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 Silicon CMOS technology has been advancing along an exponential path of 

aggressively shrinking device dimensions, increasing density, increasing speed, and 

decreasing cost. Although providing huge benefits in microprocessor performances, 

advances in technology are accelerating the onset of causing enormous challenges in 

device integration and reliability. With device miniaturization, device design and 

process errors are shrinking, which in turn impact device characteristics and reliability. 

To keep pace with aggressive scaling, CMOS conventional SiO2 gate oxide are facing 

tremendous challenges in power consumption and reliability. Aggressive scaling of 

SiO2 pushed the technology down to the limit of direct tunneling regime, where the gate 

oxide leakage current increases exponentially as the thickness decreases. Thus the high 



 ix

performance is coming from sacrificing both static and dynamic power of the circuits.  

Scaling up to 65nm technology node, use of SiO2 and SiOxNy based dielectric barely 

met the ITRS roadmap.  But keeping the same architecture with the same material we 

can’t meet the 45nm technology gate oxide thickness and leakage current requirements. 

Therefore high-k dielectrics, of which HfO2 and their silicates are most promising 

candidates, have attracted a great deal of attention recently. However, high-k dielectrics 

have also faced lots of integration challenges and issues that are needed to be resolved 

carefully before pushing it in production. For example, bulk charge trapping, interface 

states, degraded mobility, growth of interfacial layer, low crystallization temperature, 

dielectric phase separation, fermi pinning, soft optical phonon scattering, remote 

coulomb scattering, pre-existing traps are among those issues. In this research, process 

development, characterization and reliability study of HfO2 and its silicate have been 

performed. It has been observed that both nitrogen (N) and chlorine (Cl) have 

significant effect in improving the device performances. Incorporation of nitrogen by 

NH3 post-deposition anneal reduced EOT (effective oxide thickness), and improved 

device characteristics, like Id-Vg, Id-Vd characteristics, and mobility. On the other hand, 

surface nitridation using NH3 was found to be an effective way to aggressively scale 

down the EOT. Moreover, Cl treatment using precursor, HfCl4 pulse time variation in 

ALD (atomic layer deposition) HfO2, and using HCl as high-k post deposition rinsing 

element, both mobility and bias instabilities of high-k oxides could be improved.  

 Reliability of Hf-based oxide could be improved by compositionally varying 

HfSixOy structure. Fabricating Hf-silicate with low composition of Si on top of Hf-
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silicate with high composition of Si not only enhanced the device performance, but also 

improved the reliability characteristics. Furthermore, insertion of Si in the HfOxNy 

dielectric was found to be an effective way to improve device performance and 

reliability. At the end, a novel approach in understanding the breakdown mechanism of 

HfO2 has been proposed by stress-anneal experiments. It was found that accumulation 

of holes is primarily responsible for breakdown of HfO2 under substrate injection 

condition. An appropriate model has also been proposed along with supporting 

experimental data.  

 Considering all of the process development, characterization and reliability 

studies made in this research, it can successfully be asserted that high-k gate oxide can 

be proposed as a viable and promising candidate for 45nm technology and beyond. But 

still careful attention need to be taken to resolve remaining intrinsic and extrinsic issues 

in high-k gate oxide.  
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Chapter 1 
 

Introduction 
 

 
Since the early 1970s, we have witnessed a relentless drive toward smaller 

features of CMOS transistors and hence higher functionality on semiconductor chips. 

The remarkable characteristic of transistors that fuels the rapid growth of the 

semiconductor industry is that their speed increases and their cost decreases as their 

size is reduced. To meet the requirement of high performance, high reliability, high 

package density along with low voltage and low power application for future CMOS 

technology nodes, device scaling has acted as the driving force. The ability to improve 

performance consistently while decreasing power consumption has made CMOS 

architecture the dominant technology for integrated circuits. The scaling of the CMOS 

transistor has been the primary factor driving improvements in microprocessor 

performance. The rapid device scaling is generally governed by Moore’s law. It is 

important to understand the key principles underlying Moore's law, since these allow us 

to gain insight into the future. The observation made by Gordon Moore in 1965 was 

that the number of components on the most complex integrated circuit chip would 

double each year for the next 10 years [1]. Several forms of scaling like constant field 

scaling [2], constant voltage scaling, constant electrostatic scaling can be followed. 

Each of them has its own advantages and disadvantages. The basic premise of the 

Roadmap is that continued scaling of microelectronics will further reduce the cost per 
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function (historically, ~25%/year) and promote market growth for integrated circuits 

(averaging ~15%/year).  Thus the Roadmap is put together in the spirit of a challenge-

essentially: "What technical capabilities need to be developed for us to stay on Moore's 

Law?"  During the 1980s and '90s, this challenge has become so formidable that more 

and more of the development effort has been shared in a pre-competitive environment 

including consortia and collaboration with suppliers.  In this process, the roadmap 

serves as a guide to the principal technology needs. To keep track with the roadmap, 

rapid shrinking of feature size of transistor has forced the gate channel length and gate 

dielectric thickness as well to scale aggressively. 

 

1.1. Basic Needs for Scaling 

Followings are basic device scaling metrics as shown in fig. 1.1 

 

 

 

 

 

 

 

Fig. 1.1. Schematic representation leakage and drive current components 

of MOSFET devices at On and Off states.  

 

Mark Rodder, IEDM Short Course 2004 
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a. Active Power = (CTOTAL x VDD
2 x f) + (IGATE x VDD) 

b. Resistance, V/I α VDD x TOX
INV /[(VDD-IDRS-VT) x µeff] 

c. Delay, CV/I = CGATE x VDD/ID 

d. Static Power =  (ISUB + IGATE + IGIDL) x VDD 

With scaling, LGATE is decreasing. But delay can be written as  

CV/I = (Cox x A) x VDD / ID  

         = (Cox x W x LGATE) x VDD / [(W/LGATE) x Cox x µeff x (VGATE-VTH)2] 

         = (LGATE
2 x VDD)/[µeff x (VGATE-VTH)2] 

Thus from the transistor point of view, gate delay reduces in proportion to the square of 

gate length, LGATE. Moreover, to reduce gate delay or to increase speed of the device, 

operating voltage VDD needs to be reduced as well. The other two parameters in the 

equation are effective mobility, µeff and threshold voltage, VTH, which are needed to be 

enhanced and reduced respectively. Scaling has effect on speed mainly by an increase 

in the drive current, IDsat used both for logic and memory applications. Decreasing the 

channel length, gate oxide thickness or the threshold voltage can increase the drive 

current of a MOSFET. For logic applications, this means faster switching speeds while 

for memory applications like DRAM, it means faster write, erase and read cycles 

through the pass transistor. Thus, in short, scaling helps to increase the cheap density, 

reduce cost, enhance performance etc.  
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1.2 Scaling Challenges 

As shown in the equation above, scaling of LGATE needs to consider several 

other parameters for the device to function properly. The scaling challenges are as 

follows 

a. LGATE scaling needs the scaling of oxide thickness, Tox, source/drain 

(S/D) junction depth, Xj, substrate concentration, NSUB, and operating 

voltage, VDD  

b. As NSUB increases, µeff decreases due to increased channel scattering, 

and increase in gate oxide electric field 

c. Short channel effects which reduces control of gate over the channel 

d. Increase in ISUB, IGIDL current, which increases the static power 

e. DIBL (drain induced barrier lowering), punch through, velocity 

saturation effects come into play  

f. Increase in S/D resistance due to decrease in junction depth, Xj. 

g. Since scaling boosts up speed, thus this frequency increase enhances 

active power 

h. Tox reduction increases gate leakage current, IGATE, which increases 

the static power.  

Hence it is seen that performance increase is achieved at the expense of active and 

static power.  
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1.3 Scaling Limitations in Current and Future Technology Nodes 

As shown in fig. 1.2(a), scaling of LGATE and Tox is slowing with technology 

nodes. If the scaling of Tox is slowed, it automatically slows down the scaling of LGATE 

to keep pace with the short channel effects. Due to sluggishness of Tox scaling, 

ID<roadmap as shown in fig. 1.2(b). With this trend, it is difficult to meet the 45nm 

node target ID if Tox isn’t scaled. For the same reason, V/I and CV/I are not at the 

roadmap targets for devices operating at low VDD (fig. 1.2.c).  On the other hand, the 

sub-threshold current, ISUB exceeds roadmap targets as shown in fig. 1.3. Due to the 

increase in ISUB, static power can exceed the active power as shown in fig. 1.4. To 

reduce the increase in active power, VDD needs to be reduced as well. But as seen in fig. 

1.5, VDD is also falling behind the roadmap targets thus limiting the reduction of active 

power and increasing the electric field across the gate oxide, which decreases the 

reliability of gate oxides. Thus in short, it can be written that 

a. Scaling of LGATE, VDD, and Tox is already slowing from ITRS roadmap 

b. It is difficult to meet 45nm node targets for V/I and CV/I without scaling of 

Tox
INV 

c. Leakage currents, IGATE, ISUB are already exceeding the roadmap 

d. Due to increase in electric field across the gate oxide, effective mobility is 

decreasing too (fig. 1.6) 

e. Performance is being achieved at the expense of power 

f. Power is a problem 
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Fig. 1.2. For HP device, current scaling trend of (a) Tox and LGATE, (b) 

NMOS ID, (c) V/I and CV/I with technology nodes (from Mark Rodder, 

IEDM short course 2004) 

(a) 

(b) 

(c) 
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 Fig. 1.3. Scaling of sub-threshold current with technology nodes [63] 

 

 Fig. 1.4. Active and Static power increase with scaling of LGATE [63]. 
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Fig. 1.5. Scaling of VDD with technology nodes. VDD scaling is below the 

targets, thus increasing the electric field in the oxides [63].  

 

 

 

 

 

 

 

 

 

Fig. 1.6. Decreasing effective mobility trend with technology nodes due to 

the increase in effective electric field in the gate oxide. 
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The EOT requirement has set big challenge in reducing the dimension and demands for 

new technology and new materials. So there exists a trade off between device scaling 

and power.  For example, scaling the horizontal device dimension has the adverse effect 

of “Short Channel” effect, which includes reduction of threshold voltage, DIBL, punch 

through and decrease in drive current improvement due to velocity saturation. On the 

other hand, though vertical scaling has the advantage of smaller channel depletion 

layer, controlled short channel effects [3], more control over channel and better 

subthreshold slop, it threatens mobility and reliability of the device. 

So there are some of the fundamental scaling limits that need to be overcome: 

 Scaling limit of SiO2 gate dielectric 

 Quantum Mechanical effect 

 Poly depletion effect 

 Vth non-scalability and fluctuation 

 Mobility degradation 

 Increase in S/D resistance 

 Ioff non-scalability 

The first three limits demand a strong need for replacing conventional gate 

dielectrics with alternative high-k gate dielectric materials and will be discussed in 

detail. The last four limits however, are related to the transistor S/D structure and the 

device’s fundamental limitation. For example, high S/D resistance is due to shallow 
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junction; mobility degradation is due to increased substrate doping concentration; and 

Ioff non-scalability is due to non-scalable diffusion current. 

 
 
1.4 Gate Oxide Scaling 

Gate oxide thickness scaling has been instrumental in controlling short channel 

effects as MOS gate dimensions have been reduced from 10um to 0.1um. Gate oxide 

thickness must be approximately linearly scaled with channel length to maintain the 

same amount of gate control over the channel to ensure good short channel behavior. 

Fig. 1.7 plots the electrical channel length divided by gate oxide thickness for Intel's 

process technologies over the past 20 years. Each data point represents a process 

technology, developed approximately every three years, which was used to fabricate 

Intel's leading-edge microprocessors. 

