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FUNCTIONAL POLYMERS: POLYOXANORBORNENE-BASED BLOCK 

COPOLYMERS FOR THE SEPARATION OF F-ELEMENTS AND 

LUMINESCENT CONDUCTING METALLOPOLYMERS 

 

Lauren Avery Mitchell, Ph.D. 

The University of Texas at Austin, 2014 

 

Supervisor:  Bradley J. Holliday 

 

A new polymeric material with a polyoxanorbornene backbone and 

carbamoylmethylphosphine oxide, CMPO, ligand pendant groups has been synthesized, 

characterized, and studied. The ability of the material to selectively partition actinides 

utilizing a biphasic extraction strategy was tested. The polymeric materials had 

significantly higher (> 5-25 times) ability to extract Th
4+

 than the monomeric system. The 

molecular weight of the material affected the extraction and separation abilities. The 

lower molecular weight material extracted more ions, but was less discriminate for 

thorium(IV) over cerium(III), lanthanum(III), and europium(III), than the higher 

molecular weight material. Structural modifications to this system were made by creating 

block copolymers. The influence of additional functionalities, created by the addition of 

new polymeric blocks, was investigated. The ability of the material to selectively 

partition actinides utilizing both solid-liquid and liquid-liquid extraction strategies was 

tested. Extraction efficiencies comparable to liquid-liquid extractions were achieved in 

the solid-liquid extractions. The extraction behavior of the materials was significantly 

altered by the incorporation of new blocks. The incorporation of glycol chains into the 

system caused an increase in the uptake of thorium(IV) over the homopolymers. The 
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incorporation of blocks of glycol chains and blocks of cross-linked hydroxcoumarian 

increased the selectivity significantly (XTh/Eu 2.3 – 4.5 times higher) over the 

homopolymer. These materials show tremendous promise as modular polymeric 

scaffolds.  

A novel emissive tetradentate platinum complex with electropolymerizable 

ethylenedioxythiophene groups has been synthesized and characterized. This material has 

been developed for use as the active layer in polymer light-emitting diodes. 

Electropolymerization offers ease of processing by depositing thin films directly onto an 

electrode during the polymerization process. Additionally because the emitter is 

covalently bound in the polymer, it cannot aggregate as is the case with some small 

molecule emitters. The platinum complex displayed emission peaks at 510 nm and 544 

nm. Electropolymerization resulted in a conductive and emissive thin film, with an 

emission maximum at 453 nm.   
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 SEPARATION OF f-ELEMENTS 

Chapter 1:  Influence of CMPO Platform on Liquid-Liquid f-element 

Extractions 

INTRODUCTION 

One of the issues that continues to plague the furtherance of nuclear technologies 

is the disposal of spent fuel. Currently spent fuel rods in the United States remain in 

storage at the reactor site, since no long term storage or disposal plan has been 

implemented.
1
 As of 2013, the United States has generated approximately 68,000 MTHM 

(metric tons of heavy metal) of used nuclear fuel, with an estimated growth of 2,000 

MTHM per year.
2
 Many of the radionuclides in the spent fuel will decay to stable 

isotopes within approximately 300 years, yet others will continue to be radioactive for a 

millennia.
3
 This makes engineering a burial system that will last the lifetime of the 

radioactivity unfeasible.  

A proposed solution to this issue is a process termed partitioning and 

transmutation, whereby the various elements in the fuel are separated and then buried as 

less hazardous waste or transmuted into less harmful isotopes.
4
 Transmutation, however, 

requires that those elements with high neutron cross sections first be removed. One of the 

most difficult of these separations involves partitioning of actinides and lanthanides. 

Demonstrated in the transuranic extraction (TRUEX) process was the ability of 

the carbomylmethylphosphine oxide (CMPO) ligand to selectively bind to actinides over 

lanthanides see Figure 1.1.
5–7

 
 
Reprocessing spent fuel begins with the dissolution of the 

fuel rods in nitric acid. In the TRUEX process actinides are sequestered from the aqueous 

acidic media into an organic medium by chelation through the carbonyl and phosphoryl 

oxygens of three CMPO ligands.
7 
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Figure 1.1: (A) 1.1a general form carbamoylmethylphosphine oxide (CMPO) ligand, 

1.1b n-octyl(phenyl)-N,N-diisobutyl-methylcarbamoyl phosphine oxide (B) 

Proposed solution structure of americium(III) CMPO complex in nitric 

acid.
8
   

Efforts to improve separation factors have currently focused on preorganizing 

several CMPO moieties onto a small molecule substrate. In this effort a variety of 

different small molecule platforms have been developed. Herein is a review of the current 

mutli-CMPO systems present in the literature. Discussed will be the varying effects each 

type of platform has on the extraction properties of the system.  

 

LINEAR OLIGOMER SYSTEMS 

The simplest system which covalently binds two or more CMPO units together is 

the linear oligomer system, shown in Figure 1.2.
8–10

 Unlike the other systems which 

typically have 3-4 CMPO units, the linear systems vary more widely with 2-5 CMPO 

units. Many of these systems are structurally very similar to calixarenes, with methyl 

linked phenols. The linear oligomer systems have been studied for their ability to extract 

thorium(IV) and europium(III), the results are summarized in Table 1.1 
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Figure 1.2: CMPO-derivatized linear compounds.
8–10 

Compounds 1.2a and 1.2b both show discrimination for thorium(IV) over 

europium(III). The importance of the chelate effect is observed in the comparison of the 

performance of these two materials. Compound 1.2b, which has three CMPO arms binds 

to significantly more thorium(IV) than compound 1.2a, which has only two CMPO arms. 

Unlike many other materials, the increased uptake of throium(IV) is not accompanied by 

an increase in the uptake of the lanthanide europium(III). This results in an increase in 

extraction as well as separation efficiency by the addition of a third CMPO unit.  

Compounds 1.3a – 1.3d vary only in the length of the alkyl chain on the phenol from 

compounds 1.2a – 1.2b. This difference has resulted in drastically different chelation 

properties. While compound 1.2a was able to extract 17% of the present thorium(IV) at 1 

: 1 (ligand : Th
4+

), the shortening of the alkyl chain resulted in a decrease to 6% for 

compound 1.3b at 10 : 1 (ligand : Th
4+

). A similar trend was observed for compounds 

1.2b and 1.3b, where compound 1.2b extracted 78% of the thorium at 1 : 1 (ligand : 
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Th
4+

), and compound 1.3b extracted only 18% with a higher concentration of ligand (10 : 

1, ligand : Th
4+

). Additionally compounds 1.3a and 1.3b extracted increased amounts of 

europium(III) than their counterparts with shorter alkyl chains, compounds 1.2a and 1.2b. 

Decreasing the length of the alkyl chain resulted overall in a decrease in both the 

extraction and separation efficiencies.  

Table 1.1: Extraction (% E) of thorium(IV) and europium(III) by linear oligomer 

compounds. 

# CMPOs 

 

Ligand 

Equiv of ligand in 

organic phase % Th % Eu 

2 1.2a
8
 1 17 

 

 

 10 

 

< 3 

3 1.2b
8
 1 78 

 

 

 10 

 

< 3 

2 1.3a
10

 10 6 

 

 

 100 

 

4 

3 1.3b
10

 10 18 

 

 

 100 

 

24 

4 1.3c
10

 1 35 

 

 

 10 

 

56.5 

5 1.3d
10

 1 31 

 

 

 10 

 

38.1 

2 1.4
9
 10 4 6 

Equal volumes organic/aqueous phases, organic phase: CH2Cl2, aqueous phase: 1 M HNO3, CM = 10
-4 

M.  

 

When the number of repeat units is increased in system 1.3 an increase is observed in 

the extraction of both thorium(IV) and europium(III). This increase continues from dimer 

to tetramer, but decreases again for the pentamer. The separation efficiency decreases 

from dimer to tetramer, and then increases again for the pentamer.  
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The switch to a different linear oligomer platform, 1.4, gave vastly different 

extraction values than the dimers 1.2a and 1.3a. Compound 1.4 extracted small quantities 

of europium(III), yet it is not discriminate; at equal ligand concentrations, complex 1.4 

actually showed an increased selectivity for europium(III).   

Table 1.2: Distribution coefficients for the extraction of Eu(III) and Am(III) for select 

linear oligomer systems. 

# CMPOs 

 

Ligand DAm DEu SAm/Eu 

2 1.2a
8
 1.8 1.2 1.50 

3 1.2b
8
 17 13 1.31 

     
Equal volumes organic/aqueous phases, organic phase: nitrophenyl hexyl ether, CL = 10

-3 
M, aqueous 

phase: 1 M HNO3. 

 

Compounds 1.2a and 1.2b were also tested for their ability to selectively chelate 

americium(III), see Table 1.2. The extraction efficiencies are described by the 

distribution coefficient, DM, defined in equation 1.1, where Σ[Morg] represents the 

concentration of cations in the organic layer and Σ[Maq] the cations in the aqueous layer. 

                                     DM = Σ[Morg]/ Σ[Maq] (1.1) 

The separation efficiencies are described by SM1/M2, defined by equation 1.2.  

 SM1/M2 = DM1 / DM2 (1.2) 

These systems were found to be selective for americium(III) over europium(III). The 

increase from 2 to 3 CMPOs resulted in a slight decrease for the selectivity, but resulted 

in a large increase in the affinity for americium(III).  

Generally the linear systems displayed increased extraction efficiencies with 

additional CMPO moieties which may be due to an increased chelate effect.  Also the 
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linear systems displayed increased extraction and separation efficiencies with longer 

alkyl chains on the platform, possibly due to an increase in solubility.  

 

MACROCYCLIC PLATFORMS 

Calixarenes 

CMPO derivatized calixarenes are among the most widely studied of CMPO 

platform systems. The appendage of the CMPO moiety can be made on the upper wide 

rim, or on the lower narrow rim, see Figure 1.3. Attachment of groups larger than ethyl to 

R2 on the narrow rim fixes the molecule into a single conformation. By contrast 

tetramethyl ethers have been shown to have the flexibility to adopt cone, partial cone, 

1,2-alternate, or 1,3-alternate conformations.
11

 The size of calixarene cycles can vary 

from three phenyl rings to more than eight.
12

 As the number of phenyls is increased the 

flexibility of the system increases affecting the preorganization properties.  

 

 

Figure 1.3: General form of calixarenes illustrating wide and narrow rims. 

 

Wide Rim 

 The wide rim (wr) calixarenes, shown in Figure 1.4, generally have larger binding 

cavities than the narrow rim calixarenes.
8,10,13,14

 Additionally the wide rim calixarenes 
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have been more extensively studied than the narrow rim calixarenes. Summarized in 

Table 1.3 are extractions performed with thorium(IV) and europium(III). To easily 

compare the separation efficiencies, XTh/Eu, was calculated using equation 1.3, where % 

Th is the percentage of thorium(IV) extracted from a 10
-4

 M solution of thorium(IV) by a 

10
-4

 M solution of ligand, and % Eu is the percentage of europium(III) extracted from a 

10
-4

 M solution of europium(III) by a 10
-3

 M solution of ligand.  

 XTh/Eu = (% Th) / (% Eu)  (1.3)         

Compounds 1.5a – 1.5f vary in the length of the alkyl chain on the narrow rim, 

from C10 to C18. Although the amount of thorium(IV) extracted between these systems 

varied, the increase in chain length does not cause any trend in the extraction data. The 

selectivity for the systems did not vary greatly and ranged for XTh/Eu from 0.75 to 1.08. 

Compounds 1.7e and 1.7f also varied in the length of the alkyl chain on the narrow rim, 

with compound 1.7e containing methyl groups and compound 1.7f containing propyl 

groups. This variation did not cause significant changes in the amount of thorium(IV) 

extracted, however, unlike compounds 1.5a – 1.5f, the increase in chain length did cause 

significant differences in the selectivity for thorium(IV). Compound 1.7e, with methyl 

chains displayed much higher selectivties (XTh/Eu = 1.7) than compound 1.7f, with propyl 

chains (XTh/Eu = 0.97). The selectivity for compound 1.7f fell within the range seen for 

complexes 1.5a – 1.5f, but the selectivity for compound 1.7e is much higher. Compounds 

1.5a – 1.5f and 1.7f all have groups larger than ethyl on the narrow rim. These large 

groups are likely limiting the possible conformations of the molecule. In contrast, 

complex 1.7e contains groups smaller than ethyl and can thus likely adopt more 

conformations. Conformational differences may explain the differences in selectivity 

between these compounds.  
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 Figure 1.4: Calixarenes derivatized with CMPO at the wide rim.
8,10,13,14

 

Compounds with mixed length chains out perform their single chain length 

counterparts. Compounds 1.6a – 1.6c have mixed alkyl systems on the narrow rim. 

Complex 1.6b contains two C10 chains and two methyl groups, while complex 1.5c 

contains four C10 chains. Comparing the two, compound 1.6b extracts more thorium(IV) 

than 1.5c and is also more discriminate for thorium(IV) over europium(III). This trend 

holds true with the two other pairs of compounds with the same R group, 1.6a and 1.5b, 
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and 1.6c and 1.5g. For all three pairs the replacement of two R groups with methyl 

groups increases the extraction and separation efficiencies. Compounds 1.7a – 1.7d 

examine this further by probing the placement and ratio of mixed chain lengths. All of the 

mixed systems, compounds 1.7a – 1.7d, extract more thorium(IV) than their homogenous 

counterparts 1.7e and 1.7f. The 1.7 system that was found to be the most discriminate for 

thorium(IV) was not a mixed system, but the homogenous system 1.7e with four methyl 

groups at the narrow rim. The selectivity decreases as more of the methyl groups are 

replaced by longer chains, (1.7e (4 methyls) > 1.7a (3 methyls) > 1.7b (2 methyls) > 1.7d 

(1 methyl) > 1.7f (0 methyl)). The placement of the methyl groups was found to be 

significant, compounds 1.7b and 1.7c both have two methyl groups and two propyl alkyl 

groups on the narrow rim. In compound 1.7b the methyl and propyl groups are alternated, 

while in compound 1.7c the methyl groups are placed right next to each other. Compound 

1.7c was found to extract slightly more thorium(IV) than compound 1.7b, but complex 

1.7b was found to be significantly more discriminate for thorium(IV) than compound 

1.7c. The selectivity for compound 1.7c, with only two methyl groups, is comparable to 

that of compound 1.7f, which contains four propyl groups on the narrow rim. This 

indicates that appending methyl groups trans to one another on the narrow rim is 

preferential to methyls being cis to one another.  

The number of phenyl groups in the macrocycle also influences the extraction 

properties. The length of the alykyl chain is C14 for calixarenes 1.5e and 1.5h, but the two 

vary in the number of phenyl groups in the macrocycle; 1.5e has four phenyls, while 

compound 1.5h has five phenyls. The tetramer, 1.5e, extracted slightly more thorium(IV) 

than the pentamer, 1.5h. A similar trend was observed for the linear analogs 1.3c and 
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1.3d, which also had a decrease in the uptake of thorium(IV) from the tetramer to the 

pentamer.     

Table 1.3: Extraction (% E) of thorium(IV) and europium(III) by select macrocyclic 

compounds.  

# CMPOs 

 

Type 

 

Ligand 
% Th   

(CL = 10
-4

 M) 

% Eu  
(CL = 10

-3
 M) XTh/Eu 

4 Calixarene (wr) 1.5a
8
 39 47 0.83 

4 Calixarene (wr) 1.5b
8
 26 24 1.08 

4 Calixarene (wr) 1.5c
8
 53 68 0.78 

4 Calixarene (wr) 1.5d
8
 63 68 0.93 

4 Calixarene (wr) 1.5e
8
 54 72 0.75 

4 Calixarene (wr) 1.5f
8
 51.5 69.5 0.74 

4 Calixarene (wr) 1.5g
8
 50 59 0.85 

5 Calixarene (wr) 1.5h
8
 46 - - 

4 Calixarene (wr) 1.5i
14

 9 9 1.00 

4 Calixarene (wr) 1.6a
8
 32 20 1.60 

4 Calixarene (wr) 1.6b
8
 39 40 0.98 

4 Calixarene (wr) 1.6c
8
 43 49 0.88 

4 Calixarene (wr) 1.7a
10

 69 45 1.53 

4 Calixarene (wr) 1.7b
10

 66 48 1.38 

4 Calixarene (wr) 1.7c
10

 70 73 0.96 

4 Calixarene (wr) 1.7d
10

 66 60 1.10 

4 Calixarene (wr) 1.7e
10

 60 35 1.71 

4 Calixarene (wr) 1.7f
10

 61.8 64 0.97 

4 Calixarene (nr) 1.10a
15

 76 16 4.75 

4 Calixarene (nr) 1.10b
15

 81 12.5 6.48 

4 Calixarene (nr) 1.10c
15

 96 68 1.41 

4 Cavitand 1.15a
16

 24 11
a 2.18

 a
 

4 Cavitand 1.15b
16

 17 9
 a
 1.88

 a
 

 

  

  

 
Equal volumes organic/aqueous phases, organic phase: CH2Cl2, aqueous phase: 1 M HNO3, CM = 10

-4 
M. 

(a) CL = 10
-4

 M. 

 

Compounds 1.5a and 1.5i vary in the amide; 1.5a is a secondary amide, while 1.5i 

is a tertiary amide. This small synthetic difference causes large changes in the amount of 
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thorium(IV) extracted. Complex 1.5a extracted 39% of the present thorium(IV), while 

complex 1.5i only extracted 9%. Complex 1.5i (XTh/Eu = 1.00) does show a modest 

increase in the selectivity for thorium(IV) over complex 1.5a (XTh/Eu = 0.83).  

A study of the distribution coefficient as a function of ligand concentration was 

performed and a log-log plot revealed a linear relationship between the two variables. For 

the extraction of thorium(IV) compounds 1.5b and 1.5c have linear plots with slopes of 

approximately 1, revealing a 1 : 1 complex. Compound 1.6c does not have a linear plot, 

suggesting the formation of complexes with multiple stoichiometries. For europium(III) 

complexes 1.5b, 1.5c, 1.6c, 1.7c, 1.7e, and 1.7f have slopes of approximately 2, 

suggesting that the europium(III) complexes are extracted by two ligands. CPK-models 

examined by Böhmer and coworkers reveal that this stoichiometry is possible.
10

  

Extraction studies with americium(III) and europium(III) were also performed for 

complexes 1.5a, 1.8 and 1.9, see Table 1.4.
13,17

 Compound 1.5a displayed high extraction 

and separation efficiencies with americium(III) (DAm = 150, SAm/Eu = 4.05). Attempts 

were made by Böhmer and coworkers to improve this by increasing the number of 

CMPOs in close proximity using dendrimer type compounds, see structure 1.8.
13

 Despite 

the fact that there are more CMPOs available for binding the extraction and separation 

efficiencies decreased from 1.5a to 1.8. Other attempts by Böhmer and coworkers to 

improve upon 1.5a included the incorporation of adamantyl groups into the system in an 

effort to increase the solubility and thus extraction efficiency of the system, see 

compound 1.9.
17

 Unfortunately, this led to an even larger decrease in the extraction and 

separation efficiencies from compound 1.5a.  
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Figure 1.5: Calixarenes derivatized with CMPO at the narrow rim.
13,15,17
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Narrow Rim 

Fewer compounds with CMPO on the narrow rim (nr) have been studied than 

those with CMPO on the wide rim, see Figure 1.5.
13,15,17

 These compounds have been 

studied in extractions with thorium(IV), americium(III), and europium(III), see Tables 

1.3 and 1.4.  

Similar to the wide rim compound 1.5a, compound 1.10a extracted significantly 

larger amounts of americium(III) than the dendrimer and adamatyl compounds 1.11 and 

1.12a – 1.12c, and 1.13a – 1.13c. Unlike the wide rim system the tert-butyl analog 1.10a 

was not the most selective for americium(III) over europium(III). In the narrow rim 

system the dendrimer compound 1.11 is the most selective followed by the adamatyl 

compound 1.12a, with 1.10a being the third most selective.  

Compounds 1.10a – 1.10c all extract high amounts of thorium(IV) (76 – 96 %), 

higher than most of the other macrocycles. These materials are also very selective for 

thorium(IV) over europium(III). Compounds 1.10a and 1.10b are the most selective 

materials for thorium(IV) represented in Table 1.3.  

  Compounds 1.10a – 1.10c vary in the length of the alkyl spacer between the 

phenol backbone and the CMPO moiety. It was observed that the longer the spacer, the 

more the thorium(IV) uptake was increased. Complex 1.10c, with the propyl linkage, 

extracted nearly quantitative amounts of thorium at a ligand : Th
4+

 ratio of 1 : 1. The most 

selective material was 1.10b, with a ethyl linkage, followed by 1.10a, with a methyl 

linkage, followed by 1.10c, with a propyl linkage. It was proposed by Böhmer and 

coworkers that both the size of the cavity and the flexibility of the ligand system 

influence the extraction and separation efficiencies.
15

 The most flexible compound, 1.10c, 

extracted the most material, but the large cavity made it less selective. 
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Compounds 1.12a – 1.12c, also vary in the length of the alkyl spacer between the 

backbone and the CMPO moiety. These complexes did not show any trend between the 

amount of americium(III) extracted and the length of the alkyl chain. The selectivity for 

americium(III) over europium(III) decreased with the increasing length of the alkyl chain, 

1.12a ((CH2)2) > 1.12b ((CH2)3) > 1.12c ((CH2)4). Compounds 1.13a – 1.13c also ranged 

in the length of the alkyl spacer between the phenol backbone and the CMPO moiety. In 

this system there were alkyl spacers of varying lengths within a single molecule. The 

increasing lengths of the alkyl chains caused no trend in the selectivity of these materials, 

but did cause an increase in the amount of americium(III) extracted. Generally the 

systems with mixed length alkyl chains, 1.13a – 1.13c displayed lower extraction and 

separation values than the analogous systems, 1.12a – 1.12c, with homogenous chain 

lengths.   

The europium(III) distribution coefficient as a function of ligand concentration 

was studied for compounds 1.10b and 1.10c. Plots of the log of the distribution 

coefficient verses the log of the ligand concentration had a linear slope near 1, suggesting 

that europium(III) is extracted in as a 1 : 1 complex for the narrow rim calixarenes. This 

is in contrast to the wide rim calixarenes, most of which extract europium(III) as a 2 : 1 

(ligand : Eu
3+

) complex.  

 

Cyclotriveratrylene 

Cyclotriveratrylenes, also known as CVTs are cyclic structures composed of 

phenyls linked by methyl spacers. They are similar to calixarenes except that the methyl 

linkages occur at the 1 and 2 positions on the phenyl rings for cyclotriveratrylenes, while 

the methyl linkages are at the 1 and 3 positions for calixarenes. Additionally, while the 
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size of calixarenes are varied with 3 or more phenyls, cyclotriveratrylenes are generally 

only 3 phenyls.   

 

Figure 1.6: Cyclotriveratrylene derivatized with CMPO.
18

 

Three CMPO-derivatized CVT macrocycles were synthesized by Verboom and 

coworkers, see Figure 1.6.
18

 The extraction data for americium(III) and europium(III) for 

these three materials is summarized in Table 1.4. All three materials were found to be 

selective for americium(III) over europium(III), although they were less selective than 

some calixarene and cavitands.  

The three complexes vary in the length of the alkyl spacer between the 

macrocycle and the CMPO moiety. Compound 1.14a has no spacer; CMPO is bound 

directly to the macrocycle. This rigid conformation is likely the cause of the low 

extraction values observed for this compound. Increasing the spacer, and creating more 

flexibility in compounds 1.14b and 1.14c increased the extraction efficiency. This is 

similar to what was observed for calixarenes 1.8a – 1.8c, which also displayed an 
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increased uptake with increased chain length. The selectivity is similar for all three 

materials ranging from SAm/Eu = 1.4 - 1.6, with the smallest cavity, 1.14a, being the most 

selective.  

 

Figure 1.7: Cyclotriveratrylene conformers.
19

 

The stoichiometry of the complexes was examined by plotting the log of the 

distribution coefficient verses the log of the ligand concentration. Compound 1.14a 

displayed a linear relationship with a slope of approximately 0.8 for complexation with 

americium(III) and europium(III). This could indicate a stoichiometry of 5 : 4 metal to 

ligand ratio, although Verboom and coworkers consider this unlikely for such a rigid 

ligand.
18

 It is possible that complexes with “saddle geometry” have been formed, see 

Figure 1.7. The slope of the logD vs log[L] plots for compounds 1.14b and 1.14c  with 

americium(III) and europium(III) was approximately 1.3. This indicates a metal to ligand 

ratio of 4 : 5, although a mixture of 1 : 1 and 2 : 3 would also produce the same slope. 

Although the exact nature of the complexation is still unknown, it is suggested that more 

than one ligand is participating in complexation with the metal cations for all three 

cyclotriveratrylene compounds.  
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Cavitand  

Cavitands are very similar to calixarenes, the main difference being that the 

phenyls in calixarenes are connected in only one position, but are connected in two 

Table 1.4: Distribution coefficient for the extraction of Eu(III) and Am(III) for select 

macrocycles. 

