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Supervisor: Mark G. Raizen

This dissertation describes the design, construction, and characterization of a new

type of aberration-corrected, neutral-atom lens. Atom beam control plays a crucial

role in many different fields, ranging from fundamental physics research and materials

science to applied nanotechnology. Despite this, atom-optical elements like lenses and

mirrors remain relatively underdeveloped compared to their counterparts in other

optics fields. Though aberration correction is addressed quite comprehensively in

photon and electron lenses, no credible research efforts have yet produced the same

technology for neutral atoms.

We report on progress towards a neutral atom imaging device that will be useful in

a range of applications, including nanofabrication and surface microscopy. Our novel

technique for improving refractive power and correcting chromatic aberration in atom

lenses is based on a fundamental paradigm shift from continuous, two-dimensional

focusing to a pulsed, three-dimensional approach. Simulations of this system suggest

that it will pave the way towards the long-sought goal of true atom imaging on

the nanoscale. We construct a prototype lens and show that all of the technological

requirements for the proposed system are easily satisfied. Using metastable neon from

a supersonic source, we characterize this prototype for three different focal lengths

and a diverse range of apertures. Despite some manufacturing imperfections, we

observe lower distortion and higher resolution than has been shown in any previous

hexapole lens. Comparison with simulations corroborates the underlying theory and

encourages further refinement of the process.

ix



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter One: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Atom lens basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Passive lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Standing light wave lenses . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Static multipole focusing . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Pulsed, tapered, electromagnetic hexapole . . . . . . . . . . . . . . . . 8

1.6 Document summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter Two: Supersonic beams . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter Three: Cooling and pumping . . . . . . . . . . . . . . . . . . . 19

3.1 Selection rules and scattering rates . . . . . . . . . . . . . . . . . . . . 19

3.2 Structure of metastable neon . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Laser cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Optical pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter Four: Atoms in a magnetic field . . . . . . . . . . . . . . . . . 28

4.1 Classical picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Quantized angular momentum and adiabatic following . . . . . . . . . 29

4.3 Angular momentum in atoms . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Zeeman and Paschen-Back effects . . . . . . . . . . . . . . . . . . . . . 32

Chapter Five: Magnetic mirror . . . . . . . . . . . . . . . . . . . . . . . 36

x



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Halbach array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Stern-Gerlach deflection . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Magnetic mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter Six: Lens design . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Lens basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Focusing an atomic disk . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Focusing an atomic bullet: the case for a tapered lens . . . . . . . . . . 53

6.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.5 Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter Seven: Experimental setup . . . . . . . . . . . . . . . . . . . . 67

7.1 Even-Lavie cryogenic valve . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Cooling and pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3 Object plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.4 Propagation and phase space evolution . . . . . . . . . . . . . . . . . . 84

7.5 Chopper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.6 Lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.7 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.8 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter Eight: Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.1 Basic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi



8.2 Advanced slit measurements . . . . . . . . . . . . . . . . . . . . . . . . 104

8.3 A little bit effy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.4 Double peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.5 Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter Nine: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.1 Summary of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.2 Limitations and sources of error . . . . . . . . . . . . . . . . . . . . . . 122

9.3 Future goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xii



List of Figures

1.1 Photograph of the Stern-Gerlach beamline . . . . . . . . . . . . . . . . . 2

1.2 An example of results from a recent pinhole lens experiment . . . . . . . 3

1.3 SEM images of a typical Fresnel zone plate . . . . . . . . . . . . . . . . . 5

1.4 Nanoscale rows of chromium deposited using standing light wave lensing 6

1.5 True atom imaging from a permanent magnet hexapole . . . . . . . . . . 7

1.6 A preview of the images we produce using a prototype of the pulsed elec-
tromagnetic hexapole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Velocity distributions for effusive and supersonic beams of neon from a 77
K source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Phase space diagram for two atom beam sources . . . . . . . . . . . . . . 18

3.1 An energy level diagram showing the important features of Ne∗ . . . . . 21

3.2 A schematic depiction of optical molasses in one dimension . . . . . . . . 22

3.3 Two plots depicting the operation of an optical molasses in one dimension 23

3.4 Chirped longitudinal brightening . . . . . . . . . . . . . . . . . . . . . . 25

3.5 An energy level diagram showing the magnetic sublevels for Ne∗ . . . . . 26

3.6 Phase space diagram of transverse laser cooling in 1D . . . . . . . . . . . 26

3.7 Phase space diagram for chirped longitudinal cooling . . . . . . . . . . . 27

4.1 Stern and Gerlach’s postcard to Bohr . . . . . . . . . . . . . . . . . . . . 30

4.2 A diagram showing the angular momentum structure of an atom in the
Zeeman regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Magnetic splitting of the magnetic sublevels as a function of B for a 3P2

atom in the Zeeman regime. . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Angular momentum diagram in the Paschen-Back regime . . . . . . . . . 35

xiii



5.1 Diagram of a Halbach array . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Photograph of the magnetic mirror used in this experiment. . . . . . . . 39

5.3 Two complementary modes of operation for our planar Halbach array . . 40

5.4 A photograph of the Halbach array next to the MCP. . . . . . . . . . . . 41

5.5 Experimental and theoretical deflection of 33P2 Ne∗ and 23S1 He∗ for a
range of impact parameters . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 Outgoing angle as a function of incidence angle for Ne∗ . . . . . . . . . . 44

5.7 Intensity profiles for Ne∗ at a range of incidence angles, θin . . . . . . . . 45

5.8 Two planes of the phase space manifold showing the transformation ef-
fected by the magnetic mirror . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 A diagram of focusing for the case of a perfectly collimated beam . . . . 48

6.2 Airy disks for different lens apertures . . . . . . . . . . . . . . . . . . . . 49

6.3 A geometrical explanation of “circles of confusion” . . . . . . . . . . . . 50

6.4 Simple illustration of ray optics . . . . . . . . . . . . . . . . . . . . . . . 51

6.5 A diagram showing magnetic focusing of a collimated atomic disk. . . . . 52

6.6 A diagram depicting an electromagnetic hexapole lens . . . . . . . . . . . 53

6.7 Vector plot showing the hexapole field . . . . . . . . . . . . . . . . . . . 54

6.8 Line cuts showing the hexapole field . . . . . . . . . . . . . . . . . . . . 55

6.9 Focusing of a longitudinal series of disks by an untapered lens. . . . . . . 56

6.10 Diagram of a tapered hexapole. . . . . . . . . . . . . . . . . . . . . . . . 57

6.11 Simulated focusing of a perfect atomic disk . . . . . . . . . . . . . . . . . 58

6.12 Simulated focusing of a 2 mm bullet with an untapered lens . . . . . . . 59

6.13 Taper slope optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.14 Simulation of tapered focusing . . . . . . . . . . . . . . . . . . . . . . . . 61

6.15 Velocity-position correlation for the simulated beam . . . . . . . . . . . . 62

xiv



6.16 Simulated focusing of the letter F . . . . . . . . . . . . . . . . . . . . . . 63

6.17 Beam cross sections for imaging the letter F . . . . . . . . . . . . . . . . 64

6.18 Simulated projection of the batsign into the nanoscale . . . . . . . . . . 65

6.19 Phase space description of the lens transformation. . . . . . . . . . . . . 65

7.1 A time-resolved picture of the experimental beamline. . . . . . . . . . . . 68

7.2 Schematic and photo of the Even Lavie valve . . . . . . . . . . . . . . . 69

7.3 Schematic of the DBD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.4 A schematic of the gas supply line . . . . . . . . . . . . . . . . . . . . . . 71

7.5 Schematic of the Littrow configuration for an extended cavity diode laser 73

7.6 Injection locking schematic . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.7 Beam schematic showing Doppler-free laser frequency stabilization . . . . 76

7.8 Doppler-free saturated absorption . . . . . . . . . . . . . . . . . . . . . . 78

7.9 Oscilloscope traces from Doppler-free laser frequency stabilization . . . . 79

7.10 Photograph of the master and slave lasers and the saturated absorption cell. 80

7.11 Cat’s eye double pass configuration for AOM . . . . . . . . . . . . . . . . 81

7.12 Transverse laser cooling, looking down the atomic beamline. . . . . . . . 82

7.13 Schematic of chirped longitudinal cooling. . . . . . . . . . . . . . . . . . 83

7.14 Photo of chirped cooling beam entering the vacuum chamber. . . . . . . 84

7.15 Photograph of the slide used as an object for the focusing experiment . . 85

7.16 Diagram of the beamline midsection . . . . . . . . . . . . . . . . . . . . 86

7.17 Phase space diagram of the beam before and after propagation . . . . . . 87

7.18 Photo of the mounted chopper with a 1 mm slit showing. . . . . . . . . . 88

7.19 Photograph of the chopper chamber with overlays to show the mounted
wheel geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.20 A photo of the hexapole lens . . . . . . . . . . . . . . . . . . . . . . . . . 91

xv



7.21 A photo of the old hexapole lens . . . . . . . . . . . . . . . . . . . . . . 92

7.22 Dramatically simplified circuit diagram showing the lens electronics. . . . 94

7.23 Sample lens pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.24 IV curve for lens current . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.25 A diagram of the detection system . . . . . . . . . . . . . . . . . . . . . 97

7.26 A diagram of the timing hierarchy . . . . . . . . . . . . . . . . . . . . . . 99

8.1 Diagram of single-slit focusing . . . . . . . . . . . . . . . . . . . . . . . . 100

8.2 Image sequence for slit focusing at 113 ± 2 cm . . . . . . . . . . . . . . . 101

8.3 Measured image width (FWHM) as a function of current for image dis-
tances of 87 ± 2 and 113 ± 2 cm . . . . . . . . . . . . . . . . . . . . . . 102

8.4 Measured image width (FWHM) as a function of current for an image
distance of 61 ± 2 cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.5 A sequence of MCP images showing the expanding slit measurement . . 104

8.6 In-focus image width as a function of object-plane slit width for all three
focal lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.7 Slit translation images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.8 Data obtained by shifting the object-plane aperture in 10 mil increments 107

8.9 Double peaks at 45 cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.10 First imaging: a very ugly triangle . . . . . . . . . . . . . . . . . . . . . 110

8.11 An image that is, without a shred of doubt, a little bit effy . . . . . . . . 111

8.12 A final example of the double peaks, this time for a longhorn at di = 113
cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.13 A diagram showing one wire out of place. This leads to the double peak
phenomenon that undermines our early imaging attempts. . . . . . . . . 112

8.14 Vector plot for defective lens . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.15 Line cuts showing field magnitude for a defective lens . . . . . . . . . . . 114

8.16 Vector plot showing the double peak correction field . . . . . . . . . . . . 115

xvi



8.17 Line cuts of the corrected field. . . . . . . . . . . . . . . . . . . . . . . . 116

8.18 A rather inscrutable photograph of our lens surrounded by two sets of
elongated Helmholtz coils for double peak correction. . . . . . . . . . . . 116

8.19 Longhorn focusing with the corrective field . . . . . . . . . . . . . . . . . 117

8.20 Focusing sequence for the F-shaped aperture with the double peak correc-
tion field in place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.21 Focusing sequence for the bat at 113 cm with the field correction. . . . . 118

8.22 Composite image of the focused slide . . . . . . . . . . . . . . . . . . . . 119

8.23 Simulation for comparison with slit focusing at 87 cm . . . . . . . . . . . 120

9.1 Diagram of a metastable atom microscope . . . . . . . . . . . . . . . . . 123

9.2 Diagram of metastable lithography process . . . . . . . . . . . . . . . . . 124

xvii



Chapter One: Introduction

Neutral particle beams have featured prominently in physics research since the work

of Stern and colleagues in the 1920s and of Rabi in the 1930s [1, 2]. Nearly a century

later, they are still the basis for studies of quantum chemistry, Bose-Einstein con-

densation, and even particle physics [3, 4, 5]. Particle beams—including metastable

atoms—are also useful in microscopy, where their short wavelength can confer an ad-

vantage over photon-based methods [6, 7, 8]. Finally, atomic and molecular sources

are the starting point for many more applied processes, including atom lithography

and direct deposition assembly [8, 9, 10, 11, 12, 13, 14]. Each of these broad goals—

fundamental physics research, tool development, and fabrication—has much to gain

from improvements in the techniques we use to control neutral atoms. One system of

particular interest is the atom lens, which serves to collimate, focus, or otherwise man-

age the behavior of a propagating beam. The effectiveness of an atom lens—especially

in the context of metastable microscopy or atomic nanofabrication—depends in large

part on its capacity to produce high-resolution images and spots. Accordingly, im-

proving lens resolution has been a long-standing goal in atom optics. Despite many

clever techniques, efforts to reach the nanoscale have met with such stubborn ob-

stacles that nanofabrication by atom imaging is currently regarded in some circles

as a lost cause. Taking advantage of state-of-the-art high-speed electronics, we have

developed a novel approach to this problem that simultaneously addresses both chro-

matic and spherical aberrations at minimal expense to flux. We have constructed

and characterized a proof-of-principle apparatus to test our theory. Despite the flaws

one might expect in a first-generation prototype, this lens has already outperformed

all previous hexapole imaging devices. These results emphatically validate our model

and illuminate the path to nanoscale imaging.

1.1 Atom lens basics

The analogy between particle beams and light was clear as early as 1911, when

Dunoyer observed the ray-straight trajectories of sodium atoms in vacuum [16]. Stern

and colleagues in the 1920s soon extended this connection to include analogs of reflec-
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Figure 1.1: A photograph of the vacuum chamber used by Stern and Gerlach to
conduct their famous experiments [1, 15].

tion, refraction, and diffraction (Figure 1.1) [1, 17, 18]. Beam focusing dates back at

least to the work of Friedburg and Paul, who proposed not only a mirror-like magnetic

element, but also a macro-scale electromagnetic hexapole lens [19, 20]. Since these

first experiments, a wide range of beam control methods have advanced diverse goals

with varying degrees of success. For the purposes of this work, we are interested in

atomic analogs to the refractive optical lens, which changes the divergence of a photon

beam in order to collimate, focus, or otherwise shape it. Such an element can focus a

highly collimated beam into a single, diffraction-limited spot. In addition, a true lens

can be used with a transmission mask to project a complex image, as in lithography.

In both cases, the goal is to achieve high spatial resolution with maximum flux.

For atom lenses in general, the radial force on particles in a collimated beam

should be proportional to their distance from the axis (F ∝ ρ). This directs all atoms

towards a single focal point (Chapter 6). Deviations from this ideal that arise due

to the lens potential are referred to as spherical aberrations. Inaccuracies due to

variation in the atoms’ velocities are called chromatic aberrations. Minimizing both

kinds of aberration is the principal goal of atom lens design. Two secondary goals

are maximizing flux and minimizing diffraction. Both of these ends are furthered in

lenses with large apertures (D) and short focal lengths (f). F-number refers to the

ratio f/D. Because of the improved flux they offer when exposing an image, lenses
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Figure 1.2: An example of results from a recent pinhole lens experiment [21]. A
transmission mask (a) forms an object plane for indium atoms that pass through a
20 nm pinhole, forming the image shown in (b) on a silicon substrate. Despite this ex-
cellent resolution, pinhole imaging is not a viable option for large-scale nanostructure
manufacturing.

with small f-numbers are referred to as fast. A related property is refractive power,

which is quantified as 1/f and refers, broadly speaking, to a lens’s ability to effect

large changes in magnification. It is important to emphasize that some metrics—

focal length and chromatic aberration in particular—depend not only on the lens but

also on the beam being focused. The best systems for nanoscale atom imaging are

powerful, fast, and aberration-free.

1.2 Passive lenses

Some of the simplest atom lenses—pinholes and Fresnel plates—are based on the

propagation behavior of particle beams, and involve no direct forces at all. Pinhole

lenses were behind the first “camera obscura” photographs, and they are similarly

effective in the atomic realm [21, 22, 23]. Classically, a pinhole image is modeled by

simply tracing rays through an infinitesimal aperture, yielding a focused image at any

distance. In practice, a pinhole lens has a focal range: at long distances diffraction

dominates, and in the near-field the pinhole’s finite diameter becomes problematic.
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It turns out that an ideal pinhole lens has a diameter filling approximately 75% of

the first Fresnel zone [22]. This method has been used quite successfully, for example

to deposit indium atoms on a silicon substrate with 30 nm resolution (Figure 1.2)

[23]. The demagnification factor for pinhole lenses is excellent, reaching easily into

the thousands. This allows for the use of micron-scale masks, which are easy to

manufacture. Furthermore, a single mask can be used simultaneously with many

pinholes, producing an array of images. Despite what one might expect, the nominal

speed of pinhole lenses is also reasonable—around f/100—due to their focal lengths

on the order of a few micrometers. Unfortunately, pinhole lenses have some obvious

drawbacks. For one thing, a lens capable of 30 nm resolution must itself be around 20

nm wide. The flux of an atom beam through an aperture of this size is generally quite

low. Depending on the atom source, pinhole clogging and van der Waals forces may

also hinder performance. These obstacles make further scale reductions in pinhole

systems quite unlikely.

While pinholes lenses are inhibited by diffraction, a complimentary technique—

Fresnel zone plate imaging—is based on exploiting it [24, 25, 26]. This approach

involves arranging diffraction gratings radially around the axis of the beam. Each

diffraction zone diverts atoms towards a common focal point, with resolution improv-

ing in proportion to the number and quality of zones. The zero-order beam must be

blocked in order to observe the focused first order spot. Additionally, some flux is

lost to higher-order diffraction. Because of these losses, the maximum expected effi-

ciency from a zone plate is generally below 10% [26]. While geometric speeds are in

the neighborhood of f/1000, beam occlusion and higher-order losses result in effective

speeds closer to f/10000. State-of-the-art microfabrication has recently facilitated the

construction of Fresnel lenses with up to 2700 zones and grating features on the order

of 50 nm (Figure 1.3). Despite these technological advances, zone plates have just

barely reached the sub-micrometer regime, and future developments are unlikely to

bring them to the true nanoscale. Pinhole lenses and Fresnel plates are unique in

their ability to focus any particle, regardless of its electronic configuration. This is

especially useful for particles that respond only weakly to electromagnetic fields, such

as noble gases in the ground state. However, the flux through these passive lenses

is unavoidably small; indeed, their operation is based almost entirely on blocking

significant portions of the incident beam. Several higher-efficiency methods instead

use electromagnetic forces to create lenses with larger apertures.
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Figure 1.3: SEM images of a typical Fresnel zone plate. This example is made
from lithographically etched silicon-nitride [25]. Despite extreme manufacturing
requirements—features are on the scale of 100 nm—this device and others like it
struggle mightily to produce spots smaller than 1 µm. This SEM micrograph also
shows what a large fraction of the incident beam is blocked by the zone plate, leading
to low efficiency.

1.3 Standing light wave lenses

Standing light waves, which interact with atoms via the Autler-Townes (AC Stark)

effect, can be produced with a simple optical cavity and are amenable to a variety of

shaping and tuning techniques [11, 13, 29, 28]. The essential concept of a standing

wave lens hinges on the attraction of atoms to high- or low-intensity regions of the

near-resonant electromagnetic field. Small period standing waves—which form arrays

of “microlenses”—have been used to shape beams of Na, Cs, Cr, and Fe, among

others, often with excellent resolution [27]. However, such approaches are limited to

relatively simple geometric patterns and do not constitute a general imaging technique

(Figure 1.4). Larger standing waves can act as universal lenses, and such systems

have focused supersonic He* (v = 1760 ± 80 m/s) with resolutions around 4 µm and

lens speeds of f/11000 [28]. Unfortunately, the sinusoidal potential that characterizes

most standing waves is not ideal for focusing. Specifically, the force on an atom is only
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Figure 1.4: Nanoscale rows of chromium deposited using standing light wave lensing.
In addition to severe spherical aberration issues, this technique is largely limited to
either tiny apertures or simple patterns [27, 28].

proportional to its position (F ∝ ρ) near the center of a node/antinode, which results

in either a background of unfocused atoms or a small effective lens aperture. Clever

proposals for low-aberration standing wave lenses with sub-nanometer resolution—

for example, based on coaxial TEM01∗ “doughnut” modes—have circulated for many

years, but experimental tests have yet to fulfill their promise [30, 29].