From fig. 1.8, a simple relationship between oxide thickness and the minimum channel 

length set by short channel effects is observed 

LE = 45 * TOX 

This relationship exists because the channel depletion layer is engineered to become 

smaller as the gate oxide thickness is decreased. In addition, short channel behavior is 

governed by the ratio of channel depletion layer thickness to channel length. The 

channel depletion layer is inversely proportional to the square root of the channel 

doping concentration. During device optimization, channel doping is increased as the  
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Fig. 1.7. Channel length divided by gate oxide thickness versus channel 

length  

oxide is scaled to maintain approximately the same device threshold voltage. Fig. 1.8 

illustrates this point. In Fig. 1.8, the thickness of the channel depletion layer for two 

devices with different oxide thickness is shown. Fig. 1.8(a) shows the depletion layer 

for a device with an oxide thickness of 4.5 nm while Figure 1.8(b) shows a device with 

an oxide thickness of 3.2 nm.  
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Fig. 1.8. Device simulations showing channel depletion layer thickness for 

devices with two oxide thicknesses: (a) 4.5 nm, (b) 3.2 nm  

Both devices have the same off-state leakage. The device with the thinner oxide has a 

smaller channel depletion layer and hence improved short channel characteristics. The 

improved short channel effects can be taken advantage of by targeting a smaller 

channel length. Thus for continued MOS channel length scaling, the gate dielectric 
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thickness must continue to be scaled. Fig. 1.9 shows the Semiconductor Industry 

Association's (SIA) road map for gate dielectric thickness. This roadmap predicts that 

continued gate dielectric scaling will be required with a new gate dielectric material 

needed for the 2005-2012 time frames.  

 

Fig. 1.9. SIA road map predicts that there is need for alternative material 

for gate oxde to meet the Tox
EFF requirements. 
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1.5 Scaling Limitation for SiO2 

SiO2 has been the gate dielectric used by the semiconductor industry for over 30 

years. It has been used as primary gate dielectric material in field effect devices due to 

good interface, low leakage currents and excellent thermal stability at typical silicon 

process temperatures. SiO2, which has been used since 1957, has been scaled down 

successfully with great effort towards current technologies of 0.13-0.18µm, but not 

without slight modifications. Over the last several years, silicon oxynitride, grown 

thermally or using rapid thermal annealing (RTA) and with EOT of around 18~25Ǻ, 

has been used in manufacturing to replace conventional SiO2. However further 

thickness scaling of SiO2 or oxynitrides is necessary which faces serious challenges. 

The thickness limit is the same for both materials and is not limited by 

manufacturing control. Today, it is technically feasible to manufacture 1.5 nm and 

thinner oxides on 200 mm wafers [4]. The thickness limit for SiO2 is set instead by 

gate-to-channel tunneling leakage. Fig. 1.10 schematically shows the tunneling leakage 

process for an NMOS device biased in inversion.  

As the thickness of the dielectric material decreases, direct tunneling of carriers 

through the potential barrier can occur. Because of the differences in height of barriers 

for electrons and holes, and because holes have a much lower tunneling probability in 

oxide than electrons, the tunneling leakage limit will be reached earlier for NMOS than 

PMOS devices. The SiO2 thickness limit will be reached approximately when the gate 
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to channel tunneling current becomes equal to the off-state source to drain sub-

threshold leakage (currently ~1nA/um).  

 
 
 
 
 
 
 
 

Fig. 1.10. Direct tunneling leakage current mechanism for thin SiO2  

 

Fig. 1.11 shows the area component of gate leakage current in A/cm2 versus gate 

voltage. If we assume the gate leakage limit occurs for devices with 0.1um gate length 

designed for 1.0V operation, the SiO2 thickness limit occurs at ~1.6 nm. 

 

 

 

 

 

Fig. 1.11. Gate leakage vs. gate voltage for various oxide thicknesses [5]  
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Beyond this limit, it is unrealistic to use SiO2 since the direct tunneling current is too 

high. The leakage current density will exceed the roadmap if we continue to scale down 

SiOx based gate oxide (fig. 1.12). This is why Tox decrease is slowing down (fig. 1.13). 

 

 

 

 

Fig. 1.12 ITRS 2004 (Updated) for leakage current density and EOT with 

technology nodes. There is a cross over point beyond which Jg will exceed 

the limit if we use oxinitride based gate oxide. 

 

 

 

 

 

Fig. 1.13. Gate Oxide thickness scaling trend with technology nodes 

Ted Dillen, 
IRPS Tutorials, 2005 
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We now have established that the thickness limit for SiO2 is ~1.6 nm. However, due to 

quantum mechanical and poly-Si gate depletion effects, both the gate charge and 

inversion layer charge will be located at a finite distance from the SiO2/Si interfaces 

with the charge location being a strong function of the bias applied to the gate. Fig. 1.14 

shows the location of the inversion layer charge in the silicon substrate for a transistor 

with a typical bias when quantum mechanical effects are taken into account [6]. The 

centroid for the inversion charge is ~1.0 nm from the SiO2/Si interface. 

This increases the effective SiO2 thickness (TOX
EFF) by ~0.3 nm. By taking into 

account the charge distribution on both sides of the gate, the minimum effective oxide 

thickness for a MOS device bias in inversion (at voltages used in our 0.25 or 0.18um 

technologies) is increased by approximately 0.7 nm. Thus the 1.6 nm oxide tunneling 

limit results in an effective oxide thickness of approximately 2.3 nm.  

 

 

 

 

 

Fig. 1.14. Position of inversion channel charge versus depth of channel 
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On the other hand, tunneling current J increases exponentially with decreasing 

physical thickness of SiO2 [8]. This degrades standby power dissipation and DRAM 

retention time, add to SRAM power consumption, offset designs for SRAM beta-ratio, 

reduce noise margin, and accelerate device degradation [9]. The standby power 

consumption of a CPU due to gate leakage is approaching to transistor off-state current 

(Ioff) as the technology node shrinks (fig. 1.15) [10]. It has been shown that for Tox<15Å, 

the leakage current densities of gate oxide are around 1-10A/cm2 [11]. While this may 

still be tolerable for high performance applications such as microprocessors 

(requirement is < 1A/cm2 [7]), they are orders of magnitude higher than acceptable 

leakage levels for low power applications such as wireless systems (which is of the 

order of 1mA/cm2 [7]).   

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.15. Power consumption of CPU as a function of the technology 

nodes. The standby power is fast approaching due to Ioff. 
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Another significant limitation to further scaling of the gate oxide is the thickness 

control and film quality. Considering for example that a 12Å SiO2 would only be 3-4 

monolayers of the oxide, the manufacturing implications of producing these films 

uniformly over 200 or a 300mm wafer is a substantial concern [12].  

In addition to the above-mentioned problems, the issues of boron penetration 

[13] through the ultra-thin oxide and other reliability factors are a significant concern. 

A higher concentration of boron in the channel region causes severe Vt shifts and alters 

device properties in an unacceptable way [14]. As the oxide thickness reduces, lifetime 

prediction also becomes a serious issue. 

Though polysilicon has been used successfully as a gate electrode due to its 

high thermal stability and compatibility, the issue of poly depletion effect has adverse 

effect on its suitability. With aggressive scaling, demand for shallow source and drain 

junction necessitates low thermal budget, which adversely reduces dopant activation 

temperature of polysilicon gate. The insufficient dopant activation at the poly and oxide 

interface results in a depletion layer due to inverted charges of the substrate. The 

depletion effect becomes more severe as the gate oxide becomes thinner by 3-5Ǻ [15-

16]. This depletion results in increased effective oxide thickness, increased Vt, 

degraded drive current, and also sensitivity to the doping concentration of the poly at 

the poly-oxide interface [17]. 
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1.6 Motivation to High-k Gate Dielectrics 

If we take a look at ITRS 2004 (updated) [7] in table 1.1, then we can find that 

the leakage current requirements for 45nm technology node (to be in production in 

2007) and beyond can’t be met with the existing SiOxNy based gate oxides with 

aggressive scaling of EOTs [7].  

 

 

Table 1.1: ITRS 2004 (updated) for EOT, Jg and Mobility requirements. 

As shown in fig. 1.16, with high-k dielectrics, leakage currents and EOT could be met 

using high-k dielectrics with metal gate electrodes.  

 

 

 

 

 

Fig. 1.16. Jg vs. EOT curves showing scalability of high-k dielectrics with 

metal gates in comparison to SiO2 with poly gates.  
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Thus high-k dielectrics are very critically important to meet the technology demands in 

near future. The following figure (fig. 1.17) shows the advantage of using high-k in 

reducing the leakage current of the devices.  

 

 

 

Fig. 1.17. Schematic Diagram showing SiO2 and High-k based gate 

oxides. It could be made physically thicker for the same capacitance.  

As shown, high-k dielectrics can be used to get the same equivalent thickness from a 

physically thicker film. The leakage current depends on the height and width of the 

barrier height. With high-k dielectrics, the width of the barrier height can be increased 

significantly reducing the leakage current with the same EOT. Due to thicker physical 

thickness, the reliability of the films may be improved. 
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1.7. Trade-Off between k-value Increase and Eg Decrease in High-k Dielectrics 

Fig. 1.18 shows schematically why k-values are higher for high-k materials. 

High-k gate oxides are usually composed of high atomic number elements, typically 

transition metals.  Dielectric constants come from polarizability of the material. Two 

components that contribute to polarization are electronic and ionic polarizability. 

Electronic polarizability is the ability to create charge dipole in electron cloud around 

atoms in material by applying external field. Ionic polarizability is the ability to shift 

ionic positions of the lattice.  

 

 

 

 

 

 

 

Fig. 1.18. Schematic representation of reasons behind high-k values in 

high-k materials 

Gennadi Bersuker,  
IRPS Tutorials, 2005 
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On the other hand, with the increase in k-values, the dielectric band gap, Eg (and so 

conduction band offsets) of high-k materials decreases as shown in fig. 1.19 [18].  

 

 

 

 

 

Fig. 1.19. Band gaps vs. dielectric constants of materials. Both band gaps 

and band offsets decreases as k-value increases. 

As stated previously, high-k oxides mean using high atomic number elements (typically 

transition metals). Transition metals contain partially filled atomic d-orbitals which 

form levels with high density of states within the oxide band gap (between bonding and 

anti-bonding atomic energy levels). These d orbitals reduce band gap. So very high-k 

materials don’t bring benefit in terms of leakage current reduction. Moreover, field 

induced barrier lowering also increases as k value increases (fig. 1.20). Fig. 1.21 

summarizes energy gaps and band offsets of different potential high-k materials.  

 

G. D. Wilk et. al.,  
JAP, vol. 89,  
pp. 5243 
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Fig. 1.20. FIBL (field induced barrier lowering) effect in very high-k 

materials due to fringing fields from the gate.  

