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Abstract 

This study investigates the thermal conductivity of metallic powder in laser powder-bed 
fusion (LPBF) additive manufacturing. The intent is to utilize a methodology combining laser flash 
testing, finite element (FE) heat transfer modeling, and an inverse method to indirectly measure 
the thermal conductivity of nickel-based super alloy 625 (IN625) and titanium alloy (Ti64) powder 
used in LPBF processes. A hollow test specimen geometry was designed and built with LPBF 
enclosing the un-melted powder to mimic the powder bed conditions. The specimens were then 
flash heated in a laser flash system to measure their transient temperature response. Next, a 
developed FE model and a multi-point optimization algorithm were applied to inversely analyze 
the thermal transient, and extract the thermal diffusivity and conductivity of the powder enclosed 
in the specimens. The results indicate that the thermal conductivity of IN625 powder used in LPBF 
ranges from 0.65 W/(m·K) to 1.02 W/(m·K) at 100 °C and 500 °C, respectively. On the other hand, 
Ti64 powder has a lower thermal conductivity than IN625 powder, about 35 % to 40 % smaller. 
However, the thermal conductivity ratio of the powder to the respective solid counterpart is not 
much different between the two materials, about 4 % to 7 %, which is largely temperature 
independent. 

Keywords: laser powder-bed fusion; laser flash; inverse method; thermal properties 

1. Introduction

Laser powder-bed fusion (LPBF) additive manufacturing (AM) is a process that fabricates 
parts in a metal powder bed environment by powder-layer spreading and laser heating, melting, 
and solidifying layer-by-layer. The metal powder bed plays a significant role in the heat transfer 
phenomenon during LPBF, because heat dissipation to the ambient influences the rate of 
solidification of the molten metal, and therefore, the microstructure and mechanical properties of 
the build. In addition, accurate measurement of thermal properties of a powder bed in AM is 
essential for valid process modeling and predictions. While there are numerous publications 
regarding the thermal properties of common solid materials, little research has been reported 
regarding powder thermal properties in AM.  

The transient hot-wire method was studied and used by Wei et al. to measure the thermal 
conductivities of commercial AM metal powders in a pressurized inert gas environment, and the 
authors reported that the heat dissipation of a powder bed was influenced by gas infiltration [1]. 
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However, Gusarov et al. claimed that the thermal conductivity of gases at ambient pressure is 
substantially lower than that of metals and considered less important than other factors such as 
contacts between particles [2]. In addition, many researchers estimated the thermal conductivity 
of powder in powder-bed fusion AM using numerical approaches. Early work on evaluating the 
thermal conductivity of composite media can be derived from the Maxwell approach [3-6], which 
has been improved by the consideration of contacts between neighboring particles and gas in the 
pores. Some models have been developed to investigate the heat transport mechanism of a powder 
bed in AM and simulate the effective thermal conductivity. For example, Siu et al. and Slavin et 
al. both incorporated contact effects, such as the contact angle and the neck area between the 
neighboring particles for heat transfer in a powder bed, and conducted an analytical study to 
compute the powder thermal conductivity [7, 8]. Moreover, Singh et al. utilized an artificial neural 
network approach to predict the effective thermal conductivity of a porous system, which may 
contribute toward AM powder-bed studies [9]. Gong et al. incorporated powder thermal 
conductivity obtained from hot-disk based measurements and an analytical means into a 3D finite 
element (FE) thermal model to simulate the thermal field/history in powder-bed electron beam 
additive manufacturing [10]. 

Among different techniques for thermal diffusivity measurements, laser flash analysis, 
which was first developed by Parker et al. [11], is a widely used method for a wide variety of 
materials with a high precision. It uses the transient thermal response of a sample after a short 
heating pulse by a laser, then utilizes various heat transfer models to extract the thermal diffusivity 
from the measured response. For heterogeneous or anisotropic materials, more complex models 
may be required.  Inverse heat transfer methods, in conjunction with laser flash technique, have 
been used to evaluate the thermal properties of thin coated films [12-16]. The solution of the 
analysis in these studies was based on the minimization of the least-squared errors between 
numerical model predictions and experimentally measured data, which was detailed in a 
publication from Ozisik [17]. Parker’s theory of the flash method assumes one-dimensional heat 
transfer, without heat losses, and the homogeneity of the tested specimen. On the other hand, it is 
difficult to measure the thermal conductivity of metal powder, particularly with the size 
(approximately <50 μm) used in powder-bed fusion. With the inverse method approach, Cheng et 
al. developed and validated a combined experimental-numerical method to evaluate the powder 
thermal conductivity using laser flash testing and numerical heat transfer simulations [18]. The 
authors used additively fabricated hollow samples, with specially designed internal geometry, to 
enclose powder from LPBF. The internal geometry was designed to overcome an issue in which a 
gap occurred between the top shell and the internal powder, as reported in [19], which resulted in 
thermal insulations and complicated heat transport in the testing sample.  