1.4 Static multipole focusing

Static dipole forces—electric or magnetic—offer yet another mechanism for influenc-

ing atomic motion. As with standing light waves, a lens based on these forces relies

on the attraction of atoms to high- or low-field regions of space via the Zeeman or

Stark effects. While quadrupole fields have been used [32, 33], the hexapole field

is particularly appropriate, since it satisfies the F ∝ ρ condition over a large region

and thus acts like a true lens. Electrodes, permanent magnets, and current-carrying

wires have all been employed to create focusing fields [20, 33, 34]. In a particularly
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Figure 1.5: True atom imaging from a permanent magnet hexapole [31]. Prior to
the work presented in this dissertation, the above image represented one of the best
examples of hexapole magnetic focusing. The image sequence shows a beam coming
into focus as the longitudinal velocity varies between 110 and 50 m/s. The focused
image, around 70 m/s, has features on the scale of 1 mm.

successful example, a permanent magnet hexapole was used to image a complex mask

using slowed Cs atoms (v = 0−200 ± 5 m/s) [31]. Though the magnification in this

case was of order unity, in principle it could have been improved. Image sizes were

on the scale of 0.5 cm, with detail around 1 mm (Figure 1.5). The same system was

used to achieve focal lengths as small as 2.5 cm, yielding a minimum observed focal

spot on the order of 300 µm. The nominal speed of this system is around f/80, but it

must be noted that using a significantly slowed input beam somewhat limits the gen-

erality of this result. High-remanance rare earth magnets have improved the power

of permanent magnet hexapoles, but focal lengths for fast beams have remained on

the order of 10−100 cm [9, 10, 11]. Current-carrying wires can offer stronger field

gradients by at least an order of magnitude, but they also produce fringing fields

that limit resolution. In addition to refractive power, another serious problem with

permanent hexapoles is chromatic aberration. This arises when faster atoms, which

require a larger focusing impulse, instead receive a smaller one due to spending less

time in the field as they pass through it. The resulting quadratic dependence of focal

length on velocity limits the spot size achievable by a steady-state lens.
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Table 1.1: Characteristics of various neutral atom imaging systems. Aberration per-
formance is estimated as a grade on the A-F scale. We ignore technology that is not
capable of true imaging. From this direct comparison, it is fairly clear that the only
real competition for our pulsed, tapered, electromagnetic hexapole is the pinhole. For
applications in which the flux through a 20 nm aperture is sufficient and the short,
fixed focal length is not a problem, the pinhole is an excellent choice. For any other
situation, our system dominates the field.

Lens type ↓ Resolution Optimal speed Aberrations

Pinhole 30 nm f/100 A-
Fresnel plate 1 µm f/10000 B
Large period standing wave 4 µm f/10000 B-
Permanent magnet hexapole 300 µm f/10 C
This project (expected) 10 nm f/100 A

1.5 Pulsed, tapered, electromagnetic hexapole

We present a pulsed electromagnetic hexapole lens as a solution to many of the prob-

lems described above. Modern power-semiconductor technology in the form of the

insulated gate bipolar transistor (IGBT) has recently provided a means for switching

large currents (≥ 1000 A) on microsecond timescales. This allows for pulsed, high-

current wires to exert a brief, strong focusing field on a beam, taking advantage of

the high refractive power of electromagnets without subjecting the atoms to fringing

fields as they enter and leave the lens. The pulsed configuration also converts focal

length into a linear function of velocity, since the time spent in the focusing field is

fixed for all particles. Further chromatic aberration correction can be achieved by

tapering the lens, thereby applying a stronger force to the faster atoms near the front

of the beam. While the pulsed lens can only accommodate similarly pulsed beams,

supersonic valves are a perfectly suited source for atom optics experiments. Since

these high-brightness beams are already pulsed (often at a very high repetition rate),

relatively little flux is lost relative to the CW case. In addition to addressing the

problems of refractive power and chromatic aberration, the pulsed electromagnet is

tuneable, allowing the user to zoom or focus the lens by simply changing the wire

current. This is in contrast to many other methods, where a fixed focal length creates

a rather limited set of adjustable properties. After simulating this system for a wide

range of input beams, we have constructed a working prototype. Preliminary tests
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Figure 1.6: A preview of the images we produce using a first-generation prototype
of the pulsed electromagnetic hexapole. Our image quality and resolution (along
with our choice of shapes, in our opinion) are significantly improved over results from
previous hexapole lenses (e.g., Figure 1.5).

using metastable neon (Ne∗) demonstrate true imaging of complex patterns on a size

scale smaller than any previous hexapole results (Figure 1.6). We characterize this

system at a range of focal lengths and obtain results that compare favorably with

theory and simulations. This agreement justifies further exploration of the lens at

higher power, where we expect speeds of f/100 and resolution on the order of 10 nm.

1.6 Document summary

This dissertation comprises nine chapters. Chapter 2 describes the theoretical aspects

of supersonic atom beams, upon which all of our experimental work depends. In

Chapter 3, we examine laser cooling and pumping, both of which feature prominently

in our beam preparation process. Chapter 4 offers the mathematical framework we

use to understand the behavior of atoms in a magnetic field. In Chapter 5, we apply
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this framework to the simple case of a permanent magnet atom mirror. This chapter

was published as a paper in 2013 and is not directly relevant to the hexapole focusing

described in Chapters 6-9. It does, however, offer a tidy “warm-up” before the more

complex discussions that follow. Chapter 6 provides a mathematical description of

the pulsed, tapered, electromagnetic hexapole lens, along with results from numerical

simulations of the system’s performance. In Chapter 7, we describe the experimental

details of the beamline used to test a prototype of this lens. Chapter 8 lays out

the principal results from several different characterization methods and explains

an aberration-correction technique that helped improve these results. Chapter 9

summarizes the current state of the atom focusing project and outlines some long-

term goals. Naturally, the reader is urged to skip nothing and to savor each page

of this document. In the highly regrettable event that time constraints necessitate

triage, Chapters 6 and 8, supplemented with the figures in Chapter 7, should offer a

clear picture of the work we wish to present.
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Chapter Two: Supersonic beams

The starting point of this experiment, a pulsed, supersonic Even-Lavie valve, yields

an extremely intense and directional beam of neon. Compared to their effusive coun-

terparts, supersonic beams are significantly brighter and colder, but they also have

higher mean velocities. It is worth spending a few pages to investigate the forma-

tion and behavior of these sources, which are increasingly crucial tools in atomic and

molecular physics.

2.0.1 Effusive beams

The first molecular beams were formed by Dunoyer in 1911 by heating a cell to

produce sodium vapor, which was allowed to escape through a small aperture [16].

Dunoyer observed that the beam thus-formed followed straight lines and did not “go

around obstacles, as would so-called gas jets, which form swirls so as to leave no empty

space1.” This description goes straight to the heart of effusive beam formation, whose

essential feature is that gas particles pass into vacuum with no disturbance to their

velocity statistics.

A more rigorous statement of this condition is that the mean free path, Λ, of the

gas in the reservoir is large compared to the dimensions of the aperture. The mean

free path for a member of a Maxwellian ensemble is given by

Λ =
1

nσ
√

2
=

kBT

Pσ
√

2
, (2.1)

where n = N/V is the number density of the gas, σ is the the effective cross sectional

area of a gas particle, T is the gas temperature, and P is the pressure [35]. Atoms

in the reservoir are contained by its walls. An effusive beam is formed by removing

a section of the reservoir wall in such a way that particles simply pass through the

resulting aperture without experiencing any unexpected collisions. This lack of col-

lisions is a way of saying that information does not propagate from the hole to the

1“Cette expérience prouve d’abord que la matière en mouvement qui va former le dépôt H
ne contourne pas les obstacles, comme le ferait ce qu’on a l’habitude d’appeler un jet de gaz qui
formerait des remous derrière eux de manière à ne pas laisser d’espace vide. De plus il est facile de
reconnâıtre que la propagation de cette matière se fait en ligne droite.”
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atoms in the effusive beam: for all the atoms “know,” they are still inside the reser-

voir. The beam’s velocity statistics are therefore the same as those of the reservoir

gas, with the restriction that the forward velocity must be suitable for escape. The

isotropic Maxwellian speed distribution can be written:

f(v) =
4√
π

(
m

2kBT

)3/2

v2 exp

(
− mv2

2kBT

)
, (2.2)

where v is the speed and m is the molecular weight. It is noteworthy that the peak

of this distribution—that is, the most probable speed—occurs at

vW =

√
2kBT

m
. (2.3)

In other words, the most probable kinetic energy in the beam is equal to kBT . The

angular distribution depends on the thickness of the reservoir walls, but can approach

2π steradians.

Because high brightness is often desirable, many early atom beam experiments

attempted maximize beam flux by increasing reservoir pressure. Unfortunately, this

had the effect of reducing the mean free path, paradoxically causing gas to accumulate

around the aperture and effectively clogging the flow [36].

2.0.2 Adiabatic expansion

The problem of low brightness in effusive beams was eventually solved by better con-

trol over the gas expansion process [37]. The accumulation of gas around a clogged

aperture is clearly mitigated if the particles leave the reservoir at a high average

velocity, making room for new particles to follow. Supersonic nozzles accomplish ex-

actly this by converting a large fraction of the gas’s initial enthalpy into translational

energy. This is doubly advantageous for many applications, as it both increases par-

ticle flux and narrows the temperature of the resulting beam. For more detail on the

following discussion, see [35].

We begin by considering an ideal gas passing through a channel of dimensions

much larger than the mean free path. This condition allows us to treat the gas as a

compressible fluid rather than a statistical ensemble of discrete entities. We assume

the gas fills the channel completely and does not exchange heat with its surroundings.

Each volume element of the gas is effectively bounded by the surrounding particles.
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This is in contrast to the previous (free expansion) case, in which the behavior of

particles in the aperture was purely ballistic. A useful form for the equation of state

is:

P = nkBT. (2.4)

The first law of thermodynamics can be expressed in terms of heat q and internal

energy e per unit mass:

dq = de+ Pd(1/ρ), (2.5)

where ρ is density and 1/ρ is effectively the volume of a unit mass. The specific

enthalpy h is similarly written as a sum of internal and mechanical energy per unit

mass:

h = e+
P

ρ
. (2.6)

For an adiabatic process (dq = 0),

cP
dρ

ρ
= cV

dP

P
, (2.7)

where

cP =

(
∂h

∂T

)
P

(2.8)

and

cV =

(
∂e

∂T

)
V

(2.9)

are the constant-pressure and constant-volume specific heats, respectively. It is useful

to define

γ =
cP
cV
. (2.10)

Integrating equation 2.7, we obtain the well known relation:

P2

P1

=

(
T2
T1

)γ/(γ−1)
, (2.11)

which is a concise expression of the idea that an adiabatic expansion into a low

pressure region (P2 < P1) results in a lower temperature (T2 < T1). Intuitively, it

is useful to connect the collisional gas in a nozzle to the more canonical “receding

piston” of undergraduate homework fame. For a gas with a short mean free path, the

boundaries of any centrally located volume element are formed by the neighboring gas
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particles. If the entire cloud is expanding—specifically in the longitudinal direction—

these boundaries act as receding walls, cooling the center of the cloud.

We have argued that a collisional beam expanding through a nozzle will cool

down, but we have not yet shown how this thermal energy is converted into forward

velocity. Defining the sound speed in a gas as

c =

√
γ
P

ρ
, (2.12)

we obtain:
dP

ρ
= c2

dρ

ρ
. (2.13)

In one dimension, the continuity equation from fluid dynamics can be written:

dv

v
+
dρ

ρ
+
dA

A
= 0, (2.14)

where v is the flow speed and A is the cross sectional area of the channel. Similarly,

the momentum equation takes the form:

vdv = −dP
ρ
. (2.15)

Combining equations 2.13, 2.14, and 2.15 yields:

dA

A
+
dv

v

(
1−M2

)
= 0., (2.16)

where we have define the Mach number as M = v/c. For M < 1, it is clear from

equation 2.16 that the flow rate decreases with increasing area. This is in keeping with

our intuitive understanding of normal fluid flow. However, a strange regime exists

when M ≥ 1. For this case, flow rate increases with increasing cross section, provided

there is a position along the channel for which M crosses 1. It turns out that this

transition into the supersonic regime consistently occurs at the choke point, where

the nozzle area is minimal and dA = 0. A so-called Laval nozzle, which is designed to

create these conditions, narrows to a minimum cross section before gradually widening

again. The resulting beam is quite fast and cold compared to the gas in the reservoir.

An imperfect analogy for this situation is traffic flow. When road work constricts a

highway, traffic slows accordingly. If the blockage is bad enough, bumper-to-bumper

traffic ensues. As the blocked lanes reopen, cars rapidly accelerate—often to a much
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higher speed than they could maintain upstream. Unfortunately this analogy cannot

be pursued too far, not least because it is hard to imagine a regime in which cars act

like a “normal” fluid, speeding up when flow is restricted. Returning one last time to

classical fluid dynamics, we have the energy equation in one dimension:

vdv = −dh. (2.17)

Integrating, we obtain:
v22 − v21

2
= h1 − h2. (2.18)

This is an explicit statement of the idea that the beam is formed by converting the

enthalpy of the original gas into translational kinetic energy. Using the definition of

cP and taking v1 ≈ 0, this becomes

v22 = 2cPT2

(
T1
T2
− 1

)
. (2.19)

The final Mach number is therefore:

MF =

√
2

γ − 1

(
T1
T2
− 1

)
=

√√√√ 2

γ − 1

((
P1

P2

)(γ−1)/γ

− 1

)
. (2.20)

To the extent that the final pressure P2 can be made arbitrarily small, the final

Mach number is effectively unbounded. Recalling that the sound speed c in the

outgoing beam is proportional to
√
T , we see that this large Mach number (M = v/c)

reflects the notion that thermal energy in the original gas has been converted into

translational energy. An enormous Mach number—despite evoking images of science

fiction and warp drives—simply reflects the fact that the most probable velocity in

the beam is much larger than
√

2kBT‖/m (Here we have labeled the longitudinal

temperature, which arises from the longitudinal velocity spread in the co-moving

frame, as T‖. Similarly, the transverse velocity spread gives rise to T⊥.). Coming full

circle, we note that the beam velocity in the limiting case of T2 = P2 = 0 is very

nearly the median speed of the reservoir gas:

vmax = vW

√
γ

γ − 1
=

√
2kBT‖
m

(
γ

γ − 1

)
. (2.21)

In the somewhat more realistic case of a finite final temperature, we can model the

three-dimensional velocity distribution as an anisotropic Maxwellian in v ≡ v⊥ +v‖:

f(v⊥, v‖) =
m

2πkBT⊥

(
m

2πkBT‖

)1/2

exp

(
− mv2⊥

2kBT⊥
−
m(v‖ − v2)2

2kBT‖

)
. (2.22)
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Figure 2.1: Velocity distributions for effusive and supersonic beams of neon from a 77
K source. It is common to emphasize the relative narrowness of the supersonic beam,
but a far more important characteristic is the 1000-fold improvement in brightness.

Note the slightly awkward flavor difference between v—the vector velocity of an

individual atom—and v2, which is the final speed of the compressible fluid after the

adiabatic expansion. It may be more pleasing to the Statistical Mechanics Deities

if we redefine v2 as the average velocity in the longitudinal direction. Because the

perpendicular temperature mostly manifests as a reduction in flux, we can focus

exclusively on the parallel distribution, obtaining a Gaussian:

f(v‖) ∝ exp

(
−
m(v‖ − v2)2

2kBT‖

)
. (2.23)

Figure 2.1 compares the velocity distributions of effusive and supersonic beams. In

many ways, the most important contrast is not the narrower distribution, but rather

the enormous difference in brightness. While effusive beams top out around 1020

atoms/(sr · s · cm2), supersonic beams are regularly three orders of magnitude brighter

[35]. The use of shaped Laval nozzles to produce cold, intense atom beams has become

quite common. While the three dimensional case involves significantly more complex

dynamics, the main lessons of this section remain valid. The Even-Lavie valve—a

state-of-the-art application of the physics described here—is discussed in Chapter 7.
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2.1 Phase space

This is a convenient time to introduce the concepts of phase space density and the

phase space diagram. In classical physics, we think of phase space density ρ as the

probability that a particle occupies a region spanned by (δr, δ(mṙ)) around a given

location in phase space (r,mṙ). Put another way, ρ is the number N of particles

occupying a “unit” of 6-dimensional (3 space, 3 momentum) volume. The atomic

physics analog is quite similar, with the added bonus of being dimensionless. For

an atomic ensemble with isotropic thermal DeBroglie wavelenghth λth ≡ ~/(mvW ) =

~/
√

2kBTm, the phase space density is:

ρ =
λ3thN

V
=

~3N
(mvW )3V

, (2.24)

where V is the occupied spatial volume and vW is as defined in Equation 2.3. This

definition amounts to the selection of ~3 as the elementary unit of volume. We

can adapt this to non-isotropic beams by allowing the phase space extent in each

dimension to contribute separately:

ρ =
N~3

(δx δy δz δẋ δẏ δż)m3
. (2.25)

Phase space diagrams provide a visual aid in the discussion of ρ. Figure 2.2 shows

one such diagram comparing the output of a supersonic nozzle to that of an effusive

beam. Even if the number of particles in the two regions were the same, ρ in the

supersonic case would be much higher. We estimate the phase space density for our

beam after the skimmer to be on the order of 10−11. For comparison, a thermal beam

from an oven yields ρ ≈ 10−16 [38].

An important concept to keep in mind is that—in most cases—phase space den-

sity is conserved. While it may seem possible to brighten a beam—for example, by

applying some sequence of focusing fields—almost any concentration of the beam in

one dimension is balanced by an expansion in another. The classic example is a lens,

which transforms a collimated, wide beam into a divergent, focused one. The rigorous

proof of this conservation law relies on a version of Liouville’s theorem, an excellent

discussion of which can be found in [39]. Most specifically relevant to us is the follow-

ing statement: no force that can be described within the framework of Hamiltonian

mechanics—more explicitly, no “cooling [scheme] that rely[s] on resonance transitions
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Figure 2.2: Phase space diagram sketches for effusive and supersonic beams. This
introduces a useful way to visualize phase space volume. The effusive beam occupies
a large volume in both position and momentum space. The supersonic beam has
a higher average velocity, but its phase space volume is dramatically smaller. Since
the number of particles occupying the supersonic beam region is—if anything—larger
than for the effusive beam, the phase space density for a supersonic beam is signifi-
cantly larger.

or time-dependent potentials”—can result in a brighter beam. The basic classical cal-

culation on which this statement rests extends quite robustly into the quantum realm

[40]. Many ingenious schemes for achieving miraculously high phase space density

have been dashed on the rocks of this theorem. One way to escape its clutches—as in

the case of optical cooling—is by applying a non-conservative force that depends on

both position and velocity. Because such a force cannot be described in the Hamilto-

nian formalism, it is exempt from the Liouville theorem. In the next several chapters,

we will often return to the concept of phase space transformations.
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Chapter Three: Cooling and pumping

Despite the improved brightness of nozzle beams over simple effusive atom sources,

further intensification is immensely helpful. Laser cooling offers one of very few

approaches to true brightening of an atom ensemble. Because we eventually want

only one magnetic species, optical pumping is also quite helpful. The discussion in

this chapter loosely follows that of Metcalf in [39].

3.1 Selection rules and scattering rates

From perturbation theory, we can describe the incoherent transition rate γ between

two atomic states |e〉 and |g〉 as depending on the matrix element µeg in the Hamil-

tonian that connects them:

γ ∝ |〈e|H ′|g〉|2 ≡ |µeg|2. (3.1)

For the electromagnetic field, the relevant portion of the Hamiltonian takes the form

of a dipole moment:

H ′ = e ε̂ · r, (3.2)

where ε̂ is the unit polarization vector of the light. Since our atomic states are most

easily expressed in terms of spherical harmonics, we rewrite H ′ in this form as well,

using:

ε̂ · r =

√
4π

3
rY1q(θ, φ), (3.3)

where q indicates linear (q = 0) or circular (q = ±1) polarization. Separating the

radial and angular components of the atomic electron wavefunction, we obtain:

µeg = e〈n′l′|r|nl〉〈l′m′|
√

4π

3
rY1q|lm〉. (3.4)

This matrix element yields the well known selection rules,

m′ = m+ q (3.5)

l′ = l ± 1, (3.6)
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Table 3.1: Selected properties of the 33P2 − 33D3 transition in 20Ne∗ [39].

Quantity Value

Wavelength [nm] 640.402
Energy [eV] 1.936
Lifetime [ns] 18.79
Linewidth (γ/2π) [MHz] 8.47
Saturation intensity [mW/cm2] 4.22
Doppler limit (vd) [cm/s] 29.07
Doppler limit (Td) [µK] 203.29
Recoil limit (vr) [cm/s] 3.116
Recoil limit (Tr) [µK] 2.335

which become especially useful for optical pumping.

Shifting gears away from the detailed atomic states, we can write γ as

γ =
ω3|µeg|2

3πε0~c3
, (3.7)

where ω is the light frequency. Taking into account all elements of the density matrix,

we write down a set of master equations—the Optical Bloch Equations. Defining the

saturation intensity as

I0 =
πhcγ

3λ3
(3.8)

and solving the master equations for equilibrium, we calculate the total scattering

rate:

γp =
(I/I0)(γ/2)

1 + I/I0 + [2(δ)/γ]2
. (3.9)

Here δ = ω − ωa is the detuning from atomic resonance and I is the light intensity.

This rate will be the starting point for our optical cooling calculation.

3.2 Structure of metastable neon

It is useful to briefly outline the relevant optical and electronic properties of metastable

neon (Ne∗). The electron bombardment process serves to remove a (2p) electron from

the ground state atom, placing it instead in the n=3 shell. The resulting electron

configuration is (1s)2(2s)2(2p)5(3s). The lowest energy triplet states are 33P0, 33P1,

and 33P2, where we use standard Russel-Saunders notation of the form n2Stotal+1LJ .
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Figure 3.1: An energy level diagram showing the important features of Ne∗. Due to
selection rules that prevent relaxation, the metastable 3P2 state has a nearly eternal
lifetime of 14.73 s. These selection rules go out the window as soon as the symmetries
upon which they depend are broken. This defenestration results in a fast relaxation
event, which is the phenomenon we exploit for detection, metastable microscopy, and
neutral atom lithography.