 

 

 

 

 

 Fig. 1.21. Eg and band offsets of different potential high-k materials 

B. Chen et. al., 
Trans. Elec. Dev., 
vol. 46, pp. 1537 [17].
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1.8 Requirements for High-k Dielectrics 

It has been proved that SiO2 is the best material as an interface between Si-SiO2 

and good compatibility. So to be compatible with Si substrate, high-k dielectric should 

have possessed the following features: 

Electrical Characteristics 

 CMOS compatibility 

 High enough dielectric constant, but not too high [17,18] 

 High enough bang-gap and band offsets with silicon 

 Good scalability  

 Low leakage currents 

 Reduced charge trapping characteristics and SILC (stress induced leakage 

current) as compared to SiO2 

 Very few electrically active trap sites (pre-existing charge traps) in the bulk and 

have good interface with silicon 

 Small fixed charge at the Si/high-k interface as compared to SiO2 

 Negligible frequency dispersion and C-V hysteresis 

 High drive current and mobility characteristics 

 Good subthreshold characteristics 

 No fermi pinning with poly-Si or metal electrode  

 Uniform Vth for nMOS and pMOS (ie. Good Vth controllability) 
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 High reliability at operating conditions 

Physical and Chemical Characteristics 

 Thermodynamic and chemical stability in contact with Si  

 High crystallization temperatures (>900°C) 

 Low oxygen diffusivity in order to avoid formation of low-k interface layers 

 Coefficient of thermal expansion similar to that of Si (for low mechanical stress) 

 Low defect concentrations at the interfaces with Si 

 Resistance to impurity and dopant diffusion at high temperatures 

 Small process complexity 

 Good adhesion property 

 Easy etch capability 

 No phase separation 

 Smooth surface roughness 

 

1.9 Researches on High-k Dielectrics 

Several high-k dielectrics have been proposed as alternative to SiO2 gate oxide 

such as Si3N4 [19], ferro-electric materials such as ferroelectric titanates (BaxSr1-xTiO3 

and SrTiO3) [20-21], metal oxides such as Ta2O5 [22-23], TiO2 [24-24], Al2O3 [26-27], 

ZrO2 [28-29], and HfO2 [30-33]; and silicates such as HfSixOy and ZrSixOy [34-37]. N 

incorporation using NH3, NO, N2O has been studied extensively and they not only 
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raised the dielectric constant slightly (k ~ 5.5), depending on nitrogen content [38,39], 

but also had the added benefits of improved reliability, increased resistance to boron 

penetration, and better interfacial quality [40]. Unfortunately these dielectrics will only 

last a few generations due to limitations dictated by low power applications and 

scalability. Ta2O5, TiO2 have high dielectric constant, but the band alignment is not 

favorable. For Ta2O5 it is 0.28eV and that of TiO2 is 0.4eV. So it is difficult to reduce 

the leakage of these materials. Also interfacial layer thickness is large for those. 

Though Al2O3 has high band gap and band alignment, dielectric constant is low (<8) 

which offsets the advantage of high band-gap and ultimately resulting in higher leakage 

and leakage increases abruptly as EOT scales below 10Ǻ. Y2O3 had drawn considerable 

attentions decades ago as alternative gate dielectrics to replace SiO2. But with the 

gradual improvement of the quality of SiO2 by incorporating N into the film, Y2O3 fell 

apart to compete with nitrided SiO2 film. On the other hand Hubbard and Schlom [41] 

studied the thermal stability of several dielectrics in contact with Si using Gibbs free 

energy for silicidation and for dissociation to metals according to the equation 

Si  +  MOx    M  +  SiO2        (dissociation) 

 

  Si  +  MOx    MSiz  +  SiO2   (silicide formation) 

 

The free energies of these reactions suggest that while Ta2O5 can dissociate into 

metallic Ta, TiO2 forms a silicide. On the other hand, these reactions are not favorable 
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for oxides and silicates of Hf and Zr. Thus the candidate materials for alternative gate 

dielectric application have been narrowed down to HfO2, ZrO2 and their silicates film 

recently. Fig. 1.22 shows a comparative study of researches of promising high-k 

materials to date. HfO2 and their silicates have been found to be the highest researched. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.22. Literatures on high-k researches. HfO2 and their silicates are 

among the highest to date 

 

1.10 Issues with HfO2 and Hf-Silicate Dielectrics   
 
 

Although extensive research has been done on the study many high-k materials, 

focus has been narrowed down to HfO2, ZrO2 and their silicates (fig. 1.22). Both Hf and 

IEDM Short Course 
2004, Stefan De 
Gendt,  IMEC 
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Zr are in column IV in periodic table, so they have almost similar chemical properties. 

Heat of formation is 271Kcal/mol for HfO2 and 262Kcal/mole for ZrO2 [42]. Band gap 

is 5.68eV [43] and 5.16eV [44] respectively, high enough to obtain sufficient barrier 

height. Despite some similarity between the two metal elements, HfO2 is still a step 

ahead of ZrO2 due to its compatibility with conventional polysilicon gate process. HfO2 

is thermodynamically stable with silicon substrate, high dielectric constant (~30), 

resistive to impurity diffusion because of its high density (9.68g/cm3), lattice parameter 

similar to that of Si with a small lattice misfit (<5%) [45], low leakage, good reliability, 

good interface properties (Dit~1011 ev-1cm-2), with good lifetime (> 10 years). With 

some process modification, such as nitrogen incorporation on top [46], bottom [47] and 

throughout the film [48], showed much improved electrical properties in terms of 

scalability, thermal stability, reliability, and boron diffusivity etc.  

However it has several drawbacks too. Low crystallization temperature (~600-

7000C) [49], large increase in EOT at high temperature due to interfacial layer growth 

[33], uncontrolled oxide formation at the Si/high-k interface, large hysteresis, fixed 

charge, charge trapping at the bulk, significant boron penetration, low channel mobility, 

and other reliability issues are the sources of serious concern [33, 50,51].  

On the other hand SiO2 is very well know for its compatibility with Si substrate 

due to excellent Si-SiO2 bonding interface between Si and SiO2. So to keep better 

interface properties and to resolve some of the above mentioned issues associated with 

HfO2, recently research is being done on HfO2 doped with Silicon, or HfSixOy. By 

controlling the silicon composition carefully it has been shown that good electrical and 
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material properties could be obtained which solve some associated drawbacks with 

HfO2. Briefly we can summarize some of the promising features of Hf-silicate ever 

explored 

 Moderately high dielectric constant (13~25) [52, 56]. Its dielectric constant can 

be varied by controlling the composition of Si in the film. 

 High Crystallization temperature, which is the most promising property of this 

film.  With controlled Si composition it can go > 10000C [52, 56, 53] with 

smooth interface with Si substrate. Recently it has also been shown that by 

incorporating nitrogen in the film, this film remained stable up to 1100oC [54, 

55]. 

 Minimum interfacial layer, hysteresis in the range of 10-20mV, breakdown field 

EBD~10MV/cm, mid-gap interface state density, Dit~1011 eV-1cm-2 [52,56]. 

 EOT as low as 13Ǻ for polysilicon gate with nitrogen incorporated [54,55] and 

10.8Ǻ with TaN MOSCAP [57] with low leakage for both cases. 

 Electron and hole mobilities ~80% of the universal curve at Eeff>0.8MV/cm and 

scalability to EOT<10Ǻ (high leakage though) [55]. 

 Film remains amorphous and showed no phase separation even after a 950oC 

dopant activation anneal [53]. 

 
Potentially large advantage for silicates is the similarity of bonding to SiO2. 

Although there is very less information available on HfSixOy (especially when 

compared to ZrSixOy), it is believed that Hf-silicate has a body-centered tetragonal 
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structure and is composed of parallel chains of HfO2 and SiO2 . This would mean that 

Hf silicate would possess properties similar to that of SiO2. It is therefore expected that 

hafnium silicates would result in better electrical and reliability characteristics 

compared to HfO2.   

 

1.11 Motivation to Metal Gates 

For gate electrode material, still polysilicon material is being used in industries 

due to several advantages over metal gates. It is compatible with the conventional self 

aligned process, which reduces complexity in processing and cost. It can withstand high 

processing temperature, work function is quite suitable to achieve low and symmetrical 

threshold voltages for both nMOS and pMOS, and better surface channel operation. 

The self aligned process makes sure that the gate S/D overlap is minimum and 

sufficient to ensure good gate control over the channel.  Polysilicon/SiO2 interface is 

extremely good and stable at high processing temperatures with low interface state 

density. Even with outstanding electrical and physical properties, it suffers from few 

problems, mainly poly depletion effect and boron penetration through the film during 

dopant activation of S/D region, and high resistivity. So to keep track with device 

scaling along with resolving the difficulties associated with poly gate, metal gates are 

being considered in industries now a days. Fig. 1.23 shows the CV behavior for metal 

and polysilicon gates [58]. No degradation in the inversion capacitance was observed in 

the case of metal gates. 
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Fig.1.23. Normalized gate capacitance as a function of gate voltage for 

metal and polysilicon gate structures Tox=3nm. 

 

1.12 Requirements for Metal Gates 

 
The following are the requirements for metal gates: 

 Should be compatible with the conventional CMOS process  

 Should have low resistivity  

 High melting point 

 Chemically and thermally compatible with high-k gate dielectric 

 Easy to deposit and etch 

 Should not penetrate into the film during deposition or subsequent high 

temperature annealing steps 
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 Low thermal coefficient to reduce mechanical stress during high temperature 

processing  

 Low processing cost 

 Band alignment should be appropriate to have optimum work function to 

achieve low and symmetrical threshold voltages for both nMOS and pMOS 

 No fermi pinning with high-k dielectrics 

 

 

1.13 Prevailing Challenges with High-k Dielectrics with Metal Gate Electrodes 

 Although high-k dielectrics are splendid solution to meet the EOT and leakage 

current requirement for the 45nm technology node and beyond, the CMOS 

compatibility with poly-Si gate electrode, bulk charge trappings, reduced mobility, 

threshold voltage non-uniformity and bias instabilities are among the prime concerns. 

Fig. 1.24 shows the possible location of charges which affects metal oxide (HfO2) with 

poly gate electrode devices.  

 

 

 

 

 

 

Fig. 1.24. Possible location of charges in metal oxide/poly-gate devices  
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These charges cause serious problems in integrating high-k dielectric in scaled devices. 

Fermi pinning with poly gate and poly gate depletion effect almost ruled out the 

possibility of integrating poly gate with high-k dielectric for future technology. Fig. 

1.25 shows the effect of Fermi pinning in high-k dielectrics with poly-Si gate electrode 

in comparison to SiO2/poly-gate electrode [59-61].  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.25. Effect of Fermi pinning in HfO2/poly-Si electrode. For both 

nMOS and pMOS fermi pinning is prominent [59].  

 

Fermi pinning is more severe for pMOS than nMOS device with poly-gate electrode, 

since the pinning location is close to the poly gate conduction band as shown in fig. 
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1.26 [62]. Because of this dissymmetry, pMOS threshold voltage is higher than nMOS 

threshold voltage causing non-uniformity in Vth for CMOS application. 

 

 

 

 

 

 

Fig. 1.26. Fermi pinning location of a HfO2/poly-Si based structure [62] 

 

With metal gate electrode, this non-uniformity in pMOS device could be reduced as 

shown in fig. 1.27, though it can’t be eliminated completely [63].  

 

 

 

 

 

   

 

Fig. 1.27. Reduction of Fermi pinning using high-k/metal gate electrode. 
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Moreover, high-k with metal gate improves the degraded mobility obtained from high-k 

with poly gate electrode. As shown in fig. 1.28, mobility values are higher for metal 

gated devices in comparison to poly gated devices with varying inversion equivalent 

oxide thickness and interfacial layer thickness [64].  

 

 

 

 

 

 

Fig. 1.28. Effective mobility value comparison of metal gated high-k 

dielectrics vs. poly gated high-k devices, varying inversion capacitance 

thickness and interfacial layer thickness.   

 

But the most challenging problem with metal gate is its integration complexity in 

comparison to conventional self aligned CMOS process flow. For choosing metal gate, 

we need to choose different metals for both pMOS and nMOS devices with proper 

work function so that Vth for both devices could be uniform (fig. 1.29). So far, 

researches couldn’t achieve perfect pair of metal electrodes for both nMOS and pMOS 

devices. On the other hand, most of the metals have tendency to migrate to mid-gap 

materials after high temperature process flows. Thus getting a good pair of metals with 

high-k dielectrics is a big challenge in current technological advances.  

nMOS 
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Fig. 1.29. Schematic representation of high-k with poly and metal gates 

for both nMOS and pMOS devices.  

