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Supervisor:  Hirofumi Tanaka 

 

Changes in physiological factors involving modulation of hemodynamics such as 

baroreflex sensitivity (BRS), heart rate, and/or blood pressure influence blood flow to 

downstream tissues leading to changes in response and/or function of tissues. For 

example, a sufficient increase in heart rate elicits greater accumulative shear stimuli on a 

per minute basis leading to a greater vasodilatory response of endothelial cells and 

providing greater perfusion to skeletal muscle. The high-flow and low-impedance nature 

of the cerebral circulation leads to increased susceptibility to damage from considerable 

blood pressure fluctuations.  For this reason, the cerebrovasculature holds a very narrow 

range of operation of cerebral autoregulation in response to changes in perfusion 

pressure.1 In a nondemented elderly population2  and patients with Alzheimer’s disease, 

impaired BRS has been linked with poor cognitive function3 and a link between high 

pulsatile components of blood pressure (i.e., pulse pressure) and impaired cognitive 

function has also been reported.4  

Three research investigations were included in this dissertation study. The first 

study was to determine the association between heart rate at rest and endothelium-

dependent vasodilation as assessed by flow-mediated dilation (FMD) of the brachial 

artery. The primary findings from study 1 revealed an indirect association between heart 
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rate and FMD through shear stimuli. The studies 2 and 3 sought to determine the 

association of regional cerebral perfusion with cardiovagal BRS and blood pressure 

components. A link between cardiovagal BRS and regional cerebral perfusion of the 

hippocampus was demonstrated in the study 2. This finding may add mechanistic insight 

to the relationship between impaired BRS and cognitive dysfunction. The primary finding 

from the study 3 revealed a significant relationship between peripheral pulsatile blood 

pressure components and regional cerebral perfusion of the hippocampus as well as 

anterior white matter. This finding highlights the importance of pulsatile pressure on 

cerebral vascular beds.  Taken together, the overall findings from this dissertation study 

indicate the potential impacts of systemic hemodynamic factors on cerebral and 

peripheral perfusion. Future longitudinal studies in nondemented elderly and individuals 

with Alzheimer’s disease are warranted to reveal the causality of these associations. 
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Chapter 1: General Introduction 

The tight regulation of the circulatory system is essential for ensuring proper 

blood flow to downstream tissues. Changes in physiological factors that regulate 

hemodynamics, such as baroreflex sensitivity (BRS), heart rate, and/or blood pressure, 

influence vasoactive states and perfusion function. For instance, sufficient increases in 

heart rate elicit higher accumulative shear stimuli on a per minute basis, which could 

induce greater vascular endothelial responses. Understanding the association between 

heart rate and endothelial function may provide further mechanistic insight into the 

beneficial effects of exercise training on vascular function. 

Exercise training provides benefits not only to the vascular beds that are involved 

during the session, but also to those in nonworking sites or limbs.5-7 This phenomenon 

could be explained by increased shear stimuli in nonworking limbs during an exercise 

bout.8 Changes in systemic hemodynamic factors influence not only peripheral blood 

flow but also cerebral blood flow. The brain is a vital organ with high-flow and low-

impedance vascular beds.  Therefore, it is one of the regions most susceptible to dramatic 

blood pressure fluctuations. Hypoperfusion to the brain from a failure to control steady 

perfusion pressure could potentially cause damage to brain tissues9 resulting in impaired 

cognitive function. The importance of an extra-cranial mechanism to ensure proper 

cerebral blood flow was suggested by a recent study showing a very narrow range of 

operation of cerebral autoregulation in response to changes in blood pressure.1 High 

pulsatile components of blood pressure (i.e., pulse pressure) were demonstrated to be 
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linked with poorer cognitive function.4 Greater pulse pressure, a surrogate marker of 

arterial stiffness10, may cause accumulated damages in the microvasculature of the brain 

due to excessive pulsatile stress.    

Taken together, this background lends support to the importance of systemic 

hemodynamic factors on cerebral and peripheral circulations. Understanding the 

associations between these hemodynamic factors and cerebral and peripheral perfusion 

may allow for greater insight into both physiological impacts (e.g., exercise training) and 

pathological impacts (e.g., hypoperfusion and impaired cognitive function) of systemic 

hemodynamic control. 

PURPOSES AND HYPOTHESES 

 This dissertation study aims to further understand the effects of systemic 

hemodynamic factors on cerebral and peripheral perfusions. Three specific aims were 

addressed, each of which focused on different components of systemic hemodynamic 

factors and their relationship to either cerebral blood perfusion or peripheral vascular 

function.  

  

Study #1: The aim of study 1 was to determine whether heart rate at rest influences 

endothelium-dependent vasodilation via shear stimuli. We hypothesized that the 

association between heart rate at rest and flow-mediated dilation was mediated by shear 

stimuli. 
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Study #2: The aim of study 2 was to determine the association between BRS and 

regional cerebral perfusion. We hypothesized that cardiovagal BRS was inversely related 

to cerebral perfusion in regions of the brain. 

 

Study #3: The aim of study 3 was to determine the associations between blood pressure 

components (i.e., steady state and pulsatile blood pressure components) and regional 

cerebral perfusion. We hypothesized that the pulsatile blood pressure component was 

more strongly related to regional cerebral perfusion in brain regions than steady state 

blood pressure component. 
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Chapter 2: Study 1- The Influence of Heart Rate on Peripheral 

Endothelium-Dependent Vasodilation 

ABSTRACT 

Heart rate is a hemodynamic factor that can modulate vascular response to blood 

flow as it influences the frequency of shear stimuli acting on the arterial wall. An 

elevated heart rate has been recognized as a risk factor for cardiovascular disease. 

However, from a physiological perspective, it is feasible that a high heart rate could have 

the opposite effect on vascular response. We aimed to determine the association between 

heart rate at rest and endothelium-dependent vasodilation assessed by flow-mediated 

dilation (FMD) at the brachial artery in 98 apparently healthy adults (18-63 years). The 

findings revealed a link between heart rate at rest and FMD through shear stimuli in a 

positive fashion. The indirect effect of heart rate at rest on FMD that mediated through 

shear stimuli was confirmed by a bias-corrected bootstrap 95% CIs (0.0157-0.1056). We 

concluded that heart rate at rest was indirectly associated with endothelium-dependent 

vasodilation through shear stimuli. 

 

Laosiripisan J, Parkhurst KL, Tanaka H. Associations of resting heart rate with 

endothelium-dependent vasodilation and shear rate. Clinical and Experimental 

Hypertension 2017; 39(2): 150-154. 

Parkhurst KL: provided data, Tanaka H: supervised project
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INTRODUCTION 

Vascular endothelial cells maintain vascular tone by adjusting vascular diameter 

in response to changes in shear stimuli. Increased shear stimuli within the vascular wall 

causes endothelial cells to release endothelium-derived relaxing factors (e.g., NO). The 

response of endothelial cells to shear stimuli is modulated by magnitude, rate of change, 

and frequency of the shear stimuli.11,12 Heart rate is a hemodynamic parameter that can 

affect the frequency of blood flow and shear stimuli that is exposed to the vessel wall. A 

recent study assessing endothelial function using FMD in young healthy subjects found 

an inverse association between resting heart rate and endothelial function.13 This finding 

is consistent with epidemiological findings of a relationship between elevated heart rate 

and increased risk of atherosclerosis.14 However, if we consider from a physiological 

standpoint instead of a pathological standpoint, the opposite association could be feasible 

as well. For instance, endothelial cells that were exposed to increased frequency of flow 

demonstrated graded vascular relaxation responses. This could lend support to the 

possibility of a positive association between heart rate and endothelium-dependent 

vasodilation.12 Theoretically, if the flow pattern does not change, elevated heart rate 

should provide greater cumulative shear stimuli per unit time eliciting a greater 

endothelium-dependent vasodilation response. Indeed, results from the Framingham 

Heart Study showed a positive association between heart rate and FMD.15 However, the 

results from this study may be difficult to interpret because it recruited older participants 

with chronic diseases as well as those who had been taking cardiovascular acting 
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medications. The physiological perspective of the association between heart rate and 

endothelial function may provide an explanation for the beneficial effects of exercise 

training in non-exercising muscular beds.5-7 Indeed, shear stimuli in non-exercising limbs 

has been reported to be increased during an incremental exercise session.8  

Accordingly, we aimed to determine the association between resting heart rate 

and FMD, particularly from the physiological standpoint. Apparently healthy adults 

taking no cardiovascular acting medication were recruited for the study in order to 

eliminate the influences of chronic diseases and medications. We hypothesized that heart 

rate at rest was indirectly associated with FMD through shear stimuli. 

METHODS 

Human Subject: Apparently healthy adults ages 18 to 70 years were recruited for 

the study. Individuals with a history of cardiovascular disease (e.g., coronary artery 

disease, myocardial infarction, and heart failure) or related signs and symptoms (e.g., 

angina pectoris), and metabolic disorders (i.e., diabetes, thyroid disorder) were excluded. 

Additional exclusion criteria included overt neurological diseases (e.g., stroke, Parkinson 

disease, clinically significant traumatic brain injury), major psychiatric illnesses (e.g., 

bipolar disorder, schizophrenia), and smoking (within the last 2 years). A medical history 

was assessed using a health status questionnaire. 

Study Design: All of the measurements described below were conducted after at 

least 4 hours of fasting and abstinence from caffeine and 24 hours of no strenuous 

physical exercise or alcohol consumption. Premenopausal women participated in the 
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study during the early follicular phase of the menstrual cycle to minimize the potential 

effects of circulating estrogen on vascular function (i.e., FMD).16 Subjects rested quietly 

for at least 15 minutes in a supine position before the measurements to ensure the resting 

state. 

Statistical Analysis: The distributions of all variables were examined using the 

Shapiro-Wilk test of normality. Pearson correlations analyses were conducted to assess 

associations of interest. Partial correlational analyses were performed to account for the 

influence of potential confounding factors (e.g., age, sex, baseline diameter, brachial 

systolic blood pressure, physical activity level). All data were presented as mean ± SD. 

Data were analyzed using SPSS 24.0 (SPSS Inc., Chicago, IL, USA). A two-tailed α-

level of 0.05 was set a priori as the criterion for statistical significance. 

