity equation is explained as relocation of vorticity in a sense

that fluid particles are moving with a fixed vorticity.

Now, let’s consider the two-dimensional flow in a thin spherical shell

(e.g. the atmosphere on the planets). The relevant angular velocity due to

the rotation is the component of Ω normal to the surface, 2Ω sin θ. Kelvin’s

theorem shows that the circulation, the integral of vorticity over the area is

conserved. With the local vorticity of the fluid, the circulation over the small

area A is constant such as

A(ω + 2Ω sin θ) = const. . (2.10)

Columns of fluid of the area A and the depth h in the two-dimensional incom-

pressible flow have the property as [63, 165]

ω + 2Ω sin θ

h
= const. . (2.11)

It implies that the vorticity changes with θ and h to satisfy Eq. (2.11). In a

narrow range of θ, the potential vorticity is defined as

q = ω + 2Ω sin θ0 + βRoy , (2.12)

where y = (θ − θ0)/R, R is the radius of sphere and βRo := (2Ω cos θ0)/R

shows the variation of Coriolis force with θ direction.

In a laboratory experiment with a sloping bottom, the height of fluid is

given as h(r) = h0 − ηr where r is the radius and η is the slope of bottom. In

this case, the potential vorticity is defined as

q = ω + 2Ω + βRor , (2.13)

where βRo := (2Ωη)/h0 is negative if h increases radially. Therefore, the

equation of motion for an inviscid incompressible fluid with a sloping bottom
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is
∂q

∂t
+ (v⊥ · ∇⊥)q = 0 . (2.14)

This conservation of potential vorticity is similar to the conservation of angular

momentum for a classical body. For example, a figure skater is spinning up

with her arms close to her body and she spins slowly down with her arms

stretched out. Similarly, when a fluid column is squeezed horizontally, its

vorticity increases to conserve the potential vorticity. In later chapters, this

equation is useful to describe flows in a system with a sloping bottom.

Later, we will show that the inviscid model has Hamiltonian structure

in the two-dimensional flow. Without the Coriolis force term, it is often called

Euler equation. The Euler equation can be derived from the kinetic theory

in the hydrodynamic limit [49]. The inviscid model is the basic equation in

approaches of the statistical mechanics.

2.1.3 Geostrophic Equation

More approximated model for a flow is the “geostrophic model ”. For

slow, steady
(

Dv
Dt

(:= ∂v
∂t

+ v · ∇v) ∼ 0
)

, inviscid (ν∇2v ∼ 0) flow, Eq. (2.3)

simplifies to
1

ρ
∇⊥P = −2Ω× v⊥ (2.15)

It expresses a balance between the Coriolis force and the pressure gradient force

perpendicular to the rotation axis. A velocity of this model can be written as

v =
1

2Ωρ
ẑ ×∇⊥P := ẑ ×∇⊥ψ . (2.16)
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If the density and Ω do not change in space, the stream function can be written

as

ψ =
P

2Ωρ
. (2.17)

It shows that lines of constant pressure are contours of stream function of

geostrophic flow.

Mathematicians and meteorologists are interested in a model between

the geostrophic model and inviscid one. It is called semi-geostrophic model.

By substituting the velocity in Eq. (2.6) by the expression in terms of the

pressure as in Eq. (2.16), we get

∇⊥
∂P

∂t
+ (∇⊥P · ∇⊥)∇⊥P = −1

ρ
∇⊥P − 2Ω× v. (2.18)

Time evolution of pressure field gives a way to predict changes of the weather.

2.1.4 Dimensional Analysis

We introduce a velocity scale U and as typical length scale L the char-

acteristic length scale of a system. We then rewrite equation Eq. (2.3) with

the Coriollis effect by using non-dimensional variables :

U2

L

∂v∗

∂t∗
+
U2

L
(v∗ · ∇∗)v∗ = −U

2

L
∇∗P ∗ +

νU

L2
∇∗2v∗ − 2UΩêz × v∗ . (2.19)

Here, variables with superscript ∗ are non-dimensional quantities. Details are

given in [165].

The Rossby number (Ro := U
2ΩL

) is useful to measure the importance

of rotation effects on a flow and what scales a given flow feel the effect of

rotation. The ratio of two time scales is the way to measure the Rossby

number: The first scale is the time scale associated with the rotation (1/Ω,
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Type Feature LH U

Earth Gulf stream 100 km 1 m/s

Ω = 7.3× 10−5s−1 Weather system 1000 km 20 m/s

Core 3000 km 0.1 cm/s

Jupiter

Ω = 1.7× 10−4s−1 Bands 104 km 50 m/s

Type Feature Ro Re

Earth Gulf stream 0.07 107

Ω = 7.3× 10−5s−1 Weather system 0.14 2× 109

Core 2 ×10−7 3× 107

Jupiter

Ω = 1.7× 10−4s−1 Bands 0.015 5× 1010

Table 2.1: Rossby numbers in various atmospheric motions [80]. Small Ro
means that the effects of rotation are important and large Reynolds number
makes a system under a strong nonlinear effect.

where Ω is the rotation rate in rad/s). The second time scale is the fluid

advection time scale, e.g. the ratio of a typical horizontal length to a typical

horizontal velocity (L/U). A small Rossby number shows that a flow motion

is dominated by a Coriolis effect. Rotation plays an important role in shaping

the pattern of flows on large scales.

The ratio of the viscous force to the Coriolis force is called the Ekman

number (Ek). It is defined as the ratio of the frictional force to the Coriolis

force, or the ratio of the viscous diffusion time scale (L2/ν) to the rotation time

scale (Ω−1) where L is the typical length scale in a system. We may define two

Ekman numbers; One is the vertical Ekman number (EkV ) which is related to

the direction parallel to the rotation axis. Hence, it is defined as ν
2ΩL2

V
where
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LV is the length scale in the vertical direction along the rotation axis. The

other is the horizontal Ekman number EkH := ν
2ΩL2

H
. LH is the length scale on

the plane perpendicular to the rotation axis. In most experiments and large

scale geophysical motions, Ekman numbers are very small. It means that the

viscous forces are negligible except near boundaries.

The other important parameter is the Reynolds number, which com-

pares the inertial forces to the viscous forces in the flows. Viscous effect is

important at low Re; flows are called laminar. Interestingly, the transition to

turbulence occurs at very high Re. Typically fluids become weakly turbulent

for Re ∼ 103 − 104. For planetary flows, typically Re ∼ 107. The large size

of the geophysical flows implies that the Reynolds numbers are usually very

large. Therefore the dependence of the flow characteristics on the Reynolds

number is weak, since we are always in the high-turbulence regime.

Using all non-dimensional numbers, Eq. (2.19) becomes

Ro

(

∂v∗

∂t∗
+ (v∗ · ∇∗)v∗

)

= −Ro∇∗P ∗ + EkH∇∗2v∗ − êz × v∗ . (2.20)

2.1.5 Quasi-geostrophic Equation

At the limit of Ek → 0 and Ro → 0, the flow is geostrophic as in Eq.

(2.20). In order to describe the flow in the bulk more accurately, one may

introduce the small perturbation to the geostrophic equation. The parameter

measure of departure from geostrophic flow is assumed to be Ro [165]. For the

bulk velocity, we expand the velocity as

v = v0 + v1 + v2 + · · · (2.21)

p = p0 + p1 + p2 + · · · , (2.22)
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where v1 and p1 are the order of Ro and v2 and p2 are the order of Ro2. It

means that we expand v by the geostrophic part v0 and small corrections v1

in the order of Ro in rapidly rotating systems.

The Reynolds number, Re is the ratio of Ro to EkH . More precisely,

substituting Eq. (2.21) and (2.22) into Eq. (2.3) with the Coriollis effect, the

first order equations become

∂vx0
∂t

+ vx0
∂vx0
∂x

+ vy0
∂vx0
∂y
− 2Ωvy1 = −∂p1

∂x
+ ν∇2

⊥vx0 (2.23)

∂vy0
∂t

+ vx0
∂vy0
∂x

+ vy0
∂vy0
∂y

+ 2Ωvx1 = −∂p1

∂y
+ ν∇2

⊥vy0 (2.24)

∂vx1
∂x

+
∂vy1
∂y

+
∂vz1
∂z

= 0 , (2.25)

where v0 = (vx0, vy0, vz0) and v1 = (vx1, vy1, vz1). These equations are called

Quasi-geostrophic equation. Note that there is no term of vz0 since a geostrophic

equation results in zero vz0 as well as vx0 and vy0 are independent of z. That

also implies that a geostrophic equation is the two-dimensional flow.

Taking ∂
∂y

on Eq. (2.23) and ∂
∂x

on Eq. (2.24) and substracting one by

the other, the pressure dependence disappears. In other words, we take the

curl of equation of motion with the additional constraint that vx0 and vy0 are

independent of z (so that we can permute x-derivation and y-averaging). The

z-component of the vorticity ω is denoted by ω and is also z-invariant. After

expanding the vorticity as ω = ω0 + ω1 + · · · , we get

∂ω0

∂t
+

(

vx0
∂ω0

∂x
+ vy0

∂ω0

∂y

)

= −2Ω

(

∂vx1
∂x

+
∂vy1
∂y

)

+ ν∇2
⊥ω0

= 2Ω
∂vz1
∂z

+ ν∇2
⊥ω0 , (2.26)

where ω0 =
∂vy0

∂x
− ∂vx0

∂y
. Taking the z average from the bottom (z = 0) to the
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top (z = h) leads to

∂ 〈ω0〉z
∂t

+

〈(

vx0
∂ω0

∂x
+ vy0

∂ω0

∂y

)〉

z

= 2Ω
(vz1(x, y, h)− vz1(x, y, 0))

h
+ν∇2

⊥ 〈ω0〉z
(2.27)

where we define the z-averaging 〈 · 〉z by

〈v〉z =
1

h

∫ h

0

v(x, y, z) dz . (2.28)

The boundary-layer theory gives the no-slip condition on the tangential

velocity on boundaries for a geostrophic flow. Their thickness is supposed to

be small (EkH ≪ 1), and we will use the asymptotic expression given by [86]

and [165]. The simplified expression is

v ·n|0 =
Ek

1/2
H

2
ω0 (2.29)

v · n|h =
Ek

1/2
H

2
(ωT − ω0) , (2.30)

where ωT is the vorticity of the upper boundary. If ωT > ω0, there is the

radially outward flow in the upper Ekman layer and the vertically upward

flow. The physical mechanism of Ekman pumping is that a small vertical

velocity, vz0 is pumped out of the small layers near boundaries (Ekman layers)

and into the bulk. A cyclonic vorticity is sitting over the converging flow in the

Ekman layer. Similarly, an anticyclonic vorticity pushes fluid out radially in

the Ekman layer. So, the first order vertical velocity without any topography

is

vz1(x, y, 0) =
Ek

1/2
H

2
ω0

vz1(x, y, h) =
Ek

1/2
H

2
(ωT − ω0) . (2.31)
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An important point is that expression 2.30 is valid for time-dependent

flows with time scales larger than a few rotation periods. Greenspan used that

expression to study the spin-up process in a sphere, which is a time-dependent

flow with time scale of order Ek
−1/2
H .

In the case of a system with topography which has a radially chang-

ing bottom, one needs to consider the geometry on boundaries. Therefore,

assuming ωT is zero, we get

vz(x, y, h)− vz(x, y, 0) = −Ek1/2
V ω0 +

∂h

∂r
vr . (2.32)

Without the beta-plane, the second term in the right hand side disappears.

The vorticity equation becomes

∂ω0

∂t
+

(

vx
∂ω0

∂x
+ vy

∂ω0

∂y

)

= −2Ω
Ek

1/2
V

h
ω0 − βRovr + ν∇2

⊥ω0 (2.33)

= − 1

τE
ω0 − βRovr + ν∇2

⊥ω0 , (2.34)

where τE := h0/(2
√
νΩ) is called Ekman friction time. We note that the

Ekman friction is a dissipative term whereas the βRo-term is not, it is thus

expected to play an important role for the non-linear dynamics of quasi-

geostrophic flows. Using the definition of potential vorticity as Eq. (2.13),

Eq. (2.34) becomes

∂q0
∂t

+

(

vr
∂q0
∂r

+
vθ
r

∂q0
∂θ

)

= − 1

τE
ω0 + ν∇2

⊥q0 . (2.35)

It is often called potential vorticity equation.
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2.2 Turbulence

At low Reynolds number, an incompressible flow behaves very regular

and stable (Laminar). However, at high Reynolds number, a highly irregular

and chaotic behavior is observed with a wide range of length and time scales

in a fluid (Turbulence). Obviously, there exists a transition from laminar to

turbulent flows. Those turbulent flows are very common and important in

industrial applications in a sense of heat and momentum transfer. In the limit

of very high Reynolds number, the chaotic behavior involves fluctuations from

large to small scales of space and time. This stage is often called fully developed

turbulence.

Energy in 3D fully developed turbulence cascades in the range of scales

between the large scales where energy enters and the small ones where it

is dissipated. The qualitative ideas of Richardson [174] have been further

developed and formulated in a more precise language by Kolmogorov [105, 106].

The cascade of energy among the eddies is expected at small scales compared

to the external length scale (L). The range which has the constant energy

flux across scales is called inertial range. Turbulence has statistically restored

symmetries or statistical universal features [76]. Here, we list two main ways

to investigate the properties of turbulence.

One is to investigate the spatial information of turbulent field such as

energy spectrum. Due to homogeneity and small fluctuations compared to

mean flow in turbulence, temporal information (recorded with velocity probes

fixed in space) is converted into spatial information and vice versa. This

condition is often called Taylor frozen hypothesis [205]. If the velocity of the

stream which carries eddies is very large compared to the turbulent velocity (or
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the velocity of eddies), the sequence of changes in the velocity at the fixed point

results from the passage of an unchanging pattern of turbulent motion over the

point. For example, the energy spectrum (E(w)) in the frequency (w) is the

same as the energy spectrum (E(k)) in the wavenumber (k). Kolmogorov [104]

proposed the universality of the energy spectrum based on the conservation

of energy flux through scales and the locality in the wavevector. Dimensional

analysis leads to -5/3 exponent for energy spectrum of turbulent velocity in

the inertial range. Onsager [160] and Heisenberg [88] should be credited for

the similar discovery. This idea is supported by many experiments [182, 189]

and numerical simulations [224].

The other approach is to analyze the statistics of measured quantities in

turbulence. Traditionally, the statistics in turbulence is investigated in terms

of longitudinal velocity differences (δvr(x) = êr ·[v(x+r)−v(x)]) where x is an

arbitrary point in space, r is the separation vector and êr is the unit vector of r.

The primitive method to study statistics is to look at Probability distribution

function (PDF). Intermittency in turbulent flows has been observed in many

experiments [76] and predicted by various models [76, 141]. PDF of velocity

difference at the small separation r, which lies in the inertial range has an

exponential-like wings shape whereas it has Gaussian at large separation r.

The tails of PDF have the higher probability than Gaussian, and rare events

become significant in turbulent flows. Intermittency in the inertial range is

characterized by preserving a shape of PDF by rescaling δvr(x) [47].
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2.2.1 Energy Spectrum

Energy spectrum is a measure of the spatial information of the velocity

field. To obtain the energy spectrum, the velocity field is Fourier-transformed

using periodic boundary conditions. So, the velocity field can be expressed as

v(x, t) =
∑

v̂k(t) exp(ik · x) , (2.36)

where v̂k = ((v̂k)x, (v̂k)y, (v̂k)z) and k = (kx, ky, kz). The Fourier transformed

Navier-Stokes equation is

∂

∂t
(v̂k)i + ikjPimQjm = −νk2(v̂k)i + Fk , (2.37)

where δim is the Dirac delta function, Pim = δim−kikm

k2 andQjm =
∑

p+q=k(v̂p)j(v̂q)m.

The incompressibility condition becomes k · v = 0. One remark is that the

pressure is dropped out by the Fourier transformation and incompressibility.

By multiplying (v̂−k)i to Eq. 2.37, one gets

∂

∂t
E(k) + T (k) = −2νk2E(k) + F (k) , (2.38)

where T (k) is a cubic term in v̂k from nonlinear terms (which shows the inter-

actions between different wave vectors) and F (k) is the Fourier transformed

forcing term. Energy transfers between different wave numbers are described

by a term T (k). For a rotating turbulence, there is no dependence on Ω in the

energy equation as Eq. (2.38). Since a Coriolis force does not do any work,

a rotation effect does not appear in the energy equation explicitly. However,

people believe that energy transfer term T (k) depends on a rotation rate [234].

Kolmogorov Spectrum in the three dimensional turbulence

Kolmogorov [105] claimed that turbulence should exhibit universal and

isotropic properties in the small scales. Those scales (often called as the inertial
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range) are smaller than the integral scale or the system scale (L) and larger

than the dissipation scale (η) where the viscous dissipation plays an essential

role. Associated wavenumbers are denoted as k0 := 1/L and kη := 1/η.

Let’s assume that E(k) depends only on the wavenumber k and on the

averaged energy dissipation rate ε =
d[2
R
νk2E(k)dk]

dt
. Units of E(k) are L3

T 2 , ε has

L2

T 3 and k is the unit of 1
L
. Dimensional analysis of energy spectrum E(k) is

[E(k)] =
L3

T 2
= C

(

L2

T 3

)α(
1

L

)β

= C[ε]α[k]β (2.39)

where C is a constant and bracket [ · ] means a unit of quantities inside. The

above equation gives −3α = −2 , 2α− β = 3. Then, the solution is α = 2/3

and β = −5/3. Therefore, the energy spectrum in the cascade range is

E(k) = Cε2/3k−5/3. (2.40)

where C is expected to be a universal constant. (Universality is quite ques-

tionable [75].) The Kolmogorov energy spectrum describes a wide variety of

data in the turbulence [182].

Kraichnan’s dual cascade in the two dimensional turbulence

Kraichnan [107] proposed a dual cascade in the two dimensional turbu-

lence. Two dimensional turbulence exhibits a forward cascade of enstrophy to

large wavenumbers and an inverse cascade of energy to small wavenumbers.

Here, enstrophy is defined as
∫

|ω|2dx whereas energy is defined as
∫

|v|2dx.

Those two quantities are known as conserved quantities in the Euler equation.

For a forward cascade of enstrophy, transferred enstrophy to large wavenum-

bers until it is dissipated due to viscosity. Similarly, the inverse cascaded

energy is dissipated in the small wavenumbers (such as Ekman drag).
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Figure 2.1: (a) The classical picture of mechanisms in 2 dimensional turbulence
is that the enstrophy is transferred into small scales (high k) and the energy
is transferred into large scales (low k) due to nonlinear interactions. (b) In 3
dimensional turbulence, the energy is cascaded into small scales. Enstrophy is
not important in 3 dimensional turbulence. [107]
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For the inverse cascade, the same dimensional analysis leads to energy

spectrum in 2D as in 3D Eq. (2.40). Therefore, the energy spectrum in 2D is

also

E(k) = C1ε
2/3k−5/3, (2.41)

where C1 would be different from the C for 3D. In small scales, an enstro-

phy cascade is expected. Here, we assume that E(k) depends only on the

wavevector k and on the enstrophy dissipation rate εΩ =
∂
R

2ν∇2
⊥
ω2dx

∂t
. Units of

E(k) are L3

T 2 , εΩ has 1
T 3 and k is the unit of 1

L
. Dimensional analysis of energy

spectrum E(k) is

[E(k)] =
L3

T 2
= C2

(

1

T 3

)α(
1

L

)β

= C2[εΩ]α[k]β (2.42)

where C2 is a constant. It is trivial to get the solution for α and β. So, the

energy spectrum where the enstrophy cascades is

E(k) = C2ε
2/3
Ω k−3. (2.43)

Here, the direction of the energy flux is not known by dimensional analysis.

Equilibrium statistical mechanics can determine the directions of these energy

fluxes. Only two experiments, both recent, have shown the Kraichnan energy

spectrum in two dimensional systems [29, 163, 164].

Problem of Kraichnan’s dual cascade

The classical Kraichnan spectrum, k−5/3 − k−3 is put in question by

rigorous analysis. Constantin et. al [61] and Tran et. al [213] show that

a single mode at any wave number driving a 2-D flow cannot lead to the

Kraichnan spectrum [213, 211, 61].
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Consider Eq. (2.1) with the forcing which has the property such as

−∇2
⊥Fv = k2

fFv. Here, k2
f is one of the eigenvalues of a Laplacian −∇2

⊥. The

energy spectrum has two parts. The first is the inertial range from k0 to kf

and the second range is the decaying dissipation range from kf to kη.

The scalar product and the total quantities in periodic boundaries (the

norm in L2 periodic space) are given by

〈u,v〉α =

∫

u · (−∇2
⊥)αvdxdy (2.44)

‖v‖2α = 〈v,v〉α (2.45)

The norm with α = 0 (or α = 1) is known as the total energy (or enstrophy).

Taking the operator as in Eq. (2.44) into the nonlinear convective term

in the Navier-Stokes equation, we get

〈v,v · ∇⊥v〉0 or 1 = 0 . (2.46)

Therefore, the energy and enstrophy equation lead to

∂‖v‖20
∂t

= 2ν‖v‖21 + ε , (2.47)

∂‖v‖21
∂t

= 2ν‖v‖22 + ς , (2.48)

where we define that ε :=
∫

v · Fv(x, y)dxdy is the energy injection rate and

ς :=
∫

−v · ∇2
⊥Fv(x, y)dxdy is the enstrophy injection rate. If the forcing f is

concentrated into the monoscale kf , then ς = k2
fε. Multiplying Eq. (2.47) by

k2
f and substracting it by Eq. (2.48), we get

k2
f

∂‖v‖20
∂t

− ∂‖v‖21
∂t

= 2ν
(

‖v‖22 − k2
f‖v‖21

)

. (2.49)
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Taking the time mean of Eq. (2.49) gives to

∫

2ν
(

‖v‖22 − k2
f‖v‖21

)

dt = 0 ,

∫

2ν‖v‖21
(‖v‖22
‖v‖21

− k2
f

)

dt = 0 . (2.50)

The wavenumbers, where viscosity strongly operates in the dissipation

of energy and enstrophy, are estimated as

KE =

(‖v‖21
‖v‖20

)1/2

,

KΩ =

(‖v‖22
‖v‖21

)1/2

. (2.51)

The larger value of KΩ than the forcing wave number kf means the forward

cascade of enstrophy. However, if KΩ is close to kf , then enstrophy does not

cascade in any direction. Since 2ν‖v‖21 > 0 at any given t, the requirement to

satisfy Eq. (2.50) is

KΩ = kf . (2.52)

It implies that the enstrophy is dissipated around the forcing scale since the

enstrophy-dissipated wavenumber KΩ is equal to the forcing scale kf .

Suppose the energy spectrum in steady states is given as E(k) ∼ k−δ

over a range kf < k < kν where kν is the wavenumber associated with the

Kolmogorov scale. The dissipation of enstrophy over this range is

∫ kν

kf

k4E(k)dk =
1

5− δ (k5−δ
ν − k5−δ

f ) . (2.53)

According to Eq. (2.52), the dissipation of enstrophy over dissipated range

should be dominated around the forcing scale. As a result, δ should be larger

than 5 for the noncascading case.
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When we consider the Ekman friction (− 1
τE

v), the analysis above should

be modified. Eq. (2.49) becomes

k2
f

∂‖v‖20
∂t

− ∂‖v‖21
∂t

= 2ν
(

‖v‖22 − k2
f‖v‖21

)

+
1

τE

(

‖v‖21 − k2
f‖v‖20

)

. (2.54)

Taking the time mean, one gets the balance equation between two dissipations

such as

2ν
(

‖v‖22 − k2
f‖v‖21

)

+
1

τE

(

‖v‖21 − k2
f‖v‖20

)

= 0

‖v‖21
[

2ν
(

K2
Ω − k2

f

)

+
1

τE

(

1−
k2
f

K2
E

)]

= 0 . (2.55)

The dynamical constraint gives that the energy dissipation is confined to scales

larger than the forcing scale [206, 61]. It implies

KE =

(‖v‖21
‖v‖20

)1/2

≤ kf . (2.56)

Using Eq. (2.56) and Eq. (2.55), one gets an inequality such as

2νK2
Ω +

1

τE
= 2νk2

f +
1

τE

k2
f

K2
E

≥ 2νk2
f +

1

τE
(2.57)

⇒ K2
Ω ≥ k2

f . (2.58)

The above equation represents that enstrophy dissipation occurs at the scales

smaller than the forcing scale kf . Physical explanation of this process is that

the dissipation mechanism in energy spectrum is shifted to small scales due to

Ekman drag [211]. Contrast to the above case only with molecular viscosity,

a system with molecular viscosity and Ekman drag dissipate the enstrophy at

smaller scale than the forcing scale.

For a system with Ekman dissipation and molecular viscosity, the energy

dissipation (E(k) ∼ k−γ) over a range k0 < k < kf is given as
∫ kf

k0

(

νk2E(k) +
1

τE
E(k)

)

dk =
ν

3− γ (k3−γ
f −k3−γ

0 )+
1

τE(1− γ)(k
1−γ
f −k1−γ

0 ) .

(2.59)
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If we assume that 1
τE
≫ νk2

f so that Ekman drag dominates on the large scale,

then the energy dissipation mostly occurs on the large scales if γ > 1. The

negligible dissipation of enstrophy on the large scales requires γ < 3. Energy

spectrum (E(k) ∼ k−5/3) of Kraichnan picture is in this range.

For a system with Ekman dissipation and molecular viscosity, the en-

strophy dissipation (E(k) ∼ k−δ) over a range kf < k < kν is given as

∫ kν

kf

(

νk4E(k) +
1

τE
k2E(k)

)

dk =
ν

5− δ (k
5−δ
ν −k5−δ

f )+
1

τE(3− δ)(k
3−δ
ν −k3−δ

f ) .

(2.60)

The Ekman dissipation dominates on the large scale. 3 < δ < 5 gives the

negligible energy dissipation and the strong dissipation of enstrophy on the

small scales.

Energy spectrum in a rotating turbulence

A rapidly rotating turbulence is close to two dimensional turbulence,

but different from the general turbulence in two points [44, 43]. First, the

energy cascade from large to small scales is slowed down due to a rotation

effect. It results in the slow decay of the rate of energy without the forcing

[94]. The next one is that there exists a process of two dimensionalization from

three dimensional initial conditions. It is often credited to a Taylor-Proudman

theorem [91]. However, this process toward two dimensional state is still an

open question [193].

The effects of rotation are taken into account to calculate the proper

energy spectrum by Zhou [234, 125, 156]. He assumes that the energy dissipa-

tion has a linear relation with the angular velocity, Ω−1, since the time scale

for the decay of the triple correlations is proportional to the energy dissipa-
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tion. Then, the energy spectrum in the inverse cascade range is expected to be

E(k) ∼ k−2. Similar result is derived in a rotating turbulence with the dissi-

pation and the Ekman forcing. Constantin [60] considers the bounded energy

spectrum (E(k) ≤ Ck−2) of the inverse cascade range in a rotating turbulent

flow.

2.2.2 Probability Distribution Function (PDF)

In Kolmogorov’s 1941 theory (K41), the energy in fully developed three-

dimensional turbulence cascades from large scales to small scales where it is

dissipated [104]. Turbulence in the cascade (the inertial range) is characterized

by the probability distribution function (PDF) P (δvr) for longitudinal velocity

differences over a distance r, δvr(x) [76]. For r approaching the integral scale

where energy is injected, the PDF is Gaussian, while in the inertial range

extending down to the dissipation scale η, intermittent large fluctuations lead

to a non-Gaussian PDF with approximately exponential tails [222].

Structure function (Sp(r) ≡ 〈(δvr)p〉) is used as a statistical tool to mea-

sure this departure from Gaussian PDFs [105, 141]. Here, δvr is the longitudi-

nal velocity differences over different distance r and 〈·〉 is the ensemble average

(spatial average). In the inertial range, the power-law behavior of structure

functions with respect to the distance (r) is proposed in [105] (Sp(r) ∝ rζp).

However scaling exponent ζp is observed to be nonlinear rather than linear

function (ζp = p/3) as given by Kolmogorov’s similarity prediction [2, 76, 4].
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Log-normal Model

Kolmogorov assumed a constant energy dissipation rate per unit vol-

ume, ε [104]. In 1944 Landau [122] suggested that fluctuations of ε averaged

at scale r, εr(x, t)
(

=
∫ x+r

x
ε(x′, t)dx′

)

play a key role in turbulence. Such

fluctuations were subsequently observed in experiments [21, 84, 85]. In 1962

Kolmogorov [106] and Obukhov [158] proposed a log-normal model of εr in

the inertial range. The log-normal distribution was obtained in subsequent

experiments [166] and numerical simulations εr [152]. The non-Gaussian PDF

of δvr and the log-normal PDF of εr characterize turbulent flows. It is known

as the refined similarity hypothesis.

In the log-normal model, the PDF of dissipation energy (εr) is assumed

to be

P (εr) =
1√

2πλrεr
exp

(

−(ln εr −mr)
2

λ2
r

)

, (2.61)

where mr and λr are the mean and standard deviation of ln εr. Its moment

will be 〈εqr〉 ∼ exp
(

qmr + λ2
r

2
q2
)

when the possible value for ln εr is (−∞,∞).

The condition that the mean value of dissipation energy is constant gives mr =

−λ2
r/2. So, the exponent of moments is τq = mrq(1 − q). Experiments show

mr is about −0.36 [12, 11]. Assuming that δvr and (rεr)
1/3 are statistically

independent, the structure function is

〈(δvr)p〉 = rζp ∝ (rεr)
p/3 = rp/3+τp/3 . (2.62)

Therefore, assuming that mr ∝ 1/ (2 log(L/r)), we get

ζp = p/3 + τp/3 =
p

3
+mr

p

9
(3− p) . (2.63)

Log-normal distribution in εr is plausible. However, the structure function

significantly deviates from Eq. (2.63) that Kolmogorov predicted, especially
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for high p [2, 4, 12]. Afterward, the most models require without plausible

physical arguments a set of parameters to determine two exponent (ζp and τp)

in structure functions of velocity differences and energy dissipation rate.