Continued from the previous work [18], the objective of this study is to analyze the 
temperature-dependent thermal conductivity of powder used in LPBF additive manufacturing. The 
test specimens of different designs, with enclosed powder, were laser-flash heated to obtain 
experimental thermal response at different temperatures, and the developed inverse methodology 
was employed to evaluate the temperature-dependent thermal conductivity of both nickel super 
alloy 625 (IN625) and titanium alloy (Ti64) powder materials.  
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2. Experimental details

2.1. Specimen design and fabrication

The test specimens were thin hollow disks built vertically by the LPBF process and to 
encapsulate powder during fabrication. In addition, internal cone features, either on the top or both 
the top and bottom sides of the hollow disks were included to ensure the contact between powder 
and the solid shells, preventing a large-area gap caused by powder settling [19]. As an example, 
Figure 1(a) is a photo of a fabricated two cones (0.5 mm height) sample. The radial cross-section 
of the sample model is shown in Figure 1(b). The overall dimensions of hollow disks are 25 mm 
in diameter and 3 mm in height with a shell of 0.5 mm thickness. The internal geometric feature 
had three different cone features: (1) both cones with a height of 0.5 mm (noted as 2Cone-0.5 
throughout the paper), (2) both cones with a height of 0.25 mm (2Cone-0.25), and (3) one cone 
with a height of 0.5 mm on the top (1Cone-0.5). The dimensions of the cone-feature designs are 
shown in Figure 1(c) and Figure 1(d) shows the radial cross-section in the build orientation, i.e., a 
vertical build.  

An EOS M270 system1 was employed for sample fabrications. The powder materials used 
included both IN625 and Ti64. To achieve a full-density build, the process parameters suggested 
by the manufacturer were adopted for the solid shells. For IN625, the process parameter set was 
195 W laser power and 800 mm/s scan speed [20] and the layer thickness was set as 40 µm. For 
Ti64, a laser power of 170 W and a scan speed of 1250 mm/s [21] were used, with a layer thickness 
of 30 µm. For both materials, the hatch spacing was 100 µm. No laser exposure was applied to the 
internal hollow section, as it was intended to encapsulate powder. 

Figure 1. (a) An LPBF fabricated sample; (b) a geometric model of LPBF sample; (c) 
Dimensions of the 2Cone-0.5 powder-enclosed samples (unit: mm); (d) Build direction and scan 

conditions in LPBF. 

2.2. Laser flash testing 

Thermal diffusivity measurements of both solid and different encapsulated powder samples 
were carried out using a DLF-1200 from TA Instruments1, shown in Figure 2(a). In this system, 
the test specimens are held in a furnace chamber, purged with either nitrogen or argon gas, which 
has environment temperature control that can be increased up to 1600 ºC.  A laser pulse with a 

1 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental 
procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 
available for the purpose. 
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variable energy up to 25 J was applied uniformly in a concentrically circular area with a diameter 
of about 22 mm at the bottom surface of the specimen. The laser power is adjusted and set 
automatically by the system to create an adequate thermal response and resulting signal from the 
pyrometer. The duration of laser irradiations was approximately 0.003 s. An infrared pyrometer 
collects thermal response from a 9.6 mm diameter circular region on the top surface of the test 
specimen and converts to digital signal output (Figure 2 (b)). To reduce laser reflection, the test 
specimen was coated with liquid graphite, and dried completely before loading onto a sample 
holder in the furnace chamber.  During testing, the furnace heats to different programmed setpoint 
temperatures.  Once steady state environment temperature is reached, the laser pulses, which 
increases the sample temperature only enough to enable a measurement from the pyrometer. The 
procedures and settings of specimen testing suggested by the manufacturer (TA Instruments) were 
followed. 

The laser flash instrument generates a set of thermal radiation measurements collected over 
time via an infrared pyrometer. The experimentally acquired data is given as the voltage output 
and then transferred into a normalized response ranging from 0 to 1 which corresponds to the 
output at lowest and highest signal values. The response vs. time result is termed as a “thermogram.” 
Since the diffusivity is related to the time response (e.g., rise time of the thermogram), knowledge 
of the absolute temperature rise due to the laser pulse is not necessary.  The experimental results 
of IN625 and Ti64 are discussed in the following two sections.  

Figure 2. (a) DLF-1200 laser flash apparatus; (b) Schematic of laser flash method; (c) Specimen 
loading system; (d) Specimen holder; (e) Dimensions of IR detection and laser irradiation areas.  