# CMPOs 

 

Type 

 

Ligand DAm DEu SAm/Eu 

4 Calixarene (wr) 1.5a
13, a

 150 37 4.05 

8 Calixarene (wr) 1.8
13, a

 7.5 2.4 3.13 

4 Calixarene (wr) 1.9
17, b

 1.9 1.2 1.58 

4 Calixarene (nr) 1.10c
13, a

 63 48 1.31 

4 Calixarene (nr) 1.11
13, a

 0.88 0.38 2.32 

4 Calixarene (nr) 1.12c 
17, b

 0.66 0.47 1.40 

4 Calixarene (nr) 1.12d
17, b

 0.33 0.24 1.38 

4 Calixarene (nr) 1.12c
17, b

 2.4 2.8 0.86 

4 Calixarene (nr) 1.13a
17, b

 0.27 0.25 1.08 

4 Calixarene (nr) 1.13b
17, b

 0.44 0.38 1.16 

4 Calixarene (nr) 1.13c
17, b

 1.2 1.8 0.67 

3 CVT 1.14a
18, c

 0.08 0.05 1.60 

3 CVT 1.14b
18, c

 2.95 1.95 1.51 

3 CVT 1.14c
18, c

 1.38 1.02 1.35 

4 Cavitand 1.15a
16, c

 0.83 0.36 2.31 

4 Cavitand 1.15b
16, c

 0.26 0.08 3.25 

      
Equal volumes organic/aqueous phases, aqueous phase: 3 M HNO3, organic phase: (a) nitrophenyl hexyl 

ether, (b) CH2Cl2 (c) nitrobenzene, CL = 10
-3 

M. 

 

positions for cavitands. This additional connectivity increases the rigidity of the system. 

It also lessens the effect that substituents have on the conformation of the structure. 

The cavitands 1.15a and 1.15b, shown in Figure 1.8, were studied for their ability 

to extract thorium(IV) and europium(III), the results are summarized in Table 1.3.
20

 It 

was found that the cavitands extracted very low amounts of thorium(IV) when compared 
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to the calixarenes. Both cavitands 1.15a and 1.15b were found to be selective for 

thorium(IV) over europium(III). The selectivity is among the higher of the macrocycles 

studied (XAm/Eu = 1.88 – 2.18, SAm/Eu = 2.31 – 3.25). They do not outperform the narrow 

rim calixarenes, but they are more selective than any of the wide rim calixarenes. 

Compound 1.15a which contains a secondary amide was found to be more selective than 

compound 1.15b which contains a tertiary amide. This is the opposite of what was 

observed for the alkylation of the amide for compounds 1.5a and 1.5i. For both pairs 

though, the amount of thorium(IV) extracted was decreased from the secondary to the 

tertiary amide.  

 

Figure 1.8: CMPO-derivatized cavitands.
20

  

It was determined by logD vs log[L] plots that compounds 1.8a and 1.8b form 1 : 

1 complexes with europium(III)  when excess metal is present and 2 : 1 ligand to metal 

complexes when excess ligand is present. The 2 : 1 complexes have been shown by 

infrared spectroscopy to only bind through the phosphoryl oxygens rather than the amide 

carbonyls.    
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C3-SYMMETRIC PLATFORMS 

Triphenoxymethane 

It has been demonstrated that when all three phenol oxygens of 

triphenoxymethane (TPM) are substituted that the structure adopts an “all up” 

conformation, see Figure 1.9.
21

 This conformer exists exclusively in both solution and 

solid states. The locked arrangement ensures that the attached CMPO units will all be 

pre-organized for cooperative binding.  

 

Figure 1.9: The “all up” conformation of triphenoxymethane.
21

  

Scott and coworkers tethered three CMPOs to the triphenoxymethane platform, 

see Figure 1.9, complex 1.16a and confirmed by X-ray crystallography that all three 

CMPO arms are in the “all up” conformation.
22

 At a ratio of 1 : 1 (ligand : Th
4+

) the 

system performs comparably to calixarene systems, see Table 1.5. At higher 

concentrations of the ligand, 10 : 1 (ligand : Th
4+

), 1.16a binds to 98% of the present 

thorium(IV). The material is much more selective than the calixarene systems, at a ligand 

concentration of 10 : 1 (ligand : Eu
3+

), 1.16a binds to only 3% of the present 

europium(III), while the calixarene systems bind to significantly more (9-73%).  
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Scott and coworkers examined the influence of varying the alkyl group on the 

ortho positions of the triphenoxymethane system, see Figure 1.9.
9
 Compound 1.16a has t-

butyl substituents, compound 1.16b has t-pentyl substituents, and compound 1.16c has 

one methyl and one t-butyl substituent. The bulkier groups increase the solubility, as all 

three compounds (1.16a – 1.16c) were found to be soluble in common organic solvents, 

but only 1.16b was found to be soluble in 1-octanol. The affinity for thorium(IV) was 

found to be high for all three compounds (1.16a – 1.16c), with all extracting over 98% of 

the thorium(IV) present at a ligand : Th
4+

 ratio of 10 : 1. The affinity for europium(III) 

was found to be low for all three compounds (< 4% extracted). Although the introduction 

of new alkyl groups changed the solubility of the complexes, it did not significantly alter 

the extraction or separation abilities.   

 

 

Figure 1.10: CMPO-derivatized triphenoxymethanes.
9,22
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Table 1.5: Extraction Percentage (% E) for compounds 1.16a - 1.16c. 

# CMPOs 

 

Ligand Equiv of ligand in organic phase % Th % Eu 

3 1.16a 1 40 - 

 

 10 98 3 

3 1.16b 10 100 2 

3 1.16c 10 99 4 

 
 

   
Equal volumes organic/aqueous phases, organic phase: CH2Cl2, aqueous phase: 1 M HNO3, CM = 10

-4 
M.  

The cavity size can have a direct effect on the systems’ affinity for various cations 

and is directly influenced by the length and flexibility of the arms. To probe this, Scott 

and coworkers synthesized compounds 1.16d and 1.16e, which are identical to systems 

1.16a and 1.16b except that there is a three carbon spacer between the phenol and the 

CMPO groups instead of a two carbon spacer. Extraction values for thorium(IV) 

remained the same between the different arm lengths, but the affinity for europium(III) 

increased for the longer spacer. Thus the increased arm length resulted in a less selective 

material.   

The influence of alkylating the amide was examined; as seen in compounds 1.16f 

and 1.16g. Just as was seen in the case of the cavitands, the amount of thorium(IV) 

extracted decreased when moving from the secondary to the tertiary amide.  

Compound1.16a was also studied for americium(III) selectivites, see Table 1.6. It 

was found to have moderate separation efficiencies (SAm/Eu = 1.5 – 1.7). The 

americium(III) distribution coefficient was found to be an order of magnitude higher than 

any other C3 platform system at 3 M HNO3 with a lower concentration of ligand than was 

used in the other C3 platform studies.  
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Trialkylbenzene 

The trialkylbenzene (TAB) platforms consist of a central benzene ring ligated at 

the 2, 4, and 6 positions. Three CMPO derivatized trialkylbenzene compounds have been 

reported by Reinhoudt et al., see Figure 1.11.
23

 Compounds 1.17a - 1.17b have moderate 

americium(III) distribution coefficients (1.0 – 2.0) at relatively low ligand concentrations 

(CL ≈ 0.03 M), see Table 1.6. This value drops significantly (0.02 – 0.16) when the amide 

is alkylated for compounds 1.17c and 1.17d. This is similar to what was observed for the 

calixarene and triphenoxymethane systems which also saw a decrease in the amount of 

actinides extracted when moving from secondary to tertiary amides. The selectivity for 

americium(III) over europium(III) increased minimally from the secondary to tertiary 

amine. The increased selectivity for the actinide over europium(III) was also observed for 

compounds 1.5a and 1.5i, but not for compounds 1.3a and 1.3i.  

 

 

Figure 1.11: CMPO-derivatized trialkylbenzene.
23
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Compounds 1.17a and 1.17b differ in the alkyl group at the 1, 3 and 5 positions. 

Compound 1.17a has methyl substituents, while compound 1.17b has ethyl substituents. 

The longer alkyl chain increases the solubility of the compound. Complex 1.17b is 

soluble in trichloroethylene (TCE) and 1-octanol, while complex 1.17a is only soluble in 

TCE. The affinity for thorium(IV) for compound 1.17b increases when extraction are 

performed in 1-octanol versus TCE. In TCE, 1.17a is more selective than 1.17b. 

Comparing 1.17a in TCE and 1.17b in 1-octanol, 1.17b is more selective.  

 Compounds 1.17c and 1.17d differ in the length of the spacer between the 

platform and the CMPO ligand. Compound 1.17d, which has a shorter spacer, has higher 

affinities for americium(III) and higher selectivities for americium(III) over 

europium(III) than compound 1.17c, which has a longer spacer. This is true in TCE and 

1-octanol, as well as at 1 M HNO3 and at 3 M HNO3.  

 

Tripodands 

A large number of CMPO-derivatized tripodands have been studied. In these 

compounds three CMPO moieties are bound to a central carbon atom. The tripodands are 

the most flexible of the C3-symmetric complexes. These compounds can be broken up 

into two classes of systems, those which have imide groups tethered to the central carbon 

and those which have alkyl chains tethered to the central carbon. 

 

Imide Tripodands 

The imide tripodands (ImT) can be seen in Figure 1.12.
18,24

  The results of extractions 

with the imide tripodands are given in Table 1.6. The imide tripodands generally display  
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Table 1.6: Extraction Percentage (% E) for compounds 1.16a - 1.19f. 

 

 

Type Conc 

 

 

Ligand 

 

[HNO3] /  

Organic Solvent DAm DEu SAm/Eu 

TPM 10
-4 

1.16a
18

 1 / nitrobenzene 0.27 0.16 1.69 

 

 
 3 / nitrobenzene 2.82 1.82 1.54 

TAB 3.5 x 10
-2 

1.17a
23

 1 / TCE 2.0 1.2 1.67 

TAB 3.1 x 10
-2 

1.17b
23 

1 / TCE
 

1.0 0.7 1.43 

 

 
 1 / Octanol 1.28 0.66 1.94 

TAB 3.0 x 10
-2

 1.17c
23

 1 / TCE
 

0.02 0.01 2.0 

TAB 3.2 x 10
-2

 1.17d
23

 1 / TCE
 

0.16 0.07 2.29 

ImT 10
-3

 1.18a
24

 1.37 / n-Octanol
 

0.0068 0.0035 1.94 

 

 

 2.70 / n-Octanol
 

0.0017 0.0011 1.55 

 

 

 1 / TCE 0.64 0.33 1.94 

ImT 10
-3

 1.18b
24

 1.37 / n-Octanol
 

0.0089 0.0042 2.11 

 

 

 2.70 / n-Octanol
 

0.0019 0.0011 1.72 

 

 

 1 / TCE 0.52 0.27 1.93 

ImT 10
-4

 1.18c
18

 1 / nitrobenzene
 

0.13 0.08 1.63 

   3 / nitrobenzene
 

0.11 0.06 1.83 

ImT 1.27 x 10
-3 1.18d

24
 0.01 / nitrobenzene

 
414 346 1.20 

   1 / nitrobenzene
 

0.0978 0.0568 1.72 

   3 / nitrobenzene
 

0.0276 0.0205 1.35 

AlT 10
-3

 1.19a
24

 1.37 / n-Octanol
 

0.0069 0.0036 1.92 

   2.70 / n-Octanol
 

0.0021 0.0013 1.62 

AlT 10
-3

 1.19b
24

 1.37 / n-Octanol
 

0.0045 0.0024 1.88 

   2.70 / n-Octanol
 

0.011 0.0067 1.64 

AlT 4.9 x 10
-2 

1.19c
23 

1 / TCE
 

1.4 0.68 2.06 

 

 
 3 / n-Octanol

 
1.7 0.71 2.39 

AlT 4.4 x 10
-2 

1.19d
23 

1 / TCE
 

1.1 0.50 2.20 

   3 / n-Octanol
 

0.87 0.41 2.12 

AlT 4.6 x 10
-2 

1.19e
23 

1 / TCE
 

3.2 1.5 2.13 

   3 / n-Octanol
 

3.7 1.5 2.47 

AlT 3.2 x 10
-2 

1.19f
23 

1 / TCE
 

0.18 0.087 2.07 

   3 / n-Octanol
 

0.13 0.075 1.73 

 
Equal volumes organic/aqueous phases, aqueous phase: 3 M HNO3. TPM: triphenoxymethane, TAB: 

trialkylbenzene, ImT: imide tripodands, AlT: alkyl tripodands. 
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low distribution coefficients compared to the other platform systems. The separation 

factors are moderate (SAm/Eu = 1.3 – 1.9) and comparable to many of the other systems. 

Complexes 1.18a and 1.18b are soluble in 1-octanol, but have extremely low 

distribution coefficients in this solvent. The switch to TCE vastly improved the 

distribution coefficients, yet compared to other compounds these values still not very 

high (DAm = 0.0276 – 0.64).  

Between complexes 1.18a and 1.18b, the americium(III) distribution coefficients 

increase with a longer alkyl chain on the imide. The longer chain also causes an increase 

in the separation efficiencies. In complex 1.18c, the ether linkage between the central 

carbon and the CMPO moieties is replaced with an alkyl linkage and the alkyl chain on 

the imide is replaced with a p-tert-butylphenyl. These alterations result in a complex that 

has separation factors similar to compounds 1.8a and 1.8b, but decreased americium(III) 

distribution coefficients.  

 

 

Figure 1.12: CMPO-derivatized imide tripodands.
18,24

  

Compound 1.18d has a cobalt bis(dicarbollide), COSAN, moiety attached. 

COSAN has been shown to have synergistic effects on the separation of americium(III) 

and europium(III).
25

 At extremely low acid concentrations (0.01 M HNO3) the 

distribution coefficients for 1.18d are extremely high (DAm = 414) but as the 
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concentration of acid is increased to 1 M, the distribution coefficients plummet (DAm = 

0.0978). The strong dependence of extraction values on acidic concentration has been 

commonly seen in COSAN systems.
26, 27 

Using a log-log plot, Verboom and coworkers plotted the americium(III) 

distribution coefficient as a function of the ligand concentration and observed a linear 

relationship between the two variables. The slope of the line was 1.5 indicating a metal to 

ligand stoichiometry of 2 : 3.  

 

Alkyl Tripodands 

The alkyl tripodands (AlT) can be seen in Figure 1.12.
23,24

 The results of chelation 

tests with these materials are summarized in Table 1.6. These materials have similar 

separation efficiencies as compared to the imide tripodands. 

 

 

Figure 1.12: CMPO-derivatized alkyl tripodands.
23,24

 

As in other systems, the length of the spacer between the CMPO moiety and the 

platform was investigated. Compound 1.19a has a five atom spacer, while compound 

1.19b has a four atom spacer. Both compounds have very low americium(III) distribution 
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coefficients. Compound 1.19a extracted slightly more americium(III) at lower acid 

concentrations, while compound 1.19b extracted slightly more americium(III) at higher 

acid concentrations. The separation efficiencies were nearly identical for these two 

compounds. Altering the length of the spacer between the CMPO moiety and the 

platform has a noticeable impact on the extraction properties for most systems. It is 

possible that the influence is minimal in this particular system because the system already 

has a large degree of flexibility.  While in other systems a longer spacer significantly 

alters the flexibility and thus the size of the binding pocket, in the tripodand systems the 

flexibility is not very hindered and thus longer spacers do not substantially alter the 

binding site.  

The switch between secondary and tertiary amides was investigated. Unlike many 

of the other systems, which displayed a decrease in the affinity for the actinides from the 

seconday to tertiary amides, the alkyl tripodands display a significant increase in the 

americium(III) distribution coefficients when the amide is alkylated.  The tertiary amides, 

1.19c – 1.19f, have americium(III) distribution coefficients 2-3 orders of magnitude 

higher than the secondary amides, 1.19a and 1.19b. Reinhoudt and coworkers attribute 

the increased americium distribution coefficients to an increase in solubility of the 

tertiary amides over the secondary amides. There is a modest increase in the selectivity 

from the secondary to the tertiary amides.
23

 Between the tertiary amides 1.19c – 1.19f 

there is little difference in the separation efficiencies, but there are large differences in the 

distribution coefficients. The differences in the distribution coefficients may only be a 

factor of the different concentrations of ligand used in each extraction.  
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CONCLUSION 

The attachment of many CMPOs into a single system has shown many beneficial 

chelation properties. There are large variances in the performance of systems depending 

on the type of platform utilized. It was observed that for the americium(III)/europium(III) 

extractions that the wide rim calixarene systems were the most selective, with an average 

SAm/Eu of 2.92, and median SAm/Eu of 3.13. This system also included the most selective 

material overall in solutions of greater than 1 M HNO3, compound 1.5a (SAm/Eu = 4.05). 

The median SAm/Eu factors follow the order: wide rim calixarenes > cavitand > alkyl 

tripodands > trialkylbenzene > imide tripodands > triphenoxymethane > CVT > linear 

oligomers > narrow rim calixarenes.  In addition to being the most selective, the wide rim 

calixarenes also include the compound with the highest overall americium(III) 

distribution coefficient, and generally have high distribution coefficients. Although the 

alkyl tripodands and cavitand systems have high selectivities, they do not have high 

distribution coefficients.  

The least selective system, the narrow rim calixarenes, had the lowest average and 

lowest median separation factor, and included the least selective material overall, 

compound 1.13c. The americium(III) distribution coefficients varied widely for the 

narrow rim calixarenes. 

For the extractions with thorium(IV), the highest performing materials for each 

system were compared. The materials with the highest affinities for thorium(IV) follow 

the order: the narrow rim calixarene 1.10c (%Th = 96, XTh/Eu = 1.41) > the linear 

oligomer 1.2b (%Th = 78,  XTh/Eu > 26) > the wide rim calixarene 1.7c (%Th = 70, XTh/Eu 

= 0.96) > the cavitand 1.15a (%Th = 24, XTh/Eu = 2.18). The materials with the highest 

selectivity for thorium(IV) over europium(III) for each platform type were ranked and 

ordered:  the linear oligomer 1.2b (XTh/Eu > 26, %Th = 78) > the narrow rim calixarene 
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1.10b (XTh/Eu = 6.48, %Th = 81) > the cavitand 1.15a (XTh/Eu = 2.18, %Th = 24) > the 

wide rim calixarene 1.7e (XTh/Eu = 1.71, %Th = 60).  

For all of the systems it was found that alkylating the amide of the CMPO system 

resulted in a decreased uptake of the actinides, except for the alkyl tripodands which 

experienced a large increase in the uptake of americium(III) after alkylating. The 

selectivity did not vary greatly between the secondary and tertiary amides for any of the 

systems and one was not found to be consistently higher.  

The length of alkyl chains on the platforms generally had no influence on the 

extraction behavior of the systems. Some systems did observe differences in extraction 

behavior when longer alkyl chains were appended to the platform, but the longer chains 

did not cause any consistent increase or decrease in the extraction or separation behavior. 

For the systems which studied varying the number of CMPO moeities, the 

calixarenes and the linear systems, it was generally seen that more CMPO moeities lead 

to increased separation and extraction efficiencies up to 4 CMPO moeities. For both the 

linear oligomer systems and the calixarene systems, the move from tetramer to pentamer 

did not increase the extraction efficiencies. Additionally the calixarene species 1.8, with 8 

CMPO moeities, was out performed by the calixarene 1.5a, with only 4 CMPO moeities.  

 The influence of the length of the spacer between the platform and the CMPO 

moiety was studied for many systems. For all of the systems either no trend was observed 

or there was a decrease in the selectivity with a longer spacer between the platform and 

the CMPO moiety. In some cases the extraction efficiency increased, in some it 

decreased, and in some there was no trend observed for a longer spacer between the 

platform and the CMPO moiety.  
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Chapter 2:  Separation of f-Elements Using CMPO Functionalized 

Ring-Opening Metathesis Polymers  

INTRODUCTION 

Spent nuclear fuel contains many radioisotopes with half lives on the order of 10
3
 

years. This makes engineering a burial system that contains the material for the life of the 

radioactivity very difficult.
3 

The transmutation of the long lived products in a fast reactor 

can create more energy and less high level waste.
4,28

 This however, requires the 

separation of the various components in the fuel into separate waste streams. This is a 

difficult task, especially for obtaining selectivity between the lanthanides and actinides 

when considering the chemical similarities of these two classes of ions. 

CMPO, carbamoylmethylphosphine oxide, based ligands have shown 

discrimination between these two classes of materials, by taking advantage of the slightly 

softer nature of the actinides.
29

 In the 1980s, Horwitz et al. developed CMPO for the 

TRUEX process (TRansUranic Extraction), whereby actinides are selectively sequestered 

into the organic phase by CMPO during a liquid-liquid extraction from acidic 

media.
5,7,30,31

 This work revealed that the bidentate CMPO binds predominately in a 3 : 1 

fashion to the actinides with the remaining coordination sphere of the metal ion occupied 

by water and nitrate ligands.
7
  

In the 1990s a series of CMPO-derivatized platform systems were developed to 

take advantage of cooperative binding with high local concentration or to enable ease of 

separation. To provide systems with the 3 : 1 stoichiometry, many groups bound together 

three CMPO ligands in a single molecule using various organic support structures. In 

1996 Bӧhmer et al. developed a CMPO calixarene system.
8
 In 1997 Reinhoudt et al. 

developed the first CMPO cavitand systems.
20

 Then in 2002 Scott et al. developed 

CMPO tripod systems based on a C3-symmetric triphenoxymethane platform.
22

 These 
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research groups consistently observed an increased separation and extraction efficiency 

as compared a molecules with a single CMPO. Additionally, in 1995 Vandergrift et al. 

bound CMPO to magnetic particles to eliminate the organic phase required in typical 

separations.
32

 

Although the extraction properties of these tri-ligand systems are high, these 

systems would be difficult to synthetically modify. The properties of block polymers can 

be easily modified by substituting the ratio of blocks or choosing different blocks 

entirely. ROMP, ring-opening metathesis polymerization, has been shown to easily create 

block copolymers.
33

 By creating a ROMP active CMPO containing monomer, a wide 

range of block copolymer systems can easily be synthesized. This will support future 

efforts to modify the properties of a CMPO containing material to create a high 

performing, single phase extraction system. Herein, I will discuss the synthesis and 

characterization of a CMPO containing ROMP active monomer, the corresponding 

homopolymers, and the extraction properties of each. Figure 2.1 shows a schematic of 

extraction of actinides by a polymeric CMPO material. 

 

 

Figure 2.1: Schematic showing actinides selectively sequestered from an aqueous phase 

into an organic phase by a CMPO containing material. 
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RESULTS AND DISCUSSION 

Synthesis and Characterization 

A series of CMPO tethered polymers were synthesized largely through modified 

literature procedures.
8,34

 Compound 2.4 was prepared through a condensation between 

the Diels-Alder product 2.1 and ethylenediamine. An X-ray crystal structure has been 

obtained of the product, see Figure 2.2. First attempts at this reaction were performed 

with 1,3-diaminopropane and resulted in the formation of 2.2. An X-ray crystal structure 

was obtained of this material, see Figure 2.3. Literature searches revealed that this 

compound is an intermediate in the synthesis of phloeodictine A1, which has been shown 

to have antimicrobial properties, as well as exhibiting significant cytotoxicity towards KB 

human naso-pharyngeal carcinoma cells.
35

 This synthetic route eliminated 3 steps from 

previously published routes.
35

 It was found later that by lowering the reaction 

temperature, 2.3 could be synthesized. 

 

Scheme 2.1: Synthesis of ROMP functionalized amines, 2.1– 2.4. 

(a)  benzene, RT, 18 h, 81.5% (b) 1,3-diaminopropane, 70 °C, 2 h, 23.5% (c) 1,3-diaminopropane, RT, 2 h, 

12.1% (d) 1,2-diaminoethane, 70 °C, 2 h, 9.9%.  
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 Figure 2.2: Molecular structure of 2.4. 

Two independent molecules of 2.4 showing the atom labeling scheme. Displacement ellipsoids are shown 

at the 50% probability level. 

 

 

Figure 2.3: Molecular structure of 2.2. 

The atom labeling scheme is shown. Displacement ellipsoids are shown at the 50% probability level. 
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Scheme 2.2: Synthesis of CMPO starting materials, 2.5 – 2.7. 

(a) [1] chlorodiphenylphosphine, Zn, I2, benzene, 70 °C, 18 h [2] HOOH, ethanol, RT, 1 h, 74.8% (b) 

NaOH, methanol/H2O, 70 °C, 18 h, 84.4% (c) 4-nitrophenol, CHCl3, 45 °C, 5 h, 77.7%.   

 

2.5 was synthesized in a Reformatsky-type reaction between 

chlorodiphenylphosphine and methylbromoacetate, followed by oxidation with hydrogen 

peroxide, adapted from Kiełbasiński and Mikołajczyk, see Scheme 2.2.
36

 The carboxylic 

acid, 2.6, was synthesized by hydrolysis of 2.5. Attempts to directly synthesize 2.6 with 

bromoacetic acid in place of methylbromoacetate were unsuccessful. Various 

unsuccessful attempts were made to couple 2.6 with 2.4. Eventually 2.6 was 

functionalized with a p-nitrophenol leaving group to create 2.7.  

 

Figure 2.4: Molecular structure of 2.8. 

Selected atom labeling scheme is shown. Displacement ellipsoids are shown at the 30% probability level. 

The hydrogen atoms have been omitted for clarity. 
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The monomer, 2.8, was then prepared in good yields through the aminolysis of 

2.7 by compound 2.4, see Scheme 2.3. The monomer, 2.8, was characterized by 
1
H, 

13
C{

1
H}, and 

31
P{

1
H} NMR spectroscopy, IR spectroscopy, mass spectrometry, and 

elemental analysis by combustion. An X-ray crystal structure has been obtained of the 

monomer, 2.8, see Figure 2.4. The X-ray crystal structures of 2.4 and 2.8 reveal that the 

exo isomer of the bridged bicyclic ring system is exclusively formed, yielding the 

monomer more active towards polymerization.
37

 The material was also confirmed to be 

exo by 
1
H NMR.     