The J=0 and J=2 states are metastable, and there exists a closed cycling transition

between the metastable 33P2 state and the nearby 33D3 state (Figure 3.1). Some

properties of this transition are outlined in Table 3.1. The 33P2 state and the 33D3

state have 5 and 7 sublevels, respectively, corresponding to the 2J + 1 eigenvalues

of Jz. The angular momentum characteristics of these sublevels will be discussed in

Chapter 4.

3.3 Laser cooling

The goal of any cooling process is to remove kinetic energy from an ensemble. Laser

cooling accomplishes this by selectively interacting with high-speed particles, leaving

others undisturbed. This process is depicted schematically for one dimensional cooling

in Figure 3.2. The narrow linewidth of atomic transitions is extremely helpful in this
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Figure 3.2: A schematic depiction of optical molasses in one dimension. The laser
light is red-detuned from resonance by approximately one linewidth. This suppresses
its interaction with stationary atoms. However, when an atom’s relative speed blue-
shifts the laser light back into resonance, the scattering rate increases dramatically.
The scattered photons deliver a momentum kick to the moving atoms that, on average,
slows them down. The net result from two counter-propagating laser beams is to cool
the atomic ensemble.

respect, as it allows for the targeting of specific velocity classes.

A single laser beam interacting with a quasi-two-level atom scatters light with the

rate given in Equation 3.9. We adapt this to the case of atoms in motion by adding

a Doppler shift to the detuning:

γP =
(I/I0)(γ/2)

1 + I/I0 + [2(δ + ωD)/γ]2
. (3.10)

Here ωD = −k · v is the shift due to projection of the atom’s velocity, v, onto the

laser wave vector, k. It is intuitively clear that a red-shifted laser will selectively

scatter atoms whose velocity contributes a blue-shift, such that δ ≈ −ωD. Since each

scattering event involves (on average) a momentum kick of ~k, the net effect of a red-

shifted laser is to slow down the atoms moving towards it. Two counter-propagating

beams, each red-shifted by around a linewidth, will therefore produce a force curve

of the form:

F(v) =
~kγ

2

(
I/I0

1 + I/I0 + [2(δ − |ωD|)/γ]2
+

I/I0
1 + I/I0 + [2(δ + |ωD|)/γ]2

)
. (3.11)
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Figure 3.3: Two plots depicting the operation of an optical molasses in one dimension.
In (a), the scattering rate from both cooling beams is overlaid with the initial and
final velocity distribution for a cooled Ne∗ ensemble. This figure gives an intuitively
reasonable picture of the relationship between the Doppler limit (200 µK) and the
peak scattering rates for detuning on the order of γ. In (b), the net force curve is
constructed as a sum of forces from the two individual beams. For atoms within 1
m/s of rest, the beams exert a dissipative drag force.

This force is plotted in Figure 3.3, from which it is clear that atoms near the center of

the velocity distribution experience a force that is linearly proportional to −v. This

is exactly what we require from a “drag force.” Explicitly, F ≈ −βv, with

β =
8~k2δI/I0

γ(1 + I/I0 + (2δ/γ)2)2
. (3.12)

Without taking additional steps to circumvent it, the Doppler limit defines the ap-
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proximate minimum temperature that can be reached with optical cooling. In Ne∗,

this is on the order of 200 µK.

3.3.1 Chirped longitudinal brightening

For fast atomic beams, implementing a full “moving molasses” in the longitudinal

direction requires independently Doppler shifting the co- and counter-propagating

laser beams into the rest frame of the atoms. This is more involved than transverse

cooling, in which a single mirror suffices to provide a return beam. A simplified

approach uses a single counter-propagating beam with a time-dependent Doppler

shift:

F(t) =
~kγ

2

(
I/I0

1 + I/I0 + [2 (δ(t) + ωD) /γ]2

)
. (3.13)

If the initial detuning is selected to correspond to the beam’s fastest moving atoms,

these will be slowed until they merge with the rest of the beam. The laser detuning

can then be shifted into resonance with the new fastest atoms, effectively scooping

the whole beam into the lowest velocity class. This process is depicted schematically

in Figure 3.4. The practical details of this technique are described in Chapter 7.

3.4 Optical pumping

The success of this project depends on our ability to pump the atoms in our beam

into a single low-field-seeking (LFS) state. Taking into account the selection rule in

Equation 3.5, we use circularly polarized light to pump all atoms in the beam into

the mJ = 2 state. This process is depicted in Figure 3.5. It is important to keep

in mind the splitting that takes place between the various magnetic states. While

a background field is essential for maintaining a quantization axis, it can also shift

certain transitions out of resonance. This splitting will be described in more detail

in Chapter 4. Some of the more practical aspects of optical pumping are laid out in

Chapter 7.

24



Figure 3.4: Chirped longitudinal brightening. (a) Initial detuning is selected to pro-
duce resonance with the beam’s fastest atoms. (b) As these atoms slow, we shift the
laser frequency into resonance with those moving more slowly. (c) Eventually, the
beam scoops a large fraction of the beam into a narrower velocity distribution. This
chirp can continue as long as necessary, resulting in a significantly slowed final beam
[31]. The dotted line represents the smooth sweep of the scattering spectrum over
time.
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Figure 3.5: An energy level diagram showing the magnetic sublevels for the 3P2

and 3D3 states of the cycling transition for Ne∗. Circularly polarized light yields
a unitary change in quantum number mJ . While spontaneous decay can link any
adjacent states, the net effect of many consecutive transitions is to collect all atoms
in the mJ = 2 sublevel. The Zeeman splitting due to an external magnetic field—∆;
greatly exaggerated here—slightly changes the resonance condition between various
states. When applying a quantization field, is important to keep it small enough that
the transitions remain within a linewidth of the pumping laser.

Figure 3.6: Phase space diagram of transverse laser cooling in 1D. The counter-
propagating, red-detuned cooling beams slow down fast atoms and leave the others
alone. This results in a substantially narrowed velocity spread without any change
in spatial extent. The velocity-dependent force exerted by the optical molasses is
non-conservative, which allows it to skirt the restrictions of Liouville’s theorem.
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3.5 Phase space

As advertised, we now return to the concept of phase space density to see how the

material in this chapter fits. Optical cooling, by virtue of exerting a dissipative,

velocity-dependent force, is exempt from the restriction placed by Liouville’s theo-

rem on phase space density. It is the only technique used in this dissertation that

actually brightens the beam, rather than simply changing the phase space distribu-

tion. As the cooled atoms go from a high- to a low-entropy state, it is helpful to

observe that the low-entropy laser beams used for cooling undergo a commensurate

entropy increase [41]. Figure 3.6 sketches the phase space volumes occupied by the

beam before and after transverse cooling. The main feature to note is that the final

volume is significantly smaller, which implies a density increase. It is also significant

that transverse cooling exerts no focusing force: the beam’s spatial extent remains

unchanged. This is an important distinction between an optical molasses and related

techniques, such as the magneto-optical trap. Figure 3.7 shows a similar diagram

for the chirped longitudinal cooling. In addition to a higher phase space density, the

final beam in this case has a distinctly lower average velocity.

Figure 3.7: Phase space diagram for chirped longitudinal cooling. Fast atoms are
sequentially swept into the slowest velocity class. This still results in beam brighten-
ing, though the density change is not as pronounced as for a true optical molasses.
Depending on how far the chirp is carried, the median velocity afterwards may be
slower than that of the initial beam.
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Chapter Four: Atoms in a magnetic field

The focusing scheme described in this work depends crucially on the interactions

of atoms with magnetic fields. We introduce this concept with a classical picture,

then proceed with a more realistic description. After considering the quantization of

angular momentum and adiabatic following, we discover that the quantum mechanical

perspective is actually simpler than its classical counterpart.

4.1 Classical picture

The force on a dipole is most intuitive in the context of a cartoon “ball and stick”

model. If we momentarily suspend the laws of physics, we can imagine a magnetic

dipole to consist of two magnetic monopoles (charge ±m) rigidly connected and

separated by a vector d. Adding a magnetic field B(r), the total force on the dipole

is simply

F = mB(r1)−mB(r2), (4.1)

where r1 and r2 are the locations of the positive and negative magnetic charges,

respectively. Clearly, the force is zero ifB(r) is constant, since any force on one charge

is perfectly balanced by the opposite force on its counterpart. An inhomogeneous

field, however, does not satisfy this condition. For small d, we can approximate each

component of B(r1)−B(r2) as ∇Bi ·d, where Bi is ith component of the field at the

dipole’s center. Defining µ ≡ md, we have

F = (µ ·∇)B. (4.2)

It is useful to note that in one dimension this simplifies to

F = ±µdB
dr
, (4.3)

where the only role of the orientation is to determine the sign of the force.

A slightly more rigorous starting point—and one that does not depend on unphys-

ical objects—is the potential energy of an infinitesimal current loop in a magnetic
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field. Taking µ = IdA, where I is the current and dA is the loop area, we have

potential energy:

U = −µ ·B. (4.4)

This yields

F =∇(µ ·B), (4.5)

which is identical to Equation 4.2, provided that ∇×B = 0. Equations 4.4 and 4.5

have exact parallels in the quantum picture.

4.2 Quantized angular momentum and adiabatic

following

In a classical system, one expects µ and B to be randomly oriented with respect to

one another. This results in a continuous range of forces. A crucial discovery in the

early years of quantum mechanics—made by Stern and Gerlach in 1922—was that

the orientation of an atom’s magnetic moment is instead quantized with respect to

the field. Figure 4.1 reproduces a postcard showing this result, in which a collimated

beam of silver atoms is split into two distinct parts by an inhomogeneous magnetic

field. The implications of this discovery were far-reaching, but for our purposes they

are rather simple: given an atom in a field, µ · B̂ takes only discrete, fixed values.

Since it is possible—using optical pumping or other methods—to artificially select the

magnetic state of an atom, it is also possible to determine with excellent precision

the force exerted by a magnetic field. More rigorously, we begin with the interaction

Hamiltonian for the atom in the field:

Hint = −µ ·B. (4.6)

The semi-classical force is then

F =∇〈µ ·B〉 = 〈µ〉∇B, (4.7)

where B is the magnitude of the magnetic field and the fixed orientation of µ is

absorbed into the expectation value 〈µ〉. Atoms whose magnetic moment is anti-

aligned with the field such that 〈µ〉 < 0 are repelled by strong fields. These atoms
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Figure 4.1: A postcard sent to Neils Bohr by Stern and Gerlach in 1922 [15]. The
images show quantized magnetic deflection of silver atoms. On the left, we see the
cross section of an undeflected beam. On the right, the same beam is split horizontally
by an inhomogeneous magnetic field. The oval shape arises because the field gradient
is not strong enough at the top and bottom of the beam to separate the atoms. Note
that if an aperture were used to admit only the center of the beam, it would split
cleanly into two spots. Presumably, the text at the bottom of the card says: “The
Cubs are definitely going to win the World Series this year; they are overdue.”

are described as low-field-seeking (LFS), and their behavior is the basis for the project

described in this dissertation.

Perhaps even more surprising than the quantization of angular momentum is the

principle of adiabatic following. Having chosen an angular momentum eigenstate—

even one that is energetically unfavorable—an atom remains in this state indefinitely,

provided the Hamiltonian is not disturbed too quickly. On the face of it this is quite

absurd, since it means a high-energy LFS state will re-orient itself with a slowly ro-

tating field to maintain its awkward, energetically unfavorable configuration. Further

examination reveals that there is no mechanism for the atom to relax. The torque

exerted by the field causes the total angular momentum vector to precess around

the quantization axis, but it leaves the projection along the field direction fixed. If

this field direction changes only imperceptibly over the period of one precession, the

atom continuously re-orients itself and remains in the same instantaneous energy

eigenstate. If the field direction exceeds this speed limit, spin flips may occur.

Explicitly, the condition for adiabatic following is that the precession rate of the

30



total angular momentum—known as the Larmor frequency—must be much larger

than the rate of change of the field direction:

µB

~
�
∣∣∣∣ ddt
(
B

B

)∣∣∣∣ . (4.8)

Note that for small fields, adiabatic following becomes difficult to guarantee. We will

return to this potential pitfall in Chapter 7. For the large fields inside our hexapole,

the condition for adiabatic following is easily satisfied.

4.3 Angular momentum in atoms

From Equation 4.7, we know that the main task remaining to us is to calculate the

atomic magnetic moment. This arises from the combined orbital and spin angular

momenta of its constituent particles. In order to keep things simple and relevant,

we will focus this discussion on metastable neon. As described in Chapter 3, Ne∗

is characterized by the electron configuration (1s)2(2s)2(2p)5(3s), which features two

unpaired electrons. The p electron contributes an orbital angular momentum corre-

sponding to L = 1, where L is the quantum number associated with the operator L2

according to the eigenvalue equation

L2|L〉 = ~2L(L+ 1)|L〉. (4.9)

The two electron spins (si = 1/2) contribute a total spin of either S = 1 (triplet)

or S = 0 (singlet), where ~2S(S + 1) is the eigenvalue of the operator S2. For an

unperturbed atom, spin-orbit coupling mixes eigenstates of L and S, meaning that

the projections of these momenta onto a quantization axis are not conserved. Put

a different way, the quantum numbers mL and mS, associated with operators LZ

and SZ , are not good quantum numbers. This is a problem if we wish to calculate

the magnetic moment of the atom. Fortunately, the projection of the total angular

momentum, J = L+ S, is conserved. It obeys the following eigenvalue equations:

J2|J,mJ〉 = ~2J(J + 1)|J,mJ〉, (4.10)

and

Jz|J,mJ〉 = ~mJ |J,mJ〉. (4.11)
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Figure 4.2: A diagram showing the angular momentum structure of an atom in the
Zeeman regime. Because S and L are mixed by spin-orbit coupling, their projections
along B are not conserved. Fortunately, J = L + S does precess around B, so its
z-component is fixed and mJ is a good quantum number.

The total angular momentum quantum number, J , can take integer values between

|L − S| and L + S. For a given J , there are 2J + 1 sublevels corresponding to

mJ ∈ [−J,−J + 1, ...J − 1, J ]. These mJ states are degenerate in the absence of an

external field, but they separate when a field is applied.

4.4 Zeeman and Paschen-Back effects

The Hamiltonian describing a magnetic atom in a field is nearly identical to the

classical energy of an infinitesimal loop. The only difference between Equations 4.4

and 4.6 is that in the latter case, µ is an operator denoting the atomic magnetic

moment. Explicitly:

µ = −µB
~

(gLL+ gSS) , (4.12)

where gL = 1 and gS ≈ 2 are the respective g-factors for orbital and spin angular

momentum and µB is the Bohr magneton. The introduction of an external field

constitutes a form of measurement, causing the atom to adopt an eigenstate of the

full Hamiltonian. In this case, that means we can take z as the quantization axis

and write B as Bẑ. The problem of calculating the energy shift of a magnetic atom

32



therefore becomes that of determining the expectation value of 〈ẑ · µ〉:

〈Hint〉 =

〈
µBB

~
ẑ · (gLL+ gSS)

〉
. (4.13)

Energy level splitting due to the presence of a small external field is referred to as

the Zeeman effect. In this regime, the spin-orbit coupling discussion above remains

valid. J and mJ are good quantum numbers, while mL and mS are not. Heuristically,

this means that the spin and orbital angular momenta both precess around J , instead

of maintaining a fixed projection along ẑ (Figure 4.2). Introducing a field causes J

to precess around ẑ, but Jz remains fixed. In order to calculate 〈ẑ · µ〉, we assume

that the precession of L and S averages out, yielding:

L̄ =
L · J
J2

J (4.14)

and

S̄ =
S · J
J2

J . (4.15)

The useful identities:

S · J =
J2 + S2 −L2

2
(4.16)

and

L · J =
J2 +L2 − S2

2
(4.17)

allow us to write

Hint ≈
µBB

~
ẑ · J

(
gL
J2 + S2 −L2

2J2
+ gS

J2 +L2 − S2

2J2

)
(4.18)

Taking the expectation value, we obtain

〈Hint〉 ≈ µBBmJ

(
gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)

+gS
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

)

≡ µBmJgJB, (4.19)

where gJ is referred to as the Landé g-factor. Equation 4.19 is shockingly simple,

considering how many moving parts we just took into account. Figure 4.3 shows the

Zeeman splitting of the five 3P2 states as a function of an external magnetic field.
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Figure 4.3: Magnetic splitting of the magnetic sublevels as a function of B for a 3P2

atom in the Zeeman regime.

For large fields, the coupling of L and S to B is strong enough that mL and mS

become good quantum numbers. In this regime, the state splitting is referred to as

the Paschen-Back effect (Figure 4.4). Calculating 〈Hint〉 in this situation is actually

quite simple:

〈Hint〉 ≈ µBB (mL + 2mS) . (4.20)

Less simple is mapping the various energy levels as they transition between the

Zeeman and the Paschen-Back regimes, since in many cases this involves energy

eigenstates with varying slopes. Fortunately, maximal states like mJ = ±J involve

the largest possible projections of S and L, and the slope of 〈Hint〉 as a function

of B is the same in both regimes. We will therefore move along, leaving the task

of diagonalizing the entire intermediate-field Hamiltonian to any poor saps trying to

build a magnetic lens for mJ = 1 Ne∗ atoms.

Returning to the concrete details of our magnetic focusing experiment, we use

optical pumping to form a polarized beam of 33P2 Ne∗ in the mJ = 2 LFS state. The

Landé g-factor for these atoms is approximately 3/2, yielding a force of

Fbeam = −3µB∇B. (4.21)

Thanks to adiabatic following, we can effectively treat this as a classical force for the

remainder of our calculations.
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Figure 4.4: Angular momentum diagram in the Paschen-Back regime. For strong
fields, spin-orbit coupling is overpowered and S and L precess directly around B.
This dramatically simplifies the calculation of 〈Hint〉, but does not change the result
for maximal states.
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Chapter Five: Magnetic mirror

We now have all the theoretical tools we need to begin discussing magneto-optical

elements for atom beams. The primary objective—an aberration-corrected electro-

magnetic lens—is discussed in Chapters 7-9. Along the path to this goal, however,

we built and characterized a magnetic mirror for fast atoms. Though the current

incarnation of the focusing project does not use this mirror, it performed well enough

to warrant a publication in its own right. Most of the material in this Chapter ap-

peared as a Note in the Journal of Chemical Physics in September, 20131. Because

the space restrictions in the current context are rather less stringent, certain parts of

the discussion have been permitted to expand.

5.1 Introduction

Neutral atom beams have broad applicability to atomic and molecular science, partic-

ularly in the study of nanofabrication [11, 42, 9, 43], cold chemistry [44, 5], and atom-

surface interactions [45, 46, 47]. For beams of paramagnetic atoms, an inhomogeneous

magnetic field can be used for redirection and spin separation [48]. This technique

dates back to the Stern-Gerlach experiment and continues to be employed in several

recent demonstrations of magnetic lenses and mirrors [1, 49, 50, 51, 52, 53, 10, 33, 54].

Because many experiments involve high velocity beams with a narrow energy distri-

bution [5, 55, 56, 57, 58], manipulation techniques for these particular cases merit

further development. In this Chapter, we report the use of a planar Halbach array [59]

to either deflect or to specularly reflect a high-velocity, nearly monoenergetic beam

of neutral atoms in a spin-sensitive manner. We report our experimental results for

metastable neon (Ne∗) and metastable helium (He∗) atom beams generated with a

pulsed supersonic nozzle.

1J. Gardner, R. Castillo-Garza, and M. G. Raizen, “Manipulation of supersonic atomic beams
with static magnetic fields,” Journal of Chemical Physics, vol. 139, p. 096103, 2013. J. Gardner’s
contributions to this work included large portions of the experimental design, data analysis, and
manuscript writing.
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5.2 Halbach array

It is useful to begin by describing the qualities we are looking for in a mirror. As in

photo-optics, an atom reflection consists of a scattering event in which the angle of

incidence and the angle of departure are the same. In other words, the momentum

parallel to the surface is conserved, while that perpendicular to the surface is perfectly

reversed. Two metrics for success require attention: efficiency and specularity. Effi-

ciency refers to the fraction of atoms that the mirror successfully reflects. In direct

scattering reflections—i.e., from a crystalline surface—efficiency can be rather low

[60]. In reflections based on conservative, longer-range electromagnetic forces, how-

ever, the gentler interaction allows efficiency to approach 100%. Specular reflection

contrasts with diffuse reflection, in which atoms rebound at unpredictable angles from

the mirror surface. On a microscopic level, this arises because the atomic scattering

events take place with respect to a local “surface normal” that does not match the

macroscopic mirror plane. In layman’s terms: diffuse reflection occurs because the

reflecting surface is bumpy. A good atom mirror reflects all incoming atoms with the

same incident angle into exactly the same departure angle, conserving critical beam

properties like temperature and collimation. For a true specular reflection, atoms in

a beam must encounter force only in the direction of the macroscopic surface-normal

vector. As discussed in Chapter 4, the interaction energy between an atom and a

magnetic field (B) is mJgJµBB. In an inhomogeneous field, low-field seeking (LFS)

atoms experience a force parallel to ∇B, away from a field maximum. Taking the

desired performance metrics into account, we therefore set out to create a magnetic

structure with a strong field gradient pointing predominantly in a single direction.