Log-Poisson Model (She-Leveque model)

She and Leveque [190] proposed a hierarchical structure for the moments

of the local energy dissipation rate and an associated hierarchical structure

for velocity differences. It is a phenomenological theory associated with a

hierarchical structure of energy dissipation rate. They got the relation as

ζp = p/9 + 2− 2(2/3)p/3 . (2.64)

This model is supported by the velocity measurements taken in turbulent jets

and wake [18, 42, 55]. This moment hierarchy leads to log-Poisson distribution

for the local energy dissipation rate [67, 191] in constrast to the log-normal

PDF given by Eq. (2.61).
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2.3 Hamiltonian and Action Formulations

Foundation of statistical mechanics minimize the appropriate thermo

potential (or maximize the entropy) in thermodynamic equilibrium. Similarly,

most physical systems are found to behave in the way to minimize some quan-

tities. Conversely, those extremal principles constrain the motion of physical

objects. For example, it is found by setting a derivative of some quantity,

the action or the free energy, to zero. Especially, the action principles mo-

tivate many physical systems. We may say that action principles provide a

framework for 20th century physics: the most successful models of physics,

Maxwells equations, Einsteins equations for general relativity, Schrødingers

equation, Yang-Mills and other theories of particle physics, etc. Here we con-

sider infinite-dimensional systems such as a two-dimensional fluid system [146].

We briefly describe some action principles for the two-dimensional fluid

system in Lagrangian and Eulerian variables.

• Lagrangian Variable Actions: The basic Lagrangian fluid variable is the

position of fluid element x(a, t), where a is the position of a fluid element

at t = 0 and t is the time. Since a system has conservation laws along the

fluid trajectories, Lagrangian variable actions are useful. Descriptions of

these action principles can be found in [146] for classical fluids.

• Eulerian Variable Actions: Eulerian variable is the velocity of fluid ele-

ment v(x, t). Most experiments generates data in the Eulerian variables.

However, Eulerian variables are not canonical variables. We may need

some techniques to use action principle with Eulerian variables [147].
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2.3.1 Canonical Hamiltonian Structure

Consider the motion of objects in space. First, we find the function of

configuration, Qi(t) where i = 1, 2, · · · , N and N is the number of particles of

the system. Given the Lagrangian L := T − V where T is the kinetic energy

and V is the potential energy, the action functional is written as

S[Q] =

∫ t1

t0

L(Q, Q̇, t)dt , (2.65)

where Q = {Qi}. Hamilton’s principle says that a trajectory with fixed end

and beginning points is given by minimizing the action functional. Mathe-

matically, extremal is that the functional derivative of the action is zero such

as
δS[Q]

δQi
= 0 . (2.66)

More details of the functional derivative are in [146]. Eq. (2.66) results in

Euler-Lagrange’s equation as

∂L

∂Qi
− d

dt

∂L

∂Q̇i
= 0 . (2.67)

Due to Legendre transformation as Pi := ∂L/∂Q̇i, the Hamiltonian is

given as H(Q,P ) = PiQ̇
i − L. It gives

Ṗi = − ∂H
∂Qi

, Q̇i =
∂H

∂P i
. (2.68)

However, there does not always exist this transformation from Lagrangian to

Hamiltonian. By introducing the phase space coordinates such as z = (Q,P ),

the Hamilton’s equation is simplified as

żi = J ijc
∂H

∂zj
= [zi, H ], where J ijc =





0N IN

−IN 0N



 , (2.69)
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where IN is N × N diagonal of 1’s and the index i goes up to two times the

number of degrees of freedom, 2N . Here, [ , ] is the Poisson bracket which is

defined as [f, g] := ∂f
∂ziJ

ij
c

∂g
∂zj . The Hamiltonian satisfies two properties of the

Poisson bracket that are transformation invariant

1. antisymmetry: [f, g] = −[g, f ]

2. Jacobi identity: [f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0

which are to be satisfied for all functions f, g, and h of phase space [146].

2.3.2 Noncanonical Hamiltonian Structure

Not all systems have an equation of motion with canonical variables. For

example, ideal fluid equations, the Vlasov equation, the Liouville equation, the

BBGKY hierarchy, gyrokinetic theories, MHD, tokamak reduced fluid mod-

els and so on contain noncanonical variables [148]. The common property of

those equations is that they are composed with Eulerian variables. The non-

canonical variables result from the transformation from Lagrangian variables

to Eulerian variables. However, those have Hamiltonian structure inside since

the transformation preserves the form of Hamiltonian equations.

Consider a general system with noncanonical J (which is defined with

noncanonical variables) and the Poisson brackets such as

żi = J ij
∂H

∂zj
= [zi, H ], [f, g] :=

∂f

∂zi
J ij(z)

∂g

∂zj
. (2.70)

Given the above two properties of the Poisson bracket and the requirement

that det J 6= 0, a 19th century theorem due to G. Darboux says that there

exists a transformation that takes J → Jc [8]. Thus we can get back to

canonical coordinates and the usual form of Hamiltons equations.
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For the case where det J = 0, the essential theorem was proven by S.

Lie [69]. This theorem states that one can transform to a set of coordinates,

part of which are canonical and part of which are in a sense redundant. The

canonical coordinates describe a space of dimension equal to the rank of J and

the remaining coordinates are described by a set of functions that have become

known as Casimir invariants, because they are invariant under the dynamics.

The equation of motion in terms of Eulerian variables generally has

det J = 0. In addition, J is linear in the phase space coordinates. For example,

finite dimensional system has a form as Jij(z
k) = cijk z

k where cijk are structure

constants of a Lie algebra. Brackets with this form are called as Lie-Poisson

brackets [8].

In infinite dimensions we represent a general field by ϕ(x, t) labeled by

x , where e.g., for two-dimensional fluid system x = (x, y) and for Vlasov-type

plasma system x = (x, v). In those cases, the noncanonical Poisson brackets

of interest have the form

{F,G} =

∫

δF

δϕ
J (ψ)

δG

δϕ
dx , (2.71)

where we now have a operator J . Moreover, the Lie-Poisson form of continuous

media is given by

{F,G} =

∫

ϕ

[

δF

δϕ
,
δG

δϕ

]

dx , (2.72)

where [, ] is a Lie-Poisson bracket. In the two-dimensional fluid case, ϕ is

analogous to the vorticity ω and x to (x, y).

The noncanonical Poisson bracket for two-dimensional fluid system is

given by

{F,G} =

∫

ω

[

δF

δω
,
δG

δω

]

dxdy , (2.73)

33



where

[A,B] =

(

∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x

)

, (2.74)

where ω(x, y) is the vorticity. With those definitions, the equation of motion

for two-dimensional fluid as in the two dimensional case of Eq. (2.7) is

∂ω

∂t
= {ω,H} = [ω, ψ] (2.75)

with the Hamiltonian

H [ω] = −1

2

∫

ψωdxdy =
1

2

∫

ψ∇2ψdxdy

=
1

2

∫

|∇ψ|2dxdy =
1

2

∫

|v|2dxdy . (2.76)

Here, [ω, ψ] := ψyωx−ψxωy and the stream function and vorticity are related by

−∇2ψ = ω or in the case of quasigeostrophy another integral relation such as

ψ = −△−1(ω−βRor) in our annulus geometry. This Hamiltonian formulation

is useful to understand chapters on statistical mechanics and fluctuations.
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2.4 Statistical Mechanics

Statistical mechanics provides a feasible way to calculate the macro-

scopic properties of matter from the behavior of microscopic constituents. In-

stead of considering all motions of the individual constituents, one describes

observable quantities averaged over constituent Hamiltonian trajectories and

the average is evaluated using the probability distribution of possible mi-

crostates. Likewise, fluid systems with a local balance between dissipation

and forcing have been described by statistical mechanics with the inclusion of

constraints based on invariants of the dynamics. In general, such statistical

theories for fluids are based on the idea that the macroscopic behavior of the

fluid turbulence can be described without knowing detailed information about

small scale vortices [35, 161, 124].

Statistical mechanics seems not to be the proper method to describe the

turbulence motion. There are two main reasons; One is that the turbulence

is not a conservative system. To maintain a stationary turbulent state, the

energy is continuously supplied and is dissipated in consequence of the viscous

force at the same time. The second is that what in the turbulence can be used

as microscopic objects and ⁀macroscopic quantities. In a classical statistical

mechanics, microscopic objects are particles and physical quantities such as

energy are observed in macroscopic scales.

The first problem is not fully justified yet. However, if we consider the

only fluctuating part, the amount of energy dissipated in the short time is

very small compared to the amount of energy present in the motion. So, we

may treat the fluctuating motion as if it was the motion of an ideal fluid and

constituted a conservative system.
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Indistinguishable objects Distinguishable objects

No exclusion Bose-Einstein Maxwell-Boltzmann

Exclusion Fermi-Dirac Lynden-Bell

Table 2.2: Four possible statistics in physics.

The basic step to overcome the second difficulty is the consideration of

two-dimensional case. Hamiltonian and basic properties of flow are functionals

of vorticity. The stream function ψ is used as a basis for the description of

the motion. From the stream function, we may calculate the velocity and the

vorticity. In this case, the vortices can be regarded as the basic elements for

statistical mechanics and the stream function as constraints or fields for the

vortices.

Ultimately, such justifications are very difficult and would rely on del-

icate mathematical limits. However, its success amounts to the idea that the

fluid system can in some sense be described by weakly interacting subsystems,

where the behavior of a single subsystem can be described by weak coupling to

a heat bath that embodies all of the other subsystems and all of the omitted

effects. In the end ‘the proof of the pudding is in the eating’ and our justifica-

tion is based on experimental observations in the latter chapter. With those

justifications, the application of statistical mechanics is promising to describe

the motion in turbulence.

2.4.1 Statistics and Entropy

All statistics start from the counting argument for micro-cells inside a

macro-cell. First, consider the number of ways to distribute ni phase elements
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into m micro-cells with no cohabitation. The number of ways of assigning

micro-cells to all elements is
m!

(m− ni)!
. (2.77)

Beside, the statistics with the allowed cohabitation (No exclusion) is

mni , (2.78)

and the indistinguishable elements have a factor 1/(ni!) in the statistics.

In physics, statistics of interest can be classified into four categories

follows;

1. Bose-Einstein statistics is

W =
∏

i

(ni +m− 1)!

ni!(m− 1)!
. (2.79)

2. Maxwell-Boltzmann statistics is

W =
N !
∏

i ni!
×
∏

i

mni . (2.80)

3. Fermi-Dirac statistics is

W =
∏

i

m!

ni!(m− ni)!
. (2.81)

4. Lynden-Bell statistics is

W =
N !
∏

i ni!
× m!

(m− ni)!
. (2.82)

The two-dimensional Euler equation, like the Vlasov and other transport equa-

tions, can be viewed as mean field theory. Such equations are known to gen-

erate fine structure in the course of evolution. This led Lynden-Bell [124] to
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consider a coarse graining procedure coupled with the idea of preserving all

of the infinity of invariants such theories possess. He applied his ideas in the

context of stellar dynamics, but the ideas are akin to those used in treatments

of the classical electron gas by generalizations of Debye-Hückle theory [e.g.

[101]].

2.4.2 Equilibrium Distribution

There have been many previous attempts to describe fluid flows by

means of equilibrium statistical mechanics ideas. [See e.g. [72] for a recent

review.] Following early work by Burgers [35], Onsager [161] began with a

representation of the vorticity field in terms of a set of point vortices, zero-

area vortices, of equal strength. Because this results in a finite-dimensional

particle-like Hamiltonian system, Onsager could proceed to apply techniques

of classical statistical mechanics. He gave arguments for the existence of neg-

ative temperatures and the occurrence of coherent structures in a confined

region, which are often observed in nature. Also, he [161] studied the sta-

tistical mechanics of point vortices within a mean field approximation, and

argued that in the negative temperature regime, large like-signed vortices are

the most probable state. Related ideas have been further pursued by many

researchers [e.g. [96, 131, 71, 233, 72]].

T.D. Lee [117] introduced a different approach when he projected three-

dimensional fluid equations onto a Fourier basis and truncated to obtain a

finite-dimensional system. He demonstrated that his truncated system satis-

fies a version of Liouville’s theorem and was thus amenable to techniques of

statistical mechanics. The evolution of density ρ in the phase space is given
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as
∂ρ

∂t
=
∂ω̇k

∂ωk

= 0 (2.83)

where ωk =
∫

ω(x, y)eik·xdx. It implies that the variation of the density of

vorticity in course of time is zero.

Later, Kraichnan considered two-dimensional fluids [107, 108, 111] and

noted that out of the infinite number of invariants, two quadratic invariants,

the so-called rugged invariants, remained invariants after truncation. They

argued that these rugged invariants are the important ones, and obtained an

equilibrium state, which is related to that obtained by minimum enstrophy

arguments put forth by selective decay hypotheses [118, 132, 32]. Also, using

Kolmogorov-like arguments and the rugged invariants, Kraichnan argued for

the existence of forward and inverse cascades for two-dimensional turbulence

[107].

More recently, the necessity of incorporating the infinite number of in-

variants in statistical mechanics theories has been brought into question, and

theories based on finite-dimensional models with a fewer constraints have been

developed. Majda and Holen [126] have argued that including an infinite num-

ber of invariants provides no additional statistical information, and Turkington

[220] has argued that previous theories have not properly handled the neglected

small scale phenomena, and has proposed a theory that uses inequality con-

straints associated with only the convex invariants.

2.4.3 Nonextensive Entropy

The analysis based on Boltzmann-Gibbs statistics with extensive en-

tropy only describes weak interactions and does not capture long-range inter-
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actions [115]. Our observations of large coherent vortices in experiments on

flow in a rotating annulus [18, 19, 10] lead us to consider a generalization of

statistical mechanics that is applicable to systems with long range interactions:

the nonextensive formalism proposed by Tsallis [215, 216].

A system composed of sub-systems A and B has entropy [215]

Sq(A+B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B), (2.84)

where Sq(A) is the entropy of system A and q is the nonextensive parameter.

When q = 1, the entropy is extensive. Tsallis proposed a form of the entropy

that satisfies the above equation [217],

Sq =
k

q − 1

(

1−
W
∑

i

pqi

)

, (2.85)

where W is the total number of possible microstates of the system, pi is the

probability of ith state and k is the Boltzmann constant.

However, additional fitting parameters in nonextensive statistics play

a role in making the better curve for experimental data [27, 20, 30]. Tsallis

statistics is still debated. I can not judge this theory. However, Beck and

Cohen proposed a new interpretation on Tsallis statistics and other statistics.

It is called Superstatistics [26, 25, 58]. It is similar to the old idea of local

equilibrium in driven-dissipative systems. Superstatistics shows that various

statistics can be obtained when the intensive parameter (such as temperature)

in subsystems is fluctuating. Tsallis statistics corresponds to statistics with

the χ2-distributed intensive parameter.
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2.5 Summary and My Work

In this chapter, we have reviewed most classical theories on turbulence

such as Kolmogorov energy spectrum, self-similar PDFs, Lynden-bell’s statis-

tical mechanics and so on. We try to test the classical theories and propose

alternative theories in the later chapters.

In our rotating tank, potential vorticity is conserved and well-mixed.

This implies the existence of nonzero axisymmetric vorticity. The strength of

zonal flow has an upper bound imposed by complete depletion of the beta-plane

potential vorticity reservoir. The detail study of potential vorticity mixing and

the boundness of zonal flows is presented in the chapter 4.

Previous theories applying statistical mechanics ideas to fluids have re-

garded macro-cells without considering their statistical independence. Crucial

requirements for equilibrium in classical statistical mechanics are statistical

independence of small parts of a system (macro-cells) and additivity of invari-

ants in macro-cells. In chapter 5, we propose a novel way to apply statistical

mechanics to a two-dimensional fluid system with regarding statistical inde-

pendence among macro-cells. More generally, we also prove why only the

quadratic quantities are crucial in statistical mechanics. We also test the sta-

tistical mechanics with the non-extensive entropy in the chapter 6.

Statistical mechanics requires a proper set of canonical coordinates

(such as action-angle variables) to evaluate the ensemble-averaged measure.

The ensemble-averaged measure leads for statistical mechanics to directly con-

nect to a real experiment in a classical system. For a long time, this measure

has been performed treating non-canonical variables as canonical variables

[111]. For the Vlasov case, Morrison [149] proposed a novel new method to

41



estimate an ensemble-averaged measure with canonical coordinates. However,

the similar work for the fluid has not been reported because of the complication

of calculations. In the chapter 7, we formulate an ensemble-averaged measure

with a set of canonical coordinates and compare the result with experiment.

In the chapter 8, we unify two approaches that have been taken to

explain the non-Gaussian probability distribution functions (PDFs) obtained

in measurements of longitudinal velocity differences in turbulence, and we

apply our approach to Couette-Taylor turbulence data. We show that the

two methods are related, even though two methods are based on different

concepts. One is an idea on the division of systems regarding energy dissipation

rates [47], and the other considers a turbulent system to consist of subsystems

regarding the fluctuating intensive parameters (such as temperature) [26]. The

application of our approach to Couette-Taylor turbulence (Reynolds number

540 000) yields a good agreement with the observed non-Gaussian velocity

difference PDFs.

The classical picture of two-dimensional turbulence is the inverse cas-

cade with E(k) ∼ k−5/3 and the forward cascade with E(k) ∼ k−3. However,

our rotating turbulence is not the case of classical picture. Baroud shows that

the inverse cascade (E(k) ∼ k−2) in a rotating system is steeper than the clas-

sical guess by Kraichnan [18]. The chapter 9 gives a full description of energy

spectrum in a rotating turbulence by investigating ranges of the inverse and

forward cascades. Interestingly, we find that E(k) ∼ k−5 energy spectrum

in the high k regime and the consistent break point of two energy spectrum

scalings at the time frequency 2Ω. Also, by measuring velocity at the top and

bottom, we present the difference of two energy spectra. This separation of

energy spectrum represents the three-dimensional effect.
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Chapter 3

Experimental Apparatus and

Methods

In our laboratory, a rotating annulus has been operated to study the

geophysical flow [196, 197, 228, 210], the instability of flows [195], the anom-

alous diffusion of passive tracers in mixing [229, 226, 227] and quasi-two di-

mensional turbulence [18, 19, 20]. Over a decade, researchers modified bottom

topography and forcing configurations [136, 229, 17]. Most recent development

was done by C. N. Baroud [17].

3.1 Rotating Tank

The apparatus consists of a rotating tank with an outer radius of 86.4

cm and an inner radius of 21.6 cm. Two bottoms are used to study the beta-

effect and the flat bottom case. The sloping bottom has the depth of tank at

the inner radius 17.1 cm and linearly increasing to 20.3 cm at the outer radius

whereas the flat bottom has a fixed depth of tank 15.6 cm. There are three
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Figure 3.1: Schematic diagrams of the experimental apparatus. Fig. (a) is for
a sloped bottom and the depth of tank, Lh varies from 17.1 cm for the inner
boundary to 20.3 cm for the outer boundary. Fig. (b) is for a flat bottom and
the depth of tank is fixed at 15.6 cm. The tank rotates from 1 Hz to 2 Hz. Flow
is produced by pumping water through a inner ring as inlets and a outer ring
as outlets in the bottom of the tank. The Coriolis force acts on the radially
pumped fluid to produce a counter-rotating jet. By using two different rings
as inlets and outlets, the radial length scale of forcing is varied. We measure
velocity by using PIV as described in Chap. 3.3 or by using Hot film probes
which are located on the top and bottom in the middle of two forcing rings as
in figures.
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concentric rings at the bottom with radii r = 18.9 cm, 27 cm, 35.1 cm. The

water is circulated through three rings on the bottom. At each of three rings,

120 holes are distributed uniformly in azimuthal direction with 3 separation to

initiate the forcing for a system. The amount of fluid into and out of annulus

is same. So, there is no net change of water in the tank. The material is

aluminum for the bottom and inner wall of the tank and Plexiglass for the

upper lid and outer wall.

The tank is mounted on a steel rotating shaft 6.35 cm in diameter and

41.0 cm long. Two super-precision bearings were mounted at 9.9 cm and 24.5

cm from the bottom of the shaft. Near the bottom of the shaft, there is

a 30.1 cm diameter gear belt pulley connected to a 7.3 cm gear belt pulley

mounted on an I-620 AC servo-motor by Compumotor. It is rotated up to 3

Hz (rev/s) by a computer-controlled alternating current stepping servomotor

with a gear-belt. The motor is placed 0.6 m from the tank shaft.

In this thesis, two different forcing configurations are used. The first

one is that source and sink are generated through a ring of 120 circular holes

located at the bottom of the tank at r = 27.0 cm, halfway between the annulus

boundaries. Holes in a semi-circle (see Figure 4.1) are sources, and holes in

the opposite semi-circle are sinks. Above each source (sink) the vertical flow

creates a local divergence (convergence) which, in less than one tank turn,

is converted by the Coriolis force into an anticyclone (cyclone). This forcing

creates three zones for azimuthal flow: a prograde zonal circulation in the

middle and two retrograde zonal circulations near the boundaries. Details of

this three-zone flow structure are discussed in Chap. 4. The second config-

uration is that we pump flow in at the inner radius (r = 18.9 cm) and out

at the outer radius (r = 35.1 cm). This forcing generates a strong azimuthal
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counter-rotating flow due to the Coriolis force.

3.1.1 Flat Bottom

A 35”×35”×2” Delrin slab (purchased from Boedeker Plastics) is used

for a flat bottom. We designed the flat bottom to fit on the top of the sloped

bottom. The height of tank is 15.6 cm with the flat bottom attached on the

top of the sloped bottom. Forcing holes in the flat bottom are located at the

same place where the forcing holes are in the sloped bottom with radii r = 18.9

cm, 27 cm, and 35.1 cm. Fig. 3.1 shows the design of the flat bottom. Due to

the flexibility of a Delrin slab, the flat bottom is warped after the installation.

To adjust the flatness of the flat bottom, we tighten and loose each screw on

the bottom. We can make the surface flat with 0.5 milimeters variations over

the entire bottom.

3.1.2 Dynamics with Slopping vs. Flat Bottom

The effect of beta plane is to stretch the vortex columns due to chang-

ing of fluid height over a topography. Similarly, the figure skater spins up

with her arms folded. For the annulus, as the vortex column moves away from

the center, its vorticity increases to preserve the potential vorticity. In con-

sequence, the potential vorticity is an important variable to describe the flow

on the sloping bottom instead of the vorticity. It has been shown that when a

vortex column evolves on the beta plane, it rapidly looses its coherence and is

dispersed into Rossby waves if its potential vorticity anomaly gradient is less

than βRo [134]. Each Rossby wave propagates against its zonal velocity and

its ambient velocity field reinforces the wave to propagate [63, 165]. However,
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the flat bottom does not play these roles in the dynamics of flows.

Rayleigh-Kuo condition of marginal stability can explain a symmetry-

breaking of co-rotating and counter-rotating jets over a sloped bottom [113,

13]. The jet broadens until an averaged potential vorticity has an inflection

point with zero slope radially. Co-rotating jets (Eastward jets) are bounded on

either side by a region of uniform potential vorticity whereas counter-rotating

jets (Westward jets) have only a central region of uniform potential vorticity.

Therefore, the counter-rotating jet broadens further than the co-roating jet.

Co-rotating jets tend to be laminar and narrow, whereas counter-rotating jets

are broad and often turbulent because of the interaction with boundaries. The

symmetry-breaking of co-rotating and counter-rotating results from the βRo

term in the equation of motion. Without the βRo term, there is no symmetry-

breaking of co-rotating and counter-rotating jets.

3.2 Hot Film Anemometry

Even though there are many good techniques to measure velocities such

as Particle Image Velocimetry, Hot Film Anemometry (HF) is used to mea-

sure the smallest and the fastest velocity fluctuations in turbulent flows. A HF

measurement consists of a probe, calibration, data acquisition and processing

systems. A probe consists of one miniature metallic element, whose electrical

resistance is a function of temperature. The main process is constant resis-

tance compensating electronic circuitry with a feedback loop, which keeps the

temperature of the sensor constant under changing heat transfer conditions

due to the turbulent fluctuating velocity. The voltage output is interpreted as

the velocity via a calibration process.
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3.2.1 Probe

The time series were obtained using constant-temperature hot-film anemome-

ters (TSI model 1750) with the corresponding probes (TSI model 1210-60W

and 1260A-10W). The probe sensing element is either 3 mm long and 152 µm

in thickness for 1210-60W probes or 1.27 mm long and 25 µm in thickness for

1260A-10W probes. The sensor is held with two prongs, which penetrate a

distance of 0.9 cm for 1210-60W or 0.6 cm for 1260-10W into the flow from

the bottom and the top of the annulus.

A driving circuit maintains the constant temperature through a probe

as the fluid advects heat away from the wire. The operating temperature of

the probes is set by a control resistor for each probe separately. We keep an

overheat temperature as approximately 42◦C to minimize the effect of small

temperature drifts from the ambient. The temperature of the water was also

measured before and after the experiments, and we verified that the change

in temperature was usually smaller than 1◦C over the two-hour runs with

two probes. This was achieved by ventilating the annulus room with an air-

conditioning hose. The probes were calibrated before and after each of the

experiments, so it was not crucial to know the exact overheat ratio.

The penetration depth 0.9 cm from the boundaries ensures that the

measured velocity is away from the Ekman boundary layer. Quantitatively,

we can estimate the length scale of the vertical Ekman layer balancing the

viscous force and the Coriolis force. This balance is described by the Ekman

number, defined in Chapter 2 as EkV = ν/(2ΩL2
V ) where LV is an appropriate

length scale. The thickness δV of the boundary layer (the Ekman layer) is

determined by taking EkV ≃ 1. In our experiment, ν = 0.01 cm2/s and
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6.3 < Ω < 12.6 rad/s. This gives values of δV in the range 0.02–0.03 cm. To

investigate the instability in the Ekman layer, the Reynolds number can be

defined as

ReEk =
δV U

ν
. (3.1)

The Ekman layer becomes unstable if Reynolds number based on the Ekman

layer is above the critical value 85 ± 10 [170, 140]. In our experiment, ReEk

is about 40 with U ∼ 10− 20 cm/s. Therefore, we assume that these bound-

ary layers are quite thin and laminar and that the probes are measuring the

velocity outside Ekman layer.

To obtain the reliable hot-film data, several difficulties should be over-

come. The first one is the contaminants in the water. Sources of contaminants

can be algae and dirt from the boundaries (a tank and tubes) and fragments

and particles from PIV measurement that adhered to the tubing walls and

other surfaces. To reduce those contaminants, we are filtering and circulating

the water and brushing the surface of tank and tubes for 1 or 2 hours every two

days. The next difficulty is the bubble-forming near probes. Sometimes, the

high overheat temperature can initiate bubbles near the probe. It is avoided

by changing the control resistance to set the overheat temperature as approx-

imately 42◦C. Finally, the water was always allowed to sit still at least 10

hours after refilling or an hour after filtering water in the tank; this process

is suggested in order to de-gas the water to avoid the formation of bubbles at

the hot-films [17].
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3.2.2 Data Acquisition

The signal from the probes is then carried with coaxial cables to the

anemometers, then through the slip rings to the acquisition computer. In the

typical experiments reported here, the probe signal is sampled at 150 Hz for

periods of 30 minutes to 2 hours, thus yielding data files that had 2×105−106

velocities per probe for 30 minutes to 2 hours. The individual probes and the

repeated runs were essential in confirming the measurements and in improving

the statistical significance of the results.

The process of measuring the velocity is following; We assume that the

wire is initially at the temperature Tf as the fluid and has electrical resis-

tance Rf . Then if we heat up the wire to some temperature Tw, the resulting

resistance Rw will be

Rw = Rf{1 + σ(Tw − Tf )} (3.2)

where σ is the temperature coefficient of resistance. If a current I flows in the

wire, then heat is generated at a rate (= I2Rw). This heat is transferred from

the wire to the fluid at a rate (= hS(Tw − Tf)), where h is the heat transfer

coefficient and S is the surface area of a HF. For thermal equilibrium,

I2Rw = hS(Tw − Tf )

= hS
Rw − Rf

σ
(3.3)

The fluid velocity Un perpendicular to a probe cools the HF and affects

the heat transfer coefficient h.

I2Rw

Rw −Rf
= A+B

√

Un (3.4)
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where A and B are assumed to be independent of the fluid velocity.

Let’s consider a single HF in a turbulent flow with mean velocity Ū1.

The fluid will flow in three directions and fluctuating velocity has three com-

ponents. We align the HF with the radial direction. So, the radial component

of velocity v3 does not contribute much to the cooling of HF.

Un = {(Ū1 + v1)
2 + v2

2}1/2

= Ū1

(

1 +
2v1

Ū1

+
v2
1 + v2

2

Ū2
1

)1/2

= Ū1 + v1 + Ū1O
(

v2
1

Ū2
1

)

+ Ū1O
(

v2
2

Ū2
1

)

, (3.5)

where v1 is the horizontal velocity (for annulus, the azimuthal velocity) and

v2 is the vertical velocity (for annulus, the velocity along the axis of rotation).

If the vertical velocity v2 is relatively small compared to the horizontal mean

velocity Ū1, we can approximate our measured velocity as the azimuthal com-

ponent of the velocity. Futhermore, the small turbulent intensities (v1/Ū1)

leads that our measured velocity is simply expressed as a linear combination

of the horizontal mean velocity, Ū1 and the fluctuation velocity, v1. [218]

3.2.3 Probe Calibration

The probes were calibrated before and after each run by first setting the

tank at a constant rotation rate with no pumping, until the fluid reached solid-

body rotation. The solid-body rotation is achieved usually after 5 – 10 minutes

rotation. By suddenly stopping the tank, a velocity jump corresponding to the

tank’s previous speed is measured: v = Ωrprobes, where v is the velocity of the

flow when we stop the tank and rprobes is the radial position of a probe. This

process was repeated at several rotation rates and a quadratic curve was fit

51



0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

1000 2000 3000

4

5

6

0 5 10 15 20 25 30 35
−0.1

−0.05

0

Before an experiment

After an experiment

Voltage drops (V)

V
ol

ta
ge

(V
)

Time (s)

Experiment

V
el

o
ci

ty
(c

m
/s

)

Velocity (cm/s)

(a)

(b)

∆
V

ol
ta

ge
(V

)

Figure 3.2: Calibration data for a hot-film probe. We calibrate probes before
and after each experiment. In Fig. (a), triangles (circles) are measured voltage
drops after (before) an experiment and the dotted (dashed) line is a least-
square fitting curve of four data points. As shown here, the voltage drops do
not change much before and after the experiment. Inset shows the voltage
output from the experiment. During the experiment, there is no significant
voltage drops. Fig. (b) shows how much the voltage drops changes during the
experiment.
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Figure 3.3: Calibration data for a hot-film probe induced by contaminations.
We calibrate probes before and after an experiment. Triangles (circles) are
measured voltage drops after (before) an experiment and the dotted (dashed)
line is a least-square fitting curve of four data points. As shown here, the
voltage drops significantly changes before and after the experiment. Inset
shows the voltage output from the experiment. During the experiment, the
voltage from a probe suddenly changes at 250 seconds and gradually decreases
afterwards.
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through the points to obtain a relation between velocity and voltage drops.