 

Scheme 2.3: Synthesis of monomer and polymer CMPO chelators, 2.8 – 2.9. 

(a) CHCl3, 45 °C, 18 h, 67.1% (b) 2
nd

 generation Grubbs’ catalyst, CHCl3, RT, 18 h, 55.7 %. 

 

An important question we hoped to answer was whether or not the molecular 

weight of the polymer affects the performance of the extractant material. To investigate 

this, three polymers of varying molecular weights were synthesized (2.9a-c, Scheme 2.3). 

Polymerizations were first attempted with Grubbs’ first generation catalyst, with no 

resulting polymerization. The switch to more functional group tolerant second generation 

catalyst yielded high molecular weight polymers.
38 

The polymers were characterized by 

1
H and 

31
P{

1
H} NMR spectroscopy, IR spectroscopy, and GPC analysis. We investigated 
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the relationship between the observed molecular weight and the molar ratio of catalyst to 

monomer. The relationship was found to be linear, see Figure 2.5, indicating a controlled 

living polymerization. The decomposition temperature of 2.9c was investigated by 

thermogravimetric analysis and found to be 250 °C, see Figure 2.6. 

 

 

Figure 2.5: Plot of observed molecular weight (Mn) versus monomer/catalyst ratio 

([M]/[C]) for polymers 2.9a-c.  
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Figure 2.6: Thermogravametric analysis of 2.9c, mass percent versus temperature (°C). 

 

Chelation Studies 

The extraction efficiencies of the monomer, 2.8, and polymers 2.9a-c were 

investigated. The efficiencies were tested by performing a liquid-liquid extraction with 

metal nitrates in aqueous acidic media, which were extracted into organic media by 

ligands in the organic phase, see Figure 2.1. 

For initial testing, the aqueous phase used was 10
-4

 M Th
4+

 in 1 M HNO3 to 

replicate the conditions used in the literature, to allow for simple comparison between the 

different materials. Choices for the organic phase were limited due to the solubility of the 

materials. Ultimately CH2Cl2 was chosen due to its popularity in CMPO extractions. 

As a control, the first extraction was performed with pure CH2Cl2, containing no 

CMPO material, to ensure that the extraction ability of the system is due entirely to the 
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CMPO materials and not due to the solubility of the metal nitrates in CH2Cl2. The 

extraction ability of CH2Cl2 was found to be < 1 ± 3%.  

 

Table 2.1: Extraction efficiencies for selected materials 

  [CMPO] 2.8 2.9a 2.9b 2.9c 

0.05 M 82 65 >99 >99 

0.01 M 

0.005 M 

0.001 M 

7 

4 

< 1 

34 

21 

16 

>99 

>99 

40 

>99 

>99 

93 

Percent of Th
4+

 extracted from 1M HNO3 solutions by ligands. Aqueous phase: 10
-4

 Th(NO3)4 · H2O, 

Organic phase: extracting materials in CH2Cl2. 

 

The extraction of thorium(IV) was performed with varying concentrations of 

extracting material, 0.05 M – 0.001 M. The concentration of the polymeric materials was 

determined by using by using the same gram quantity as the monomer at each 

concentration, giving one mole of repeat unit per liter. The results of these tests are 

summarized in Table 2.1.  

For the monomer 2.8, high extraction values could be obtained with 1000 times 

greater CMPO to metal concentration, but sharply declined to 7% at 100 times greater 

concentration. All the polymeric materials outperformed the monomer, 2.8. 

Polymers 2.9b and 2.9c were able to achieve quantitative extractions at only 50 

times greater CMPO to metal concentration. Though the performance of 2.9b sharply 

declines at 10 times CMPO to metal concentration, 2.9c still extracts over 90% of the 

metal ions. Quantitative extraction was not achieved with 2.9a and at very high ligand 

concentrations the monomer does outperform 2.9a, but as the concentration of the 

materials is decreased the polymer significantly outperforms the monomer. At 0.01 M, for 
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example, the polymer binds to 5 times more Th
4+

 than the monomer. It is believed that as 

the concentration of monomer is decreased it becomes more and more difficult for three 

CMPO groups to find a metal ion and complete extraction. As the concentration of the 

polymer is decreased the “localized concentration” remains the same; that is many 

CMPO groups are linked together despite the solution being somewhat dilute. Because of 

this the CMPO ligands can take place in cooperative binding in the case of the polymers, 

but not in the case of the monomers.  

Looking at the differences between the three polymers, it is clear that molecular 

weight does play a role in the extraction efficiency of the materials. We speculate that 

these differences can be attributed to the differing solubilities of the three materials. 

It is unclear if binding is occurring between three adjacent CMPO units or by 

CMPO units on adjacent chains. But it is believed that three adjacent CMPO moieties are 

binding because at low concentrations, where the likely hood of multiple chains coming 

in contact is small, high extraction efficiencies are achieved.  

When comparing the ligand to other platform systems we need to decrease the 

ligand concentration by a factor of three to account for the three ligands on every 

platform system. Quantitative extractions were achieved with 0.005 M or 0.0017 M, 

when decreasing by three, with 2.9b and 2.9c. This is quite comparable to the other 

platform systems in which most achieve quantitative extraction with Th
4+

 at 0.001 M.
9,22

 

To determine the separation efficiency of the materials, lanthanides were added to 

the extractions. Three lanthanides were chosen: lanthanum(III), europium(III), and 

cerium(III). To keep the same overall metal concentration of 10
-4

 M, the concentration of 

each individual metal was set at 2.5 x 10
-5 

M, so the final solution contained 2.5 x 10
-5 

M 

Th
4+

, La
3+

, Eu
3+

, and Ce
3+

. The percentage of each individual metal extracted was 



 40 

converted to a distribution of ions in each phase using equation 2.2, given in the 

experimental. The separation values were determined by dividing the distribution of 

thorium(IV) by the distribution of a given ion, using equation 2.3, given in the 

experimental. A larger value indicates a higher preference to extract thorium(IV) over a 

given ion.   

 

Table 2.2: Separation efficiencies for polymeric materials. 

 2.9a 2.9b 2.9c 

STh/Eu 327.7 16.7 15.6 

STh/La 175.6 18.7 5.7 

STh/Ce 123.8 13.0 5.7 

STh/M values for extraction of Th
4+

, Ce
3+

, La
3+

, and Eu
3+ 

(CM = 2.5 x 10
-5 

M) from an aqueous solution of 1 

M HNO3 into a CH2Cl2 solution of polymers (CCMPO = 0.01 M) at  25 °C.  

 

Looking at Table 2.2, it is clear that all the materials have a preference for 

thorium(IV) over the lanthanides. The highest molecular weight polymer 2.9a, is the 

most discriminate towards thorium(IV), with much higher separation values than the 

other materials. The smallest molecular weight polymer has the lowest separation values 

for all of the ions tested, revealing a trend of better separations with higher molecular 

weight materials. The trend of increasing separation efficiency with increasing size has 

also been shown between single CMPO systems and platform CMPO systems, where 

multiple CMPO containing systems have shown a higher preference for actinides than 

homologous single CMPO containing systems.
8 
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CONCLUSION 

The high extraction efficiencies with the smaller polymer and the high separation 

efficiencies with the higher molecular weight polymer lead us to believe that there is a so 

called “sweet-spot” for idealized molecular weight, where both extraction and separation 

efficiencies can be maximized. Future efforts will focus on tuning the molecular weight 

to maximize extraction properties, and development of block polymer systems.  

We have demonstrated an improvement in CMPO chelation by tethering the 

ligand to a polymeric backbone.  All three polymers are better extractants than the 

monomer. We have also demonstrated a dependence of the polymer performance on 

molecular weight. While the higher molecular weight polymer, 2.9a, has an increased 

separation efficiency as compared to the lower molecular weight polymers, the lowest 

molecular weight polymer, 2.9c, has the highest extraction efficiency. The extraction 

efficiencies demonstrated by 2.9b and 2.9c are comparable to the performance other 

CMPO platform systems reported in the literature.
9,22

  

 

EXPERIMENTAL 

General Methods 

All chemicals were purchased from chemical suppliers and were used without 

further purification. All dry reactions were performed using standard Schlenk techniques 

and were performed under an inert atmosphere of nitrogen. CH2Cl2 and CHCl3 were dried 

using the Pure-Solv 400 solvent purification system. Anhydrous benzene was purchased 

from EMD. 
1
H, 

13
C{

1
H}, and 

31
P{

1
H} NMR spectra were obtained on a Varian Unity+ 

300. 
1
H, and 

13
C{

1
H}  NMR spectra were referenced to the residual solvent peaks. 

31
P{

1
H} NMR spectra were referenced to a phosphoric acid external standard. Number 
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average molecular weights (Mn) and polydispersity indices (PDI) were measured from 

DMF solutions using an Agilent 1100 series GPC (Agilent Technologies) equipped with 

Viscotek I-series mixed bed medium molecular weight columns and refractive index 

detectors, and are reported relative to polystyrene standards. Melting points are not 

corrected. High resolution mass spectra were obtained with a Micromass Autospec 

Ultima. Elemental analysis was performed by QTI, Whitehouse, NJ 

(www.qtionline.com). 

 

Extractions 

The lanthanide and actinide salts, Th(NO3)4 · H2O (Strem), Ce(NO3)3 · 6H2O 

(Alfa Aesar), Eu(NO3)3 · 5H2O (Strem), and La(NO3)3 · 6H2O (Fisher), were used as 

received. Solutions were prepared using trace metal grade deionized water, trace metal 

grade HNO3 (BDH), and twice distilled dichloromethane.  

A 10
-4 

M solution of Th
4+

 in 1 M nitric acid, and a solution of 2.5 x 10
-5

 M Th
4+

, 

2.5 x 10
-5 

M Eu
3+

, 2.5 x 10
-5

 M Ce
3+

 and 2.5 x 10
-5 

M La
3+

 in 1 M HNO3 were prepared. 

Equal volumes (0.6 mL) of aqueous and organic phases were mixed in a 1 dram glass 

vials equipped with a polyethylene cap and PTFE coated stir bars. The vials were stirred 

at 1200 rpm for 20 hours. The solutions were then centrifuged and the aqueous layer 

pipetted off the top and transferred to a separate vial. The solution was centrifuged again 

and the top layer was diluted to ppb levels with 1 M HNO3. The solutions were tested in 

triplicate using a GBC Optimass 8000 ICP-time-of-flight (TOF)-MS (GBC Scientific 

Equipment, Hampshire, IL). Solutions were introduced into the instrument using a 

cyclonic spray chamber (Glass Expansion; Melbourne, Australia) and concentric glass 

nebulizer (C type, Precision Glassblowing; Centennial, CO).  The extraction efficiencies 
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were determined using equation 2.1, where C1 is the average count from the sample, and 

C0 is the average count of a solution stirred with no organic phase and no extracting 

material. 

 %E = ((C0 – C1)/C0) x 100%  (2.1) 

All %E values are the average of three separate trials; the standard deviations for 

all are under ± 5%. Extraction efficiencies were converted into distribution coefficients 

using equation 2.2, derived from Böhmer and coworkers.
8
  

 D  = %E/100-%E (2.2) 

The separation factor STh/M, defined by equation 2.3, is a ratio of the distribution 

coefficients of the respective metals.  

 SM1/M2 = DM1 / DM2  (2.3) 

 

X-ray Crystallography 

Crystals of 2.2 suitable for X-ray diffraction were obtained by slow evaporation 

from a saturated solution of 2.2 in dichloromethane that was layered with n-heptane. 

Crystals of 2.4 suitable for X-ray diffraction were obtained by precipitation from a 

CH2Cl2–ether (1 : 3 v/v) solution. Crystals of complex 2.8 were grown from a slowly 

evaporated solution of CH2Cl2. The single–crystal diffraction data for compound 2.2 was 

collected at 100 K on a on a Rigaku AFC12 with Saturn 724+ CCD using a graphite 

monochromator. The single–crystal diffraction data for compounds 2.4 and 2.8 were 

collected on a Rigaku SCX-Mini diffractometer with a Mercury CCD using a Rigaku Tec 

50 low-temperature device. The complex was collected using a graphite monochromator 

with MoKα radiation (λ = 0.71073Å). Absorption corrections were applied using multi-

scan. Data reduction was performed using the Rigaku Americas Corporation’s Crystal 
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Clear version 1.40.
39

 The structures were solved by direct methods and refined 

anisotropically using full-matrix least-squares methods with the SHELX-97 program 

package.
40

 The amine and amide H atoms were located in a difference Fourier map and 

both positional and isotropic displacement parameters were refined. All other H atoms 

were positioned geometrically and refined using a riding model, with C—H = 0.93 – 0.99 

Å and Uiso(H) = 1.2 Ueq(C). Neutral atom scattering factors and values used to calculate 

the linear absorption coefficient are from the International Tables for X-ray 

Crystallography (1992).
41

 

 

Synthesis 

 
 

[2.2]  3,4,6a,7,10,10a-hexahydro-7,10-epoxypyrimido[2,1-a]isoindol-6(2H)-one 

1,3-diaminopropane (14.9 g, 201.0 mmol) and 2.1 (4.8 g, 28.9 mmol) were 

refluxed at 80 °C for 2 h. The resulting solution was poured into H2O and extracted with 

dichloromethane (2 x 30 mL). The combined organic layers were dried with Na2SO4 and 

concentrated. Recrystallization in toluene yielded a white solid (23.5%). m.p. 120 °C 

(decomp.). 
1
H NMR (CDCl3) δ: 6.44 (s, 2H), 5.20 (s, 1H), 5.16 (s, 1H), 3.52 (t, 2H, J = 

6.0), 3.47 (t, 2H, J = 5.6), 2.85 (d, 1H, J = 7.2), 2.69 (d, 1H, J = 6.9), 1.81-1.73 (m, 2H), 

13
C{

1
H} NMR (CDCl3) δ: 173.4, 155.3, 136.0 (CH), 82.4 (CH), 80.1 (CH), 46.4 (CH), 

45.3 (CH), 44.3 (CH2), 37.5 (CH2), 18.7 (CH2). HRMS (CI+) calcd for C11H12O2N2 [M + 

H]+ 205.0977, found 205.0977. 
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[2.3] 2-(3-aminopropyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione 

1,3-diaminopropane (0.25 mL, 3.0 mmol) and  2.1 (0.20 g, 1.2 mmol), were 

stirred at R.T. for 18h. The resulting solution was poured into H2O and extracted with 

dichloromethane (2 x 30 mL). The combined organic layers were dried with Na2SO4 and 

concentrated. Recrystallization in a mixture of dichloromethane and ether (1 : 3 v/v) 

yielded a white solid (0.03 g, 12.6%). m.p. 134 °C (decomp.). 
1
H NMR (CDCl3) δ: 6.49 

(t, 2H, J = 0.9), 5.24 (t, 2H, J = 0.9), 3.55 (t, 2H, J = 6.9), 2.82 (s, 2H), 1.68 (br, 2H), 

13
C{

1
H} NMR (CDCl3) δ: 176.4, 136.5, 80.9, 47.4, 38.8, 36.1, 31.3.   

 

 

 
 

[2.4]  2-(2-aminoethyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione 

Ethylenediamine (5 mL, 74.9 mmol) and 2.1 (5.0 g, 30.1 mmol) were refluxed at 

80 °C for 3 h. The resulting solution was poured into H2O and extracted with 

dichloromethane (2 x 30 mL). The combined organic layers were dried with Na2SO4 and 

concentrated. Recrystallization in a mixture of dichloromethane and ether (1:3 v/v) 

yielded a white solid (9.9%).  m.p. 126 °C (decomp.). 
1
H NMR (CDCl3) δ: 6.45 (s, 2H), 

5.20 (s, 2H), 3.48 (t, 2H, J = 6.3), 2.80 (t, 4H, J = 6.3), 1.01 (br, 2H), 
13

C{
1
H} NMR 

(CDCl3) δ: 176.4, 136.4, 80.8, 47.3, 41.9, 39.7. HRMS (CI+) calcd for C10H13O3N2 [M + 
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H]+ 209.0921, found 209.0922. Anal. calcd. for C10H12O3N2: C, 57.68; H, 5.81; N, 13.45. 

Found: C, 57.27; H, 5.51; N, 12.96. 

 

 

 

[2.5] Methyl  2-(diphenylphosphoryl)acetate  

2.5 was prepared following a modified prep from Kiełbasiński and Mikołajczyk.
36

 

To a flame dried Schlenk flask was added dry benzene (200 mL), methyl bromoactetate 

(5 mL, 43.4 mmol), chlorodiphenylphosphine (12 mL, 54.4 mmol), zinc dust (3.9 g, 59.6 

mmol), and a single crystal of iodine. The mixture was refluxed at 70 °C overnight. After 

cooling to room temperature the solution was exposed to atmosphere and a solution of 2 

mL of 30% hydrogen peroxide in 8 mL EtOH was added and stirred for 1 hour. The 

solution was washed with brine slightly acidified with 2 M HCl, and extraced into CHCl3 

(40 mL x 3). The organic layer was dried with sodium sulfate and concentrated. 

Recrystallization in chloroform/n-heptane yielded a white solid (74.8%). m.p. 112 °C. 
1
H 

NMR (CDCl3) δ: 7.9 – 7.7 (m, 4H), 7.6 – 7.4 (m, 6H), 3.6 (s, 3H), 3.5 (d, 2H, J = 15.0), 

13
C{

1
H} NMR (CDCl3) δ: 167.0, 166.9, 132.5, 131.9, 130.6, 129.0, 128.8, 58.7, 36.4, 

32.0,  
31

P{
1
H} NMR (CDCl3) δ: 27.8. 
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[2.6] 2-(diphenylphosphoryl)acetic acid 

2.5 (7.62 g, 27.8 mmol) was dissolved in MeOH (200 mL).  An equal volume of 2 

M NaOH (200 mL) was added and the solution was refluxed at 70 °C overnight. The 

solution was extracted with CHCl3 (50 mL). The aqueous layer was neutralized with 2M 

HCl and then extracted into CH2Cl2 (30 mL x 3). The organic layer was dried with 

sodium sulfate and concentrated to one-third the original volume. The solution was 

mixed with equal amounts of ether and brought to -20 °C. The resulting white solid was 

collected by vacuum filtration, washed with diethyl ether (84.4%). m.p. 135 °C. 
1
H NMR 

(CDCl3) δ: 12.10 (b, 1H), 7.75 – 7.68 (m, 4H), 7.53 – 7.38 (m, 6H), 3.484 (d, 2H, J = 

13.81), 
13

C{
1
H} NMR (CDCl3) δ: 167.0, 166.9, 132.4, 132.4, 131.4, 131.1, 131.0, 130.0, 

128.8, 128.6, 38.6, 37.8, 
31

P{
1
H} NMR (CDCl3) δ: 32.3.  

 

 

 

[2.7] 4-nitrophenyl 2-(diphenylphosphoryl)acetate 

2.7 was prepared following a modified preparation by Böhmer and coworkers.
8
 

2.6 (6.00 g, 23.0 mmol), p-nitrophenol (3.49 g, 25.1 mmol), and thionyl chloride (2.5 ml, 

34.0 mmol) were stirred in dry chloroform for 5 hours at 45 °C and then an additional 12 

hours at room temperature. The solution was washed with a 5% sodium bicarbonate 

solution, extracting into chloroform x 3. The organic layer was concentrated to one-third 

the volume and a large volume of ether was added to the solution. Upon cooling a white 
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crystalline solid precipitate. The solid was collected by vacuum filtration (7.05 g, 80.1 

%). The 
1
H NMR spectra matched that reported by Böhmer and coworkers.

8
 

 

 

 

[2.8] N-(2-(1,3-dioxo-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindol-2(3H)-yl)ethyl)-2- 

(diphenylphosphoryl)acetamide 

2.4 (2.68 g, 12.9 mmol) and 2.7 (4.81 g, 12.6 mmol) were stirred at 45 °C in dry 

chloroform overnight under N2. After cooling to room temperature the solution was 

exposed to atmosphere and 0.2 M KOH (100 mL) was added. The mixture was stirred at 

room temperature for another hour. The solution was washed with 5% (b.w.) sodium 

bicarbonate solution and extracted into CHCl3 (x 3), then washed with water and 

extracted into CHCl3 (x 3). The solution was dried with sodium sulfate and concentrated. 

A white solid was obtained by recrystallizing in a mixture of CHCl3 and heptane (1 : 3 

v/v) (69.1%). m.p. 223 °C.  
1
H NMR (CDCl3) δ: 7.62 – 7.72 (m, 4H), 7.38 – 7.55 (m, 

6H), 6.44 (s, 2H), 5.21 (d, 2H, J = 0.90), 3.55 (t, 2H, J = 6.00), 3.37 (q, 2H, J = 6.30), 

3.23 (d, 2H, J = 12.60), 2.78 (s, 2H), 
13

C{
1
H} NMR (CDCl3) δ: 176.2, 165.3, 136.4, 

132.3, 130.8, 130.6, 128.9, 128.7, 80.8, 47.4, 38.9, 38.2, 37.5.  
31

P{
1
H} NMR (CDCl3) δ: 

29.8. HRMS (CI+) calcd for C24H23O5N2P [M]+ 450.1345, found 450.1343; Anal. calcd 

for C24H23O5N2P: C, 64.0; H, 5.15; N, 6.30 Found: C, 62.8; H, 4.85; N, 6.30. 
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[2.9] poly N-(2-(1,3-dioxo-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindol-2(3H)- 

yl)ethyl)-2-(diphenylphosphoryl)acetamide 

In an airfree glovebox 2.8 (2.9a, 0.772 g, 1.714 mmol; 2.9b 0.302 g, 0.671 mmol, 

2.9c 0.0301 g, 0.668 mmol) and Grubbs’ second generation ruthenium catalyst (2.9a, 

1.48 x 10
-4 

g, 1.75 x 10
-4

 mmol; 2.9b 0.006 g, 0.007 mmol, 0.0576 g, 0.068 mmol) were 

dissolved in CH2Cl2. The reactions were moved outside the box and stirred under 

nitrogen at room temperature for 18 hours. The reactions were then exposed to the 

atmosphere, ethylvinyl ether was added, and the reactions were stirred for another 30 

min. A gel like solid precipitated and the solvent was decanted off. The solid was re-

dissolved in chloroform and precipitated out again with large amounts of MeOH. The 

solid was then collected by decantation and dried under reduced pressure (2.9a 44.0%; 

2.9b 41.2%, 2.9c 81.9%). 2.9a IR: v = 1698.20 cm
-1

 (C=O, amide), 1667.22 cm
-1

 (C=O, 

imide), 1181.45 cm
-1

 (P=O).
 
 

31
P{

1
H} NMR (CDCl3) δ:  30.9. Mn = 3.84 x 10

5
, PDI = 

1.79. 2.9b, IR: v = 1697.92 cm
-1

 (C=O, imide), 1666.83 cm
-1

 (C=O, amide), 1180.60 cm
-1

 

(P=O). 
1
H NMR (CDCl3) δ:  7.65 (b, 4H), 7.38 (b, 6H), 5.90 (b, 2H), 5.66 (b, 2H), 4.99 

(b, 1H), 4.48 (b, 2H), 3.38 (b, 8H), 2.14 (b, 2H). 
31

P{
1
H} NMR (CDCl3) δ:  31.1. 4b Mn = 

1.94 x 10
5
, PDI = 1.79. 2.9c IR: v = 1700.65 cm

-1
 (C=O, imide), 1667.76 cm

-1
 (C=O, 

amide), 1183.73 cm
-1

 (P=O). 
1
H NMR (CDCl3) δ: 7.68 (b, 4H), 7.39 (b, 6H), 5.95 (b, 
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1H), 5.68 (b, 1H), 5.03 (b, 1H), 4.47 (b, 1H), 3.32 (b, 8 H). 
31

P{
1
H} NMR (CDCl3) δ:  

30.1, Mn = 1.64 x 10
5, 

PDI = 1.98. 
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Crystallographic Data 

 

Table 2.3:  Crystal data and structure refinement for 2.2 

CCDC # 950442 

________________________________________________________________________ 

Empirical formula  C11 H12 N2 O2 

Formula weight  204.23 

Temperature  100(2) K 

Wavelength  0.71069 Å 

Crystal system  Monoclinic 

Space group  P121/c1 

Unit cell dimensions a = 4.916(5) Å α = 90 ° 

 b = 8.998(5) Å β = 94.445(5) ° 

 c = 21.604(5) Å γ = 90 ° 

Volume 952.8(11) Å3 

Z 4 

Density (calculated) 1.424 Mg/m3 

Absorption coefficient 0.100 mm-1 

F(000) 432 

Crystal size 0.38 x 0.14 x 0.09 mm3 

θ range for data collection 3.63 to 27.48 ° 

Index ranges h = -6→6 

 k = -11→11 

 l = -27→27 

Reflections collected 21174 

Independent reflections 2193 [R(int) = 0.0307] 

Completeness to theta = 27.48° 99.9 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2193 / 0 / 136 

Goodness-of-fit on F2 1.051 

Final R indices [I>2σ(I)] R1 = 0.0372, wR2 = 0.0980 

R indices (all data) R1 = 0.0398, wR2 = 0.0996 

Largest diff. peak and hole 0.357 and -0.176 e.Å-3 
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Table 2.4:  Crystal data and structure refinement for 2.4. 