A Halbach array offers precisely such an object (Figures 5.1, 5.2). The array

constructed for this experiment consists of 100 commercial Neodymium-Iron-Boron

magnets (1 x 1/8 x 1/8, Grade N42, remanence 1.3 T, magnetized perpendicular to

the long axis) assembled side-by-side such that each element’s magnetization rotates

counterclockwise by 90◦ with respect to its left-hand neighbor. Constructive super-

position yields a strong (Bmax ≈ 1 T), exponentially decaying (∇B ≈ 300 T/m)

magnetic field of rotating direction but constant magnitude along the top of the ar-

ray. We have verified that atoms from the supersonic nozzle remain in the adiabatic

regime while following this changing field direction. Hall probe measurements of

the assembled array agree well with a finite-element model of the field. The mir-
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Figure 5.1: A diagram of a Halbach array. Blue arrows represent magnetic field lines.
The outer arrows are from the vertical elements of the array, while the deeper-blue
inner arrows represent the field lines from the sideways-pointing elements. On the top
of the Halbach array, these arrows point in the same direction and create a large field.
On the underside of the array, the field lines cancel and almost no field remains. The
diagram and arrows are overlaid with color plot results from a finite element model
of the field strength for a typical array.

ror is mounted to a stage machined from stainless steel and aluminum, which offers

in-vacuum adjustment of both position and angle. The mirror and the stage are

mounted to a 10” CF vacuum flange with two linear translation feed-throughs which

control the two degrees of freedom (Figure 5.2).

5.3 Experimental setup

We generate a fast beam of metastable atoms with a velocity dispersion of ∆v/v ≈
0.02 using an Even-Lavie pulsed supersonic nozzle in conjunction with an electron

discharge source. The theoretical basis for this device is covered in Chapter 2. Details

of the Even-Lavie valve specifically are discussed in Chapter 7. When the nozzle is

at room temperature, helium atoms exit with a velocity of 1700-1800 m/s. Excited

to the 23S1 metastable state, He∗ has one LFS sublevel (mJ = 1). Ne∗ atoms are

produced with a velocity of 800-900 m/s and, in the 33P2 state, have two LFS sublevels

(mJ = 1,2). After passing through a skimmer, the beam is collimated with a 300

µm circular aperture, 0.88 m from the nozzle, after which it propagates towards the
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Figure 5.2: A photograph of the magnetic mirror used in this experiment. Two linear
translators connected to the mirror stage allow us to adjust both position and angle
while the mirror is in vacuum.

Halbach array.

We collect data for two distinct operating modes: deflective and reflective (Figure

5.3). In the deflective case, the beam enters the field region from the side and travels

along the array surface (Figure 5.3(a)). Atoms in the beam deflect with angles that

depend on their magnetic moments. In reflection, the beam approaches the array at

an angle from above (Figure 5.3(b)). Depending on magnetic moment, atoms then

either bounce off the array field with the same angle or collide with its surface and

relax to the ground state. Once the beam has interacted with the array in one of these

two modes, we observe it using a microchannel plate detector (MCP) in conjunction

with a phosphor screen (Figure 5.4). Details of this detection system are discussed

more completely in Chapter 7.
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Figure 5.3: Two complementary modes of operation for our planar Halbach array.
In (a), atoms enter the mirror field from the left side and deflect up. This converts
some of their forward momentum into vertical momentum. The angle at which the
atoms leave the field depends on their mass-to-magnetic-moment ratio. In (b), atoms
enter the field region from “above,” and experience force exclusively in the normal
direction. Their parallel momentum is unchanged, while their vertical momentum is
reflected. The departure angle is equal to the angle of incidence. In order for this
reflection scenario to take place, the angle must be steep enough that the atoms do
not interact with the edges of the array.
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Figure 5.4: A photograph of the Halbach array next to the MCP.

5.4 Stern-Gerlach deflection

In the deflective mode, atoms enter the high-field region from the side, traveling

parallel to the surface of the mirror (Incident angle θin = 0◦, impact parameter h; see

Figure 5.3(a)). This involves a momentary longitudinal force, which slows them down

and converts a portion of their kinetic energy into magnetic potential energy. While

they are over the array, the atoms experience a force that is normal to the mirror

surface. This results in a vertical acceleration whose magnitude depends on the atoms’

mass-to-magnetic-moment ratio. The atoms therefore split into distinct beams, each

consisting of a single magnetic species and leaving the high-field region at a specific

angle. We observe these beams and measure the deflection of the LFS atoms with

respect to the undeflected mJ = 0 spot. The results for He∗ and for both LFS species

of Ne∗ are reported in Figure 5.5. We model this system using a Runge-Kutta ODE

integrator and realistic assumptions for beam speed and temperature. The observed

deflections agree well with our numerical simulations of particle trajectories. It is

interesting to note that we see a mild collimating effect on the beam in the surface-
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Figure 5.5: Experimental and theoretical deflection of 33P2 Ne∗ and 23S1 He∗ for
a range of impact parameters. Atoms enter the field region moving approximately
parallel to the array. They deflect according to their magnetic moment and are
detected by the MCP. As one might expect, a smaller impact parameter—associated
with the particle passing closer to the array surface, where the field is strongest—
produces a larger deflection. Unsurprisingly, so does a smaller mass-to-magnetic-
moment ratio. Simulations (solid lines) are performed in Matlab using respective
beam velocities of 800 and 1700 m/s. Note added during dissertation: we had no
good way to measure h or θin, so we used them as fitting parameters within reasonable
bounds. In retrospect, this led to suspiciously good agreement.

normal dimension, indicating that the array has some of the properties of a cylindrical

lens. This phenomenon is related to the deflective focusing in [50], and may be further

explored in future work.

5.5 Magnetic mirror

In order for a reflection to occur, the atoms must encounter force exclusively in

the surface-normal direction. This requires that they approach at a steep enough

angle to avoid any interaction with the front and back edges of the array (Figure

5.3(b)). If this condition is met, the portion of their kinetic energy that is due to

motion towards the mirror is absorbed as magnetic potential energy. Assuming the
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maximum magnetic potential is large enough, this energy is then completely returned

to the atoms, sending them away with exactly the same angle. Figure 5.6 shows

the outgoing angles of Ne∗ atoms for a range of θin. For shallow incidence, the edge

effects of the array are important and cause deflective behavior. As the incident angle

increases, the atoms perceive the mirror as semi-infinite, and θout asymptotically joins

θin. In this regime, the LFS atoms experience a repulsive force that reverses their

perpendicular velocity (v⊥) but leaves parallel velocity (v‖) unchanged. In contrast to

the deflective case, the departure angle in a reflection does not depend on magnetic

moment. While a narrow, perfectly collimated beam would be split into two parallel

parts, the mirror does not efficiently spin-separate a divergent beam. This does not

mean, however, that the mirror is not spin sensitive: beam polarization can take

place when only one magnetic species has a large enough magnetic moment to avoid

colliding with the array.

Around θin = 2◦, the perpendicular kinetic energy mv⊥
2/2 approaches the max-

imum magnetic potential of the mJ = 1 atoms, which begin to crash into the ar-

ray. The outgoing beam for θin ≥ 2◦ is therefore predominantly spin-polarized, with

mJ = 2. Intensity profiles in Figure 5.7 show the progression from θin = 1.5◦, where

there are two distinct spots, to 2.5◦, where one spot has nearly vanished. Note that

imperfect collimation and velocity dispersion broaden the attenuation of the mJ = 1

particles, reducing the efficiency of beam polarization near the cutoff angle. Though

it is outside the spatial range of our detector, we expect the mJ = 2 beam to be cut

off around 3◦.

5.6 Phase space

The magnetic mirror does not change shape in phase space, but it does change po-

sition. Figure 5.8 shows this transformation in two 2D planes of the 6D phase space

manifold. The images show again the way a mirror reverses perpendicular momen-

tum without affecting the horizontal motion of the beam. Unlike the other cases we

discuss, there is no redistribution of ρ between position- and momentum-space.
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Figure 5.6: Outgoing angle as a function of incidence angle for Ne∗. The red line
represents ideal specular reflection (θout=θin). For low angles, atoms enter the field
from the side and are partially deflected (see text), leading to a θout that depends on
mJ . For larger angles, the atoms perceive the mirror as semi-infinite and asymptoti-
cally approach specular reflection. Around 2◦, the mJ = 1 atoms no longer interact
strongly enough to reflect and crash into the array. The reflected beam above this
critical angle is spin polarized. Angles are calculated by combining experimental
deflection distances with geometrical information from simulations. Simulation pa-
rameters are consistent with those used in Figure 4.1 and predicted deflections match
well with observation. Uncertainty values reflect possible error in the calibration
process and the disagreement between simulation and experiment.

5.7 Conclusion

In summary, we demonstrate the use of a planar Halbach array to either deflect or

to specularly reflect a fast, nearly monochromatic beam of paramagnetic atoms. As

a tool for beam manipulation and spin selection, this technique applies to any atom

or molecule with an accessible magnetic state. To our knowledge, this is the first

demonstration of specular reflection of a fast supersonic beam. While this device once

played an important role in the magnetic focusing project, it has since been retired

from the main beamline. Nevertheless, the principles from this research continue to

serve: we use a short section of Halbach array in the deflective mode to monitor the

efficiency of our optical pumping.

44



Figure 5.7: Intensity profiles for Ne∗ at a range of incidence angles, θin. These are
flux averages as a function of distance from the mirror surface taken from the CCD
image of the MCP. At 1.5◦, both LFS species are present and distinguishable. As the
mirror angle increases towards 2.5◦, the mJ = 1 atoms begin to collide with the array
and drop out of the beam. Between 2.5◦ and 3◦, the reflected beam is spin-polarized.
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Figure 5.8: Two planes of the phase space manifold showing the transformation
effected by the magnetic mirror. It is interesting to note the traditional reciprocal
relationship between position and momentum, since the atomic beams are technically
lines in position space and spots in momentum space.
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Chapter Six: Lens design

We wish to construct an electromagnetic structure that acts on a beam of atoms

the same way a refractive lens acts on a beam of light. To accomplish this, our lens

must exert a force on atoms in the beam that depends on their radial distance from

the beam axis. The deflection of paramagnetic atoms in an inhomogeneous magnetic

field is based on the same principle as the Stern-Gerlach experiment, as described in

Chapters 4 and 5. As before, the force on a given atom is given by

F = 〈µ〉∇B = −µBgjmJ∇B. (6.1)

For LFS atoms with mJ > 0, F is always in the direction of smaller fields. For

metastable neon in the mJ = 2 33P2 state,

F = −3µB∇B. (6.2)

Through optical pumping, it is possible to polarize a beam such that all atoms enter-

ing the lens have the same mJ . The problem of focusing therefore simplifies to that

of constructing a magnetic field whose gradient exhibits the desired force profile.

6.1 Lens basics

It is worth reviewing the basic properties of the convex lens. In the simplest case, a

perfectly collimated beam—or, equivalently, light from a point source infinitely far

away—enters the lens and is focused to a single spot at focal length f (Figure 6.1).

Classically, the size of this spot is zero. In real terms, the focused beam forms an

Airy disk whose zero-order spot has a half-width given by:

δ = 1.22
λf

D
, (6.3)

where λ is the wavelength of the particle and D is the diameter of the lens aperture

(Figure 6.2). The ratio f/D is called the lens’s “f-number,” or speed. Lenses with low

f-number are called fast because of the high flux that passes through their relatively

large apertures. Fast optical lenses can approach f/1, yielding a diffraction limit on
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Figure 6.1: A diagram of focusing for the case of a perfectly collimated beam. While
ray optics would suggest an infinitely small spot, diffraction causes a finite waist
instead. The diffraction limit improves with lower f-number.

the order of 500 nm. Atom lenses are quite impressive if they exceed f/100. Due

to sub-angstrom wavelengths, however, their diffraction limits remain on the order

of a few nm. Along with diffraction, an important adversary in optics is aberration.

This broad term refers to the failure of a lens to properly focus all components in a

beam. Spherical aberration covers problems with the lens itself; for example, in which

rays at certain radii are deflected by the wrong angle. Chromatic aberration occurs

when specific components of the beam—photons or atoms of different wavelength,

for example—interact differently with the lens. Figure 6.3 depicts an instance of

chromatic aberration in which a portion of the collimated beam (represented by the

shaded regions) is focused to the incorrect point. In an atom lens, this blue shaded

beam might correspond to anomalously fast atoms. The non-aberrant beam (shown

as black rays) focuses to the correct plane. If a detector were placed here, the aberrant

beam would appear as a circle instead of a point. In photography, this is called the

“circle of confusion.” Its diameter is given by:

C =
δD

f + δ
, (6.4)
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Figure 6.2: Simulated telescope images for lens apertures that increase from 10 cm
(A) to 40 cm (F) [61]. For a distant object, a telescope does almost exactly what is
shown in Figure 6.1. As the telescope’s aperture increases, the Airy disk shrinks, and
resolution improves.

where δ is the focal distance error of the aberrant particles. Similar geometric rela-

tionships apply for spherical aberration and for simple focusing errors. In all cases, the

size of the circle of confusion is proportional to the lens aperture, as illustrated by the

two aberrant beams (D and D’) in the figure. This is the geometric reason that pho-

tographs taken with fast (wide aperture, low f-number) lenses often feature “bokeh,”

or blurry foreground and background structure. In the limit of small aperture—i.e.,

a pinhole lens—the circle of confusion becomes so small that all rays are in focus at

all planes (ignoring diffraction). This leads to an unfortunate competition. We want

to maximize flux and minimize diffraction, which suggests building as fast a lens as

possible. Unfortunately, any aberrations in our system will be more damaging in a

fast lens (Table 6.1). This is the essential conundrum: to build a lens as fast a lens

as our aberrations will allow. We will return to this concept later on, when we push

the theoretical limits of our atom lens into the nm regime.

Table 6.1: Short grid to show the competing interests in lens design. While fast lenses
are important for maximizing flux and avoiding diffraction, they also exacerbate the
negative effects of aberrations.

Property : Diffraction Aberration Flux

Optimal f/D: ↓ ↑ ↓

A perfectly collimated beam is neither realistic nor particularly useful. On the

contrary, most lenses are used to reproduce the two-dimensional images of objects at
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Figure 6.3: A geometrical explanation of “circles of confusion.” We ignore diffraction
for the moment and just look at ray optics for a perfectly collimated beam. Any
components of the beam that are out-of-focus will form a circle instead of a point at
the image plane. This results in blurriness and decreased resolution. The effect can
be mitigated by using a smaller lens aperture, as shown by the darker shaded beam.

a finite distance. This situation is depicted in Figure 6.4. An object in this context

consists of an extended surface, each point of which acts as a perfectly divergent

source. Rays passing through a lens at distance do > f form an image at di according

to the thin lens equation:
1

do
+

1

di
=

1

f
. (6.5)

The image size si is related to the object size so by:

M ≡ si
so

=
di
do
, (6.6)

where M is the called the magnification factor.

If we want to create small spots and patterns from a larger transmission mask, we

will need di � do. A powerful lens (small f) allows us to achieve a short image dis-

tance. In order to accommodate a large object distance, with its inevitable reduction

in flux, we also want a relatively large lens aperture. Taken together, these require-

ments recommend building as fast a lens as possible. However, we will be restricted
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Figure 6.4: Simple illustration of ray optics. An object at do, outside of the focal
point f , is imaged to di according to Equation 6.5.

in this effort by any focusing errors that arise, since aberrations are significantly more

damaging when f/D is small.

6.2 Focusing an atomic disk

For the simple case of a single collimated disk of atoms inside a lens, the goal is

to find a focusing field that sends each atom in the disk to the same focal point.

Figure 6.5 depicts the situation for a perfectly collimated beam of atoms with uniform

initial velocity v‖. For the purposes of this discussion, we assume that we are smart

enough to build a lens that exerts a purely radial force on each atom, pushing it

towards the beam axis. The lens pulse, of duration τ , imparts a perpendicular velocity

v⊥ = F τ/m to each atom, where m is the atomic mass. Using the results above:

v⊥ =
−3µBτ∇B

m
. (6.7)

Defining the focal length f to be the longitudinal position at which an atom crosses

the axis, we have the simple relation:

f

v‖
=

ρ

v⊥
, (6.8)

where ρ is the radial position of the incoming atom. If we wish for all atoms to cross

the axis at the same point, it is immediately clear that v⊥ ∝ ρ. This leads to the
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Figure 6.5: A diagram showing magnetic focusing of a collimated atomic disk.

principal requirement for magnetic lens design:

∇B ∝ ρ. (6.9)

In other words, we must configure our wires in such a way that B is a harmonic

function of ρ. It would be somewhat undignified to describe the number of elaborate

options we investigated before encountering the hexapole field, which is perfectly

suited to our needs. For the purposes of this dissertation, we will pretend it occurred

to us immediately.

An electromagnetic hexapole is formed by an array of six wires (or bundles of

wires), carrying current in alternating directions. A cross-section of such an array is

shown in Figure 6.6.

The field in the bore of a hexapole is very nearly quadratic. Explicitly,

B ≈ 6µ0Iρ
2

2πR3
, (6.10)

where I is the current and R is the distance of the wires from the axis. This ap-

proximation is quite good for ρ ≤ R/2. Using equation 6.8, we quickly obtain an
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Figure 6.6: A diagram depicting an electromagnetic hexapole lens. Wires arranged at
the vertices of a hexagon carry current in alternating directions into (×) and out of (·)
the page. This diagram is overlaid with a color plot showing the field strength from
a finite element model using bundles of wires at each hexapole point. For ρ ≤ R/2,
these models are in reasonably close agreement. Lines at the center of the image
depict the traces plotted in Figure 6.8.

expression for the focal length of the disk:

f =
v‖mπR

3

18µ0µBIτ
. (6.11)

It is worth noting that this focal length is a linear function of v‖. This differs from

the steady-state lens case, in which τ ∝ v−1‖ , yielding f ∝ v2‖. A diagram depicting

the focusing of a collimated disk is shown in Figure 6.11.

6.3 Focusing an atomic bullet: the case for a

tapered lens

It would be an oversimplification to suggest that the linear dependence of f on v‖

in the pulsed lens automatically reduces chromatic aberration. In truth, we have

simply exchanged one factor of v‖ for an entirely new source of error: longitudinal

aberration. Even a pulsed supersonic beam has some longitudinal extent—generally
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Figure 6.7: A plot showing the vector magnetic field as a function of position for the
hexapole described in Figure 6.6. The arrow color represents field strength, which is
weakest for small radii.

on the order of centimeters. We can think of this as a series of disks in the manner

of Figure 6.9. In the steady state case, each disk passes through the entire lens, and

focal point does not depend on initial position. For a pulsed lens, however, each disk

focuses to a distance f from its starting point at the time of the pulse. Clearly this

is less than ideal: we want the whole bullet to focus to a single point in space. We

can achieve this by tapering the lens, thereby applying a stronger focusing field to

the atoms at the front of the beam than to those at the back (Figure 6.10).

A tapered lens is beneficial in two ways. First, it allows us to correct the longi-

tudinal aberration that arises from a pulsing the lens, thereby securing the benefit of

the f ∝ v‖ relationship. Second, it can provide a means to further correct chromatic

aberration, provided the atoms at the front of the beam are also the fastest. This so-
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Figure 6.8: Magnetic field strength along x and y for the hexapole shown in Figure
6.6. This is calculated for R = 2 mm and I = 1000 A. For a large region inside the
hexapole, the quadratic approximation (dotted line) given by Equation 6.10 is valid.

called “correlated beam” condition can be produced with the use of chopper wheels.

Correlated beams have also been observed after ultra-short valve pulses, as in [3].

For a hypothetical beam whose velocity is perfectly correlated with longitudinal

position, z, we can write v(z) = v0(1 + z/L). Here L is an empirical constant

that heuristically corresponds to the distance the beam has traveled from the pulsed

source. It is important to note that—because the nozzle is not a perfect temporal

point source—any physical beam has thermal broadening on top of its correlated

average velocity distribution. This temperature gives rise to chromatic aberration,

but only according to f ∝ v‖. For a disk at position z relative to the center of the

atomic bunch, we wish to produce a focal length:

f(z) = f0 − z, (6.12)

where f0 is the focal length for the disk at the center of the beam. Our goal is

to write an expression for the hexapole radius as a function of position: R(z). From
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Figure 6.9: Focusing of a longitudinal series of disks by an untapered lens. Disks start
at different positions and have different average velocities (v‖ = v, v ± δ). Because
each disk focuses to a point a distance f(v‖) away from its initial position, there is
no single focal plane. This results in both longitudinal and chromatic aberration.