 Two sets of analyses were conducted to determine direct and indirect effects of 

heart rate on FMD. First, structural equation modeling was conducted using AMOS 22 

(IBM, Armonk, NY, USA) to determine direct effects as well as indirect effects of heart 

rate on FMD through shear rate. The significant paths from heart rate to shear rate and 

from shear rate to FMD is required in order to further analyze the indirect effect of heart 

rate on FMD through shear rate. However, analyses of indirect effects of heart rate on 

FMD through shear rate do not require significant associations between heart rate (i.e., 

independent variable) and FMD (i.e., outcome).17 In the second analysis, indirect effect 

was further analyzed using SPSS macro, PROCESS. The bias-corrected bootstrap 

analyses were performed based on 5,000 bootstrap samples. Significant indirect effect 

was confirmed with the 95% confidence intervals (CI) that do not include zero.17  
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Detailed Methods: 

Flow-mediated dilation (FMD) 

Brachial FMD measurements have been previously described in detail.18-20 

Briefly, an ultrasound machine (iE33; Phillips, Bothel, WA, USA) equipped with a high-

resolution linear array transducer was used to measure brachial artery diameter. The 

transducer was placed 5-10 cm proximal to the antecubital fossa. The baseline 

measurements of brachial artery diameter and blood velocity were performed before 

brachial artery occlusion. The brachial artery was occluded using a blood pressure cuff 

connected to a rapid cuff inflator (E20; Hokanson, Bellevue, WA, USA) that was placed 

3-5 cm distal to the antecubital fossa. During the occlusion period, the cuff was inflated 

to 100 mmHg above systolic blood pressure for 5 minutes. Blood velocity data was 

obtained at 10 seconds before cuff deflation and continued until 20 seconds after cuff 

release. The area under the curve method was used to analyze blood velocity (i.e., during 

the first 15 seconds after the cuff deflation).21,22 B-mode image recording was used to 

obtain images of brachial artery diameter from the 20th second to the 3rd minute after cuff 

deflation.19 The digital images from ultrasound machine were transferred for offline 

analysis using image analysis software (Brachial Analyzer; Medical Imaging 

Applications, Coralville, IA, USA). 

 FMD (%) was calculated as the difference in the maximum diameter after cuff 

release and diameter at baseline using the following equation: [(maximum diameter – 

baseline diameter)/baseline diameter] x 100.23 Allometrically-scaled FMD was also 
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calculated in order to adjust for the influence of baseline diameter on FMD.24 Shear rate 

was calculated using the equation: blood velocity/brachial artery diameter. 

Heart rate at rest 

 A three-lead ECG measured heart rate while participants were in the supine 

position. 

Physical activity level 

A modified Godin physical activity questionnaire was used to assess physical 

activity levels.25  
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RESULTS 

Selected subject characteristics including demographic and vascular measures are 

shown in Table 2.1. Results from simple correlations shows a mild and positive 

association between heart rate and FMD (Figure 2.1 A, r=0.26, p<0.01). However, this 

association was no longer significant after controlling for age, sex, BMI, SBP, and 

physical activity level (β=0.15, p=0.21) or age, baseline diameter, BMI, SBP, and 

physical activity level (β=0.12, p = 0.29). 

The lack of association between heart rate and allometrically-scaled FMD 

(accounting for baseline brachial diameter) is shown in Figure 2.2 A. Shear rate was 

related to heart rate (Figure 2.1 B, r=0.41, p<0.001) The association between shear rate 

and heart rate remained significant after accounting for age, baseline diameter, and 

brachial systolic blood pressure (β= 0.20, p< 0.05). The allometrically-scaled FMD was 

not significantly related to shear rate (Figure 2.2 B). 

The path analysis revealed two significant paths (i.e., heart rate to shear rate and 

shear rate to FMD, Figure 2.3) that were sufficient to allow for further analysis of the 

indirect effect of heart rate on FMD through shear rate. The indirect effect of heart rate 

on FMD via shear rate was confirmed by a bias-corrected bootstrap 95% CIs (95% CI = 

0.0157-0.1056) based on 5,000 bootstrap samples. 
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Table 2.1 Selected subject characteristics 

Variable Mean ± SD 

Men/ women (n) 52/46 

Age (years) 34  ±12 

Height (cm) 168 ±9 

Body mass (kg) 69.4  ±13.7 

BMI (kg/m2) 24.4 ±4.4 

Systolic BP (mmHg) 114 ±10 

Diastolic BP (mmHg) 66 ±8 

Heart rate (bpm)  59 ±10 

Baseline brachial diameter (mm)  3.7 ±0.7 

Peak brachial diameter (mm) 3.9 ±0.7 

FMD (%)    6 ±3.2 

Allometrically-scaled FMD (%) 14.5 ±3.5 

FMD/SR (%) 9.3 ±7.0 

Physical activity score (U) 32 ±26 

BMI, body mass index; BP, blood pressure; FMD, flow-mediated dilation; SR, shear 

rate. 
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Figure 2.1 Associations between flow-mediated dilation (FMD) and heart rate (A), and 
between shear rate and heart rate (B).
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Figure 2.2 Associations of allometrically-scaled flow-mediated dilation (FMD) with 
heart rate (A), and shear rate (B)
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FMD!

Shear Rate!

Heart Rate!

r = 0.24*! r = 0.29*!

r = 0.04!

 

 

 

 

 

 

 

 

 

Figure 2.3 The results of the path analyses showing indirect effects of heart rate through 
shear rate on flow-mediated dilation (FMD). 

     * P < 0.05
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DISCUSSION 

This study determined the association between heart rate and endothelium-

dependent vasodilation as assessed by FMD in apparently healthy, non-medicated adults. 

The effect of heart rate on FMD appears to be indirectly mediated by shear stimuli. The 

results from two sets of analyses confirmed this conclusion. The initial step using 

structural equation modeling reveals two significant paths (i.e., heart rate to shear rate 

and from shear rate to FMD). Further analysis using SPSS macro PROCESS found a 

significant indirect effect of heart rate on FMD as determined by 95% confidence 

intervals (CI) that did not include zero (95% CI = 0.0157 – 0.1056). 

The positive-indirect effect of heart rate on FMD from the present study is in 

marked contrast to a recent study showing an inverse association between FMD and heart 

rate at rest in young healthy adults.13 The results from the previous study make sense 

from an epidemiological perspective, as there are epidemiological studies that have 

reported increased cardiovascular morbidity and mortality with elevated heart rate.26-30  

However, a high risk of impaired vascular function with elevated heart rate is not 

convincing based on the available literature. For instance, an in-vitro flow-chamber 

experiment using cultured porcine aortic cells revealed that the frequency-induced higher 

risk for atherosclerotic lesion development was limited. This study observed a limited 

number of genes expressed with potentially atherogenic role.31 Even though there is 

evidence showing an anti-atherogenic effect of heart rate lowering drugs32,33, the full 
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extent of this anti-atherogenic effect cannot be completely ascribed to lower heart rates as 

these drugs also exert inotropic and/or antihypertensive effect.34 

The overall finding of the present study was an indirect effect of heart rate on 

FMD. The positive-indirect association was mediated by shear stimuli. A number of 

available literature provide support for an effect of frequency of shear stimuli on the 

endothelium response.11,12 The shear-mediated vasodilatory response of endothelium cells 

is modulated not only by magnitude, but also by the rate and frequency of shear stimuli. 

Greater vasodilatory responses in isolated rat artery preparations were induced by faster 

increases in shear stimuli.11 Production of endothelium-derived vasodilator substance 

(e.g., NO) induced by an increase blood flow and shear stimuli involves a G-protein-

dependent cascade.35 A higher expression of G-protein in human endothelial cells was 

demonstrated after the vessel wall was exposed to a faster strain rate.36 A frequency-

sensitive phenomenon of endothelial cell response to shear stimuli was also revealed in a 

study using rabbit aortic segments. In this animal study flow-induced production of 

endothelium-derived relaxing factors (e.g., NO) was augmented after endothelial cells 

were exposed to a higher frequency of flow.12 Taken together, these experimental studies 

could lend support to the present finding that an increase in frequency of shear stimuli 

(i.e., due to higher heart rate) could mediate a greater endothelium-dependent 

vasodilation response. 

The study design that involves a manipulation of heart rate, such as bradycardic 

pharmacological agents, could increase the impact of the present study’s findings. 

However, a pharmacological manipulation of heart rate could also affect autonomic 
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nervous system activity that could likely affect vascular response. Therefore, using a 

pharmacological approach could confound the interpretation if the effect of heart rate on 

vascular response was not isolated. Therefore, the present study used a series of statistical 

approaches to determine a link between heart rate and endothelium-dependent 

vasodilation via shear stimuli. 

There are a number of limitations of the present study that should be mentioned. 

First, a cross-sectional study design could not definitively infer the causal relationship 

between the variables of interest. Second, only apparently healthy subjects were included 

to minimize the confounding effects of disease and medication which could limit the 

generalizability of the findings. Third, none of the subjects included in the present study 

have resting heart rate greater than 100 bpm, which is recognized as the tachycardia 

threshold of adverse cardiovascular outcomes.26,37 

In conclusion, this study indicated that heart rate at rest is indirectly associated 

with FMD and this association appears to be mediated by shear stimuli. These findings 

are inconsistent with previous epidemiological-oriented findings that have reported a link 

between elevated heart rate and atherosclerosis through impaired endothelium function. 
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Chapter 3: Study 2-Association between Baroreflex Sensitivity and 

Regional Cerebral Blood Flow 

ABSTRACT 
Impaired baroreflex sensitivity (BRS) could potentially disturb normal control of 

the blood perfusion to the brain. A failure to control perfusion to the brain could lead to 

chronic brain hypoperfusion and, eventually, cognitive impairment. The primary aim of 

this study was to determine whether cardiovagal BRS was associated with regional 

cerebral perfusion using arterial spin labeling (ASL) MRI technique. Fifty-two middle-

aged normotensive adults with normal global cognitive function were recruited for this 

study. Baroreflex sensitivity was assessed using the Valsalva maneuver technique. 

Cerebral perfusions in 10 pre-determined brain regions of interest were measured using 

ASL MRI technique. The results show a significant association between cardiovagal BRS 

and hippocampal perfusion (R2 = 0.17, P = 0.01). The association remained significant 

after age, sex, BMI, and mean blood pressure were taken into account. When participants 

were divided into tertiles based on their BRS, regional cerebral perfusion of the 

hippocampus of individuals in high BRS group (60.5 ± 8.4 ml/100 g/min) was 

significantly greater than that of the individuals in low BRS group (39.1 ±�4.3 ml/100 

g/min). 