A sample calibration curve along with the voltage range is shown in Fig. 3.2.

However, we can see the shifted voltage drop before and after experiments

when the water is contaminated or has a gas inside as in Fig. 3.3. Based on

the calibration, we obtain the velocity time series from the voltage time series.

3.3 Particle Image Velocimetry (PIV)

Quantitative measurements of velocity fields were obtained by particle

image velocimetry (PIV), using 100-micron particles with density 1.003 g/cm3

to seed the flow. The PIV system was developed by Baroud [17]. These

particles were illuminated by a ring of 360 red LEDs(AND model 190CRP)

of a few centimeter thickness. Images of the particles were captured using

a high-resolution KODAK ES1.0 Megaplus (1008 × 1018 pixels) camera, and

transferred in real time to a rotating PC. The image acquisition was controlled

by an external timing circuitry that was triggered when LEDs illuminated the

particles. Although the image rate could be on average 30 Hz, but a rotating

camera and PC can not follow up this rate. We could arrange for pairs of

images, for determining the velocity, to have a time separation of 8 ms. Pairs

of images were analyzed using cross-correlation of sub-images as described in

[17].

3.4 Flow Control

We measure the flow rate by using the volumetric flow EG+G Flow Tech

(FT-10AEYW-LEG-1). The flow meter has a freely rotating rotor positioned
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Figure 3.4: Flow rate from the flow meter. This is example by setting the flow
rate as 150 cm3/s. The root mean square (rms) value of fluctuation of flow
rate is 0.95 cm3/s. This feedback controller results in a long-term stability
within 2 %.
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axially in the flow stream with the flowing fluid pushing against the blades.

The rotational speed of the rotor is proportional to the velocity of the fluid.

Each rotation of the turbine rotor generates electrical pulses in the pickoff

which is attached to the flowmeter. Each one of these pulses represent a

discrete volume of fluid. The frequency or pulse repetition rate represents the

flow rate.

Feedback system makes more accurate flow rate in a system. By moni-

toring flow rate through the flow meter, the pumping rate is controlled. The

flow rate of pumping varies from 80 to 750 cm3/s which is limited by the ca-

pacity of flow meter. Measured flow rate is shown in Fig. 3.4. Variations of

flow rate in time lie within 2 % and its rms value is 0.95 cm3/s.
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Chapter 4

Potential Vorticity Mixing

4.1 Introduction

Fluid dynamics in many planetary systems is strongly influenced by the

dominance of the Coriolis force over all other forces present in the system. A

common feature of these systems is the generation of a zonal flow, i.e., a mean

flow in the azimuthal direction with respect to the rotation vector. Zones of

alternating azimuthal velocity have been observed on Saturn and Jupiter by

Voyager spacecraft [93]. The general circulation in the earth’s atmosphere and

oceans also displays azimuthal streams. Experiments [9] on convection in a

rotating sphere of liquid metal modeling the earth’s liquid core and numerical

simulations [57] show evidence of surface zonal flow generation from appar-

ently chaotic, small scale deep convection plumes. A common feature of these

systems is that mechanical or thermal forcing occurs at a scale which is small

compared to the size of the system, and that zonal motion is therefore not

directly forced.
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In quasi-geostrophic dynamics (see, e.g., [165]), the beta-plane, a vari-

ation of the Coriolis force with latitude in the case of constant depth systems,

or a variation of depth with radius in constant Coriolis force systems, plays an

important role in the nonlinear mechanism of energy transfer to the zonal scale

[179, 89]. The beta-plane can be seen as a reservoir of planetary vorticity. Po-

tential vorticity (PV) can be defined as the sum of the planetary vorticity and

the vorticity component parallel to the rotation vector in the rotating frame.

In an inviscid fluid, PV is materially conserved and is therefore well-mixed

in strongly forced environments. This leads to the development of zones of

constant PV [173], and the resultant mean zonal shear leads to zonal flow.

Laboratory experiments [197] and numerical simulations [128] demon-

strated that regions of constant PV existed within prograde and retrograde

jets generated by forcing directly at the zonal scale. In those experiments,

PV mixing, which is the process of geophysical interest, was not implied as

a driving mechanism but as a consequence. Using the same rotating annulus

system as Sommeria et al. [198] used in a different forcing configuration, we

have conducted experiments and complementary numerical simulations where

forcing occurs only at a small scale, and the strength and length scales of zonal

flow are left unspecified and are selected by the dynamics.

Earlier experiments by Colin [59] and McEwan [133] on topographi-

cal and source-sink forced rotating flows demonstrated the role of Reynolds

stresses in the generation of zonal circulation. Our study shows that the mag-

nitude of zonal flow has an upper bound determined by the quantity of PV

available in the planetary reservoir. The evolution of the flow towards its per-

fect mixing limit is studied as a function of the two control parameters of the

experiment, rotation rate and pumping rate.
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Figure 4.1: The potential vorticity fields obtained from (a) experiment, and
(b) numerical simulation contain strong cyclones (red) and anticyclones (blue).
Image (a) shows the location of the forcing holes, arranged in semi-circles of 60
sources (blue) and 60 sinks (red); the same forcing was used in the simulations.
This forcing produces vortex filaments of the same width as holes (see stria-
tions in b); the filaments merge and mix potential vorticity in the inner and
outer regions of the annulus, and a retrograde drifting Rossby wave (visible
particularly in b) prevents mixing between the two regions. In (a), rotation
rate Ω/2π = 2.5 Hz and pumping rate F = 550cm3/s (Reynolds number,
20000); in (b),Ω/2π = 1.5 Hz and F = 75cm3/s. Numerical simulations with
stronger forcing than in b exhibit behavior similar to a, with more small scale
vortices than b.
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4.2 Model

The experimental set-up is a water-filled annular tank of inner radius

ri = 10.8 cm and outer radius ro = 43.2 cm. The tank is covered by a solid

transparent lid. It can be spun up to rotation frequencies Ω/2π of 3 Hz. The

bottom depth varies from 17.1 cm at the inner radius to 20.3 cm at the outer

radius, with a mean height h0 = 18.7 cm and a slope η = −0.1. Water is

continuously pumped in closed circuit in and out of the tank, through a ring

of 120 circular holes located at the bottom of the tank at rf = 27.0 cm, halfway

between the annulus boundaries. Each hole has a diameter of 0.25 cm, and the

total pumping rate F is in the range 50-550 cm3/s. Holes in a semi-circle (see

Figure 4.1) are sources, and holes in the opposite semi-circle are sinks. Above

each source (sink) the vertical flow creates a local divergence (convergence)

which, in less than one tank turn, is converted by the Coriolis force into an

anticyclone (cyclone). Small scale forcing of the flow is achieved in this way.

Since the net vorticity produced is zero, zonal flow is not directly forced. This

system is therefore a convenient approximation of the examples described in

the introduction.

The Rossby number Ro = (τωΩ)−1 is defined using the nonzonal vortex

turnover time

τω =

(

1

π(r2
o − r2

i )

∫ ro

ri

∫ 2π

0

r(ω − ωθ)2
tdrdθ

)−1/2

(4.1)

where ω is the vorticity component parallel to the rotation axis, ωt its time-

average and ωθ its azimuthal average. Ro is kept under 0.2 to maintain quasi-

geostrophy and a flow reasonably two-dimensional by the Taylor-Proudman

theorem.

In the experiment, Particle Image Velocimetry was used to determine
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the complete velocity field in a plane perpendicular to the axis of rotation

[18]. A horizontal light sheet was produced using a ring of light emitting

diodes at mid-depth of the tank. Water in the tank was seeded with neutrally

buoyant plastic particles of size ∼ 0.1 mm. For each pair of values for the

control parameters Ω and F , 100 instantaneous velocity fields were acquired

at intervals of about 1, 2, 4 or 8 seconds for forcings of 550, 350, 150 and 50

cm3/s, respectively.

Direct two-dimensional numerical simulations have been performed in

addition to the experiments. We resolved the advection-diffusion of PV includ-

ing viscous dissipation (viscosity ν), realistic forcing, and drag characterized

by the Ekman spin-up time τE :

∂q

∂t
+ (v⊥ · ∇⊥)q = − ω

τE
+ ν∇2ω +

2Ω

h0
vf , (4.2)

τE =
h0

2
(νΩ)−1/2 , (4.3)

where the vertical velocity at each forcing hole is described by vf , which was

chosen to be constant over each hole and zero elsewhere. Equation (4.2) was

solved on an annulus of the same aspect ratio as the experiment, with rigid

boundary conditions at the inner and outer radii. The numerical technique

was finite-differencing in the radial direction and spectral decomposition in

the lateral direction. Each forcing hole typically spanned ten mesh points.

4.3 Results

The potential vorticity is given by q = ω + βRo(r − rf), where r is

the radial coordinate, and the beta-plane parameter is βRo = 2ηΩ/h0. A

snapshot of the measured q is shown in Figure 4.1 a. We observe that one
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Figure 4.2: The experimental time-averaged potential vorticity field qt (a)
and azimuthally-averaged profile qθ,t (b, black line) have a positive (negative)
fairly uniform value in the inner (outer) region of the annulus. Numerical
simulations (b-c, red lines) yield a similar profile. (c) The average azimuthal
velocity profile vθ,t is consistent with profile (b) and Stokes theorem (see text)
and reveals three zonal flows, retrograde in the regions of well-mixed potential
vorticity and prograde in the gradient region. The vicinity of the peak of zonal
flow is described by sech2(r) (green line in c). Conditions for experiment and
simulation were Ω/2π = 2.5 Hz and F = 150cm3/s.
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large anticyclone (cyclone) appears intermittently in the source (sink) half

of the annulus. Both drift in the retrograde direction with respect to the

annulus. The strongly forced flow is dominated by vortices so no zonal pattern

is apparent in snapshots; however, time averaging clearly reveals a zonal flow

pattern, as Figure 4.2 illustrates. A PV gradient exists above the forcing ring,

while PV is well mixed (fairly uniform) in the inner region (ri < r < rf )

and in the outer region (rf < r < ro). Graphs of the azimuthally averaged

PV (Figure 4.2 b) and the azimuthal velocity (Figure 4.2 c) as a function of

r show that the forcing has created three zones for azimuthal flow: the PV

gradient region corresponds to a prograde zonal circulation, while the regions

of constant PV correspond to retrograde zonal circulations. The prograde flow

has a profile consistent with sech2(r) (Figure 4.2 c). The retrograde flow is

weaker in the outer region. This three-zone flow structure was observed for all

parameter values F and Ω studied.

The numerical simulation shows that small scale PV filaments are re-

leased above each hole in the forcing ring (Figure 4.1 b), and positive (negative)

filaments merge into cyclonic (anticyclonic) structures. The beta plane acts as

a vorticity selector: cyclonic (anticyclonic) structures cannot move outwards

(inwards) because their motion outwards (inwards) triggers a Rossby wave

which restores them to their original position. In contrast, nothing prevents

a cyclone from moving to the inside. In this way, positive (negative) PV is

carried by cyclones (anticyclones) to the the inner (outer) region of the annu-

lus. A gradient therefore sets up above the forcing ring, separating the two

regions where vortical structures efficiently mix PV into two homogeneized,

constant levels. A retrograde-drifting Rossby wave, similar to that observed

by Sommeria et al. [198], rides on the PV gradient, preventing the inner and
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outer regions from exchanging fluid most of the time, although there are a few

leaks across the PV gradient, as can be seen in Figure 4.1 b.

The net vorticity injected by the forcing system is zero (cyclonic and

anticyclonic vorticity are injected in balance); hence material conservation of

PV implies that the only PV to be homogeneized is the planetary background

βRo(r − rf). In the limit of perfect mixing, the PV has two levels, qi in the

inner region and qo in the outer region, and these levels are given by the mean

values of the planetary background in each region,

qi,o =
2π

π(r2
f − r2

i,o)

∫ rf

ri,o

rβRo(r − rf)dr =
β

3

(

−rf +
2r2

i,o

rf + ri,o

)

(4.4)

which are independent of the forcing strength. This perfect mixing model has

infinite gradients above the forcing ring and near the boundaries. However,

such sharp gradients are prevented by the Rayleigh-Kuo instability criterion

[113]: a PV gradient greater than 2βRo is unstable because d2uθ/dr
2 − βRo

changes sign. In our flow, the PV gradients observed above the forcing ring

and near the boundaries are in good accord with the Rayleigh-Kuo criterion,

as Figure 4.3 illustrates.

In the limit of strong mixing, both the maximum PV gradient and

the homogeneized PV levels scale linearly with βRo. Therefore, the shape of

the well-mixed radial PV profiles, when normalized by βRo, is independent of

forcing rate and rotation rate (Figure 4.3). The width l of the gradient zone is

also independent of the two control parameters, and is given by l ≈ (ro−ri)/4.

For a jet with a sech2 profile, the modenumber m of the Rossby wave riding

on the steep PV gradient is predicted by linear theory to be m = 21/2l−1rf ,

which is also independent of control parameters. The value m = 5 observed in

our numerical simulations at low forcing level (Figure 4.1 b) agrees with the
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Figure 4.3: The observed well-mixed profiles of potential vorticity are similar
when normalized by the beta plane coefficient βRo. Lengths δ and l of the
mixing and gradient regions are then determined solely by the geometry. The
values of Ω/2π (Hz) and F (cm3/s) were 1.25, 150 (-); 2.5, 150 (- -); 2.5, 350
(– –); 2.5, 550 (- – -). replacements
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prediction of linear theory.

The mean zonal flow uθ is related to azimuthally averaged vorticity ωθ

through Stokes theorem

vθ(r) =
1

r

∫ r

ri

rωθdr =
1

r

∫ r

ri

r(qθ − βRo(r − rf))dr . (4.5)

Equation (4.5) shows that zonal shear, and therefore zonal motion, exists as a

consequence of PV mixing by smaller scale eddies. A perfectly mixed zonal flow

will have the same properties as perfectly mixed PV, i.e., it will be proportional

to βRo and independent of forcing. It will also have a cusp at r = rf (due to

the discontinuity in the PV profile), and will be always retrograde and of equal

strength in the inner and outer regions. The cusp is not observed in our flow

because the PV discontinuity is broadened by instability. A prograde region

exists because flow near boundaries does not conserve PV and injects some

into the fluid (see Figure 4.1 b). Zonal flow is asymmetric with respect to rf

because the inner region is smaller and therefore better mixed than the outer

region (see distribution of vortices in Figure 4.1 b).

Any dependence of the observed zonal flow on the forcing strength is

due to incomplete PV mixing. The mixing is nearly complete, as illustrated

by Figure 4.4, where the rms value Uθ of the measured time-averaged zonal

motion is normalized with respect to its perfect mixing value, obtained from

equations (4.4) and (4.5):

U∞ = βRoδ
2

√

2

15
≈ βRoδ

2

3
(4.6)

where the curvature of the annulus has been neglected, and δ = (ro− rf)/4 is

a length representative of the width of constant PV zones. Uθ/U∞ is plotted in

Figure 4.3 as a function of the ratio of time scales τE/τω, which measures the

66



Figure 4.4: The forcing configuration has zero net potential vorticity injection,
and the planetary reservoir has a limited capacity: The rms value Uθ of zonal
flow approaches an upper bound U∞ when mixing, measured by the ratio of
Ekman spin-up time τE to vortex turnover time τω, becomes large.
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importance of nonzonal motion, which favors mixing, relative to the friction (in

the top and bottom Ekman layers), which inhibits mixing. The experiments,

conducted mainly in the well-mixed regime (τE/τω ≫ 1), and the numerical

simulations are in reasonable agreement in the region of overlap. In the viscous

regime (τE/τω ≫ 1), the rms value of zonal motion grows with the square of

non-axisymmetric motion, reflecting the action of the axisymmetric part of the

Reynolds stresses that feed the zonal flow [133]. In the well-mixed regime, the

zonal motion clearly saturates and never exceeds the perfect mixing value. In

this limit, the planetary reservoir is depleted and there is no way the system

can put more energy into zonal flow. In the experiments, perfect mixing will

never be reached due to the Rossby wave instability and non-conservation of

PV near boundaries of the annulus.

4.4 Discussion

These experiments illustrate how non-axisymmetric motion mixes PV

and produces a zonal circulation. As the PV mixing grows, a state is reached

where the reservoir of planetary vorticity is fully used, and the zonal motion

saturates at an rms value given by Equation (4.6), as Figure 4.4 illustrates.

Saturation of zonal flow has been observed in the three-dimensional numerical

simulations of Christensen [57], and has been attributed to a loss of geostro-

phy in the system as the Rossby number grows. Here we show that a two-

dimensional model also produces saturation.

The criterion for saturation may be written in terms of non-dimensional

numbers, namely the Rossby number Ro = U/ΩD and the Ekman number

Ek = (τEΩ)−2 = ν/ΩD2 where D is a typical length scale for the system and

68



U a typical nonzonal velocity:

RoEk−1/2 ≫ 1 . (4.7)

With this condition satisfied, relation (4.6) may be expected to hold quite

generally, since it only expresses that ω is bounded. Approximating the at-

mosphere of Jupiter with a well-mixed, piece-wise constant PV, such as done

by Marcus [127], one can thus relate the typical zonal velocity to the size of

the zones. We obtain the correct order of magnitude for the zonal velocity,

U∞ = 50 m/s, using the following values: δ = 2000 km for the width of a zone

βRo = 2Ω cos θ/r where θ is the latitude; Ω = 1.75× 10−4 rad/s; θ = π/4; and

r = 71400 km.

In the case of the earth’s liquid core, the usual values for the Ekman and

Rossby numbers are Ek ∼ 10−14 and Ro ∼ 10−6 (e.g., see Aubert et al. [9]). A

nonmagnetic flow in this liquid shell would therefore be quasi-geostrophic, and

condition (7) would be satisfied. The configuration here is a thick spherical

shell, but it can be described with beta-plane equations. In this case, the

βRo parameter is constrained by the slope of the boundaries, and outside a

cylinder tangent to the inner core it becomes βRo = 2rΩ/(r2
e − r2), where re

is the external radius of the core and r is the cylindrical radius. Taking re =

3400 km, r = 1500 km, and a zonal velocity U∞ = 10−4 m/s, as estimated by

Jault et al. [95], relation (4.6) yields a typical size as low as δ = 10 km for one

zone, a value very small compared to the 2200 km of the liquid shell. Such

a zonal flow would therefore contain many layers, which would act as strong

barriers to the convective transport of heat, in the same way as they act as

barriers to the transport of PV. This would therefore not be very efficient

in maintaining the earth’s magnetic field, which is thought to get its energy
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from convective motion through the geodynamo process. This underlines the

necessary influence of magnetic Lorentz forces, which change the balance from

geostrophic to magnetostrophic.

In the flow in an annulus that we have studied, even though the char-

acteristics of zonal flow are not specified by the forcing, the system evolves

towards a state with fixed number of zones whose strength and length scale

are prescribed by the geometry. The question of how many zones a random

small-scale mechanical or thermal forcing would produce remains open and

will be examined in forthcoming experimental studies. There is an energetic

cost each time the fluid creates a gradient of PV separating two zones. This

problem could therefore be examined through free energy minimization.
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Chapter 5

Statistical Mechanics

A statistical mechanical description is proposed for two-dimensional in-

viscid fluid turbulence. Using this description, we make predictions for turbu-

lent flow in a rapidly rotating laboratory annulus. Measurements on this sys-

tem reveal coherent vortices in a mean zonal flow. The flow is anisotropic and

inhomogeneous but has low dissipation and forcing. In statistical mechanics

two crucial requirements for equilibrium are statistical independence of macro-

cells (subsystems) and additivity of invariants of the macro-cells. One of these

invariants is energy, an extensive quantity, which should be additive; i.e. the

interaction energy between a macro-cell and the rest of the system (reservoir)

should be small. We use additivity to select the appropriate Casimir invari-

ants from the infinite set available in vortex dynamics. Exchange of micro-cells

within a macro-cell should not alter an invariant of a macro-cell. Statistical

analyses of turbulence for several decades have considered macro-cells with-

out explicitly considering their statistical independence. A novel feature of

the present study is our choice of the macro-cells, which are continuous phase

space surfaces based on mean values of the streamfunction; the surfaces can
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be used to define a canonical distribution. We show that this approach can

describe anisotropic and inhomogeneous properties of a flow. Quantities such

as energy and enstrophy can be defined on each surface. Our approach leads

to the prediction that on a surface there should be a linear relation between

the ensemble-averaged potential vorticity and the time-averaged streamfunc-

tion; our laboratory data are in good accord with this prediction. Further,

the approach predicts that although the probability distribution function for

potential vorticity in the entire system is non-Gaussian, the distribution func-

tion of micro-states should be Gaussian on the macro-cells, i.e., for surfaces

defined by mean values of the streamfunction. This prediction is also sup-

ported by the turbulence data. While our statistical mechanics approach was

motivated by and applied to experiments on turbulence in a rotating annulus,

the approach is quite general and is applicable to a large class of Hamiltonian

systems, including drift-wave plasma models, Vlasov-Poisson dynamics, and

kinetic theories of steller dynamics.

5.1 Introduction

5.1.1 Overview

Statistical mechanics provides a way to calculate the macroscopic prop-

erties of matter from the behavior of microscopic constituents. Instead of con-

sidering all motions of the individual constituents, one describes observable

quantities averaged over constituent Hamiltonian trajectories, and averages

are evaluated using the probability distribution of possible microstates. Like-

wise, fluid systems with a local balance between dissipation and forcing have
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been described by statistical mechanics with the inclusion of constraints based

on invariants of the dynamics. In general, such statistical theories for fluids

are based on the idea that the macroscopic behavior of the fluid turbulence can

be described without knowing detailed information about small scale vortices.

The justification of statistical mechanics based on ideal two-dimensional

fluid equations is open to question, given the existence of forcing, dissipation,

three-dimensional effects, temperature gradients, etc. that certainly occur in

real fluid flows. Moreover, one must square the idea of cascading with the

approach to statistical equilibrium. Ultimately, such a justification is very

difficult and would rely on delicate mathematical limits. However, its success

amounts to the idea that the fluid system can in some sense be described by

weakly interacting subsystems, where the behavior of a single subsystem can

be described by weak coupling to a heat bath that embodies all of the other

subsystems and all of the omitted effects. In the end ‘the proof of the pudding

is in the eating’, and our justification is based on experimental observations.

Intimately related to the existence of subsystems is the question of which

invariants to incorporate into a statistical mechanics treatment of fluids. One

aim of the present chapter is to investigate this question. We investigate this

question both theoretically and experimentally and come to the conclusion

that quadratic invariants (energy and enstrophy) are most important. Our

conclusion follows from the observation that these invariants possess the prop-

erty of additivity.

The microscopic dynamics of conventional statistical mechanics is finite

dimensional, but to describe macrosopic phenomena one takes the thermody-

namic limit in which the number of degrees of freedom tends to infinity. How-

ever, the dynamics of a two-dimensional fluid is already infinite dimensional
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and possesses an infinite number of invariants; so, in order to make progress

with a statistical mechanics approach one must extract a finite-dimensional

model, and such a model cannot conserve all of the invariants of the original

fluid system. In calculations one may also take limits of this finite-dimensional

model, but the results of these limits may depend upon which of the invariants

are maintained. Additivity of macroscopic invariants and statistical indepen-

dence of subsystems are crucial properties in conventional statistical mechanics

[see e.g. [114]]. Because not all invariants of a system are additive, this prop-

erty can be used to select invariants for statistical mechanics from the infinite

number possessed by two-dimensional fluid systems.

Related to the choice of additive invariants is the choice of subsystems.

This choice requires the identification of two scales, a macroscopic scale and a

microscopic scale, which we call ∆ and δ, respectively, and phase space cells

of these characteristic sizes are considered. In classical statistical mechanics,

the micro-cells usually refer to individual particles, while the macro-cells, the

subsystems, are selected to be large enough to contain many particles yet

small enough to have uniform invariants. We address in detail the choice of

these cells for the fluid in §5.5, but it is clear that a macro-cell should contain

many micro-cells, yet be small enough so that the vorticity and streamfunction

are constant. This condition is sufficient for statistical independence, but the

converse is not always true. In any event we seek to define macro-cells that are

nearly statistically independent and consider only invariants that are additive

over these cells.

A second aim of the present work is to propose the idea that temporal

mean values of the streamfunction provide a natural coordinate system for

describing inhomogeneous turbulence, a coordinate system that can be used
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to define statistically independent subsystems. We suggest this idea because

contours of the streamfunction for two-dimensional inviscid fluid flow tend to

be smooth and because there tends to be a strong statistical dependence of

vorticity or potential vorticity along those contours. Streamfunction contours

are much smoother than vorticity contours because of the smoothing property

of the inverse Laplacian. Therefore, there is a natural separation of length

scales: the large scale associated with variation of the streamfunction con-

tours and the fine scale that is needed to resolve the vorticity or potential

vorticity. We take these to be our scales ∆ and δ, respectively. We test this

idea experimentally by measuring the independence of subsystems so defined.

We then construct a theory based on this definition of subsystem together

with the additivity of quadratic invariants, and compare its predictions with

the measured vorticity probability density function.

5.1.2 Background

In a remarkable series of papers [35, 36, 37, 38, 39, 40, 41] [reprinted in

[157]] Burgers appears to be the first researcher to apply statistical mechanics

ideas to the description of fluid turbulence. Many basic ideas used by later

researchers were introduced first by Burgers in these rarely cited papers. Burg-

ers introduced both lattice and Fourier models and showed that such models

satisfy Liouville’s theorem when viscosity is neglected. He used a counting ar-

gument to derive an entropy expression and obtained a corresponding entropy

maximization principle. He proposed a microscopic scale for describing turbu-

lent motion during short intervals of time and defined macroscopic quantities

by counting possible streamfunction realizations for sequences of time inter-
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vals. His analysis is based on the Reynolds stress equation, and he obtained

a probability distribution that can be used to calculate the mean value of the

Reynolds stress.

Motivated by the work of Burgers, Onsager [161] took up the subject

and considered a representation of the vorticity field in terms of a set of point

vortices, zero-area vortices, of equal strength. Because this results in a finite-

dimensional particle-like Hamiltonian system, Onsager could proceed to apply

techniques of classical statistical mechanics. He gave arguments for the exis-

tence of negative temperatures and the occurrence of coherent structures in a

confined region, which are often observed in nature. Related ideas have been

further pursued by many researchers [e.g. [96, 131, 71, 233]] [see [72] for a

recent review]. For example, Joyce et. al [96] studied the statistical mechanics

of point vortices within a mean field approximation, and argued that in the

negative temperature regime, large like-signed vortices are the most probable

state.

T.D. Lee [117] projected three-dimensional fluid equations (including

MHD) onto a Fourier basis and truncated to obtain a finite-dimensional sys-

tem. Evidently unaware of the early work of Burgers [41], he again demon-

strated that his truncated system satisfies a version of Liouville’s theorem

and was thus amenable to techniques of statistical mechanics. Later, Kraich-

nan considered two-dimensional fluids [107, 108, 111] and noted that out of the

infinite number of invariants, two quadratic invariants, the so-called rugged in-

variants, remained invariants after truncation. They argued that these rugged

invariants are the important ones, and obtained an equilibrium state, which is

related to that obtained by minimum enstrophy arguments put forth by selec-

tive decay hypotheses [118, 132, 32]. Also, using Kolmogorov-like dimensional
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arguments and the rugged invariants, Kraichnan argued for the existence of

direct and inverse cascades for two-dimensional turbulence [107].

The two-dimensional Euler equation, like the Vlasov and other trans-

port equations, can be viewed as mean field theory. Such equations are known

to generate fine structure in the course of evolution. This led Lynden-Bell

[124] to consider a coarse graining procedure coupled with the idea of pre-

serving all of the infinity of invariants such theories possess. He applied his

ideas in the context of stellar dynamics, but the ideas are akin to those used

in treatments of the classical electron gas by generalizations of Debye-Hückle

theory [e.g. [101]]. Later, such ideas were used in the fluid context by Robert

and Miller [175, 176, 177, 138, 139], and again in the stellar dynamics context

by Chavanis et. al [54]. In these theories a microscopic probability distribution

represents a local description of the small-scale fluctuations of microscopic vor-

tices. The streamfunction is assumed to be uniform on the microscopic scale,

and an equilibrium state is obtained by maximizing the Boltzmann entropy of

microstates, an entropy that is obtained by a counting argument first given by

Lynden-Bell. This produces a most probable state.

More recently, the necessity of incorporating the infinite number of in-

variants in statistical mechanics theories has been brought into question, and

theories based on finite-dimensional models with a fewer constraints have been

developed. Majda et. al [126] have argued that including an infinite number of

invariants provides no additional statistical information, and Turkington [220]

has argued that previous theories have not properly handled the neglected

small scale phenomena, and he has proposed a theory that uses inequality

constraints associated with only the convex invariants. Our approach is per-

haps most closely aligned to these works, but is distinguished by the fact
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that the invariants chosen are explicitly based on the additivity argument, the

choice of subsystems, and detailed experimental observation.

Natural phenomena in atmospheres and oceans have served as a moti-

vation for the application of statistical mechanics to two-dimensional fluid flow

[e.g. [187]]. Examples include zonal flows in planets, such as the jet stream

and the polar night jet, and organized coherent vortices, such as the Great

Red Spot of Jupiter [132, 198, 196, 127, 32]. Attempts have been made to

explain such naturally occuring phenomena in terms of the coherent struc-

tures found to emerge in quasi-geostrophic and two-dimensional turbulence

after long time evolution. With external small-scale forcing a few long-lived

and large structures resulting from nonlinear merging processes are seen to be

stable self-organized states that persist in a strongly turbulent environment

[135, 31]. These structures have been studied over many years, often because

of their relevance to large-scale geophysical and astrophysical flows [127]. In

statistical mechanics, such steady states with large structures are envisioned to

be the most probable state arising from some extremization principle. Various

extremization principles [e.g. [118]] have been proposed with selected global

invariants of the system used as constraints. Observations of turbulent flow

with large coherent structures in a rotating annulus [196, 18, 19, 10, 98] have

led us to reconsider statistical mechanics in the context of rapidly rotating

systems.