Equation 6.11, we have:

R(z) =

(
f(z)

αv(z)

)1/3

, (6.13)

where α = (mπ)/(18µ0µBIτ). Defining R(0) ≡ R0,

R(z) =

(
f0 − z

αv0(1 + z/L)

)1/3

(6.14)

= R0

(
f0 − z

αv0R3
0(1 + z/L)

)1/3

(6.15)

= R0

(
f0 − z

f0(1 + z/L)

)1/3

(6.16)

= R0

(
f0 − z
f

L

L+ z

)1/3

. (6.17)

While recent developments in 3D printing may facilitate the building of a pulsed lens

with exactly this shape, we have found it more practical to set targets for f0, L, and

R0, then approximate R(z) to first order by applying a linear taper. Provided z is

small with respect to both f and L, we quickly obtain:

R(z) ≈ R0

(
1− z

3

(
1

f0
+

1

L

))
. (6.18)
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Figure 6.10: By tapering the hexapole wires, we can exert a stronger focusing field
on the atoms towards the front of the pulse. If we choose the right taper, we can
account for both position and momentum to send each disk to the same focal point.

Equation 6.18 is the last ingredient we need to design a tapered hexapole.

6.4 Simulations

We model this system numerically using a Runge-Kutta ODE solver (MATLAB’s

ODE45) to calculate atomic trajectories through the lens for various realistic beams.

We assume Ne* from a supersonic valve at 77 K. Beam divergence and temperature

are based on reasonable limits and varied depending on the parameters we wish to

study. While it is possible to model the field gradient numerically using a finite-

element model, the granularity of the mesh for such a model causes problems on the

nanoscale. Because of this, we instead use the analytical approximation, which is as

smooth as the true physical field.

It is important to begin by performing a few sanity checks to ensure that the

model behaves as it should. The simplest case is a perfectly collimated atomic disk.

Figure 6.11 shows such a beam passing through an untapered lens with a 1 mm

diameter aperture and wires at radii of 1.2 mm. We invoke the “sanity check clause”

(SCC: “A sanity check may ignore any factors undermining the desired result”) and

assume that each atom has precisely the same velocity (485 m/s) and longitudinal

position. The hexapole is pulsed at 1000 A for 20 µs, yielding a focused spot 2.7 cm
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Figure 6.11: Atomic trajectories for the simplest possible simulation: a perfectly
collimated disk with T‖ = 0 K. The aperture is 1 mm; the resulting spot has a
FWHM of 9 pm. Just to be safe, we will simulate some more realistic beams before
demanding our Nobel prize.

from initial disk position. Thanks to the SCC, the FWHM of this spot is 9 pm (not

a typo). This result is excellent, as far as it goes. For one thing, it demonstrates

that our hexapole field is indeed the correct choice. For another, it shows that the

focusing scheme works even outside of the thin-lens regime, since atoms travel nearly

a full centimeter inside the lens field. Beyond this, we can conclude almost nothing

without simulating a more realistic beam.

We add transverse velocity to the beam by simulating a source aperture of di-

ameter 1 µm, 2 m from the lens. Each point on the aperture acts like a perfectly

divergent source. We retain the SCC along the beam axis, assuming uniform longi-

tudinal position and velocity. This beam focuses to a FWHM of 6 nm. If the reader

wishes to see a figure corresponding to this simulation, it suffices to cover the caption

on Figure 6.11 and look at it again, pretending to see a larger final spot. From ray

optics, we expect a magnification factor on the order of 0.01, so the new spot size

checks out. Note that we are in the thick lens regime, so the thin lens equations will
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Figure 6.12: Simulated focusing of a 2 mm bullet with an untapered lens. The
velocity at any given point is entirely determined by the linear correlation, meaning
we are still making a fairly unrealistic assumption. Nevertheless, the 13 µm spot
is enormous compared to the 6 nm we saw before. This is due to longitudinal and
chromatic aberration.

only be approximate. From this simulation, we conclude that transverse velocities do

not present any significant problems.

Next, we put on our helmets and give the beam a three-dimensional profile. We

assume the atoms arrive in a cylindrical bullet 2 mm long. We model the longitudinal

velocity using v(z) = v0(1 + z/L) with L = 2 m. This corresponds to a beam

which starts as an uncorrelated temporal point source at the object plane. Since

the temperature of any given disk within the beam remains zero, we are still making

fairly strong use of the SCC. We keep the source, lens, and pulse characteristics the

same. Figure 6.12 shows the mayhem that ensues. It is clear from the left side of the

figure that the atoms are now starting at a range of positions. Just as we predicted

in Figure 6.9, these atoms focus to different points. The result is a decidedly ugly

spot with a width of 13 µm.

Now is the time to test the taper. Taking into account the average position of the

atoms in the focusing field, we can estimate f ≈ 2 cm. Equation 6.18 thus calls for a
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Figure 6.13: Focused spot sizes from simulations at various taper slopes. The best
slope is approximately 0.23. This taper reduces the 13 µm spot from Figure 6.12 to
210 nm.

taper slope (β = R0(f
−1 +L−1)/3) on the order of 0.02 (this slope is unitless, though

it sometimes helps to think of its units as [m/m]). Searching empirically around this

value, we find the spot size varies smoothly. Figure 6.13 shows the data from this

search, from which we obtain a minimum sot size of 210 nm at a slope of 0.23. The

atomic trajectories from this optimized simulation are shown in Figure 6.14. This is

a simulated realization of the model illustrated in Figure 6.10. Having confirmed

that the model produces reasonable results for unrealistic systems, we now attempt

to simulate a completely realistic beam. The main thing left to add is temperature.

From front to back, the variation of the average beam velocity is on the order of

the Doppler limit. At each position, however, we have assumed we know the speed

exactly. We now relinquish this requirement, adding to the expected speed a random

variation on the order of the recoil limit. The resulting velocity distribution is shown

in Figure 6.15. This thermal broadening is clearly significant, but since the beam

remains partially correlated we can still hope to put the taper to good use. Sure

enough, the FWHM of a spot produced with this beam is only slightly larger than

the “unphysical” version: about 220 nm. Adding a larger velocity spread causes

somewhat more trouble. If each disk has a thermal component on the order of the
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Figure 6.14: Atomic trajectories for a tapered lens and the same 2 mm beam as in
Figure 6.12. At a taper slope of 0.23, the spot size is 210 nm. This is still larger than
we would expect from ray optics, but it is quite an improvement.

Doppler limit, the bullet is completely uncorrelated and the spot swells to 800 nm.

Note that the taper is still helpful, since 800 nm is a significant improvement over

the untapered 13 µm spot.

We can now begin exploring the limits of the tapered lens with a physical—albeit

cold—beam. Using the recoil-broadened, correlated bullet, we first “stop down” the

lens aperture. As discussed at the beginning of this chapter, this shrinks the circles

of confusion associated with incorrectly focused atoms. Naturally, the downside to

this technique is that fewer atoms make it through the lens. At D = 500 µm, we

obtain a 100 nm spot. Stopping down further to 100 µm, the spot hits 21 nm. We

can obtain similar results by shortening the bullet, which is essentially an “aperture

reduction” in the longitudinal direction. A 1 mm bullet with a 100 µm diameter lens

aperture yields a 9 nm wide image spot, which is on the order of what we expect

from ray optics.

The agreement with traditional optics in our final example suggests that this

system may be capable of true imaging on the nanoscale. During a period (one of

61



Figure 6.15: Correlated velocity spread for the 2 mm beam from Figure 6.14. The
addition of a random longitudinal velocity component broadens the distribution, but
does not destroy the correlation. From front to back, the velocity spread is a little
over twice the Doppler limit. The red line indicates the correlation function for the
un-broadened beam used for Figure 6.12.

many) when simulations were cooperating better than reality, we took the time to

explore this. In order to properly evaluate imaging, it helps to use a shape with as

few symmetries as possible. One such candidate is the letter F. Replacing the mask

aperture with a hole shaped like an F is fairly straightforward. Figure 6.16 shows

the simulated beam cross section for 2000 atoms at both the mask and the image

planes. Despite a few stray particles, the imaged F is quite clear and has features on

the scale of 25 nm. The width of the F at the object place is 10 µm, which makes

the image width of 100 nm quite acceptable. It is interesting to look at the beam’s

cross section as it passes through the lens. Figure 6.17 shows the beam at the mask,

at the aperture, and immediately after the lens. As in traditional optics, the “F”

structure is completely undetectable at the lens plane. Also notable is the significant

motion of atoms between the front and back of the lens. This is another indication

that we are working in the thick lens regime. Finally, we note that the image appears

upside-down and backwards, just as we expect.

Because the letter F does not always inspire passion, we decided to try imaging a
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Figure 6.16: Simulated imaging of an object in the shape of the letter F. This simula-
tion was run using the beam from Figures 6.14 and 6.15 and a 100 µm lens aperture.
The width of the F is demagnified by a factor of around 100, just as ray optics would
predict.

more interesting shape as well. Figure 6.18 shows a simulated projection of a Batman

logo into the nanoscale regime. Geometrically, this worked just as well as the letter

F. Psychologically, it was significantly more rewarding than the F due to its potential

application; namely, summoning very small crime-fighters.

In addition to justifying the linear taper, these models support the prediction

that a pulsed, tapered hexapole can achieve resolution on the scale of 10 nm and

demagnification factors of 100x. With a 500 µm aperture, this lens has a speed of

f/44.

6.5 Phase space

The behavior of the lens in phase space is a perfect example of Liouville’s theorem

in action. While the beam appears to become more concentrated in position-space,
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Figure 6.17: Three beam cross sections for the same case as in Figure 6.16. These
show the difference between the beam at the mask, where the letter F is clearly
visible, and the beam at the lens, where no information is apparent. Please attempt
not to note the aspect-ratio difference between this F and the one in Figure 6.16, as it
will reveal that in the latter case we adjusted the horizontal scale to make the shape
look nice.

it broadens by the same amount in momentum-space. It turns out that any time-

dependent force will yield the same result: no conservative force is capable of in-

creasing a beam’s phase space density. Lensing can be part of a powerful brightening

technique when performed immediately before laser cooling, as described in [39].

We must also briefly discuss the phase space densities we will need in order to

achieve nanoscale images. A 500 µm diameter aperture at a do of 2 m with a 2 mm

bullet and a longitudinal temperature on the order of the recoil limit corresponds to a

phase space density of around 3×10−7 per atom. The phase space density of atoms in a

MOT is on the order of 10−6 [38]. Assuming we can achieve this density, we can expect

only a few atoms per shot. That said, the high repetition rate of which EL valves are

capable—as high as 600 Hz—means the lens could still deliver 103 atoms per second
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Figure 6.18: Simulated projection of the batsign into the nanoscale. This figure is
made using the same simulation parameters as for the F.

Figure 6.19: Phase space description of the lens transformation. While the beam
appears to concentrate in position-space, this focusing is balanced by an expansion
in momentum-space. Rather than brighten the beam, all a lens does is squish most
of its phase space volume into the momentum dimension. It is worth noting that if
laser cooling is used precisely at the focal point, the focused and cooled beam is much
brighter than a beam produced by cooling alone.
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to a 100 nm spot. This flux is high enough that even a 100 µm aperture—producing

10 nm spots—would be viable. Certainly, each of these cases involves higher atom

flux than would pass through a 20 nm pinhole lens, even at a much smaller distance.

Nevertheless, the rather stringent phase space density requirements for nanoscale

focusing give further motivation to the MOP cooling efforts under development on

the other side of the Raizen lab [62].

66



Chapter Seven: Experimental setup

Having discussed the important theoretical aspects of neutral atom focusing, we now

turn to the task of building a working prototype. This requires coaxing several

complex, fragile systems into functioning properly in concert. We avail ourselves of

many useful tools in this phase of the project, perhaps none more crucial than strong

coffee and a swearing dictionary [63]

7.0.1 Overview

Figure 7.1 provides a time-resolved picture of the experimental beamline. Neon is re-

leased from an Even-Lavie supersonic valve into a vacuum chamber. An RF discharge

excites the atoms into the metastable Ne∗ state. After it passes through a skimmer,

we collimate and brighten the beam using both transverse and chirped longitudinal

laser cooling. We also optically pump the beam to the mJ = 2 LFS state. Following

laser cooling and optical pumping, we pass the Ne∗ beam through either a set of

individually translated knife edges or a brass slide containing apertures of various

shapes. This serves as the object plane for our imaging scheme. After the object

plane, the atomic beam propagates 135 cm before entering the pulsed electromag-

netic hexapole lens. Immediately in front of the lens, a stainless steel chopper wheel

reduces the longitudinal extent of the beam. Once the atoms have entered the lens,

we pulse a current to focus the beam. For this first proof-of-principle experiment, we

use currents on the order of 200 A, resulting in focal lengths between 0.4 and 0.6 m.

After passing through the magnetic lens, the focused atoms arrive at a microchannel

plate (MCP) that serves as the image plane. Metastable atoms arriving at the MCP

excite an electron cascade, which is then accelerated towards a phosphor screen. We

use a CCD camera to image the phosphor screen through a window in the vacuum

chamber. This system allows us to characterize the shape and size of the cross section

of the atomic beam where it hits the MCP.
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Figure 7.1: A time-resolved picture of the experimental beamline.

7.1 Even-Lavie cryogenic valve

All beams in this work originate from a pulsed Laval-type nozzle built by Dr Uzi

Even and Nachum Lavie [64, 65]. Depicted in Figure 7.2, this device consists of

a trumpet-shaped expansion aperture and a solenoid-actuated plunger capable of

releasing gas pulses as short as 10 µs. Due to the supersonic expansion process

(Chapter 2), the atomic beam from this nozzle is much colder and brighter than an

effusive beam. In order to reduce the mean speed of the beam, the nozzle is held

at 77 K using a cold-finger connected to a dewar filled with liquid nitrogren. A

dielectric barrier discharge inside the valve trumpet excites the atoms via electron

bombardment, leaving a fraction (∼ 10−4) of the outgoing gas in a metastable state.

A 3 mm skimmer placed 17 cm from the nozzle selects the center of the beam,

transmitting it to the adjacent chamber. The majority of the gas load from the valve

is contained inside the nozzle chamber, which is held at 10−8 Torr using a 300 L/s
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Figure 7.2: Left panel: (1) stainless gas inlet tube (1/16”) gas feed; (2) tightening
spring (180 N) and pressure relief valve; (3) Kapton foil gasket seals; (4) ceramic
(Zirconia or Ruby) rear guiding precision ferrule; (5) return spring (stainless alloy);
(6) thin walled pressure vessel (Inconel or Zirconia ceramic); (7) reciprocating plunger
(magnetic stainless steel alloy); (8) Kapton insulated copper coil; (9) Permendur
magnetic shield and field concentrator; (10) ceramic front guiding precision ferrule;
(11) Kapton foil gasket seal (front, 0.125 mm. thick); (12) front flange and valve body
(copper or stainless); (13) conical (or parabolic) shape expansion nozzle (Zirconia
ceramic or hardened stainless steel). Right panel: Photo of DBD-equipped EL
Valve with visible discharge. Images and description courtesy of Prof. Uzi Even and
Nachum Lavie [66].

turbomolecular pump.

A diagram of the valve is shown in the left panel of Figure 7.2. The important

moving part in this system is the plunger, which rests against a Kapton gasket to

seal a 200 µm hole. This opening connects the gas reservoir (held at 20 bar) to

the Laval nozzle and the vacuum chamber. The plunger is pulled back by pulsing

a solenoid, which produces a brief field on the order of 2 T. This pulse retracts the

plunger by just enough (around 100 µm) to admit a pulse of gas into the trumpet,

after which the return spring re-establishes the seal. The pulse length can be varied

quite widely, but during cryogenic operation we obtain the best results with a valve

opening time of 21 µs. Under ideal conditions, this valve can produce intensities of

4 × 1023 atoms/sr/s [55]. The return spring and the plunger are quite delicate, and

even a small deformation of either one can cause serious valve malfunction. The front
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Figure 7.3: Schematic of DBD structure. The ceramic portion of the nozzle cone is
designed to minimize sputtering due to high energy electrons colliding with a metallic
electrode.

flange of our EL valve contains a dielectric barrier discharge (DBD) excitation source

(Figure 7.3). This an upgrade, and is not depicted in the left panel of Figure 7.2. The

DBD consists of a high-voltage RF electrode shielded by a ceramic case that forms the

lower portion of the nozzle cone (Figure 7.3). The RF electrode, with the stainless

steel flange face acting as ground, accelerates electrons through the emerging gas

cloud. Electrons collide with and excite ground state atoms, leaving approximately

1 in 10,000 in the 33P2 metastable state. The ceramic case surrounding the electrode

reduces electron sputtering, yielding a colder beam. The DBD source allows us to

produce metastable beams from a cold nozzle with speed ratios as high as s = 37,

which corresponds to a temperature of 140 mK.

It is worth mentioning the somewhat pedestrian topic of gas line management.

The EL valve is designed to quite precise specifications. At cryogenic temperatures,

any contamination of the source gas can lead to extreme beam degradation. In severe

cases, condensation of contaminants can cause the plunger to stick. Needless to say,

this undermines scientific progress. In order to minimize contamination and moisture

in our research grade neon, we operate our experiment without a pressure regulator.
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Figure 7.4: A schematic of the gas supply line. To avoid contamination, no regulator
is used. The 1/16” Swagelok tubing restricts gas flow from the cylinder, affording
reasonably good control over the pressure that reaches the valve. The 1/4” Swagelok
tubing functions as a gas reservoir, allowing us to fill the line to the required pres-
sure (around 20 bar) and then close all valves for up to eight hours of continuous
operation.The diaphragm pump is used to flush and pump out the line before each
use.

A 1 m long section of 1/16” Swagelok tubing connects the 6000 L Ne tank to a shorter

network of 1/4” tubing, which in turn leads to a digital pressure gauge and the valve

reservoir (Figure 7.4). A diaphragm pump is used to clear the gas line before use.

The 1/16” tubing dramatically restricts the flow of gas towards the nozzle, so that

we are able to briefly open the 6000 L tank (pressure 150 bar) without filling the

experimental side of the gas line beyond about 30 bar. The 1/4” tube section functions

as a tiny “lecture bottle” and provides enough gas for us to run the experiment

continuously for a full day. When setting up a new section of Swagelok tubing, we

exercise extreme vigilance in the process of leak-checking. Having eliminated all leaks,

we also use the diaphragm pump to rough out the line for at least a day before cooling

the valve. Finally, at the beginning of each experiment, we “cycle the line” by filling

and vacuuming it, usually about three times. Taken together, these techniques help

avoid contamination.

Following the skimmer, the Ne∗ has a divergence of 17 mrad and a longitudinal
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temperature on the order of 100 mK. We estimate a flux of 109 metastable atoms

per shot at a firing rate of 4 Hz. To some extent, these numbers depend on the

performance of the nozzle, which varies. We use apertures and a chopper to establish

precise limits on the dimensions and temperature of the final beam, so the main

negative effect of a misbehaving nozzle is a reduction in flux.

7.2 Cooling and pumping

In order to improve beam flux and magnetically polarize our Ne∗ beam, we use a

frequency-stabilized extended cavity diode laser (ECDL) tuned to the 33P2-3
3D3 cy-

cling transition. The system is locked using Doppler-free absorption spectroscopy. We

injection-lock a slave laser to obtain more power. Acousto-optic modulators (AOMs)

provide all necessary frequency shifts. Transverse and longitudinal cooling immedi-

ately after the skimmer brighten the beam by an order of magnitude. Immediately

before the object plane, an optical pumping beam polarizes the Ne∗ into the mJ = 2

LFS state.

7.2.1 Laser system

We require approximately 100 mW of single-mode laser light, stabilized at the cy-

cling transition with an accuracy better than one line-width (10 MHz). Two laser

diodes, one in an ECDL and one injection locked, provide this light. A glass satu-

ration cell excited with an RF coil provides a sample of Ne∗ to which we lock the

master laser. The ECDL consists of a multiple quantum well AlGaInP diode (Opnext

HL63133DG) in the Littrow configuration with a diffraction grating and an output

mirror (Figure 7.5). The grating and mirror are placed together on a pivoting plat-

form whose angle is controlled with a piezoelectric stack. Light from the diode passes

through a collimation lens before hitting the grating, where first-order diffraction re-

turns a frequency-correlated feedback signal to the laser diode. The zero-order beam

continues towards the mirror and the rest of the optical setup. The first-order retro-

reflected light re-enters the laser diode, forming the eponymous “extended cavity.”

The frequency at which this cavity resonates is selected by changing the angle of the

pivot plate. Using a piezoelectric stack (controlled with a Thorlabs MDT693A) allows

us to automate this process, varying the grating angle according to an electrical error
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Figure 7.5: Schematic of the Littrow configuration for an extended cavity diode laser.
The first-order retro-reflected beam re-enters the diode, forming an “extended cavity”
whose frequency can be adjusted by pivoting the grating mount. The zero-order beam
reflects off a second mirror to make the output angle independent of grating position.
A piezoelectric stack provides electronic access to this system, which is an important
step in automation.