 

High-k dielectrics are also vulnerable to few intrinsic issues, such as soft optical 

phonon scattering [65-66], surface phonon scattering [67] which degrades the mobility 

of the channel. These intrinsic problems might not be overcome limiting application of 

high-k dielectrics for future CMOS devices.    

 

1.14 Current Approaches to be in ITRS  

Up to 65nm node, industries are still using conventional gate oxide with 

modification in the structure to improve device performance and reduce short channel 

effects. Intel’s 90nm technology uses nitrided capping layer to improve nMOS 

performance, whereas pMOS performance has been improved by using SiGe S/D 

structure as shown in fig. 1.30 [68]. Nitrided capping layer enhanced tensile stress in 

Metal 1, work 
 function near  
conduction band 

Metal 2, work 
 function near  
valence band 
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the channel and compressive stress in the channel was increased by using S/D SiGe 

regions. SiGe also reduces contact resistance, which increases drive current of nMOS 

devices.  

 

 

 

 

 

 

Fig. 1.30. Intel’s 90nm nMOS and pMOS structure. SiGe S/D enhanced 

pMOS mobility, while nitride capping-layer enhanced nMOS mobility. 

 

On the other hand, IBM is using SOI (silicon on insulator) technology to enhance 

CMOs performance. The SOI structure is shown in the fig. 1.31.  

 

 

 

 

 

 

Fig. 1.31. Schematic representation of bulk, partially depleted SOI (PD 

SOI) and fully depleted SOI (FD SOI). 
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There are two main categories of SOI, partially depleted SOI (PD SOI) and fully 

depleted SOI (FD SOI). In FD SOI, Si layer gets partially depleted, (fig. 1.31), whereas 

PD SOI depletes the Si layer completely. IBM is using FD SOI for production of 65nm 

node to date.   Fig. 1.32 shows the advantage of SOI (PD SOI) in improving sub-

threshold characteristics in comparison to bulk SOI [63]. 

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1.32. Subthreshold characteristics improvement by using SOI 

technology in comparison to bulk CMOS 

 

Researches are going on many other structures, for example, Double Gate Transistor, 

Tri-gate Transistor, Fin-Fet, Carbon Nano Tube Transistor etc to achieve the best 

performance. Every technique has its own advantages and difficulties in integration and 

process. 
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1.15 Outlines 

Chapter 1 discusses a brief view of scaling of CMOS technology, needs for 

scaling, current scaling challenges, promises and issues of high-k dielectrics along with 

metal gate electrode in CMOS scaling for future technology nodes. It has been shown 

that high-k dielectrics is a very promising candidate to meet the 45nm and beyond 

technology nodes. Implementation of metal gate electrodes replacing conventional self 

aligned poly gate in obtaining optimized high performance device performance has also 

been discussed. Advantage and disadvantage of every alternative approach have been 

considered in this chapter. Other than using high-k materials, current approach of using 

SiGe source/drain and SOI (silicon on insulator) to improve CMOS performance has 

been touched up in brief. 

Chapter 2 covers the effects of nitrogen in high-k dielectrics. This chapter is 

divided into two sections, first section of which discusses process optimization, 

development and characterization of NH3 post-deposition annealed (PDA) Hf-silicate 

using TaN gate electrode. Hf-silicate film was deposited using DC magnetron 

sputtering using Hf and Si targets. NH3 PDA was used to incorporate nitrogen into the 

dielectrics. It was shown in this section that NH3 PDA HfSiON was superior to control 

HfSiO dielectric in terms of EOT scalability, leakage current reduction, C-V hysteresis, 

transistor Id-Vg and Id-Vd characteristics, and mobility. The lowest EOT obtained with 

this experiment was 9.2Ǻ. Film composition was determined by XPS analysis. 

Ellipsometer was used to measure the film physical thickness. By surface nitridation 

using NH3 pre-deposition anneal (pre-DA) prior to ALD (atomic layer deposition) HfO2 
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deposition, the second section of this chapter describes the effect of nitrogen in 

reducing EOT down to 7.4Ǻ with reasonable mobility. Furthermore, by increasing NH3 

pre-DA temperature up to 900oC, bulk trapping in the dielectric of the device could be 

reduced due to the presence of nitrogen in the dielectric, though nitrogen pile-up at the 

interface degraded the mobility slightly.  

Chapter 3 focuses on effects of chlorine (Cl) in the high-k dielectrics. This 

chapter has also been divided into two sections.  The first section describes the 

incorporation of Cl atoms in ALD HfO2 by varying ALD precursor, HfCl4 pulse time 

variation. SIMS (secondary ion mass spectroscopy) analysis confirmed the presence 

and increase in Cl composition in HfO2 by increasing precursor pulse time. It is shown 

that Cl incorporation into the high-k gate oxides helps to reduce the bulk trapping 

characteristics of the device. This observation was further supported by HCl post-

rinsing treatment of MOCVD (metal organic chemical vapor deposition) HfSiO 

described in the second section of this chapter. In this section, HCl post-rinsing 

improved mobility and bias instabilities of the high-k gate oxides without affecting the 

bottom Si/high-k interface. The reduction of bulk trapping characteristics has been 

attributed to the observed mobility and bias instabilities improvements.  

The transient relaxation effect, which has been addressed as an undesirable issue 

in high-k dielectrics, has been addressed in chapter 4. It is shown that devices relax 

after being stressed under substrate injection condition. This relaxation follows a unique 

behavior irrespective of device dimensions, device operating parameters and stress 

conditions up to certain limits. This study reveals the fact that bulk trapping in the oxide 
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is primarily responsible for device bias instabilities. The bulk trapping could be 

completely relaxable by applying pulses of opposite polarity to stress polarity. Bulk 

trapping has been found to be responsible for device degradation under substrate 

injection condition, whereas no significant interface degradation could be observed.  

Chapter 5 discusses the reliability characteristics of high-k gate oxides. This 

chapter again is divided into three parts. The first part discusses the effect of 

compositionally varying HfSiO in enhancing the performance and reliability of the 

devices. The concept of bi-layer structure of HfSiO, of which top layer is composed of 

high composition Hf atoms on top of bottom layer composed of high composition Si 

atoms, has been proposed in enhancing device performance, reducing defect density 

and enhancing reliability of high-k gate oxides. The second part illustrates the effect of 

nitrogen profiling by inserting Si layer into HfON gate oxide in optimizing TDDB 

(time dependent dielectric breakdown) behavior of gate oxides. Reduction of bulk 

trapping density by inserting Si layer further away from the interface (i.e. trapping 

nitrogen atoms further away from the bottom interface) has been discussed. The third 

part of this chapter discusses a novel approach in understanding the breakdown 

mechanism of Hf-based gate oxides under substrate injection by using stress-anneal 

experiments to separate the role of injected holes and electrons in causing breakdown of 

the devices. The supporting experimental observations have been given to support the 

breakdown model proposed.  
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Chapter 2 
 

Effects of Nitrogen in High-k Gate Oxides 
 
 

In conventional SiO2 gate oxide, nitrogen (N) plays a significant role in 

enhancing the dielectric constant, thus providing a window to increase the physical 

thickness of the gate oxide keeping the EOT (effective oxide thickness) the same. Thus 

with technology nodes, semiconductor industries could be able to follow the ITRS even 

below 100nm gate length. The role of nitrogen in high-k gate oxides has extensively 

been investigated in recent years. Several mechanisms of nitrogen incorporation have 

been proposed, for example, nitridation at the top interface between high-k and gate 

electrode [1], at the Si/high-k bottom interface [2] and nitridation throughout the whole 

gate oxide [11]. Each of the processes has their own advantages and disadvantages. In 

this section of work, use of NH3 as nitrogen source will be discussed in details and 

systematically.   

 

2.1 Process Development and Characterization of NH3 PDA PVD-

HfSiON 

 

2.1.1 Motivation to HfSiON 

HfSixOy film as an alternative gate dielectric has gained considerable attention 

due to its promising material and electrical properties over HfO2 film, specially in terms 
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of crystallization temperature, interface properties, thermal stability etc [3-9]. As 

nitrogen is playing a great role in HfO2, ZrO2 for scalability and thermal stability, 

HfSixOy film with reactive sputtered nitrogen incorporation has also been investigated 

so far. Scalability enhancement along with better crystallization has been obtained [10-

11]. Apart from the above mentioned advantages of nitrogen incorporation, literature 

supports to minimize oxidation of the underlying Si and reduction of dopant diffusion 

[12]. Moreover, channel mobility higher than that reported for HfO2 could be obtained 

for HfSiON film with poly gate. 

This work focuses on N incorporation into the HfSixOy film using NH3 as post 

deposition annealing ambient. Previous works on NH3 PDA has been investigated on 

SiO2 film mainly after reoxidation [13]. In most of the cases, NH3 contributed to 

reduction of EOT and leakage and superior thermal stability at high temperatures. For 

high-k dielectric like ZrO2, NH3 has the effect of higher accumulation capacitance, 

lower leakage and better thermal stability and crystallization as compared to control 

ZrO2 film [14], which is true for HfSiON film as well. Although EOT of less than 10Ǻ 

could be obtained for HfSiON film [10], this incurs high leakage>10A/cm2 at Vg=Vth+1. 

So to reduce EOT and at the same time to maintain lower leakage current along with 

other superior electrical and physical features, this work has investigated NH3 annealing 

of as deposited Hf-Silicate film without any pre-reoxidation. The process condition and 

process parameters have been kept the same as done by previous works [15] except 

optimizing for NH3 post deposition annealing for scalability and compatibility. 
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2.1.2 Process flow for MOSCAP and MOSFET Fabrication 
 

MOSCAP and MOSFET process flow can be described as shown  
 
  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

  

 

 

Field oxidation and active patterning

Co-sputtering of Hf and Si 

RTA (500-700ºC, NH3, 5-60 sec)

TaN deposition by reactive sputtering

Gate patterning and RIE etching of TaN 

S/D Implantation 
(P, 50keV, 5 x 1015/cm3 for NMOS) 

LTO deposition and Contact patterning

Dopant activation (950ºC, 30-60 sec)

Contact patterning and Al etch 

Backside contact and Forming-gas 
anneal (450ºC, 20min)

MOSCAP  
Characterization 

MOSFET  
Characterization 

Cleaning 
Piranha (H2SO4:H2O2=2:1) and HF 

HF dip and Contact Al deposition 

Fig. 2.1. Process flow for MOSCAP and self aligned MOSFET fabrication. 
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  After rinsing several times, bare wafers were cleaned in piranha and HF solution 

consecutively. Piranha solution was made by mixing 800ml of H2O2 with 1600ml of 

H2SO4 solution. HF solution was prepared by 60ml of HF acid with 2400ml of H2O. 

Then wafers were loaded in oxidation chamber for wet oxidation in 950oC temperature 

for two hours to make 3500-4000Ǻ thick field oxide layer. This process was followed 

by active patterning and BOE (Buffer oxide etching) of field oxide.  

Before deposition of hafnium silicate layer, every time wafers were dipped in 

dilute HF solution. Hafnium silicate was deposited in a PVD system using co-sputtering 

of hafnium and silicon target at the same time (fig. 2.2). Deposition condition was as 

follows: 

 

Hafnium Target Power 100-200 Watts 
Silicon Target Power 100-200 Watts 
Ar pressure 40 mTorr 
Ar flow 20 sccm 
Base Pressure <4x10-7 Torr 
Film Thickness 38-42Ǻ 
Target position Hf fixed, Si varied 
Temperature Room Temperature 
 

Ar was used as ambient. Film thickness was estimated by ellipsometer with refractive 

index of 1.55.  A schematic view of the co-sputtering hafnium silicate system can be 

shown in fig 2.2. The composition of the film was varied by changing the target power 

and also by changing the silicon target position maintaining the Hf position fixed. 
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Fig. 2.2.  Schematic of the PVD process for Hf-silicate deposition and 

NH3 PDA HfSiON 

 

The wafer was then transported to a rapid thermal annealing (RTA) chamber for NH3 

annealing. Different temperature and annealing time had been investigated for process 

optimization. The oxidation of the film was attributed to the residual oxygen in the 

annealing chamber, or atmospheric exposure into air, or oxygen content inherent to 

NH3 gas due to its impurity. The flow rate for NH3 was varied from 1 slm to 8 slm. 