Laosiripisan J, Tarumi T, Gonzales MM, Haley AP, Tanaka H. Association between 

cardiovagal baroreflex sensitivity and baseline cerebral perfusion of the hippocampus. 

Clinical Autonomic Research 2015; 25(4): 213-218. 

Tarumi T and Gonzales MM: provided data, Haley AP and Tanaka H: supervised project 
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INTRODUCTION 

Cerebral blood flow is a critical determinant of normal brain function. A failure to 

control steady perfusion pressure to the brain could potentially cause damage to the brain 

tissue resulting in impaired cognitive function.9 Control of human brain blood flow needs 

integrative regulation including cardiovascular system. The importance of extra-cranial 

mechanisms to maintain stable cerebral blood flow was suggested by a recent study that 

demonstrated a very narrow range of pressure (~10 mmHg) in which cerebral 

autoregulation is capable of maintaining a stable mean cerebral blood flow.1 Cardiovagal 

BRS is considered a key mechanism for the maintenance of circulatory homeostasis in 

humans. Impaired BRS may cause a failure to control proper perfusion pressure leading 

to chronic brain hypoperfusion and ultimately impaired cognitive function.38-40 Indeed, 

the link between cardiovagal BRS dysregulation and poorer memory in apparently 

healthy elderly has been demonstrated.2 In addition, reduced baroreflex function was 

shown in patients with Alzheimer’s disease.3 Taken together, this extensive literature 

could lend support to the importance of cardiovagal BRS for cognitive function. 

However, the mechanism underlying the association between cardiovagal BRS and 

cognitive function is currently unknown. 

Accordingly, we aimed to determine whether cardiovagal BRS is associated with 

regional cerebral blood flow. We hypothesized that lower cardiovagal BRS was 

associated with lower cerebral perfusion in regions of the brain that closely link to 

memory, such as the hippocampus. 
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METHODS 

Human Subject: Middle age adults (40-60 years) around the Austin, Texas area 

were recruited through local newspaper and online advertisements. Individuals with a 

history of cardiovascular disease (e.g., coronary artery disease, myocardial infarction, and 

heart failure) or related signs and symptoms (e.g., angina pectoris), and/ or metabolic 

disorders (i.e., diabetes, thyroid disorder) were excluded. Additional exclusion criteria 

included overt neurological disease (e.g., stroke, Parkinson’s disease, clinically 

significant traumatic brain injury), major psychiatric illness (e.g., bipolar disorder, 

schizophrenia), smoking (within the last 2 years), or MRI contraindications. A medical 

history was assessed using a health status questionnaire. Global cognitive function was 

assessed using the Mini-Mental State Exam (MMSE).41 

Study Design: All of the measurements described below were conducted after at 

least 4 hours of fasting and abstinence from caffeine and 24 hours of no strenuous 

physical exercise and alcohol consumption. Vascular function measurements (i.e., blood 

pressure and baroreflex sensitivity) and regional cerebral perfusion were assessed on two 

separate days. Subjects rested quietly at least 15 minutes in a supine position before 

measurements to ensure the resting state.  

Statistical Analysis: The normality of all variable distributions was examined 

using the Shapiro-Wilk test of normality. Simple correlation or zero-order correlation 

determined the association between the cardiovagal BRS and the regional cerebral 

perfusion of ten brain regions. The regional cerebral perfusion of the area that had 
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significant correlation to cardiovagal BRS was then analyzed using partial correlations 

analyses to verify the unique effect of cardiovagal BRS on regional cerebral perfusion 

after controlling for covariates. The covariates that were entered to the partial correlation 

analyses were selected from their significant correlation with either predictor (i.e., 

cardiovagal BRS) or outcome of interest (i.e., regional cerebral perfusion). Additionally, 

all subjects were divided into tertiles based on their cardiovagal BRS and differences in 

cerebral perfusion were examined. All data were presented as means ± SEM.  Data were 

analyzed using SPSS 24.0 (SPSS Inc., Chicago, IL, USA). A two-tailed α-level of 0.05 

was set a priori as the criterion for statistical significance. 

Detailed Methods: 

Blood Pressure   

Brachial blood pressure was measured using a semi-automated blood pressure 

device (Press-Mate 7800, Colin Medical Instruments, San Antonio, TX) with the arm at 

heart level. 

Regional Cerebral perfusion 

Regional cerebral perfusion in 10 a priori regions of interest (hippocampus, 

anterior white matter, central insula, thalamus, caudate, posterior insula, central white 

matter, posterior white matter, posterior cingulate, and occipitoparietal area) that have 

been shown to be related to memory and are susceptible to cerebrovascular disease42,43 

was measured using the ASL MRI technique, as previously described in detail.44-46 

Briefly, MRI images were acquired using 3T GE Signa Excite scanner (GE Healthcare, 

Waukesha, WI). Brain structural landmarks for subsequent ASL analyses were obtained 
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from imaging slices of whole-brain T1-weighted images (spoiled gradient echo sequence, 

256 x 256 matrix, field of view = 24 x 24 cm2, 1 mm slice thickness, 0 gap). ASL 

Perfusion imaging includes a single-shot spiral readout, a cerebrospinal fluid reference 

scan, and a minimum contrast scan.47,48 Cerebral blood flow was calculated from the 

difference between the control and tagged images (CBFv3.2, Function Biomedical 

Informatics Research Network). The minimum contrast scan was used for correction of 

the inhomogeneous fields in the images. Physiological units (ml/100 mg/min) was 

obtained from conversion of the information from image using the reference signals.47,48 

The Analysis of Functional NeuroImages (AFNI) software49 was used to create the 5 mm 

of spherical at regional of interest according to the Talairach and Tournoux atlas.50 

Cardiovagal baroreflex sensitivity (BRS) 

Cardiovagal BRS was assessed using the Valsalva maneuver technique, as 

previously described.51,52 Briefly, after deep inspiration, the participant performed forced 

expiration through a mouthpiece with a 1-inch diameter. The participant was asked to 

maintain expiratory mouth pressure at 40 mmHg for 10 seconds. Participant received 

visual feedback of the expiratory pressure via computer screen (Windaq, Dataq 

Instruments). R-R interval (via ECG) and beat-to-beat arterial blood pressure (Finapres 

Ohmeda) were continuously recorded during the testing period. The measurement was 

performed twice with a 5-minute rest between trials. Cardiovagal BRS was analyzed 

using phase IV of the Valsalva maneuver.53 The R-R interval was regressed on the 

systolic blood pressure; the slope of this association (ms/mmHg) represents the 

cardiovagal BRS if the linear regression coefficient (r) is greater than 0.80. 
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RESULTS 

 Table 3.1 provides the demographic and vascular characteristics of the middle-age 

subjects who participated in the study. As shown in Table 3.1, none of the subjects were 

classified as hypertensive based on their brachial blood pressure. Based on the average 

BMI subjects were classified as overweight. 

 The average values for the right and left side of regional cerebral perfusion of the 

10 brain regions of interest examined in this study are illustrated in Table 3.2. Zero-order 

correlation between the cardiovagal BRS and regional cerebral perfusion of the 10 brain 

regions of interest are shown in Table 3.3. As shown in Table 3.3, the hippocampus is the 

only region in which the regional cerebral perfusion was positively correlated with 

cardiovagal BRS (Figure 3.1, R2 = 0.17, P = 0.01). The significant independent 

contribution of cardiovagal BRS to regional cerebral perfusion was demonstrated after 

potential confounding factors were taken into account (age, sex, BMI, and mean blood 

pressure). Results from partial correlational analyses revealed that cardiovagal BRS 

explained 11% of the variability (r = 0.33) in the regional cerebral perfusion of the 

hippocampus (P < 0.05) 

 As shown in Figure 3.2 when the subjects were divided into tertiles based on 

cardiovagal BRS, the mean of the regional cerebral perfusion of the hippocampus of the 

individuals in high BRS group  (11.8 ± 1.9 ms/mmHg) was significantly greater than that 

of the individuals in low BRS group (3.5 ±�0.1 ms/mmHg).  
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Table 3.1 Selected subject characteristics 

    BP, blood pressure; BRS, cardiovagal baroreflex sensitivity 

 

 

 

 

 

 

 

 

Variable Mean ± SEM 

Male/female, n 27/25 

Age, years 48.6 ± 0.9 

Height, cm 169 ± 1 

Body mass, kg 85.4 ± 2.6 

Body mass index, kg/m2 29.7 ± 0.8 

Education, years 14.8 ± 0.6 

Systolic BP, mmHg 128 ± 2 

Diastolic BP, mmHg 78 ± 1 

Heart rate, bpm 65 ± 1 

BRS, ms/mmHg 7.8 ± 0.6 
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Table 3.2 Regional cerebral perfusion in various brain regions  

 

 

 

 

 

 

 

 

 

 

 

 
  Data are mean ± SEM 

 

 

 

 

 

 

 

Brain region Regional cerebral perfusion 
(ml/ 100 g/min) 

Hippocampus 52.1 ± 3.8 

Anterior white matter 38.0 ± 2.9 

Central insula 55.6 ± 3.0 

Thalamus 42.1 ± 4.1 

Caudate 35.7 ± 3.1 

Posterior insula 54.8 ± 2.5 

Central white matter 37.2 ± 5.0 

Posterior white matter 43.9 ± 3.7 

Posterior cingulate 74.5 ± 3.3 

Occipitoparietal area 69.6 ± 3.0 
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Table 3.3 Correlation coefficients between cardiovagal baroreflex sensitivity and regional 

cerebral perfusion 

Brain region R2 (P value) 

Hippocampus 0.17 (0.01) 

Anterior white matter 0.04 (0.25) 

Central insula 0.07 (0.09) 

Thalamus 0.02 (0.37) 

Caudate 0.05 (0.19) 

Posterior insula 0.001 (0.86) 

Central white matter 0.005 (0.70) 

Posterior white matter 0.06 (0.13) 

Posterior cingulate 0.005 (0.64) 

Occipitoparietal area 0.03 (0.23) 
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Figure 3.1 Association between regional cerebral perfusion of the hippocampus and 

cardiovagal baroreflex sensitivity (BRS)
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Figure 3.2 Comparison of regional cerebral perfusion of the hippocampus in low, 

medium, and high tertiles of cardiovagal baroreflex sensitivity (BRS)              

      * P < 0.05 vs. Low BRS
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DISCUSSION 

 The major finding of the present study is a significant positive association 

between cardiovagal BRS and regional cerebral perfusion of the hippocampus. The direct 

association between cardiovagal BRS and regional cerebral blood perfusion of the 

hippocampus remained significant after potential confounding variables were controlled 

(i.e., age, sex, BMI, and mean blood pressure). Results from partial correlational analyses 

revealed that cardiovagal BRS explained 11% of the variability in the regional cerebral 

perfusion of the hippocampus. The regional cerebral perfusion of the hippocampus was 

substantially greater in subjects who were in the high BRS group compared with subjects 

who were in the low BRS group. Taken together, these findings indicate the potential 

contribution of cardiovagal BRS on cerebral hypoperfusion even in apparently healthy 

middle-aged adults with normal global cognitive function. 