73



signal that is discussed below. The ECDL output wavelength also depends strongly

on both diode temperature and current. The temperature is stabilized using a ther-

moelectric cooler, a temperature transducer, and a proportional-integral-derivative

(PID) control module (Thorlabs TEC3-6, AD590, and TCM1000T). The diode cur-

rent is controlled with a Newport Model 505 current controller. A feed-forward circuit

from the piezo controller adjusts the diode current in concert with the grating angle

to extend the continuous-single-mode tuning range of the system. An optical isolator

(Thorlabs IOT-3D-633-VLP-RFR) prevents unwanted feedback. A sampling mirror

redirects a portion of the output beam to a Fabry-Perot cavity (Thorlabs SA200-5B)

and a wavemeter (Exfo WA-1000). Though the diode output is nominally 175 mW,

our need for a specific wavelength restricts the operational current range. After diag-

nostics and locking (discussed below), we are left with around 50 mW of useful power

from the ECDL, which is less than we need.

We generate more power at the same frequency by injection locking a slave laser

(Figure 7.6). This technique is based on Bose statistics; in particular, on the ten-

dency of photons to stimulate emission of light that matches their own quantum

state. Injecting light of the desired wavelength into the slave laser diode causes that

wavelength to reach threshold more easily. In our system, the injection beam enters

the laser diode through the side of a polarized beam splitter (PBS) in the slave laser’s

isolator. Temperature and current are controlled using the same methods as above,

though no feed-forward circuit is necessary here. Careful mode-matching, using a

series of telescopes and folding mirrors, allows us to produce 100 mW of added power

with precisely the same frequency as the light from the master laser.

In order to properly implement an optical molasses (Chapter 3), we need to sta-

bilize our laser to within one transition linewidth [67, 68, 69]. This accuracy—10

MHz at 640 nm—corresponds to one part in 107, or 0.00001 nm. Our wavemeter

provides six digit precision, but even 640.402 nm is too uncertain by two orders of

magnitude. We lock our laser system by measuring its absorption in 50 mTorr of

neon in a glass cell (Figure 7.7). A high-voltage RF coil wrapped around this cell and

run at 40 MHz produces a plasma, yielding a sample population of Ne∗. Because the

effective temperature of this plasma is quite high, the Doppler-broadened absorption

spectrum is not nearly sharp enough for our needs. To obtain a Doppler-free signal,

we send a counter-propagating pump beam through the cell along a path that inter-

sects with the probe. The pump beam has high enough power (generally a few mW)

74



Figure 7.6: Injection locking schematic. Seed light enters through the side of a PBS in
the slave’s isolator. Careful mode-matching, temperature control, and current tuning
allow us to clone the master laser light, producing around 100 mW more power. Not
pictured: several other telescopes, folding mirrors, and waveplates.

to exceed the saturation intensity, reducing the population of potential absorbers for

the (sub-saturation) probe beam. This is observed as an increase in the probe beam

intensity at the photodiode. However, this absorption reduction only occurs for the

atoms in the cell which are resonant with both beams. If the probe and pump were

at the same wavelength, these atoms would be those with zero longitudinal velocity.

For reasons that will become apparent, we instead use an AOM to shift the frequency

of the pump beam up by 80 MHz. If the original beam is red-detuned by 40 MHz,

the pump will end up blue detuned by the same amount. In this case, both lasers will

be resonant with the velocity class of atoms moving towards the probe beam with

a Doppler shift of 40 MHz (Figure 7.8). By scanning the pump and probe—with

a fixed offset—through the transition, we observe sharply reduced absorption at the

frequency for which both beams interact with the same velocity class. This is referred
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Figure 7.7: Beam schematic showing Doppler-free laser frequency stabilization. A
portion of the ECDL output is split into pump (above saturation) and probe (below
saturation) beams. The pump is frequency shifted using an AOM by 80 MHz plus a
small time-dependent component. When the probe and the pump interact with the
same velocity class, the absorption of the probe beam is reduced. This is seen as an
intensity increase at the photodiode. The modulated signal is detected with a lock-in
amplifier and used as the error signal for a PID controller connected to the ECDL
grating.
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to as a Lamb dip. The advantage of using an AOM on the pump beam is that the

frequency shift can then be modulated:

∆f = 80MHz + δ sinωt, (7.1)

where δ ≈ 1 MHz and ω/2π ≈ 5 kHz. This has the effect of shifting the Lamb

dip from side to side in frequency space. Figure 7.9 shows the AC and DC signals

arriving at a photodiode using this modulation technique. The DC signal is present,

but only acquired after a fairly long integration. The AOM frequency modulation

described in Equation 7.1 produces what amounts to a first-derivative of the DC

signal, which is useful in two ways. First, the use of a lock-in amplifier (SRS SR510)

dramatically improves the signal-to-noise ratio of the AC signal. Second, the first-

derivative lineshape means that the AC signal crosses zero with approximately linear

slope precisely at the peak of the Lamb dip. This makes the use of a PID (SRS

SIM960) spectacularly easy. The error signal from the lock-in amplifier is fed to the

PID, which (through an amplifier) controls the voltage on the piezoelectric stack.

The final output beam is stabilized to within a few MHz at a point precisely 40 MHz

below the Ne∗ transition. A photograph of this portion of the laser beamline is shown

in Figure 7.10.

A starting frequency 40 MHz below the Ne∗ cycling transition is not particularly

useful to us until we shift it to the desired energy. For transverse cooling, we want

a red detuning of approximately 10 MHz. This frequency also works for the pump-

ing, which we configure as a second round of transverse cooling, albeit with circular

polarization and a carefully maintained background magnetic field. For the chirped

longitudinal beam, we need a time-varying detuning on the order of 750 MHz. These

frequencies are obtained using AOMs in a cat’s eye double-pass configuration, which

maintains a stable output beam angle for a wide range of frequency shifts [70]. A

steady output angle is especially important for the chirped AOM, which would oth-

erwise become hopelessly misaligned as the frequency changed. Illustrated in Figure

7.11, the cat’s eye system consists of an AOM, a lens, and a mirror, each separated

by one focal length of the lens. An input beam traveling horizontally from left to

right in the figure is diffracted upwards at an angle given by sin(θ) = λF/c, where λ

is the wavelength of the light, and c and F are the respective speed and frequency of

the sound wave in the AOM. We assume that this deflection constitutes the negative-

first-order beam, in which case its frequency is shifted by −F . Reaching the lens,
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Figure 7.8: Doppler-free saturated absorption. The pump beam (above saturation,
left-to-right) is shifted by 80 MHz with respect to the probe (below saturation, right-
to-left). When the probe is red detuned by 40 MHz, both beams interact with the
atoms moving from left-to-right with a Doppler shift of 40 MHz. This results in
diminished absorption of the probe due to fewer atoms in the lower level of the tran-
sition. The resulting Lamb dip is very narrow compared to the Doppler-broadened
absorption curve. Adding a small modulation (on the order of 1 MHz) to the pump
frequency shift allows for the use of a lock-in amplifier, greatly simplifying both de-
tection and the automation of a PID control system.

this beam is refracted back into the horizontal direction, as dictated by ray optics.

It is focused to a waist at the mirror, which reflects it straight back along the same

path. Reaching the lens a second time, the beam is re-collimated and directed back

towards the focal point of the lens. Since this point also happens to be the center

of the AOM, an identical diffraction process sends a twice-shifted beam back along

the original path. Using a quarter wave plate (QWP) and a PBS, the final beam is

siphoned away and sent towards its target atoms. Figure 7.11, as usual, neglects a

great many folding mirrors and telescopes whose role is crucial, but un-edifying. It

bears mentioning that the AOM efficiency improves with the use of a smaller beam.

By minimizing beam size and carefully optimizing all geometric aspects of the cat’s

eye system, the double-pass efficiency can approach 75%. Since our injection-locked

master-slave system provides plenty of power, we have been content with about 65%.

7.2.2 Lasers at the beamline

The theoretical basis for laser cooling is described in Chapter 3. For transverse

cooling, we use laser light detuned from the transition by approximately one linewidth.
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Figure 7.9: Oscilloscope traces from Doppler-free laser frequency stabilization. In the
DC signal, the bottom of a Doppler-broadened absorption curve is shown. Slightly
to the right of its minimum, a sharper Lamb dip appears. The DC signal is greatly
amplified here for clarity, and both signals are the result of a long integration. The
SNR of the AC signal is very large compared to the DC. Also advantageous is the fact
that the AC signal crosses zero almost exactly 40 MHz below the desired transition,
which makes PID-assisted control very simple.

We use a cylindrical telescope to elongate the beam in one dimension. This increases

the interaction time between the cooling field and the atoms to around 50 µs, which

is enough for approximately 2000 scattering events. The beam is split into a vertical

and horizontal component using a 1” PBS (Figure 7.12). Each beam passes through a

set of viewports in a 6-way-cross vacuum chamber section. Mirrors reflect the cooling

beams back along the same path. The four beams meet at the axis of the atom beam,

reducing the transverse velocity spread and collimating the beam. Optimizing the

angles and positions of these cooling beams can take quite some time, but doing so

successfully makes a remarkable difference in our final beam temperature.

The chirped longitudinal cooling is depicted schematically in Figures 7.13 and

7.14. The beam is shifted by approximately 750 MHz, with an additional saw-tooth

modulation that sweeps the detuning through approximately 50 MHz (from more

red-detuned to less) in 40 µs. The sawtooth waveform is produced using a function

generator triggered by the EL valve driver with a fixed delay. It is fed into an amplifier
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Figure 7.10: Photograph of the master and slave lasers and the saturated absorption
cell.

and thence into the voltage-controlled oscillator that drives the AOM. As described

in Chapter 3, the linear frequency sweep acts as a velocity-space “shovel,” slowing

fast atoms and piling them all into progressively slower velocity classes. While the

theoretical final result is not as cold as the one from a proper optical molasses, this

chirped cooling is an effective and easy way to improve the beam flux.

Taken together, the laser cooling beams achieve a flux improvement of between one

and two orders of magnitude. We estimate transverse and longitudinal temperatures

of 2 mK and 10 mK, respectively. This is somewhat worse than we would expect from

an ideally tuned system, but for our purposes it is entirely sufficient. In the future,

smaller apertures may require a return to the optimization process. The transverse

beams are oddly temperamental, suggesting that some fundamental problem might

undermine their efficacy. Several steps could theoretically be taken to exceed the

Doppler limit in the transverse cooling stage [39]. It is also quite possible to implement

a bidirectional moving molasses in the longitudinal direction. This would require a
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Figure 7.11: Cat’s eye double pass configuration for AOM. The standard AOM-mirror
system is greatly improved with the use of a lens, separated from each component by
one focal length. The incoming beam, moving from left to right, is deflected by an
angle that depends on its frequency. The lens collimates this ray, deflecting it into a
horizontal trajectory no matter what angle it acquires from the AOM. The lens also
focuses the beam, but by placing the mirror one focal length away, the return beam
is recollimated. Because this beam also re-enters the AOM at the same angle, it is
already ideally configured to maximize the efficiency of a second pass. A waveplate
and a PBS redirect the shifted beam towards the experiment. Efficiencies of this
system can approach 75%.

second beam with a +750 MHz shift and a rather painful alignment procedure, but

no fundamental limits prevent it.

We optically pump the atoms into the mJ = 2 LFS state. This requires σ+

circularly polarized light, which we produce using a PBS and a QWP. The background

magnetic field in the pumping region must be aligned with the wave vector of the

light. We ensure this condition with three sets of Helmholtz coils connected to low-

current Kepco power supplies. It is interesting to note that the lab has a natural

background field that points predominantly up, which allows us to pump reasonably

well without any Helmholtz coils. Unfortunately, the polarization obtained in this

manner is insufficient. We monitor beam polarization using a short section of the

Halbach array described in Chapter 5. The array is connected to a linear translator

inside the chamber, which allows us to move it towards the beam for measurements
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Figure 7.12: Transverse laser cooling, looking down the atomic beamline.

and to retract it otherwise. By monitoring the intensity of the spots corresponding

to mJ =0, 1, and 2, we are able to empirically optimize the current in each of the

three Helmholtz pairs. Using this method, we achieve greater than 99% magnetic

polarization. In our optical pumping, we use 10 MHz red-detuned light near the

saturation intensity—more out of convenience than necessity. We have found that

setting up our pumping beams in the same manner as the vertical molasses yields

slightly better flux (due to cooling) and perfectly serviceable pumping.

7.3 Object plane

The object plane for our lens consists either of a pair of knife edges, which form

a slit, or of a brass slide into which are cut shaped apertures. From a ray optics

perspective, it is important that each point on our object plane act like a point source.

In geometric terms, this just means that the beam must not be so collimated that
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Figure 7.13: Schematic of chirped longitudinal cooling.

the top of the object aperture cannot send atoms to the bottom of the lens aperture.

This is a thermal condition on the order of the Doppler limit, so we need not give

it another thought. The knife edges are formed with cleaved Si wafers attached to

linear-translation vacuum feedthroughs. An earlier version consisted of steel razor

blades, but these were discovered to have a permanent magnetic moment—not the

best characteristic, given their proximity to our optical pumping. By translating the

knife edges individually, we change the width of the slit through which the atoms

pass. Translating in concert, we shift the position of the aperture. Both techniques

offer excellent quantitative insights into lens performance (Chapter 8). As a first

attempt at true imaging, we rotate one knife edge so that it intersects the other at an

angle. This forms a vertex whose vertical and horizontal position are independently

adjustable. It is an added benefit that the vertex has two-dimensional asymmetry,

which provides a qualitative test of true imaging. Finally, the brass slide is attached to

one translator and placed in the beam path (Figure 7.15). The translator, which has a

range of 2”, allows access to all shapes in the slide. It can also be backed off so that the
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Figure 7.14: Photo of chirped cooling beam entering the vacuum chamber.

slide is removed from the beam path. Edge-welded bellows throughout the vacuum

chamber provide sufficient freedom of motion for vertical position adjustments.

The shapes cut into the slide have dimensions on the order of 1 mm, with features

as small as 75 µm. Though brass is not the best vacuum material, it is quite soft and

easy to work with. Because the slide is so small, priority was given to machinability.

To our knowlede, the material choice has not caused any vacuum problems.

7.4 Propagation and phase space evolution

As in optics, the distance between the object plane and the lens has important im-

plications for the image. Because we want to eventually work at short focal lengths

and produce highly demagnified images, we selected a moderately long propagation

length of 1.35 m. On the face of it there is little to say: this section of the experi-

ment consists of a long vacuum tube. However, this is an opportunity to discuss the

adiabatic following and spin flip question we introduced in Chapter 4. We showed
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Figure 7.15: Photograph of the slide used as an object for the focusing experiment.
The atom beam passes through shaped apertures, just as in an optical transmission
mask. The goal of the atom lens is to refocus the beam and reproduce the orig-
inal shape. The letter F is an excellent object for early investigations, since it is
asymmetric in two dimensions and has a simple, recognizable structure. For more
advanced tests, shapes like the Texas Longhorn offer more detail and a broader range
of size scales. The Batman logo, which is objectively cooler-looking than the version
in Chapter 6, is included primarily to impress members of the opposite sex.

mathematically that atoms in a given magnetic eigenstate would stay there, provided

the change in field direction was slow compared to the Larmor frequency. Unfor-

tunately, this implies that any sections of the beamline at which the field vanishes

could act as depolarization zones. We observe exactly this, despite simultaneously

observing an average lab background field of around 3 G. To reduce spin flips, we pass

a small current (0.3 A) through a loose solenoid wound along the beamline (Figure

7.16). This maintains the quantization axis, but produces no discernible field gradi-

ent. Unfortunately, this wire alone is not entirely sufficient. Using the retractable

Halbach array to monitor polarization, we observe a time-dependent fluctuation that

persists even with our added background field. These odd spin-flip episodes are only

completely eliminated by placing a 1/2” x 1” NdFeB rare earth magnet against the

wall of the chopper chamber, generally at a slight angle. It is unnecessary to record

the language we used in the lab while investigating this phenomenon. Based on the

solution, we suspect the chopper chamber may shield external fields.

It is worth making note of the phase space evolution of the beam at this stage,

since doing so provides another example of Liouville’s theorem in action. If we assume
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Figure 7.16: Diagram of the beamline midsection. The beam travels 1.35 m from the
object plane to the lens. The most important task during this period is to maintain
a quantization axis, which prevents spin flips. There is a well defined field at the
pumping stage, established by the Helmholtz coils. We add a loosely wrapped wire
along the beam to maintain a field between the object and the chopper. The field
inside the chopper chamber appears to vary in time, occasionally passing through
zero and causing large depolarization episodes. This is prevented by the placement
of a large, strong rare earth magnet against the side of the chamber.

the beam starts out uncorrelated in phase space, we can model its evolution over the

ensuing trajectory. After traveling a certain distance, the velocity differences in the

initial beam begin to take effect. Specifically, the fastest atoms eventually end up

at the front of the beam. This is represented in Figure 7.17. Liouville’s theorem

works in our favor this time, since it ensures that whatever phase space density we

started with will remain constant as the beam propagates. Provided we can produce—

through some combination of cooling and trapping—the phase space density we need

at the beginning of the beamline, we can be confident that it will remain constant

downstream.
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Figure 7.17: Phase space diagram of the beam before and after propagation. As faster
atoms move towards the front of the bullet, the beam becomes correlated, though it
occupies the same volume.

7.5 Chopper

The pulsed lens requires a similarly pulsed beam. Longitudinal cooling shortens the

atom bullet to around 5 cm, which is similar to the length of the lens itself. Since we

need the bullet to remain inside the lens throughout the lens pulse, we must shorten

the bullet. We do this with a mechanical chopper. The wheel is made from 0.010”

thick stainless steel. Its diameter is 13.5”. A 0.12” (3 mm) slit at the edge of the

chopper allows atoms to pass for a brief period every cycle. The chopper is powered

using a brushless DC motor (MOOG BN34HS-25AN-02LHE) connected to a water-

cooled ferrofluidic rotary feedthrough. The motor is rigidly mounted to the chopper

chamber with 1”-diameter steel stock, which reduces vibration and prevents a variety

of catastrophic failure modes. We run the chopper at 165 Hz, which shortens our

atomic bullet to a length of 1 cm (δt = 21 µs). For balance, the 3 mm slit actually

appears twice in the wheel, since doing otherwise would cause a rotational imbalances.

Because our timing precision is quite capable of it, we add another set of slits with a

width of 1 mm. These allow us to cut the beam down to a length of 3 mm, if desired.

A photograph of the mounted chopper wheel appears in Figure 7.18. A second photo
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Figure 7.18: Photo of the mounted chopper with a 1 mm slit showing.

showing the outside of the chopper chamber depicts the system’s orientation with

respect to the beam. The chamber is built from 1/2” stainless steel stock and weighs

on the order of 50 kg. This thickness was selected after calculating the rotational

energy stored in the chopper wheel, which, for early designs, was equal to the kinetic

energy of .50-caliber machine gun round.

Because the chopper is the only component in the experiment whose timing de-

pends on a mechanical momentum, we synchronize the entire beamline to its phase.

In other words, the EL valve fires after receiving a signal from the chopper that a

slit will open 3.5 ms in the future. All other electronics are synchronized to the valve

signal. The chopper may not be a permanent solution to the problem of limiting

bullet length. For one thing, the vibration associated with its operation would likely

undermine any nanoscale resolution. For another, it is not an especially versatile

system. In the future, it would be useful to have the ability to continuously vary the

bullet length.

7.6 Lens

The main event in the beamline takes place over the course of 20 µs inside the pulsed

electromagnetic hexapole. After the chopper, the bullet has a length of 1 cm and

a longitudinal temperature of around 10 mK. The lens aperture reduces the beam’s
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Figure 7.19: Photograph of the chopper chamber with overlays to show the mounted
wheel geometry. The beam arrives from the right side of the photo through a tube
(digitally added for clarity) that was not mounted at the time of the photo. Slits in
the chopper wheel allow short pulses of atoms through the chopper chamber and on
to the final stage of the experiment.
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cross sectional diameter to 1.5 mm, thereby cutting the transverse temperature to

around the Doppler limit. The temperature and dimensions of this bullet are entirely

sufficient for a preliminary test of the pulsed lens.

The lens consists of a single wire (Kapton-insulated copper, rectangular cross

section, 0.5 mm x 1 mm) wound into a hexapole pattern consistent with Figure 6.6 on

page 53 . The wire sections are 5 cm long and sit approximately 2 mm from the beam

axis. A photograph in Figure 7.20 shows the lens as it appears in the beamline, though

electrical tape and zip ties covering the wire make it difficult to immediately see the

geometry. An explanatory drawing overlaid with this photo shows the geometry of

the wire underneath the electrical tape. The wire rests against a hollow cylindrical

Vespel frame (inner diameter 1.5 mm), which also acts as a section of the vacuum

chamber. The ends of the Vespel cylinder have an outer diameter (OD) of 1/2”.

The center section is machined to an OD of 5 mm. Grooves in this narrow section

of the Vespel—visible in the photo, but not in the drawing—facilitate accurate wire

placement. The grooves are set into the cylinder with a slight taper, but that feature

is not used for the focal lengths discussed in this thesis. The lens wire is looped

somewhat unscientifically between consecutive sections. The only intentional aspect

of this looping method is to restrict stray fields to regions far away from the beam

axis. Further reduction of the stray fields is attempted by shielding the routing loops

with µ-metal, though it is not clear whether this has any effect. The wire routing

method is not crucial, since the current is only pulsed when the atoms are inside the

lens. However, designing a more stable routing system than the haphazard method

in the photograph is a goal for the next-generation lens under development.