CCDC # 950443 

________________________________________________________________________ 

Empirical formula  C10 H12 N2 O3 

Formula weight  208.22 

Temperature  153(2) K 

Wavelength  0.71075 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 17.840(2) Å α = 90 ° 

 b = 6.8747(6) Å β = 102.419(5) ° 

 c = 16.2125(17) Å γ  = 90 ° 

Volume 1941.9(3) Å3 

Z 8 

Density (calculated) 1.424 Mg/m3 

Absorption coefficient 0.107 mm-1 

F(000) 880 

Crystal size 0.48 x 0.25 x 0.07 mm3 

θ range for data collection 2.34 to 27.49 ° 

Index ranges h = -23→23 

 k = -8→8 

 l = -21→21 

Reflections collected 19826 

Independent reflections 4439 [R(int) = 0.0333] 

Completeness to theta = 27.49° 99.6 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4439 / 0 / 287 

Goodness-of-fit on F2 1.064 

Final R indices [I>2σ(I)] R1 = 0.0456, wR2 = 0.1130 

R indices (all data) R1 = 0.0606, wR2 = 0.1244 

Largest diff. peak and hole 0.221 and -0.217 e.Å-3 
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Table 2.5:  Crystal data and structure refinement for 2.8 

________________________________________________________________________ 

Empirical formula  C24 H23 N2 O5 P 

Formula weight  450.41 

Temperature  153(2) K 

Wavelength  0.71069 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 11.359(5) Å α = 90 ° 

 b = 21.291(10) Å β = 97.196(6) ° 

 c = 9.219(4) Å γ  = 90 ° 

Volume 2212.0(17) Å3 

Z 4 

Density (calculated) 1.352 Mg/m3 

Absorption coefficient 0.163 mm-1 

F(000) 944 

Crystal size 0.37 x 0.22 x 0.12 mm3 

θ range for data collection 1.81 to 27.46 °  

Index ranges h = -14→14 

 k = -27→27 

 l = -11→11 

Reflections collected 23150 

Independent reflections 5039 [R(int) = 0.0540] 

Completeness to theta = 27.46° 99.6 %  

Max. and min. transmission 1.0000 and 0.8874 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5039 / 0 / 293 

Goodness-of-fit on F2 1.073 

Final R indices [I>2σ(I)] R1 = 0.0529, wR2 = 0.1248 

R indices (all data) R1 = 0.0744, wR2 = 0.1360 

Largest diff. peak and hole 0.421 and -0.309 e.Å-3 
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Chapter 3:  Separation of f-Elements Using Block Copolymers 

INTRODUCTION 

Spent fuel from nuclear reactors contains several radioactive isotopes with long 

lived half lives.
32,42

 With the advent of fast spectrum reactors many of these long lived 

products can be transmuted into shorter lived radioisotopes, creating more energy and 

less high level waste.
43,44

 Lanthanide ions absorb neutrons quenching transmutation of the 

fissionable actinides, therefore it is important to be able to efficiently separate these two 

groups of ions. Actinide and lanthanide ions are difficult to separate, as they have similar 

ionic radii, are both considered hard acids, and many are trivalent in acidic media.
45

 The 

carbamoylmethyl phosphine oxide, CMPO, ligand has shown discrimination between 

these two classes of materials.
5,7,30,31

 

Pre-organization of several CMPO moieties, by covalently binding 2 or more 

CMPO groups onto a single molecule has shown improvement in extraction and 

separation efficiencies over single CMPO moieties.
46

 Scaffolds such as calixarenes, 

cavitands, and tripods have been utilized for the pre-organization of CMPO.
8–10,18,20,22 

Similar to other multi-CMPO systems, our CMPO-derivatized homopolymer, 

2.9c, extracted significantly higher (> 5-25 times) amounts of thorium(IV) than 

analogous single CMPO systems.
10

 Unlike other systems, this system can be easily 

synthetically modified by incorporation of additional monomers in the polymerization 

process, creating block polymers. The modular approach and synthetic simplicity of this 

system makes it a potentially valuable material for the separation of lanthanides and 

actinides. The impact of structural modification on these materials by incorporating new 

blocks has been investigated. The extraction and separations abilities of these materials 

have been tested utilizing both liquid-liquid and solid-liquid extractions. The introduction 
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of organic media into the systems creates issues of increased volume of waste, and the 

introduction of a volatile combustible component into the process. A solid-liquid 

extraction, where the ions are sequestered by passing an aqueous solution over a column 

of extracting material, or by mixing with a solid substrate and then filtering would 

eliminate the issues associated with a biphasic liquid-liquid extraction, see Figure 3.1. 

 

 

Figure 3.1: Schematic showing actinides selectively sequestered from an aqueous phase 

into a solid phase by a CMPO containing material. 

 

RESULTS AND DISCUSSION 

Synthesis and Characterization 

The monomers 3.3 and 3.4 were synthesized as shown in Scheme 3.1. 3.1 was 

prepared following a modified preparation by Heath and coworkers.
34

 3.1 was converted 

into the mesylate 3.2 with triethylamine and methanesulfonyl chloride. 7-

hydroxycoumarin was deprotonated with potassium carbonate and reacted with 3.2 to 

form the monomer 3.3. The monomer was characterized by 
13

C{
1
H} and 

1
H NMR 

spectromety, mass spectrometry, elemental analysis by combustion, and X-ray 
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crystallography. The X-ray structure is shown in Figure 3.2.  Monomer 3.4 was prepared 

according to a procedure by Sleiman and coworkers.
47

  

 

 

 

Scheme 3.1: Synthesis of homopolymers and homopolymer precursors 3.1 – 3.6. 

(a) 3-amino-1-propanol, MeOH, 66 °C, 18 h, 48.3% (b) methanesulfonyl chloride, Et3N, CH2Cl2, 0 °C, 4 h, 

83.7% (c) 7-hydroxycoumarin, K2CO3, CH3CN, 82 °C, 18 h, 30.8% (d) Grubb’s second generation catalyst, 

CHCl3, 25 °C  (e) triethylene glycol monomethyl ether, 2-chloro-1-methylpyridinium iodide, Et3N, DMAP, 

CH2Cl2, 40 °C, 40 h, 75.85%. 
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Figure 3.2: Molecular structure of 3.3. 

The atom labeling scheme is shown. Displacement ellipsoids are shown at the 50% probability level. The 

hydrogen atoms have been omitted for clarity. 

 

The polymerizations were carried out using Grubbs’ second generation catalyst in 

CHCl3 for all of the polymers. To investigate the living nature of the materials, three 

homopolymers of 3.3 were first synthesized. The polymers were found to have a linear 

relationship between observed molecular weight and the ratio of monomer to catalyst 

used, see Figure 3.3. The homopolymers of 3.4 were studied by Sleiman and coworkers 

and were found to be living.
47

 A homopolymer of 3.4 was synthesized to study the 

materials chelating properties.  
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Figure 3.3: Plot of the observed molecular weight (Mn) versus monomer/catalyst ratio 

([M]/[C]) for polymers 3.6a-c. 

Two diblock copolymers containing both 2.8 and 3.4 were synthesized, see 

Scheme 3.2. The molar ratio of 2.8 to the catalyst was kept the same in both 

polymerizations, but the amount of 3.4 was varied, with polymer 3.7a having a ratio of 2 

: 1 for 2.8 : 3.4 and polymer 3.7b  having a ratio of 2 : 4 for 2.8 : 3.3. Two triblock 

polymers were synthesized containing 2.8, 3.3, and 3.4. In these polymers the ratio of 2.8 

to the catalyst and the ratio of 3.3 to the catalyst were kept constant. Polymer 3.8a 

contains the blocks in the ratio 2 : 1 : 1 (2.8 : 3.4 : 3.3) and polymer 3.8b has a ratio of 2 : 

4 : 1 (2.8 : 3.4 : 3.3). All of the block copolymers were found to have high molecular 

weights and were characterized by GPC, 
1
H, 

31
P{

1
H}  NMR and IR spectroscopy.  
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Scheme 3.2: Synthesis of homo and block polymers 2.9, 3.7 - 3.8. 

(a) Grubb’s second generation catalyst, CHCl3, 25 °C.  

The coumarin moiety was incorporated into the monomer 3.3 because of its 

ability to cross-link. The material is known to undergo a [2+2] cyclization of the double 

bond on the ester functionalized 6-membered ring when exposed to light with 

wavelengths greater than 300 nm.
48,49

 The coumarin moiety is known to have a λmax 

absorption at 320 nm.
50,51

 As the material photo-cross-links, the level of unsaturation  

                                   D = [(A0 – At ) / A0]  x 100% (3.1)          

decreases resulting in a decrease in the absorption at 320 nm. Due to this, the peak at 320 

nm can be monitored to determine the degree of cross-linking following equation 3.1, 

where D is the degree of cross-linking, A0 is the absorbance at 320 nm before irradiation, 

and At is the absorbance at 320 nm after irradiation. The triblock polymers 3.8a and 3.8b 

were dissolved in CH2Cl2 and irradiated with 365 nm light to induce cross-linking, see 

Figure 3.4, until increased exposure did not result in additional decrease in absorption at 

320 nm. Using equation 3.1 the degree of cross-linking was determined to be 64.8% for 
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polymer 3.8a and 51.8% for 3.8b, to form the cross-linked materials 3.9a and 3.9b 

respectively.   

 

 

 

Figure 3.4: (A) Scheme showing the crosslinking of triblock copolymers 3.8 (B) UV-Vis 

spectra of 3.8b in CH2Cl2 against irradiation time t with a 365 nm UV lamp. 

Chelation Studies 

Initial testing focused on the extraction efficiencies for a liquid-liquid extraction. 

This was accomplished by mixing a solution of 10
-4

 M Th
4+

 in 1 M HNO3 with equal 

volumes of an immiscible organic solution of polymer. Once bound to the polymer, the 

metal nitrates are pulled into the organic phase.  

The solubility of the homopolymer 2.9c in n-dodecane was investigated due to its 

use in the TRUEX process. It was determined that the polymer was not sufficiently 

soluble in n-dodecane and ultimately dichloromethane was chosen as the organic media 

for the extractions. 

The extraction of thorium(IV) was performed with varying concentrations of 

extracting material, 0.05 M – 0.001 M. The results of these tests are summarized in Table 
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3.1. At CMPO : Th
4+

 ratios of 10 : 1 all three polymers, 2.9c, 3.7a and 3.7b extract over 

90% of the present thorium(IV). 

 

Table 3.1: Extraction efficiencies for selected materials in liquid-liquid extractions. 

[CMPO] 2.9c 3.7a  3.7b 

0.05 99.8 ± 0.2 99.93 ± 0.03 99.97 ± 0.03 

0.01 99.947 ± 0.005 99.96 ± 0.01 98.3 ± 0.5 

0.005 99.95 ± 0.01 99.962 ± 0.002 97 ± 3 

0.001 93 ± 8 99 ± 1 99.2 ± 0.4 

Percent of Th
4+

 extracted from 1M HNO3 solutions by ligands. Aqueous phase: 10
-4

 Th(NO3)4 · H2O, 

Organic phase: extracting materials in CH2Cl2. 

 

Solid-liquid extractions were performed to decrease the volume of organic waste 

and to eliminate a volatile/flammable component in the extractions, see Figure 3.1. The 

results are summarized in Table 3.2. The molarities given represent the moles of CMPO 

per the volume of the aqueous layer. To ensure that complexation was due to the presence 

of the CMPO moieties and not due to functional groups present in the other blocks, 

extraction tests were performed with homopolymers 3.5c and 3.6. It was found that 

homopolymers 3.5c and 3.6 at a concentration of 0.0029 g polymer per 6 mL of 10
-4

 M 

Th
4+ 

in 1 M HNO3 that less than 1% of the present thorium(IV) was extracted.  

Beginning with the homopolymer, 2.9c, in a thorium(IV) only extraction, it was 

seen that at 100 : 1 (CMPO : Th
4+

) and at 50 : 1 (CMPO : Th
4+

) over 90% of the 

thorium(IV) was uptaken from the aqueous layer into the solid polymer. In contrast to 

what was observed in the liquid-liquid extractions where the extraction value remains 

high at 10:1 (CMPO : Th
4+

), this value decreases to only 67% for the solid-liquid 
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Table 3.2: Extraction efficiencies for selected materials in solid-liquid extractions. 

 CCMPO 2.9c  3.7a 3.7b 3.9a 3.9b 

0.01 99.80 ± 0.04 99.86 ± 0.04 86 ± 3 93 ± 2 95 ± 1 

0.005 99.2 ± 0.6 99.7 ± 0.2 88 ± 5 74 ± 4 89.7 ± 0.8 

0.001 67 ± 7 99 ± 1 70 ± 3 7.7 ± 0.4 19 ± 6 

 

Percent of Th
4+

 extracted from 1M HNO3 solutions by ligands. Aqueous phase: 10
-4

 Th(NO3)4 · H2O. 

 

extraction. Similar results were observed for diblock copolymer 3.7b. In both the liquid-

liquid and solid-liquid extractions, 3.7b uptakes over 86% of the thorium(IV) at 100 : 1 

and 50 : 1 (CMPO : Th
4+

). At 10 : 1 (CMPO : Th
4+

) the extraction of thorium(IV) 

remains high (> 99%) for the liquid-liquid extraction, but the amount of thorium(IV) 

extracted declines to 68% for the solid-liquid extraction. Diblock copolymer 3.7a unlike 

3.7b uptakes over 98% of the thorium(IV) present in all three tested ratios. Our theory 

was that the presence of the long glycol chains would be beneficial in encouraging the 

interaction of the polymer with the aqueous media, increasing the contact of the CMPO 
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units with the metal ions. It is possible that this is occurring and is causing the increase in 

performance seen by the diblock copolymer 3.7a, which has half the number of repeat 

units of the glycol chains as it does the number of repeat units of CMPO. 3.7b might also 

be experiencing a strong interaction with the aqueous media, but not incurring the same 

extraction values due to the fact that the larger ratio of glycol chains are blocking access 

to the CMPO units.  

To hinder the ability of the glycol units to encapsulate the CMPO moieties and to 

examine this theory, triblock copolymers incorporating a cross-linkable pendant group 

were synthesized. To mimic the two triblock polymers, these polymers also contain the 

CMPO and glycol chains in ratios of 2 : 1 and 2 : 4. The cross-linking groups were 

incorporated for both materials in a ratio of 2 : 1 with the CMPO units. These materials 

were also tested for their ability to extract thorium(IV) from an aqueous acidic medium 

into a solid polymer. The incorporation of the cross-linking groups negatively affected 

the extraction ability of the materials. While the two triblock copolymers extract over 

74% of the thorium(IV) for 100 : 1 and 50 : 1 (CMPO : Th), the performance at 10 : 1 

(CMPO : Th) is quiet low, only 4% and 8% of the thorium(IV) was uptaken by the 

polymers 3.9a and 3.9b respectively. What is interesting is when we compare the 

performance of the two triblock polymers to that of the two diblock polymers. In the case 

of the diblock polymers more glycol chains hindered the performace of the material. 

When comparing 3.9a to 3.9b, it was seen that the material with more glycol chains, 

3.9b, outperformed the material with fewer glycol chains, 3.9a. This evidence may 

support the theory that the cross-linked material does not allow the glycol chains to 

encapsulating the CMPO units, and thus more glycol chain units have the effect of only 

increasing the interactions with the aqueous media. 
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Table 3.3: Extraction efficiencies for selected materials in solid-liquid extractions at 

varying acid concentrations. 

 
 

  1 M  4 M 

2.9c 99.2 ± 0.6 95.4 ± 0.9 

3.7a 99.6 ± 0.2 96.1 ± 0.2 

3.7b 87 ± 5 92 ± 2 

3.9a 74 ± 4 87 ± 4 

3.9b 89.7 ± 0.8 88.97 ± 0.09 

 

Percent of Th
4+

 extracted from 1 M and 4 M HNO3 solutions by ligands, CCMPO = 5 x 10
-3 

M . Aqueous 

phase: 10
-4

 Th(NO3)4 · H2O. 

 

The extraction abilities of the materials were also tested in 4 M nitric acid, see 

Table 3.3. It was observed that for all five polymers the amount of thorium(IV) extracted 

does not change significantly (< 4%) between 1 M HNO3 and 4 M HNO3, except for 

polymer 3.9a, which actually extracts more thorium(IV) at the higher acid concentration.    
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Table 3.4: Extraction efficiencies for 2.9c in solid-liquid extractions with varying contact 

times. 

  

Percent of Th
4+

 extracted from 1 M  HNO3 solutions by ligands, CL = 5 x 10
-3 

M . Aqueous phase: 10
-4

 

Th(NO3)4 · H2O. 

 

The timescale on which extractions occur was investigated using homopolymer 

2.9c. The extraction of thorium(IV) was performed with contact times of 1 minute, 30 

minutes, 1 hour, and 20 hours, see Table 3.4. After only 1 minute over 50% of the 

thorium(IV) was extracted, but it takes between 30 minutes and 1 hour for over 90% of 

the thorium(IV) to be extracted.  

The selectivity for thorium(IV) over the lanthanides europium(III), lanthanum(III) 

and cerium(III) was investigated see Table 3.5. It was found that the homopolymer 2.9c, 

the diblock copolymer 3.7b, and the triblock copolymers 3.9a and 3.9b were selective for 

thorium(IV). The diblock copolymer 3.7a was found to be indiscriminate for thorium(IV) 

over the lanthanides(III). The two diblocks were the lowest performing materials from 

the set and did not outperform the homopolymer. The triblock copolymers 3.9a and 3.9b 

Time % Th 

1 min 60 ± 2 

30 min 81 ± 2 

1 hr 93 ± 3 

20 hr 99.2 ± 0.6 
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were over 2 times more selective than the homopolymer 2.9c, with 3.9a being more 

selective than 3.9b. 

 

Table 3.5: Extraction and separation efficiencies for selected materials in solid-liquid 

extractions. 

 
2.9c 3.7a 3.7b 3.8a 3.8b 

%Th 97.8 ± 0.5 64 ± 8 89 ± 5 81 ± 6 96.2 ± 0.7 

%Eu 49 ± 3 80 ± 3 80 ± 4 9 ± 3 21 ± 3 

XTh/Eu 2.0 0.8 1.1 8.9 4.6 

%La 65 ± 4 90 ± 1 77 ± 2 12 ± 4 20 ± 4 

XTh/La 1.5 0.7 1.2 6.9 4.9 

%Ce 67 ± 4 87 ± 5 84 ± 4 13 ± 4 14 ± 4 

XTh/Ce 1.5 0.7 1.1 6.3 6.7 

Percentage of Th
4+

,Eu
3+

, La
3+

, and  Ce
3+

 (CM = 2.5 x 10
-4 

M) extracted by polymeric materials (CCMPO = 5 x 

10
-3 

M) and separation ratios XTh/M. 

 

CONCLUSION 

A series of block polymers containing CMPO pendent groups have been 

synthesized, characterized and the ability of the materials to efficiently and selectively 

extract thorium(IV) has been evaluated. Liquid-liquid extractions revealed that polymers 

2.9c, 3.7a, and 3.7b have high affinities (>99 %) for Th
4+

 even at low concentrations of 

ligand (ligand : Th
4+

 10 : 1). Solid-liquid extractions revealed that all of the materials had 

high affinities (> 85%) at sufficiently high ligand concentrations (CMPO : Th
4+

 100 : 1). 

The incorporation of blocks of long glycol chains has caused improvements in extraction 

of thorium(IV) as compared to the homopolymer. At lower ligand concentrations, only 

diblock copolymer 3.7a had high affinities. At 4 M HNO3 each material extracted 

comparable amounts of thorium(IV) as compared to extractions with 1 M HNO3. A time 
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dependence study revealed that within 30 min, over of 80% of the thorium(IV) is 

removed.  

The selectivity for thorium(IV) over lanthanum(III), europium(III), and 

cerium(III) was also tested. The triblock copolymers had the highest selectivies, followed 

by the homopolymers, then the diblock copolymers. The incorporation of both long 

glycol chains and cross-linking groups has caused improvements in the selectivity of the 

materials as compared to the homopolymer.  

 

EXPERIMENTAL 

General Methods 

All chemicals were purchased from chemical suppliers and were used without 

further purification. All dry reactions were performed using standard Schlenk techniques 

and were performed under an inert atmosphere of nitrogen. CH2Cl2 and CHCl3 were dried 

using the Pure-Solv 400 solvent purification system. 
1
H 

13
C{

1
H}, and 

31
P{

1
H} NMR 

spectra were obtained on a Varian 300 MHz, or 400 MHz spectrometer. 
1
H, and 

13
C{

1
H} 

NMR spectra were referenced to the residual solvent peaks. 
31

P{
1
H} NMR spectra were 

referenced to a phosphoric acid external standard. High resolution mass spectra were 

obtained with an Agilent Technologies 6530 Accurate Mass QTofLC/MS. Elemental 

analysis was performed by QTI, Whitehouse, NJ (www.qtionline.com). IR spectra were 

recorded on a Nicolet iS50 ATR spectrometer with a deuterated triglycine sulfate 

(DTGS) detector from Thermo Scientific. Number average molecular weights (Mn) and 

polydispersity indices (PDI) were measured from DMF solutions using an Agilent 1100 

series GPC (Agilent Technologies) equipped with Viscotek I-series mixed bed medium 

molecular weight columns and refractive index detectors, and are reported relative to 
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polystyrene standards. Absorption spectra were recorded in CH2Cl2 on a Varian Cary 

6000i UV-Vis-NIR spectrophotometer with Starna Quartz fluorometer cells with a path 

length of 1 cm. Compound 3.6 were prepared according to literature procedures.
47 

 

Extractions 

The lanthanide and actinide salts, Th(NO3)4 · H2O (Strem), Ce(NO3)3 · 6H2O 

(Alfa Aesar), Eu(NO3)3 · 5H2O (Strem), and La(NO3)3 · 6H2O (Fisher), were used as 

received. Solutions were prepared using trace metal grade deionized water, trace metal 

grade HNO3 (BDH), and twice distilled dichloromethane.  

Three aqueous solutions were prepared: a solution of 10
-4

 M Th
4+

 in 1 M HNO3, a 

solution of 10
-4

 M Th
4+

 in 4 M HNO3, and a solution of 2.5 x 10
-5 

M Th
4+

, 2.5 x 10
-5 

M 

Eu
4+

, 2.5 x 10
-5 

M Ce
4+

 and 2.5 x 10
-5 

M La
4+

 in 1 M HNO3.  

For the liquid-liquid extractions 0.6 mL of aqueous and organic phases (ligands 

dissolved in CH2Cl2) were mixed in a 1 dram glass vials equipped with a polyethylene 

cap and PTFE coated stir bars. The vials were stirred at 1200 rpm for 20 hours. The 

solutions were then centrifuged and the aqueous layer pipetted off the top and transferred 

to a 1 mL centrifuge tube. The solution was centrifuged again and the top layer was 

diluted to ppb levels with 2% HNO3. 

The solid-liquid extractions were performed by weighing solid ligands into 1 

dram glass vials and adding 0.6 mL of a metal nitrates in nitric acid. The molarities 

reported represent the moles of each CMPO repeat unit per 0.6 mL. Due to the varying 

ratio of blocks in each polymer, different masses of each polymer were required to reach 

the same concentration of CMPO in solution, see Table 3.6 for masses of each polymer 

used. The solution was mixed at 1200 rpm for 20 hours, unless otherwise noted. The 
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solution was centrifuged and the aqueous layer decanted off the solid material and 

transferred to a 1 mL centrifuge tube. The solution was centrifuged again to remove any 

remaining solid materials and the top later was diluted to ppb levels with 2% HNO3. For 

both the liquid-liquid and solid-liquid extractions the diluted solutions were counted in 

triplicate using a GBC Optimass 8000 ICP-time-of-flight (TOF)-MS (GBC Scientific 

Equipment, Hampshire, IL) or a PerkinElmer NexION 300D ICP-MS. The extraction 

efficiencies were determined using equation 3.2, where C1 is the average count from the 

sample, and C0 is the average count of a solution stirred with no organic phase and no 

extracting material. All % E values are the average of three separate trials. 

 % E = ((C0 – C1)/C0) x 100% (3.2) 

Separation factors, X, were determined using equation 3.3, where % M is the 

extraction percentage for a given cation. 

 XM1/M2 = % M1 / % M2 (3.3) 

 

X-ray Crystallography 

Crystals of 3.3 suitable for X-ray diffraction were obtained by layering a solution 

of 3.3 in CH2Cl2 with MeOH. The single–crystal diffraction data was collected on a 

Rigaku SCX-Mini diffractometer with a Mercury CCD using a Rigaku Tec 50 low-

temperature device. The complex was collected using a graphite monochromator with 

MoKα radiation (λ = 0.71073Å). Absorption corrections were applied using multi-scan. 

Data reduction was performed using the Rigaku Americas Corporation’s Crystal Clear 

version 1.40.
39

 The structures were solved by direct methods using SIR92 and refined 

anisotropically using full-matrix least-squares methods with the SHELX-97 program 

package.
40,52

 Structure analysis was aided by the use of the programs PLATON98 and 
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WINGX.
53,54

 The coordinates of the non-hydrogen atoms were refined anisotropically. 