 There is a wealth of available evidence indicating impaired baroreflex sensitivity 

in patients with Alzheimer’s disease.3,54 The close relationship between impaired 

cognitive function and abnormal cardiovagal BRS is supported by findings of impaired 

cognitive function in populations that typically demonstrate impaired cardiovagal BRS, 

such as patients with hypertension55,56 and orthostatic hypotension57,58. Reductions in 

blood flow to the brain could be a mechanism linking reduced BRS to poor cognitive 

function. Support for this hypothesis was found in reduced mean cerebral blood flow 

velocity measured by transcranial Doppler (TCD) technique with decreased baroreflex 

sensitivity during head-up tilt test.59 Consistent with this finding, the present study 
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demonstrated a direct association between cardiovagal BRS and cerebral perfusion of the 

hippocampus. This finding indicates that even within our sample of normotensive, 

cognitively normal middle-aged adults, a depressed cardiovagal BRS is associated with 

impaired regional blood perfusion of the hippocampus. 

 Among the 10 a priori brain regions of interest, cardiovagal BRS was 

significantly associated with regional cerebral perfusion of the hippocampus. 

Theoretically, a hemodynamic perturbation caused by impaired cardiovagal BRS should 

manifest as a global reduction in blood flow in all brain regions. However, particular 

brain regions are more vulnerable to changes in blood perfusion, such as the temporal 

lobe where the hippocampus is located.60 Diminished cerebral blood flow has been 

reported to relate to a reduction in volume and thickness of the temporal lobe.60 

Moreover, a high susceptibility to hypoperfusion insult of the hippocampus could be 

partly explained by poor vascularized patterns in that region.61 The hippocampus is a 

region of the brain that plays an important role in the memory domain of cognitive 

function. Hippocampal atrophy has been reported to be related to impaired cognitive 

function as assessed by the Mini-Mental State Examination (MMSE).62 Moreover, 

impaired cognitive function in individuals with subcortical ischemic vascular disease, a 

common cause of vascular dementia, is associated with hippocampal atrophy.63,64 

Therefore, the link between cardiovagal BRS and hippocampal regional blood flow 

illustrated in this study suggests a potential role of cardiovagal BRS as a cardiovascular 

regulatory mechanism that could influence regional cerebral perfusion and subsequent 

cognitive function. However, we cannot exclude the possible involvement of 



 31 

neurodegenerative changes in both cognitive-related brain regions and the central 

autonomic pathway.  

Cardiovagal BRS has been reported to decline with advancing age in humans.65  

Stiffening of the large elastic arteries is one of the factors that contributes to declines in 

BRS.52 Habitual exercise has been shown to elicit improvements in arterial distensibility. 

Exercise-associated destiffening of arteries is associated with a corresponding increase in 

cardiovagal BRS.66,67 To the best of our knowledge, it is unknown whether habitual 

exercise could improve regional cerebral blood flow. However, a recent study 

demonstrated an association between lower central arterial stiffness as measured by pulse 

wave velocity and greater regional cerebral perfusion of the occipitoparietal area in 

endurance-trained individuals.68 The finding of this study may have an important 

implication for preventing impaired BRS, subsequent cerebral hypoperfusion and 

cognitive dysfunction. The chronic effect of exercise training on regional cerebral 

perfusion (i.e., restoration and/or prevention) and cognitive function would be an 

important research agenda for future interventions. 

 There are a number of limitations of the present study that should be mentioned. 

First, based on study design (i.e., cross-sectional study design), the causal relation 

between cardiovagal BRS and brain hypoperfusion could not be determined. Second, 

there is some limitation regarding ASL technique including errors due to the transit 

delays of magnetically-labeled blood between the labeling region and the imaging site.69 

Third, cardiovagal BRS and cerebral perfusion were assessed in different conditions. 

Cardiovagal BRS was assessed using a blood pressure-perturbing maneuver (i.e., 
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Valsalva maneuver) which may have been influenced by acute baroreflex resetting and/or 

sympathetic nerve activity of the SA node during the beginning of the maneuver.70 

 In conclusion, the results of this study indicate a significant association between 

reduced cardiovagal BRS and reductions in hippocampal regional blood perfusion in 

apparently healthy middle-age adults with normal global cognitive function. Future 

longitudinal studies are warranted to determine the causal relationship between impaired 

cardiovagal BRS and cognitive dysfunction. 
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Chapter 4: Study 3-The Impact of Steady Blood Pressure Component, 

and Pulsatile Blood Pressure Component on Cerebral Perfusion 

ABSTRACT 

 Arterial blood pressure can be divided into two primary components: steady 

component (determined by mean arterial pressure) and pulsatile component (expressed as 

either systolic blood pressure or pulse pressure). We aimed to determine the relationships 

between blood pressure components and regional cerebral perfusion. A total of 52 

apparently healthy middle-age adults with normal global cognitive function were 

recruited for this study. Regional cerebral perfusion in 10 a priori regions of interest was 

measured using perfusion MRI technique. There were 5 regions of the brain with regional 

perfusion values significantly associated with either pulsatile blood pressure component 

(i.e., hippocampus, posterior insula, and central white matter) or both steady and pulsatile 

components (i.e., anterior white matter, and occipitoparietal area). After potential 

confounding variables (i.e., body mass index, education, age, and sex) were taken into 

account, associations between pulsatile blood pressure components and regional cerebral 

perfusion remained significant in two regions: the hippocampus and anterior white 

matter. A significant contribution of peripheral pulsatile blood pressure component on the 

variability of hippocampal perfusion was demonstrated. Brachial systolic blood pressure 

and pulse pressure explained 11% and 12% of the variability in hippocampal perfusion, 

respectively, independent of covariates. 
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INTRODUCTION 

Elevated blood pressure is a vascular risk factor that could contribute to cognitive 

impairment during later life.71 Indeed, the trajectories of cognitive function in individuals 

with hypertension have demonstrated faster declines in memory and information 

processing speed.72 One of the possible mechanisms related to elevated blood pressure 

and cognitive impairment is the interruption of cerebral blood flow especially in regions 

that are susceptible to cerebrovascular disease.42,43 Arterial blood pressure is composed of 

two major components: steady state and pulsatile components.73,74 These two components 

of arterial blood pressure are influenced by different vascular-related parameters. For 

instance, the steady state component is represented by mean arterial pressure and is 

affected by small resistance artery function. The pulsatile component is influenced 

primarily by large artery stiffness.74 Therefore, separating blood pressure into steady and 

pulsatile components may provide a better understanding of high blood pressure-related 

cognitive decline.  

 Accordingly, we determined the association between pulsatile or steady state 

components of blood pressure and regional cerebral perfusion in the regions that exhibit 

susceptibility to cerebrovascular disease. Based on existing literature of cardiovascular 

risks73,75, we hypothesized that pulsatile component of blood pressure was associated 

with regional cerebral perfusion to a greater extent compared with the steady state 

component. 
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METHODS 

Human Subject: Middle age adults (40-60 years) around the Austin, Texas area 

were recruited through local newspaper and online advertisements. Individuals with a 

history of cardiovascular disease (e.g., coronary artery disease, myocardial infarction, and 

heart failure) or related signs and symptoms (e.g., angina pectoris), and metabolic 

disorders (i.e., diabetes, thyroid disorder) were excluded. Additional exclusion criteria 

included overt neurological disease (e.g., stroke, Parkinson’s disease, clinically 

significant traumatic brain injury), major psychiatric illness (e.g., bipolar disorder, 

schizophrenia), smoking (within the last 2 years), or MRI contraindications. A medical 

history was assessed using a health status questionnaire. Participants were cognitively 

normal as assessed by the Mini-Mental State Exam and had an average score greater than 

28.41 

Study Design: All of the measurements described below were conducted after at 

least 4 hours of fasting and abstinence from caffeine and 24 hours of no strenuous 

physical exercise and alcohol consumption. Vascular function measurement (i.e., blood 

pressure) and regional cerebral perfusion were assessed on two separate days. Subjects 

rested quietly at least 15 minutes in a supine position before measurements to ensure the 

resting state. 

Statistical Analysis: Shapiro-Wilk test of normality was first performed to test 

the distributions of all variables. Associations of interest (i.e., blood pressure components 

and regional cerebral perfusion) were examined using Pearson correlations analyses. 
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Significant zero-order correlations were further analyzed using sequential multiple 

regressions to test the distribution of predictor of interest (i.e., blood pressure 

components) on outcome variables (regional cerebral perfusion) after accounting for 

related covariates. The covariates in multiple regressions were selected from their 

significant correlations with either predictors or outcomes of interest. Significant R2 

change from the sequential multiple regression analyses were used to confirm the 

significant contribution of the predictor on the outcome. A two-tailed α level of 0.05 was 

used as the criterion for significance for all analyses. All data were presented as means ± 

SEM.  Data were analyzed using SPSS 24.0 (SPSS Inc., Chicago, IL, USA). 