The 1/2” diameter ends of the Vespel cylinder are connected to vacuum flanges

(CF 2.75”) using Swagelok hardware. This forms a surprisingly good seal, and allows

vacuum pressures on the order of 10−7 Torr on the lens side of the vacuum chamber.

The pumping hardware used on this side varies depending on the image plane, but

generally consists of two turbomolecular pumps with a combined pumping speed on

the order of 400 L/s. The long, narrow tunnel through the Vespel cylinder creates a

significant differential pumping problem, which we mitigate by connecting a 30 cm

hose (CF 2.75”) between the detection chamber and the chopper chamber. The CF

flanges connected to the Vespel are bonded to each other with welded 1/2” steel rods.

This ensures rigidity and prevents bending of the lens tube. Because the detection

chamber and the lens position must be adjusted periodically, these rods are extremely
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Figure 7.20: Photo with explanatory drawing showing one end of the lens where it
attaches to the vacuum chamber.

useful. The results section will not include a discussion of “magnetic focusing using

an awkwardly warped hexapole,” but this omission is not for lack of data.

A bent Vespel tube is the least frustrating of the many problems we encoun-

tered while refining the hexapole frame. The first attempt was based on epoxy and

precision-machined CF flanges; it never held vacuum. The second version—which

lasted for two years—is shown in Figure 7.21. In this design, a 1.5 mm OD glass tube

holds vacuum between two 1.33” CF flanges. A tortoise-shell Vespel frame holding

the Hexapole wires surrounds this tube. The whole system is held in place with a se-
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Figure 7.21: An old version of the lens frame, associated mainly with the sounds of
breaking glass, weeping, and gnashing of teeth.

ries of firm-but-gentle clamps. As might be expected, all members of this experiment

are now familiar with at least half-a-dozen ways to break small glass tubes.

The robust design of the current lens is quite useful, since the first task following

installation is alignment. This involves placing an MCP into the beam beyond the

lens (usually around 10 cm) and manually adjusting the chamber angle to maximize

the signal in time-of-flight mode. The MCP is then switched into phosphor screen

mode, and the lens angle is adjusted to produce as circular a cross section as possible.

This helps to ensure that the lens is aligned with the beam axis. Both of these steps

involve exerting fairly large forces on the detection chamber and on the CF flanges

which hold the lens. The steel rods supporting the Vespel chamber are immeasurably

better than the series of clamps we used in the past. In theory, a laser alignment

would obviate the imprecise “bump the chamber” technique we use. In practice, our

laser alignments have always needed fine tuning. Improving the ease and accuracy of

the lens alignment process is another priority for future lens designs.

The electronic circuit that produces the lens pulse uses a Powerex CM600DU-

24NFH IGBT. This transistor can deliver up to 600 A with timing resolution well into

the 10 µs range. We switch it using a Powerex BG2A gate driver, which includes—
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among other things—a high-speed optocoupler to protect upstream circuit elements

from potential damage. A simplified version of the lens control circuit appears in

Figure 7.22. We use a bank of capacitors—equivalent capacitance around 1 mF— to

store energy from a Lambda TDK 1500 W power supply. The lens is triggered by an

appropriately delayed pulse from the valve. Using a function generator, we produce

an inverted square wave with the desired pulse width. The BG2A driver is configured

to fire when the input signal drops below a certain threshold. Early versions of this

circuit had a problem in which the lens would “stick” open at high voltages. Needless

to say, this produced undesirable focusing results, along with enough RF radiation

to unlock our laser. We fixed the problem by modifying the BG2A circuit using a

method developed by students working on the atomic coilgun.

We measure the lens current by monitoring the voltage across a high-power 1/4 Ω

resistor (not pictured) in the driver box. An example of the time-resolved pulse for τ

= 33 µs appears in Figure 7.23. While the edges of the pulse are not perfectly square,

the current delivery profile is well within design specifications. The negative voltage

spike at the end of the pulse is a result of the fast switching inside the driver box,

and probably does not correspond to an actual current in the lens. It is interesting to

point out that, if it did correspond to a current, this negative spike would not cause

any significant problems. Figure 7.24 shows how the lens current varies with applied

voltage, increasing quite linearly all the way to the power supply’s maximum of 300

V. At this voltage, the lens delivers a robust 1024 A.

For the experiments reported in Chapter 8, we use lens pulses between 20 and 33

µs at voltages between 0 and 80 V. The resulting focal lengths are on the order of

0.5 m, which produces modest-but-measurable demagnification of the object images.

The lens pulse time is controlled with 2 µs precision using an analog pulse generator

with built-in delay. This piece of equipment is at least 40 years old, but for our

purposes it is quite sufficient. In future versions of the experiment, higher precision

may be required.

The lens field is supplemented by two sets of elongated Helmholtz coils that pro-

vide control over the background transverse magnetic field at the lens axis. This helps

mitigate the effects of background fields and improper wire placement. The current

in the coils is generally below 0.4 A, producing fields at the beam axis between 0 and

10 G. The coil current is empirically selected to optimize image quality, as will be

discussed in Chapter 8. In future versions of this lens, we hope the background coils
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Figure 7.22: Dramatically simplified circuit diagram showing the lens electronics.
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Figure 7.23: Time-resolved oscilloscope trace showing the voltage across a 0.25 Ω
resistor for a 33 µs pulse. For this plot, 62 V are applied across the capacitor bank.
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Figure 7.24: IV curve showing the peak current through the lens as a function of the
voltage on the capacitors.

will be rendered unnecessary by improved magnetic shielding and an adjustable wire

positioning system.

7.7 Detection

We detect the metastable atom signal with a BOS-18 microchannel plate (MCP) from

Beam Imaging Solutions. The MCP comprises an array of electron multiplier tubes,

10 µm wide and separated by 15 µm. The tubes—or channels—are held at a front-to-

back potential of around 1 kV. They are parallel to each other but arranged at a slight

angle with respect to the normal vector. This angle helps ensure that incident atoms

will interact with the channel walls, where they produce a cascade of electrons in the

strong electric field. While ground state atoms do not trigger an electron cascade,

other beam components—including ions and UV rays—certainly can. Thanks to the

many magnetic fields in the beam and to the chopper, we are confident that our

signal is produced almost entirely by Ne∗. Arriving at the back plate of the MCP,

the electron current can either be collected and measured (time-of-flight mode; ToF)

or accelerated towards a phosphor screen (imaging mode).

Collecting the current without using a phosphor screen provides a time-resolved

flux measurement, but no spatial information. The electron current is converted into a
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voltage, which is then read with an oscilloscope triggered by the valve synchronization

pulse. This technique is quite useful when we need a quantitative metric with which

to optimize laser cooling. It also provides a sensitive, fast detection tool during lens

alignment, which requires attention to faint, transient signals. Beyond diagnostics,

however, the ToF measurement is not very useful to us. For one thing, we have found

that the time constant of the detection system is on the order of 30 µs, which is longer

than our bullet pulse. Because of this, meaningful time-resolved measurements of our

system are not possible. More importantly, ToF mode discards all spatial information.

This is unfortunate, because the beam cross section is literally the main thing we wish

to investigate.

Instead of collecting the electrons at the back plate of the MCP, we can project

them onto a phosphor screen using an electric potential on the order of 4 kV. Because

the electrons from each channel remain in roughly the same transverse position, this

mode of operation provides a two-dimensional picture of the beam’s cross section.

A diagram of the entire detection setup is shown in Figure 7.25. Atoms from the

lens arrive at the MCP and produce an electron cascade. The current is accelerated

towards the phosphor screen, broadening somewhat due to charge repulsion along

the way. The phosphor responds to the electrons by luminescing. With a viewport

in the vacuum chamber and a fast optical lens (a Nikon AF Nikkor 50 mm f/1.8D

with a Sigma Life Size macrophotography attachment), we project an image of the

glowing phosphor onto a CCD detector (an Apogee Alta U47, manufactured for digital

astrophotography). Reading the resulting images with astronomy software (Maxim

DL4), we are able to make quantitative measurements of beam flux as a function of

transverse position. We calibrate the camera using a ruler and establish a conversion

factor of 17.6 µm/pixel. At moderate apertures, the lens system is diffraction limited

to spots on the order of 75 µm. It is worth noting that the depth of field of this lens

with the macro attachment is fairly narrow. A crucial step in the experimental setup,

therefore, is making sure the optical lens is properly focused.

With a gap between the MCP back plate and the phosphor screen of 1 mm,

we expect space charge spreading on the order of 100 µm. We have verified this

resolution by passing a collimated atom beam through a 25 µm pinhole, obtaining a

phosphor screen spot of 120 µm. Naturally, this limit will hinder our characterization

of nanoscale images, so future detection strategies will require a new approach. One

candidate is knife-edge detection, in which signal attenuation is observed for a knife
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Figure 7.25: A diagram showing the detection technique. Atoms from the lens trigger
an electron cascade at the MCP. These electrons can be collected at the back plate of
the MCP or accelerated to a phosphor screen. The phosphorescence from the screen
is observed by a camera system set outside of vacuum, pointed through a viewport.
In measuring the width of our beam, we have to contend with both space-charge
spreading of the electrons and the resolution of our optical observation system. The
overall spatial resolution limit for the current system is on the order of 120 µm.

edge blocking the beam. This only works for simple geometries, but in principle it

should permit measurement of very narrow beams. A more advanced technique would

be to use the metastable beam for lithography or direct deposition. This has been

successfully demonstrated in pinhole imaging [23, 21].

7.8 Timing

It is worth briefly mentioning the synchronization methods used in this experiment,

since timing is such an important factor. Several computer-based approaches were

used in early work. Labview provided a perfectly reliable platform. Cicero, a GUI-

based suite specifically designed for atom optics, worked even better. Following a

computer crash, we “temporarily” resorted to a stack of rather crotchety, 33-year-
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old pulse generators (Phillips PM 5715). Despite their age, these boxes performed

flawlessly and have been in service ever since.

The timing chain begins, paradoxically, at the middle. The chopper is the only

element whose function cannot be triggered on demand, so its index pulse is used

as the starter pistol for the rest of the experiment (Figure 7.26). We empirically

determine a delay that will fire the valve approximately 3.5 ms before the chopper

slot crosses the beam axis. The valve controller fires both the valve and the discharge

and produces a synchronization pulse that we send to the rest of the experiment. The

chirped longitudinal cooling begins its sweep at 600 µs. The lens fires after a delay

of 4 ms. Each of these is adjusted using Vernier scales on the pulse generators with

a precision of 2 µs, though this level of control could be improved if necessary.
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Figure 7.26: A hierarchy diagram showing how the timing trigger propagates through
the experiment. The chopper index pulse start the clock. An empirically determined
delay, implemented by a pulse generator (PG), delivers a TTL trigger to the valve
3.5 ms before the chopper slit will open. The valve driver box triggers both the
valve and the DBD excitation source. A synchronization signal from the valve box is
independently sent to the oscilloscope, the chirp, and the lens. In the latter two cases,
a pulse generator provides a delay and a function generator produces the required
waveform. The vertical position of the tiles in this diagram are vaguely representative
of their temporal order, though the distances are not to scale. For more precise timing
details, see Figure 7.1.

99



Chapter Eight: Results

Having constructed the (world’s first) pulsed electromagnetic hexapole lens and built

a beamline to match, nothing remains but to test it. For the sake of clarity and

narrative—and to avoid “burying the lede”—we present our results in slightly non-

chronological order.

8.1 Basic results

The simplest experiment we can perform is the focusing of a single slit. Using linear

translators connected to cleaved Si wafers, we form an adjustable vertical slit at the

object plane. Passing through this aperture, the beam propagates a distance do before

reaching the lens aperture. For all experiments described in this chaper, do = 135 cm.

When the atom bullet—chopped and cooled as described in Chapter 7—is entirely

Figure 8.1: Diagram of single-slit focusing with two adjustable knife edges forming
the object plane (view from above). Atoms pass through the vertical slit formed by
the knife edges and propagate a distance do before reaching the lens. The pulsed
hexapole field focuses the beam at distance di, where an MCP detects the imaged
beam.
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Figure 8.2: MCP images of the beam cross section at the image plane for a range of
currents. The slit is blurry at low currents and comes into focus around 207 A. The
object-plane slit width for this case is 230 µm; the image distance is 113 cm. Ray
optics predicts an image width of 190 µm. The measured FWHM of the imaged slit
is 170 µm. Considering the sources of error (see text), these numbers are surprisingly
close.

within the lens, a current pulse produces a brief focusing field (Chapter 6). We detect

the focused atoms using an MCP/phosphor screen system, which we place a distance

di from the lens. We monitor the phosphor screen through a viewport using a digital

camera connected to a desktop computer. Though we have discussed many similar

examples, a diagram of this setup is provided for quick reference in Figure 8.1.

We start by placing our detector at an image distance of 113 cm. If the thin lens

equation applies, we expect this di to yield a magnification factor of 0.83 ± 0.02. The

uncertainty in this number results from the error of ±2 cm on do and di, since the lens

cannot be localized to a single point. We arrange the knife edges to produce a 230 ±
30 µm slit at the object plane. We pulse the lens for 25 µs at currents ranging from 0

to over 700 A. Selected CCD images appear in Figure 8.2. At low currents, the beam

cross section forms an extended spot. The spot looks somewhat rectangular, but this

is largely due to the fact that the slit collimates the beam in the horizontal direction.

The spot narrows with increasing current, reaching a minimum at 207 A. Figure 8.3

shows the image size as a function of current for this image distance and for di =

87 cm, discussed in the next paragraph. The horizontal full-width-at-half-maximum

(FWHM) of the spot at I = 207 A and di = 113 cm is 170 ± 20 µm. Taken at face

value, this represents a magnification factor of 0.7 ± 0.1.

We repeat the same procedure for di = 87 ± 2 cm, for which we expect M = 0.64

± 0.02 (predicted image width around 150 µm). Image width as a function of current

is plotted in Figure 8.3. This time, the slit comes into focus at 227 A. A larger current
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Figure 8.3: Measured image width (FWHM) as a function of current for image dis-
tances of 87 ± 2 and 113 ± 2 cm. The width varies smoothly with current in both
cases, reaching a minimum when the current produces a focused image of the object
plane. Due to requiring a stronger field gradient, the 87 cm image comes into focus
at a larger current (227 A) than does the 113 cm image (207 A). The in-focus widths
are 150 ± 20 µm 170 ± 20 µm, which compare reasonably well with the expected
widths of 150 µm and 190 µm. Unfortunately, the error in the measured numbers is
too large to draw any meaningful conclusions.

is appropriate, since the shorter image distance requires a larger focusing force. The

imaged slit for this case has a FWHM of 150 ± 20 µm, which gives a magnification

factor of 0.7 ± 0.1—the same as in the 113 cm case.

The large uncertainty in these measurements stems in part from the fact that the

expected spot size is very close to the 120 µm resolution of the MCP. This makes

it rather difficult to determine how much of the measured width is “real” and how

much is added by our detection equipment. Additionally, the image brightness is not

uniform. Where we would hope to observe a flat-topped intensity curve with clear

edges, we instead see a rather Gaussian peak function. Another source of error is

the knife edge calibration, which is accomplished by closing the silicon wafers around

a slab of aluminum with known thickness. This procedure could be improved—for

example, using a laser and a beam profiler—but the vacuum hardware surrounding
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Figure 8.4: Measured image width (FWHM) as a function of current for an image
distance of 61± 2 cm. As in Figure 8.3, the FWHM varies smoothly with current. The
focused image width is 130 ± 20 µm, whereas we expect 100 µm. This disagreement—
as well as the error in the other numbers—stems largely from the 120 µm resolution
of our MCP/Phosphor-screen/camera detection chain.

the object plane makes such a measurement quite inconvenient.

The same sources of error become more serious at shorter image distances. Placing

the detection plane at 61 ± 2 cm yields a focused image of 130 ± 20 µm. For reasons

that will become clear later, the lens pulse for this case is lengthened to 33 µs. With

this longer pulse time, the slit comes into focus at 214 A. The image width as a

function of current is plotted in Figure 8.4, from which it is apparent that the image

size comes very close to the resolution limit of the detector (represented by a black

dotted line). The expected spot size for this case is 100 µm, which would lead to a

magnification factor of 0.45 ± 0.02. Instead, we calculate M = 0.6 ± 0.1.

Clearly, we need to address the large uncertainties in these results, along with the

systematic error that appears when our expected spot size is smaller than the MCP

can resolve. Fortunately, we remembered to make our slit completely adjustable.
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Figure 8.5: A sequence of MCP images showing the expanding slit measurement at
113 cm. As the object plane expands, the width of the focused image grows large
enough that the detector’s resolution plays a less important role. We further reduce
error by fitting a set of data points (Figure 8.6).

8.2 Advanced slit measurements

We now discuss two approaches to reducing the error in our magnification factor

measurements. In the first, we expand the aperture and move into regimes where

the image size is significantly larger than the detector resolution. In the second,

we measure relative changes in the image position, thereby avoiding the problem

of width measurement entirely. Both of these approaches have the advantage of

producing full data sets, rather than single measurements. Fitting these data sets

leads simultaneously to better agreement with theory and to dramatically reduced

uncertainty.

Expanding the slit width at the object plane produces a commensurately expanded

image, the measurement of which is less hindered by detector resolution. We expect

the change in image size to be proportional to the change in object size, where

the proportionality constant is simply the magnification factor. Figure 8.5 shows a

sequence of MCP images for di = 113 cm as the aperture expands from 230 µm to just

over 1 mm. As the aperture expands, clearly defined edges become apparent in the

image. Because of variations in beam brightness, we find that a visual measurement

of the image edge is more accurate than a FWHM calculation. We conservatively

estimate the error from this procedure to be 4 camera pixels, or 70 µm.

We measure images from an expanding slit at all three focal lengths and plot the
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Figure 8.6: In-focus image width as a function of object-plane slit width for all
three focal lengths. For small widths, the detector resolution (dotted line) plays an
important role. As the aperture expands, the images begin to follow the linear relation
that ray optics predicts. The slopes extracted from the data—which correspond to
the magnification factors—are 0.38 ± 0.08, 0.57 ± 0.08, and 0.81 ± 0.08. These
numbers are in agreement with the theoretical predictions (Table 8.1).

results in Figure 8.6. At small widths, the detector resolution is clearly a problem.

For larger images, the linear relationship that we expect begins to dominate. We now

have the enormous advantage of being able to calculate the magnification factors using

many data points instead of just one. Discarding the measurements for apertures

smaller than 400 µm, we fit the remaining data to linear curves. Rather than explicitly

including our uncertainty on the aperture widths, we simply allow the trendlines to

cross the axes at any point. This is reasonable, since we know the change in width

(from vernier scales on the linear translators) to a much greater precision (5 µm)

than we know the absolute knife edge separation. The magnification factors from

this method are 0.38 ± 0.08, 0.57 ± 0.08, and 0.81 ± 0.08. These values are in

agreement with those expected from ray optics, and the uncertainty is lower than

before by a factor of two. Nevertheless, these are large error bars: they just barely

separate the measurements from one another. We should be able to do better.

Our problems so far have stemmed from the difficulty of measuring image width.
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Figure 8.7: Cropped, aligned MCP images of the focused slit at 113 cm as we trans-
late the object-plane aperture position by 10 mil increments. The image shifts by
proportional amounts, following a remarkably linear trend (Figure 8.8).

In our third approach, we dispense with this requirement entirely. Shifting the aper-

ture at the object plane should result in a similar displacement of the image. Because

we can measure the center of a thin image with excellent precision—within one pixel—

we can record displacement with much smaller uncertainty than we can record width.

Figure 8.7 shows a series of images (cropped for efficiency) obtained at di = 133 cm

by repeatedly shifting the object aperture in 10 mil (254 µm) increments. This se-

quence is surprisingly linear over a large range. Figure 8.8 shows data obtained by

this process for all three focal lengths. Considering the 1.5 mm aperture of our lens,

it is somewhat remarkable that the linear relationship in these plots holds for a range

in excess of 3 mm. Fitting the data as before, we obtain magnification factors of 0.42

± 0.01, 0.63 ± 0.01, and 0.83 ± 0.01. These numbers actually have lower uncertainty

than our theoretical values, and in many ways they are likely more accurate.

The results from all three trustworthy methods—that is, the geometrical calcula-

tion, the window expansion, and the slit translation—are reported in Table 8.1. The
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Figure 8.8: Data obtained by shifting the object-plane aperture in 10 mil increments.
The linear relationship, which corresponds to magnification factor, is apparent at all
three focal lengths. The slopes obtained by fitting these data sets are 0.42 ± 0.01,
0.63 ± 0.01, and 0.83 ± 0.01. These values agree with and have lower uncertainty
than the theoretical predictions from ray optics.

factors obtained from our näıve, single-data-point calculations are not included in

the table, since we can now recognize them as markedly inferior. The results in this

section show that our atom focusing system is—at least in some ways—capable of

acting like a traditional optical lens. By changing both the size and the position of a

single slit, we measure magnification factors in surprisingly good agreement with the

predictions of ray optics. But single slits are not the waters in which a lens was meant

to sail! We cannot declare our system seaworthy without a providing a demonstration

of true imaging.