All H atoms were positioned geometrically and refined using a riding model, with C—H 

= 0.93 – 0.98 Å and Uiso(H) = 1.2 Ueq(C). Neutral atom scattering factors and values used 

to calculate the linear absorption coefficient are from the International Tables for X-ray 

Crystallography (1992).
41

 

 

Synthesis 

 

 

[3.1]  2-(3-hydroxypropyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-

dione 

3.1 was prepared according to a modified procedure of Heath and coworkers.
34

 3-

amino-1-propanol (27.05 g, 162.92 mmol), and 2.1 (12.40 g, 165.09 mmol) were refluxed 

in MeOH (500 mL) at 66 °C for 18 hours. The resulting solution was concentrated to half 

its volume and cooled to 0 °C. A colorless solid precipitated out after 24 hours and was 

collected by vacuum filtration to yield 3.1 (17.67g, 48.3%). (m.p. 119 °C ). 
1
H NMR (300 

MHz, CDCl3) δ: 6.49 (s, 2H), 5.23 (s, 2H), 3.61 (t, 2H, J = 6.3), 3.48 (t, 2H, J = 5.7), 2.84 

(s, 2H), 2.52 (b, 1H), 1.73 (5, 2H, J = 5.4). 
13

C{
1
H} NMR (75 MHz, CDCl3) δ:  177.2, 

136.8, 81.2, 58.9, 47.7, 35.4, 30.6. 
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[3.2]  3-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-yl)propyl 

methanesulfonate 

To a flame dried Schlenk tube was added dry CH2Cl2 (30 mL), 3.1 (2.07 g, 9.28 

mmol), and triethylamine (2.21 g, 21.84 mmol). The mixture was cooled to 0 °C and 

methanesulfonyl chloride (2.59 g, 22.61 mmol) in dry CH2Cl2 (30 mL) was added 

dropwise. The mixture was stirred overnight; under argon, letting it slowly warm to room 

temperature. A 2M HCl solution (30 mL) was added and the mixture was then extracted 

with CH2Cl2 (3 x 15 mL). To the combined organic layers, a saturated NaHCO3 solution 

was added (30 mL) and the mixture was extracted with CH2Cl2 (3 x 15 mL). The 

combined organic layers were dried with sodium sulfate and concentrated. The resulting 

oil was added to diethyl ether and cooled to 0 °C. A yellow solid was collected by 

vacuum filtration to yield 3.2 (2.34g, 83.7 %). (m.p. 94 °C). 
1
H NMR (300MHz, CDCl3) 

δ: 6.48 (d, 2H, J = 0.9), 5.23 (t, 2H, J = 0.9), 4.14 (t, 2H, J = 6.0), 3.60 (t, 2H, J = 6.6), 

3.00 (s, 3H), 2.84 (s, 2H), 2.01 (5, 2H, J = 6.30). 
13

C{
1
H} NMR (75 MHz, CDCl3) δ: 

176.5, 136.8, 81.2, 67.2, 47.7, 37.5, 35.5, 27.3. 
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[3.3]  2-(3-((2-oxo-2H-chromen-7-yl)oxy)propyl)-3a,4,7,7a-tetrahydro-1H-4,7-

epoxyisoindole-1,3(2H)-dione 

To a flame dried schlenk flask was added 3.2 (2.87 g, 9.54 mmol), 7-

hydroxycoumarin (1.57 g, 9.70 mmol), and K2CO3 (1.49 g, 10.75 mmol) in acetonitrile. 

The solution was refluxed for 18 hrs. The solution was cooled to room temperature and 

the product was collected by vacuum filtration. The product was purified by dissolving in 

dichloromethane and precipitating with methanol to yield a pale pink solid (yield 1.08g, 

30.8 %). m.p. 149 °C. 
1
H NMR (300MHz, CDCl3) δ: 7.56 (d, 1H, J = 9.3), 7.29 (d, 1H, J 

= 8.7), 6.75 (d,t, 1H, J = 8.4, 1.2), 6.68 (s, 1H), 6.45 (t, 2H, J = 0.9), 6.16 (d, 1H, J = 

9.6), 5.17 (t, 2H, J = 0.9), 3.92 (t, 2H, J = 6.0), 3.63 (t, 2H, J = 6.9), 2.79 (d, 2H, J = 

0.9), 2.03 (5, 1H, J = 6.3), 
13

C{
1
H} NMR (75MHz, CDCl3) δ: 176.1, 161.8, 161.0, 155.6, 

143.3, 136.4, 128.7, 112.9, 112.6, 112.4, 101.2, 80.8, 65.6, 47.3, 35.8, 26.9. HRMS 

(ESI+), calculated for C20H17NO6: [M + H]
+
 368.11290; found 368.11310. Anal. calcd for 

C20H17NO6: C, 65.39; H, 4.66; N, 3.81 Found: C, 65.26; H, 4.72; N, 3.81. 
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[3.5]  poly 2-(3-((2-oxo-2H-chromen-7-yl)oxy)propyl)-3a,4,7,7a-tetrahydro-1H-4,7-

epoxyisoindole-1,3(2H)-dione 

In an airfree glovebox 3.3 (3.5a, 0.04 g, 0.11 mmol; 3.5b 0.04 g, 0.11 mmol; 3.5c 

0.040 g, 0.11 mmol) and (3.5a, 2 mL, 9.9 x 10
-4

 mmol; 3.5b 0.5 mL, 2.5 x 10
-4

 mmol; 

3.5c 0.2 mL, 9.9 x 10
-5

 mmol) of a 4.9 x 10
4
 M Grubbs’ second generation ruthenium 

catalyst were dissolved in CH2Cl2. The reactions were moved outside the box and stirred 

under nitrogen at room temperature for 18 hours. The reactions were then exposed to the 

atmosphere, ethylvinyl ether was added, and the reactions were stirred for another 30 

min. A gel like solid precipitated and the solvent was decanted off. The solid was re-

dissolved in chloroform and precipitated out again with large amounts of MeOH. The 

solid was then collected by decantation and dried under reduced pressure (yield 3.5a 

37.90%; 3.5b 94.40 %; 3.5c 80.10%). 3.5a IR: v = 1696.29 cm
-1

 (C=O, imide), Mn = 3.37 

x 10
4
, PDI = 2.81. 3.5b IR: v = 1694.21 cm

-1
 (C=O, imide), Mn = 4.19 x 10

4
, PDI = 2.67. 

1
H NMR (400   MHz, CDCl3): δ 7.58 (b), 7.31 (b), 6.88 – 6.51 (m), 6.10 (b), 5.98 (b), 

5.74 (b) 5.02 (b), 4.43 (b), 3.87 (b), 3.80 – 3.13 (m) 2.06 (b), 1.39 (b). 3.5c IR: v = 

1693.62 cm
-1

 (C=O, imide), Mn = 4.87 x 10
4
, PDI = 2.87.  
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[3.6]  poly 2-(3-((2-oxo-2H-chromen-7-yl)oxy)propyl)-3a,4,7,7a-tetrahydro-1H-4,7-

epoxyisoindole-1,3(2H)-dione 

Following the procedure described for the synthesis of 3.5, 3.4 (0.33 g, 0.69 

mmol) and Grubbs’ second generation ruthenium catalyst (0.006g, 0.007 mmol) gave a 

70.2% yield of product. Mn = 1.19 x 10
4
, PDI = 1.82.  

 

 

[3.7]  Diblock Coploymer 

In an airfree glovebox 2.8 (3.7a, 0.30 g, 0.67 mmol; 3.7b 0.30 g, 0.67 mmol) and 

was dissolved in dry CH2Cl2. A 1.2 x 10
-2

 M solution of Grubbs’ second generation 

ruthenium catalyst (3.7a, 0.63 mL, 7.32 x 10
-3

 mmol; 3.7b 0.63 mL, 7.32 x 10
-3

 mmol) 

was added. The solution was stirred in the box for 1 hr. The consumption of the monomer 

was confirmed by TLC and a 1.64 M solution of 3.4 (3.7a, 0.20 mL, 0.33 mmol; 3.7b, 

0.81 mL, 1.33 mmol) was added. The solution was stirred for an additional hour. The 
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consumption of the monomer was confirmed by TLC, and reactions were then exposed to 

the atmosphere. Ethyl vinyl ether was added, and the reactions were stirred for another 30 

min. A gel like solid precipitated and the solvent was decanted off. The solid was re-

dissolved in chloroform and precipitated out again with large amounts of MeOH. The 

solid was then collected by decantation and dried under reduced pressure. (yield 3.7a 

23.4%; 3.7b 23.6%). 3.7a IR: v = 1699.13 cm
-1

 (C=O, imide), 1662.14 cm
-1

 (C=O, 

amide), 1181.67 cm
-1

 (P=O). 
1
H NMR (300 MHz, CDCl3): δ 7.67 (b), 7.39 (b), 6.01 – 

5.80 (m), 5.58 (b), 5.07 (b), 4.69 (b), 4.22 (b, 8H), 3.78 – 3.02 (m), 2.53 (b). 
31

P{
1
H} 

NMR (CDCl3) δ:  29.7. GPC: Mn = 5.78 x 10
4 

g mol
-1

, PDI = 1.89. 3.7b IR: v = 

1700.92.13 cm
-1

 (C=O, imide), 1662.12 cm
-1

 (C=O, amide), 1177.32 cm
-1

 (P=O). 
1
H 

NMR (300 MHz, CDCl3): δ  7.69 (b), 7.41 (b), 6.01 – 5.80 (m), 5.58 (b), 5.07 (b), 4.69 

(b), 4.22 (b, 8H), 3.78 – 3.02 (m), 2.53 (b). 
31

P{
1
H} NMR (CDCl3) δ:  32.9. GPC: Mn = 

6.40 x 10
4 

g mol
-1

, PDI = 1.76. 
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[3.8]  Triblock Coplymer 

In an air-free glovebox 2.8 (3.8a, 0.30 g, 0.664 mmol; 3.8b 0.30 g, 0.668 mmol) 

was dissolved in 10mL of dry CH2Cl2. A 0.011 M solution of Grubbs’ second generation 

ruthenium catalyst in CH2Cl2 was added (3.8a, 0.64 mL, 6.99 x 10
-3

 mmol; 3.8b 0.64 mL, 

6.99 x 10
-3

 mmol). The solution was stirred in the box for 1 hr. The consumption of the 

monomer was confirmed by TLC. Next 3.4 (3.8a, 0.161 g, 0.34 mmol; 3.8b, 0.630 g, 

1.32 mmol) was added and allowed to stir for an additional hour. The consumption of the 

monomer was confirmed by TLC, next 3.3 (3.8a, 0.123 g, 0.33 mmol; 3.8b, 0.122 g, 0.33 

mmol) was added and allowed to stir for an additional hour. The consumption of the 

monomer was confirmed by TLC, and reactions were then exposed to the atmosphere. 

Ethylvinyl ether was added, and the reactions were stirred for another 30 min. A gel like 

solid precipitated and the solvent was decanted off. The solid was re-dissolved in 

chloroform and precipitated out again with large amounts of MeOH. The solid was then 

collected by decantation and dried under reduced pressure (3.8a 39.8% yield; 3.8b 27.4% 

yield). 3.8a IR: v = 1697.97 cm
-1

 (C=O, imide), 1697.97 cm
-1

 (C=O, amide), 1178.42 cm
-

1
 (P=O). 

1
H NMR (400 MHz, CDCl3): δ 7.62 (b), 7.36 (b), 6.69 (b), 6.37 – 6.46 (m), 6.14 

(b), 5.89 (b), 5.64 (b), 5.20 (t, J = 11), 4.85 (b), 4.39 (b), 3.93 (b), 3.74 – 2.94 (m), 2.77 (t, 
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J = 8), 2.10 – 1.03 (m). 
31

P{
1
H} NMR (CDCl3) δ:  29.5. GPC: Mn = 2.31 x 10

5 
g mol

-1
, 

PDI = 2.73. 3.8b IR: v = 1695.23 cm
-1

 (C=O, imide), 1658.01 cm
-1

 (C=O, amide), 

1181.09 cm
-1

 (P=O). 
1
H NMR (300 MHz, CDCl3): δ 7.61 (b), 7.42 (b), 6.75 (b), 6.46 (b), 

6.24 – 5.55 (m), 4.95 (b), 4.43 (b), 4.17 (b), 3.98 (b), 3.76 – 3.06 (m), 2.80 (t, J = 5), 2.14 

(b), 1.63 (b), 1.22 (b). 
31

P{
1
H} NMR (CDCl3) δ:  29.2. GPC: Mn = 8.63 x 10

5 
g mol

-1
, 

PDI = 1.86.  

 

 

[3.9]  Crosslinked Triblock Polymers 

Photocrosslinking was achieved by irradiating a dilute solution (absorbance at 320 

nm < 1.3 au) with a 365 nm 8 W handheld lamp while stirring. The process was 
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monitored by UV-Vis spectroscopy using the λmax = 320nm. The absorbance decreased 

with increasing exposure to the lamp. The cross linking was continued until no further 

decrease in the absorption was observed with increasing exposure to the lamp (about 72 

hours). (3.9a D = 64.8%; 3.9b D = 51.8%). 3.9a IR: v = 1698.15 cm
-1

 (C=O, imide), 

1668.15 cm
-1

 (C=O, amide), 1181.52 cm
-1

 (P=O). 3.9b IR: v = 1694.85 cm
-1

 (C=O, 

imide), 1659.53 cm
-1

 (C=O, amide), 1179.42 cm
-1

 (P=O).  

 

 

Table 3.6: Quantities of polymeric materials used in 0.6 mL extractions.  

 0.01 M (g) 0.005 M (g) 0.001 M (g) 

HomoPolmyer 2.9c 0.0027 0.0014 0.0003  

Diblock Copolymer 3.7a 0.0041 0.0021 0.0004 

Diblock Copolymer 3.7b 0.0029 0.0015 0.0003 

Triblock Copolymer 3.9a 0.0053 0.0026 0.0005 

Triblock Copolymer 3.9b 0.0095 0.0047 0.0009 
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Crystallographic Data 

 

Table 3.7:  Crystal data and structure refinement for 3.3 

_____________________________________________________________________ 

Empirical formula  C20H17 N O6  

Formula weight  367.35 

Temperature  223(2) K 

Wavelength  0.71069 Å 

Crystal system  Monoclinic 

Space group  P121/n1 

Unit cell dimensions a = 11.240(5) Å α = 90 ° 

 b = 5.388(5) Å β = 100.469(5) ° 

 c = 29.028(5) Å γ  = 90 ° 

Volume 1728.7(18) Å3 

Z 4 

Density (calculated) 1.411 Mg/m3 

Absorption coefficient 0.105 mm-1 

F(000) 768 

Crystal size 0.48 x 0.17 x 0.08 mm3 

θ range for data collection 1.43 to 27.48 °  

Index ranges h = -14→14 

 k = -6→6 

 l = -37→37 

Reflections collected 28771 

Independent reflections 3831 [R(int) = 0.0724] 

Completeness to theta = 27.46° 99.7 %  

Max. and min. transmission 1.0000 and 0.7244 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3931 / 0 / 244 

Goodness-of-fit on F2 1.073 

Final R indices [I>2σ(I)] R1 = 0.0529, wR2 = 0.1248 

R indices (all data) R1 = 0.0744, wR2 = 0.1360 

Largest diff. peak and hole 0.421 and -0.309 e.Å-3 
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LUMINESCENT MATERIALS 

Chapter 4:  A Review of Tetradentate Platinum(II) Complexes 

INTRODUCTION 

Light emitting compounds have become highly desirable materials for their 

potential in light-emitting diodes,
55,56

 sensors,
57,58

 and biological labeling.
59,60

 In organic 

light-emitting diodes (OLEDs) exciton formation occurs so that 25% of the excitons 

created have singlet character, while 75% have triplet character.
61,62

 While fluorescent 

emitters are only able to utilize the singlet excitons, the presence of a heavy metal can 

facilitate intersystem crossing to utilize both the singlet and triplet excitons. Platinum, in 

particular, has a high spin-orbital coupling constant, which promotes intersystem 

crossing.
63

 

Four coordinate, square planar, platinum(II) complexes have long been known to 

be highly emissive over a wide range of wavelengths.
64–66

 These complexes have 

typically been either bidentate or tridentate, with the only tetradentate examples being 

that of porphyrin based ligands. Platinum(II) porphyrin compounds have been in the 

literature for over 45 years.
67–72

 It was not until 2003, with the appearance of platinum(II) 

salen complexes, that a new type of tetradentate platinum complex was developed.
73

 

Since then, tetradentate platinum(II) complexes with wide ranging ligand sets have been 

developed.
73–80

 These complexes have high luminescent quantum yields and thermal 

stabilities, and emit over a wide range of wavelengths. Herein is a review of the 

photophysical properties and thermal stabilities of the non-porphyrin-based tetradentate 

platinum(II) complexes in the current literature.  The known complexes have been 

divided into 5 different classes: N^N^N^N, O^N^C^N, O^N^N^O, carbenes, and 

C^N^N^C. 
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N^N^N^N Tetradentate Platinum(II) Complexes 

Only one study, by Lai et al., reported non-porphyrin tetradentate platinum(II) 

complexes of the type N^N^N^N.
75

 The three complexes are shown in Figure 4.1. These 

complexes are bis(pyrrolidene) Schiff bases. Bis(pyrrolidene) compounds have been 

employed in the polymerization of lactide
76,81

 and in developing lanthanide sensors.
82,83

  

 

 

Figure 4.1: N^N^N^N tetradentate platinum(II) complexes.
75

 

All three complexes were found to be highly absorbing with molar absorptivities 

of approximately 0.5 – 2.5 x 10
4

 M
-1

 cm
-1

. Complexes 4.1a and 4.1b absorbed between 

250 – 500 nm and complex 4.1c absorbed between 250 – 570 nm. 4.1a and 4.1b were 

both found to have emission maxima around 560 nm and 610 nm, while complex 4.1c 

was found to have emission energy around 700 nm and 750 nm for solution-state 

(CH3CN) room temperature emission studies. The emission wavelength and low quantum 

efficiency (0.01%) of 4.1c made it unsuitable for OLED applications and thus Lai and 

coworkers did not study the complex further. Complexes 4.1a and 4.1b were found 

however to have higher quantum efficiencies of 0.97% and 1.05%, respectively. The 

emission of 4.1a was found to have a maximum at 566 nm with a shoulder at 613 nm for 

the room temperature emission. Upon cooling the solution to 77 K, an emission shift was 

observed at 560 nm and 611 nm with a shoulder at 650 nm. As the concentration of the 
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solution was increased, a red shift in the emission was observed, which was attributed to 

the formation of excimers or oligomers at high concentrations. Excimer formation is 

common in Pt(II) compounds.
84,85

 Complex 4.1b however, does not exhibit the same 

behavior, possibly due to the methylethylene moiety hindering close intermolecular 

interactions.  The photoluminescent lifetimes for 4.1a and 4.1b were reported as 4.2 μs 

and 3.6 μs, respectively. These lifetimes are somewhat short when compared with Pt(II) 

porphyrin compounds, which are also of the type N^N^N^N.
75

 

The thermal stabilities of complexes 4.1a and 4.1b were investigated by 

thermogravimateric analysis (TGA). It was found that complex 4.1a and 4.1b had 

decomposition temperatures of 288 °C and 320 °C, respectively. 

 

O^N^C^N Tetradentate Platinum(II) Complexes 

Two studies, both by Che and coworkers, report tetradentate platinum(II) 

complexes of the type O^N^C^N.
56,78

 These studies report eight different complexes, 

which are shown in Figure 4.2. All of the ligand sets are asymmetric, which is less 

prevalent in the literature than symmetric ligands.  

The absorption profiles of all eight complexes were reported.
56,78

 The complexes 

were found to be have high molar absorptivities on the order of 10
4 

 M
-1

 cm
-1

, see Table 

4.1. All 8 complexes were found to be highly absorbing at wavelengths below 300 nm, 

moderately absorbing at 400 – 438 nm, and weakly absorbing with absorption tails at > 

460 nm. The high intensity absorptions (< 300 nm) were assigned to intraligand 
1
π-π

*
 

transitions by Che and coworkers. Solvatochromism was not discussed for complexes 

4.2a – 4.2e. The solvatochromic effect was observed in the absorption profile for 
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complexes 4.3a – 4.3c. Complexes 4.3a – 4.3c display a blue shift in the absorption 

moving from less to more polar solvents.  

The solution state emission maxima range from 482 – 522 nm for all eight 

complexes. Complexes 4.2a – 4.2e all show vibronic structured emission bands, while 

complexes 4.3a – 4.3c exhibit structureless emission. A concentration dependence study 

was performed for complexes 4.2a – 4.2e. When the concentration of the solutions was 

increased, a low energy absorption was observed for complexes 4.2b, 4.2d, and 4.2e. 

 

 

Figure 4.2: O^N^C^N tetradentate platinum(II) complexes.
56,78
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This has been attributed to excimer formation by Che and coworkers. The solvent 

emission dependence was studied for complexes 4.3a – 4.3c. As in the absorption 

profiles, these complexes display a blue shift in the emission moving from less to more 

polar solvents. The emission quantum yields ranged from 72% to 93%. Complex 4.2d 

with an emission quantum yield of 93% is the highest solution state quantum yield among 

all the discussed tetradenate platinum(II) complexes. The emission lifetimes for all eight 

complexes are in the microsecond range, with the shortest being 3.7 μs and the longest 

being 28.0 μs. Complexes 4.2a –  4.2e  have longer lifetimes (11.0 – 28.0 μs) than the 

complexes 4.3a – 4.3c (3.7 – 4.9 μs).  

 

Table 4.1: Physical, spectroscopic, and photophysical data for 4.2a -4.3c 

 λAbs [nm] (ε [ x 10
-4

 M
-1

 cm
-1

]) λEm [nm] ΦEm τ [μs] Td [°C] 

4.2a
56

 254 (4.59), 280 (3.16), 354 (1.77), 

390 (1.46), 426 (0.91) 

485, 517, 557 0.72 12.0  414 

4.2b
56

 254 (4.24), 261 (4.18), 290 (2.51), 

352 (1.71), 388 (1.42), 429 (.057) 

488, 522 0.8 28.0 418 

4.2c
56

 247 (3.72), 261 (3.43), 279 (2.67), 

356 (1.52), 395 (1.15), 439 (0.7) 

508, 543, 594 0.89 11.0 411 

4.2d
56

 251 (4.82), 261 (4.55), 294 (2.07), 

350 (1.83), 381 (1.4),424 (0.86) 

488, 518 0.93 13.2 406 

4.2e
56

 245 (4.58), 259 (4.45), 289 (2.65), 

301 (1.86), 349 (1.78), 376 (1.35), 

424 (0.66) 

482, 512 0.75 17.7 432 

4.3a
78

 284 (3.81), 371 (1.32), 426 (6.58) 503 0.73 4.7 518 

4.3b
78

 285 (4.25), 374 (1.57), 404 (1.01), 

438 (0.72) 

518 0.82 3.7 430 

4.3c
78

 284 (4.47), 371 (2.10), 421 (0.94) 522 0.90 4.9 405 

Absorption, emission, quantum yield, and lifetimes determined in degassed CH2Cl2 (2 x 10
-5

 M ).  
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The thermal stabilities of all eight complexes were investigated by TGA. It was 

found that all of the complexes had decomposition temperatures greater than 400 °C. 

Complex 4.3a had the highest decomposition temperature at 518 °C.  