Sufficient purging time before actual gas flow was kept 5 min to remove any oxygen 

content in the chamber. After that TaN gate was deposited onto the using same PVD 

system with the following condition.  

Deposition Power 1100 Watts 
Ar pressure 10 mTorr 
Ar flow 20 sccm 
N2 flow 7 sccm 
Base Pressure <4x10-7 Torr 
Film Thickness ~2000Ǻ ( in 5 min) 
Temperature Room Temperature 

HfSiO

NH3 Anneal

HfSiON

Hf Si

Si Substrate
HfSiOHfSiO

NH3 Anneal

HfSiONHfSiON

Hf SiHf SiHf Si

Si Substrate
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The sheet resistance obtained with such a condition was found to be 10-15 ohm/sq. 

After gate patterning, the TaN was etched in RIE (Reactive Ion Etching) followed by 

photo resist removal by dipping in Acetone for 10 minutes. For only capacitor 

characteristics, the backside of the wafers was coated with Al using Al sputtering 

system. For Transistor fabrication, source/drain ion implantation was carried out 

followed by low temperature oxidation (LTO) step. After patterning for contact 

formation, S/D activation was done in 950oC for 30s in RTA N2 ambient. This was 

followed by HF dip and sputtered Al deposition for contact metal. After contact 

patterning sintering was done in forming gas in 450oC for 20 minutes. Final back metal 

was carried out by Al sputtering technique.  

Electrical characteristics were performed using HP4194 impedance analyzer for 

C-V and HP4156A semiconductor parameter analyzer for J-V and others. EOT was 

estimated from the accumulation capacitance of C-V measured at 1MHz, XPS (x-ray 

photoelectron spectroscopy) analysis was done to determine the composition and 

chemical bonding of the films. XRD was used to get the crystallization temperature.  

 

2.1.3 Physical Characterization 

XPS analysis has been performed on the samples to confirm the presence of 

nitrogen in the film. For analysis, samples were annealed in both N2 (40s) and NH3 

ambient at 600oC. NH3 annealing has been done at 20s, and 40s. As shown in Hf4f 

spectra in fig. 2.3(a), Hf4f peak was shifted to lower binding energy with respect to 

Hf4f peak of the control sample. The shift is even higher to the lower binding energy, 
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as NH3 annealing time is longer. This clearly indicates the presence of Hf-N bonds in 

the film.  

 

 

 

 

 

 

 

 

Fig 2.3. (a) Hf4f (b) N1s Spectra for Hf-Silicate and NH3 PDA HfSiON  

 

Initially the first peak was at 18 eV for control sample and then it shifted to 17.6 

eV and 17.3 eV for 20s, and 40s NH3 annealing respectively. The most interesting thing 

is that the difference between two Hf4f peaks is almost the same (~1.6eV). This means 

that  the longer the annealing duration, the more is N incorporation in the film in the 

form of Hf-N bonds without changing the film morphology. For the case of HfOxNy, 

nitrogen incorporation results in lower shift of peaks in Hf4f spectra from HfO2 to 

HfOxNy film [11-12]. So the lower shift in binding energy clearly indicates the presence 

of Hf-N. To further ensure the presence of nitrogen in the film, N1s spectra has been 

shown in fig. 2.3(b). No N1s peak for control sample has been observed, whereas clear 

peaks have been observed for both of the NH3 annealing cases. Note that peak intensity 
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is a bit higher for 40s NH3 annealing sample than for 20s annealing. This indicates 

higher nitrogen concentration for longer annealing duration. 

 

2.1.4 Process Development and Optimization of Process Parameters 

Process parameters such as EOT, J (leakage current density), C-V hysteresis etc 

are optimized using C-V and J-V curves for different process conditions. There are 

many processing parameters that need to be optimized, such as deposition time, 

pressure, temperatures of as deposited films, annealing temperatures, ambient and time, 

gate material etc. For control Hf-silicate films, optimization has already been done in 

[15]. In this work, process optimization using NH3 annealing of as-deposited Hf-silicate 

in rapid thermal annealing (RTA) chamber has been discussed. The annealing condition 

for control sample is 600°C in N2 ambient (RTA), 40 seconds.  

 

2.1.5 Effect of NH3 Annealing Temperature 
 

Temperature plays a major role in proper film oxidization. Very low 

temperature sometimes results in incomplete oxidation, whereas very high temperature 

facilitates oxygen molecules to diffuse into the film resulting in interfacial layer. 

Interfacial layer increases EOT. Fig. 2.4 shows the effect of RTA annealing 

temperature in NH3 ambient. 
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Fig. 2.4. EOT and J vs. different annealing temperature for NH3 PDA 

 

As shown, higher the temperature, higher the EOT due to thicker interfacial layer. Also 

at 550°C, EOT is large. The main purpose of NH3 PDA is to incorporate nitrogen in the 

film that has the effect in increasing overall dielectric constant. But to break the binding 

energy of N-H bonds in NH3, it requires enough temperature. So if we anneal the film 

at a lower temperature, it wouldn’t break the bonds and this will result in small amount 

of nitrogen in the film. Thus 550°C is not sufficient to increase the dielectric constant, 

and so EOT was found higher than that at 600°C. So the optimum temperature for NH3 

annealing was set to be 600°C. 

 

2.1.6 Effect of NH3 Annealing Time 

Figure 2.5 shows EOT-J values with the variation of NH3 annealing time at 

600°C in RTA.  
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Fig. 2.5. EOT-J vs. 600°C NH3 PDA time. EOT increases as annealing 

time increased due to growth of interfacial layer. 

 

As shown, the lowest EOT obtained was 9.2Ǻ for 5s annealing with a leakage current 

density, J~97 mA/cm2. With the increase of annealing time, EOT increased while 

leakage current decreases. This observation is a bit contrary to what was found for NH3 

annealing in conventional gate dielectric [13]. Although longer annealing time 

incorporates more nitrogen in the film, NH3 gas contained some impurity oxygen, 

which in turn causes oxygen penetration into the dielectric with annealing time. This 

may cause interfacial layer to be thicker. But the reduction of leakage compensates the 

increase in EOT as shown in fig. 2.5. On the other hand, residual oxygen in the 

annealing chamber is also responsible for this interfacial layer growth. Even then, EOT 

of 9.2Ǻ with such a leakage value is still promising. To get a better leakage behavior 
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and at the same time low EOT value, pure NH3 gas needs to be used.  Figure 2.6 shows 

the typical well behaved C-V profile for 5s annealing time.  

 

 

 
 
 
 
 
 
 
 
 

Fig. 2.6. Well behaved C-V profile for 600°C, 5s NH3 PDA. 
 

Finally EOT vs. J values for NH3 annealed HfSiON has been plotted in fig. 2.7 

below. The most promising part here is the possibility of scaling with NH3 PDA.  

 

 

 

 

 

 

 

 

 

Fig. 2.7. J vs. EOT for SiO2, Hf-silicate and NH3 annealed HfSiON 
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2.1.7 Hf-silicate and NH3 annealed HfSiON MOSCAP and MOSFET Comparison 

Fig 2.8(a) and fig. 2.8(b) shows the C-V and J-V curves for control and NH3 

annealed (20s) sample respectively.  

 

 

 

 

 

 

 

Fig. 2.8. (a) C-V and (b) J-V for control and NH3 annealed devices 

 

As shown, irrespective of annealing time and ambient, EOT for both devices is 

the same (fig. 2.8.a), but leakage is lower for NH3 PDA sample (fig. 2.8.b). The 

decrease of leakage density is still not very clear. It has been reported that tunneling 

probability is qualitatively related to the area of the tunneling barrier associated with 

the oxide physical thickness and the oxide barrier height [16]. Obvious decrease in 

leakage current for NH3 annealed hafnium silicate film indicates that this nitridation 

results in higher dielectric constant and allows larger physical thickness to suppress the 

increase in tunneling current while maintaining the same gate capacitance. 
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2.1.8 C-V Hysteresis  

C-V hysteresis is a common phenomenon in high-k dielectric. It is believed that 

this is due to interfacial and bulk charge trapping as the gate voltage is swift [17]. Due 

to this, VFB is different for positive and negative sweep of gate voltage. The difference 

in VFB is due to the charge that has not been de-trapped after all the sweep cycles. In 

this experiment, VFB difference after 4th sweep has been taken. Figure 2.9 shows the C-

V hysteresis data for control and NH3 annealed sample just after capacitor process. As 

shown in the figure, hysteresis values are 114 mV and 150 mV for control and NH3 

annealed samples respectively. We know by high temperature treatment, hysteresis can 

be reduced as it anneals out the defects and H-species and makes the film denser. For 

these films, it has been observed that hysteresis could be reduced significantly just after 

LTO fabrication steps 

 

 

 

 

 

 

 

 

Fig. 2.9 Hysteresis for different fabrication steps of control and NH3 

annealed sample 
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2.1.9 Thermal Stability 

One positive contribution of nitridation is the enhancement of thermal stability 

of the film. To ensure thermal stability of our HfSiON film, EOT and J values have 

been measured at different fabrication steps of conventional MOSFET process flow, i.e. 

after capacitor, LTO and transistor fabrication steps. LTO was deposited at ~520oC for 

45 minutes. As shown in fig. 2.10, both ∆EOT and J are lower for each of the high 

temperature process steps. This indicates higher immunity to high temperature thermal 

budgets in MOSFET process flow.  

 

 

 

 

 

 

 

 

Fig. 2.10. Thermal stability of control and HfSiON devices for different 

fabrication steps. 
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conduction through dielectric. We can define this enhancement of conduction as stress 

induced leakage current (SILC) [18-20]. In this work, SILC is defined as the difference 

in leakage current density (∆J) after stress from that of the fresh value, Jo divided by Jo. 

Thus SILC = ∆J/Jo. Fig. 2.11 summarized the SILC at different stress times at a 

constant –2V stressing for control and NH3 annealed samples respectively. For each of 

the stress condition SILC is lower for NH3 case as is expected. 

 

 

 

 

 

 

 

 

Fig. 2.11. SILC for Control and NH3 annealed devices at Vg= –1V 

 

2.1.11 MOSFET Characteristics 

Fig 2.12 shows the C-V characteristic for control and NH3 annealed MOSFET 
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Fig. 2.12. C-V for control and NH3 annealed MOSFET devices. 
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The subthreshold swings obtained were 95 mV/dec and 72.5 mV/dec for control and 

NH3 annealed samples, respectively.  

 

2.1.12. Mobility  

Channel electron carrier mobility was measured by conventional split C-V 

techniques. This technique uses inversion C-V to calculate the inversion charge and 

uses Id-Vg curves to calculate carrier mobility in the channel.  Mobility values for 

control and NH3 gives a fair comparison of the improvement in interface quality 

between the two samples. Mobility was even better in the case of HfSiON as shown in 

fig. 2.15. This observation also ensures the fact that nitrogen incorporation technique 

using NH3 anneal at 600oC doesn’t pile up nitrogen atoms at the bottom dielectric/Si 

interface [21], which results in “radically induced reoxidation” effect in the film [13]. 

The outcome is the undesirable increase of EOT, transconductance degradation [13, 22], 

poor reliability and drive current reduction. Instead, this technique put nitrogen at the 

top portion of the dielectric increasing dielectric constant of the material.  
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Fig. 2.15. Effective Mobility of control and NH3 annealed MOSFETs 
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effect of temperature pre-treatment in bulk trapping and interface degradation has also 

been discussed.    