5.1.3 Notation Organization

By necessity this chapter contains much notation. To aid the reader

we give a brief summary here. As noted above, statistical mechanics deals
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with two scales: the microscopic scale δ, characteristic of microscopic m-cells,

and the macroscopic scale ∆, characteristic of macroscopic M-cells. Several

averages are considered. The symbol 〈 · 〉S denotes an average with probability

density PS, where choices for the subscript S will be used to delineate between

different cases. The appropriate volume measure will be clear from context

but is also revealed by the argument of PS. Averages with uniform density are

denoted by ≺ ·≻S, where the subscript denotes the integration variable. An

exception is the time average, which we denote by an overbar. Thus, the time

average of a function is denoted by f̄ , and f̄ =
∫ T

0
fdt/T =≺f≻t. The limits

of integration for this kind of average will either be stated or will be clear

from context. We denote the potential vorticity field by q(x, y, t), by which we

always mean a function. For the potential vorticity distribution on a M-cell

(subsystem) we use ζ , an independent variable. Another source of possible

confusion is that the symbol β is used for the energy Lagrange multiplier, as is

conventional in statistical mechanics, while the beta-effect of geophysical fluid

dynamics is embodied here in the symbol h.

The chapter is organized as follows. The experiment is described in

§5.2 and equations that govern the dominant physics are reviewed in §5.3. In

§5.4 we describe some basic ideas about statistical mechanics, as needed for

the application to the fluid system of interest. In §5.5 we describe statistical

mechanics in the mean field approximation and compare predictions with ex-

periments. Here we show that predictions of the theory are in accordance with

experiments. Finally, in §5.6 we conclude.
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Figure 5.1: (a) Schematic diagram of the experimental apparatus. The tank
rotates at 1.75 Hz. Flow is produced by pumping water through a ring of inlets
(I) and outlets (O) in the bottom of the tank. The Coriolis force acts on the
radially pumped fluid to produce a counter-rotating jet. (b) The vorticity field
and contours of streamfunction at mid-height of the tank, determined from
Particle Image Velocimetry measurements. The streamfunction contours are
equally spaced in streamfunction value. (c) The azimuthal velocity averaged
over both time and azimuthal angle, as a function of radial position. (d) The
vorticity (solid line) and streamfunction (dashed line) averaged over time and
azimuthal angle, as a function of radial position.
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5.2 Experiment

The experiments are conducted in a rotating annulus (Fig. 5.1). The

annulus has an inner radius ri = 10.8 cm, outer radius ro = 43.2 cm, a sloping

bottom, and a flat transparent lid. The bottom depth varies from 17.1 cm

at the inner radius to 20.3 cm at the outer radius, giving a bottom slope of

η = −0.1. For the data analyzed in this chapter, the rotation frequency of

the annulus is Ω/2π = 1.75 Hz. An azimuthal jet is generated in the annulus

by pumping water in a closed circuit through two concentric rings of holes

at the bottom. Fluid is pumped into the annulus through an inner ring at

r = 18.9 cm and extracted through an outer ring at r = 35.1 cm; both rings

have 120 circular holes. Each hole has a diameter of 2.5 mm, and the total

pumping rate is 150 cm3/s. The action of the Coriolis force on the outward

flux generates a counter-rotating azimuthal jet. A counter-rotating flow is

generally more unstable than a co-rotating flow [198].

The water is seeded with neutrally buoyant particles (polystyrene spheres,

diameter 150−200 µm). Light emitting diodes produce a 3 cm thick horizontal

sheet of light that illuminates the annulus at mid-depth. The particles sus-

pended in the water are imaged with a camera located 2 m above the annulus,

and the camera rotates with the tank. Particle Image Velocimetry (PIV) is

used to obtain the full two-dimensional velocity field [19].

The flow can be characterized by the Reynolds, Rossby, and Ekman

numbers. The maximum velocity Umax ≈ 22 cm/s, the length L = 16.2 cm

(taken to be the distance between the two forcing rings) and the kinematic

viscosity ν = 0.01 cm2/s yield a Reynolds number UL/ν = 3.5×104, indicating

that the flow is turbulent. The Rossby number (ratio of inertial to Coriolis
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force) is ωrms/2Ω = 0.11 (where ωrms is the rms vorticity), which indicates

that the Coriolis force is dominant, as is the case for planetary flows on large

length scales. Finally, the small Ekman number, ν/2L2Ω = 3×10−4, indicates

that dissipation in the bulk is small. Use the other notation for the height

The Ekman time, τE = Lh/2(νΩ)1/2 (where Lh is the mean fluid height) for

dissipation in the boundary layers is 30 sec, a time much longer than the

typical vortex turnover time, 2 sec. The dimensionless numbers indicate that

the flow is quasi-geostrophic; previous studies of turbulence in the annulus

have indeed confirmed the strong two-dimensionality of the flow [19].

5.3 Dynamics

The barotropic assumption is widely used to describe the flow inside

the tank. The equation of motion for a barotropic fluid with topography is

given by
∂q

∂t
+ v⊥ · ∇⊥q = D + F , (5.1)

where q = (−∇2
⊥ψ + 2Ω)/Lh is the potential vorticity, Lh is the tank depth,

ψ is the streamfunction, v⊥ = (∂ψ/∂y,−∂ψ/∂x), and D denotes dissipation,

such as that due to molecular viscosity, ν∇2
⊥ω, or Ekman drag, −ω/τE , and

F denotes a vorticity source due to the pumping. When Lh = 〈Lh〉(1 − ηr)
where η is the bottom slope, the potential vorticity is approximated by

q = −∇2
⊥ψ + h , (5.2)

where h accounts for the beta-effect and is here a linear function of radius,

h = 2Ωηr/〈Lh〉. Over the years strong evidence has accumulted that (5.1)

describes the dominant features of the experiment [198, 66, 137, 195].
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For inviscid flow with zero Rossby number, there is no vertical variation

in the velocity [178], and there is evidence that to leading order the drag and

forcing terms cancel. We are primarily interested in the statistics of motions

that occur on the vortex turnover time, and these are governed by the inviscid

equation,
∂q

∂t
+ v⊥ · ∇⊥q = 0, (5.3)

which is a Hamiltonian theory.

A manifestation of the Hamiltonian nature of two-dimensional Euler-

like flows such as (5.3) is the finite-dimensional Hamiltonian description of

point vortices provided by Kirchoff [102], which played an essential motivating

role in Onsager’s theory [e.g. [72]]. For a distributed vorticity variable such

as q the Hamiltonian form is infinite-dimensional and is given in terms of a

noncanonical Poisson bracket as follows:

∂q

∂t
= {q,H} = [ψ, q] , (5.4)

where the HamiltonianH [q] =
∫

ψ(q−h)dxdy/2, and the noncanonical Poisson

bracket is given by

{F,G} =

∫

q

[

δF

δq
,
δG

δq

]

dxdy , (5.5)

with F and G being functionals, δF/δq the functional derivative, and [f, g] =

fxgy − fygx. Observe that v⊥ · ∇⊥q = −[ψ, q]. This Hamiltonian formulation

of the two-dimensional Euler equation appeared in [144, 145], based on the

identical structure for the Vlasov-Poisson system [143], and in [159]. A review

of this and other formulations can be found in [146]. The infinite family of

Casimir invariants C[q] =
∫

C(q)dxdy, where C is arbitrary, satisfies {F,C} = 0

for all functionals F , and is thus conserved by (5.3). The presence of these
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invariants is one way that the statistical mechanics of fluids differs from that

of particle systems.

5.4 Statistical Mechanics and Fluid Mechan-

ics

As noted in §5.1 many attempts have been made to apply statistical

mechanics to fluids and other infinite-dimensional systems. In this section we

introduce our notations and discuss some basic ideas.

5.4.1 State Variables

In classical statistical mechanics the microscopic dynamics is governed

by Hamilton’s equations and the phase space is the 2N dimensional manifold

with canonical coordinates (Qα, Pα), α = 1, 2, . . . , N , where (Q1, . . .QN ) is

the configuration coordinate and (P1, . . . , PN) is the corresponding canonical

momentum. Typically N , the number of degrees of freedom, is a very large

number ∼ 1023. We call this 2N dimensional phase space Γ, a standard no-

tation introduced by P. and T. Ehrenfest [68]. Our fluid is assumed to be

governed by (5.3), an infinite-dimensional Hamiltonian theory, and thus the

instantaneous state of our system is determined by the vorticity-like variable

q(x, y), which we suppose is contained in some space of functions G. The index

α for coordinates of Γ is analogous to the Eulerian position (x, y), a point in

the physical domain occupied by the fluid, which is viewed as an index for G.
In conventional statistical mechanics, the microscopic dynamics is finite

dimensional, and one attempts to explain phenomena on the macroscopic level
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by considering the thermodynamic limit in which N → ∞. However, for

a fluid, the dynamics is already infinite dimensional, and thus as noted in

§5.1, to apply statistical mechanics researchers have introduced various finite-

dimensional discretizations. Onsager’s description of the continuum vortex

dynamics in terms of a collection of point vortices amounts to the specification

of the coordinates of the manifold analogous to Γ as the spatial positions of the

point vortices, (x1, . . . xN , y1, . . . , yN) [161]. Alternatively, Lee’s representation

of a three-dimensional fluid in terms of a truncated Fourier series has the

Fourier amplitudes being coordinates of a space analogous to Γ [117]. This

procedure was carried over to two dimensions by Kraichnan and Montgomery

[111]. For our potential vorticity variable the Fourier amplitudes are given by

qk =
∫

exp i(kxx+ kyy) q(x, y)dxdy, where k = (kx, ky). Another alternative

is to replace the continuum vorticity by a lattice model [e.g. [35, 175, 176,

177, 138, 139, 126, 220]], i.e., an expansion in terms of tent functions or finite

elements of scale size δ. In the present context the vorticity is replaced by its

values on the lattice, qi =
∫

Ki(x, y; xi, yi)q(x, y)dxdy, where the kernel Ki is

typically chosen to represent a square lattice with a finite number N of sites

located at (xi, yi). In general N = NxNy, where Nx and Ny are the number

of lattice points in the x and y directions, respectively. We will refer to this

discretization as a division into m-cells.

Given a finite-dimensional system one can make various assumptions,

e.g., the probabilistic assumptions of ‘molecular chaos’, but this requires a

notion of phase space volume conservation.
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5.4.2 Phase Space Volume and Liouville’s Theorem

In classical statistical mechanics one calculates averages over the man-

ifold Γ, and the natural volume element is given by ΠN
α=1dQαdPα. However,

for G the situation is not so straightforward, and so we explore candidates for

the analogous volume element.

Volume Element

The calculation of averages in a statistical theory requires a phase space

measure, Dq, which is a sort of volume element for G. The volume element

can be interpreted as a probability measure defined on functions that take

values between q and q + dq. Averages calculated using the probability mea-

sure are functional integrals akin to those used in Feynman’s path integral

formulation of quantum mechanics and in field theory [e.g. [188, 202]]. The

various discretizations introduced above have been employed to give meaning

to functional integrals, but the Fourier and lattice models are most common.

For the Fourier descretization, Kraichnan and Montgomery used the

volume element Dq =
∏

k dqk, where the product is truncated at some max-

imum wave number. Alternatively, the volume element for lattice models is

written as Dq =
∏N

i dqi, where dqi is a volume element associated with the

potential vorticity varying from q to q + dq in a lattice partition (xi, yi), and

N = NxNy is as above the number of lattice sites, which have a scale δ. Here,

a total volume element Dq is a product of volume elements of each lattice

site dqi . In the case of a finite small lattice, dqi becomes an one-dimensional

volume, i.e., dqi = q(xi, yi) + dq(xi, yi)− q(xi, yi) at the lattice point (xi, yi) of

the physical two-dimensional space. In order for a notion of measure based on
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phase space volume to be useful, the volume must be preserved in the course

of time.

Liouville’s Theorem

Preservation of phase space volume is assured by Liouville’s theorem,

an important theorem of mechanics. As noted above, Burgers and Lee showed

that a version of Liouville’s theorem applies to the system governing the

Fourier amplitudes for the inviscid fluid. For vorticity dynamics the ampli-

tudes satisfy

q̇k =
∑

l,m

ǫklm

|l|2 (ql − hl) qm , (5.6)

where hl is the fourier transformation of the beta effect and ǫklm = ẑ · (l ×
m)δ(k + l + m) is completely antisymmetric, i.e., ǫklm = −ǫlkm = −ǫmlk and

ǫkkm = ǫklk = 0. Therefore, antisymmetry directly implies Liouville’s theorem,
∑

k ∂q̇k/∂qk ≡ 0.

Similarly, we have shown directly that the lattice model possesses a

version of Liouville’s theorem, which we recently discovered was anticipated

in [36]. This result was also inferred in [220]. We assume periodic boundary

conditions. The lattice model discretization can be viewed as an expansion of

the vorticity in terms of a tent function basis [e.g. [74]].

The technique for the lattice model discretization is widely used in

Finite Element Methods(FEM). FEM assumes that the solution of a partial

differential equation can be expressed by approximating functions. In this

case, the original function q is approximated by discrete values on periodic

lattice sites. The potential vorticity function is written as

q(x) =
∑

i

K(x,xi)q(xi) (5.7)
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where K(x,xi) is a symmetric function at the center of xi (In other words,

K(x,xi) = K(|x − xi|)). For example, the Tent function is often used in a

finite element method. We denote that a potential vorticity at lattice sites

q(xi) =: qi and a function K(x − xi) =: Ki. We assume that lattice sites are

separated by equal distance ∆x.

The discrete stream function on the lattice sites ψi = Mij(qj − hj)

where M is a discrete matrix of Laplacian, with imposed periodic boundary

conditions that have a symmetric property M = MT . The derivative of a

function q with respect to space x can be approximated as

∂xq(x) =
∑

i

KiN
(x)
ij qj . (5.8)

where N
(x)
ij is defined as the differential operator along the x-direction in a

finite-dimensional function which has an antisymmetric property as N (x) =

−(N (x))T .

Plugging Eq. (5.8) and (5.7) into Eq. (5.4), one gets

∑

i

Kiq̇i +
∑

µν

∑

jk

KjKk[N
(x)
jµ N

(y)
kν −N

(y)
jµ N

(x)
kν ]ψµqν = 0. (5.9)

If we multiply the above equation by Ks and integrate it over x, one gets

∑

i

Zsiq̇i = −
∑

µν

∑

jk

Gsjk[N (x)
jµ N

(y)
kν −N

(y)
jµ N

(x)
kν ]ψµqν

⇒ q̇i = −
∑

µν

∑

s

∑

jk

Z−1
is Gsjk[N (x)

jµ N
(y)
kν −N

(y)
jµ N

(x)
kν ]ψµqν

q̇i =
∑

µν

Biµνψµqν (5.10)

where a symmetric Zij is defined as
∫

K(x−xi)K(x−xj)dx and a symmetric

Gijk, the third order correlation, is defined as
∫

K(x−xi)K(x−xj)K(x−xk)dx.
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The matrix which represents the nonlinear interaction in Eq. (5.10) can be

expressed as

Biµν := SijkAjµAkν , (5.11)

composed of one symmetric tensor Sijk (originated from Z−1
is Gsjk) and two

antisymmetric tensors Ajµ and Akν (originated fromN
(x)
jµ N

(y)
kν −N

(y)
jµ N

(x)
kν ). One

remark is that each matrix is defined in periodic lattice sites. For readers who

are not familiar with matrices, we will start some definitions and properties of

matrices with periodic boundaries.

A symmetric matrix is a square matrix that satisfies

AT = A (5.12)

where AT denotes the transpose of matrix, so aij = aji. Similarly, an anti-

symmetric matrix (is also often called as skew symmetric matrix ) is a square

matrix that satisfies the identity

AT = −A . (5.13)

With imposing the periodic boundary conditions, a symmetric square matrix

(N ×N) with the same diagonals is defined as

Sij = f(|i− j|) , (5.14)

and an antisymmetric square matrix is

Aij = sgn(i− j)g(|i− j|) . (5.15)

From the above definitions, other properties can be obtained as

Si,i+n = Si−n,i = Sk−n,k

Ai,i+n = −Ai+n,i = Ai−n,i = Ak−n,k (5.16)
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By using above properties, the multiplication of symmetric and antisymmetric

matrices is

(S · A)i,k =
N−1
∑

n=0

Si,i+nAk+(i+n−k),k

=

N−1
∑

n=0

Ai,i−(i+n−k)Sk−n,k = (A · S)i,k . (5.17)

It implies that any symmetric and antisymmetric matrices with properties Eq.

(5.16) commute. Therefore, the multiplication of symmetric and antisymmet-

ric matrices with periodic boundary conditions is antisymmetric. Next, we

will give a simple example to show the above properties.

For example, the differential operator (5 × 5) with periodic boundary

conditions is written as






















0 −1 0 0 1

1 0 −1 0 0

0 1 0 −1 0

0 0 1 0 −1

−1 0 0 1 0























. (5.18)

Those symmetric and anitsymmetric matrices with the periodic bound-

ary conditions have special properties. For example, the multiplication of

symmetric (S) and antisymmetric (A) matrices commute.

S · A =























2 1 0 0 1

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

1 0 0 1 2























·























0 −1 0 0 1

1 0 −1 0 0

0 1 0 −1 0

0 0 1 0 −1

−1 0 0 1 0























(5.19)
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=























0 −2 −1 1 2

2 0 −2 −1 1

1 2 0 −2 −1

−1 1 2 0 −2

−2 −1 1 2 0























=























0 −1 0 0 1

1 0 −1 0 0

0 1 0 −1 0

0 0 1 0 −1

−1 0 0 1 0























·























2 1 0 0 1

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

1 0 0 1 2























= A · S. (5.20)

Furthermore, the multiplication of symmetric and antisymmetric matrices with

periodic boundary conditions is also antisymmetric.

(S · A)T = AT · ST = −(A · S) = −(S · A). (5.21)

Let’s go back to Eq. (5.11). A product of symmetric Sijk and antisym-

metric matrices Ajµ is also antisymmetric for the first two indices (i, µ) since

Eq. (5.21) is true. So, this tensor has antisymmetric property as B(iµ)ν :=

1
2
(Biµν + Bµiν) = 0. Also, Biµν = Biνµ since Biµν := SijkAjµAkν = SikjAkνAjµ

is symmetric under an exchange of µ and ν. Therefore, it has a symmetric

property as Bi[µν] := 1
2
(Biµν−Biνµ) = 0. In short, the first two indices and the

first and third indices are antisymmetric and the latter two indices are sym-

metric. Bνµν = Bµµν = 0 since SiµνAµν = 0 where S and A are respectively

symmetric and antisymmetric tensors.

Finally, the quantity Bijk is easily seen to be completely antisymmetric,

i.e., Bijk = −Bjik = −Bkji and Biji = Biik = 0, just as was the case for ǫklm.
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Therefore, Liouville’s theorem follows,

∑

i

∂q̇i
∂qi

=
∑

i,j,k

Bijk(Mjiqk + δkiψj) =
∑

i,j

(B′
iijqj +Bijiψj) = 0 , (5.22)

where each term of the last sum vanishes. Here the matrix M represents the

inverse Laplacian and B′ is another matrix that has the same antisymmetry

property as B.

Invariants

In a finite-dimensional lattice model, we can show that rugged invariants

are globally conserved and higher-order invariants are not. By multiplying qi

into Eq. (5.10) and using properties of Biµν , one gets

1

2

dq2
i

dt
=
∑

i

qiq̇i =
∑

iµν

Biµνqiψµqν = 0 (5.23)

The last equality holds from an antisymmetric property of the first two in-

dices Biµν . Therefore, the quadratic term such as
∑

i q
2
i is constant. How-

ever, the higher order terms such as
∑

i q
3
i are not globally conserved since

1
3
d(
∑

q3
i +
∑

q3
µ)/dt =

∑

Biµνq
2
i qµqν+

∑

Bµiνqiq
2
µqν =

∑

Biµνqiqµqν(qi−qµ) 6=
0. That is why the quadratic term is so special in a discretized function space.

It shows that the circulation (
∑

i qi) and enstrophy (
∑

i q
2
i ) are conserved in

a discretized function space and higher-order invariants are not. Later, statis-

tical independence argument confirms the importance of quadratic invariants

out of infintely many invariants.

5.4.3 Canonical Equilibrium Distribution

Having defined phase space and verified Liouville’s theorem, we are

poised to write a partition function and to define phase space averages. The
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natural expression for the partition function associated with the canonical

(Gibbs) ensemble is

Zc =

∫

G

e−βH[q]−C[q]Dq , (5.24)

whereH is the Hamiltonian of §5.3 and C denotes the infinite family of Casimir

invariants. Averages corresponding to (5.24) are given by

〈F 〉c =

∫

G

F [q]Pc[q; β, C]Dq , (5.25)

where F is a functional of q and the phase space probability density is given

by

Pc[q; β, C] = Z−1
c e−βH[q]−C[q] . (5.26)

Expressions (5.24) and (5.25) are functional integrals [188, 202], and the intent

is to give them meaning by discretizing as in §§5.4.1 and then taking the limit

N → ∞ and δ → 0. Finding unique well-defined results with this procedure

for such integrals, with other than quadratic functionals in the exponent, is

usually a difficult task. Consequently, a mean field approach has been taken,

which we turn to in §5.5.

An alternative to the direct evalution of (5.25) is to appeal to the fact

that the dynamics of (5.3) is an area preserving rearrangement [e.g. [121]].

This means for an initial condition q0, the solution at time t is given formally

by q(x, y, t) = q0(x0(x, y, t), y0(x, y, t)), where (x0(x, y, t), y0(x, y, t)) are the

initial conditions of the characteristics, which satisfy ∂(x0, y0)/∂(x, y) = 1.

The Casimir invariants are associated with relabelling symmetry [e.g. [185,

162]] and possess the same value when evaluated on functions that are related

by rearrangement. Thus if one restricts the domain of integration G to be

rearrangements of a given function, denoted by GR, then we should obtain

the same answer because 〈F [q]〉R = F [q] for functionals with integrands that
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depend only on q, such as Casimirs and exp(C[q]). Here 〈 〉R is defined with

PR[q; β] = Z−1
R exp (−βH [q]) and ZR =

∫

GR

exp (−βH [q])Dq.

5.5 Mean Field Approximation and Statistical

Independence

It is well-known that vorticity equations like (5.3), the Vlasov equa-

tion, and other transport equations develop fine structure in the course of

time. Because of this Lynden-Bell [124] proposed a coarse graining procedure

to obtain a most probable state. He divided phase space up into hyper-fine

cells that are assumed to be capable of resolving the fine structure. These are

the m-cells referred to in §§5.4.1, which have a scale size δ. Experimentally

δ is determined by the resolution, but in ideal theory the fine structure can

become arbitrarily fine and so a limiting procedure is required. In addition

Lynden-Bell [124] proposed larger cells, which we have called M-cells, that

characterize a macroscopic scale ∆. The M-cells contain many m-cells that

can be freely exchanged within an M-cell without changing any macroscopic

quantity. Thus one is able to count states and obtain an expression for a coarse

grained or mean field entropy that can be maximized subject to constraints.

Later, Miller [138] and Robert [176] reconstructed and improved this formu-

lation. Miller defined m-cells and M-cells based on scales with the property

that the energy averaged over M-cells approximates the energy averaged over

m-cells. However, we argue that the most important condition for separating

the M-cell and m-cell scale lengths is statistical independence, which assures

near independence of the probability densities of M-cells, which are viewed as
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subsystems, and is associated with near additivity of the constraints. These

are crucial properties.

Experimentally the two scales can be demonstrated as in Fig. 5.2. Ob-

serve in the upper plot of this figure the fine scale structure in the potential

vorticity, while in the lower plot the streamfunction, due to the integration

over the Green’s function, is considerably smoother. We take the upper scale

to be δ and the lower scale to be ∆.

5.5.1 Counting States

According to Lynden-Bell’s statistics, the number of ways to distribute

m-cells into M-cells is

W =
∏

r

Nr!
∏

I N
(I)
r !

∏

I

N (I)!
(

N (I) −∑rN
(I)
r

)

!
(5.27)

where Nr is the total number of m-cells with the rth value of potential vorticity

in the whole space, and N
(I)
r is the total number ofm-cells with the rth value of

potential vorticity in the Ith M-cell. Also, N (I) is the total number of m-cells

in the Ith M-cell. The first product in Eq. (5.27) represents the number of

ways to distribute Nr m-cells into groups of {N (I)
r }, where I counts all M-cells

and the second product is the number of ways to distribute inside an M-

cell. Also, N (I)−∑rN
(I)
r can be understood as the number of empty m-cells.

Lynden-Bell proposed this manner of counting for stellar dynamics [124, 54],

where m-cells represent stars, which are considered to be distinguishable, and

there may be empty m-cells. However, the statistics for the two-dimensional

continuum Euler model is a special case of Lynden-Bell’s general counting

procedure.
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Figure 5.2: The time-averaged potential vorticity (top two figures) and the
streamfunction (bottom two figures) in the Rossby wave frame. The figures
on the left show the fields in the rotating tank; the figures on the right show
the same fields unwrapped. The streamfunction field is smoother than the
potential vorticity field since the vorticity is given by a second derivative (the
Laplacian) of the streamfunction. Hence the characteristic length scale in
the azimuthal direction is larger for the streamfunction than for the potential
vorticity.
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In Miller’s application to the two-dimensional continuum Euler model,

he assumes that all m-cells are occupied by a vortex and these vortices are

indistinguishable if they have the same value of vorticity. Because there are no

empty m-cells, N (I) =
∑

rN
(I)
r and because the m-cells are indistinguishable

a factor of
∏

r 1/(Nr!) is added. This counting produces

W =
∏

I

N (I)!
∏

rN
(I)
r !

. (5.28)

The above equation already involves statistical independence among different

M-cells.

Boltzmann articulated the entropy as a measure of the number of pos-

sible configurations of the system. Therefore, the entropy S is defined to be

the logarithm of the total number of configurations, lnW . If N
(I)
r is large,

Stirling’s formula gives

S = lnW ∼= −
∑

r,I

(

N (I)
r

)

ln

(

N
(I)
r

N (I)

)

. (5.29)

In the continuum limit of potential vorticity levels, N
(I)
r /N (I) is replaced by

PM(ζ ; x, y), and
∑

r,I by
∫

dζdxdy. In short, the index I represents the coor-

dinates for the discretized M-cells and the index r represents the ordered level

sets of potential vorticity inside the M-cells. Thus, it is replaced by the contin-

uum vorticity variable ζ , the vorticity on an M-cell. With these observations,

the resulting total mean field entropy is seen to be

SM [PM ] = −
∫

PM(ζ ; x, y) lnPM(ζ ; x, y) dζdxdy = −
∫

〈lnPM〉M dxdy

(5.30)

where PM(ζ ; x, y) is the probability density in the mean field approximation.

The density of PM(ζ ; x, y) is centered at the point (x, y) and satisfies the
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normalization
∫

PMdζ = 1. The integration over dxdy can be viewed as a sum

over the M-cells that cover the domain of the fluid. The second equality of

(5.30) follows from the definition 〈A〉M =
∫

APMdζ , and thus SM [PM ] can be

naturally termed the (mean field) Boltzmann-Gibbs entropy.

In closing this subsection, we reiterate that the potential vorticity vari-

able q is a field variable, a function of coordinates. However, when we in-

troduced the probability density PM on M-cells, we used ζ , an independent

variable, to represent the values of the potential vorticity on an M-cell.

5.5.2 Mean Field Canonical Distribution

Given the mean field entropy SM we can proceed to obtain the mean

field density PM(ζ ; x, y) as the most probable state by extremization subject to

particular mean field constraints. These constraints and their corresponding

Langrange multipliers are given as follows:

1. The Hamiltonian constraint is obtained by replacing the vorticity vari-

able q in H [q] with its mean field average, to obtain a mean field energy,

HM [PM ] =
1

2

∫

(ζPM(ζ ; x, y)− h) ζ ′PM(ζ ′; x′, y′)G(x, y; x′, y′) dζdxdy dζ ′dx′dy′

=
1

2

∫

〈ψ〉M (〈ζ〉M − h) dxdy (5.31)

where 〈ζ〉M =
∫

ζPM dζ and 〈ψ〉M is defined by

〈ζ〉M = −∇2〈ψ〉M + h . (5.32)

The Lagrange multiplier associated with this constraint is taken to be

the constant value, −β, where the minus sign is by convention.
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2. The normalization constraint is
∫

PMdζ = 1. This is a normalization

on each M-cell; thus, although PM depends on position, the integration

does not. Because this is a constraint for each point (x, y), the Lagrange

multiplier in this case depends on position. We call it γ(x, y), and the

quantity that appears in the variational principle is

NM [PM ] =

∫

γ(x, y)PM(ζ ; x, y) dζdxdy . (5.33)

3. The mean field Casimir constraint, roughly speaking, contains the infor-

mation that on average, the area between any two contours of vorticity

remains constant in time. More precisely, the quantity g(ζ) =
∫

PM dxdy

is taken to be constant. Because this is true for all ζ , the Lagrange mul-

tipler µ is likewise a function of ζ and the constraint can be written

as

CM [PM ] = −β
∫

µ(ζ)g(ζ) dζ = −β
∫

µ(ζ)PM(ζ ; x, y) dζdxdy , (5.34)

where the prefactor of −β is again by convention. This constraint is the

mean field version of the family of Casimir invariants C[q].

Now we are in position to obtain the most probable state by extremizing

the quantity FM = SM −βHM +NM +CM , i.e. upon functional differentiation

with respect to PM , δFM/δPM = 0 implies

PM(ζ ; x, y; β, µ) = Z−1
M e−β[ζ〈ψ〉M−µ(ζ)] , (5.35)

where ZM =
∫

e−β[ζ〈ψ〉M−µ(ζ)]dζ and evidently PM is normalized. Equation

(5.35) is the mean field counterpart to (5.26) and could aptly be termed the

canonical (Gibbs) mean field distribution. The above variational principle and

extremal distribution (5.35) appeared in essence in an appendix of [124].
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Given (5.35) we are in a position to calculate 〈ζ〉M and then substitute

the result into (5.32). This gives the mean field Poisson equation,

∇2〈ψ〉M = Z−1
M

∫

ζ e−β[ζ〈ψ〉M−µ(ζ)] dζ + h . (5.36)

Versions of this equation have been solved in various references [e.g. [176, 138,

126]], but we will not do this here.