Detailed Methods: 

Blood Pressure 

Brachial blood pressure, including systolic, mean, and diastolic pressure, were 

measured using an oscillometric automated sphygmomanometer (VP-1000 plus, Omron 

Healthcare, Kyoto, Japan). Carotid artery pressure waveforms were obtained using 

arterial applanation tonometry incorporating an array of 15-micropiezoresistive 

transducers (VP-1000 plus, Omron Healthcare, Kyoto, Japan) placed on the common 

carotid artery. The hold-down force of the sensor on the carotid artery was corrected by 

equating the carotid mean arterial and diastolic blood pressure to the brachial mean 

arterial and diastolic blood pressure, as described previously.4 All blood pressure 

measurements were performed at least three times while subjects were in the supine 

position. The average of the three measurements were used for data analyses. 
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Regional cerebral perfusion 

Regional cerebral perfusion was measured using the ASL MRI technique, as 

described previously.44-46 Based on the existing literature related to areas in the brain that 

are susceptible to cerebrovascular disease, regional cerebral perfusion was determined in 

ten a priori regions of interest (hippocampus, anterior white matter, central insula, 

thalamus, caudate, posterior insula, central white matter, posterior white matter, posterior 

cingulate, and occipitoparietal area).42,43 
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RESULTS 

 The subjects were middle-age (50 ±�1 year) normotensive individuals. Selected 

subject characteristics are shown in Table 4.1. The average body mass index was 30 ±�1 

kg/m2. Normal global cognitive performance of all subjects was confirmed by a Mini-

Mental State Exam score greater than 28. The results from simple correlation analyses 

revealed significant associations between regional cerebral perfusion of 5 brain regions 

with either pulsatile blood pressure components (i.e., hippocampus, posterior insula, and 

central white matter) or both steady and pulsatile components (i.e., anterior white matter 

and occipitoparietal area) (Table 4.2). In general, the pulsatile component of blood 

pressure (i.e., systolic blood pressure and pulse pressure) was more strongly associated 

with cerebral perfusion than the steady component of blood pressure (i.e., MAP). 

Brachial blood pressure was found to have a greater number of correlations with cerebral 

perfusion compared with carotid blood pressure. 

 After body mass index, education, age, and sex were taken into account, 

associations between pulsatile blood pressure components and regional cerebral perfusion 

remained significant in hippocampus and anterior white matter regions. The significant 

independent contribution of blood pressure components on hippocampus perfusion 

(Table 4.3) and anterior white matter perfusion (Table 4.4) were confirmed by significant 

R2 changes from sequential multiple regression analyses. As shown in Table 4.3, results 

from sequential multiple regression analyses revealed a significant contribution of 

brachial systolic blood pressure that explained 11% of the variability in hippocampus 
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perfusion (ΔR2 = 0.11, p=0.03, model 2) independent of the entered covariates. Another 

peripheral pulsatile blood pressure component (i.e., brachial pulse pressure) also shows a 

significant contribution to the variability in hippocampus perfusion (ΔR2 = 0.12, p=0.02) 

independent of the entered covariates (Table 4.3, model 4). The significant contribution 

of brachial systolic blood pressure and brachial MAP to anterior white matter perfusion 

was illustrated (Table 4.4). As shown in Table 4.4 brachial systolic BP explained 12% 

(ΔR2 = 0.12, p=0.03, model 2) of the variability in anterior white matter perfusion 

independent of the entered covariates. Brachial MAP also revealed a significant 

independent contribution to the variability in anterior white matter perfusion (ΔR2 = 0.11, 

p=0.04), independent of the entered covariates (Table 4.4, model 4). 
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Table 4.1 Selected subject characteristics 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  BP blood pressure, PP pulse pressure, LDL low-density lipoprotein, HDL high-density    

  lipoprotein  

 

 

 

 

Variable                   Mean ± SEM 

Male/ female, n                     27/25 

Age, years                                    50 ± 1 

Height, cm                                  169 ± 1 

Body mass, kg                                 86.3 ± 1.8 

Body mass index, kg/m2                                           30 ± 1 

Education, years                                     14.9 ± 0.2 

Brachial systolic BP, mmHg                                  126 ± 1 

Brachial diastolic BP, mmHg                                    76 ± 1 

Brachial PP, mmHg                                    50 ± 1 

Brachial mean BP, mmHg                                    94 ± 1 

Carotid systolic BP, mmHg                                   117 ± 1 

Carotid PP, mmHg                                    41 ± 1 

Total cholesterol, mg/dl                                  200 ± 4 

LDL cholesterol, mg/dl                                   119 ± 3 

HDL cholesterol, mg/dl                                     46 ± 1 

Blood glucose, mg/dl                                  116 ± 4  

HbA1C, %                                   4.9 ± 0.1 

Mini Mental Status Exam (MMSE) score                                 28.2 ± 0.1 



 

 42 

Table 4.2 Simple correlation coefficients (with P-values) between blood pressure components and regional cerebral perfusion in 10 
regions of interest 

Data are Pearson r (p-value).  Significant correlations (P<0.05) are highlighted in bold. 

SBP=systolic blood pressure, PP=pulse pressure, MAP=mean arterial pressure 

 

 

Variable Hippocampus 

Anterior 

white 

matter 

Central 

insula 
Thalamus Caudate 

Posterior 

insula 

Central 

white 

matter 

Posterior 

white 

matter 

Posterior 

cingulate 

Occipitoparietal 

area 

Brachial            

    SBP   - 0.325 - 0.350 - 0.126 - 0.272 - 0.149 - 0.366 - 0.341  - 0.179   - 0.145      - 0.403 

     (0.03)   (0.02)   (0.39)  (0.07)   (0.37)   (0.01)   (0.04)    (0.24)     (0.31)        (0.004) 

    PP   - 0.367  - 0.343 - 0.043 - 0.237 - 0.012 - 0.255 - 0.406  - 0.252   - 0.102      - 0.363 

     (0.01)   (0.02)   (0.77)  (0.12)   (0.94)   (0.09)   (0.01)    (0.09)     (0.47)        (0.01) 

    MAP   - 0.302 - 0.327 - 0.187 - 0.295 - 0.026 - 0.274 - 0.024    0.006   - 0.157      - 0.355 

     (0.07)   (0.04)   (0.25)  (0.10)   (0.89)   (0.11)   (0.90)    (0.97)     (0.30)        (0.027) 

Carotid           

    SBP   - 0.308 - 0.316   0.003 - 0.202 - 0.097 - 0.185 - 0.168  - 0.167   - 0.112      - 0.378 

     (0.05)   (0.05)   (0.98)  (0.21)   (0.58)   (0.24)   (0.35)    (0.30)     (0.45)        (0.01) 

    PP   - 0.235 - 0.260   0.106 - 0.146 - 0.013 - 0.001 - 0.138  - 0.204   - 0.039      - 0.324 

     (0.14)   (0.11)   (0.48)  (0.37)   (0.94)   (0.99)   (0.45)    (0.20)     (0.79)        (0.03) 
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Table 4.3 Multiple regression analyses depicting independent correlates of hippocampus 
perfusion  

Model 
ΔR2 Variable β P value 95% CI 

(P value)    Lower Upper 

Dependent variable: hippocampus perfusion 

1  0.05 BMI -0.12 0.51 -1.72 0.86 

 (0.70) Edu -0.19 0.85 -3.04 2.52 

  Age -0.19 0.22 -1.54 0.37 

  Sex -0.06 0.71 -15.93 10.91 

2  0.11 bSBP -0.35 0.03 -0.81 -0.03 

 (0.03) BMI -0.04 0.82 -1.41 1.12 

  Edu -0.02 0.92 -2.79 2.53 

  Age -0.20 0.19 -1.51 0.31 

  Sex 0.01 0.95 -12.70 13.46 

Dependent variable: hippocampus perfusion 

3  0.05 BMI -0.12 0.51 -1.72 0.86 

 (0.70) Edu -0.03 0.85 -3.04 2.52 

  Age -0.19 0.22 -1.54 0.37 

  Sex -0.06 0.70 -15.93 10.91 

4  0.12 bPP -0.36 0.02 -1.55 -0.12 

 (0.02) BMI -0.03 0.86 -1.36 1.14 

  Edu -0.03 0.86 -2.86 2.40 

  Age -0.18 0.25 -1.43 0.38 

  Sex -0.04 0.79 -14.36 11.06 

BMI body mass index, Edu years of education, bSBP brachial systolic blood pressure, 

bPP brachial pulse pressure 

Significant correlations (P<0.05) are highlighted in bold. 
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Table 4.4 Multiple regression analyses depicting independent correlates of anterior white 
matter 

Model 
ΔR2 Variable β P value 95% CI 

(P value)    Lower Upper 

Dependent variable: anterior white matter perfusion 

1  0.07 BMI -0.16 0.38 -1.61 0.63 

 (0.62) Edu 0.11 0.51 -1.89 3.72 

  Age -0.17 0.33 -1.31 0.45 

  Sex -0.05 0.79 -14.09 10.81 

2  0.12 bSBP -0.37 0.03 -0.78 -0.04 

 (0.03) BMI -0.06 0.74 -1.27 0.92 

  Edu 0.13 0.42 -1.59 3.74 

  Age -0.18 0.27 -1.30 0.37 

  Sex 0.02 0.91 -11.29 12.66 

Dependent variable: anterior white matter perfusion 

3  0.07 BMI -0.16 0.38 -1.61 0.63 

 (0.62) Edu 0.11 0.51 -1.89 3.72 

  Age -0.17 0.33 -1.31 0.45 

  Sex -0.05 0.79 -14.09 10.81 

4  0.11 bMAP -0.35 0.04 -0.98 -0.02 

 (0.04) BMI -0.07 0.69 -1.32 0.88 

  Edu 0.14 0.39 -1.54 3.84 

  Age -0.14 0.39 -1.21 0.48 

  Sex 0.02 0.92 -11.49 12.63 

BMI body mass index, Edu years of education, bSBP brachial systolic blood pressure, 

bMAP  brachial mean arterial pressure 

Significant correlations (P<0.05) are highlighted in bold. 
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DISCUSSION 

In the present study, we found that in a sample of middle-age adults with normal 

global cognitive function both components of blood pressure were inversely related to 

regional cerebral perfusions in 5 of 10 regions of interest. In general, for the significant 

associations, the pulsatile component of blood pressure was more strongly associated 

with regional cerebral perfusion than the steady component.  

These findings are consistent with a previous study in older adults that found a 

greater association between pulse pressure and cognitive function compared with MAP.75 

A longitudinal study in nondemented individuals demonstrated a higher decline of 

cognitive function in individuals with greater baseline pulse pressure compared with their 

peers.4 The exact causes or physiological mechanisms linking pulsatile pressure and 

impaired cerebral perfusion are not known. However, the plausible mechanism is that 

excessive pulsatile force into the cerebral microcirculation due to greater fluctuations in 

blood pressure (i.e., higher pulse pressure) could cause damage to the brain’s 

microvasculature. Regional hypoperfusion and cognitive dysfunction could be insults 

from excessive pulsatile force-induced cerebral microvascular damage.76,77 The results 

from present study are consistent with this hypothesis. An alternative explanation could 

be an adaptive change in the cerebral vasculature. A strong positive association between 

cerebral pulse pressure and cross-sectional area of pial arterioles was reported in animal 

models.78 In this situation the pial arterioles underwent hypertrophy after exposure to 



 

 46 

chronically high cerebral pulse pressure aiming to protect the brain tissues from high 

pressure. However, this could also, in turn, cause reductions in cerebral perfusion. 