 

2.2.1 Process Flow 

The MOSFET process flow started with cleaning the active patterned (shallow 

trench isolation) wafer with dilute HF solution. The wafers then went through pre-DA 

(pre-deposition anneal) in NH3 for 15 sec at temperatures ranging from 500oC to 900oC. 

Following this, ALD (atomic layer deposition) HfO2 was deposited using precursor 

TEMA Hf with O3 as oxidation ambient (300oC, 1 Torr) at different thicknesses ranging 

from 15Å to 30Å. N2 PDA at 700oC, 60 sec was performed on those samples for 

complete oxidation. Then 10nm ALD TiN layer and 180nm amorphous silicon layer 

was deposited as a stack gate electrode. After gate patterning, high-k layer was 

removed with a wet etch process leaving a minimal damage in the extension region. A 

thin nitride layer (~5nm) was deposited followed by LDD (lightly doped drain) and 

halo dopant implantation to prevent the process induced damage through plasma 

process or oxygen diffusion [25]. After the thin nitride deposition, 100nm oxide spacer 

was formed and phosphorous was implanted to dope the source/drain regions (energy = 

15KeV, dose = 4e15) followed by activation at 1000oC, 10 sec rapid thermal anneal 

(RTA) in N2 ambient. After the Ti-silicide formation, 700nm pre-metal dielectric 

(PMD) layer was formed. Then W plug with Ti/TiN liner was used to contact the 

source/drain and gate electrode regions and Al metal pad was patterned. Finally 

forming gas anneal was performed at 480oC for 30 minutes.  
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Electrical characterizations were performed using HP 4284A impedance/gain 

phase analyzer and HP4156A semiconductor parameter analyzer. EOT was extracted 

from accumulation capacitance measured at 100 KHz, after accounting for quantum 

mechanical effects. The single pulse charge trapping measurements were done by 

Keithley Model 4200-SCS together with a switch matrix, and a pulse generator. 

Nitrogen concentration in the film was determined by SIMS (secondary ion mass 

spectroscopy) analysis 

 
 
2.2.2 Chemical Analysis 
 

By SIMS it was observed that increase in NH3 Pre-DA temperature increased 

nitrogen concentration as shown in fig. 2.16, while oxygen concentration remains 

almost constant in the film. Fig. 2.17 shows the TEM (transmission electron 

microscopy) image of 500oC and 700oC NH3 Pre-DA films respectively. 
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temperature prior to ALD HfO2 deposition. 
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Interfacial layer was seen slightly thicker (10Å) for 700oC Pre-DA sample as compared 

to 500oC one (9Å). On the other hand, total physical thickness of the film is almost the 

same (~28-29 Å).  

 

 

 

 

 

 

 

 

 

Fig. 2.17. TEM image of (a) 500oC and (b) 700oC NH3 pre-treated samples. 
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Fig. 2.18. (a) J vs. EOT and (b) mobility at 1 MV/cm vs. EOT plot for 

different NH3 pre-DA temperatures with varying physical thicknesses 

(15Å to 30Å). 
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accompanied by an increase in J. The EOT could be reduced down to ~7.4Å, one of the 

smallest values reported for ALD HfO2. The most noted observation is the mobility 

trend with high temperature treatment.  High temperature treatment reduced EOT for 

the same physical thickness, though it didn’t have significant effect on mobility (at 1 

MV/cm) reduction as shown in fig. 2.18(b). Mobility was the highest for 500oC NH3 

Pre-DA (75% of control SiO2 shown), while it reduced for temperatures as high as 

900oC (50% of control SiO2). On the other hand, EOT could be reduced down to ~7.4Å 

for 900oC Pre-DA. So far this is one of the highest reported mobility values to date 

achieved for such a thin HfO2 device.  For comparison, mobility values for ISSG (in-

situ steam gate oxide) and universal mobility at the same field are also given in the fig. 

2.18(b).  

To understand the role of bulk oxide in mobility degradation, bulk trapping 

characteristics were studied by short pulse Id-Vg (drain current-gate voltage) 

measurements as shown in fig. 2.19 [26]. Inset of fig. 2.19(a) shows the shape of the 

pulse (rise time=fall time=5µs, width=125µs). Id values were taken during the rise time 

by a digital oscilloscope. Id degradation (∆Id) occurs in the device during the pulse 

width time, which is governed by charge trapping as shown in the figure. Due to charge 

trapping, Id can’t follow the same line as gate voltage sweeps back during pulse fall 

time. Hysteresis ∆V can be treated as an indirect measure of charge trapping since it 

includes the contribution from detrapping during the back and forth sweep. For fair 

comparison, all the devices were swept up to the same (Vg-Vt). The results show that 

both ∆Id and ∆V were almost of the same magnitude for pre-DA treatment up to 700oC, 
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while these values are significantly lower for 900oC pre-DA treated devices as shown in 

fig. 2.19(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19. Bulk trapping characterization using single short pulse Id-Vg 

measurement. (a) Id-Vg up and down sweep during the short rise and fall 

time respectively (b) Comparison of Id degradation (∆Id) and Id-Vg up-

down width (hysteresis ∆V) for NH3 pre-DA at different temperatures. 
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Therefore, high temperature NH3 pre-DA indeed helped to enhance bulk 

trapping immunity, though the reduction in mobility resulted from interface degradation 

as shown in fig. 2.20, in which the peak interface state density value, (Nit)max was 

plotted as a function of pre-DA temperatures. Increase in interface state density with 

NH3 pre-DA temperature (fig. 2.20) is due to nitrogen pile-up at the interface, resulting 

in mobility degradation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.20. Plot of maximum interface states with NH3 pre-DA 

temperatures. As expected, increase in interface states is prominent after 

high temperature treatment 
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2.3 Summary 
 

 In summary, it is confirmed that nitrogen incorporation into the high-k 

dielectric by NH3  post-deposition anneal or NH3 pre-deposition anneal both have 

positive attributes in decreasing EOT of the oxide. By subjecting as deposited Hf-

silicate films to a NH3 PDA, excellent electrical characteristics such as EOT scalability, 

leakage current density reduction, superior thermal stability, and negligible hysteresis 

have been obtained. This annealing remedies many of the bottlenecks associated with 

hafnium silicate dielectric. Unlike NH3 surface nitridation, the proposed process does 

not seem to degrade the interface properties. Moreover, the temperature and anneal 

duration of NH3 PDA technique has significant effect in film quality, so proper 

optimization of the film based on the desired electrical performance is the key issue.  

Therefore, HfSiON by NH3 post-deposition anneal might be a promising alternative for 

future ultra-scaled MOS gate dielectric. 

On the other hand, NH3 pre-DA technique reduces EOT, though it degrades the 

mobility. Very thin EOT (~7.4Å) with reasonable mobility using high temperature NH3 

pre-deposition anneal (pre-DA) prior to ALD HfO2 deposition could be demonstrated in 

this work. The pre-treatment improved bulk trapping characteristics, though it degraded 

the interface slightly. The mobility value obtained for such thin EOT dielectric is one of 

the highest reported to date. Therefore, high temperature (~900oC) NH3 pre-treated 

ALD HfO2 could be regarded as potential candidate for ultra-thin alternate high-k gate 

oxide as well.  
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Although nitrogen treatment is an effective way of reducing EOT of the devices, 

the resulting decrease in mobility values due to nitrogen pile up at the interface is a 

critical concern to take care of. Considering the two approaches described in this work, 

NH3 PDA HfSiON might be a better technique to reduce EOT keeping all other features 

in good standing. The only disadvantage is that the EOT scalability can’t be as 

aggressive as can be done by surface nitridation technique. 
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Chapter 3 
 

Effects of Chlorine (Cl) in High-k Gate Oxides 
 

 

Like nitrogen atoms, chorine atoms (Cl) in high-k gate oxides also play 

significant roles in electrical performance of the devices. So far, no systematic study of 

the effect of chlorine in high-k gate oxides has been done. For high-k deposition using 

ALD involves HfCl4 as precursor, where Cl atoms present. This Cl can pile up at the 

interface degrading device characteristics [1]. On the other hand, this can affect the 

charge trapping characteristics of the gate oxide as well [2]. Moreover, optimization of 

Cl atoms in obtaining best performance of the device is critically important. This 

section of the work is devoted to detailed study of Cl atoms in electrical performance in 

both ALD and MOCVD high-k gate oxides. 

 

3.1. Effect of Precursor Pulse Time on Charge Trapping and Mobility 

of ALD HfO2 

 

Among high-k dielectrics processing schemes, ALD HfO2 showed promising 

attributes in terms of device electrical and chemical characteristics. The role of atomic 

layer deposition (ALD) deposition temperature on device characteristics and the role of 

processing in charge trapping-detrapping have been addressed recently [3-4].  However, 

the study of precursor pulse time in device performance has not been addressed yet. 
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This work demonstrates the precursor HfCl4 pulse time’s effect on device performance 

as well as bulk and interface characteristics.  

 

3.1.1. Process Flow and Experiments 

The MOSFET process flow started with cleaning the active patterned (shallow 

trench isolation) wafer with dilute HF solution. The wafers then went through pre-DA 

(pre-deposition anneal) in NH3 for 15 sec at 700oC temperature. Following this, 40 

cycles of ALD (atomic layer deposition) HfO2 was deposited using precursor HfCl4 

with O3 as oxidation ambient (300oC, 1 Torr). Precursor pulse time was varied at 150ms, 

450ms and 1500ms respectively. 150ms pulse time is the standard (control) for control 

devices. N2 post-deposition anneal (PDA) at 600oC, 60 sec was performed on those 

samples for complete oxidation. Then 10nm ALD TiN layer and 180nm amorphous 

silicon layer was deposited as a stack gate electrode. After gate patterning, high-k layer 

was removed with a wet etch process leaving a minimal damage in the extension region. 

A thin nitride layer (~5nm) was deposited followed by LDD (lightly doped drain) and 

halo dopant implantation to prevent the process induced damage through plasma 

process or oxygen diffusion [5] After the thin nitride deposition, 100nm oxide spacer 

was formed and phosphorous was implanted to dope the source/drain regions (energy = 

15KeV, dose = 4e15) followed by activation at 1000oC, 10 sec rapid thermal anneal 

(RTA) in N2 ambient. After the Ti-silicide formation, 700nm pre-metal dielectric 

(PMD) layer was formed. Then W plug with Ti/TiN liner was used to contact the 
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source/drain and gate electrode regions and Al metal pad was patterned. Finally 

forming gas anneal was performed at 480oC for 30 minutes.  

Electrical characterizations were performed using HP 4284A impedance/gain 

phase analyzer and HP4156A semiconductor parameter analyzer. EOT was extracted 

from accumulation capacitance measured at 100 KHz, after accounting for quantum 

mechanical effects. The single pulse charge trapping measurements were done by 

Keithley Model 4200-SCS together with a switch matrix and a pulse generator. The 

physical thickness of the film was measured by optical ellipsometer. The composition 

of different chemical elements in the films was determined by SIMS (secondary ion 

mass spectroscopy) analysis. 

 

3.1.2 Electrical Characterization 

Fig. 3.1(a) and Fig. 3.1(b) show the effect of precursor pulse time on EOT and 

leakage current characteristics of the devices. Increasing the precursor, HfCl4 pulse 

time did not change EOT or leakage current (Ig) as shown, indicating that the total 

thickness of the samples was almost the same irrespective of pulse time variation. Only 

the 1500ms pulse showed slight increase in the leakage current value (fig. 3.1.b). The 

EOT on these samples were found to be around 7Å.   
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Fig. 3.1. (a) C-V characteristics with ALD precursor, HfCl4 pulse time 

variation (b) Leakage current (Ig) vs. gate lengths for devices with 

different ALD precursor, HfCl4 pulse times. 