We conclude this subsection by giving a heuristic connection between

〈 〉M , a prescription for averaging functions, and 〈 〉c, a prescription for av-

eraging functionals. Consider the functional q(x′, y′), by which we mean the

evaluation of the function q at the point (x′, y′), and evaluate

〈q(x′, y′)〉c =

∫

G

q(x′, y′)Pc[q; β, C]Dq . (5.37)

If we rewrite (5.37) as an integral on M-cells, where q(x′, y′) is qI′ , write Dq =
∏

J dqJ , and then assume statistical independence of M-cells, Pc =
∏

I PI , we

obtain

〈q(x′, y′)〉c =

∫

qI′
∏

I

PI
∏

J

dqJ =

∫

qI′ PI′ dqI′ =

∫

ζPMdζ = 〈ζ〉M .

(5.38)

This derivation emphasizes the need for near statistical independence of M-cell

subsystems.

5.5.3 Ruggedness and Additivity

Classical statistical mechanical treatments of the canonical ensemble

allow for subsystems to interact and exchange energy, but their interaction

is assumed to be weak and the details of the interaction are usually ignored

in calculations. Neglect of the interaction energy results in the energy being
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equal to the sum of the energies of the individual subsystems, i.e., the energy

is an additive quantity. In conventional treatments only additive invariants are

used in calculating the most probable distributions, and in some treatments

[e.g. [114]] this requirement is explicitly stated. The reason for this is that

additive invariants give rise to statistical independence of subsystems. In our

treatment of fluids, subsystems are M-cells and so we consider invariants that

are additive over these regions. There is a close connection between ruggedness

of invariants and the property of additivty. We show that only the rugged

invariants are additive, and thus they characterize the statistical properties of

M-cells. In §§5.5.4 and §§5.5.5 we will see that experimental results support

this reasoning.

Kraichnan [111] Fourier transformed and truncated to obtain a finite-

dimensional system. They argued that the truncated remnants of the total

vorticity, enstrophy, and energy are the only invariants to be used in a statisti-

cal mechanics treatment because these invariants are rugged, i.e. they remain

invariants of the truncated system. The also appear to be aware that these

invariants possess the property of additivity, but they do not emphasize this

point. Although Turkington [220] has argued that this kind of truncation does

not properly handle small scale behavior, we find that this theory does a fairly

good job at predicting the energy spectrum, but we will report on this else-

where. We argue in general that such invariants are important because they

are the only additive invariants. Below we consider a somewhat more general

setting.

Because of Parseval’s identity, the quadratic invariants are additive and

higher order invariants are not. To see this, suppose we define M-cells to be

composed of amplitudes of some subsets of Fourier modes, which we denote
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by κI . Then a sum over modes can be done in groupings, i.e.
∑

k =
∑

I

∑

κI
.

(This is the idea behind spectral reduction [33], a computational method where

groupings of Fourier modes (bins) are described by a single representative.) For

the quadratic Casimir invariant, the enstrophy, we have

C2 =

∫

q2 dxdy = (2π)2
∑

k

|qk|2 , (5.39)

and defining an M-cell enstrophy by C
(I)
2 = (2π)2

∑

κI
|qk|2, we obtain C2 =

∑

I C
(I)
2 . Similarly, the energy can be written as a sum over M-cell energies,

E =
∑

I E
(I). The linear Casimir invariant C1 =

∫

qdxdy merely reduces to

the zeroth Fourier coefficient, and is thus in a trivial sense additive. Higher

order invariants, Cn =
∫

qndxdy for n > 2, have Fourier representations that

are not reducible to expressions in terms of a single sum over M-cells.

The discretized lattice model has properties similar to those described

above. The quadratic Casimir invariant and energy reduce to sums over a finite

number of m-cell lattice variables, qi, hi and ψi, which are potential vorticity,

height and streamfunction represented in terms of the kernel function Ki of

§§5.4 as follows:

C2 =

∫

q2 dxdy =
∑

i,j

∫

KiKjqiqj dxdy =
∑

i,j

qiZijqj ,

H =
1

2

∫

qψdxdy =
1

2

∑

i,k

∫

KiKk(qi − hi)ψk dxdy

=
1

2

∑

i,k

(qi − hi)Zikψk =
∑

i,j

(qi − hi)Ẑij(qj − hj) (5.40)

where Zij =
∫

KiKj dxdy and Ẑij =
∑

k ZikMkj are symmetric commuting

matrices. These invariants are rugged, i.e, they are conserved by the finite

dynamical system obtained by projection onto the lattice. In addition, because
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Z and Ẑ commute, one can always find an orthogonal matrix O that satisfies

Z = OTDO and Ẑ = OTD̂O, where Dij = diδij and D̂ij = d̂iδij are diagonal

matrices. Defining q′ = qO, h′ = hO and ψ′ = ψO, the enstrophy and energy

become

C2 =
∑

i,j

q′iDijq
′
j =

∑

i

di(q
′
i)

2 =
∑

I

∑

κI

di(q
′
i)

2

H =
∑

i

d̂i(q
′
i − h′i)2 =

∑

I

∑

κI

d̂i(q
′
i − h′i)2 , (5.41)

where I is the index for the Ith M-cell and κI denotes the set of m-cells in

the Ith M-cell.

This coordinate transformation simultaneously diagonalizes the quadratic

Casimir invariant and the energy. However, higher-order Casimir invariants

are in general not rugged and are in general not simultaneously diagonaliz-

able. Thus, higher order invariants are not additive, which means M-cells

share contributions from these invariants. In this sense, invariants of order

higher than quadratic are not useful for describing the statistics of M-cells,

which by assumption are independent.

5.5.4 Statistically Independent Subsystems

Now we turn to the question of how to find subsystems, i.e, how to

a find a good definition of the M-cells. First we note that flows inside the

rotating tank with the sloped bottom have azimuthal undulations in most

physical quantities (streamfunction, potential vorticity, etc.), and these undu-

lations have been identified as Rossby waves [66, 195]. In a co-rotating frame,

these waves propagate in the rotation direction at constant velocity. Thus,

by shifting to a frame moving at the phase velocity of the Rossby wave, we
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obtain a pattern that is statistically stationary on large scales. For example,

the wavy patterns corresponding to the time-averaged streamfunction and po-

tential vorticity are shown in Fig. 5.2. As noted before, the streamfunction is

fairly smooth, charcteristic of the scale ∆, is monotonically decreasing in the

radial direction, and describes a strong zonal flow. However, the time-averaged

potential vorticity is scattered with fine structure in space, the δ scale, but still

has a wavy mean pattern similar to that of the time-averaged streamfunction.

Because the streamfunction involves the integral over the Green’s function,

one expects it to be smoother than the time-averaged potential vorticity. So,

this suggests that the first step toward defining M-cells is to consider a frame

moving at the phase velocity of the Rossby wave.

Having determined the frame, we seek M-cells that are statistically

independent. Because strong correlation in a preferential direction might affect

the geometry of M-cells and associated additive invariants, we have measured

the correlation function,

Ccor(∆r, r∆θ) =
1

T

∫ T

0

∫

q(r, rθ; t)q(r + ∆r, rθ + r∆θ; t)rdrdθ
∫

q(r, rθ; t)2rdrdθ
dt , (5.42)

where (θ, r) are the usual polar coordinates. From a large data set of PIV

measurements we obtain the time average of the velocity field, whence we

calculate the potential vorticity at different positions. Then the integrals of

(5.42) are performed with the spatial limits being the bulk of the area occupied

by the fluid with a resolution of δ ≈ 0.8 cm and the time limit taken to be 80

revolutions with 47 measurements. The result of this procedure is presented

in Fig. 5.3, which shows contours of Ccor plotted on a ∆θ − ∆r plane. The

highly anisotropic nature of the contours suggests there is significantly less

correlation in the radial direction than in the azimuthal direction. Thus to
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Figure 5.3: Contours of the correlation function Ccor(∆r, r∆θ) illustrating the
anisotropic nature of the potential vorticity field, which has longer range cor-
relation in the azimuathal direction than in the radial direction (cf. Fig. 5.2).

achieve consistent independence the shape of an M-cell should be elongated.

In the course of tracking blobs of fluid we generally observe that to

good approximation such blobs follow contours of the time-averaged stream-

function. This, together with the the Ccor plot suggest that a good coordinate

for dividing the system into subsystems is the time-averaged streamfunction,

ψ̄(r, θ) =
1

T

∫ T

0

ψ(θ, r; t) dt . (5.43)

Contours of ψ̄ tend to be smooth and, we argue, are part of a natural coordi-

nate system for describing turbulence with a mean flow that has slow spatial

dependence. (We have also considered q̄ but found it to be not as good because

of its greater variability.) To complete the coordinate system, we introduce a

coordinate χ, which is conjugate to ψ̄ and therefore satisfies

1

r

∂ψ̄

∂θ

∂χ

∂r
− 1

r

∂ψ̄

∂r

∂χ

∂θ
= 1 . (5.44)
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Thus the coordinate transformation (θ, r)←→ (χ, ψ̄) satisfies rdrdθ = dχdθ.

We propose that contours of ψ̄ define M-cells, which we take to be

of small (infinitesimal) width in this coordinate, and we propose that the χ

coordinate at fixed ψ̄ represents a continuum of m-cells. We imagine an M-

cell to be a region (nearly a curve) at fixed ψ̄. Hence with this definition,

the probability density PMexp, depends only on the potential vorticity variable

ζ and on the coordinate ψ̄; i.e., PMexp(ζ ; ψ̄) is the probability of finding a

potential vorticity value ζ in the ψ̄ M-cell. Thus the ensemble average of an

arbitrary function f is written as

〈f〉Mexp(ψ̄) =

∫

f(ζ, ψ̄)PMexp(ζ ; ψ̄) dζ , (5.45)

where PMexp is normalized as
∫

PMexpdζ = 1. In practice we can determine the

probability PMexp from data by the relative frequency definition (cf. §§5.5.5)),

and then proceed to calculate (5.45). However, this is equivalent to averag-

ing over χ and t; e.g. 〈ζ〉Mexp = ≺q≻χ, where ≺ q ≻χ=
∫

q dχ/
∫

dχ. Given

〈ζ〉Mexp and using (5.32) to define 〈ψ〉Mexp we similarly have the equivalence

〈ψ〉Mexp(ψ̄) = ≺ψ(ψ̄, χ; t)≻χ = ψ̄, where the second equality follows by defini-

tion. The undular streamfunction of Fig. 5.2 mainly represents Rossby waves.

These wavy patterns are quite robust and often behave as barriers to mixing.

In the Rossby wave frame, our data indicate that the instantaneous stream-

function is close to the time-averaged streamfunction, i.e. ≺ ψ(ψ̄, χ; t) ≻χ
deviates from ψ̄ by less than 10 percent. The above comments can be viewed

as an experimental verification of ergodicity.

In terms of the above notation the energy and enstrophy densities on
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Figure 5.4: (a) Enstrophy fluctuations ∆TC2(ψ̄) [Eq. (5.47)] and energy fluc-
tuations ∆TH(ψ̄) as a function of ψ̄. The fluctuations are small, indicating
that energy and enstrophy are nearly conserved for our choice of subsystem.
(b) Total enstrophy variations ∆ΨC2(t) [Eq. (5.48)] and (c) total energy varia-
tions ∆ΨH2(t) with time; the variation is small, indicating that the quantities
for our choice of subsystem are almost conserved in time.
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M-cells can be written as

〈H〉Mexp(ψ̄) =
1

2

[
∫

ζψ̄PMexp(ζ ; ψ̄) dζ− ≺ ψ̄h(χ, ψ̄)≻χ
]

=
1

2
≺ ψ̄[q(χ, ψ̄, t)− h(χ, ψ̄)]≻χ ,

〈C2〉Mexp(ψ̄) =
1

2

∫

ζ2PMexp(ζ ; ψ̄) dζ =
1

2
≺q2(χ, ψ̄, t)≻χ , (5.46)

and two quantities that measure spatial and temporal fluctuations of these

invariants can be compactly written as follows:

∆TC2(ψ̄) =

[

(

≺q2≻χ −≺q2≻χ
)2
]1/2

≺q2≻χ
, (5.47)

∆ΨC2(t) =

[

≺
(

≺q2≻χ − ≺q2≻χψ̄
)2≻ψ̄

]1/2

≺q2≻χψ̄
, (5.48)

with similar expressions for ∆TH(ψ̄) and ∆ΨH(t). Figure 5.4 depicts these

quantities. Panel (a) shows temporal fluctuations as a function of the spa-

tial coordinate ψ̄. The middle regions of the experiment, where strong zonal

flows exist, is describable by statistical mechanics. However, near the walls,

corresponding to high and low ψ̄ values, statistical mechanics fails because of

large fluctuations. Similarly, in panel (b) the spatial fluctuations are plotted

versus time, and it is observed that these fluctuations are quite small. We

have measured similar quantities for the cubic and quartic Casimir invariants

and the fluctuations are two or three times greater.

An integrated measure of the goodness of our streamfunction based

M-cells is displayed in Table 5.1. Here we have integrated ≺ ∆TH ≻ψ̄ and

≺ ∆TC2 ≻ψ̄ over central values of ψ̄ and compared them with counterparts

derived using square cells. By this measure streamfunction based cells are

nearly ten times better than square cells.
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Fluctuation Measure ≺∆TH≻ψ̄ ≺∆TC2≻ψ̄
square cells 0.2233 0.6425

streamfunction cells 0.0343 0.0627

Table 5.1: Comparison of fluctuations for square cells with our streamfunction
based cells. Both the energy fluctuation measure ≺∆TH ≻ψ̄ and enstrophy
fluctuation measure ≺∆TC2≻ψ̄ are considerably smaller with the streamfunc-
tion based cells. These small fluctuations allow the division of the system into
M-cells, consistent with the statistical independence and additivity assump-
tions of statistical mechanics.

Thus, in summary, we have strong evidence supporting the use of stream-

function based M-cells. The evidence of Fig. 5.4 and Table 5.1 imply both

statistical independence and the additive nature of the quadratic invariants of

these macro-cells.

5.5.5 Prediction for PDFs

Based on the arguments in the previous section, we consider only two in-

variants out of the infinitely many invariants conserved by the ideal dynamics.

With these given invariants, there are various ways to calculate the probability

in a M-cell, PMexp(ζ ; ψ̄) . All different methods give the same answer after all.

Here, we list only two different ways.

1. Probabilistic relations

Consider an isolated system composed of a M-cell and a large reservoir.

They are in contact with interchanging energy (H) and Casimir invari-

ants (C). According to Gibbs statistical mechanics, a reservoir (denoted

as R) is assumed to be infinitely larger than a M-cell and to nearly in-
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teract with a M-cell. This interaction may produce a correction for the

extensivity of entropy [98]. For the fixed volume, allowing energy and

Casimir exchanges, the probability of a M-cell is given as

P (HM , CM |H,C, VM , VR) =
Z(HM , CM , VM)Z(H −HM , C − CM , VR)

Z(H,C, VM , VR)
,

(5.49)

where Z is the partition function and H , HM and HR are the energy

of a total system, a M-cell and a reservoir, respectively. Its associated

entropies for a M-cell and a reservoir are defined as

S(HM , CM , VM) = lnZ(HM , CM , VM)

S(H −HM , C − CM , VR) = lnZ(H −HM , C − CM , VR)

⋍ S(H,C, V )− ∂S(H,C, V )

∂H
HM −

∂S(H,C, V )

∂C
CM

= const.− βHM − γCM (5.50)

where ∂S
∂H

=: β, ∂S
∂C

=: γ and S(H,C, V ) is constant since the total

system is assumed to keep the same invariants as initial conditions.

P (HM , CM |γ, β, V ) =
exp(S(HM , CM , V )− βHM − γCM)

Z(γ, β, V )
. (5.51)

By using the simple conditional probability relation and Eq. (5.51), the

probability of potential vorticity is given as

P (ζ |γ, β, V ) =

∫

dHM dCM P (ζ |HM , CM) P (HM , CM |γ, β, V )

=

∫

dHM dCM
δ(H(ζ)−HM)δ(C(ζ)− CM)

Z(HM , CM , V )

×exp(S(HM , CM , V )− βHM − γCM)

Z(γ, β, V )

=
exp(−βH(ζ)− γC(ζ))

Z(γ, β, V )
. (5.52)
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Assuming Mexp-cells are chosen to be contours of time-averaged stream-

function ψ̄, a resulting probability distribution that maximizes the en-

tropy is

PMexp(ζ ; ψ̄) =
1

Z ′(ψ̄)
exp

(

−β
2
ψ̄ζ − γ

2
ζ2

)

=
1

Z(ψ̄)
exp

(

−γ
2

(

ζ +
β

2γ
ψ̄

)2
)

(5.53)

where Z and Z ′ are normalization factors, γ and β are Lagrange multi-

pliers. Gaussian probability distribution in Eq. (5.53) is obtained as in

a canonical ensemble of a system. Mainly, Gaussian probability distrib-

ution is from a quadratic form of enstrophy.

2. Landau’s Way

Classical statistical mechanics describes the behavior and properties of

macroscopic systems without knowing the motion of the finite individual

particles in a phase space. A rising question on 2D inviscid fluid is

whether the similar argument is true in the infinite dimensional function

space.

First, a system should be divided into M-cells which are spatially disjoint

subsets. The division into M-cells can be done in various ways and

M-cells interact with each other. The proper choice of the division,

which satisfies the relatively weak interaction among M-cells, leads to

establishment of statistical mechanics.

Consider two noninteracting parts of a system. In 2D inviscid fluid,

there exist two independent additive integrals of motion, energy and

enstrophy. The total Hamiltonian functional might be separable into
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many non-interacting parts such that

〈H〉 =
∑

i

〈H〉Mexp(ψ̄i) , (5.54)

where 〈H〉Mexp(ψ̄i) :=
∫

1
2
ψ̄(ζ−h)PMexp(ζ ; ψ̄i)dζ is the Hamiltonian func-

tional which is integrated over the subset (D(i)) of a configuration space.

Also, the total enstrophy is separable as

〈C〉 =
∑

i

〈C〉Mexp(ψ̄i) . (5.55)

Similarly, 〈C〉Mexp(ψ̄i) :=
∫

1
2
ζ2PMexp(ζ ; ψ̄i)dζ .

Weakly interactingM-cells are characterized by the statistically indepen-

dence of probabilities of M-cells. For example, we suppose that a system

is composed of many M-cells (i = 1, 2, · · ·N). The total probability can

be written as the product of probabilities of M-cells.

P (ζ) =
∏

i

P (ζ ; ψ̄i) (5.56)

Hence, one easily concludes that another additive quantity as

lnP (ζ) =
∑

i

lnP (ζ ; ψ̄i) . (5.57)

Associated entropy is given as

〈S〉Mexp(ψ̄i) :=

∫

PMexp(ζ ; ψ̄i) lnPMexp(ζ ; ψ̄i)dζ . (5.58)

From Eq. (5.54), (5.55) and (5.57), a linear combination of these quan-

tities for the ith M-cell can be written as

〈S〉Mexp(ψ̄i) + α(i) + β(i)〈H〉Mexp + γ(i)〈C〉Mexp
∫

P (ζ ; ψ̄i)

[

lnP (ζ ; ψ̄i) + α(i) + β(i) 1

2
ψ̄(ζ − h) + γ(i) 1

2
ζ2

]

dζ = 0
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where α(i), β(i) and γ(i) are Lagrange multipliers. From the above equal-

ity and nonzero probability, one gets the same equation as Eq. (5.53).

The above derivation starts from the assumption of local equilibrium.

We might pose the question how we can assume the equilibrium in a

local subsystem (M-cell). A system with a short relaxation time scale

attains an equilibrium state shortly. The relaxation time scale for equi-

librium state increases with the size of system. Subsystems (small parts

of a system) can reach local equilibrium over short time and behave ap-

proximately as closed systems. Therefore, α(i), β(i) and γ(i) of ith M-cell

are different values from that of other M-cells. If a system gradually

approaches to an equilibrium state, the variation of parameters such as

α(i), β(i) and γ(i) for each M-cell converges to zero.

Consequently, we obtain the following equilibrium distribution:

PMexp(ζ ; ψ̄) = Z−1
Mexp

e−βψ̄ζ−γζ
2

, (5.59)

where ZMexp =
∫

e−βψ̄ζ−γζ
2

dζ depends only on ψ̄. Note, the function h has

cancelled out in the normalization. This probability density function (PDF)

has the form of Gaussian that is shifted by βψ̄/2γ.

In Fig. 5.5 we compare (5.59) with experimental results. Figures 5.5(a)

and 5.5(b) show that experimental data on a typical M-cell closely agree with

the Gaussian distribution of (5.59). Each distribution is shifted by its mean

value of potential vorticity 〈ζ〉Mexp. Figures 5.5(c) and 5.5(d) show the total

probability P tot(ζ), which is the sum of the probabilities over all the M-cells,

i.e., P tot(ζ) =≺PMexp(ζ ; ψ̄) ≻ψ̄. These plots are decidedly non-Gaussian.

The next question is, what is the most probable value of potential vor-

ticity in each M-cell? The probability distribution of Eq. (5.59) gives a relation
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Figure 5.5: The measured probability distribution of potential vorticity (data
points) on a typical M-cell is nearly Gaussian (dashed line), in accord with
(5.59), as illustrated by these plots on (a) linear and (b) logarithmic scales.
In contrast, the potential vorticity of the whole system, shown in (c) and (d)
respectively, departs significantly from a Gaussian.
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data fit well the straight line (a least-squares fit), in accord with the prediction
of Eq. (5.60), where the slope is the ratio of two Lagrange multipliers.
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between the averaged vorticity and the streamfunction,

〈ζ〉Mexp =

∫

ζPMexp(ζ ; ψ̄) dζ = −ǫψ̄ , (5.60)

which follows by elementary integration. Here ǫ = β/(2γ) is the ratio of two

Lagrange multipliers. Figure 5.6 shows a linear relation between the ensemble-

averaged potential vorticity 〈ζ〉Mexp and the time-averaged streamfunction ψ̄,

as predicted by Eq. (5.60).

Therefore, our theoretical predictions based on a mean field approxi-

mation are in good accord with PDFs on M-cells and the averaged values

of potential vorticity and streamfunction from experiments. Our theory also

indicates that equilibrium can be locally achieved in M-cells, even though the

system as a whole is turbulent and non-Gaussian.

5.6 Conclusions

In this chapter we have emphasized the the relationship between addi-

tive invariants and statistical independence: probability densities that result

from entropy maximization principles, such as that of §§5.5.2, will decompose

into a product over subsystems if the entropy is logarithmic (extensive) and

the invariants included as constraints in the principle are additive over subsys-

tems (M-cells). We have also emphasized that additivity and, consequently,

independence depend on the definition of subsystem. This idea appears, at

least implicitly, in conventional statistical mechanics. For example, in the clas-

sical calculation of the specific heat of a solid, where one considers a solid to

be a collection of lattice sites with spring-like nearest neighbor interactions,

the Hamiltonian achieves the form of a sum over simple harmonic oscillators.
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However, such a diagonal form requires the use of normal coordinates, and only

then is the partition function equal to a product over those of the individual

oscillators. Thus the notions of subsystem, here a single oscillator, additivity,

and statistical independence are intimately related.

In our application of statistical mechanics to inhomogeneous damped

and driven turbulence, we have discovered experimentally that a good defin-

ition of subsystem is provided by the temporal mean of the streamfunction.

With this definition, the quadratic invariants (energy and enstrophy) are ad-

ditive, and the concomitant probability density of (5.59) agrees quite well

with experimental results for both the distribution of vorticity, as depicted in

Fig. 5.5 (a) and (b), and the mean state, as depicted in Fig. 5.6.

An alternative interpretation of our results can be obtained by the

counting argument of §§5.5.1. Our definition of subsystem amounts to the idea

that potential vortices on the same contour of time-averaged streamfunction

can exchange their positions with little change in the energy and enstrophy.

However, the relocation of two potential vortices that are on different contours

of the streamfunction should result in a large change of the invariants. In this

sense, the number of possible configurations in phase space can be counted,

and the maximization of the entropy so obtained gives our result.

Although in this chapter we have focused on a geostrophic fluid, our

procedure is of general utility and is applicable to physical systems governed

by a variety of transport equations. The unifying formalism is the noncanon-

ical Hamiltonian description of §5.3, which plays the unifying role played by

finite-dimensional canonical Hamiltonian systems in conventional statistical

mechanics. Thus we expect our approach to apply to Vlasov-Poisson dynam-

ics, kinetic theories of stellar dynamics, and drift-wave plasma models, and
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other single-field models that possess the noncanonical Poisson bracket of (5.5).

Generalization to multi-field models such as reduced magnetohydrodynamics,

stratified fluids, and a variety of physics models governed by generalization of

the Poisson bracket [207] of (5.5) provides an avenue for further research.

118



Chapter 6

Nonextensive Statistical

Mechanics

6.1 Introduction

Equilibrium statistical mechanics has long been used to describe tur-

bulence [203]. Early work by Onsager predicted coherent structure forma-

tion through consideration of the interactions of point vortices [161]. Later

Kraichnan constructed a statistical theory based on energy and enstrophy

conservation [107] and showed that the Euler equation (for inviscid flow) with

truncation below a certain small length scale could describe turbulent flows

[109, 110]. More recently, Miller showed that large scale coherent structures

could be described by equilibrium statistical mechanics of the Euler equation

through a continuous distribution of microscopic vorticity [138]. These analy-

ses assumed that the asymptotic behavior depends upon the values of the

conserved quantities rather than on the details of initial structures. Further,
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the analyses were based on Boltzmann-Gibbs statistics, which only describes

weak interactions and does not capture long-range interactions [115]. Our

observations of large coherent vortices in experiments on flow in a rotating an-

nulus [18, 19, 10] lead us to consider a generalization of statistical mechanics

that is applicable to systems with long range interactions: the nonextensive

formalism proposed by Tsallis [215, 214].

Probability distribution functions (PDFs) for the velocity increment,

δv(r) = 〈v(x + r) − v(x)〉x, have been derived from nonextensive theory as-

suming conservation of an effective energy proportional to (δv)2, and these

PDFs have been found to describe several turbulent flows [27, 23, 18, 22];

however, (δv)2 is not a conserved quantity for the rotating flows of interest

here. Experiments on a plasma of electrons in a strong magnetic field have

been interpreted using both extensive entropy [92] and nonextensive entropy

[30] with conservation of energy. These analyes did not consider Miller’s dis-

tinction between the macroscopic and microscopic quantities.

For our laboratory flow, we exploit an additional conservation property

that holds for geostrophic flows. A geostrophic flow is one that is dissipation-

less and rotates sufficiently fast so that it is two-dimensional, varying only in

the plane perpendicular to the rotation axis [165]. The additional conserved

quantity is the potential enstrophy, which is defined as [165, 90]

Π =

∫
(

ω(x) + 2Ω

h(x)

)2

dx (6.1)

where ω(x) is the local vorticity and in our system, Ω is the rotation

rate of the annulus, and h is the height of fluid, which increases in the r-

direction. A sloping bottom in our rotating annulus models the variation

of the Coriolis force with latitude in a real geophysical flow. Flow in our
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laboratory system is only approximately geostrophic because the rotation rate

is finite rather than infinite and the dissipation is nonzero. However, the

rotation rate is large enough and dissipation effects are small enough so that

the flow is strongly two-dimensional ( quasi-geostrophic ) [19] and the potential

enstrosphy should be nearly conserved. The potential enstrophy is only one

of an infinite number of conserved quantities in a geostrophic flow,
∫

dxQn

(with n an integer), where Q ≡ ω+2Ω
h

is the potential vorticity; the potential

enstrophy corresponds to n = 2. The higher order conserved terms are more

dependent on viscous effects than energy and potential enstrophy terms [119],

so we limit our analysis to the two latter conserved quantities, which are often

called Rugged Invariants [111, 64, 130, 34].

In this chapter we use the Euler equation, which neglects viscous dis-

sipation, to obtain predictions of statistical properties of turbulence that we

then compare with our experimental observations. The Euler equation has

been found to describe phenomena in large scale oceanic and atmospheric flows

[138, 176, 139], and should provide a useful description to flow in our rotating

annulus, where dissipation is small, i.e., the spin down time (=
√

h2

νΩ
≈ 47 sec)

is much longer than the typical vortex turnover time (≈ 2 sec).

The chapter is organized as follows: In Section 2 we briefly describe the

nonextensive formalism. In Section 3 we introduce our nonextensive model

for two-dimensional flows with energy and enstrophy conservation. We derive

expressions for the radial dependence of the azimuthally averaged vorticity

and for the probability distribution function of the vorticity. In Section 6.4 we

compare the predictions of our model with the experimental data. Finally, in

Section 6.5 we compare the nonextensive parameter q deduced from our work

with values obtained in other work.
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6.2 Nonextensive Entropy

A system composed of sub-systems A and B has entropy [215]

Sq(A+B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B), (6.2)

where Sq(A) is the entropy of system A and q is the nonextensive parameter.

When q = 1, the entropy is extensive. Tsallis proposed a form of the entropy

that satisfies the above equation [214],

Sq =
k

q − 1

(

1−
W
∑

i

pqi

)

, (6.3)

where W is the total number of possible microstates of the system, pi

is the probability of ith state and k is the Boltzmann constant. There are two

constraints on the system, the normalization

W
∑

i=1

pi = 1 and, (6.4)

and the conservation of total energy

∑W
i=1 p

q
iEi

∑W
i=1 p

q
i

= Ûq, (6.5)

where Ei is the energy of ith state and Ûq is a normalized q-expectation total

energy. The normalized q-expectation of any observable, O, can be expressed

as

Ôq =

∑W
i=1 p

q
iOi

∑W
i=1 p

q
i

. (6.6)

Other definitions of observable quantities are inconsistent with the first prin-

ciple of thermodynamics [216].
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When a system is in contact with a thermal reservoir, the entropy under

appropriate constraints is maximized. The probability pi of microstate i can

be obtained by introducing Lagrange parameters α′ and β ′ and finding the

maximum with respect to pi of

φq[pi] =
Sq
k

+ α′
W
∑

i=1

pi − β ′

∑W
i=1 p

q
i (Ei − Û)

∑W
i=1 p

q
i

. (6.7)

Solving for pi yields

pi =
1

Z
[1− (1− q)βEi]1/(1−q), (6.8)

where β = β′P
j p

q
j+(1−q)β′Û

and Z is the normalization factor. In the limit q → 1,

Boltzmann-Gibbs statistics is recovered, pi = 1
Z
e−βEi.

6.3 Energy-enstrophy Models

We now compute the azimuthally averaged vorticity as a function of

radius for the extensive and nonextensive cases and derive expressions for

the vorticity probability distribution function (PDF). We assume in each case

three constraints: normalization, conserved energy, and conserved enstrophy.