 

O^N^N^O Tetradentate Platinum(II) Complexes 

The most widely studied non-porphyrin tetradenate platinum complexes are of the 

type O^N^N^O, with twenty-one structures, as shown in Figure 4.3.
73,86–88

 These 

complexes are all Schiff bases. Schiff bases are thermally stable and easily synthesized 

and structurally modified.
74

 For these reasons Schiff bases have been employed in the 

development catalysts,
89

 sensors,
88

 electronic materials,
90

 and light-emitting diodes.
91

  

 The absorption profiles for all twenty-one structures have been reported, and are 

summarized in Table 4.2. The complexes with alkane linkers between nitrogens (4.6 – 

4.8d) were found to be highly absorbing between 242 – 352 nm (ε =  1.09 – 5.09 x 10
4

 M
-

1
 cm

-1
), moderately absorbing between 394 – 485 nm (ε =  0.45 – 0.66 x 10

4
 M

-1
 cm

-1
), 

and weakly absorbing between 465 – 535 nm (ε =  0.005 – 0.008 x 10
4

 M
-1

 cm
-1

). The 

complexes with aromatic linkers between nitrogens (4.4, 4.5, and 4.9a – 4.9f) were found 

to be highly absorbing between 244 – 379 nm (ε = 1.43 – 4.45 x 10
4

 M
-1

 cm
-1

) and 

moderately absorbing between 390 – 546 nm (ε = 0.31 – 0.80 x 10
4

 M
-1

 cm
-1

), with no 

weak absorption tails. The complexes with alkene linkers and cyano groups between 

nitrogens (4.10a – b) had very different absorption profiles than the other O^N^N^O-type 

Pt(II) complexes. While the complexes with aromatic and alkane linkers between the 

nitrogens showed a decrease in absorptivities moving from blue to red wavelengths, the 

alkene-linked complexes displayed an increase in absorptivities moving from blue to red 

wavelengths.  
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Figure 4.3: O^N^N^O tetradentate platinum(II) complexes.
73,86–88 
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Table 4.2: Spectroscopic and photophysical data for 4.4 -4.10b 

 λAbs [nm] (ε [ x 10
-4

 M
-1

 cm
-1

]) λEm [nm] ΦEm τ [μs] 

4.4 
73, a

 292 (3.45), 317 (3.64), 326 (sh, 3.54), 353 (2.84), 

376 (2.69), 420 (0.64), 478 (sh, 0.73), 502 (0.78) 

589 0.45 3.2 

4.5 
73, b 

250 (4.45), 315 (1.85), 390 (0.85), 465 (0.31) 596 0.06 1.3 

4.6 
87, c

 250 (4.08), 320 (sh, 0.96), 340 (1.12), 420 (0.51), 

500 (sh, 0.006) 

592 0.09 0.46 

4.7a 
87, c

 250 (4.62), 314 (1.30), 336 (1.53), 417 (0.59), 

503 (sh, 0.008) 

550, 

580(sh) 

0.19 3.5 

4.7b 
87, c

 252 (3.23), 319 (1.05), 337 (1.24), 409 (0.47), 

426 (0.14), 493 (0.006) 

548 0.08 1.68 

4.7c 
87, c

 242 (3.77), 316 (1.09), 352 (1.11), 439 (0.55), 

458 (sh, 0.49), 535 (0.005) 

588 0.08 2.31 

4.7d 
87, c

  249 (4.00), 306 (1.40), 324 (1.40), 394 (0.66), 

465 (0.008) 

552 0.07 1.57 

4.7e 
87, d

 319 (1.24), 345 (1.35), 424 (0.56) 560 0.14 2.4 

4.7f 
86, b

 348 (1.30), 423 (0.45) 559, 605 0.10 0.12 

4.8a 
87, c

 246 (4.60), 316 (1.16), 339 (1.42), 413 (0.53), 

432 (sh, 0.48), 501 (sh, 0.006) 

541, 

580(sh) 

0.18    3.4 

4.8b 
87, c

 252 (5.01), 317 (1.37), 346 (1.57), 427 (0.60), 

446 (sh, 0.56), 520 (0.007) 

556 0.23 2.88 

4.8c 
87, c

 251 (5.09), 316 (1.35), 345 (1.59), 423 (0.57), 

440 (sh, 0.53), 514 (0.007) 

551 0.26 3.81 

4.8d 
87, c

 245 (3.78), 320 (1.16), 346 (1.21), 429 (0.52), 

448 (sh, 0.50), 529 (0.007) 

568 0.13 2.32 

4.9a 
87, c

 250 (3.49), 312 (1.82), 358 (2.99), 376 (3.07), 

451 (0.65), 504 (sh, 0.65), 523 (0.71) 

611 0.23 3.43 

4.9b 
87, c

 255 (4.17), 316 (1.88), 361 (3.31), 379 (3.57), 

460 (0.71), 532 (0.72) 

625 0.27 4.62 

4.9c 
87, c

 250 (3.72), 315 (1.94), 357 (3.09), 375 (3.22), 

453 (0.73), 521 (0.73) 

611 0.18 3.2 

4.9d 
87, c

 250 (4.05), 315 (2.16), 357 (3.29), 375 (3.43), 

453 (0.76), 520 (0.80) 

610 0.23 4.54 

4.9e 
87, c

 248 (3.25), 311 (1.51), 360 (2.71), 378 (2.73), 

455 (0.58), 523 (0.60) 

615 0.21 4.43 

4.9f 
87, c

  244 (2.77), 314 (1.43), 361 (2.45), 377 (2.64), 

467 (0.58), 516 (sh, 0.59), 546 (0.65) 

649 0.07 2.87 

4.10a 
88,e

 389 (3.1), 443 (2.4), 552 (3.5), 596 (11.2) 764 0.10 11 

4.10b 
88,e

 390 (3.6), 447 (2.8), 555 (4.0), 599 (12.6) 763 0.11 13 

Absorption, emission, quantum yield and lifetimes determined in (a) DMF, (b) CH3CN (c)  degassed 

CH3CN (d) degassed DMF or (e) degassed toluene.  
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The complexes with cyano groups between the nitrogens were also more highly 

absorbing overall, with maximum absorptivities of 11.2 – 12.6 x 10
4

 M
-1

 cm
-1

, while the 

other complexes displayed maximum absorptivities of only 1.3 – 5.09 x 10
4
 M

-1
 cm

-1
.  

Solvatochromic studies of 4.4, 4.5, 4.7c, 4.8a, 4.9a, 4.10a, and 4.10b were 

performed. For complexes 4.4 and 4.5, the absorption bands at λ ≤ 315 nm remained 

unchanged, but the lower energy absorption bands blue shifted in solvents of greater 

polarity. A blue shift in the emission was observed for complex 4.7c, 4.8a, and 4.9a with 

increasing polarity. Complexes 4.10a and 4.10b displayed a change in the absorption λmax 

for all of the absorption bands, but the shift did not follow a trend relative to the polarity 

of the solvent.   

The solution-state emission ranges from 548 – 764 nm, which is similar to other 

Schiff-based tetradenate complexes 4.1a and 4.1b. The choice of linker between the 

nitrogens seems to have a large effect on the emission wavelength. It was observed that 

the complexes with alkane linkers between nitrogens (4.6 – 4.8d) had emission maxima 

ranging from 548 – 592 nm. The complexes with aromatic linkers between nitrogens (4.4, 

4.5, and 4.9a – 4.9f) had emission maxima ranging from 596 – 649 nm. The complexes 

with alkene linkers and cyano groups between nitrogens, complexes 4.10a and 4.10b had 

emission maxima of 764 nm and 763 nm, respectively.  

The solvatochromic effects on the emission of complexes 4.4, 4.5, 4.7c, 4.8a, 

4.9a, 4.10a, and 4.10b were examined in addition to the absorption. Unlike the 

absorption, there was a distinct bathochromic shift in the emission for complexes 4.10a 

and 4.10b with increasing polarity.  Complexes 4.4, 4.5, 4.7c, 4.8a, and 4.9a displayed 

hypsochromic shifts with increasing polarity. Compared with the solvent effects observed 
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for 4.7c, 4.8a, and 4.9a in the absorption profiles, the shifts are much smaller in the 

emission profiles.  

Table 4.3: Decomposition temperatures for 4.4-4.9f 

Complex Td [°C]  Complex Td [°C] 

4.4
73

 440  4.8b
87

 474 

4.5
73 

530  4.8c
87

 495 

4.6
87

 369  4.8d
87

 484 

4.7a
87

 406  4.9a
87

 415 

4.7b
87

 345  4.9b
87

 339 

4.7c
87

 455  4.9c
87

 411 

4.7d
87

 379  4.9d
87

 396 

4.7e
87

 315  4.9e
87

 414 

4.8a
87

 382  4.9f
87

 408 

 Td values determined under N2 atmosphere.  

The lifetimes range from 0.12 – 13 μs. The complexes with alkane linkers 

between nitrogens (4.6 – 4.8d) have the shortest lifetimes, 0.12 – 3.81 μs. The complexes 

with aromatic linkers between nitrogens (4.4, 4.5, and 4.9a – 4.9f) have some 

overlapping, but generally somewhat longer lifetimes, 1.3 – 4.62  μs, than the alkane-

bridged complexes. The complexes with alkene linkers and cyano groups between 

nitrogens had much longer lifetimes than any of the other complexes with lifetimes of 11 

μs and 13 μs for complexes 4.10a and 4.10b, respectively. The emission quantum yields 

range from 10 – 45%. No trends were observed for the emission quantum yields of the 

complexes.  

The thermal stabilities of complexes 4.4 – 4.7e and 4.8b – 4.9f were studied by 

TGA under nitrogen. It was found that the decomposition temperatures ranged from 315 

– 530 °C, see Table 4.3. Complex 4.5 had the highest decomposition temperature of 530 

°C. This is the highest temperature reported among the discussed tetradenate compounds. 
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The decomposition temperature decreases significantly in air, from 530 °C under nitrogen 

to 380 °C in air.  

It was observed that a significant increase in the decomposition temperature 

occurred for the 4.8a – 4.8d class of compounds when a substituent was placed in the 

position para to the oxygen. Complex 4.8a had a decomposition temperature of 382 °C 

which increased to 474 °C with the addition of methyl groups in the positions para to the 

oxygen, and to 495 °C with the addition of tert-butyl groups in the positions para to the 

oxygen, and to 484 °C with the addition of fluorines in the positions para to the oxygen. 

Other significant changes in the decomposition temperature occurred when the position 

para to the oxygen was changed from H (345 °C) to OCH3 (455 °C) in complexes 4.7b 

and 4.7c This trend does not continue in all cases, the decomposition temperature 

decreased from complex 4.7a (406 °C) with a hydrogen para to the oxygen to complex 

4.7e (315 °C) with a bromine para to the oxygen.  

 

Carbene Tetradentate Platinum(II) Complexes 

Six tetradentate platinum(II) complexes have been reported that employ an N-

heterocyclic carbene in one or more binding sites, as shown in Figure 4.4.
80,92

 Several 

iridium complexes have been reported with deep blue emission at room temperature that 

are cyclcometallated with N-heterocyclic carbenes.
93–95

 

Complexes 4.12a and 4.12b exhibit strong absorption bands below 300 nm, which 

have been attributed to 
1
π-π

* 
transitions localized on the cyclometalating ligands by Hang 

and coworkers.
92

 More moderate absorption bands in the 300 – 420 nm region have been 

assigned to metal-to-ligand charge transfer (MLCT) transitions. Weaker absorption bands 

between 420 – 450 nm were assigned as triplet absorption. The absorptions in all regions 
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was observed to be stronger for 4.12b than for 4.12a. Complexes 4.11a – 4.11d exhibit 

strong absorption bands (ε = 7.1 – 12.7 x 10
4

 M
-1

 cm
-1

) between 277 – 365 nm, with no 

moderate or weak absorbing tails.  

 

 

Figure 4.4: Carbene tetradentate platinum(II) complexes.
80,92 

The emission maxima for complexes 4.11a - 4.12b ranged from 442 – 461 nm, 

see Table 4.4. The emission quantum yields ranged widely from 0.03 to 0.78. The 

lifetimes were in the microsecond range (0.4 μs – 4.2 μs).  The emission maxima of 

complex 4.11a was blue shifted by 14 nm, the emission quantum yield increased from 3 

to 18%, and the lifetime increased from 0.5 μs to 3.5 μs when fluoride groups were added 

to the para position of the phenolate group (4.11b). The emission maxima remained 
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nearly unchanged with the addition of methyl (4.11c) and t-butyl (4.11d) groups at the 

para position of the phenolate. The addition of these two groups does increase the 

emission quantum yield and the lifetime, although not as significantly as the fluoride. A 

red-shift of 5 nm was observed for complexes 4.11a – 4.11c when the solvent was 

changed from a mixture of THF/DMF to the more polar CH2Cl2/DMF (19:1, v/v). Only a 

10 nm difference was observed in the emission maxima for complexes 4.12a and 4.12b. 

However, the quantum yield increased from 7% for complex 4.12a to 78% for complex 

4.12b by moving from a phenoxyl pyridine to a carbazoyl pyridine.   

 

Table 4.4: Physical, spectroscopic, and photophysical data for 4.11a - 4.12b. 

 λAbs [nm] (ε [ x 10
-4

 M
-1

 cm
-1

]) λEm [nm] ΦEm τ [μs] Td [°C] 

4.11a
80, a 

277 (sh, 8.4), 302 (7.3), 342 

(7.1), 353 (7.1) 

457 0.03 0.5 250 

4.11b
80, a

 286 (8.5), 310 (9.7), 353 (10.4), 

365 (10.5) 

443, 459 0.18 3.5 410 

4.11c
80, a

 284 (sh, 10.0), 308 (9.4), 351 

(9.7), 362 (9.7) 

460 0.07 1.8 390 

4.11d
80, a

 282 (sh, 11.5), 308 (10.5), 352 

(12.3), 363 (12.7) 

461 0.08 1.8 400 

4.12a
92, b

 N/A 442 0.07 0.4 N/A 

4.12b
92, b

 N/A 452 0.78 4.2 N/A 

Absorption, emission, quantum yield, and lifetimes determined in degassed (a) DMF/THF (19:1, v/v) (b) 

CH2Cl2. Td values determined under N2 atmosphere.  

The thermal stabilities of complexes 4.11a – 4.11d were studied by TGA under 

nitrogen. It was found that the decomposition temperatures ranged from 250 –  410 °C. 

Though high, these values are in the lower range for tetradentate platinum(II) complexes. 

The decomposition temperatures of 4.12a and 4.12b were not studied.  
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C^N^N^C Tetradentate Platinum(II) Complexes 

The second most widely studied non-porphyrin tetradenate platinum(II) 

complexes are of the type C^N^N^C, with fourteen reported structures, as shown in 

Figure 4.5.
66,76,79,92

  Cyclometalated platinum(II) complexes have been the focus of 

research for a wide range of applications including oxygen sensors,
58

 pH sensing,
96

 

catalysis,
97

 anti-cancer agents,
98

 and in light-emtting diodes.
66

 

The absorption profiles of all but complex 4.14d were reported. Complexes 4.13a 

– f, 4.14a – c, and 4.15a – 4.16b exhibit intense (ε = 1.00 to > 3 x 10
4

 M
-1

 cm
-1

) vibronic-

structured absorption bands below 360 nm, which have been attributed to 
1
π-π

*
 

transitions. Additional more moderate absorption bands were observed for complexes 

4.14a – c, 4.15a – 4.16b between 368 – 394 nm, with weaker tails at > 400 nm. 

Complexes 4.13a – 4.13f displayed moderate absorption bands (ε = 0.14 – 0.96 x 10
4

 M
-1

 

cm
-1

) between 365 – 507 nm, and displayed no weak tails. The absorption profile of the 

very similar complexes 4.15a and 4.16a are nearly identical, as are the absorption profiles 

of the similar complexes 4.15b and 4.16b. Complex 4.16a was found to follow Beer’s 

law up to 5 x 10
-4

 M. This suggests there is no significant aggregation occurring. Solvent 

effects on the absorption specta for complexes 4.13a, 4.13c – 4.13f were studied. 

Complex 4.13b was not studied due to its poor solubility. For all the complexes a blue 

shift was observed in the absorption maximum when moving from less polar to more 

polar solvents. The effect is moderate in complexes 4.13a, 4.13d, 4.13e, and 4.13f, with 

shifts of 7 – 9 nm from toluene to CH3CN. The effect was much more pronounced in 

complex 4.13c, with a shift of 16 nm.  
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Figure 4.5: C^N^N^C tetradentate platinum(II) complexes.
66, 76, 79, 92

 

The emission maxima range from 430  –  613 nm, see Table 4.5, making this the 

second most wide ranging class of tetradentate platinum(II) complexes discussed. The 

complexes which employ one or more pyrazole ligands have emission wavelengths 
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which are bluer (430 – 516 nm) than the complexes which do not have a pyrazole (488 – 

613 nm).  

Table 4.5: Physical, spectroscopic, and photophysical data for 4.13a -4.16b 

 λAbs [nm] (ε [ x 10
-4

 M
-1

 cm
-1

]) λEm [nm] ΦEm τ [μs] 

4.13a
66, a 

324 (2.52), 342 (2.62), 384 (0.49), 407 (.60) 512, 548 0.74 7.6 

4.13b
66, a

 268 (2.92), 329 (1.90), 387 (0.39) 488, 523 0.75 11.4 

4.13c
66, a

 274 (2.85), 324 (1.74), 338 (1.74), 409 

(0.97), 507 (0.14) 

613 0.14 7.6 

4.13d
66, a

 302 (3.44), 335 (1.62), 351 (2.85), 370 

(0.85), 421 (0.34), 442 (0.29) 

484, 512 0.56 4.9 

4.13e
66, a

 304 (2.14), 334 (1.03), 348 (1.33), 365 

(0.50), 408 (0.17), 428 (0.14) 

474 0.37 3.4 

4.13f
66, a

 307 (2.81), 342 (1.03), 357 (1.82), 376 

(0.47), 428 (0.18), 451 (0.16) 

486, 516 0.63 5.7 

4.14a
79, b

 N/A 512 0.63 2.0 

4.14b
79, b

 N/A 468 0.64 9.0 

4.14c
79, b

 N/A 430, 456 0.39 3.0 

4.14d
92, b

 N/A 454 (sh), 478 0.71 3.3 

4.15a
76, a

 257 (3.32), 284 (3.23), 319 (1.90), 339 

(1.05), 368 (0.49), 390 (0.94), 478 (0.09) 

493, 525, 560 (sh) 0.54 0.38 

4.15b
76, a

 255 (3.38), 284 (3.24), 320 (1.84), 340 

(1.03), 369 (0.44), 394 (0.93), 478 (0.08) 

492, 520, 564 (sh) 0.58 0.32 

4.16a
76, a

 258 (3.33), 285 (3.16), 318 (1.93), 339 

(1.08), 369 (0.52), 390 (0.95), 477 (0.08) 

492, 520, 560 (sh) 0.56 0.39 

4.16b
76, a

 255 (3.36), 285 (3.34), 321 (1.82), 341 

(1.00), 370 (0.43), 394 (0.88), 478 (0.08) 

492, 522, 564 (sh) 0.55 0.38 

Absorption, emission, quantum yield and lifetimes determined in degassed (a) 2-methyltetrahydrofuran (b) 

CH2Cl2.  

Solvent effects on the emission of complexes 4.13a, 4.13c – 4.13f were also 

studied. As in the absorption, complexes 4.13a and 4.13c exhibited moderate 

hypsochromic shifts from less to more polar solvents. The emission of complexes 4.13d – 

4.13f shifted minimally (< 5 nm) in varying solvents, and displayed no clear trend in 

relation to solvent polarity. 
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Concentration dependence studies were performed for complexes 4.13a and 4.14a 

– 4.14c. No excimer based emission was observed for complexes 4.14a – 4.14c. Li and 

coworkers attribute this for complexes to the distortion from planarity induced by the 

oxygen linking atoms, which prevent the intermolecular interactions needed for excimer 

formation. Complex 4.13a exhibits a long wavelength band that appears at high 

concentrations, which Huo and coworkers have attributed to excimer formation.  

 

The lifetimes for the fourteen C^N^N^C type tetradentate platinum(II) complexes 

range from 0.32 – 11.4 μs. The complexes with carbon bridges (4.15a – 4.16b) have 

much shorter lifetimes (0.32 – 0.39 μs) than the complexes with oxygen (4.14a – d) or 

nitrogen (4.13a – 4.13f) bridges (2.0 – 11.4 μs). The emission quantum yields range from 

14 – 75 %, with the average being 56%. The thermal stabilities were not investigated for 

any of the C^N^N^C type compounds.  

 

Conclusions 

All of the non-porphyrin tetradentate platinum(II) complexes are highly 

absorbing, with molar absorptivities > 10
4

 M
-1

 cm
-1

. The most highly absorbing group of 

complexes are that of the carbenes (εmax = 8.4 to 12.7 x 10
4

 M
-1

 cm
-1

). The rest of the 

complexes have maximum molar absorptivities < 5 x 10
4

 M
-1

 cm
-1 

with the exception of 

two of the O^N^N^O Schiff base complexes (4.10a and 4.10b). These complexes have 

absorptivities comparable to the carbenes (εmax = 11.2 to 12.6 x 10
4

 M
-1

 cm
-1

). The 

solvatochromic effects were discussed for the absorption for fifteen complexes. All of 

these complexes displayed a blue shift in the absorption moving from less polar to more 

polar solvents, except for complexes 4.10a and 4.10b which displayed no clear trend.  
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 The non-porphryin tetradentate platinum(II) complexes were found to have 

emission maxima over a wide range of wavelengths from 430 –  764 nm. The complexes 

of the type O^N^N^O were found to have the largest coverage of wavelengths, from 548 

– 764 nm. This extensive range may be due to the fact that this ligand set is the most 

widely studied. The complexes of the type C^N^N^C and N^N^N^N were also found to 

span a large range of wavelengths. The emission λmax for C^N^N^C type complexes 

ranges from 430 – 613 nm. The emission peaks for N^N^N^N type complexes ranges 

from 560 nm to 750 nm. The other classes were found to cover less than a 40 nm range. 

The carbenes were found to generally emit in the blue region, and the O^N^C^N 

complexes were found to emit generally in the green region. 

 Many of the complexes were found to have high emission quantum yields. The 

complexes with the highest quantum yields were of the type O^N^C^N. These eight 

compounds all had quantum yields over 0.72. This class included the complex with the 

highest quantum yield of the series, complex 4.2d (93 %). Complexes of the type 

C^N^N^C were also found to have high emission quantum yields, with an average of 

56%. The carbene complexes were generally found to have low emission quantum yields 

(3 – 18%), with the exception of complex 4.12b (78%). The Schiff base complexes of the 

type N^N^N^N and O^N^N^O had lower quantum yields, with all less than 45%.  

 The lifetimes for all fifty-two complexes were found to be in the microsecond 

range, ranging from 0.12 – 28 μs. No trends in the lifetimes of the varying groups of 

complexes were observed.  

 The thermally stabilities of all the compounds reporting thermogravametric 

analysis (thirty-two complexes) were found to be high (> 250 °C). Over 65% of the 

complexes have decomposition temperatures above 400 °C.  
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 Tetradentate platinum(II) complexes have been shown to be emissive over a wide 

range of wavelengths from blue to the near-infrared. These complexes have displayed 

high thermal stabilities. Additionally many of the complexes have shown high emission 

quantum yields.  These attributes make tetradentate platinum(II) complexes promising 

class of materials for a range of applications. 
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Chapter 5:  Conducting Metallopolymers Incorporating Luminescent 

Cyclometallated Platinum(II) Complexes 

INTRODUCTION 

LED, light emitting diode, devices are typically composed of a cathode, an 

electron transport layer, an emitting layer containing small molecule phosphores such as 

platinum or iridium containing complexes, a hole transport layer, and then finally a 

transparent anode.
62,99

 Many devices also contain additional buffering layers and 

injection layers to improve device performance.
55,100,101

 Often these systems suffer from 

aggregation of the emitters, non-uniform films, and the need for a composite material.
102

 

To combat these issues polymeric systems based upon a conducting polymer backbone 

with covalently bound luminescent centers has been synthesized, to prevent emitter 

aggregation and the need for a composite material. Additionally electropolymerization 

was specifically chosen because the polymerization process creates a thin film directly on 

an electrode, eliminating the need for the processing of bulk material into films.
103–105

 To 

create a device that emits white light, materials need to be synthesized that emit red, 

green, and blue.
106

  

 Previous research into electropolymerized iridium and platinum complexes has 

shown significant red shifts in the emission wavelength from that of similar complexes 

which do not contain electropolymerizable substituents.
107,108

 [2,6-Bis(2-pyridyl)phenyl-

C,N,N′]chloroplatinum(II) for example has an emission maxima at 491 nm; with the 

appendage of 3,4-dibutyl-2,2’:5,2’’-terthiophene groups at the 5-position on the pyridine 

rings the emission maxima shifts to 560 nm.
108,109

 Upon polymerization the emission is 

even farther red shifted to 590 nm. This is believed to be due to the increased conjugation 

that the electropolymerizable substituents provide lowering the energy level of lowest 

unoccupied molecular orbital. Due to this effect, electropolymerizable complexes that 
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emit in the blue and green region have been difficult to achieve. To combat this, an 

approach has been taken to design a system in which the electropolymerizable groups are 

not in direct contact with the luminescent center. This approach could be achieved by 

placing non-conjugated linkers between the polymerizable handle and the emitter. This 

however would likely decrease the conductivity of the material. Complex 4.12a 

synthesized by Hou et al. is shown in Figure 5.1.
66

 Hou and coworkers found through 

single crystal X-ray diffraction and density functional theory (DFT) calculations that 

there is a nearly 90 ° torsion angle between the aniline and portion of the molecule where 

the HOMO and LUMOs lie. This twist could allow substitutions on the aniline that do not 

influence the photophysical properties of the metal complex and do not introduce 

insulating materials into the system. Our approach involves synthesizing a platinum(II) 

complex based on the complex by Hou et al., with electropolymerizable groups on the 

aniline in an attempt to create a material that is conductive, yet does not alter the 

photophysical properties of the original materials.  

 

 

Figure 5.1: Structure of ligand 5.1 and platinum complex 4.12a shown with torsion.
66
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RESULTS AND DISCUSSION 

Synthesis and Characterization 

Scheme 5.1 shows the synthesis of the ligand 5.6 and the platinum complex 5.7. 

1,3-dibromo-5-nitrobenzene was prepared using a modified procedure from Bérubé et 

al.
110

 A Stille coupling was employed between tributyl(2,3-dihydrothieno[3,4-

b][1,4]dioxin-5-yl)stannane and 1,3-dibromo-5-nitrobenzene to form 5.3. The nitro 

functionality was then reduced with sodium borohydride and stannous chloride to form 

the aniline 5.4. Product 5.5 was synthesized through a Buchwald-Hartwig amination 

between 5.4 and 2,6–dibromopyridine. Both the monosubstituted and disubstitued 

products were recovered and were separated by column chromatography. Crystals 

suitable for single crystal X-ray diffraction of 5.4 were achieved by layering a saturated 

solution of 5.4 in CH2Cl2 with hexanes. The structure is shown in Figure 5.2. Detailed 

information on the structure is given in Table 5.2.  

 

Figure 5.2: Molecular structure of 5.4. 

The atom labeling scheme is shown. Displacement ellipsoids are shown at the 50% probability level. The 

hydrogens, with the exception of the amine hydrogens, have been omitted for clarity.  
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Scheme 5.1: Synthesis of platinum complex and precursors, 5.2 – 5.7. 