Note that pyrometer spot size is not to scale as shown. 
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2.3. IN625 powder samples 

Figure 3 shows the experimentally obtained thermograms of a solid sample as well as an 
example of the 2Cone-0.5 specimen with encapsulated powder. Compared with the solid sample, 
the heating rate of specimens with encapsulated powder is much slower; the maximum temperature 
is reached at between 10 s and 20 s vs. less than 3 s for the solid sample. It can also be noticed that 
as temperature increases, the heating period in the thermogram shifts to the left gradually due to 
increased thermal diffusivity of the IN625 material with the temperature.  

Figure 3. Experimental time-response thermograms of IN625 at various temperatures: (a) solid 
specimen measurement and (b) specimens with encapsulated powder (2Cone-0.5).  Averages are 

taken from three separate measurements at each temperature. 

Furthermore, at a given testing temperature, the thermograms of specimens with 2Cone-
0.25 and 1Cone-0.5 features exhibit similar results in the heating period, and on the other hand, 
the 2Cone-0.5 specimen has a slightly higher heating rate than the specimens with the 2Cone-0.25 
feature. An example of the comparison between the three cone features at 100 °C is shown in 
Figure 4. 

Figure 4. Comparison of laser flash thermograms of IN625 with three cone features at 100 °C. 
The light-color bars in the plot indicate the range of measurement results. 

2.4. Ti64 powder samples 

Same as the IN625 samples, thermograms from laser flash testing of Ti64 specimens show 
an increased thermal diffusivity as the testing temperature increases. Figure 5(a) shows the results 
of the 2Cone-0.5 specimen at various temperatures. Figure 5(b), on the other hand, compares 
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thermograms from laser flash testing of the IN625 and Ti64 specimens, both with encapsulated 
powder and with the 2Cone-0.5 feature. It is noted that the Ti64 specimen has slower heating 
compared to IN625 specimen, indicating a smaller diffusivity value because of the inherently 
lower thermal diffusivity of Ti64 alloy; in addition, the difference in thermograms between the 
two materials becomes smaller at higher temperatures. 

Figure 5. (a) Laser flash thermograms of Ti64 (Ti64) 2Cone-0.5 specimen; (b) Comparison of 
thermograms between IN625 and Ti64 specimens with encapsulated powder, both with 2Cone-

0.5 feature. 

3. Powder thermal conductivity evaluation

To analyze the thermal conductivity of the powder inside the LPBF-built specimens, the 
laser flash system was modeled and simulated by a finite element (FE) method using ABAQUS 
software. The specimen and its holder were modeled using the measured physical dimensions, 
with a mesh size of 0.5 mm and 0.7 mm, respectively. The laser heat source was simplified as a 
uniformly-distributed surface heat flux applied on the bottom side of the specimen. Convection 
and thermal radiation heat loss were included as the boundary conditions with the ambient 
temperature set as the testing temperature. The encapsulated powder was assumed to have the 
following unknown properties: density (ρ) and conductivity (k). Besides, two contact conductance 
values: (1) between the powder and the top solid shell (kt), and (2) between the powder and the 
bottom solid shell (kb), needed to be determined as well. Additionally, the specimen-holder contact 
conductance (kp) at testing temperatures was obtained by analyzing the thermal response of the 
solid sample testing using the same laser flash system and the FE simulations, and then included 
in the laser flash simulation for the specimens with encapsulated powder. 

Therefore, the problem is to accurately estimate the unknown LPBF powder thermal 
properties. A multivariate inverse method with a multi-point optimization algorithm was utilized 
to fit the simulation to the experimental results, and eventually to achieve the powder thermal 
conductivity in this study. The methodology of the inverse approach uses the Levenberg-
Marquardt method, which has been used in a variety of inverse problems [17]. The complete 
approach, including FE simulations of laser flash testing and the inverse method, is detailed in a 
previous study [18]. 
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3.1. IN625 powder study 

In the thermal simulation of laser flash testing, temperature-dependent material properties 
of solid IN625 [22, 23] and alumina [24], which are applied for the solid capsule of the sample 
and the sample holder, respectively, are given in Figure 6. In addition, the density of alumina is 
assumed as 3800 kg/m3 [25]. Moreover, the emissivity (unitless) for IN625 and alumina is 0.12 to 
0.16 [26] and 0.7 [24], respectively. The convection coefficient was estimated to be 10 W/(m2·K) 
[27].  The uncertainty of these assumed parameters is assumed to have an insignificant effect on 
the evaluation of the unknown parameters determined by the inverse method (e.g., powder thermal 
conductivity), although the sensitivity to parameter uncertainty is yet to be studied. 

Figure 6. Material properties of solid IN625 sample and alumina sample holder. 