We follow Miller [138, 124] in considering the “microscopic vorticity” field σ,

which he used to develop a statistical mechanics formalism for two-dimensional

flows. The macroscopic variables are then defined by averaging the microscopic

vorticity, which obeys the conservation laws [124]. The microscopic vorticity

is replaced by the probability density function p(σ,x), which is a conserved

quantity as a consequence of the incompressibility of the flow [139]. The

macroscopic vorticity ω and macroscopic enstrophy ω2 are defined in terms of
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the microscopic vorticity σ as

ω(x) =

∫

dσσp(σ,x)

ω2(x) =

∫

dσσ2p(σ,x). (6.9)

In the following subsections, we show that the extensive and nonex-

tensive models predict the same radial profile for the vorticity, but predict

different vorticity PDFs.

6.3.1 Extensive Model

The conserved energy and potential enstrophy expressed in terms of the

microscopic vorticity p(σ,x) are

Û =

∫

dx

∫

dσσp(σ,x)ψ(x)

Π̂ ≈
∫

dx|ω(x) + βRor|2 (6.10)

=

∫

dx

(
∫

dσ(σ2 + 2βRorσ)p(σ,x) + β2
Ror

2

)

, (6.11)

where βRo ≡ 2ηΩ
h0

is the beta-plane coefficient, Ω is the rotation rate of the

laboratory annulus system, η is the slope of the annulus bottom (the beta

plane), and h0 is the mean depth of the annulus. Eq. (6.11) follows from

Eq. (6.1) by rescaling for quasi-geostrophic flow [90]. We analyze this rescaled

form for the enstrophy.

When the extensive entropy (S ≡ −kpi ln pi) is maximized with energy

and potential enstrophy constraints using the corresponding Lagrange multi-

pliers β and γ, the probability of the equilibrium state becomes
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p(σ,x) =
1

Z
e−γ(σ+βRor+

β
γ
ψ(x))2 , (6.12)

where γ is the Lagrange multiplier of the potential enstrophy.

The radial dependence of the vorticity is obtained from the equation

for the stream function.

∇2ψ −
(

βRor +
β

γ
ψ

)

= 0. (6.13)

Solving this equation with appropriate boundary conditions allows us

to determine the parameter β
γ

by comparing the predicted radial profile of

vorticity with our measurements. The results are presented in Section 5.3. The

linear relation between our stream function and its Laplacian is similar to a

result that was obtained from a minimum enstrophy principle, ∇2ψ+µ+λψ =

0 [118, 87].

The PDF of the microscopic vorticity σ can be expressed as

g(σ) =

∫

p(σ,x)dx =
1

Z

∫

dxe−γ(σ+βRossbyr+
β
γ
ψ(x))2. (6.14)

Since the microscopic vorticity σ cannot be measured, this PDF cannot

be verified. Miller uses g(σ) to compute the PDF of the measurable (“dressed”)

vorticity in a finite volume [139]. We conduct a similar analysis obtain the

following prediction for the measurable vorticity:

gd(ω) ∝
∫

dx
1

(ω + βRor + β
γ
ψ(x))

e−γ(ω+βRor+
β
γ
ψ(x))2

sinh

(

2γωm

(

ω + βRor +
β

γ
ψ(x)

))

(6.15)
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where ωm is the fluctuation limit of the microscopic vorticity and γ is

the Lagrange multiplier of the potential enstrophy.

6.3.2 Nonextensive Model

Non-additivity can be achieved by defining any observable as in Eq.

(6.6). The vorticity and vorticity squared can be redefined within the nonex-

tensive formalism as

ωq(x) =

∫

dσσpq(σ,x)
∫

dσpq
(6.16)

ω2
q (x) =

∫

dσσ2pq(σ,x)
∫

dσpq
. (6.17)

In the nonextensive formalism, the two conserved quantities, energy and

potential enstrophy, become

Û =

∫

dx
∫

dσσpq(σ,x)ψ(x)
∫

dx
∫

dσpq(σ,x)
(6.18)

Π̂ ≈
∫

dx(ω + βRor)
2

∫

dx
∫

dσpq(σ,x)

=

∫

dx{
∫

dσ(σ2 + 2βRorσ)pq(σ,x) + β2
Ror

2}
∫

dx
∫

dσpq(σ,x)
. (6.19)

The PDF for the microscopic entropy, subject to the three constraints

(normalization, conserved energy, and conserved enstrophy), becomes

p(σ,x) =
1

Z

[

1− (1− q)γ
f(ω)

(

σ +
βψ(x)

γ
+ βRor

)2
]

1
1−q

, (6.20)
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where f(ω) ≡ 1 + (1 − q)γω2. The expression for the stream function

remains identical to the extensive case, Eq. (6.13). We derive the following

PDF of the microscopic vorticity for q > 1,

g(σ) =

∫

dx
pq

∫

pqdσ

= Ξ

∫

dx

[

1− (1− q)γ
f(βRor + β

γ
ψ)

(

σ + βRor +
β

γ
ψ

)2
]

q
1−q

f

(

βRor +
β

γ
ψ

)−1/2

(6.21)

where Ξ is the normalization constant. The equation for the dressed

(measurable) vorticity is

gd(ω) ∝
∫

dx
f(ω)

(ω + βRor + β
γ
ψ(x))

[

1− (1− q)γ
f(ω)

(

ω + βRor +
β

γ
ψ(x)

)2
]

q
1−q

([

1 + 2
(1− q)γωm

f(ω)− (1− q)γ(ω + βRor + β
γ
ψ(x))2

(

ω + βRor +
β

γ
ψ(x)

)]
1

1−q

−
[

1− 2
(1− q)γωm

f(ω)− (1− q)γ(ω + βRor + β
γ
ψ(x))2

(

ω + βRor +
β

γ
ψ(x)

)]
1

1−q

)

(6.22)

Thus if we first solve Eq. (6.13) for the stream function, then we can

use ψ in Eq. (6.22) to compute the PDF of the dressed vorticity. In Section 5
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Figure 6.1: A comparison of the measured and the predicted radial profile
for the vorticity. The theoretical curve is given by a least square fit to the
solution of Eq. (6.13), which yields a value for the only adjustable parameter,
β
γ

= −0.169.

we compare the vorticity PDFs predicted for the extensive and nonextensive

cases with the experimental observations.

6.4 Results

In this section we compare the solution for the stream function in Eq.

(6.13) with the measurements of the azimuthally averaged vorticity. Using
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that stream function we compare the PDF of the measured vorticity with

the expressions derived using the extensive and nonextensive formalisms, Eqs.

(6.15) and (6.22), respectively.

6.4.1 Qualitative Flow Features

In previous work, we demonstrated that our forcing configuration with

no net vorticity injection yields a quasi-geostrophic flow with three jets alter-

nating in their azimuthal direction [10]. Although the net vorticity injected

is zero, the beta plane (sloping bottom) acts as vorticity selector: cyclonic

(anticyclonic) structures cannot move outward (inward) because their motion

outward (inward) would trigger a Rossby wave, thus restoring them to their

original position. Positive (negative) potential vorticity is carried to the inner

(outer) region of the annulus. Within the inner and outer regions the potential

vorticity is well-mixed. Further, we found the potential vorticity profile was

independent of forcing and rotation rate [10].

We observe the intermittent appearance of large anticyclones and cy-

clones. These structures drift in the direction opposite to the annulus rotation.

The coherent vortices are created and decay in the region where the inlet-outlet

semi-circles meet. A large coherent vortex is typically dissipated after traveling

180o in the azimuthal direction.

6.4.2 Stream Function Solution and the Vorticity Pro-

file

Equation (6.13) involves two parameters: the beta plane coefficient,

βRo ≡ 2ηΩ
h0

= 0.196 rad/s · cm (see Section 4), and the unknown parameter
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Figure 6.2: Comparison of the measured vorticity probability distribu-
tion function with the predictions of the extensive and nonextensive energy-
enstrophy models, Equations (6.15) and (6.22), respectively. The linear plot
on the left facilitates a comparison of the peaks of the PDF, and the log plot
on the right facilitates a comparison of the tails of the distribution. The the-

oretical curves are least square fits that minimize |pexperiment(ω)−pmodel(ω)

pmodel(ω)
|2 over

96 velocity fields. Using β
γ

= −0.169 from the fit to the vorticity radial pro-

file (Fig. 1) leaves two fit parameters, ωm (0.7 ± 0.2) and γ (0.25 ± 0.03) for
the extensive model, and three parameters for the nonextensive model, ωm
(0.7± 0.2), γ (0.15± 0.01) and the nonextensive parameter, q (1.9± 0.2). The
uncertainties are the standard deviations of the fits to 96 different velocity
fields.
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β
γ
, which is determined by fitting the predicted vorticity profile to the experi-

mental data. One of boundary conditions needed to solve Eq. (6.13) is given

by the condition that the azimuthally averaged vorticity is zero at r = rf

because one-half of the forcing ring contains sources and the other half sinks;

thus
∫

ω|r=rfdθ = 0. The other boundary condition is that the total circula-

tion should be conserved,
∮

v · dl = 0 =
∫

ωrdrdθ is compared with the best

fit profile in Fig. 6.1. The predicted vorticity profile exhibits the qualitative

features of the measured vorticity, and the locations of the predicted maxima

and minima are in reasonable quantitative agreement with experiment. Note

that value of the fit parameter is β
γ

= −0.169. One reason for the difference

between the model and the measurements is that the real fluid is viscous while

the model assumes an inviscid fluid. The viscosity is dominant near the walls

and is responsible for the generation of vorticity that is injected into the mean

flow, an effect not captured by the theory.

6.4.3 Vorticity PDF

The extensive and nonextensive formalisms yield the same equation

for the stream function, but the two approaches predict different PDFs for

the vorticity, Eqs. (6.15) and (6.22), respectively. The nonextensive model

involves the parameter q, which is absent from the extensive theory; the tails

of the vorticity distribution are broad for q > 1 and narrow for q < 1. The

predictions from the two models are compared to the measurements in Fig.

6.2. Using the value of β
γ

= −0.169 obtained in the previous subsection, we

have a single fit parameter, ωm, for the extensive model and two fit parameters,

ωm and q, for the nonextensive model (see Fig. 6.2). The nonextensive model
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describes the data over the entire range of vorticity, including both the peak

and the broad tails of the distribution. In contrast, the extensive model fails

to capture the broad tails of the distribution. The broad tails arise from the

large coherent cyclones and anticyclones.

6.5 Discussion

Assuming conservation of energy and enstrophy, we have constructed

models of two-dimensional inviscid flows using both extensive and nonextensive

entropy. The two models yield the same prediction for the radial dependence

of the azimuthally averaged vorticity. The model involves a single fit para-

meter and provides good agreement with the observations (Fig. 6.1). The

extensive and nonextensive models yield different predictions for the vorticity

PDF. The nonextensive model accurately describes the entire PDF, includ-

ing the broad tails of the distribution (Fig. 6.2), which are not described by

the extensive model. The value obtained for the nonextensive parameter is

q = 1.9±0.2. Previous experiments with our system configured with an inner

ring of sources and an outer ring of sinks produced a strong turbulent anti-

cyclonic circulation. An analysis of structure function data from that experi-

ment yielded q =1.32±0.03 [18]. Experiments in our laboratory on turbulent

Couette-Taylor flow were analyzed by Beck et al.[27], who found that the ve-

locity increment structure function data yielded q = 1.17 for nearby spatial

points. As expected, q decreased to unity for large separations between the

points. Measurements by Porta et al. [1] of the acceleration of passive scalar

particles in a strong turbulent shear flow have been analyzed by Beck [25],

who obtained q = 1.49. The meaning of the different values of q is unclear and
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remains a challenge for future work.
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Chapter 7

Fluctuations

7.1 Introduction

In classical mechanics, the transformation to action-angle form makes

a problem easier. An analogous transformation in shear flow was developed

by Balmforth and Morrison [14, 15]. Later, Vanneste studied nonlinear inter-

actions of modes by using this technique for flows on the β plane [223]. This

technique started in studies of the Vlasov-Possion system of plasma physics

[150, 149]. Morrison [148] generalized the technique for a variety of fluid and

plasma systems. Morrison and Shadwick [151] used the technique to obtain

density fluctuations of plasma in action-angle variables. In this chapter, we

obtain an expression for fluctuations of vorticity (or potential vorticity in the

quasi-geostrophic case) in action-angle variables.

The partition function (
∫

dpdqe−βE(p,q)) is defined in terms of the inte-

gration over canonical variables. Stastistical mechanics for fluids uses a simi-

lar technique to determine the partition function over noncanonical variables
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for a field theory [111]. Here we have a more sophisticated way to calculate

fluctuations of vorticity by using the transformation which diagonalizes the

Hamiltonian. First, we will find the normal form for the linear Hamiltonian

of shear flow. Then, we present the calculation of ensemble-averaged vorticity

fluctuations using the normal form of the linear Hamiltonian.

7.2 Statistical Mechanics

Our goal is to calculate the spectrum of vorticity fluctuations about

shear flow. This is done by ensemble-averaging with the partition function as

in statistical physics and field theory by diagonalization of the Hamiltonian

formulation. New results are obtained for vorticity fluctuations. The results

are compared to experiments of a rapidly rotating quasi-two dimensional shear

flow.

In fluids, statistical mechanics of fluctuations have been treated by

Burgers [35, 36, 37, 38, 39, 40, 41], Onsager [161], Lee [117], and others us-

ing point vorticies, Fourier modes, or amplitudes at lattice sites as degrees of

freedom (see e.g. [111, 220]). We differ from all of these approaches in that

the ensemble-average measure is performed by using eigenmodes associated

with the continuous spectrum (van Kampen modes for the Vlasov system) as

degrees of freedom.

Our calculation is motivated by early statistical mechanical treatments

of the lattice vibrations of a simple solid. We assume the existence of stable

dynamical equilibrium states for 2D fluid systems, which are analogous to the

vibrating lattice of the solid. Continuous spectrum of stable eigenmodes exists

on the top of equilibrium velocity profile. Here, the equilibrium velocity profile
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is determined by Rayleigh-Kuo’s marginal stability criterion. In experiments,

such dynamical equilibria can be selected by the competition between forcing

and damping. The oscillations that occur on top of these equilibria are treated

analogously to the solid lattice vibrations: they are assumed to be weakly

interacting and the partition function is evaluated. From the partition function

the fluctuation spectra are obtained.

7.2.1 Partition Function

Einstein and Debye calculated the specific heat of a solid by treating

it as a collection of 3N quantized simple harmonic oscillators. They summed

the partition function explicitly and then used it to obtain an expression that

reproduced the Dulong-Petit relation in the classical limit, Cv = 3NkB. Thus

they obtained the well-known equipartition result for a solid, i.e., that the

average energy contains a full kBTb per degree of freedom, where Tb is the

temperature of the heat bath.

For classical systems the expression for the partition function is given

by the following:

Z =

∫

e−βE(q,p)
N
∏

i

dqidpi , (7.1)

where E(p, q) is a conserved energy and
∏N

i dqidpi is a phase space volume. In

general, βE(p, q) can be replaced by the free energy including other conserved

quantities such as the number of particles and so on. In those systems, the

Hamiltonian defines the energy of a state, and a volume measure (integration

measure) arises from Liouville’s theorem on the preservation of phase space

volume in the course of time.

Partition functions are easily evaluated for stable Hamiltonian systems

136



that are quadratic forms in the phase space variables, H =
∑

(pMp/2+qGp+

qV q/2) where M,G,and V are any symmetric matrices, by using canonical

transformations to diagonalize the Hamiltonian. However, cubic and higher

order terms are generally not diagonalizable. This indicates why quadratic

conserved quantities are important in the statistical mechanics (Details are

in [97]). For stable systems, canonical transformations result in any of the

following normal forms:

H =

N
∑

i

Wi(Q
2
i + P 2

i )/2 =

N
∑

i

iŴiQ̂iP̂i , (7.2)

where Q and P are functions of p and q. The frequency of the ith mode is

written as Wi and Ŵi in the normal forms. Therefore, the ensemble-averaged

energy of the system interacting with a heat bath is calculated by performing

a simple Gaussian integral. The results indicate energy equipartition with a

kBTb/2 contribution for each degree of freedom.

For the 2D Euler fluid, we find an analog of the calculation above.

However, the partition function should be evaluated in the context of a field

theory. The partition function is written as a functional integral of the form

Z =

∫

e−βH[q,p]DqDp , (7.3)

where q(x, y) and p(x, y) are functions of coordinates x and y. Functional

integrals were introduced by Wiener [230] and used in Feynman’s path integral

formulation of quantum mechanics. When the Hamiltonian is a quadratic

function one can consistently do calculations by discretizing into lattice sites or

Fourier modes and reducing the calculation to a sequence of ordinary integrals.

Transformation of infinite-degree-of-freedom Hamiltonian systems into action-

angle form is done in [149, 151].
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7.3 Hamiltonian System and Fluctuations

The 2D Euler equation that describes an incompressible and inviscid

fluid is
∂ω

∂t
+ [ψ, ω] = 0 , (7.4)

where [ψ, ω] := ψxωy − ψyωx and the streamfunction and vorticity are related

by ψ = −△−1ω, or in the case of quasigeostrophy another integral relation

such as ψ = −△−1(q − βRor) is used in our annulus geometry, where q is the

potential vorticity. Thus, small modifications are required for quasigeostrophic

systems. Eq. (7.4) can be written in the form

∂ω

∂t
= {ω,H} = [ω, ψ] , (7.5)

where the noncanonical Poisson bracket is given by

{A,B} =

∫

D

ω

[

δA

δω
,
δB

δω

]

dxdy , (7.6)

and the Hamiltonian is given by

H = −1

2

∫

D

ωψdxdy . (7.7)

We note that D is the domain occupied by the fluid and ψ is constant on the

boundary. The equations of motion of the 1D Vlasov equation and the 2D

fluid system have the isomorphic form of Eq. (7.5) including the noncanonical

Poisson bracket. This isomorphic equation of motion is an infinite dimen-

sional Hamiltonian system or field system with a similar noncanonical Poisson

bracket. Our method in this chapter can be generalized for magnetohydrody-

namics (MHD) and other continuum systems.

We consider linear fluctuations about the following class of stable equi-

libria. For the Vlasov system, ω and ψ are replaced by an electron phase
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space density f and a particle energy m
2
v2 + eφ and the phase space variables

x and y are replaced by the position x and the velocity v. We suppose the

phase space density is given by a Maxwellian, f0 ∼ exp(−mv2/2kBTe), where

we note that the temperature is merely a parameter that describes the equi-

librium state. We can be assured of stability if this function is a monotonic

function of v2 [79]. Because plasmas can reside for a long time in dynami-

cal equilibrium states away from Maxwellian, we can distinguish between the

equilibrium temperature Te and the bath temperature of the fluctuations Tb.

In the case of shear flow, we suppose the equilibrium is a flow along a

finite channel with a cross stream variation: Ux(y). For our annulus system, Ux

is the azimuthal velocity and y is the radius when we neglect the curvature of

annulus. By Rayleigh’s criterion we are assured of stability if U ′
x 6= 0. Setting

ω = U ′
x(y)+δω(x, y, t) (where the prime means y derivative) and linearizing we

obtain the linearized Euler equation for vorticity oscillations. For the Vlasov

case, the system was investigated by Landau, van Kampen and others. We

follow papers [149, 147] and solve it as one would solve a Hamiltonian system.

By linearizing the vorticity ω = U ′
x(y)+δω(y, x) and the streamfunction

ψ = ψe(y) + δψ(y, x), Eq. (7.5) becomes

∂δω

∂t
+ [δω, ψe] + [U ′

x, δψ] = 0 . (7.8)

If we define Ux(y) := dψe/dy , then

∂δω

∂t
+ Ux(y)

∂δω

∂x
− U ′′

x (y)
∂δψ

∂x
= 0 . (7.9)

The linear theories of the Euler equation are Hamiltonian with the

Poisson bracket

{F,G}L :=

∫

U ′
x

[

δF

δδω
,
δG

δδω

]

dxdy , (7.10)
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and the linear Euler model has the Hamiltonian

HL = −1

2

∫

D

∫

D

(

Ux
U ′′
x

(δω)2 − δωδψ
)

dxdy , (7.11)

which is the fluid version of the Kruskal and Oberman energy [112]. It is easy

to verify that the linear Euler equation can be written as

∂δω

∂t
= {δω,HL}L . (7.12)

The fact that δω depends on both x and y makes the problem difficult. By

decomposing it into x and y-dependence separately, Eq. (7.12) is easier to

handle when diagonalizing the Hamiltonian.

7.3.1 Canonization and Diagonalization

In order to calculate the functional integral of Eq. (7.3) for the partition

function, we transform the bracket of Eq. (7.10) into canonical form and then

find a canonical transformation to variables in which HL is diagonal. To this

end, we expand the fluctuating parts of the vorticity and streamfunction as

δω(x, y; t) =

∞
∑

k=−∞

ωk(y, t)e
ikx, δψ(x, y; t) =

∞
∑

k=−∞

ψk(y, t)e
ikx , (7.13)

where ωk and ψk depend on y and t, whereas δω and δψ depend on x, y and

t. The equation of motion becomes

∂ωk
∂t

+ ikUxωk = ikU ′′
xψk (7.14)

(Ux − c)ωk = U ′′
xψk . (7.15)

Eq. (7.10) and (7.11) yield the Poisson bracket

{A,B}L =
∞
∑

k=1

ik

∫

D

U ′′
x

(

δA

δωk

δB

δω−k

− δB

δωk

δA

δω−k

)

dy (7.16)
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and the Hamiltonian for the linear dynamics

HL = −1

2

∞
∑

k=1

∫

D

(

Ux
U ′′
x

ωk − ψk
)

ω−kdx

=
∑

k,k′

∫

D

∫

D

ωk(y)Ak,k′(y|y′)ωk′(y′)dydy′ , (7.17)

where Ak,k′(y|y′) := Ux

U ′′
x
δk,−k′δ(y − y′) − Kk(y, y′)δk,−k′. Here, ψk is given by

the following expression.

ψk(y, t) =

∫

D

Kk(y, y′)ωk(y′, t)dy′ , (7.18)

where the kernel Kk is given as

Kk(y, y′) =







sinh(k(1−y)) sinh(k(1+y′))
k sinh(2k)

for y > y′,

sinh(k(1−y′)) sinh(k(1+y))
k sinh(2k)

for y ≤ y′.
(7.19)

For convenience, we normalize the range of y axis as [−1, 1] and set the stream-

function to zero at y = −1 and y = 1. If you set the streamfunction to zero

at y = −1 and y = 1, the hyperbolic sine function in Eq. (7.19) is replaced

by the hyperbolic cosine function. This kernel is also called Green’s function.1

1The Green’s function is calculated as follows. The basic equation for Green’s function
is

(

∂2

∂y2
+ k2

)

Kk(y, y′) = δ(y − y′) . (7.20)

We can find the solutions for

∂2u1

∂y2
= k2u1 (7.21)

∂2u2

∂y2
= k2u2 (7.22)

with boundary conditions as

u1(−1) = 0, u2(1) = 1 . (7.23)

Trivial calculation gives

u1(y<) = sinh(k(y< + 1)), u2(y>) = sinh(k(y> − 1)) . (7.24)
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All situations in the Vlasov equation are similar to our shear flow case. Details

are given in [149, 147] for Vlasov.

Time-dependence in Eq.(7.15) can be converted as ωk(y, c) =
∫

ωk(y, t)e
−ikctdt

where c is a phase velocity in the x direction. If the flow profile is monotonic,

then we can find a unique point yc where the phase velocity c matches with

Ux(yc). For a convenience, we replace c by yc. Then, the expression for ωk is

given by

ωk(y, yc) = λkδ(Ux(y)− Ux(yc)) + P U
′′
x (y)ψk(y, yc)

Ux(y)− Ux(yc)
(7.26)

where P means the Cauchy principal value, δ(Ux(y)−Ux(yc)) is the Dirac delta

distribution and λk is yet to be determined. Decomposing ωk into two parts,

we get Eq. (7.26). This expression shows the singular nature of the mode.

The unknown λk is obtained by the normalization condition 1 =
∫

D
ωkdy.

Consequently,
λk
|U ′

x(y)|
= 1− P

∫

D

U ′′
x (y)ψk(y, yc)

Ux(y)− Ux(yc)
dy . (7.27)

Plugging Eq. (7.27) into Eq. (7.26), we get

ωk(y, yc) =

(

1−P
∫

D

U ′′
x (y′)ψk(y

′, yc)

Ux(y′)− Ux(yc)
dy′
)

δ(Ux(y)− Ux(yc))

+P U
′′
x (y)ψk(y, yc)

Ux(y)− Ux(yc)
. (7.28)

Equation (7.16) is not quite of canonical form. In order to find the

canonical variables, we transform from one set of variables another set that

The Wronskian for u1 and u2 is u1u
′

2−u2u
′

1 = −k sinh(2k). Therefore, the Green’s function
is given as

Kk(y>, y<) =
u1(y<)u2(y>)

u1u
′

2
− u2u

′

1

=
sinh(k(1 − y>)) sinh(k(1 + y<))

k sinh(2k)
. (7.25)
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is more suitable. In Eq. (7.16), ωk and ω−k are independent variables. By

introducing new variables

qk =
ωk
ikU ′′

x

, pk = ω−k , (7.29)

we obtain Hamiltonian equation in terms of canonical variables. Consequently,

the canonical Poisson bracket becomes

{A,B}L =

∞
∑

k=1

∫

D

(

δA

δqk

δB

δpk
− δB

δqk

δA

δpk

)

dy . (7.30)

Because of the term ψkωk of HL, the energy is not a diagonal quadratic form.

Diagonalizing the Hamiltonian is done by using a type-2 mixed variable gen-

erating functional [82]

F [q, P ] =

∞
∑

k=1

∫

D

qk(y)Gk[Pk](y, yc)dy (7.31)

to effect the canonical coordinate change (qk, pk)↔ (Qk, Pk) according to

pk(y, yc) =
δF [q, P ]

δqk(y, yc)
= Gk[Pk](y, yc), Qk(y

′, yc) =
δF [q, P ]

δPk(y′, yc)
= G†

k[qk](y
′, yc) ,

(7.32)

where G†
k is the adjoint of Gk, which is defined by

∫

qkGk[Pk](y, yc)dy =
∫

G†
k[qk]Pk(y

′, yc)dy
′. The essential ingredient of Eq. (7.31) is the integral

transform Gk. Eq. (7.28) gives a form of Gk as

ωk(y, yc) =: Gk[Λk](y, yc) :=

∫

D

Gk(y, y′)Λk(y
′, yc)dy

′

:= ǫR(y)Λk(y, yc) +H
[

−πψk(y, y
′)U ′′

x (y)

U ′
x(y

′)
Λk(y

′, yc)

]

(y, yc) , (7.33)

where

ǫI(y, y
′) = −πψk(y, y)U

′′
x(y

′)

U ′
x(y

′)
, ǫR(y) = 1+H

[

−πψk(y
′, y)U ′′

x(y
′)

U ′
x(y

′)

]

(y) (7.34)
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with H[g] being the Hilbert transform

H[g(y, y′)](y) :=
P
π

∫

D

g(y, y′)

Ux(y′)− Ux(y)
dUx(y

′) , (7.35)

with P denoting the Cauchy principal value. The inverse and identities of this

transform are discussed in [16, 147].

The transformation generated by F diagonalizes the Hamiltonian. Fi-

nally, the linear Hamiltonian becomes

HL =
∞
∑

k=1

∫

D

iWk(y)Qk(y)Pk(y)dy , (7.36)

where Wk(y) = kUx(y). Equation (7.36) represents the normal form of Hamil-

tonian dynamics in infinite dimensions. Now we obtain fluctuation spectra

with this diagonalized Hamiltonian and these canonical variables. Details are

presented in [16, 148].

7.3.2 Solving for ψk

Once a function ψk is given, we can calculate the Gk transformation.

Plugging Eq. (7.28) into Eq. (7.18) and replacing yc with y′, we have

ψk(y, y
′) = Kk(y, y′) +

∫

D

Kk(y, y′′)−Kk(y, y′)
Ux(y′′)− Ux(y′)

U ′′
x (y′′)ψk(y

′′, y′)dy′′

= Kk(y, y′) +

∫

D

Fk(y, y′′; y′)ψk(y′′, y′)dy′′ . (7.37)

This equation is classified as a Fredholm equation of the second kind: u(x) =

f(x)+λ
∫ b

a
K(x, t)u(t)dt where u(x) is the unkown function, K(x, t) and f(x)

are known. For this case, λ plays the role of an eigenvalue and K(x, t) is the

kernel of the integral equation.
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There are several ways to solve Fredholm equations [62]. We will use

Neumann series to solve Eq. (7.37) by iteration. This method is applicable

when the integral is small. We begin with the approximation

ψk(y, y
′) ≈ Kk(y, y′) . (7.38)

A second approximation is obtained by substituting the beginning approxima-

tion into Eq. (7.37).

ψk(y, y
′) ≈ Kk(y, y′) +

∫

D

Fk(y, y′; t1)Kk(t1, y′)dt1 . (7.39)

After repeating this process over and over and we get

ψk(y, y
′) ≈ Kk(y, y′) +

∫

D

Fk(y, y′; t1)Kk(t1, y′)dt1

+

∫

D

∫

D

Fk(y, y′; t1)Fk(t1, y′; t2)Kk(t2, y′)dt1dt2 + . . .(7.40)

This series can be written as

ψk(y, y
′) =

∞
∑

i=1

φi(y, y
′) , (7.41)

where

φ0(y, y
′) = Kk(y, y′)

φ1(y, y
′) =

∫

D

Fk(y, y′; t1)Kk(t1, y′)dt1

φ2(y, y
′) =

∫

D

∫

D

Fk(y, y′; t1)Fk(t1, y′; t2)Kk(t2, y′)dt1dt2 . (7.42)

The series will converge if the integral is bounded and small.