MAP is a major factor that determines the perfusion pressure to various organs. 

From a physiological perspective, MAP should be more strongly associated with regional 

cerebral perfusion. However, in this study we found a weak association between MAP 

and regional cerebral perfusion. One possibility that may partly explain this finding is 

that cerebral autoregulation may closely control the steady component of blood pressure 

(i.e., MAP) that eventually attenuates its adverse effects. Alternatively, a high driving 

force (i.e., MAP) could be a protective adaptation to maintain proper blood perfusion to 

the brain. In support of this notion, a recent study in individuals with hypertension found 

a higher prevalence of congenital narrow vertebral arteries and incomplete posterior 

circle of Willis.79 The causality analysis in the previous study reveals an elevated cerebral 

vascular resistance before the development of hypertension.79  

Considering the superior ability to predict cardiovascular disease outcomes of 

central (i.e., carotid) over peripheral (i.e., brachial) blood pressure73, we hypothesized that 

central blood pressure would be more closely associated with cerebral perfusion than 

peripheral blood pressure. However, the findings were opposite to our initial hypothesis. 

The reason for these findings is unclear. The nature of blood perfusion in the brain is very 

unique as the brain’s tissues are continuously perfused at high flow rate due to low 

vascular resistance.80 Therefore, it is possible that the response of the brain may differ 

from other vascular beds. The other reason that may explain a closer relationship between 

peripheral, compared with central, blood pressure and cerebral perfusion could partly due 
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to differences in arterial properties between peripheral (i.e., brachial artery) and central 

(i.e. carotid artery) arteries. For instance, brachial artery is more muscular compared with 

carotid artery. Arterial stiffness, which is one of the factors that determine pulsatility of 

arterial pressure that passes through cerebral circulation, can be modified by functional 

factors (e.g., changes in vascular tone due to contraction/relaxation of vascular smooth 

muscle cells) and structural factors (e.g., changes in elastic and/or collagen proportion).81 

The functional changes (i.e., changes in vascular tone) that lead to changes in arterial 

stiffness and ultimately arterial pressure pulsatility would be expected to occur earlier 

than structural changes in the arterial wall. As the participants in this study were healthy 

middle age adults, it is possible that that functional changes of the artery may have been 

more dominant than structural changes.  

The major limitation of the present study was the cross-section design that cannot 

determine the causality of interest (i.e., blood pressure components and regional cerebral 

perfusion). However, we could infer the cause and effect between blood pressure 

components and regional cerebral perfusion based on existing literature showing a faster 

decline in cognitive performance in individuals with hypertension.72  

In conclusion, the present study adds clinically important information to the 

existing evidence by demonstrating a stronger association between the pulsatile blood 

pressure component and regional cerebral perfusion than steady state component. Future 

longitudinal studies with a large number of sample size is warranted to determine the 

causality between pulsatile blood pressure component and cognitive dysfunction. 
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Chapter 5: Review of Literature 

ENDOTHELIAL FUNCTION  

Blood flow through arteries generates mechanical forces on the vessel wall. In 

order to maintain vascular homeostasis, endothelial cells in the vessel wall sense these 

mechanical forces and transduce these stimuli into intracellular signals.82 Initiation of 

cellular events in response to shear stimuli involves multiple molecular elements, such as 

integrin, vascular endothelial growth factor (VEGF) receptor-2, G-protein-coupled 

receptors (GPCRs), and trimetric G-proteins.  

- Shear stimuli-mediated endothelial signaling  

Changes in shear stimuli could trigger acute responses (i.e., increases in vascular 

diameter) as well as slow or chronic structural remodeling.  Shear stress-induced nitric 

oxide (NO) production is one of the most important physiological responses attributed to 

endothelial cells. Endothelial cells sense an increase in shear stimuli that initiates a 

mechanotransduction cascade resulting in the production of vasodilators (e.g., NO).83  

The shear stress-induced NO production is a G-protein-dependent process.35 

Structural deformation of endothelial cells by shear force activates GPCRs84 and leads to 

hydrolysis of PIP2 (phosphatidylinositol 4,5-biphosphate) to IP3 (inositol triphosphate).85 

IP3 triggers the release of calcium, which increases the concentration of cytosolic 

calcium ([Ca2+]). The increase in Ca2+-calmodulin (CaM) complexes ultimately target the 

recruitment and activation of endothelium nitric oxide synthase (eNOS), the enzyme that 

is responsible for NO production.85  
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Factors modulating release of endothelium-derived relaxing factor 

 The release of endothelium-derived relaxing factors (e.g., NO) is affected not only 

by the magnitude of the mechanical force (i.e., shear stimuli) but also by the rate and 

frequency of shear stimuli exposed to endothelial cells. Exposing isolated arteries to 

faster increases in shear stimuli resulted in greater vasodilatory responses.11 The 

frequency-sensitive phenomenon of flow-induced production of endothelium-derived 

relaxing factors (e.g., NO) has also been shown in isolated rabbit aortic segments, as the 

percentage of vascular relaxation was directly proportional to the frequency of flow to 

which endothelial cells were exposed.12 In addition, a study in human endothelial cells 

demonstrated the higher expression of G protein, one of the major mechanotransduction 

molecules that involved in shear stimuli-induced NO production, after exposure to a 

faster strain rate.36 

- Assessment of endothelium function  

Endothelial cells are not just a passive interface between blood and the arterial 

wall, but are considered large paracrine tissues that secrete a number of factors regulating 

vascular tone, vascular growth, and vasoprotection. Among these factors, NO is an 

important vasodilator molecule that also plays other key roles in the inhibition of 

atherosclerosis, including inhibitions of platelet adhesion and aggregation, leukocyte 

adhesion and migration, and smooth muscle cell proliferation.  

The endothelium is a key element for the mechanotransduction cascade that is 

needed to maintain vascular homeostasis. The response of endothelial cells to increases in 

blood flow-associated shear stress is termed endothelium-dependent flow-mediated 
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dilation (FMD)86-88 and has become a common measurement that provides information 

on the function of the endothelium in humans.  

FMD of the brachial artery is a noninvasive approach that has become the most 

widely used technique to assess endothelial function. Brachial artery FMD assesses the 

endothelial function through the ability of an artery to respond to acute reactive 

hyperemia. The changes in arterial diameter after acute reactive hyperemia (induced by 

releasing blood pressure cuff after 5-minute occlusion on brachial artery) are obtained 

from ultrasound images of arterial diameter before and after cuff occlusion. To obtain an 

assessment that primarily reflects NO-dependent FMD, there are at least two major 

conditions that should be considered.  

1. Occlusion cuff placement. An occluding cuff should be placed distal to the site that 

obtains the arterial diameter. Placing an occluding cuff proximal to the imaged artery 

leads to a FMD that comprises a substantial component related to tissue ischemia rather 

than NO-mediated component.89 

2. Occlusion duration. A 5-minute occlusion protocol is typically well tolerated and 

often used. Prolonged duration (i.e., greater than 5 minutes) has been demonstrated to 

evoke a non-NO-mediated vasodilation.90 

IMPACTS OF HEART RATE ON VASCULAR FUNCTION 

Heart rate is one of many hemodynamic factors that influence vascular function. 

Measurement of large artery stiffness, such as carotid-femoral pulse wave velocity 

(cfPWV) and augmentation index (AIx), is dependent on heart rate. As cfPWV is known 
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to be a pressure dependent variable and an increase heart rate is commonly accompanied 

by increased blood pressure. A recent study isolated the true effect of heart rate on 

cfPWV using in situ cardiac pacemakers or cardioverter defilbrillators to determine the 

effect of intrinsic heart rate without the effects of sympathovagal-dependent changes in 

heart rate and blood pressure.91 The results from this study demonstrated a mean heart 

rate dependency in the range of 0.16 to 0.20 m/s per 10 bpm independent of blood 

pressure changes. This result may show minimal physiologically relevant changes of 

cfPWV with small changes in heart rate; however, there are some circumstances that 

could induce large differences in heart rate after the intervention. In the event of such 

circumstances, heart rate should be considered a factor that contributes to significant 

differences in cfPWV. No studies to date have shown the mechanisms involved in this 

heart rate dependency. However, the viscoelasticity of the arterial wall92,93 and reduced 

time for the artery to recoil94,95 at higher heart rates have been offered as potential 

mechanisms behind the impact of heart rate on cfPWV. 

AIx is an indicator of systemic arterial stiffness that is derived from pulse wave 

analysis. Heart rate is one of the factors that influence this arterial stiffness index, 

specifically AIx is inversely related to heart rate.93,96 An increase in heart rate will 

decrease the absolute duration of systole resulting in shifting of the reflected wave into 

diastole.93,96 Individuals with permanent cardiac pacemakers and those who underwent 

routine cardiac catheterization demonstrated declines in AIx ranging from 3.9% to 5.6% 

for each 10 bpm increment of heart rate.93,96 
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 The influence of heart rate on vascular function has also been demonstrated in a 

study that determined endothelial responses to heart rate. Blood flow across the arterial 

wall generates shear stimuli that induces vascular signaling response via the function of 

endothelial cells. Mechanotransduction by endothelial cells induces endothelial gene 

expression. Vascular phenotypes (i.e., atherosclerosis susceptibility or atherosclerosis 

protection) are determined based on the nature of shear stimuli that interact with the 

arterial wall. Amplitude, pattern, and frequency of shear stimuli all influence endothelial 

response. For example, the induction of eNOS is activated by high shear stress.97 A study 

using aortic endothelial cells demonstrates different endothelial responses to a 

“physiologic” and “pathologic” frequency of shear stimuli.31 In this study, the 

endothelium cells respond to a physiologic frequency (i.e., 1 Hz) of shear stimuli by 

inducing a number of atheroprotective transcriptions and repressing inflammatory 

transcripts. In contrast, the responses of endothelium cells to a frequency of shear stimuli 

that is higher than physiologic frequency involves induction of a proinflammatory 

phenotype, such as monocyte chemoattractant protein-1 and intercellular adhesion 

molecule-1. However, clinical data regarding the influence of heart rate on endothelial 

function are inconclusive. A positive association between heart rate and brachial FMD, 

an index of endothelial function, has been reported in a large cohort of the Framingham 