Table 8.1: Magnification factors calculated for three focal lengths using three different
methods.

Image distance: 61 cm 87 cm 113 cm

Thin lens equation: 0.45 ± 0.02 0.64 ± 0.02 0.84 ± 0.02
Aperture expansion: 0.38 ± 0.08 0.57 ± 0.08 0.81 ± 0.08
Aperture translation: 0.42 ± 0.01 0.63 ± 0.01 0.83 ± 0.01
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8.3 A little bit effy

At this point it makes sense to step back and briefly discuss the chronological develop-

ment of this project. The results described above are the fruits of a long optimization

process; in fact, they are most recent measurements we have. Various earlier incar-

nations of our beamline led to much less presentable data, of which we shall report

very little.

Our first design included the magnetic mirror described in Chapter 5, whose role

was to separate the mJ = 2 LFS atoms from the rest of the beam. This made beam

alignment both difficult and unreliable. The lens during this time was formed by

clamping a Vespel frame around a glass tube (Figure 7.21 on page 92). As long as

the glass did not break, this worked acceptably. Unfortunately, it meant we had to

exercise extreme caution while re-aligning the lens. Because the magnetic mirror po-

larization was so unreliable, re-alignments were regrettably frequent. Another prob-

lem during this time was with atom beam quality. We were using crossed-diagonal

laser cooling beams to form a moving molasses, cooling the atoms simultaneously in

the longitudinal and horizontal directions. We pumped only a narrow slice of the

atoms into the mJ = 2 state, pumping the rest into mJ = -2 and separating the

species with the mirror. We hoped this would be sufficient to produce a cold, short

atomic bullet at the lens, but it never was. On our best days, the bullet was still

longer than the lens, forcing us to operate in DC mode rather than pulsed. The valve

was consistently inconsistent, working fine one day and not at all the next. The lens

driver only worked at low voltages, and even then it was noisy enough to self-trigger

and—often as not—to unlock our laser system. Despite all of these problems, we

were able to demonstrate primitive hexapole focusing. By December of 2014 we had

focused the image of a pinhole to a spot of around 300 µm. The spot was not quite

circular, and it did not focus with the current we expected, and—because of our valve

problems—we could only produce it around 40% of the time; nevertheless, it was a

spot.

Having proven that our version of hexapole focusing was not doomed to complete

failure, we set out to fix the myriad problems that prevented us from producing better

results. One of us escorted the misbehaving Even-Lavie valve on a pilgrimage to Israel,

where Dr Uzi Even himself—through some combination of intuition, bravado, and

intimidation—coaxed his creation into compliance. We dispensed with the magnetic
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Figure 8.9: Focusing sequence for a vertical slit at di = 45 cm. While there is a clear
focal point at I = 434 A, the unfocused beam has a strange, double-peaked structure.

mirror, which permitted us to align the beam on a straight line instead of on a

velocity-dependent curve. We replaced the diagonal moving molasses with traditional

transverse cooling and a chirped longitudinal sweep. In order to achieve the bullet

length we wanted, we adopted the brute-force solution of physically chopping the

beam with a steel disk spinning at 10,000 rpm. Having become quite experienced

in the art of shattering tiny glass tubes attached to 50 kg steel blocks, we replaced

the glass lens tube with a steel-reinforced Vespel frame. By March of 2016, we had

installed the adjustable knife edge aperture and were beginning to observe pulsed

focusing of a 1 cm bullet. While the shortened bullet and the pulsed lens yielded

sharper images, this clarity uncovered an odd phenomenon. As the slit came into

focus, we often observed two distinct shapes slowly merging into one. Figure 8.9

shows a typical focusing sequence at di = 45 cm. This “double peak” effect became

the dominant mystery of the experiment.

Despite the double peaks, our slit results were good enough that we began to

attempt true imaging. By rotating one knife edge so that it crossed the other at an

angle (≈ 30◦), we converted our vertical slit into the vertex of a triangle. Moving the

linear translators in concert shifted the horizontal position of the vertex; moving just

the slanted blade changed its vertical position. These degrees of freedom gave us the

flexibility we needed to explore true imaging for the first time. We soon produced

spots that consistently looked “a little slanted” on one side. Even more encouraging

was the fact that the images appeared to be upside-down and backwards, just as we

would expect for true imaging. We formed a right triangle by adding a horizontal strip

of Kapton tape to our vertex. Figure 8.10 shows a typical focusing sequence for this

triangular aperture at di = 85 cm. Despite prominent double peaks, the triangle shape
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Figure 8.10: The first evidence of true imaging, taken at di = 85 cm. By rotating
one knife edge, we created the vertex of a triangle. A horizontal strip of Kapton
tape between the knife edges provided a third side. The imaged triangle is apparent
at 284 A. It remains rather blurry, and the double peaks are extremely distinct.
With the triangle aperture it is easier to see that the peaks split horizontally for low
currents and vertically for high currents. This behavior resembles astigmatism in
optical beams.

was recognizable. This aperture also showed what we had not noticed before: double

peaks that start out horizontal for low currents reappear later, splitting vertically

as the lens current increases beyond the focal point. This behavior bears a striking

resemblance to that of an astigmatic optical lens. Double peaks notwithstanding, our

success with the triangle aperture was sufficient to justify machining a more complex

set of apertures.

Perhaps the most salient scientific revelation from the following period of research

was psychological, rather than physical. We discovered that almost any amorphous

blob—and we stared at hundreds—can look like the letter F, provided that an F is

what the observer expects to see. Eventually, we refined our system enough that real

shapes began to emerge. The standard description of these images was “a little bit

effy.” Figure 8.11 is an example of an image so incontrovertibly “a little bit effy” that

it would certainly have led to enthusiastic high fives. Gradually, we cataloged all of

the shapes on the slide. We found that the images were generally recognizable, but

only to observers who knew what they were expecting to see.

This was the state of the project in June of 2016. We had (recently) achieved

true imaging, but our images were only impressive when compared with amorphous

blobs. We were ready to throw in the towel and blame the most obvious culprit,

chromatic aberration. This is exactly what would have happened, had one mystery

not persisted: the double peaks. Pulling this thread unraveled the whole knot, and
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Figure 8.11: An image that is, without a shred of doubt, a little bit effy. The skeptical
reader is invited to look at it upside-down, from far away, with one eye closed.

led to more visible progress in 3 months than we had seen in the 3 preceding years.

8.4 Double peaks

In an uncorrected, first generation hexapole lens, double peaks form as the system

is brought into focus. Figure 8.12 shows this phenomenon for the aperture shaped

like a longhorn (di = 113 cm). While the smallest spot occurs at 207 A, this spot

appears to be a merged version of two separate images. Furthermore, each of the

two secondary images seems to be more in-focus at points other than 207 A. In the

hopes that the double peaks are to blame for the relatively low quality of the focused

image, we consider potential causes for this odd behavior. Anything causing a

horizontal bifurcation in the beam must necessarily break the rotational symmetry

of the system. This allows us to rule out the nozzle and the aperture (Note: The

aperture breaks axial symmetry in the longhorn example, but only in a trivial way.

We still observe the double peaks when the aperture is a pinhole.). Laser cooling

and optical pumping clearly do break this symmetry. Unfortunately, blocking these

beams still yields double peaks—albeit significantly uglier and fainter specimens. The

chopper technically breaks axial symmetry, but it is difficult to see how it would do
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Figure 8.12: A final example of the double peaks, this time for a longhorn at di =
113 cm.

Figure 8.13: A diagram showing one wire out of place. This leads to the double peak
phenomenon that undermines our early imaging attempts.

so in a meaningful way. Only two suspects remain: the background field in the lab

and the lens itself. As it turns out, the culprit is a combination of two. Fortunately,

the solution is the same in both cases. For simplicity, we proceed with this discussion

as though the aberration were entirely due to lens defects.

The most obvious way to introduce a defect into our magnetic lens is by misplacing

one of the six hexapole wires. Imagine an error of the type illustrated in Figure 8.13,

in which a single wire is placed too close to the axis. Figure 8.14 shows a vector plot

of the field at the center of such a lens, in which the leftmost wire is placed too close

to the axis by 5%, or 100 µm. Compare this to the expected vector field, shown in

Figure 6.7 on page 54. From this comparison, it is clear that something serious has

gone wrong. In particular, there appear to be two separate lens centers. We confirm

this by plotting the magnitude of the field as a function of x and y (Figure 8.15).
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Figure 8.14: A vector plot showing the field produced at the center of a lens (with R
= 2 mm) when one wire is too close to the axis by 100 µm. Compare this to the ideal
case, shown in Figure 6.7 on page 54. The two local minima independently attract
atoms, forming two focal spots.

In the y direction, two local minima have replaced the single minimum we expect.

It is fairly easy to imagine how this situation would lead to double peaks. Atoms

passing near the middle of the lens are now deflected towards the local minima rather

than towards the true center of the lens. In the example given, these minima are

around 400 µm apart. Furthermore, the focusing potential in this region is decidedly

un-harmonic. This could easily explain the ugly results observed in Figure 8.12.

The only real solution to the problem of an improperly placed wire is simple:

re-place the wire; and try not to screw it up this time. In our case, we need to build

a more precise frame, probably incorporating micron-scale adjustability into the wire

positions. In the meantime, however, we can avail ourselves of a surprisingly effective
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Figure 8.15: Two line-cuts showing the magnitude of the magnetic field corresponding
to the vector plot in Figure 8.14.

temporary solution. It turns out that a background magnetic field can create almost

exactly the same lens defect as the one represented in Figure 8.14. Fighting fire with

fire, we try to correct the defective lens by adding a background field that would—on

its own—create exactly the opposite defect. Figure 8.16 shows vector plots of the

defective lens field (blue) overlaid with a background field of 50 G in the -y-direction.

From the vector plot, it is clear that this will (at least) fix the problem of two local

minima along the y-axis. Plotting the field magnitude as before, we discover that

the new potential is quite smooth along the x- and y-axes (Figure 8.17). We do not

reproduce it here, but a contour plot shows that this smoothness extends throughout

the lens.

Returning to the experiment with this new insight, we place two orthogonal sets

of Helmholtz coils around the lens. These serve the dual purpose of canceling (in the

transverse direction) any existing background field and of using a new background

field to correct any defects arising from wire placement. We set the lens current to

a position for which the double peaks are apparent, then we adjust the background

field until the double peaks go away. Repeating this procedure for several different

lens currents both above and below the expected focal point, we obtain the focusing
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Figure 8.16: Vector plot showing the field from a defective lens (blue) and the back-
ground field that we add (red). By comparing these fields, it is easy to see that the
correction field eliminates the two local minima along the y-axis, replacing them with
a single minimum at the center of the lens.

progression shown in Figure 8.19. Not only are the double peaks gone; the focused

image is a reasonably accurate reproduction of the original aperture. In fact, the

remaining blur is on the scale of the MCP resolution limit: it would persist even if

the lens were perfect. For the 113 cm case, we obtained the best performance by

applying a nearly-vertical background field of approximately 7 G.

In order to plan the next steps in this project, we make a few final efforts to

understand the source of the double peaks. The main question is whether they are

caused by a background field or by lens defects. If it were only the former, one

corrective field would work for any focal length. We find instead that we require a

different background field at different focal lengths. At 113 cm, 7 G does the trick
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Figure 8.17: Line cuts of the corrected field.

Figure 8.18: A rather inscrutable photograph of our lens surrounded by two sets of
elongated Helmholtz coils for double peak correction.
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Figure 8.19: Longhorn focusing with the corrective field. The double peaks we saw in
Figure 8.12 are mostly gone. The focused image is significantly sharper, with features
on the scale of the detector resolution limit.

with a 25 µs pulse. At 87 cm, we need nearly twice that field. At 61 cm, we cannot

correct the double peaks very well at all. We are able to remedy this by increasing

the pulse time, which allows us to decrease the lens current. For τ = 33 µs, a vertical

background field of 18 G corrects the double peaks. From these observations, we

conclude that lens defects play a role. If that were the end of the story, however,

we would expect a rotation of the lens to yield precisely the same rotation of the

double peaks. Instead, we see a nonlinear relationship between these rotation angles.

Comparing with calculations, we conclude the the double peaks result at least in part

from the interaction of the lens field with the background field in the lab. The next

version of this lens, therefore, must incorporate both magnetic shielding and highly

precise wire placement.

8.5 Shapes

Figure 8.20: Focusing sequence for the F-shaped aperture with the double peak
correction field in place. Unlike in Figure 8.11, we present the image right-side up.
Image distance is 113 cm.
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Using the double peak correction described above, we begin producing significantly

better images than before. The quantitative properties of the corrected lens are

discussed in Section 1 of this Chapter. For a qualitative analysis, we look at the

other shapes in the slide. Figure 8.20 shows the F coming into focus at 113 cm.

Clearly, we can dispense with “effy” and call this image what it is: the letter F. The

magnification factor is 0.81, as described quite extensively in Section 1. Figure 8.21

shows similar quality for the Batman logo. To make them as presentable as possible,

these images are the results of 30 second integrations with the detection system. It is

worth noting, however, that the shapes are directly observable—if a little small—on

the phosphor screen with the naked eye.

Figure 8.21: Focusing sequence for the bat at 113 cm with the field correction.

The useful beam size at the object plane is around 2 mm wide, which allows us

to illuminate approximately one shape in the slide at a time. With the help of the

linear translator, we can make a composite image of the entire slide. This is shown

in Figure 8.22, along with a reproduction of the original slide photo for reference.

8.6 Simulations

It is encouraging to briefly compare these results with our mathematical simulations.

An important difficulty in this comparison is accurately modeling the wire positions,

which we have already labeled as uncertain. Making matters worse, the small taper

(0.25◦) in the Vespel frame means that the wire radius varies by 200 µm over the

length of the lens. Moreover, the finite cross-sectional areas of the wires causes the

physical case to differ slightly from that in our simple model. Specifically, we expect

that the finite extent of the wires slightly reduces the field gradient compared to

the infinitesimal case. Despite these uncertainties, we are able to model our system
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Figure 8.22: (a) Photograph of the slide, for easy reference. (b) Composite image of
the slide, again at 113 cm. Though the sizes are matched in this case, the magnifica-
tion factor is 0.81.

surprisingly well. Using metastable neon at the Doppler limit and a 230 µm aperture

at do = 135 cm, we attempt to reproduce the observed slit focusing results. A hexapole

pulsed at 214 A for 33 µs with wires at 2.33 mm results in a focused spot at 62 cm.

Increasing the current to 227 A and decreasing the pulse time to 25 µs, we find di =

87 cm (Figure 8.23). Finally, a current of 207 A pulsed for 25 µs with a wire radius

of 2.4 mm yields a spot at 115 cm. It must be acknowledged that the uncertainty in

wire radius provides us with a rather generous fitting parameter, so these simulations

are of limited diagnostic value. Nevertheless, the fact that we can reproduce the

observed results using entirely plausible numbers suggests that we have captured the

important dynamics at work in this system.
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Figure 8.23: Sample trajectories for 200 atoms focusing to a spot at 87 cm. The
simulated lens in this case is pulsed at 227 A for 25 µs. The wire radius is 2.33 mm.
The resulting spot (assuming a 230 µm object-plane aperture) is on the order of 200
µm.
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Chapter Nine: Conclusion

Neutral atom beams feature prominently in applications ranging from fundamental

research to industrial manufacturing. A major factor limiting their performance in

these roles is beam control. Basic atom-optical elements like mirrors and lenses re-

main surprisingly unrefined compared to their counterparts in photon-, electron-, and

ion-beam management. Neutral atom lenses in particular have remained downright

primitive compared to the elaborate aberration-corrected focusing systems devised

for other particles. Advances in these tools are long overdue and will lead to a wealth

of new opportunities in fundamental atomic physics, nanotechnology, and materials

science.

9.1 Summary of work

We have proposed a reinvention of the magnetic hexapole lens that includes chromatic

aberration correction and a reduced susceptibility to fringe fields. According to our

simulations, this pulsed, tapered, electromagnetic hexapole lens is capable of true

imaging well into the nanoscale with magnification factors of 0.01 and lens speeds

exceeding f/50.

In order to test the basic operating principle, we have built and tested a proto-

type lens. We have shown that our technological metrics, such as pulse time and lens

current, are easily met using present-day technology. Indeed, most of the electronic

equipment we used in this project was already on shelves in the lab. Despite some

rather major manufacturing defects, our prototype has outperformed the next-best

hexapole lenses by nearly an order of magnitude in resolution. Furthermore, the ob-

served minimum feature size—on the order of 150 µm—is very similar to the detection

limit of our MCP. This leaves room for the possibility that our actual resolution is

even better than what we have been able to observe. We have performed a range of

quantitative tests to characterize the behavior of this lens in the context of ray-optics,

and we have found it to be admirably free from distortion and inconsistency.
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9.2 Limitations and sources of error

A few problems continue to limit the performance of our prototype. The largest of

these is the combination of background fields and wire-radius defects that leads to

the double peak phenomenon discussed in Chapter 8. While using the Helmholtz

coils to correct this works surprisingly well, we are confident that the only real so-

lution involves building a new lens and implementing large-scale magnetic shielding.

Another aspect of this work that could improve is the quality of the optical cooling.

We presently observe a brightness increase of 10-100x. In theory, another order of

magnitude should be available before we reach the Doppler limit. Finally, the chop-

per that we use to shorten our beam will need to be replaced with something more

graceful. While we do not particularly mind our teeth vibrating when we run the

chopper, we suspect that the mechanical disturbance causing this to happen might

also impede nanoscale imaging.

Our detection equipment has served us well, but it will not do so for much longer.

Though the BOS-18 MCP/Phosphor-screen detector is excellent for analyzing im-

aged features on the scale of 100 µm - 1 cm, for smaller beams it becomes fairly

useless. We have tried on several occasions to implement knife-edge detection, but

so far these attempts have produced nonsensical results. Furthermore, fluctuations

in average beam intensity over a range of timescales makes the scanned knife edge

characterization an uncertain, time-consuming measurement compared to the phos-

phor screen detection. Both of these problems are perfectly tractable, and the time

is approaching to properly address them.

9.3 Future goals

The most pressing directive at this stage in the project is to design and build a

second-generation lens. Ideally, this version of the hexapole will incorporate two

degrees of freedom for each of the 6 wires. Adjusting the radius of each wire will

allow in-situ, empirical correction of the lens defects that we observe in the current

prototype. Another useful—though less critical—degree of freedom to add is wire

angle, since this would allow us to optimize the taper angle for any focal length.

One way to accomplish both of these goals simultaneously would be to use rigid,

conductive rods as the hexapole wires, attaching each rod to the surrounding frame
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Figure 9.1: A diagram of a metastable atom microscope. Atoms focused by a lens
collide with a sample, releasing electrons as they relax to the ground state. The
energy spectrum of the electrons released in this manner contains information about
the surface states of the sample. Combining our excellent spatial resolution with a
high-quality spectrum analyzer would result in a surface microscope of unprecedented
sensitivity.

with a high-precision linear translator. Adjusting one translator at a time would vary

the wire angle; adjusting both in concert would shift the wire position. Though this

apparatus would have more moving parts than the current lens frame, in many ways

it would represent a simpler machining task. A related goal in the second-generation

hexapole will be minimizing background fields. This means paying more attention to

stray fields in the vacuum chamber’s support structure, more carefully routing the

wire segments connecting consecutive hexapole elements, and possibly surrounding

the entire structure with a magnetic shield.

While building the new lens, we will devote a portion of our resources to im-

plementing better beam brightening techniques. While the phase space densities

required for 10 nm focusing are not prohibitive by any means, we need to realize

better brightness improvements from our various cooling stages. Because another

group in the Raizen lab has recently constructed an adiabatic coilgun, we are also
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Figure 9.2: Diagram of metastable atoms damaging a “resist” formed by a self-
assembled monolayer [42]. Using a transmission mask in conjunction with our lens
would allow us to project nanoscale patterns onto a sample treated with this mono-
layer resist. Chemical etching would then be used, just as in photolithography, to
produce high-resolution surface patterns for semiconductor chip manufacturing.

considering using a moving trap to further improve the intensity and temperature of

our beam before it reaches the object plane.

Two long-term goals await the second-generation device. In parallel with the

focusing project, we are developing the electron spectroscopy tools we will need to

build a metastable atom microscope. This is depicted in Figure 9.1, and hinges on

the idea that the electrons ejected from metastable relaxation events carry important

information about the surface with which the metastable collided. The spectroscopic

principles for analyzing these electrons are well established, but so far no one has

managed to combine them with a highly focused metastable beam [45, 47]. Once the

new lens is up and running, we will merge the lens with the spectroscopy project to

create a surface microscope.
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A second application for the updated lens will be nanoscale fabrication. Using the

true imaging capability of the lens, we will use transmission masks to either directly

deposit neutral atoms or to expose self-assembled monolayers for lithography. The

latter technique is depicted for Ar∗ in Figure 9.2. Both of these approaches have

been demonstrated in numerous systems already [71, 42, 72, 21, 12, 73, 27, 23],

though not with a lens as effective as ours. These techniques would be competitive

with current state-of-the-art photolithography processes, potentially at much lower

cost and complexity.
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