7.3.3 Fluctuation Spectra

The ensemble average of a quantity O is given in terms of Z according

to

〈O〉 =

∫

DqDpOe−βH/Z . (7.43)
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where the partition function Z with canonical coordinates is

Z =

∫

e−βHL[q,p]DqDp =

∫

e−β
P

k

R
iWkPkQkdy

∏

k

DPkDQk . (7.44)

We note that the two canonical coordinates are defined as Pk := G−1
k [ω−k] and

Qk := G−1
k [ωk/(ikU

′′
x )]. For the Vlasov case, Pk and Qk are the electric fields

of a van Kampen mode. Analogous to the Vlasov system, we suppose that

Λk(y) are independent from other modes and positions Λk′(y) such as

〈Λk(y, yc)Λ
∗
k′(y

′, yc)〉 =Mk(y)δkk′δ(U(y)− U(y′)), (7.45)

where, Λk(y) := G−1
k [ωk] andMk(y) is the coefficient depending on y. In this

form of expression, an equipartition of energy is not clear. However, if one

transforms from Λk, to the correct canonical variables, the variables in which

the Hamiltonian is diagonal, then equipartion is obtained for all k-values. For

the Vlasov system, f0 is Maxwellian and the bath and equilibrium tempera-

tures are equal, and Eq. (7.45) agrees with a result first given by Thompson

[209, 208]. However, for general equilibria, the form of f0 differs from Thomp-

son’s. Derivations (e.g. [180, 181]) are not performed as asymptotic expansions

in a dimensionless number, so it is at present unclear why the results differ.

Analogous to the energy, HL, we start from the quadratic structure of

canonical coordinates

Q =
∞
∑

k=1

∫

D

∫

D

〈Λk(y, yc)Λ
∗
k(y

′, yc)〉fk(y)fk(y′)dydy′

=
∞
∑

k=1

∫

D

∫

D

〈ωk(y′′, yc)ω∗
k(y

′′′, yc)〉gk(y′′)gk(y′′′)dy′′dy′′′ . (7.46)
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Using with the transformation fk(y) = G†[gk(y
′′)](y),

Q =
∑

k=1

∫

D

∫

D

〈Λk(y, yc)Λ
∗
k(y

′, yc)〉G†
k[gk(y

′′)](y)G†
k[gk(y

′′′)](y′) dydy′(7.47)

=
∑

k=1

∫

D

∫

D

〈Gk[Λk(y, yc)](y
′′)Gk[Λ

∗
k(y

′, yc)](y
′′′)〉 gk(y′′)gk(y′′′)dy′′dy′′′

=
∑

k=1

∫

D

∫

D

〈ωk(y′′, yc)ω∗
k(y

′′′, yc)〉gk(y′′)gk(y′′′)dy′′dy′′′ . (7.48)

Our guess (fk(y) = G†
k[gk(y

′′)](y)) in the beginning leads to Eq. (7.47) to Eq.

(7.48).

Plugging Eq. (7.45) into Eq. (7.47), we get

Q =
∞
∑

k=1

∫

D

∫

D

Mk(y) δ(Ux(y)− Ux(y′))G†
k[gk(y

′′)](y)G†
k[gk(y

′′′)](y′) dydy′

=
∞
∑

k=1

∫

D

∫

D

Gk

[

Mk(y)

(

ǫR(y′′′)δ(Ux(y)− Ux(y′′′)) + PU
′′
x (y′′′)ψk(y

′′′, y)

Ux(y′′′)− Ux(y)

)]

(y′′)

gk(y
′′)gk(y

′′′) dy′′dy′′′ . (7.49)

The above equation is split into four terms

Q =
∑

k

∫

D

∫

D

(

Mk(y
′′) ǫR(y′′)ǫR(y′′′) δ(Ux(y

′′)− Ux(y′′′))

+ ǫR(y′′′) PU
′′
x (y′′)ψk(y

′′, y′′′)Mk(y
′′′)

Ux(y′′)− Ux(y′′′)

+ ǫR(y′′) PU
′′
x (y′′′)ψk(y

′′′, y′′)Mk(y
′′)

Ux(y′′′)− Ux(y′′)

+

∫

D

PU
′′
x (y′′)ψk(y

′′, y)

U(yc)− U(y)
PU

′′
x (y′′′)ψk′(y

′′′, y)

Ux(y′′′)− Ux(y)
Mk(y)dy

)

gk(y
′′)gk(y

′′′) dy′′dy′′′ . (7.50)

The last term in Eq. (7.50) is evaluated by using Poincaré-Bertrand transpo-
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sition formula.2

Finally, we get

Q =
∞
∑

k=1

∫

D

∫

D

(

Mk(y
′′)|ǫk(y′′)|2δ(Ux(y′′)− Ux(y′′′))

+P U ′′
x (y′′)

Ux(y′′)− Ux(y′′′)
Gk [Mk(y)ψk(y

′′, y)] (y′′′)

+ P U ′′
x (y′′′)

Ux(y′′′)− Ux(y′′)
Gk [Mk(y)ψk(y

′′′, y)] (y′′)

)

gk(y
′′)gk(y

′′′)dy′′dy′′′ .

(7.53)

Comparing Eq. (7.46) and Eq. (7.53), one gets the vorticity fluctuation

2Poincare-Bertrand transposition formula is like

P 1

y − z1

P 1

y − z2

= lim
ν→0

1

4

[

1

y − z1 − iν
+

1

y − z1 + iν

] [

1

y − z2 − iν
+

1

y − z2 + iν

]

= lim
ν→0

1

4

[

1

y − z1 − iν
− 1

y − z2 − iν

]

1

z1 − z2

+
1

4

[

1

y − z1 + iν
− 1

y − z2 + iν

]

1

z1 − z2

+
1

4

[

1

y − z1 − iν
− 1

y − z2 + iν

]

1

z1 − z2 + 2iν

+
1

4

[

1

y − z1 + iν
− 1

y − z2 − iν

]

1

z1 − z2 − 2iν

=

(

P 1

y − z1

− P 1

y − z2

)

1

z1 − z2

+
1

4
[{iπδ(y − z1)− iπδ(y − z2)− iπδ(y − z1) + iπδ(y − z2)} ·

1

z1 − z2

−2iπδ(z2 − z1){iπδ(y − z1) + iπδ(y − z2)}
−2iπδ(z2 − z1){iπδ(y − z1) + iπδ(y − z2)}]

=

(

P 1

y − z1

− P 1

y − z2

)

1

z1 − z2

+
π2

2
[δ(y − z1) + δ(y − z2)]δ(z1 − z2)

=

(

P 1

y − z1

− P 1

y − z2

)

1

z1 − z2

+ π2δ(y − z1)δ(z1 − z2) (7.51)

by using

lim
ν→0

1

x± iν
= P 1

x
∓ iπδ(x). (7.52)
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such as

〈ωk(y)ω∗
k(y

′)〉 = Mk(y)|ǫk(y)|2δ(Ux(y)− Ux(y′))

+P U ′′
x (y)

Ux(y)− Ux(y′)
Gk [Mk(y

′′)ψk(y, y
′′)] (y′)

+P U ′′
x (y′)

Ux(y′)− Ux(y)
Gk [Mk(y

′′)ψk(y
′, y′′)] (y)

= δk,k′ [µ(y)δ(y − y′) + νk(y, y
′)] , (7.54)

where µ and νk are determined by the equilibrium shear flow profile andMk.

One remark is that the results are symmetric under changing y to y′. In short,

our process transforms from the variable Λk(yc) back to ωk(y) and obtains the

above result for phase space fluctuations.

Vlasov Case

In the case of the Vlasov-Poisson system, both y and U(y) in our previ-

ous formulations are replaced by the velocity v. The variable ǫ is the dielectric

function and has two components; an imaginary part ǫI and a real part ǫR,

ǫI(v
′) = −πω2

p

f ′
e(v

′)

k2
, ǫR(v′) = 1 +H[ǫI(v)](v

′) , (7.55)

where f is the phase space density of electrons, ωp is the plasma frequency

and v represents the momentum part of phase space. For the Vlasov case, the

function analogous to ψk(y
′, y) is constant and equal to ω2

p/k
2.

The particle energy Ek is simply ω2
p/k

2, which is analogous to ψk in the

2D fluid. From the above relations, the imaginary part of dielectric function

is expressed as ǫI(v
′) = −πf ′

e(v
′)Ek. The function Mk of Eq. (7.45), when

Qk = δEk, is expressed as

Mk(v) =
16

V β

ǫI(v)

v|ǫk(v)|2
, (7.56)
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where the Hilbert transform is

H[g(v)](v′) =
P
π

∫

R

g(v)

v − v′dv . (7.57)

where v is the electron velocity. Since HL = V
32π

∑

k

∫

dvvπ |ǫk|
2

ǫI
|δEk|2, we can

evaluate the ensemble average over this Hamiltonian.

The main transformation in the plasma case is

Gk[Pk(u)](v) = ǫR(v)Pk(v) + ǫIP
∫

Pk(u)

u− v du . (7.58)

With the aid of Eq.(7.53), the fluctuation, for electrons 〈δfkδfk′〉 in a

plasma is deduced from the electric field fluctuation 〈δEkδEk′〉.

〈Gk[δEk(v)](v
′) Gk′[δE

∗
k′(v

′′)](v′′′) 〉

=
16

V β

ǫI(v
′)

v′
δ(v′ − v′′′)− (ǫI(v

′)Gk [Mk(v)] (v
′′′)− ǫI(v′′′)Gk [Mk(v

′′)] (v′))

π(v′ − v′′′) .

(7.59)

Before we go further, one identity is needed to simplify this equation. Kramer-

Kronig relation yields the relation between the real and imaginary part of 1/ǫk

such as [149]

H
[

ǫI(v)

|ǫk(v)|2
]

(v′) = 1− ǫR(v′)

|ǫk(v′)|2
. (7.60)

Also, use simple factorizing algebra like

1

v(v − v′) =
1

v′

[

1

v − v′ −
1

v

]

. (7.61)

Two identities above are enough to simplify the expression for the electron
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fluctuations 〈ff〉. The last term inside the bracket in Eq. (7.59) is

16

V β

[

ǫI(v
′)

v′′

{

ǫR(v′′)ǫI(v
′′)

|ǫk(v′′)|2
+ ǫI(v

′′)

(

H
[

ǫI(v)

|ǫk(v)|2
]

(v′′)− P
π

∫

R

ǫI(v)

v|ǫk|2
dv

)}

− ǫI(v
′′)

v′

{

ǫR(v′)
ǫI(v

′)

|ǫk(v′)|2
+ ǫI(v

′)

(

H
[

ǫI(v)

|ǫk(v)|2
]

(v′)− P
π

∫

R

ǫI(v)

v|ǫk|2
dv

)}]

=
ǫI(v

′′)ǫI(v
′)

v′′

(

1− P
π

∫

R

ǫI(v)

v|ǫk|2
dv

)

− ǫI(v
′)ǫI(v

′′)

v′

(

1− P
π

∫

R

ǫI(v)

v|ǫk|2
dv

)

.

(7.62)

By using the identity (Eq.(7.60)), the two terms in the parentheses cancel out.

Finally, the third terms in each parentheses survive. Here, we have a term like

P
π

∫

R

ǫI(v)

|ǫk|2v
dv =

P
π

∫

R

ǫI(v)

|ǫk|2(v − 0)
dv = H

[

ǫI(v)

|ǫk(v)|2
]

(0) = 1− ǫR(0)

|ǫk(0)|2 .

(7.63)

Therefore, we get

〈Gk[δEk(v)](v
′)Gk′[δE

∗
k′(v

′′)](v′′′)〉 =
16

V β

[

ǫI(v
′)

v′
δ(v′ − v′′′)− ǫI(v

′)ǫI(v
′′′)

πv′v′′′
ǫR(0)

|ǫk(0)|2
]

.

(7.64)

By substituting the definition of [149]

fk =
ik

4πe
Gk[δEk(v)](v

′), (7.65)

we obtain

〈fk(v′)f ∗
k (v

′′)〉 = δk,k′
k2

π2e2V β

[

ǫI(v
′)

v′
δ(v′ − v′′)− 1

π

ǫI(v
′)ǫI(v

′′)

v′v′′
ǫR(0)

|ǫk(0)|2
]

.

(7.66)

This expression simply contains two terms: diagonal part and an off-diagonal

part with respect to the velocity. This is a more general expression, whereas

the same result is obtained when we assume Maxwellian distribution[103].

151



Consequently, the phase space fluctuation for a Vlasov system is ob-

tained as

〈fk(v)f ∗
k′(v

′)〉 = δk,k′
k2

π2e2V β

[

ǫI(v)

v
δ(v − v′)− 1

π

ǫR(0)

|ǫ(0)|2
ǫI(v

′)ǫI(v)

vv′

]

. (7.67)

Details are described in [149, 148].

7.4 Results

Our rotating annulus has a shear flow profile in the radial direction as

shown in Fig. 5.1. The azimuthal velocity is maximum in the middle and close

to zero near the walls. To use the monotonicity of velocity, either the inner or

outer region of annulus should be selected for the analysis.

First, we will check whether our measurements are far away from the

boundary layers or not. Since a thin Ekman layer that dissipates energy forms

near the rigid boundaries, the inviscid model fails. The vertical boundary

layers are called Ekman layers and they scale as

δV =

√

ν

2Ω
(7.68)

whereas horizontal boundary layers (side-wall layers) scale as

δH =
√

h0δV , (7.69)

where h0 is the mean height of tank along the rotation axis. This horizontal

layer is often called as Proudman-Stewartson layer. For our experiment, δV =

0.02 cm and δH = 0.4 cm. This implies that our measurements are away from

the boundary layers.

We have compared the result Eq. (7.54) with particle tracking (PIV)

and hot film probe measurements of the pumped rotating tank experiment as
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Figure 7.1: Contour lines of ψk(y, y
′) when k = 1. We can notice that it is

quite symmetric because the symmetric first order in the Neumann series is
dominant.
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Figure 7.2: Contour plots of vorticity fluctuations Corrω := 〈ωk(y)ω∗
k(y

′)〉.
Azimuthally and temporally averaged covariance of vorticity fluctuations mea-
sured with a counter-rotating jet at 1.75 Hz and 150cm3/s. Here, y and y′

indicate different radii ranging from the inner boundary 11 cm to the outer
boundary 43 cm. When U ′

x(y) equals to zero, the theoretical prediction fails.
Therefore, we consider only the inner part where flow has no maximum point
in the mean velocity profile. The blue boxed region will be compared with the
theory.
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and small correlations A and B lie away from diagonal axis. Fig. (b) is the
predicted vorticity fluctuation from Eq. 7.54.
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shown in Figure 7.2. Near the line y = y′ the delta function term dominates

and we expect the vorticity spectrum to be independent of k, which implies

the velocity spectrum should vary as k−2. Indeed, this is surprisingly close to

what is seen in Chap. 9.

7.5 Conclusion

Statistical mechanics requires a proper set of canonical coordinates

(such as action-angle variables). Ensemble-averages with canonical coordi-

nates should be used. For a long time, this approach has been performed with

noncanonical variables instead of canonical variables. The result with non-

canonical variables leads to the diagonal correlation of vorticity fluctuations

such as 〈ωk(y)ω∗
k(y

′)〉 = C(y)δ(y−y′) where C(y) is a function of y. Following

novel work for the Vlasov case [149], our calculation with canonical variables

was done for the fluid case. The theoretical prediction gives surprising agree-

ment with experiments.
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Chapter 8

Velocity Difference Statistics

We unify two approaches that have been taken to explain the non-

Gaussian probability distribution functions (PDFs) obtained in measurements

of longitudinal velocity differences in turbulence, and we apply our approach to

Couette-Taylor turbulence data. The first approach we consider was developed

by Castaing and coworkers, who obtained the non-Gaussian velocity difference

PDF from a superposition of Gaussian distributions for subsystems that have

a particular energy dissipation rate at a fixed length scale [47]. Another ap-

proach was proposed by Beck and Cohen, who showed that the observed PDFs

can be obtained from a superposition of Gaussian velocity difference PDFs in

subsystems conditioned on the value of an intensive variable (inverse “effective

temperature”) in each subsystem [26]. We show that the Castaing and Beck-

Cohen methods are related, and we present a way to determine subsystem

size in the Beck-Cohen method. The application of our approach to Couette-

Taylor turbulence (Reynolds number 540 000) yields a log-normal distribution

of the intensive parameter, and the resultant velocity difference PDF agrees

well the observed non-Gaussian velocity difference PDFs.
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8.1 Theory

8.1.1 Method of Castaing et al.

Castaing et al. [47] started with the observation from their experiments

that that velocity difference distributions for a given εr are Gaussian, and that

εr is described by a log-normal distribution [47, 48, 6, 45, 50, 46]. The log-

normal distribution for εr have also been obtained for εr in other experiments

on fully developed turbulence [7, 51, 6, 99], and in analyses of images of cloud

patterns [5], temperature fields in turbulence [169], and magnetic fields in solar

winds [199].

To describe the evolution of P (δvr) from Gaussian at large scales to

non-Gaussian at small scales [100, 204, 28], Castaing et al. proposed [47, 48]

P (δvr) =

∫

P (εr)P (δvr|εr)dεr. (8.1)

The conditional PDF P (δvr|εr) in Eq. (8.1) is assumed to be a Gaussian distri-

bution, P (δvr|εr) = e−(δvr)2/(rεr)2/3

, in accord with experimental observations

[56, 78, 201].

A difficulty in applying the approach of Castaing et al. is that en-

ergy dissipation rate at length scale r, εr, is not directly measured in exper-

iments. By assuming homogeneous and isotropic conditions, εr is defined as

15ν (∂v/∂x)2. In practice, εr is determined from time series data for only a

single variable, so that

εr =
15ν

(∆x)2

N−1
∑

i=1

[v(xi+1)− v(xi)]2, (8.2)

where ∆x(≡ x2 − x1) is the sampling separation the summation i is over

subsystems and xN − x1 = r [201, 225, 200]. Even with this assumption,
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determination of εr(x) is difficult because of errors in evaluating the derivative

from velocity data. Further error arises from the application of the Taylor

frozen hypothesis at high frequencies [73, 53, 99, 70, 232, 168, 231, 3, 123, 52].

Kolmogorov [106] and Obukhov [158] assumed a log-normal distribution

of εr, while Castaing et al. started by assuming a log normal distribution of

εr,

P (εr) =
1

λε(2π)1/2εr
exp

(

−(ln εr −mε)
2

2λ2
ε

)

, (8.3)

where mε and λε are respectively the mean and the standard deviation of ln εr.

8.1.2 Superstatistics of Beck and Cohen

Beck and Cohen’s statistical approach considers a system far from ther-

modynamic equilibrium to consist of subsystems in local thermodynamic equi-

librium [26]. Each subsystem has a well-defined ”temperature”, but the sub-

system temperatures need not be the same since the whole system is not in

equilibrium. Beck and Cohen identify (δvr)
2 with the kinetic energy of eddies

of size r, E(δvr) = 1
2
(δvr)

2, and the variance of δvr is identified with an inverse

temperature β [155]), given for a subsystem of size d by

βd =
1

〈(δvr)2〉d − (〈δvr〉d)2
, (8.4)

where 〈·〉d is an average over the size d. Then we have

P (δvr) =

∫ ∞

0

P (βd)P (δvr|βd)dβd. (8.5)

where P (βd) is the distribution of inverse temperature in subsystems of size d.

A particular choice of P (βd), the χ2 distribution, leads to the dis-

tribution associated with the nonextensive statistical mechanics of Tsallis,
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P (E) = (1 + βE2)−1/(1+q), where q is a parameter characterizing the nonex-

tensivity (S(1 + 2) = S(1)+S(2)+ qS(1) ·S(2), where S is entropy function.)

[215, 26]. A phenomenology similar to Beck and Cohen’s was used in earlier

oceanographic analysis that described the global non-Gaussian distribution

of ocean surface velocity as a mixture of local Gaussians with χ2-distributed

variance [81, 194]. The method of Beck and Cohen has been applied to fully

developed turbulence [24, 25] by introducing a fitting parameter to determine

the PDF of inverse temperature, rather than by directly measuring the PDF

of inverse temperature.

The Beck-Cohen method requires that the size d should be large com-

pared to the distance r separating two points, and d should also be large

enough so the subsystems contain enough data points to yield good statistics,

but d must also be small enough so that subsystems are each described by a

Gaussian distribution. Beck determined the size of d using a fitting parameter

involving the kurtosis of P (δvr) [25].

8.1.3 Unified View of PDFs

The Castaing and Beck-Cohen methods are similar except in the way

they divide a system into subsystems. Castaing et al. sample velocity dif-

ferences conditioned by the averaged energy dissipation rate εr, while Beck

and Cohen use velocity differences conditioned by the inverse temperature βd.

Castaing et al. need one fixed length scale, the separation distance r between

two points; δvr and εr are defined at this scale and are related through Bayes’

theorem. The Beck-Cohen method involves two length scales, the distance

r separating two points and the size d of the subsystems in the statistical
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analysis.

The Castaing and Beck-Cohen methods can be connected if the two

conditioning variables (εr and βd) are correlated. Using Eq. (8.1) and Bayes’

theorem, we convert Castaing’s method into Beck-Cohen’s method,

P (δvr) =

∫ ∞

0

P (δvr|εr)P (εr)dεr

=

∫ ∞

0

∫ ∞

0

P (δvr|βd)P (βd|εr)dβdP (εr)dεr

=

∫ ∞

0

P (δvr|βd)[
∫ ∞

0

P (βd|εr)P (εr)dεr]dβd (8.6)

=

∫ ∞

0

P (δvr|βd)P (βd)dβd. (8.7)

Now, let’s assume a log-normal distribution of βd at the fixed εr,

P (βd|εr) ∝
1

βd
exp

[

−(ln βd − a ln εr)
2

2λt
2

]

, (8.8)

where λt is the standard deviation of ln βd conditioned to εr and a is a para-

meter. Using Eqs. (8.3), (8.6), and (8.8), we have

P (δvr) ∝
∫ ∞

0

P (δvr|βd)
∫ ∞

0

exp

(

−(ln βd − a ln εr)
2

2λt
2

)

× exp

(

−(ln εr −mε)
2

2λ2
ε

)

d(ln εr)d(lnβd)

∝
∫ ∞

0

P (δvr|βd) exp

(

−(ln βd −m)2

λ2
ελ

2
t

)

d(lnβd).

(8.9)

Thus with the assumption of a log-normal distribution of βd conditioned on

εr, we have that Castaing’s method is equivalent to Beck-Cohen’s method. by

assuming log-normal distribution of βd conditioned on εr. In Section 8.3.4, the

log-normal PDF of P (βd|εr) is verified in experiments.
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Figure 8.1: An example of the Couette-Taylor velocity difference data, ob-
tained by subtracting velocities at two points with a separation r = 46η =
0.134 cm, where η is the Kolmogorov length scale. The inset shows the veloc-
ity differences on a finer length scale.
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8.2 Experiment

We describe here an experiment on turbulent Couette-Taylor flow by

Lewis and Swinney [120, 116], and in the next section we will analyze data from

this experiment to deduce P (β) and a prediction for P (δvr). The fluid was

contained in the annular region between two concentric cylinders with an inner

radius of b = 22.085 cm and an outer radius of a = 15.999 cm; thus the ratio of

inner to outer radius was 0.724. The height of the annulus was 69.5 cm, which

yields a value of 11.4 for the ratio of height to the gap. The inner cylinder

angular rotation rate Ω was 8× 2π rad/s; the outer cylinder was at rest. The

ends of the annulus rotated at the same rate as the inner cylinder. The fluid

was water with a viscosity ν of 0.00968 cm2/s at the working temperature.

Defining the Reynolds number as Re = Ωa(b− a)/ν yields for the Reynolds

number 540 000 [120].

A hot film probe was used to measure the time dependence of the az-

imuthal component of the velocity in the center of the gap at a distance 4.35 cm

above mid-height of the annulus. The Taylor frozen turbulence hypothesis was

used to convert the velocity time series data to velocity field data. The turbu-

lent intensity (the ratio of the root mean squared velocity to the mean velocity)

was less than 6%.

The uncertainties shown on our graphs correspond to the standard devi-

ation of 20 independent experiments. The velocity measurements were made

with a sampling rate 2500 times the inner cylinder rotation frequency; this

corresponds to a spatial separation of 0.017 cm between successive velocity

values. The longitudinal velocity differences δvr that we analyze are for points

separated by a small distance, r = 0.134 cm, where the probability distribu-
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tion function has approximately exponential tails [120]. An example of the

measurements of δvr(t) is shown in Fig. 8.1. The separation r = 0.134 cm

corresponds to 46η, where η is Kolmogorov scale [120]. [The Kolmogorov dis-

sipation scale was obtained by calculating the dissipation from energy spectra:

η ≡ (ν/ε)1/4, where the dissipation rate is given by ε = 15ν
∫

k2E(k)dk [120].]

The window size d we use for determining the local inverse temperature β is

typically 1.1 cm, 10 times larger than the value of r.

8.3 Results

8.3.1 Probability Density Function of Inverse Temper-

ature

Several distributions for inverse temperature βd have been discussed by

Beck and Cohen [26]. Here we consider the log normal and χ2 distributions,

which are most applicable to turbulent flow. Due to multiplicative processes in

turbulence, the log-normal distribution is often observed for positive-definite

quantities (such as εr) [47, 48, 6, 45, 50, 46]. A log-normally distributed βd is

given by

P (βd) =
1

βds
√

2π
exp

(

−(log βd −m)2

2s2

)

(8.10)

where s =
√

ln(1 + σ2
βd
/β̄d

2
) and m = log(β̄d

2
/
√

β̄d
2
+ σ2

βd
) are parameters,

and β̄d and σβd
are respectively the mean and standard deviation of βd.

The χ2 distribution of βd is given by

P (βd) =
1

βdΓ(c)

(

βd
b

)c

exp

(

−βd
b

)

(8.11)
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distribution for inverse temperature in subsystems of size (a) d=1.1 cm and
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solid line represents the log-normal distribution; both have the same mean
and variance as the 20 independent experiments (error bars correspond to
one standard deviation). The panels on the right, (b) and (d), show the
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log-normal (bullets) distributions for (a) d=1.1 cm and (c) d=3 cm. The
shaded area represents the experimental uncertainty (standard deviation of 20
experiments). Difference between the experimental PDF for βd and the χ2
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deviation), which is evaluated for 20 independent experiments.
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where c = β̄d
2
/σ2

βd
and b = σ2

βd
/β̄d and Γ is the gamma function. The statistical

properties of different distributions are discussed in [26].

The experimental PDF for βd is compared in Fig. 8.2 with a log-normal

distribution and with a χ2 distribution for two subsystem sizes d, 1.1 cm and

3 cm. The mean β̄d and variance σ2
βd

of the inverse temperature determine the

parameters s,m, b and c. For small d, the log-normal and χ2 differ significantly,

but for large d they become close together [Fig. 8.2(c) and (d)]. The decrease in

variance of βd with increasing d is similar to decrease observed in the variance

of εr with increasing r [219].

The difference between the PDF of βd from experiment and the χ2 and

log-normal distributions is shown in Fig. 8.2(b) and (d). For d=1.1 cm, the log-

normal distribution fits the data within the experimental uncertainty except

small βd regions, while the χ2 distribution deviates from the observations by

an amount that is large compared to the uncertainty. For d=3 cm , similar

features as in the case of d=1.1 cm are observed.

The log normal distribution (8.10) involves two parameters, s and m,

which depend on subsystem size, as shown in Fig. 8.3. This figure suggests a

relationship between s and m: m = s2

2
, which is supported by a calculation in

Castaing et al. (see Section 4.3.1 in [47]).

8.3.2 Conditional Probability and the Proper Subsys-

tem Size

In the statistical approach of Beck and Cohen, the subsystem size d

should be sufficiently small so that P (βd) is Gaussian, corresponding to local

thermodynamic equilibrium in the subsystems. However, in practice the d −→
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0 limit is inaccessible because as d becomes very small, the number of data

points becomes too small to allow accurate determination of the variance of

βd. So what is optimal choice of d? We address this question by examining the

third moment (skewness) and fourth moment (kurtosis) of δvr, which should

be equal respectively to zero and three for a Gaussian distribution. In principle

we could also examine fifth and higher moments, but because of the sensitivity

of the higher moments to noise, we limit our considerations to the third and

fourth moments. Plotting the third and fourth moments as a function of d, as

shown in Fig. 8.4, we find that the optimal value of d for our data is 1.0-1.2

cm, which is the only range in which the kurtosis is approximately given by

the value for a Gaussian. The skewness is small and negative for d > 0.5 cm,

but becomes strongly positive for d < 0.5 cm, reflecting a cascade of energy to

smaller length scales. We conclude that d=1.1 cm is the optimal subsystem

size for our data.

8.3.3 Probability Distribution of δvr

We found a log-normal distribution of βd fits the turbulence data over a

wide range in d (Section 8.3.1). With the log normal distribution of βd for the

optimal value of d (1.1 cm, Fig. 8.4) and the conditional Gaussian distribution

of δvr for that βd, we obtain the probability distribution of δvr by the method

of Beck and Cohen,

P (δvr) =
1

2πs

∫ ∞

0

dβdβ
−1/2
d exp

(

−(log βd −m)2

2s2

)

× exp

(

−1

2
βd(δvr)

2

)

, (8.12)
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show the predictions for subsystems of size 0.3 cm (thin dashed line) and 3 cm
(thin dash-dot line) and a Gaussian distribution (dashed line).
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where s and m are determined from experiment for the optimal subsystem

size d. There is no explicit form for the improper integral in Eq. (8.12) so

we evaluate the integral numerically, using the limits ([min βd,maxβd]) of βd

measured in experiments instead of the theoretical integral domain, [0,∞).

The results for P (δvr) obtained by numerical integration of (8.12) are

shown in Fig. 8.5. The data are described much better by the predicted

probability distribution than by a Gaussian. The observed approximate power

law tails are similar to the predicted distribution functionFigure 8.5 shows also

the prediction for subsystems of sizes larger and smaller than the optimal size

of 1.1 cm.

8.3.4 Castaing and Beck-Cohen Methods

If the two conditioning quantities in the Castaing and Beck-Cohen

methods (εr and βd, respectively) are correlated as a power-law, through Bayes’

theorem the two methods can be seen to be the same (see Eq. (8.7)). With

the surrogate definition of εr as in Eq. (8.2) and a proper subsystem size (Sec-

tion 8.3.2), we find that βd and εr exhibit a power-law relation, as Fig. 8.6

illustrates. In this sense, the Castaing and Beck-Cohen methods describe the

same PDF of δvr through the different conditional values which are correlated.

Our experimental observation of a relation βd ∝ (εr)
−2/3 in Fig. 8.6 follows

also from a dimensional analysis,

[βd] =

[

T 2

L2

]

= [L]−2/3 ×
[

L2

T 3

]−2/3

⇒ βd ∝ r−2/3ε−2/3
r , (8.13)

where square brackets [·] denote the dimension of a physical quantity, T is the

dimension of time and L is the dimension of length.
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The probability of βd conditioned to εr, P (βd|εr), is log-normally dis-

tributed, as Fig. 8.7 illustrates. Our assumption in Eq. (8.8) holds with the

surrogate εr and βd, where d is properly chosen (Section 8.3.2). Thus the

integral of two log-normal distributions,
∫

P (βd|εr)P (εr)dεr, is another log-

normal distribution, P (βd). That is, if P (βd|εr) is a log-normal distribution

with the mean of ln εr, a log-normal distribution of εr in Castaing’s method is

equivalent with a log-normal distribution of βd in Beck-Cohen’s method.