3.1.1. Example of powder-enclosed sample analysis 

Figure 7(a) shows the thermograms from three shots of laser flash testing of an IN625 
specimen (2Cone-0.5) at 100 °C. To illustrate iterative results from the inverse method, Figure 7(b) 
shows the simulated thermogram from each iteration, with the third and fourth approaching the 
experimental curve. Table 1 below lists the simulations output as well as the overall error (S), 
calculated as the sum-squared error between the measured and simulated thermogram, calculated 
at each iteration. The initial values for the four unknowns were set as 10 % of the solid IN625 
density and thermal conductivity at the testing temperature, and 100 W/(m2·K) for the contact 
conductance. The initials were purposely set far away from the possible actual values to ensure no 
effects of initials to the final solution. By adjusting the damping factor in each iteration [18], an 
optimal set of the four unknown properties was selected for the next step. By calculating the S 
value (overall error), it can be determined if the simulation for the next iteration is necessary to 
proceed. In this case, the result from the 3rd iteration is considered the optimal solution, because 
the error increases at the 4th iteration. 
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Figure 7. (a) Experimental results, including three shots and the average thermogram, and (b) 
Simulated thermograms from each iteration. 

Table 1. Results from inverse method for IN625 2Cone-0.5 specimen at 100 °C. 

n 
Damping 
factor u 

k, 
W/(m·K) 

kt,  
W/(m2·K) 

kb, 
W/(m2·K) 

ρ,  
kg/m3 S 

0 0.1 100 100 841 0.512417

1 -2 0.4314 609.90 566.95 902.63 0.275936

2 -0.02996 0.7347 372.60 738.03 3682.66 0.015569

3* 0.05 0.7955 351.77 926.54 4775.56 0.003393

4 -9.2 0.8000 351.62 934.50 4740.68 0.003789
* Optimal solution

3.1.2. Temperature-dependent thermal conductivity 

The laser flash results of the IN625 specimens with encapsulated powder, and three 
different cone features, at various temperatures were analyzed to inversely calculate the 
temperature-dependent powder conductivity. The results are summarized in Figure 8. The powder 
conductivity obtained ranges from 0.65 W/(m·K) to 1.02 W/(m·K), and generally, the powder 
conductivity is nearly linear to the temperature. However, the results extracted from the samples 
of three different cone features are slightly different. The models of the 2Cone-0.25 and 1Cone-
0.5 give a similar powder thermal conductivity, while the powder conductivity analyzed from the 
2Cone-0.5 model is about 0.1 W/(m·K) to 0.2 W/(m·K) higher than that from the other two models 
for all testing temperatures. 
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Figure 8. Thermal conductivity of IN625 powder. 

3.2. Ti64 powder study 

The FE model for Ti64 specimens with encapsulated powder was established also based 
on the actual geometry of fabricated specimens and Ti64 material properties. Figure 9 shows the 
material properties of solid Ti64 [28] that were incorporated in FE modeling. The same simulation 
approach and the inverse method used in the IN625 powder study were employed to the Ti64 
2Cone-0.5 specimens with encapsulated powder.  

Figure 9. Thermal properties of solid Ti64. 

The analyzed thermal conductivity values of Ti64 powder at various temperatures (100 °C 
to 500 °C) are plotted in Figure 10(a). It can be observed that the simulated Ti64 powder thermal 
conductivity linearly increases with temperatures and ranges from 0.39 W/(m·K) to 0.65 W/(m·K), 
for 100 °C and 500 °C, respectively. Moreover, when plotting in a normalized way (i.e., in 
reference to solid), it is noted that the Ti64 powder conductivity is approximately only 4 % to 5 % 
of the solid Ti64 conductivity at all testing temperatures, Figure 10(b). This finding is similar to 
the results of IN625 powder, which shows a slightly higher ratio, 4 % to 7 %, and different cone 
configurations result in a minor difference.  
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Figure 10. (a) Thermal conductivity of Ti64 powder at different temperatures, and (b) ratio of 
powder to solid thermal conductivities for IN625 and Ti64 (Ti64). 

4. Conclusions

The LPBF specimens with encapsulated powder were designed and fabricated, to imitate 
powder-bed conditions in LPBF, by an EOS M270 system using two different powder materials: 
IN625 and Ti64. Different internal cone features were incorporated in the specimens to ensure 
contact between the powder and the top solid shell. To evaluate the powder thermal conductivity, 
laser flash experiments and a numerical approach using FE thermal simulations and an inverse 
method were conducted to analyze the powder thermal conductivity. 

Based on the results obtained so far, it can be concluded that (1) the thermal conductivity 
of powder from LPBF is much lower than the solid conductivity, e.g., 0.65 W/(m·K) to 
1.02 W/(m·K) for IN625, and 0.39 W/(m·K) to 0.65 W/(m·K) for Ti64, within the range of measured 
temperatures of 100 °C to 500 °C, (2) there is a linear correlation between the powder thermal 
conductivity value and the temperature, and (3) on the other hand, the powder thermal conductivity 
of both materials is approximately only 4 % to 7 % of their solid thermal conductivity, with Ti64 
at a lower ratio. 
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