(a) [1] H2SO4, NaNO2, 0 °C, 1 h [2] CuSO4·5H2O, EtOH, 60 °C, 1h, 82.8% (b) EDOTSnBu3, PdCl2(PPh3)2, 

CuI, Toluene, 110 °C, 18 h, 53.5% (c) NaBH4, SnCl2, EtOH, H2O, 66 °C, 18h, 35.0% (d) 2,6-

dibromopyridine, Pd2(dba)3, DPPF, NaOtBu, Toluene, 110 °C, 18 h, 13.0% (e) Phenylboronic acid, 

Pd(OAc)2, PPh3, K2CO3, DME, 85 °C, 4 h, 31.6% (f) K2PtCl4, Bu4NCl, AcOH, 118 °C, 45 h, 11.6%. 

The ligand 5.6 was obtained by the Suzuki cross coupling of the ligand precursor 

with benzeneboronic acid. Potassium tetrachloroplatinate was reacted with the ligand to 

give the desired cyclometallated complex, 5.7. All the compounds were found to be 

soluble in common organic solvents. All novel compounds were characterized by 
1
H and 

13
C{

1
H} NMR spectroscopy, mass spectrometry, and elemental analysis by combustion. 

The photophysical properties of 5.1 were not reported by Hou and coworkers, so 

compound 5.1 was synthesized following Hou and coworker’s procedure.
66
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Spectroscopic Properties of Small Molecules 

The photophysical properties of the model ligand, 5.1, the ligand 5.6 and the 

platinum complex 5.7 were studied and the results are summarized in Table 5.1. Both the 

model ligand, 5.1, the ligand, 5.6, and the platinum complex, 5.7, exhibit intense (ε ≈ 

1.69 – 4.23 x 10
4

 M
-1

 cm
-1

) vibronic-structured absorption bands below 360 nm, which 

have been attributed to π-π
*
 transitions. No weaker bands were observed, see Figure 5.3.  

 

 

Figure 5.3: Absorption, spectra of 5.1, 5.6 and 5.7 in CH2Cl2 at room temperature. 

The emission and excitation profiles of all three compounds are shown in Figures 

5.4 and 5.5. The emission profiles of the ligands 5.1 and 5.6 closely match, both with 

broad peaks at ~405 nm. For the platinum complex excitation into the ligand singlet state 

enhances ligand fluorescence, but higher excitation wavelengths results in predominately 

phosphorescence at 510 and 544 nm. This matches closely with the model platinum 

complex, 4.12a, studied by Hou and coworkers, which displays peaks at 512 and 548 

nm.
66

 In previous work the addition of electropolymerizable groups onto a substrate has 
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altered the emission, but for this system, neither the ligand nor the platinum complex 

displays a significant change in emission from similar compounds without 

ethylenedioxythiophene appendages. 

 

 

Figure 5.4: Top: Excitation spectra of 5.1, 5.6 and 5.7, in CH2Cl2 at room temperature 

Bottom: Emission spectra of 5.1, 5.5 and 5.6 in CH2Cl2 at room temperature. 

The solvent effect on the emission of 5.6 and 5.7 was studied. Compound 5.6 did 

not show any solvent dependence, but complex 5.7 displayed a shift of 10 nm from 



 105 

toluene to acetonitrile, see Figure 5.5. This is comparable to the change in emission 

observed for complex 4.12a, by Hou and coworkers, which shifted 14 nm from toluene to 

acetonitirile.
66

 The hypsochromic shift with increasing solvent polarity indicates 
3
LC 

emission.  

 

Figure 5.5: Emission profile of 5.7 in various solvents at room temperature. 

 

Table 5.1: UV-vis absorption and photoluminescence data for 5.1, 5.6, 5.7, and poly5.7. 

 
λAbs, nm, (ε, M

-1
 cm

-

1
) 

λEx (nm) λEm (nm) ΦEm (%) τ (μs) 

5.1 249 (33157), 282 

(22060), 319 (16853) 

325 407 - 0.31 ± 0.03 

5.6 245 (21334), 299 

(32646) 

300 403 4.51 0.43  ± 0.02 

5.7 261 (29794), 309 

(42326), 339 (36069), 

354 (23002) 

408 510 

544 

0.29 6.2 ± 0.8 

 

poly5.7
a 

336, 409, 485 311 454 - 0.11 ± 0.1 

Recorded in degassed CH2Cl2 at room temperature, (b) recorded on ITO-coated glass. 
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Electrochemistry 

As shown in Figures 5.6 and 5.7, monomers 5.6 and 5.7 were electropolymerized 

to form poly5.6 and poly5.7 respectively. The polymers were grown as electrode 

confined thin films on a platinum button for scan rate dependence studies and ITO-coated 

glass for emission studies. The cyclic voltammetry was performed in a window from -0.3 

to 1.7 (vs Fc/Fc
+
) in CH2Cl2 containing 0.1 M TBAPF6. 

 

 

Figure 5.6: (A) Electropolymerization of 5.6, (B) poly5.6 on ITO coated glass. 

 

Figure 5.8(top right) shows a linear relationship between the oxidative/reductive 

peaks and the number of scans during polymerization indicating uniform growth of the 

polymer, poly5.6, for 2 - 3 scans. It is expected that film growth would continue to be 

linear with further scans if a higher potential could be achieved, but the electrochemical 

window of the solvent would be exceeded with higher potentials. Attempts to find a 

solvent in which 5.5 was soluble and the electrochemical window allows oxidative 

potentials higher than 1.7 (vs Fc/Fc
+
) was unsatisfactory. Figure 5.9(top right) shows the 

shows a linear relationship between the oxidative/reductive peaks and the number of 
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scans during polymerization for poly5.7. For this complex the linear relationship 

continues for about six scans before the solvent window is reached. Scan rate dependence 

studies were conducted for both poly5.6 and poly5.7, the cyclic voltammograms are 

shown in Figure 5.8C and 5.9C respectively. Both polymers show a linear relationship 

between the oxidative/reductive peaks and the scan rate up to 250 mV/s. This indicates 

that the films are conductive, have good ionic porosity by allowing the quick influx of 

counterions, and that the films are strongly absorbed. The relationship between the 

oxidative/reductive peaks and the scan rate for poly5.7 deviates from linearity at 500 

mV/s, indicating a “less facile ion transport” than poly5.6, which does have a linear 

relationship out to 500 mV/s. It is likely that poly5.7 is a thicker film than poly5.6 since a 

larger number of film growth scans was achieved before reaching the electrochemical 

solvent window. A difference in film thickness might be the cause the differences in the 

scan rate study; a thinner film of poly5.7 might result in a linear relationship out to 500 

mV/s.  

 

 

  

Figure 5.7: (A) Electropolymerization of 5.7, (B) poly5.7 on ITO coated glass. 
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Figure 5.8: Electrochemistry of compound 5.6. 

(Top left) Cyclic voltammogram of 5.6 in 0.1 M TBAPF6 in CH2Cl2 at a scan rate of 0.1 V/s. (Top 

right) Plot of oxidative and reductive peak currents versus number of scans. (Bottom left) Scan rate 

dependence study of poly5.6 in 0.1 M TBAPF6 in CH2Cl2. (Bottom right) Plot of oxidative and 

reductive peak currents versus scan rate. 

 

Spectroscopic Properties of Polymers Films 

The absorbance profile of poly5.7 is shown in Figure 5.10. The broad absorption 

bands are typical of ethylenedioxythiophene metallopolymers and are likely due to the 

extended conjugation of the system.   
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Figure 5.9: Electrochemistry of complex 5.7. 

(A) Cyclic voltammogram of 5.7 in 0.1 M TBAPF6 in CH2Cl2 at a scan rate of 0.1 V/s. (B) Plot of 

oxidative and reductive peak currents versus number of scans. (C) Scan rate dependence study of 

poly5.7 in 0.1 M TBAPF6 in CH2Cl2. (D) Plot of oxidative and reductive peak currents versus scan 

rate. 

 

The emission for the platinum metallopolymer, poly5.7, was observed to be blue shifted 

from that of the platinum monomer 5.7, shown in Figure 5.11. Additionally the emission 

for the metallopolymer, poly5.7, was observed to be structureless, unlike the monomer, 

5.7. It is expected that the increase of the conjugation near the LUMO, would lower the 

LUMO energy level, creating a sFmaller energy gap between the ground and excited 

states and thus red shift the emission. 
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Figure 5.10: Absorption profile of poly5.7 as a thin film on ITO coated glass. 

We anticipated that the polymerization would either cause no change in emission or 

would cause a red shift in the emission. It has been seen in other systems that the increase 

in conjugation, caused by the polymerization on or near the LUMO of the material, 

lowers the energy level of the LUMO and thus causes a red shift in the emission. When 

comparing the excitation profiles of the platinum monomer, 5.7, to the metallopolymer, 

poly5.7, it was observed that they differ by ~ 100 nm. The excitation maximum for the 

ligand, 5.6, differs by only ~ 10 nm from that of poly5.7. The emission of the ligand 5.6 

and poly5.7 are both broad and featureless. It is likely the metallopolymer emission is 

ligand centered emission, with no contribution from the metal. This means the emission 

is red shifted from that of the ligand, and not blue shifted from that of the platinum 

monomer. No emission was observed from the ligand based polymer, poly5.6. 
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Figure 5.11: Top: Excitation spectra of 5.6, 5.7 and poly5.7, in CH2Cl2 at room 

temperature. Bottom: Emission spectra of 5.6, 5.7 and poly5.7 in CH2Cl2 at 

room temperature. 

 

CONCLUSION 

A novel ethylenedioxythiophene-derivatized tetradentate platinum(II) complex 

has been designed, synthesized, and characterized. The appendage of the 

ethylenedioxythiophene groups did not alter the wavelength of emission. The monomer 
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was electropolymerized onto ITO-coated glass to form a thin film that was found through 

a scan rate dependence study to be electrically conductive. The emission of the 

metallopolymer was determined to be ligand centered. The emission was red-shifted from 

the ligand, but the shift was minimal as compared to the shift from monomer to polymer 

seen in other systems with ethylenedioxythiophene appendages.
107

   

 

EXPERIMENTAL 

General Methods 

All chemicals were purchased from chemical suppliers and were used without 

further purification. All dry reactions were performed using standard Schlenk techniques 

and were performed under an inert atmosphere of nitrogen. Tetrahydrofuran and toluene 

were dried by allowing the solvent to sit over freshly activated 3Å molecular sieves for 

24 hrs, followed by sparging with N2 for 1 hr, as described by Williams and coworkers.
111

   

1
H and 

13
C{

1
H} NMR

 
spectra were obtained on a Varian Unity+ 300 or 400 MHz 

instrument. 
1
H, and 

13
C{

1
H} NMR spectra were referenced to the residual solvent peaks. 

High resolution mass spectra were obtained with an Agilent Technologies 6530 Accurate 

Mass QTofLC/MS (ESI) or a Micromass Autospec Ultima (CI+). Elemental analysis was 

performed by QTI, Whitehouse, NJ (www.qtionline.com). Melting points are not 

corrected. Tributyl(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)stannane was prepared 

according to Swager and coworkers.
112

 

Electrochemistry 

All electrochemical syntheses and studies were performed in a dry-box under a 

nitrogen atmosphere using a GPES system from Eco. Chemie B.V and an autolab 
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potentiostat. All the electrochemical experiments were carried out in a three-electrode 

cell with Ag/AgNO3 reference electrode (silver wire suspended in a 0.01 M silver nitrate 

solution with 0.1 M [(n-Bu)4N][PF6] in dry CH3CN), and a Pt wire coil counter electrode, 

either a platinum working electrode, Delta Technologies ITO-coated glass (70-100 Ω/□), 

or stainless steel. Potentials were measured relative to the Ag/AgNO3 reference electrode. 

Ferrocene was purified by sublimation at 95 °C and used as an external reference to 

calibrate the reference electrode before and after experiments were performed and that 

value was used to correct the measured potentials. All electrochemistry was performed in 

either CH2Cl2 or CH3CN solutions using 0.1 M [(n-Bu)4N][PF6] as the supporting 

electrolyte. [(n-Bu)4N][PF6] was purified by recrystallization three times from hot ethanol 

before being dried for 3 days at 100 °C under reduced pressure prior to use. 

Electrosyntheses of the polymer films were performed from a dilute monomer solutions 

by continuous cycling between -0.3 V and 1.7 V (vs Fc/Fc
+
) at 100 mVs

-1
. The films 

obtained were then washed with fresh CH2Cl2 before performing further experiments.  

 

Spectroscopy 

Absorption spectra were recorded on a Varian Cary 6000i UV-Vis-NIR 

spectrophotometer with starna quartz fluorometer cells with a pathlength of 10 mm. 

Luminescent measurements were recorded on a Photon Technology International QM 4 

spectrophotometer equipped with a 6-inch diameter K Sphere-B integrating sphere. 

Quantum yields were determined using an aqueous solution of quinine sulfate in 5 M 

H2SO4 according to equation 5.1, where Φs is the quantum yield of the sample, Φq is the 

quantum yield of quinine sulfate,  Aq is the absorbance of the quinine solution at the 

excitation wavelength, Aq is the absorbance of the sample at the excitation wavelength, Iq 
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is the area of the quinine emission peak, Is is the area of the sample emission peak, and ηq 

is the refractive index of 0.5 M H2SO4, ηs is the refractive index of the solvent used for 

the sample. 

                                          
   

  
  

  

  
  

  

  
 
 

               (5.1) 

 

X-ray Crystallography 

Crystals of 5.4 suitable for X-ray diffraction were obtained by layering a saturated 

solution of 5.4 in CH2Cl2 with hexanes and allowing the solutions to slowly diffuse. The 

single–crystal diffraction data was collected on a on a Rigaku SCX-Mini diffractometer 

with a Mercury CCD using a Rigaku Tec 50 low-temperature device. The complex was 

collected using a graphite monochromator with MoKα radiation (λ = 0.71073Å). 

Absorption corrections were applied using multi-scan. Data reduction was performed 

using the Rigaku Americas Corporation’s Crystal Clear version 1.40.
39

 The structures 

were solved by direct methods and refined anisotropically using full-matrix least-squares 

methods with the SHELX-97 program package.
40

 The amine H atoms were located in a 

difference Fourier map and both positional and isotropic displacement parameters were 

refined. All other H atoms were positioned geometrically and refined using a riding 

model, with C—H = 0.93 – 0.97 Å and Uiso(H) = 1.2 Ueq(C). Neutral atom scattering 

factors and values used to calculate the linear absorption coefficient are from the 

International Tables for X-ray Crystallography (1992).
41
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Synthesis 

 

 

[5.1]  1,3-dibromo-5-nitrobenzene 

The preparation of 5.1 was prepared according to a modified procedure of Bérubé 

et al. for 1,3-diiodo-5-nitrobenzene.
110

 To a solution of conc. H2SO4 (45 mL) in a 0 °C ice 

bath was added 2,6-dibromo-4-nitroaniline (11.7g, 39.6 mmol). Complete dissolution 

took 1 hr, after which time sodium nitrate (4.9 g, 70.5 mmol) was added and stirred for an 

additional 1.5 hrs. A beaker was filled with approx 300 g of ice and the solution was 

poured into the ice, rinsing with cold water. The ice solution was filtered over a coarse 

frit. The filtrate was added to a refluxing solution of copper sulfate (0.5 g, 0.2 mmol) in 

ethanol (400 mL), and stirred for 2 hours. An orange solid precipitated. The solid was 

collected by vacuum filtration and was washed with H2O until neutral, yielding a tan 

solid (82.8%). The 
1
H NMR spectra matched that reported by Kubiczak and 

coworkers.
113
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[5.2]  5,5'-(5-nitro-1,3-phenylene)bis(2,3-dihydrothieno[3,4-b][1,4]dioxine) 

To a solution of dry toluene under N2 was added tributyl(2,3-dihydrothieno[3,4-

b][1,4]dioxin-5-yl)stannane (25.3 g, 58.7 mmol), 5.1 (7.0 g, 25.0 mmol), trans-

dichlorobistriphenylphosphine palladium (II) (1.1 g, 1.6 mmol), and copper (I) chloride 

(0.1 g, 0.5 mmol). The solution was refluxed at 110 °C overnight. The black solution 

exposed to atmosphere and conc. under reduced pressure. The solid was dissolved in 

dichloromethane and filtered over a bed of silica. The filtrate was conc and 

recycrystalized in a dichloromethane/hexanes mixture to yield a bright yellow solid (53.5 

%) m.p. 247-250 °C 
1
H NMR (300 MHz, CDCl3) δ 8.42 (d, 2H, J = 1.5), 8.18 (t, 1H, J = 

1.5), 6.38 (s, 2H), 4.35-4.38 (m, 4H), 4.25 – 4.28 (m, 4H). 
13

C{
1
H} NMR (75 MHz, 

CDCl3) δ: 149.0, 142.3, 139.7, 134.9, 127.8, 118.1, 114.9, 99.3, 65.0, 64.4. HRMS (CI+) 

calcd for C40H29N3O4S2 [M + Na]
+
 426.00748, found 426.00765.   
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[5.3]  3,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)aniline 

5.2 (3.33 g, 8.25 mmol) was dissolved in 200 mL of THF. Sodium borohydride 

(0.85 g, 22.47 mmol) was dissolved in 66 mL of EtOH, to the EtOH solution was added 

stannous chloride (2.11 g, 9.35 mmol). The THF and EtOH mixtures were combined and 

refluxed at 60 °C overnight. The solution was cooled to R.T. and concentrated under 

reduced pressure. The mixture was dissolved in CH2Cl2, and vacuum filtered. The filtrate 

was washed with water, extracting into CH2Cl2 (50 mL x 3), dried with magnesium 

sulfate, and concentrated. The residue was purified on a silica gel column with CH2Cl2 as 

the eluent to afford a tan solid (35.0 %). m.p. 175 °C (decomp.).   
1
H NMR (300 MHz, 

CDCl3) δ 7.41 (t, 1H, J = 1.2), 6.95 (d, 2H, J = 1.5), 6.26 (s, 2H), 4.21 – 4.28 (m, 8H), 

3.71 (br, 2H). 
13

C{
1
H} NMR (75 MHz, CDCl3) δ: 146.7, 142.1, 138.2, 134.2, 117.5, 

114.6, 111.3, 97.5, 64.7, 64.4. HRMS (ESI) calcd for C40H29N3O4S2 [M + H]
+
 374.05169, 

found 374.05153. Anal Calcd for C18H15NO4S2: C, 57.89; H, 4.05; N, 3.75. Found: C, 

57.53; H, 3.77; N, 3.73. Anal Calcd for C18H15NO4S2: C, 57.89; H, 4.05; N, 3.75. Found: 

C, 57.53; H, 3.77; N, 3.73.  
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[5.4]  N-(3,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)phenyl)-6-bromo-N-(6- 

bromopyridin-2-yl)pyridin-2-amine 

In an air-free glovebox tris(dibenzylideneacetone)dipalladium(0) (0.221 g,  0.241 

mmol) was added to a dry schlenk. The schlenk was pumped out, dry toluene was 

transferred into the flask by cannula and 5.3 (2.000 g, 5.355 mmol), 2,6-dibromopyridine 

(2.998 g, 12.656 mmol), DPPF (0.333 g, 0.601 mmol), and sodium tert-butoxide (1.111 

g, 11.561 mmol) were added to the solution. The solution was refluxed at 120 °C for 20 

hours. The solution was cooled to room temperature and the toluene was removed by 

rotoevaporation. The product was extracted into CH2Cl2 (x3) washing with H2O. Purified 

by silica gel column chromatography with 75% CH2Cl2: 25% hexanes by volume (Rf = 

0.34) to yield a bright yellow solid (0.478 g, 13.033 %). m.p. 157 °C.
 1

H NMR (400 

MHz, CDCl3) δ 7.86 (s, 1H), 7.42 (d, 2H, J =1.2), 7.37 (t, 2H, J = 7.8), 7.09 (d, J = 7.6), 

6.95 (d, 2H, J = 8.0), 6.29 (s, 2H), 4.25 – 4.20 (m, 8H). 
13

C{
1
H} NMR (101 MHz, CDCl-

3) δ: 157.0, 143.8, 142.2, 139.5, 139.4, 138.7, 135.1, 123.6, 122.0, 118.5, 116.3, 115.0, 

98.2, 64.7, 64.4. HRMS (CI+) calcd for C28H19Br2N3O4S2 [M]+  682.9184, found 

682.9187. Anal Calcd for C28H19Br2N3O4S2: C, 49.07; H, 2.79; N, 6.13. Found: C, 48.86; 

H, 2.99; N, 5.87. 
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[5.5]  N-(3,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)phenyl)-6-phenyl-N-(6-

phenylpyridin-2-yl)pyridin-2-amine 

5.4 (0.305 g, 0.44mmol) and benzenboronic acid (0.162 g, 1.33 mmol) were 

dissolved in 15 mL of 2-methoxyethanol. 2.2 mL of 2M aq K2CO3 were added. The 

solution was purged with N2 for 45 min. Palladium acetate (0.009 g, 0.04 mmol) was 

added and the solution was refluxed at 120 °C for 4 hrs. The reaction was transferred to a 

separatory funnel and washed with H2O extracting into ethyl acetate (15 mL x 2). The 

combined organic layers were dried with magnesium sulfate and concentrated. The 

residue was purified on a silica gel column with CH2Cl2 as the eluent to afford an orange 

solid (31.6 %). 
1
H NMR (400 MHz, CDCl3) δ 7.91(d, 4H, J = 8.4), 7.88 (s, 1H), 7.64 (t, 

2H, J = 7.8), 7.58 (s, 2H), 7.41 (d, 2H, J = 7.6), 7.32 (m, 6H), 7.08 (d, 2H, J = 8.0), 6.26 

(s, 2H), 4.17 (s, 4H). 
13

C{
1
H} NMR (101 MHz, CDCl3) δ: 157.3, 155.2, 145.1, 142.1, 

139.1, 138.4, 137.9, 134.5, 128.6, 128.5, 126.7, 123.9, 120.8, 116.8, 115.2, 114.0, 97.98 

64.6, 64.3. HRMS (ESI) calcd for C40H29N3O4S2 [M + H]
+
 680.16722, found 680.16656; 

Anal Calcd for C40H29N3O4S2: C, 70.67; H, 4.30; N, 6.18. Found: C, 69.87; H,4.85; N, 

5.37. 
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[5.6]  N-(3,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)phenyl)-6-phenyl-N-(6-

phenylpyridin-2-yl)pyridin-2-amine platinum (II) 

5.5 (0.111 g, 0.163 mmol) and potassium tetrachloroplatinate (0.123 g, 0.296 

mmol) were dissolved acetic acid (15 mL) and degassed with N2. The solution was 

refluxed at 118 °C for 4 days. The solvent was removed under reduced pressure, and the 

residue dissolved in CH2Cl2, filtered through a silca gel plug and the filtrate reduced. The 

solid was dissolved in a minimal amount of CH2Cl2 and then precipitated with hexanes. 

The solid was collected by filtration and washed with hexanes then methanol to yield a 

yellow solid (11.56 %). mp 158 – 160 °C (decomp). 
1
H NMR (400 MHz, CDCl3) δ 8.21 

(d,  J =  8.0, 2H),  8.07 (s, 1H), 7.80 (d, J = 7.2, 2H), 7.79 – 7.70 (m, 6H), 7.53 (t, J = 9.6, 

2H), 7.30 (t, J = 7.2, 2H), 6.84 (d, J = 8.0, 2H),  6.38 (s, 2H), 4.27 – 4.21 (m, 8H). HRMS 

(CI+) calcd for C40H27N3O4S2Pt [M]
+
 872.1074, found 872.1091. 
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Crystallographic Data 

 

Table 5.2:  Crystal data and structure refinement for 5.4 

________________________________________________________________________ 

Empirical formula  C18H15 NO4S2 

Formula weight  373.43 

Temperature  153(2) K 

Wavelength  0.71075 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 15.625(2) Å α = 90 ° 

 b = 13.4740(15) Å β = 99.798(5) ° 

 c = 7.7266(10) Å γ  = 90 ° 

Volume 1602.9(3) Å3 

Z 4 

Density (calculated) 1.547 Mg/m3 

Absorption coefficient 0.357 mm-1 

F(000) 776 

Crystal size 0.154 x 0.085 x 0.078 mm3 

θ range for data collection 1.32 to 25.00 ° 

Index ranges h = -18→18 

 k = -16→16 

 l = -9→9 

Reflections collected 13882 

Independent reflections 2817 [R(int) = 0.1176] 

Completeness to theta = 25.00° 99.8 %  

Max. and min. transmission 1.0000 and 0.7457 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2817 / 0 / 234 

Goodness-of-fit on F2 1.074 

Reflections with [I>2σ(I)] R1 = 0.0565, wR2 = 0.1412 

R indices (all data) R1 = 0.0718, wR2 = 0.1608 

Largest diff. peak and hole 0.532 and -0.347 e.Å-3 
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Appendix A: Luminescent Aluminum Salophen Complexes 

Incorporated into Conducting Metallopolymers  

INTRODUCTION 

Sarah F. Swingle developed an electropolymerizable aluminum salophen complex 

with bithiophene ester-R groups, see complex A.2.
114

 Sarah electropolymerized both the 

ligand and the aluminum complex to form thin films, see Scheme A.1. Both the 

aluminum complex and the corresponding metallopolymer exhibit blue-green emission. 

After Sarah’s graduation I continued work with these complexes. This is a summary of 

my contribution to the project.  