 

On the other hand, Fig. 3.2 shows the effect of precursor pulse time on mobility of the 

devices. Increasing the pulse time to 450ms enhanced the mobility slightly whereas 

1500ms pulse negated the benefit. 

 

 

 

 

 

 

 

Fig. 3.2. Mobility plots of ALD HfO2 with different precursor pulse times. 
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The bulk trapping characteristics of the devices with various pulse times were 

carried out by single-pulse Id-Vg measurement and stressing the devices at different 

constant voltages. A significant reduction in bulk trapping was achieved with the 

450ms pulse as shown in fig.3.3 (a). 1500ms pulse device showed less reduction as 

compared to that of 450ms pulse. Single pulse Id-Vg measurement is shown if fig. 

3.3(b). Inset of fig. 3.3(b) shows the shape of the pulse (rise time=fall time=5µs, 

width=100µs). Id values were taken during the rise time by a digital oscilloscope. Id 

degradation (∆Id) occurs in the device during the pulse width time, which is governed 

by charge trapping as shown in the figure. Due to charge trapping, Id can’t follow the 

same line as gate voltage sweeps back during pulse fall time. Hysteresis ∆V can be 

treated as an indirect measure of charge trapping since it includes the contribution from 

detrapping during the back and forth sweep. For fair comparison, all the devices were 

swept up to the same Vg-Vth.  Thus fig. 3.3(b) also confirmed that the Id degradation 

was much lower for 450ms pulse device as compared to control one, indicating that 

bulk trapping is reduced after increasing the pulse time.  
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Fig. 3.3. (a) Shifts in Vth with stress times show that bulk trapping was 

reduced significantly for 450ms pulse device (b) Id degradation after 

single-pulse Id-Vg measurement for devices with different pulse times. 

 

Furthermore, improvement in interface characteristics (interface states, Nit) was also 

observed with the 450ms pulse, compared to the control device as shown in fig. 3.4. In 

all the cases, the 1500ms pulse negated the improvement.  

 

 

 

 

 

 

 

Fig. 3.4. Interfaces states, Nit with pulse time variation. The lowest Nit was 

observed for 450ms pulse devices.   
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3.1.3 Chemical Characterization  

Considering the improvement in both bulk trapping and interface characteristics, 

it could be predicted that increase in pulse time might enhance Hf coverage and more 

Cl incorporation into the dielectric, which probably reduces trap vacancies in the oxide, 

forming bonds with Hf atoms and improving overall bond strength in the bulk of the 

oxide, thus enhancing bulk trapping immunity under stress. To better understand the 

physical mechanism, SIMS analysis was performed for the three devices as shown in 

fig. 3.5. From fig. 3.5(a), it is clear that increase in pulse time enhanced Cl 

incorporation into the dielectric. The peak of Cl composition was also sway from the 

interface. 600oC N2 anneal and subsequent source/drain high temperature activation 

treatment pushed Cl atoms into the TiN gate too. Moreover, Cl penetration into the Si 

substrate was also reduced. Hence Cl incorporation, which might form bonds with Hf 

atoms reducing the trap vacancies, might answer the underlying reason behind 

significant bulk trapping reduction. Fig. 3.5(b-c) shows shifts in N position in the form 

of HfN and SiN away from the Si substrate. Moreover, both peaks are higher than that 

in control devices, whereas almost no change in TiN composition throughout the bulk 

oxide was observed (fig. 3.5.d).  
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Fig. 3.5. SIMS profile of (a) Cl, (b) HfN, (c) SiN, and (d) TiN. Increase in 

pulse time shows more Cl incorporation and shifts of N position away 

from the Si/HfO2 interface in the dielectric. 

 

Thus the results demonstrate that increase in pulse time improved Hf coverage in the 

oxide and pushed N position away from the Si-interface, causing less N to pile up at the 

Si-interface and improving interface characteristics.   
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3.2 Effects of HCl Post-Deposition Rinsing in Improving CMOS Bias 

Instabilities and Mobility of MOCVD HfSixOy  

 

Previous experiments dealt with investigating the effect of Cl in ALD HfO2. In 

this experiment it has been discussed that Cl atoms could also be incorporated into the 

high-k dielectric by HCl post-rinsing technique. To generalize the Cl effect in high-k, 

MOCVD HfSixOy has been chosen as the dielectric. It should be noted that HCl post-

rinsing was carried out after high-k deposition. 

 

3.2.1. Motivation behind HCl post rinsing 

Successful integration of high-k dielectrics into the ultra-scaled devices 

demands tremendous challenges for below 65nm technology node. Moreover, 

shortcomings associated with poly gates (e.g. depletion effect, boron penetration, high 

resistivity and fermi-pinning) pose additional challenges in process integration [6]. 

Thus dual-metal-gate process would be needed for future CMOS technology. Several 

candidate metals for dual-metal-gate process have recently been proposed [7-12]. 

However, the ability of selective etching of first metal gate without affecting the 

underlying high-k gate oxides is critically important. Dry etching technique is expected 

to degrade the underlying gate-oxide, and thus degrading the device characteristics. C. 

S. Park et al [13] has proposed the use of very thin aluminum nitride (AlNx) buffer 

layer between metal and gate-oxide to prevent it from being exposed to a metal etching 
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process. But the issues associated with wet etching of gate oxide without using any 

buffer layer in between and the consequent effects in device performance (degradation 

or improvement) haven’t been addressed yet. In this work, we have investigated the 

effects of DI (de-ionized) water and dilute (500:1) HCl post-high-k deposition cleaning 

on the electrical characteristics of Poly-Si/Hf-silicate CMOS devices. It should be noted 

that HCl is a common chemical used as etch component in wet etching. It turns out to 

be the fact that presence of Cl as supplied by HCl post-rinsing has significant effect in 

electrical characteristics of device performance. Moreover, the effects of high pressure 

H2 anneal on device electrical performance and bias instabilities have also been 

addressed systematically. 

 

3.2.2 Process Flow and Experiments 

The MOSFET process flow started with cleaning the active patterned (shallow 

trench isolation) wafer with dilute HF solution. Afterwards, the wafers went through 

pre-DA (pre-deposition anneal) in NH3 for 15 sec at 700oC. Following this, 35Å 

MOCVD Hf-Silicate was deposited. The devices were divided into three sets. The first 

set went through DI (de-ionized) water rinsing for 3 minutes, the second set went 

through dilute HCl (500:1) rinsing also for 3 minutes and the third set didn’t have any 

post-deposition rinsing. NH3 PDA, 60 sec at 700oC was performed on those three sets 

for complete oxidation and nitridation as well. Then 200nm ALD amorphous poly-Si 

layer was deposited as a gate electrode. After gate patterning, high-k layer was removed 

with a wet etch process leaving a minimal damage in the extension region. A thin 
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nitride layer (~5nm) was deposited followed by LDD and halo dopant implantation to 

prevent the process induced damage through plasma process or oxygen diffusion. After 

the thin nitride deposition, 100nm oxide spacer was formed and phosphorous was 

implanted to dope the source/drain regions (energy = 15KeV, dose = 4e15) followed by 

activation at 1000oC, 10 sec rapid thermal anneal (RTA). After the Ti-silicide formation, 

700nm pre-metal dielectric (PMD) layer was formed. Then W plug with Ti/TiN liner is 

used to contact the source/drain and gate electrode regions and Al metal pad was 

patterned. Finally forming gas anneal was performed at 480oC for 30 minutes. 

 

Electrical characterizations were performed using HP 4284A impedance/gain 

phase analyzer and HP4156A semiconductor parameter analyzer. EOT was extracted 

from accumulation capacitance measured at 100 KHz, after accounting for quantum 

mechanical effects. The single pulse charge trapping measurements were done by 

Keithley Model 4200-SCS together with a switch matrix, and a pulse generator.  

 

3.2.3 Electrical Characteristics and Bias Instabilities  

 Fig. 3.6 shows the leakage current and mobility characteristics as a function of 

EOT of Hf-silicate dielectric. EOT decreased which was accompanied by an increase in 

leakage current, while high field (@1 MV/cm) mobility improved after H2O and HCl 

post-cleaning. The mobility improved further (4~6%), while EOT remained unchanged  
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Fig. 3.6. (a) Jg-EOT and (b) Mobility-EOT plots. EOT decreased, while 

mobility increased after post-treatment. High-pressure H2 anneal improved 

mobility, not EOT.  

 

after high pressure H2 anneal (fig.3.6.a). Mobility improvement for all three sets of 

samples came from the reduction of interface states, Nit (fig. 3.7).  
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Fig. 3.7. No change in Nit after post cleaning.  H2 anneal improved Nit. 

(CP frequency=1.5MHz, Pulse Amplitude=1.2V) 

 

It is interesting to note that Nit values for three sets of devices are almost the same. Thus 

mobility improvement after HCl rinsing didn’t come from interface states reduction.   

To further investigate the mechanism, nMOS and pMOS devices were stressed 

in inversion regions at the same (Vg-Vth) to figure out the bulk trapping characteristics 

under substrate (nMOS) and gate injection (pMOS). For nMOS, significance reduction 

in charge trapping has been observed in the HCl treated devices, in comparison to 

control and H2O treated devices (fig. 3.8).  
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Fig. 3.8. ∆Vth vs. stress time. ∆Vth could be reduced significantly after 

HCl post-cleaning. Vstress=Vg-Vth 

 

As shown in fig. 3.9, high pressure H2 anneal didn’t have any effect on bulk trapping 

characteristics in the devices. The results prove the fact that high pressure H2 only 

improve mobility of the devices, it didn’t change any bulk trapping behavior. Thus the 

improvement in bulk trapping characteristics completely came from HCl post-rinsing. 

Moreover, pMOS devices also showed similar bulk trapping improvement as nMOS 

devices (fig. 3.10) 
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Fig. 3.9. No change in ∆Vth after H2 anneal. Still HCl treatment showed 

lowest ∆Vth. (nMOS, 1µm, RT. Tstress=928s) 

 

 

 

 

 

 

 

 

Fig. 3.10. ∆Vth for pMOS devices showed same trend as nMOS. The 

trend is true at high temperature. Vstress=Vg-Vth 
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Inversion SILC for nMOS, which is due to trap assisted tunneling, also 

indicated that the HCl treated devices exhibit reduced trap density (fig. 3.11).  

 

 

 

 

 

 

 

 

Fig. 3.11. Inversion SILC with stress time for substrate injection in nMOS 

showed significantly lower value for HCl treated devices. This trend is 

also true for pMOS (not shown). (The stress and sense voltage was 

Vstress=Vg-Vth and Vsense=Vg-Vfb respectively) 

 

Moreover, single pulse Id-Vg measurements on these three sets of devices further 

illustrated a significant bulk trapping reduction in HCl treated samples as shown in 

fig.3.12.  
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Fig. 3.12. Comparison of Id degradation (∆Id) and Id-Vg up-down width 

(∆V) for different post-treated samples. Still HCl post treatment shows the 

highest improvement in bulk trapping immunity. 

 

To investigate the interface properties of these devices, we performed charge 

pumping experiments at different frequencies with pulse amplitude of 1.2V (fig. 3.13.a) 

and at different pulse amplitude with 1MHz frequency (fig. 3.13.b). Only maximum 

interface states, (Nit)max has been plotted for comparisons. The results show that no 

significant difference in (Nit)max could be seen for those three sets of samples. This 

confirms that the improvement in HCl post-treated samples didn’t come from any 

improvement in interface states, rather from the improvement in bulk trapping 

characteristics.  
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Fig. 3.13. Interface states for three sets of sample with (a) varying 

frequency (b) varying pulse amplitude. No significant difference could be 

observed.   