8.4 Conclusions

Both Castaing and Beck-Cohen methods have been very successful in

describing the non-Gaussian distribution of velocity differences in turbulence

[25, 47]. Although the relation of Beck-Cohen’s method and Tsallis statistics 1

to turbulence has been questioned [83, 25, 153, 216], the fit to data is quite good

[98, 65, 142, 20] We have presented a method for determining subsystem size

in the Beck-Cohen method, thus eliminating the need for a fitting parameter.

We have also shown that Castaing’s method can be converted to Beck-

Cohen method – the log-normal distribution of εr in Castaing’s method gives

rise to a log-normal distribution of βd in Beck-Cohen’s method. In that sense,

the two methods describe the non-Gaussian distribution of δvr in the same

way, P (δvr) =
∫

Gaussian distribution × log− normal distribution.

1Beck and Cohen have shown that their method includes Tsallis statistics and other
statistics [26]. A log-normal distribution is indistinguishable from Tsallis statistics except
in long tails [25].
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Chapter 9

Energy spectrum

9.1 Introduction

Rotating turbulence on a sloped bottom (a beta-plane) is generally be-

lieved to lead to anisotropy and the formation of a jet stream [171]. Rhines

noted the existence of a transition scale (2U/βRo)
1/2, where the inverse cas-

cade of turbulent energy ceases at a wavenumber kβ = (βRo/2U)1/2. For scales

larger than k−1
β , wave-like phenomena dominate, while for scales smaller than

this turbulent effects dominate. However, the characteristics of turbulence on

small scales are still open to question.

Quasi-geostrophic turbulence in stably-stratified flow contains two- and

three-dimensional motions. Due to unstable baroclinic (vertical) flow, energy

is transferred to barotropic (horizontal) flow at wavenumbers close to that cor-

responding to the radius of deformation [165, 184, 183]. Consequently, energy

slowly cascades to large scales and large coherent structures appear [77, 192].

This can be interpreted as a flow that conserved energy and enstrophy, each
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of which is composed of 2D (barotropic) part and an effective potential (baro-

clinic) part. In our rotating annulus tank, the radius of deformation is infinite

because of no free surface. Even though our rotating annulus tank has no

stratification, the flow has 2D (barotropic-like) motion and an effective poten-

tial (baroclinic-like) motion due to the small vertical motions. In this case,

the potential energy and enstrophy are introduced by the vertical variation of

streamfunction, which induces vertical motion. In this chapter, we show how

energy spectra on small scales change as we change the beta plane to a flat

plane. By taking into account the vertical motion of the fluid, we attempt to

explain the position of the energy spectrum break.

9.2 Previous Work

9.2.1 Different Scales in a Rotating Fluid

The turbulent eddy-turnover time is given by [119]

τEd(k) = ε−1/3k−2/3 , (9.1)

where ε is the energy transfer rate and the inverse time scale increases as k2/3.

Alternatively, the advective timescale often used is

τAd(k) =
1

Uk
, (9.2)

and this inverse time scale grows as k. However, the Rossby wave time scale

is

τRo(k) =
k

βRo
, (9.3)

and this inverse time scale decreases as k−1. Thus, the Rossby wave dominates

large scales and the isotropic turbulent flow are dominant in smaller scales.
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Equating Eqs. (9.2) and (9.3), one gets

kβ ∼
√

βRo
U

. (9.4)

This wavenumber is called the Rhines wavenumber and the inverse is called

the Rhines length scale [171, 172]. This indicates a scale of balancing between

the relative vorticity (ω) and the beta-effect (βRor). On scales smaller than

the Rhines length scale, the relative vorticity is larger than the beta-effect,

and turbulence is not affected by Rossby waves. In the presence of small

scale forcing, the energy is cascaded inversely over homogeneous and isotropic

turbulence up to the Rhines scale. For scales larger than the Rhines scale,

the Rossby wave forms and the beta effect dominates. Therefore, the scales

smaller than the Rhines scale are independent of the existence of the beta

plane.

9.2.2 Energy Spectrum in 2D Turbulence

Kraichnan [107] considers how energy and enstrophy are distributed in

the 2D isotropic homogeneous turbulence. As we show in Chap. 2.2, Kraich-

nan’s picture of 2D turbulence is that all the energy is transferred to large

scales and all the enstrophy is transferred to small scales. This is often called

the dual cascade process.

By estimating the magnitude for the triple velocity correlations, one

can get the energy spectrum. In general, τ3, the time scale for the triple

correlations responsible for inducing turbulent spectral transfer, may depend

on any relevant turbulence parameters such as energy spectrum and a length

scale [107]. When energy is conserved by the nonlinear interaction and a

local cascade has been assumed, the energy transfer rate, which equals to the
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dissipation rate ε, is independent of wavenumber k. Local cascade also implies

that ε is explicitly proportional to τ3 and depends on the wavenumber k and

on the energy spectrum E(k). A simple dimensional analysis leads to

ε = C ′τ3(k)k
4E2(k) (9.5)

where C ′ is a constant. When the time scale for triple correlation is sim-

ply given by the nonlinear time τ3(k) = τnl = [k3/2E1/2(k)]−1, Kolmogorov

spectrum is obtained.

However, the difficulty encountered in understanding dynamics of geo-

physical flows is the influence of a rotation. This effect leads to the modifica-

tion of the spectral time for energy transfer down scales [234, 43]. Zhou et al.

assumed that the triple correlation time scale

τ3 ∼ Ω−1 . (9.6)

By substituting the above assumed τ3 to Eq. (9.5), one gets

E(k) ∼ (εΩ)1/2k−2 . (9.7)

This k−2 energy spectrum for the inverse cascade matches with experimental

observations in a rapidly rotating system [18]. There is no prediction for the

higher k values. Energy spectrum in smaller scales than the forcing scales can

be estimated by considering the conservations of energy and enstrophy.

Tran-Bowman-Shepherd-Constantin have pointed out the problem of

Kraichnan’s energy spectrum in 2D turbulence [61, 213, 211, 212]. More details

are discussed in Chap. 2.2. For 2D turbulence, a direct enstrophy cascade is

not possible with molecular viscosity. Energy spectra steeper than k−5 result

from the global conservation laws of energy and enstrophy, molecular viscosity,

and a spectrally localized forcing.
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9.3 Model

There are various ways to approximate the horizontal divergence (∇⊥ ·
v⊥) that is related to the variation of vertical velocity. This nonzero horizontal

divergence gives correction terms in the geostrophic equation. In a classical

Ekman layer, the layer is laminar and is approximated as uniformly flat with

stable and viscous forces dominating the flow. Therefore, the variation of the

vertical velocity along the z-direction is

∂vz
∂z

= −E1/2
V ω = −LV

2Ω

1

τE
ω , (9.8)

where τE is the Ekman dissipation time defined as h0/2
√
νΩ.

For a stratified fluid, the density depends only on the vertical direction

and hydrostatic equilibrium is assumed. So, the variation of vz is given by

∂vz
∂z

= − 2Ω

N 2

{

∂2ψ

∂t ∂z
+

[

ψ,
∂ψ

∂z

]}

, (9.9)

where N := −g/ρ0 dρ/dz is the stratification frequency, at which the fluid

element oscillates up and down due to the density differences with the ambient

fluid. Here, we present a model for an incompressible fluid that takes into

account small variations of the Ekman layer which influence the height of

fluid elements, and we obtain another expression for ∂vz/∂z. This nonuniform

Ekman layer plays a role in breaking energy spectra into two regions.

9.3.1 Ageostrophic Model

Our new approach results in the introduction of introducing corrections

to the geostrophic equation. The shallow-water equation of motion in a rotat-
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Figure 9.1: Variation of streamfunction. We consider the change of the effec-
tive height due to an unstable Ekman layer. Our correction takes into account
the variation of effective height due to the fluctuation of streamfunction. Sup-
pose a vortex columns A and B are advected by a large-scale Rossby wave.
Figure (a) shows a schematic picture in a frame moving with the Rossby wave.
To conserve the pseudo-potential vorticity, a vortex column A has smaller rel-
ative vorticity than a vortex column B since the height is smaller. Opposite
case can be considered in Fig. (b). Similarly, a vortex column C has larger
relative vorticity than a vortex column D since the height is larger.
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ing frame is given by

∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y
− 2Ωvy = −1

ρ

∂p

∂x
+ ν∇2vx

∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

+ 2Ωvx = −1

ρ

∂p

∂y
+ ν∇2vy , (9.10)

where ∇2 can be approximated by ∂2/(∂z2) because of the aspect ratio of our

annulus (LH/LV ≫ 1). In the annulus, x is assumed to be the azimuthal di-

rection and y is assumed to be the radial direction the curvature of annulus ne-

glected. With strong rotation, the flow becomes geostrophic and vx = −∂ψ/∂y
and vy = ∂ψ/∂x.

We assume that the surface of the Ekman layers has constant pressure

(pT at the top and pB on the bottom), constant streamfunction (ψT at the top

and ψB on the bottom), and zero radial velocity. From these assumptions, the

pressure can be written as p = pB − gρ(z − η), where η is the displacement of

Ekman layer into the bulk from its mean height of Ekman layer as in Fig. 9.1.

If we have a small displacement of Ekman layer, the governing equations are

∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y
− 2Ωvy = −g ∂η

∂x
+ ν

∂2vx
∂z2

(9.11)

∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

+ 2Ωvx = −g∂η
∂y

+ ν
∂2vy
∂z2

(9.12)

In the planetary wave, the continuity equation leads to

∂vz
∂z

=
1

LV

∂η

∂t
. (9.13)

By assuming that the variation of vz is moving with the Rossby wave U , Eq.

(9.13) becomes

∂vz
∂z

=
g

U
2

∂η

∂t
. (9.14)
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For the first approximation, the primary flow is assumed to be geostrophic.

Streamfunction is proportional to the displacement of Ekman layer. A relation

between streamfunction and the displacement of Ekman layer such as

ψ =
g

2Ω
η , (9.15)

leads to the geostrophic equation from a shallow-water model. By substituting

the geostrophic solutions, vx = −∂ψ/∂y and vy = ∂ψ/∂x into Eq. (9.12), we

obtain that

− ∂2ψ

∂t ∂y
−
[

ψ,
∂ψ

∂y

]

− f0vy = −f0
∂ψ

∂x
− ν ∂3ψ

∂y∂z2
, (9.16)

∂2ψ

∂t ∂x
+

[

ψ,
∂ψ

∂x

]

+ f0vx = −f0
∂ψ

∂y
+ ν

∂3ψ

∂x∂z2
, (9.17)

where 2Ω is replaced by f0 for convenience. By using the continuity equation,

Eq. (9.14) and the relation, Eq. (9.15), one gets

∂q

∂t
+ [ψ, q] = F +D , (9.18)

where the pseudo-potential vorticity is defined as

q = ∇2
⊥ψ +

f 2
0

U
2ψ . (9.19)

In the inviscid limit, this quantity is conserved with the trajectory of flow.

This pseudo-potential vorticity is only for the flat bottom.

With the sloped bottom, the variation of the vertical velocity is

∂vz
∂z

= −2Ω

U
2

∂ψ

∂t
− βRo

2Ω

∂ψ

∂x
. (9.20)

The second term represents the beta effect over the sloped bottom. The equa-

tion for pseudo-potential vorticity for the sloped bottom is

∂q

∂t
+ [ψ, q] = D + F , (9.21)
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where q is the pseudo-potential vorticity defined as

q := ∇2
⊥ψ +

(2Ω)2

U
2 ψ + βRoy . (9.22)

For convenience, we denote
(

2Ω/U
)2

by k2
D. Similarly, kD in the stratified fluid

is given as the inverse of the internal (or baroclinic) radius of deformation,

LD := NLV /(2Ω) where LV is the vertical scale of motion.

9.3.2 Two-layers Model

We consider a simple model with two layers which are governed by Eq.

(9.21). In our experiment, our two probes are measuring two layers, which are

the top and bottom layers as

∂qT
∂t

+ [ψT , qT ] = DT + FT , (9.23)

∂qB
∂t

+ [ψB, qB] = DB + FB , (9.24)

where

qT = ∇2
⊥ψT + βRoy + k2

D(ψB − ψT ) , (9.25)

qB = ∇2
⊥ψB + βRoy + k2

D(ψT − ψB) , (9.26)

and subscripts T and B present the top and bottom layers, respectively. A

term k2
D(ψB − ψT ) represents the relative change of the pseudo-potential vor-

ticity due to the change of the height of fluid elements. Similarly, a two-layer

model in stratified fluids is proposed by Philips [167].

We will write barotropic-like and the baroclinic-like streamfunctions in

terms of streamfunctions near the top ψT and near the bottom ψB. We define

the barotropic-like and the baroclinic-like streamfunctions as

ψBT =
1

2
(ψT + ψB), ψBC =

1

2
(ψT − ψB) , (9.27)
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where BT and BC represent barotropic-like and baroclinic-like parts. Using

those above definitions, the equation of motions for potential vorticities are

given as

∂∇2
⊥ψBT
∂t

+ [∇2
⊥ψBT , ψBT ] + [(∇2

⊥ − k2
D)ψBC , ψBC ]

= ν∇2
⊥(∇2

⊥ψBT ) + FBT , (9.28)

∂(∇2
⊥ − k2

D)ψBC
∂t

+ [∇2
⊥ψBT , ψBC ] + [(∇2

⊥ − k2
D)ψBC , ψBT ]

= ν∇2
⊥(∇2

⊥ψBC − k2
DψBC) + FBC . (9.29)

There are three types of triads for energy transfers; One is the interaction

between two BT modes then giving energy to one BC mode. The second is

the interaction between two BC modes then giving energy to one BT mode.

The third is the interaction between one BT mode and one BC modes then

giving energy to one BC mode. The latter two are the interaction of two BT

and one BC modes. Here, we consider two types of interactions.

BT-BT-BT interaction

Interactions of three BT modes are the same as interactions in two

dimensional turbulence. We will introduce three wavenumbers k, p and q for

three modes whose sum is zero. The energy and enstrophy conservations give

d

dt
(E(k) + E(p) + E(q)) = 0 (9.30)

d

dt

(

k2E(k) + p2E(p) + q2E(q)
)

= 0 . (9.31)

Eq. (9.31) avoids energy transfer between scales of extremely local and ex-

tremely nonlocal. For example, consider two BT modes, k and p, are close

each other. Above energy and enstrophy equations lead to

2
dE(k)

dt
≃ −dE(q)

dt
, 2

dk2E(k)

dt
≃ −dq

2E(q)

dt
. (9.32)
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The only solution that we get is that k = q. It implies that no energy transfer

among three wavenumbers close together. Similar results can be obtained if

k ≫ q. For intermediate k, p, and q, the energy is transferred to the lower

wave number, the so-called inverse energy transfer.

BT-BC-BC interaction

Let’s denote k for one BT mode and p and q for two BC mode. If

k,p, q ≫ kD, BT-BC-BC interactions are the same as BT-BT-BT interactions

as in 2D turbulence. In the two-layer model, motions in smaller scales than

1/kD consist of uncoupled BT and BC motions. However, if k,p, q ≪ kD, the

energy transfer between two BC modes occurs only local (p ∼ q ≪ kD) or

nonlocal p≪ q.

9.3.3 Energy Transfer Between BC and BT Modes

The BT kinetic energy is mostly fed at the wavernumbers close to the

length scale 1/kD by BC instability [192, 77]. Consequently, BT energy slowly

cascades back to the large scales. Eq. (9.28) is approximated as

∂∇2
⊥ψBT
∂t

+ [∇2
⊥ψBT , ψBT ] = ν∇2

⊥(∇2
⊥ψBT ) + FBC , (9.33)

where FBC is the forcing from the BC mode. If we assume that the BC forcing

is localized around the wavenumber kD, this BC forcing has the eigenvalue

such as

∇2FBC = −k2
DFBC . (9.34)

The equation of enstrophy is given as

∂(∇2
⊥ψBT )2

∂t
+ [(∇2

⊥ψBT )2, ψBT ] = ν∇2
⊥(∇2

⊥ψBT )2 + k2
DFBC . (9.35)
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In summary, we obtain the BT flows with two conservation laws of energy and

enstrophy, a spectrally concentrated forcing and molecular viscosity. Next, we

consider these conditions and a rotation and find how energy spectra change

with those conditions.

The BT system with the BC forcing as in Eq. (9.33) is close to a system

with a spectrally localized forcing since the energy transfers are near a single

wavenumber kD. Primitive expectation of the BT energy spectrum in this

system is Kraichnan’s spectrum [107]: Energy is transferred into large scales

as a k−5/3 inverse energy cascade and enstrophy cascades into smaller scales as

k−5. However, energy transfers caused by the nonlinearities are slowed down

in the presence of a rotation [234, 43]. The time scale of triple interactions is

inversely proportional to the rotation frequency Ω. Through the simple non-

dimensional analysis, it leads to a k−2 inverse energy cascade. Another problem

in Kraichnan’s picture is raised by considering the conservation of energy and

enstrophy with a spectrally concentrated forcing [61, 211]. Similarly, we also

suggest no enstrophy cascade in our system. To get the energy spectrum, the

whole process is the same as in [211].

Finally, we expect that the energy spectrum in a rapidly rotating tur-

bulence with the flat bottom is

E(k)







∼ k−2 for k < kD

< k−5 for k > kD .
(9.36)

This energy spectrum is obtained with a strong rotation, conservation of en-

ergy and enstrophy, molecular dissipation, and spectrally localized forcing.

However, a system with the sloped bottom does not satisfy Eq. (9.35) because

of the term βRoy in Eq. (9.25) and (9.26). We did not obtain any expression

for the energy spectrum with the sloped bottom yet.
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9.4 Experimental Observations

Using the hot film probe under the top lid and on the bottom, we

measure the azimuthal and vertical velocity. If the fluctuations are small, the

measured velocity is interpreted as the azimuthal velocity as in Eq. (3.5).

Measured velocities are shown in Fig. 9.2. We measured velocities on

the top and bottom of the tank. Two probes are separated only in the vertical

direction as shown in Fig. 3.1. Velocities on the top (VT ) and bottom (VB)

are simultaneously measured as shown in Fig. 9.2 (a). Mean velocities on the

top and bottom are different by 2 – 3 cm/s. Velocity on the bottom VB is

always smaller than velocity on the top VT . Also, VB has localized and peri-

odic high-frequency signals. By using wavelet analysis, we can extract those

localized high-frequency signals (Hepeng Zhang). Wavelet analysis consists of

decomposing a signal or an image into a hierarchical set of approximations

and details. By using Coiflet1 Wavelets, the extracted high-frequency signals

are shown in inset of Fig. 9.2 (a). High-frequency signals are localized around

6, 22, and 39 seconds. Regular periodicity, 16 seconds is observed in the whole

set of data (2500 seconds). By shifting VB in order to have the same mean ve-

locity with VT , we can find how large-scale motions of both signals are similar

and how small-scale motions are different.

Velocity time series can be converted into the spatial distribution of ve-

locity since the fluctuation is small compared to the mean flow (Taylor frozen

hypothesis [205]). Then, energy spectrum with respect to the time frequency

can be converted into it with spatial wavenumber. From now on, all y axes

are energy spectra in the log-scale and x-axes are either ωt/2Ω or k in the

log-scale where ωt is time frequency, Ω is a rotation frequency of tank, and
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Figure 9.2: Velocity example of the top and bottom at 2 Hz and 150 cm3/s.
Fig. (a) shows the velocity of the top and bottom. The black line is the
velocity of the bottom (VB) while the gray line is the velocity of the top (VT ).
Ellipses indicate the high-frequency velocity variations. Those high-frequency
bursts are quite periodic as shown in the inset of Fig. (a). Here, D1 is the
first-order coefficient of Coiflet1 Wavelets. Its periodicity is roughly about 17
sec. To compare more details, we shift VB to match with VT as in Fig. (b).
Inset shows a difference between two velocities. Both velocities have similar
large scale motions but different small scales motions.
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k is a wavenumber. Taylor frozen hypothesis gives a relation as k ∼ ωt/U

where U is the mean velocity of Rossby waves if vortices are assumed to be

advected by Rossby waves not by the mean velocity [129]. We introduce the

non-dimensional time frequency, ωt/2Ω. With this Taylor frozen hypothesis,

the wavenumber k = kD leads to a condition ωt/2Ω = 1. Due to the strong

rotational effect, this nondimensional time frequency is quite useful to inves-

tigate the structures of energy spectrum.

9.4.1 Energy Spectrum over Sloped vs. Flat Bottom

We proposed a model which assumed that there exist the crests and

troughs of streamfunction or the surface of Ekman layers, which are advected

by the Rossby wave. With those assumptions, BT systems are predicted to

have a clear breakpoint in energy spectra over the flat bottom. This break

point in time frequency is predicted as ωt/2Ω = 1, as in Chap. 9.3.3. It is the

scale where BC energy is transferred into BT energy.

Fig. 9.3 shows energy spectra near the top over the flat bottom at 1 or

1.75 Hz and 150 cm3/s. One can observe break points in energy spectra near

ωt/2Ω ≈ 1 as we expected. Energy spectra follow k−5/3 ∼ k−2 below the break

points and k−6 above the break points. Narrow spikes in high time-frequencies

are harmonics of a rotation rate. Fig. 9.4 shows energy spectra near the top

over the sloped bottom at 1 or 1.75 Hz and 150 cm3/s. Similarly, break points

are locate near ωt/2Ω ≈ 1. However, slopes of power-laws are different. Energy

spectra over the sloped bottom are between k−2 and k−5/3 below the break

points and between k−3 and k−4 above the break points. In consequence, we

found that energy spectra in small scales over the sloped bottom are quite
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different from energy spectra over the flat bottom as shown in Fig. 9.3 and

9.4. How does the beta plane affect the fluid motion in small scales?

The effect of beta plane is discussed in Chap. 3.1.2. The next question

is where the beta plane plays a role. Rhines proposed that the critical scale of

the beta effect is obtained by balancing the Rossby wave frequency βRo/k and

an inverse advective time scale Uk. The beta plane might affect the length

scales which satisfy U(k)k2/βRo < 1 but not for U(k)k2/βRo < 1 where U(k)

is velocity at the scale related with a wavenumber k.

There are various ways to define U(k). Here, we choose

U(k) =
√

E(k)k , (9.37)

by assuming that U(k) is a function of E(k) and k only. By using Eq. (9.37),

a critical length scale of U(k)k2/βRo = 1 is equivalent to

E(k) = (βRo)
2k−5 . (9.38)

This expected energy spectrum (E(k) ∼ k−5) is found in very large scales

[171]. In our experiment, we found that

βRo =
2Ωη

h
= 2× 11 rad/s× (−0.1)/16 cm ∼ −0.12( cm s)−1 . (9.39)

This critical condition implies that the beta plane affects the scales associated

E(k) < 0.01k−5 but does not affect the scales associated E(k) > 0.01k−5.

Fig. 9.5 shows two energy spectra over the sloped and flat bottom

and the dotted line indicates the critical condition of the beta effect (E(k) =

(βRo)
2k−5). Below the dotted line is the region where the beta effect dominates

flows. Only for large scales (k < 0.15), the beta plane plays a role. However,

we observed a significant difference of energy spectra in small scales when
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the sloped bottom changes to the flat bottom. It is generally believed that

the beta plane manipulates the energy spectrum as k−5 in only large length

scales. Despite of this expectation, we observed a significant difference of

energy spectra in small scales. So, we conclude that Rhines’ argument cannot

explain our experimental observations.

9.4.2 Burstings

Velocities are measured in the bulk near the top and bottom which are

located at the same position (r, θ) in a plane perpendicular to the rotation axis.

For laminar flows, we expect that velocities near the top and bottom become

identical if Rossby number and Ekman number approach to zero according to

Taylor-Proudman theorem. Here, we present how energy spectra near the top

and bottom converge as we increase the rotation frequency. The discrepancy

of two energy spectra is expected due to vertical motions. We also expect that

the split region of two energy spectra near the top and bottom becomes small

as the rotation frequency (Ω) increases.

As shown in Fig. 9.6, the rotation affects energy spectra near top and

bottom. More energetic motions in high frequencies are observed from veloci-

ties near the bottom. In contrast, the less energetic energy spectra in the small

scales come from velocities near the top. This discrepancy in energy spectra

near the top and bottom is quite localized and periodic in time as in Fig. 9.2.

Its periodicity is about 20 sec in 1 Hz and 150 cm3/s. The source of these high-

frequency burstings is unknown. We guess that these burstings are due to the

turbulent Ekman layer. As we decrease the rotation rate, two energy spec-

tra, one from top and one on bottom, separate in small scales (ωt/(2Ω) > 1).
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It also indicates that 3D motion in the small scales are disappearing as the

Rossby number goes to zero.

9.5 Conclusion and Future Work

In turbulence, the linear theory with uniform and stable Ekman layer

may be not applicable. So, we proposed a simple model which takes into

account the small variation of Ekman layer. Our simple model explains where

the break points of energy spectra over the flat bottom are located. This

prediction as 2Ω in the time-frequency domain is observed in experiments.

However, the energy spectrum over the sloped bottom is still an open question.

High-frequency burstings on the bottom with the sloped bottom are

observed. They are periodic and very localized. We did not study the full

range of a rotation rate and a pumping rate. Those burstings are not observed

with the flat bottom. More careful study on those burstings is necessary.
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Chapter 10

Conclusion

Two-dimensional flow is a very interesting subject in theory, but it is

hard to achieve in an experiment. Our experimental setup succeeds nicely

in making quasi-two dimensional flows, and changing the rotation rate and

the pumping rate over a wide range. Our experiment enables us to study

the influence of rotation and pumping on fluid motion. Our experiment with a

sloped bottom is a laboratory analog of the large-scale atmospheric and oceanic

motion, but these naturally occurring flows are complicated and difficult to

understand. Thus our experiment serves as a means for shedding light on

them.

In this thesis, we have tested various theoretical approaches to describe

these quasi two-dimensional flows in a rapid rotating tank. Also, we covered

most of the characteristics of turbulence, including both statistical properties

and the behavior of energy spectra.
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10.1 Contributions

In Chap. 4, we have studied how non-axisymmetric motion mixes po-

tential vorticity and produces a zonal circulation. As the potential vorticity

mixing grows, the reservoir of potential vorticity is fully used and is organized

into a final state. The zonal motion was observed to saturate at the value

given by Equation (4.6).

The question of how a final state is achieved is raised in Chap. 5. By

applying statistical mechanics to inhomogeneous turbulence, we have discov-

ered experimentally that a good definition of subsystem is provided by the

temporal mean of the streamfunction. With this definition, the quadratic

invariants (energy and enstrophy) are statistically independent, and the resul-

tant Gaussian probability density in a systematically chosen subsystem agrees

quite well with experimental results for both the distribution of potential vor-

ticity and the mean state of potential vorticity. We also tested statistical

mechanics with nonextensive entropy in Chap. 6.

Furthermore, statistical mechanics requires a proper set of canonical

coordinates (such as action-angle variables). An ensemble-averaged measure

leads to a correct result only with canonical coordinates. For a long time, this

measure has been performed by treating non-canonical variables. Following the

novel work for the Vlasov case [149], our calculation with canonical coordinates

was done with the linearized equations of 2D fluid motion.

The statistics of measures in turbulence is self-similar and non-Gaussian.

Both the Kolmogorov-Castaing and Beck-Cohen methods have been very suc-

cessful in describing the non-Gaussian distribution of velocity differences in

turbulence [25, 47]. We have presented a method for determining the subsys-
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tem size in the Beck-Cohen method, thus eliminating the need for a fitting

parameter. We have also shown that Castaing’s method can be converted to

the Beck-Cohen method. In this sense, the two methods describe the non-

Gaussian distribution of δvr in the same way,

P (δvr) =

∫

Gaussian distribution × (log− normal distribution) .

Besides the statistics of turbulence, the energy spectrum has universal

features, including the exponent of its power-law behavior. Energy spectra

were investigated by measuring velocities on the top and bottom of the annular

tank. The energy of 2D motion is fed by the vertical motion at a scale which is

related to the vertical variation of velocity. This forced energy is transformed

into large scales and the forced enstrophy is dissipated at the same scale as the

forcing scale. Therefore, we expect an inverse energy cascade and no enstrophy

cascade for the flat bottom case. Experimental results verify our expectation.

10.2 Future Work

There are many unsolved issues that have arisen from our study of

turbulence. Basic properties of turbulence are described by statistics and

spectra, and details of these remain to be understood for the velocity and

vorticity.

The study on the co-rotating jet remains to be done. The co-rotating

jet is more stable and energetic than the counter-rotating jet and has Gaussian

statistics for the velocity difference, whereas the counter-rotating jet has non-

Gaussian statistics. Working with Dr. Brian Storey, we found that numerical

simulations show a similar behavior. To investigate further, we need to see
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structures of the velocity fields with short time intervals. Technically, a high

frame rate camera is required to capture the motion for the high-velocity flow

of co-rotating jets.

The mechanism for dissipation in 2D turbulence is still not very well

understood. Ekman dissipation is valid in laminar and stable flows, such as

the spin-down experiment. In turbulence, dissipation depends more on the

dynamics rather than the uniform Ekman layer. So, we introduced a more

dynamical model for the vertical velocity in Chap. 9. We need more proof for

this assumption and for the experimental evidence of the advection of the 2D

divergence.

We have constructed building blocks for the statistical mechanics of

vorticity in a 2D fluid. However, there are a lot of issues related to statistical

mechanics that need to be resolved. First, we observed the fluctuation of an

intensive parameter, but due to the lack of data, we cannot see the statistics of

an intensive parameter. If the statistics of an intensive parameter have a log-

normal distribution, then we can proceed to show non-Gaussian statistics of

the potential vorticity, as we studied in Chap. 8. Also, the enstrophy spectrum

can be deduced from the fluctuation of potential vorticity.

A final goal of the fluid study might be the unification of characteris-

tics of fluid and plasma dynamics. In the inviscid limit, both have the same

structure with noncanonical brackets. The work of Chap. 7 is part of this uni-

fication. Once this unification is done, we can expand it to the solid-fluidized

system and so on.
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