Heart Study.15 Yet an inverse relationship between heart rate and FMD was found in a 

study with a small number of subjects.13 
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IMPACTS OF CARDIOVASCULAR SYSTEM ON CEREBRAL PERFUSION 

The brain is a vital organ with a high metabolic demand and receives 15% of total 

cardiac output, despite the fact that it weighs only 2% of total body weight.98,99 Even 

though the brain has its own autoregulatory mechanism to control cerebral perfusion, a 

recent study has analyzed the relationship between cerebral blood flow and mean arterial 

pressure using projection pursuit regression to circumvent the linear limitations of this 

relationship. This study found that in young healthy subjects, when blood pressure was 

oscillated at 0.03 Hz, a cerebral autoregulatory operation range was shown to be very 

narrow (~10 mmHg).1 This finding suggests the importance of intact cardiovascular 

hemodynamic function in providing normal blood perfusion to the brain. Hypoperfusion 

to the brain may lead to ischemia and damage to brain tissues that could eventually result 

in impaired cognitive function. Indeed, brain perfusion and cognitive performance are 

significantly related.60 

- Impacts of cardiovascular dysfunction on impaired cerebral perfusion and declined 

cognitive function 

The high incidents of cognitive dysfunction in patients with severe cardiovascular 

disease presumably reflect the impact of impaired cardiovascular function on the aging 

brain.100-102 Reduced cardiac output and impaired systemic vascular structure and 

function have been shown to be related to cognitive dysfunction and structural 

abnormalities of the brain.102-108 Reduced systemic blood flow due to impaired cardiac 

output shows a significant association with white matter hyperintensities (WMH), an 
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important index that is related to cognitive decline in later life in those with 

cardiovascular disease.108 

Available literature have reported strong relationships between indices of vascular 

aging (i.e., atherosclerosis and arteriosclerosis) and cognitive impairment. A significant 

inverse association between carotid intima-media thickness (IMT) and cognitive function 

has been observed in both cross-sectional and longitudinal studies.109-113 A thicker carotid 

arterial wall was shown to be related to lower cognitive performance even after the age, 

education, and/or the presence of cardiovascular risk factors were taken into 

account.109,113 Poorer cognitive function has also been shown to be related to arterial 

stiffness which is an independent risk factor for impaired cognitive funciton with 

advancing age.114,115 A number of longitudinal studies have demonstrated a prospective 

association between higher PWV at baseline measurement and poorer cognitive function 

in later years.4,116 

The effects of cardiovascular function on cognitive function may also be 

attributed to endothelium function. An impaired peripheral endothelium function as 

measured by brachial FMD in elderly individuals with cardiovascular disease has been 

reported to related to increased WMH.107 A study of eldery individuals with subjective 

memory complaints reported an association between the severity of WMH and von 

Willerbrand Factor (i.e., a biomarker of endothelial dysfunction).117 

 There are a number of studies showing that changes in cerebral blood flow118 and/ 

or structure119 precede cognitive decline. In an animal model using a 2-vessel occlusion 

(i.e., both common carotid arteries) technique to induce brain hypoperfusion, capillary 
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degeneration in the CA1 section of the hippocampus and neuronal damage was found 

after the animals experienced cerebral hypoperfusion for 12 months.120 Moreover, the 

same animal study also demonstrated a significant direct association between cognitive 

performance decline and severity of capillary damage in the hippocampal CA1 area. 

Therefore, despite lacking direct evidence showing a relationship between the 

cardiovascular system and cerebral blood flow, as based on the available literature which 

has reported the close relationship between cardiovascular system and cognitive function 

could lend support to the plausible role of cardiovascular system on cerebral blood flow.  

- Brain areas susceptible to hypoperfusion 

A failure to regulate cardiovascular function could lead to global cerebral 

hypoperfusion. The specific adverse effects of cerebral hypoperfusion on memory 

performance60 suggests that the hippocampus, a brain region critical for memory, could 

be a region that is more sensitive to ischemic insults. The pattern of cerebrovascular 

anatomy that supplies the hippocampal region may be a primary determinant in raising 

susceptibility of hypoperfusion insults. 

A study of the anatomical patterns of cerebral microcirculation revealed the 

susceptibility of certain areas to hypoperfusion, including the hippocampus.61 In contrast 

to the areas that have high resistance to hypoperfusion (e.g., cerebral cortex, the 

subcortical arcuate fibers, and the corpus callosum) that are irrigated by short-penetrating 

arteries, the hippocampus is poorly irrigated, especially in the CA1 sector.121 Systemic 

hypoperfusion with hypoxia-ischemia is postulated as a cause of hippocampal sclerosis, a 
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localized form of ischemia and atrophy, in very old subjects with dementia and cardiac 

disease.122 

- Assessments of cerebral blood flow 

Cerebral blood flow can be assessed by a number of techniques. A simple 

technique such as transcranial Doppler (TCD) ultrasound has been used to assess global 

cerebral blood flow.123 However, TCD has some limitations as only mean blood velocity, 

not blood flow, can be assessed using this technique. TCD also has a limitation in the 

analysis of blood flow in specific brain regions. The arterial spin labeling (ASL), or 

perfusion functional MRI technique, provides a non-invasive, quantitative measure of 

cerebral blood flow in specific brain regions. ASL has been used as the approach for 

examining cerebral blood flow in regions of interest linked to cognitive dysfunction and 

dementia.44-46 The ASL MRI technique uses arterial blood water that is magnetically 

labeled using radiofrequency irradiation as an endogenous tracer. Water molecules of 

flowing blood toward a region of interest (ROI) are labeled or tagged by radiofrequency 

irradiation. The tagged or magnetized blood travels into the imaging slices, which can be 

measured with a standard MRI imaging sequence. Cerebral blood flow in a ROI is 

calculated from the difference between the control (unlabeled) and tagged images.44-46 

BAROREFLEX AND ITS POTENTIAL IMPACT ON THE BRAIN 

The arterial baroreflex is the major mechanism that works to control moment-to-

moment fluctuations of arterial blood pressure. The baroreflex controls blood pressure 

through two hemodynamic parameters that determine blood pressure, including cardiac 
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output and total peripheral resistance.124 The arterial baroreceptors located in the 

adventitial layer of the carotid sinuses and aortic arch are composed of mechanosensitive 

afferent nerves. A negative feedback loop controlling blood pressure from the function of 

baroreflex involve a complex network of brain stem units such as the nucleus of the 

solitary tract (NTS), the nucleus ambiguous (NA), and the rostral ventrolateral medulla 

(RVLM). This complex network within the brain stem subserve cardiovascular response 

through modulation of the autonomic system (i.e., sympathetic, and parasympathetic). 

Changes in arterial pressure cause mechanical deformation of the arterial wall, which 

then generate mechanotransduction-excitatory input to neurons located in the NTS.125,126 

A direct input from barosensitive NTS neurons to a group of vagal preganglionic neurons 

located in the ventrolateral portion of the nucleus ambiguous provide a beat-to-beat 

control of the heart rate127, one of the hemodynamic factors that determines cardiac 

output. Total peripheral resistance, another determinant of arterial pressure, is primarily 

controlled by the sympathotinhibitory pathway that involves a connection between the 

NTS and sympathoexcitatory neurons located in the RVLM. These RVLM neurons are 

responsible for the activation of the sympathetic vasoconstrictor output to vessels in 

skeletal muscle, mesenteric, and renal regions.128,129 

- Assessments of cardiovagal BRS 

Baroreflex sensitivity can be assessed using the slope of the R-R interval-systolic 

blood pressure relation obtained from various protocols.53 The protocols generate an 

acute change in arterial pressure to trigger the response of the arterial baroreflex. Change 
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in the R-R interval (or heart rate) per unit change in systolic blood pressure is represented 

as cardiovagal BRS.  

The Valsalva’s maneuver, a simple, reproducible, and noninvasive procedure, is 

one of the protocols that have been used for BRS assessment. During the Valsalva’s 

maneuver, abrupt transient elevations in intra-thoracic and intra-abdominal pressures are 

provoked by straining (i.e., performing forced expiration against a closed glottis). 

Adequate stimulus during the period of Valsalva straining is monitored as mouth pressure 

(an estimated intrapleural pressure) and is commonly raised to 40 mmHg for 10 seconds. 

The responses to the Valsalva’s maneuver are composed of 4 phases. 

Phase 1. Immediately after the onset of Valsalva straining, there is a brief rise in arterial 

pressure and a reduction in heart rate. However, an elevated arterial pressure during 

phase 1 of the Valsalva’s maneuver does not appear to be mediated by sympathetic 

autonomic nervous system as it is not preceded by an increase in burst amplitude of 

muscle sympathetic nerve activity.53 

Phase 2. The elevated arterial pressure during phase 1 is followed by a decrease in 

arterial pressure to the baseline level in phase 2. In this phase, pressures in all 

baroreceptors are reduced. 

Phase 3. After expiratory pressure (i.e., a straining) is released, there is a very brief 

further reduction in arterial pressure and an increase in heart rate. 

Phase 4: In this phase, a sustained elevated arterial blood pressure above baseline levels 

then stimulates arterial baroreflex-mediated prolongation of R-R interval. The response 



 

 59 

of the R-R interval and systolic blood pressure during phase 4 of the Valsalva’s maneuver 

is used to determine BRS. 

- BRS and its potential impact on the brain 

A depressed BRS may lead to impaired cardiovascular control, which could affect 

perfusion pressure to the downstream tissues. Impaired BRS could cause serious 

consequences especially in organs that have high metabolic demands with a limited 

capacity to store nutrients and oxygen, such as the brain. Despite the fact that the brain 

has its own autoregulation to maintain steady cerebral blood perfusion, a recent study has 

revealed a very narrow range of operation (~10 mmHg) of cerebral autoregulation in 

young healthy subjects.1 This finding highlights the importance of extra-cranial 

mechanisms in maintaining stable cerebral blood flow even if cerebral autoregulation is 

intact. Moreover, a study of healthy young adults reported an important role of cardiac 

baroreflex in cerebral autoregulation by demonstrating attenuated dynamic cerebral 

autoregulation function during cardiac autonomic blockade (i.e., inhibited cardiac 

baroreflex response).130 

Cardiovagal BRS in humans has been reported to decline with advancing age65, 

and this change is attributed to hardening of the large, elastic arteries.51 The potential 

impact of BRS on the brain has been shown in a number of studies. Higher incidence of 

memory impairment has been shown in an elderly population with impaired BRS 

compared with age-matched peers with normal BRS.2 Additionally, depressed BRS has 

been reported in patients with Alzheimer’s and Parkinson’s diseases.54 A recent study in 

older adults further suggests a close relation between BRS and the brain. In this recent 
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study, higher executive function was associated with better white matter integrity in areas 

of the brain that have significant correlations with BRS and central artery stiffness (i.e., 

carotid-femoral pulse wave velocity).131 

In addition to changes in the peripheral component of baroreflex (i.e., stiffening 

of large elastic arteries where baroreceptors are located), changes in the central 

component of baroreflex and its efferent pathway could also contribute to impaired BRS. 