 

 
 

Scheme A.1: Synthesis of aluminum complex A.2 and polymers polyA.1 and polyA.2. 

(a) Me2AlCl, toluene, 65 °C, 18 h (b) -2n e
-
, -2n H

+
. 
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SPECTROELECTOCHEMISTRY 

Sutter and coworkers developed a series of ester functionalized aluminum 

salophen complexes in 2012.
115

 The series investigated the influence of varying the ester-

R group on C5 of the salicylidene rings. It was observed that the emission quantum yield 

increased when more electron withdrawing ester-R groups were utilized. These systems 

were the basis for the complex developed by Sarah Swingle. Our system can be 

chemically or electrically doped to create a polaron or bipolaron, see Figure A.1. The 

formation of these cationionic species at the ester is anticipated to have the effect of 

increasing the emission efficiency for the system, as was seen when electron-withdrawing 

substituents were placed on the ester in the systems developed by Sutter and coworkers.  

 

 

 

Figure A.1: Proposed structures of polaron and bipolaron formation in polyA.2. 

To investigate the formation of the cationic species, UV-vis-NIR 

spectroelectochemical experiments were performed on films of polyA.2 grown by Sarah 

Swingle. Low energy transitions at 650 nm and 950 nm were observed upon oxidation at 

0.5 V (vs Fc/Fc
+
), see Figure A.2. As higher potentials were applied, an increase in the 

absorbance of the peak at 950 nm and a decrease in the peak at 650 nm were observed. 
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These transitions are consistent with the formation of polaron and bipolaron states that 

are frequently observed in thiophene based polymer systems.
107,116,117

  

 

 

Figure A.2: UV-vis-NIR spectroelectrochemistry of polyA.2.  

 

ELECTROCHEMISTRY 

Attempts were made to make more electropolymerized films of polyA.2, but the 

A.2 provided by Sarah Swingle did not yield any films. A.2 was re-synthesized and 

characterized, see Experimental. The freshly synthesized monomer, A.2, was 

electropolymerized as an electrode confined film onto a platinum button working 

electrode, see Figure A.3(top left). The first electrochemical cycle is shown in red and 

subsequent cycles are shown in black. With each additional scan, additional layers of 

polymer are deposited onto the electrode. Figure A.3(top right) shows the relationship 
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between the oxidative peak and number of scans (red) and the reductive peak and the 

number of scans (black). The relationship is linear for about six scans indicating a  

 

 

   
 

 

Figure A.3: Electrochemistry of complex A.2. 

(Top Left) Cyclic voltammogram of polymer growth A.2 in 0.1 M TBAPF6 in CH2Cl2 at a scan rate 

of 0.1 V/s. (Top Right) Plot of oxidative and reductive peak currents versus number of scans. 

(Bottom Left) Scan rate dependence study of polyA.2 in 0.1 M TBAPF6 in CH2Cl2. (Bottom Right) 

Plot of oxidative and reductive peak currents versus scan rate. 

 

uniform growth of the polymer. After the sixth scan it is likely that the electrode has been 

passivated by the film and no additional polymer can be grown. The electrode was 

transferred to a fresh solution of electrolyte and the potential was cycled at varying scan 
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rates, see Figure A.3(bottom left). The oxidative peak verses the scan rate (red) and the 

reductive peak verses the scan rate (black) were plotted, see Figure A.3(bottom right). A 

linear relationship was observed between the peaks and the scan rate, indicating an 

ionically porous, conductive film. 

Similar experiments were performed by Swingle with A.2 using a stainless steel 

working electrode. X-ray photoelectron spectroscopy (XPS) was conducted to determine 

the elemental composition of the polymer. Theoretically polyA.2 is anticipated to have a 

aluminum:sulfur:nitrogen ratio of 1:4:2,  quantitative XPS of a thin film of polyA.2 on a 

stainless steel substrate revealed a ratio of aluminum (2p):sulfur (2p):nitrogen (1s) of 

1:3.6:1.9. These small deviations from the theoretical value have been previously 

reported in other polymers and are within the accuracy tolerance of the XPS 

measurement.
107

  
 

SPECTROSCOPY 

The room temperature emission for A.1, A.2 and polyA.2, and the 77 K data for 

A.2 are given in Sarah Swingle’s thesis.
114

 The emission of A.1 in 2-

methyltetrahydrofuran at room temperature and at 77 K was recorded, see Figure A.4.  

Upon cooling, the emission displays increased vibronic structure and the peak at ~550 nm 

blue shifts. The lifetimes of all the peaks were determined, see Table A.1. All of the 

lifetimes were in the microsecond range, which agrees with the assignment of 

phosphorescence made by Sarah Swingle.
114

 

 

 

 

 



 127 

Table A.1: Photoluminescence data for A.1 at 77 K. 

      

λEm (nm) 546 515 448 415 399 

τ (μs) 5.0  ± 0.7 5.1  ± 0.9 10.9 ±0.3 7 ± 1 8 ± 3 

Recorded in 2MeTHF at 77K.  

 

The polymer films of polyA.1 were delaminated from the electrode by sonicating 

in DMF and studied as a suspension in DMF. The absorption spectrum of polyA.1 is 

shown in Figure A.5A. The polymer displays red shifted and broadened absorption as 

compared to the monomer A.1. PolyA.2 also displayed a broadened and red-shifted 

absorption profile as compared to the monomer, A.2, which has been attributed to the 

increased delocalization caused by the the polymerization.
114

  

 

 

Figure A.4: Emission of A.1 in 2MeTHF at ambient temperature and 77 K 

 The emission spectrum of polyA.1 is shown in Figure A.5B. Like the absorption, 

the emission is also red shifted from monomer to polymer, although the emission is not as 
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broadened. The aluminum complex A.2 and the metallopolymer polyA.2 also display 

red-shifted emission from monomer to polymer. 

 

A B 

 

Figure A.5: (A) Absorbance spectra of A.1 in CH2Cl2 and polyA.1 suspended in DMF. 

(B) Emission spectra of A.1 in CH2Cl2 and polyA.1 taken as a suspension in 

DMF.  

EXPERIMENTAL  

General Methods 

All chemicals were purchased from chemical suppliers and were used without 

further purification. All dry reactions were performed using standard Schlenk techniques 

and were performed under an inert atmosphere of nitrogen. Toluene was dried by 

allowing the solvent to sit over freshly activated 3Å molecular sieves for 24 hrs, followed 

by sparging with N2 for 1 hr, as described by Williams and coworkers.
111

 X-ray 

photoelectron spectroscopy (XPS) was carried out on a PHI 5700 XPS system equipped 

with dual Mg X-ray source and monochromatic Al X-ray source complete with depth 

profile and angle-resolved capabilities. The preparation of A.1 is given by Sarah Swingle 

in her thesis.
114
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Electrochemistry 

All electrochemical syntheses and studies were performed in a dry-box under a 

nitrogen atmosphere using a GPES system from Eco. Chemie B.V and an autolab 

potentiostat. All the electrochemical experiments were carried out in a three-electrode 

cell with Ag/AgNO3 reference electrode (silver wire suspended in a 0.01 M silver nitrate 

solution with 0.1 M [(n-Bu)4N][PF6] in dry CH3CN), a Pt wire coil counter electrode, and 

a platinum working electrode. Potentials were measured relative to the Ag/AgNO3 

reference electrode. Ferrocene was purified by sublimation at 95 °C and was used as an 

external reference to calibrate the reference electrode before and after experiments were 

performed and that value was used to correct the measured potentials. All 

electrochemistry was performed in CH2Cl2 solutions using 0.1 M [(n-Bu)4N][PF6] as the 

supporting electrolyte. [(n-Bu)4N][PF6] was purified by recrystallization three times from 

hot ethanol before being dried for 3 days at 100 °C under reduced pressure prior to use. 

Electrosyntheses of the polymer films were performed from dilute monomer solutions by 

continuous cycling between -1.3 V and 1.7 V (vs. Fc/Fc
+
) at 100 mVs

-1
. The films 

obtained were then washed with fresh CH2Cl2 before performing further experiments. 

 

Spectroscopy 

Absorption spectra were recorded on a Varian Cary 6000i UV-Vis-NIR 

spectrophotometer with starna quartz fluorometer cells with a pathlength of 10 mm. 

Luminescent measurements were recorded on a Photon Technology International QM 4 

spectrophotometer equipped with a 6-inch diameter K Sphere-B integrating sphere.  

 



 130 

Synthesis of A.2 

A.1 (0.038 g, 0.036 mmol) was fully dissolved in 150 mL dry toluene under 

nitrogen. Heating to 80 °C was necessary to achieve complete dissolution. A 1 M 

solution of dimethylaluminum chloride in hexanes (0.1 mL, 0.1 mmol) was added. The 

solution was stirred overnight at 80 °C under nitrogen. A yellow precipitate was isolated 

by filtration and was rinsed with hot toluene. A.2 was introduced as a solution in MeOH 

for HRMS (ESI+), calculated for C63H57AlN2O7S4: [M + H]
+
 1109.29370, found 

1109.29570. IR: v = 1729.98 cm
-1

 (C=O), v = 1618.96 cm
-1

 (C=N). 
1
H NMR (CDCl3) δ: 

9.55 (s, 2H), 8.67 (d, 2H, J = 2.1), 8.20 (dd, 2H, J = 8.9, 2.3), 8.03 (s, 2H), 7.78 (d, 4H, J 

= 8.7), 7.55 – 7.52 (m, 2H), 7.38 – 7.34 (m, 8H), 7.14 – 7.11 (m, 4H), 2.71 (t, 4H, J = 

7.2), 1.632 (m, 4H),1.41 – 1.22 (m, 12H), 0.87 (t, 6H, J = 7.2). 
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Appendix B: Alternative Platinum Ligand 

INTRODUCTION 

When designing ligands for electropolymerization, one must consider where to 

append electropolymerizable moieties. The electropolymerizable ethylenedioxythiophene 

groups were attached in at the 1 and 5 positions for complex 5.6. This yields a 

polymerized structure in which the emitter dangles from the polymer backbone. An 

alternative scheme was designed, see Scheme B.1, where ethylenedioxythiophene was 

attached at the 3 position to give a more symmetric and sterically hindered structure. The 

polymerized structure of complex B.6 would place the emitter directly in the backbone of 

the polymer.  Attempts were made to synthesize the alternate complex. Compounds B.1 – 

B.4 were synthesized and characterized. Complex B.1 was synthesized through a Stille 

coupling between 4-iodonitrobenzene  and tributyl(2,3-dihydrothieno[3,4-b][1,4]dioxin-

5-yl)stannane. The nitro group is reduced to the aniline using sodium borohydride and 

charcoal following a procedure derived from Zeynizadeh and Setamdideh.
118

 A 

Buckwald-Hartwig amination was utilized to synthesize B.3 and B.4. The reactions to 

form complexes B.3 and B.4 are low yielding and result in monosubstituted compounds 

as the major product. Because appreciable amounts of these starting materials could not 

easily be synthesized efforts were no longer focused on the synthesis of these 

compounds.  
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Scheme B.1: Synthesis of platinum complex precursors, B.1 – B.4. 

(a) EDOTSnBu3, PdCl2(PPh3)2, CuI, Toluene, 110 °C, 18 h, 98.5% (b) NaBH4, Charcoal, THF, H2O, 50 °C, 

18h, 65.3% (d) 2,6-dibromopyridine, Pd2(dba)3, DPPF, NaOtBu, Toluene, 110 °C, 18 h, 21.8% (e) 1,3-

dibromo-5-fluorbenzene, Pd2(dba)3, DPPF, NaOtBu, Toluene, 110 °C, 18 h, 10.3% 

 

EXPERIMENTAL  

General Methods 

All chemicals were purchased from chemical suppliers and were used without 

further purification. All dry reactions were performed using standard Schlenk techniques 
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and were performed under an inert atmosphere of nitrogen. Toluene was dried by 

allowing the solvent to sit over freshly activated 3Å molecular sieves for 24 hrs, followed 

by sparging with N2 for 1 hr, as described by Williams and coworkers.
111

 
1
H and 

13
C{

1
H}

 

spectra were obtained on a Varian Unity+ 300 and were referenced to the residual solvent 

peaks. All coupling constants are listed in Hertz (Hz). Melting points are not corrected. 

Elemental analysis was performed by QTI, Whitehouse, NJ (www.qtionline.com). High 

resolution mass spectra were obtained with a Micromass Autospec Ultima. Tributyl(2,3-

dihydrothieno[3,4-b][1,4]dioxin-5-yl)stannane was prepared according to Swager and 

coworkers.
112

 

 

X-ray Crystallography 

Crystals of B.2 suitable for X-ray diffraction were obtained by slow evaporation 

from a saturated solution of B.2 in dichloromethane that was layered with hexanes. 

Crystals of B.3 suitable for X-ray diffraction were obtained by slow evaporation from a 

45% ethyl acetate, 55% hexanes solution (v/v). The single–crystal diffraction data was 

collected at 100 K on a on a Rigaku AFC12 with Saturn 724+ CCD using a graphite 

monochromator. The complex was collected using a graphite monochromator with MoKα 

radiation (λ = 0.71073Å). Absorption corrections were applied using multi-scan. Data 

reduction was performed using the Rigaku Americas Corporation’s Crystal Clear version 

1.40.
39

 The structures were solved by direct methods and refined anisotropically using 

full-matrix least-squares methods with the SHELX-97 program package.
40

 The amine and 

amide H atoms were located in a difference Fourier map and both positional and isotropic 

displacement parameters were refined. All other H atoms were positioned geometrically 

and refined using a riding model, with C—H = 0.93–0.99 Å and Uiso(H) = 1.2 Ueq(C). 
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Neutral atom scattering factors and values used to calculate the linear absorption 

coefficient are from the International Tables for X-ray Crystallography (1992).
41 

 

Synthesis 

 

 

[B.1]  5-(4-nitrophenyl)-2,3-dihydrothieno[3,4-b][1,4]dioxine 

To a solution of dry toluene under N2 was added tributyl(2,3-dihydrothieno[3,4-

b][1,4]dioxin-5-yl)stannane (21.4 g, 49.5 mmol), 4-iodonitrobenzene (7.7 g, 30.9 mmol), 

transdichlorobistriphenylphosphine palladium (II) (0.3 g, 0.5 mmol), and copper (I) 

chloride (0.2 g, 1.1 mmol). The solution was refluxed at 110 °C overnight. The black 

solution exposed to atmosphere and conc. under reduced pressure. The solid was 

dissolved in dichloromethane and filtered over a bed of silica. The filtrate was conc. and 

recycrystallized in a dichloromethane/hexanes mixture to yield a bright yellow solid (98.5 

%) m.p. 185 °C (decomp.). 
1
H NMR (CDCl3) δ 8.17 (d, 2H, J = 9.0), 7.83 (d, 2H, J = 

9.3), 6.45 (s, 2H), 4.33-4.37 (m, 2H), 4.25 – 4.27 (m, 2H). 
13

C{
1
H} NMR (CDCl3) δ: 

145.4, 142.5, 140.6, 139.8, 125.7, 124.0, 115.1, 101.0, 65.9, 64.3, HRMS (CI+) calc for 

C12H9NO4S (M+H)
+
 264.0331 , found 263.0327. 
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[B.2]  4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)aniline 

B.1 (8.01 g, 30.43 mmol) and charcoal (8.39 g) were added to a round bottom and 

dissolved in THF. 5 mL of H2O was added and the mixture was heated to 50 °C. Sodium 

borohydride (2.66 g, 70.5 mmol) was added in four portions over 1 hr. The reaction was 

heated for an additional 30 min after the last addition. The mixture was cooled to room 

temp and filtered, washing with THF. The solution was conc., the re-dissolved in CH2Cl2 

and washed with H2O. The organic layer was conc. to a third the original volume and 

mixed with an equal volume of hexanes. The solution was left in a fridge overnight and 

the precipating orange crystals were collected by vacuum filtration (4.63 g, 65.3% yield). 

m.p. 103 
◦
C. 

1
H NMR (CDCl3) δ 7.51 (dt, J = 8.7, J = 2.1, 2 H), 6.66 (dt, J = 8.7, J = 2.4, 

2H), 6.19 (s, 1H), 4.25 – 4.18 (m, 4H), 3.64 (b, 2H). 
13

C{
1
H} NMR (CDCl3) δ: 145.2, 

142.1, 136.6, 127.2, 123.5, 117.9, 115.0, 95.5, 64.5, 64.4. Anal Calcd for C12H11NO2S: C, 

61.78; H, 4.75; N, 6.00. Found: C, 61.67; H, 4.07; N, 5.90. 

 

 



 136 

 

[B.3]  6-bromo-N-(6-bromopyridin-2-yl)-N-(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-

5-yl)phenyl)pyridin-2-amine 

In an air-free glovebox tris(dibenzylideneacetone)dipalladium(0) (0.488 g,  0.5 

mmol) was added to a dry schlenk. The schlenk was pumped out, dry toluene was 

transferred into the flask by cannula and B.2 (4.508 g, 19.3 mmol), 2,6-dibromopyridine 

(9.387 g, 39.6 mmol), 1,1'-bis(diphenylphosphino)ferrocene (0.632 g, 1.1 mmol), and 

sodium tert-butoxide (3.989 g, 41.5 mmol) were added to the solution. The solution was 

refluxed at 120 °C for 20 hours. The solution was cooled to room temperature and the 

toluene was removed by rotoevaporation. The product was extracted into CH2Cl2 (x3) 

washing with H2O. The crude solid was purified by silica gel column chromatography 

with 45% ethyl acetate: 55% hexanes by volume (Rf = 0.59) to yield a bright yellow solid 

(2.298 g, 21.8 %). m.p. 160 °C. 
1
H NMR (CDCl3) δ 7.72 (d, 2H, J = 8.4), 7.36 (t, 2H, J = 

7.9), 7.15 (d, 2H, J = 8.4), 7.09 (d, 2H, J = 5.1), 6.93 (d, 2H, J = 8.4), 6.30 (s, 1H), 4.31 – 

4.25 (m, 4H), 
13

C{
1
H} NMR (CDCl3) δ: 156.9, 142.2, 141.5, 139.6, 139.4, 138.3, 131.51, 

127.2, 122.1, 116.6, 114.9, 97.9, 64.8, 64.4. Anal. calcd. for C22H15Br2N3O2S: C, 48.46; 

H, 2.77; N, 7.71. Found: C, 48.63; H, 2.51; N, 7.59. 
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[B.4]  3-bromo-N-(3-bromophenyl)-N-(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-

yl)phenyl)aniline 

B.4 was prepared in accordance with B.3. B.2 (1.282, 5.5 mmol), 1,3-dibromo-5-

fluorbenzene (2.2 mL, 19.0 mmol), sodium tertbutoxide (0.680 g, 7.1 mmol), 

tris(dibenzylideneacetone)dipalladium(0) (0.149 g, 0.2 mmol), and 1,1'-

bis(diphenylphosphino)ferrocene (0.396 g, 0.7 mmol). Purified by silica gel column 

chromatography with 30% CH2Cl2: 70% hexanes by volume (Rf = 0.81) to yield a yellow 

solid (0.205 g, 10.3 %). m.p. 85 
◦
C (decomp). 

1
H NMR (CDCl3) δ: 7.69 (d, J = 8.7, 2H), 

7.06 (d, J = 8.7, 2H), 6.98 (s, 2H), 6.91 (dt, J = 7.8, J = 1.9, 2 H), 6.71 (dt, J = 10.20, J = 

2.1, 2H), 6.30 (s, 1H), 4.22 – 4.31 (m, 4 H). 
13

C{
1
H} NMR (CDCl3) δ: 164.8, 161.5, 

148.8 (d, J = 42.6), 143.4, 138.18, 130.5, 127.3, 125.1, 123.1 (d, J = 47.4), 122.0, 116.4, 

113.8 (d, J = 98.4), 109.4 (d, J = 97.2), 97.8, 64.7, 64.3.  
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Figure B.1: Molecular structure of B.2 showing the atom labeling scheme. Displacement 

ellipsoids are shown at the 30% probability level. 

 

 

Figure B.2: Molecular structure of B.3 showing the atom labeling scheme. Displacement 

ellipsoids are shown at the 50% probability level. 
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Crystallographic Data 

 

Table B.1:  Crystal data and structure refinement for B.2 

________________________________________________________________________ 

Empirical formula  C12H11 NO2S 

Formula weight  233.28 

Temperature  100(2) K 

Wavelength  0.71075 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 6.9117(6) Å α = 90 ° 

 b = 7.0898(6) Å β = 90 ° 

 c = 21.4784(16) Å γ  = 90 ° 

Volume 1052.50(15) Å3 

Z 4 

Density (calculated) 1.472 Mg/m3 

Absorption coefficient 0.289 mm-1 

F(000) 488 

Crystal size 0.29 x 0.27 x 0.08 mm3 

θ range for data collection 3.03 to 25.00 ° 

Index ranges h = -8→8 

 k = -8→8 

 l = -22→25 

Reflections collected 11854 

Independent reflections 1853  [R(int) = 0.0470] 

Completeness to theta = 25.00° 99.9 %  

Max. and min. transmission 1.0000 and 0.858 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1853 / 0 / 154 

Goodness-of-fit on F2 0.864 

Reflections with [I>2σ(I)] R1 = 0.0286, wR2 = 0.0754 

R indices (all data) R1 = 0.0292, wR2 = 0.0759 

Largest diff. peak and hole 0.441 and -0.209 e.Å-3 
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Table B.2:  Crystal data and structure refinement for B.3 

________________________________________________________________________ 

Empirical formula  C22H15Br2N3O2S 

Formula weight  545.25 

Temperature  100(2) K 

Wavelength  0.71075 Å 

Crystal system  Triclinic 

Space group  Pī 

Unit cell dimensions a = 4.483(4) Å α = 75.807(18) ° 

 b = 12.151(9) Å β = 87.67(3) ° 

 c = 18.958(13) Å γ  = 89.62(2) ° 

Volume 1000.3(13) Å3 

Z 2 

Density (calculated) 1.810 Mg/m3 

Absorption coefficient 4.183 mm-1 

F(000) 540 

Crystal size 0.22 x 0.03 x 0.03 mm3 

θ range for data collection 1.73 to 25.00 ° 

Index ranges h = -5→5 

 k = -14→14 

 l = -22→22 

Reflections collected 13439 

Independent reflections 3521 [R(int) = 0.0793] 

Completeness to theta = 25.00° 99.6 %  

Max. and min. transmission 1.0000 and 0.5628 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3521 / 0 / 271 

Goodness-of-fit on F2 0.999 

Reflections with [I>2σ(I)] R1 = 0.0505, wR2 = 0.1203 

R indices (all data) R1 = 0.0652, wR2 = 0.1278 

Largest diff. peak and hole 1.059 and -0.827 e.Å-3 
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Appendix C: Key Findings and Future Directions 

SEPARATION OF F-ELEMENTS 

Key Findings 

 Four previously undiscovered small molecules were synthesized and 

characterized (2.3, 2.4, 2.8, and 3.3). 

 Two novel homopolymers (2.9 and 3.5) in varying molecular weights 

were synthesized and characterized. 

 Two novel block copolymers (3.7 and 3.8) in varying block ratios were 

synthesized and characterized. 

 It was determined that variations in molecular weight influence the 

chelation properties of the polymeric materials. 

 It was demonstrated that additional blocks in the polymeric materials had 

significant influences on the chelation properties even in the case where 

additional blocks were not in direct contact with chelating blocks. 

 Efficient extractions were demonstrated without the use of organic 

solvents. 

 Selectivity for thorium(IV) over europium(III), cerium(III), and 

lanthanum(III) was demonstrated for the homopolymers (2.9a-c) and the 

triblock polymers (3.8a-b). 

 

Future Directions 

 By testing the extraction properties of a wider range of molecular weights 

and a wider range of ratios of blocks in the copolymers, the trends in the 

data could be better understood. 
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 The chelation properties for block copolymers with a wider range of non-

chelating blocks could be investigated. For instance the addition of alkyl 

chains verses the addition of the glycol chains could be compared in 

liquid-liquid and solid-liquid extractions.  

 The influence of variations in the polydispersity index on the chelation 

properties of homopolymers could be investigated. 

 Many ligands exist which have been shown to chelate actinides. It would 

be interesting to study other ligands in polymeric systems to determine if 

variations in molecular weight have similar trends in the extraction data 

and if there are discernible trends between varying ligand systems.  

 The polymer could be hydrogenated to increase the flexibility of the 

system and test the chelation mechanism. 

 

LUMINESCENT MATERIALS 

Key Findings 

 Seven previously undiscovered small molecules were synthesized and 

characterized (5.3, 5.4, 5.5, 5.6, 5.7, B.3, and B.4). 

 Electropolymerizable groups were attached to the system without altering 

the emission wavelength of the original complex. 

 Both the ligand (5.6) and the platinum complex (5.7) were 

electropolymerized into thin films. 

 Light emission in the blue-green region was observed for the ligand, 5.6, 

the platinum monomer, 5.7, and the metallopolymer, poly5.7. 

 Polymer emission was observed to be primarily ligand-centered. 
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Future Directions 

 The influence on the optical and electronic properties of spacing out 

luminescent centers by electropolymerizing with excess 3,4-

ethylenedioxythiophene could be studied. 

 The optical and electronic properties of 5.3 and 5.4 could be studied and 

compared to a similar study by Pepitone and coworkers.
119

 

 Complexes B.3 and B.4 are promising precursors to branched 

electroactive polymers, the materials could be synthesized and 

investigated following work similar to Hicks and coworkers.
120
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