The baroreflex involves modulation of the autonomic nervous system through a complex 

network of neurons in brain stem; thus, degeneration of  these neurons (e.g., NTS, 

RVLM) could lead to impaired baroreflex response to fluctuating blood pressure.  

The autonomic nervous system is one of the mechanisms that regulates cerebral 

blood flow. There are extensive innervations of adrenergic and cholinergic fibers 

throughout the entire cerebrovascularture.132-135 Activation of α-adrenoeptors causes 

vasoconstriction in the cerebrovascular bed.136 Vasodilation of the vessels in the brain is 

primarily caused by activation of β-adrenoceptor. Activation of parasympathetic nerve 

activity via cholinergic fibers has been shown to increase cortical cerebral blood flow 

(i.e., the cerebral neocortex and hippocampus) in animal models.137,138 Therefore, 

changes in the balance between sympathetic and parasympathetic activation could affect 

not only the function of baroreceptor but cerebral blood flow as well. 

 In addition to an acute regulation of blood pressure, baroreflex is also involved in 

chronic blood pressure control. Clinical trials have reported an anti-hypertensive response 

to electrical stimulation of the carotid baroreflex in patients with resistant 

hypertension.139-144 Results from these studies show that electrical baroreflex activation 
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not only provides global inhibition of sympathetic activity, but also suppresses renal 

sympathetic nerve activity (RSNA), a major mechanism mediating chronic blood 

pressure regulation. This finding lends support to the important role of baroreflex on 

blood pressure control and brain blood flow. 

BLOOD PRESSURE AND BRAIN FUNCTION 

The role of systolic and diastolic blood pressures in cardiovascular disease was 

compared in the Framingham Heart Study in 1971.145 This longitudinal study showed that 

the risk stratification of cardiovascular disease based on systolic and diastolic blood 

pressure is modified by aged. In younger individuals, diastolic blood pressure is the 

stronger predictor of coronary heart disease. In contrast, systolic blood pressure is the 

predominant predictor of coronary heart disease in older individuals. Age-related changes 

in systolic blood pressure, diastolic blood pressure, pulse pressure, and mean arterial 

pressure were demonstrated in a longitudinal study that performed biannual evaluation 

over a 30-year follow-up period.146 In this epidemiological study, systolic blood pressure 

increases disproportionally with diastolic blood pressure after 50 years of age with a 

marked drop in diastolic blood pressure after the age of 60, resulting in a further 

widening of pulse pressure. The age-related stiffness of the large elastic artery (i.e., aorta) 

could be a major factor contributing to increases in systolic blood pressure and declines 

in diastolic blood pressure as a reduced capacity of the elastic reservoir that lead to a 

greater peripheral runoff of stroke volume during systole. 
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- Steady state vs. pulsatile blood pressure component and cognitive function 

Among a number of vascular risk factors, chronic hypertension is an important 

factor that contributes to impaired cognitive function.147 Indeed, chronically elevated 

blood pressure has been shown to induce detrimental impacts on brain structures.148 

Arterial blood pressure is comprised of two major components: steady state and 

pulsatile components. The steady state component is assessed as mean arterial pressure 

and is largely influenced by cardiac output and small resistance artery function. On the 

other hand, the pulsatile component is represented by pulse pressure and systolic blood 

pressure, and is driven primarily by large artery stiffness.74 As the two components of 

arterial blood pressure are influenced by different factors, deconstructing blood pressure 

into the steady and pulsatile components may offer a better understanding of the 

pathophysiology of high blood pressure on impaired cognitive performance. Indeed, there 

is extensive literature on the superiority of pulsatile blood pressure in predicting end-

organ damage149, cognitive performance75, and Alzheimer-related biomarkers150. 

A longitudinal study in elderly individuals revealed a prospective decline in 

cognitive performance, including verbal learning, nonverbal memory, working memory, 

and cognitive screening measure in older adults with greater pulse pressure.4 The 

plausible mechanisms underlying the impact of pulse pressure on cognitive performance 

may include the fact that the brain is a vital organ that has high flow and low impedance.  

Therefore, it is susceptible to an increase in pulsatile nature of blood flow. Greater pulse 

pressure, a surrogate marker of arterial stiffness10, may place microvessels in the brain at 

high risk for damage. Higher pulse pressure may induce microvascular damage by 
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transmission of excessive pulsatile stress into the cerebral microvasculature which could 

lead to regional hypoperfusion. Indeed, an association between pulse pressure and 

increased risk for impaired brain structure and function has been demonstrated even in 

elderly individuals without a history of dementia.77 

- Central vs. peripheral blood pressure and cognitive function 

An increase in both central and peripheral blood pressure has been reported to be 

related to poorer cognitive function.151 Higher peripheral pressure (i.e., brachial blood 

pressure) was related to poorer Stroop processing and spatial working memory in middle-

aged individuals.151 However, a stronger association between central blood pressure and 

cognitive performance, compared with peripheral blood pressure, was reported in a study 

that recruited a sample of a wide age range (28 to 82 years).151 An increase in aortic 

stiffening and central blood pressure are related to arterial aging.152 Given that blood flow 

to the brain is delivered through the central large arteries, stiffening of the large elastic 

arteries with advancing age could reduce the ability of the arterial wall to dampen blood 

pressure before reaching the brain. Therefore, sustained high central blood pressure may 

cause accumulative damage of vascular beds in the brain and could eventually lead to 

impaired cognitive function in later life. 

- Possible Adverse effect of blood pressure lowering medication on cognitive function 

Although high blood pressure, especially during midlife, is related to cognitive 

decline in later life, treating hypertension with anti-hypertensive medication may cause 

an adverse effect on cerebral blood flow. The cerebral autoregulatory curve of MAP and 

cerebral blood flow undergoes a shift-to-the-right to maintain cerebral blood flow at a 
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higher blood pressure level in individuals with hypertension.153,154 Despite an intact 

function of cerebral autoregulation in individuals with hypertension155, the lower limit of 

this mechanism operates at a higher pressure than normotensive individual. The changes 

in the lower limit of cerebral autoregulation in individuals with hypertension may cause a 

problem when blood pressure is decreased by blood pressure lowering medication.  
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Chapter 6: Summary and Future Directions 

SUMMARY 

The overall findings from this dissertation study highlight the potential impacts of 

systemic hemodynamic factors on cerebral and peripheral perfusion. The physiological 

impact of systemic hemodynamic factors was demonstrated in the study 1 as the results 

indicate an indirect effect of heart rate on endothelium-dependent vasodilation. As 

frequency of blood flow through the arterial wall could be modified by heart rate. The 

finding from study 1 could provide the support for the systemic effect of regular exercise 

on vascular beds in non-exercising muscles.   

Findings from the studies 2 and 3 provide insights into the potential impacts of 

systemic hemodynamic factors (i.e., BRS and blood pressure) on blood flow to the brain 

region that play an important role on memory domain of cognitive function (i.e., 

hippocampus region). A direct association between BRS and regional blood perfusion in 

hippocampal region may partly explain the previous findings that demonstrated an 

impaired cognitive function in individuals with impaired BRS.3,54 In particular, findings 

from the study 2 suggest that individuals with lower BRS would have lower hippocampus 

perfusion. A reduction in blood flow to the brain especially in the regions that are 

susceptible to cerebrovascular disease could cause an impaired brain function. A simple 

test such as tilt table test could help the clinician to early diagnostic individuals who may 

at risk of developing an impaired cognitive function due to an impaired baroreflex 

function.  

Last, an inverse association between pulsatile component of blood pressure and 

regional cerebral perfusion at hippocampus and anterior white matter regions in study 3 

suggest a negative effect of high blood pressure pulsatility on blood perfusion to the 
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brain. These findings support the utility of pulsatile blood pressure components (i.e., 

systolic blood pressure and pulse pressure) as risk factors to predict an impaired cognitive 

function in the future.  

 

FUTURE DIRECTIONS 
 The cause and effect relationship between systemic hemodynamic function and 

perfusion in cerebral and/or peripheral vascular beds needs further investigation, using a 

longitudinal study design. Future studies that include nondemented elderly, individuals 

with mild cognitive impairment, and individuals with dementia may further our 

understanding about the effects of systemic hemodynamic factors and/or mechanisms on 

cerebral perfusion and cognitive function. 

Longitudinal studies that include exercise interventions are another interesting 

future research direction. Habitual aerobic exercise has been reported to attenuate the 

age-related decline in cardiovagal BRS.66 The age-related decline in BRS is attributed to 

stiffening of the large elastic arteries.51 The link between destiffening of the arteries with 

habitual exercise has been reported, and such greater arterial compliance is associated 

with a corresponding higher in cardiovagal BRS.66,67 The potential of exercise training to 

act as an effective preventive or therapeutic strategy to prevent or restore impaired 

regional cerebral perfusion and potentially impaired cognitive function in advancing age 

needs to be investigated in future longitudinal studies.  
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Appendix A: Abbreviations and Acronyms 

AIx = augmentation index 

ASL = arterial spin labeling 

BMI = body mass index 

BP = blood pressure 

BRS = baroreflex sensitivity 

cfPWV = carotid-femoral pulse wave velocity 

CI = confidence interval  

eNOS = endothelium nitric oxide synthase 

FMD = flow-mediated dilation 

GPCRs = G-protein-coupled receptors 

IMT = intima-media thickness 

MMSE = the Mini-Mental State Exam 

MRI = magnetic resonance imaging 

NA = the nucleus ambiguous 

NO = nitric oxide 

NTS = the nucleus tractus solitarii 

RVLM = the rostral ventrolateral medulla  

SBP = systolic blood pressure 

SR = shear rate 

TCD = transcranial Doppler 

VEGF = vascular endothelial growth factor 

WMH = white matter hyperintensities 
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Appendix B: Research Health Questionnaire 
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Appendix C: Mini-mental state examination 
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