 

Dilute HCl and H2O post-treatment might have slight etch effect, which supports the 

results of EOT reduction (fig.3.6.a). It could be possible that Cl penetrates during post-

HCl cleaning, and forms bonds with Hf/Si atoms, reducing trap vacancies into the bulk 

oxide, improving overall bond strength of bulk oxide, and thus enhancing bulk trapping 

immunity under stresses. 
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3.3 Summary 

In summary, it can be asserted that Cl incorporation into high-k dielectrics has 

significant effect in electrical performance of the devices. For both of the cases of Cl 

treatments, bulk trapping immunity of the oxide has been improved.  

For ALD HfO2, it was found that precursor, HfCl4 pulse time showed significant 

effect on its electrical and chemical characteristics. Improvement of bulk trapping 

immunity under stress and reduction of interface states after increase in pulse time was 

observed. Hence increase in the HfCl4
 pulse time appeared to lead to improved Hf 

coverage and comparatively larger Cl incorporation into the oxide, resulting in reduced 

vacancies in the oxide, which caused bulk trapping reduction.  The improvement of 

interface characteristics with increase in pulse time has been attributed to shift in 

nitrogen peak position away from the bottom interface of the device. Optimization of 

pulse time can improve the device performance. 

 For MOCVD HfSixOy, HCl post-deposition cleaning of high-k gate oxide has 

potential positive attributes to device characteristics. Dilute HCl post-cleaning showed 

the greatest improvement in both mobility and bias instabilities of the devices in 

comparison to control and H2O post-treated samples. Improvement in bulk trapping 

immunity rather than in Si-interface properties has been attributed to the observed 

potential enhancement in electrical characteristics.  It could be possible that Cl 

penetrates during post-HCl cleaning, and forms bonds with Hf/Si atoms reducing trap 

vacancies into the bulk oxide, improving overall bond strength of bulk oxide, and thus 
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enhancing bulk trapping immunity under stresses. High pressure H2 anneal improved 

mobility further, but had no effect on bulk charge trapping characteristics and EOT.  
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Chapter 4 
 

Investigation of Transient Relaxation in HfO2 Gate Oxides 

 

To meet the requirement of 45nm technology node and below, high-k dielectric 

like HfO2 has been evolved as a critical material to overcome the integration challenges 

associated with it. Along with the integration challenges, valid characterization 

techniques, and proper methodologies to study the reliability of Hf-based dielectric 

have been evolved as crucial issues [1-2].  Fast transient charging and discharging 

effect in Hf-based gate oxides are found to be the sources of various undesirable 

characteristics of high-k devices, such as threshold voltage (Vth) instability, frequency 

dependent mobility values, and C-V hysteresis [1-9]. These undesirable properties 

might lead to inaccurate characterization and wrong conclusions, which may obscure 

the proper optimization of high-k dielectrics. The transient charging has been addressed 

as the dominant mechanisms for device bias instabilities [10-13] and hot carrier 

instabilities [14-15]. Moreover, due to this transient effect, the dc Id-Vg (drain current-

gate voltage) and C-V (capacitance-voltage) measurement might result in erroneous 

results, which lead to inaccurate mobility values for high-k dielectrics [1]. Young et. al. 

[16] shows that using ultra fast single pulse (35ns) Id-Vg measurement, the saturation 

current of high-k dielectric has increased by as much as ~40% at high Vg, encouraging 

the implementation of high-k dielectrics in high frequency and low duty cycle CMOS 

device circuits, where charge trapping is insignificant [17].  Polarity (substrate vs. gate 
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injection) and gate electrode (poly vs. metal) dependence of the transient trapping-

detrapping have also been addressed in recent studies [7,9,18]. The relaxation effect has 

been observed in conventional gate oxides in terms of transistor bias instabilities [19-

23], hot carrier instabilities [24-25] as well. Most of the studies in fast transient charge 

trapping suggest that the charge accumulation under substrate injection into the high-k 

gate oxide is recoverable and full recovery could be achieved when a negative pulse is 

applied following the positive stress [1,6,7,9,10,12,18]. The systematic study of the role 

of both bulk charge trappings and interface states’ passivation effect on transient 

relaxation (TR), and their implication to high-k gate oxide’s wear-out mechanism 

haven’t been addressed yet. This work demonstrates transient relaxation behavior, the 

competing role of bulk and interface trapping in relaxation, the temperature effect on 

TR in high-k, and correlation of TR behavior with dielectrics’ wear out characteristics.  

A simplified mathematical model has been proposed to understand the underlying 

physics behind the relaxation behavior.  

 

4.1 Fabrication flow of Device under Test 

The MOSFET process flow for control HfO2 nMOS (n-channel metal-oxide-

semiconductors) devices started with cleaning of the active patterned wafers in dilute 

HF solution followed by Hf deposition via DC magnetron sputtering (30 mTorr, Ar, 

room temperature) and rapid thermal annealing (RTA) of the deposited films at 600°C 

in N2 ambient. Film thickness was ~50Å measured by ellipsometer. TaN gate was 
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deposited using DC sputtering (N2+Ar, 10 mTorr, room temperature) followed by 

reactive ion etching (RIE) in Cl2/He mixture for gate patterning. Phosphorous was 

implanted to dope the source and drain (S/D) regions (energy=50 KeV, dose=5x1015 

cm-2). S/D dopant activation was done by RTA in N2 ambient at 950°C for 1 min. 

Sputtered aluminum was used for both interconnect and backside metallization. The 

final sintering was done at 400°C in forming gas for 30 minutes. TaN/HfO2/HfON/p-Si 

nMOS device was also fabricated using the sputtering technique, except that N2 and Ar 

were flown during Hf sputtering for the bottom HfON stack, followed by Hf deposition 

in Ar ambient for the top HfO2 stack. The combined stack was annealed as mentioned 

above. 

 

4.2 Measurement Set-up and Stress Wave-Shape for Static and Dynamic Stressing 

 Stressing was performed at the gate terminals of devices using a DC source and 

pulse generator. The stress wave shape of voltage applied at the gate terminals is shown 

schematically in fig. 4.1. The corresponding shape of gate current is also shown 

schematically. Pre-stress-Id (In) was measured at the base voltage, Vn=0.5V using 

4156A semiconductor parameter analyzer (SPA). Post-stress Id samplings with time 

[I(t)] were also monitored at the same Vn. Stress experiments were carried out at 

voltages ranging from 1.7V to 2.1V. Temperatures were varied from 25oC (RT) to 

125oC.   
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Fig. 4.1. Stress and current wave shape under stress and recovery 

 

4.3 Definition of %Relaxation or %Recovery 

 

 

 

 

 

   

 

The %Recovery is simply percent of drain current recovered after degradation of time 

zero current due to stress. For measurement and analysis of the experimental data, the 

term %Relaxation or %Recovery has been used.  
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4.4 Effect of Sampling Interval of SPA 4156A in %Recovery 

The sampling drain current immediately after stress is sampled by SPA 4156A 

used in this study. The interval time is very critical to get the first read-out of Id 

immediately after stress. Fig. 4.2 shows the effect of sampling interval time 

on %Recovery (%R). As shown, the shorter is the interval, the faster is the %Recovery 

calculated using the equation discussed previously. For the limitation of the 

measurement system (SPA), the lowest sampling interval time of 560 µsec was chosen 

for I(t) samplings. 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Effect of sampling intervals on %Recovery. The shorter is the 

interval, the faster is the recovery rate. The shortest we could use was 560 

µsec 
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4.5. Relaxation under Static and Dynamic Stress Conditions 
 

Fig. 4.3(a) shows the Id relaxation at 0.5V toward the pre-stress value (In) after 

being stressed by different constant voltage stress conditions shown. Inset of fig. 4.3(b) 

shows a schematic of the drain currents (Id) mentioned. As shown, In was degraded 

upon stress. The first post-stress current (IPS) is taken by the system immediately after 

stress. The sampled current read-outs with relaxation time, I(t) were monitored for 

various device dimensions and ∆Id [I(t)-IPS] is shown in fig. 4.3(a). With %Relaxation 

defined as %R=[{I(t)-IPS}/{In-IPS}]x100, all the currents follow a unique curve up to 

certain stress limits (fig. 4.3.b). The stress limits are: stress voltages ranging from 1.7V 

to 2.1V, stress times ranging from 1000s to 1800s, and temperatures from 25oC to 

120oC. Also the relaxation follows the unique line if re-stressed at the same voltages 

mentioned at the same times. 
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Fig. 4.3. (a) Relaxation of Id (∆Id) for different device dimensions after 

various stress conditions shown. (b) %R, calculated by pre- and post-stress 

currents, lies in a unique line irrespective of stress conditions shown. 

Thus %R gives a simplified unique relaxation behavior if stressed up to 

certain stress limits. 
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different stress conditions (different stress voltages or stress times), but the relaxation 

rate of the degraded current (In-IPS) is the same if stressed up to certain limits. It is 

interesting to note that the temperature showed negligible effect on %R. Moreover, %R 

for devices stressed dynamically (50% duty unipolar stress, 0V to 1.9V) at RT followed 

the same unique line (fig. 4.4) irrespective of stress frequencies. This could be due to 

the fact that the characteristic time for bulk trapping (as it is believed that bulk 

trapping/detrapping is the dominant mechanism in transient relaxation 

[1,6,7,9,10,12,18]) is so small (even <100ns) that the stress frequency (up to 10MHz) 

didn’t have any effect on bulk trapping characteristics of high-k devices. Thus %Id 

relaxation followed the same line irrespective of stress frequency.  

 

 

 

 

 

 

 

 

 

Fig. 4.4. %R for devices under dynamic stress at different frequencies. 

Still Id relaxation follows a unique line irrespective of stress frequencies. 
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4.6 Background Mathematical Model and Interpretation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5. (a) Schematic band diagram of high-k gate oxide during positive 

stress and relaxation period. (b) Calculation details of %R. (c) Fitting of 

mathematical model with experiments.   
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Upon positive stress, the electrons could be injected, distributed, and trapped as shown 

schematically in fig. 4.5(a). Carriers trapped in shallow potential can relax very fast 

(small characteristic detrapping time constant, τ) giving rise to fast transient relaxation, 

while deep-trapped carriers take significant time to relax (large τ). Thus taking 

Vd=50mV and writing the pre- and post-stress current components as shown in fig. 

4.5(b), the simplified equation for %R best describes the observed experimental results 

(fig. 4.5.c). In this simplification, the effective mobility (µeff) has been assumed to be 

constant throughout the stress and relaxation periods for simplicity. Moreover, both 

bulk oxide and interface trapping/detrapping have been included in the threshold 

voltage (Vt) shift and Vt relaxation. It is interesting to note that the only dependence of 

this simplified equation of %R is the characteristic time,τ, and not any device parameter. 

This τ dependency of %R could explain the uniqueness of %R with relaxation time.  

 

4.7 Stress Polarity Dependence 

Device was stressed +1.9V and -2.3V for 30 min. Both ∆Id (change in Id) and ∆Ig 

(change in leakage current, Ig) was monitored at Vn=0.5V (fig. 4.6.a-b). Note that after 

the first initial transients, relaxation was gradual in time after positive bias, whereas it 

almost stopped with no apparent further relaxation after negative bias.  The results 

suggest that the substrate injection incurs relaxable instabilities, while gate injection 

creates some permanent degradation in the oxide [18]. Recently Lu et al [26] reported 

for TiN/HfO2 stack under gate injection that hole trapping from substrate is the 
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dominant trapping mechanism than electron trapping. Probably the injected holes from 

the substrate under gate injection get trapped permanently in the oxide and cause more 

degradation hindering the oxide to relax back to its original state with time, as shown 

schematically in fig. 4.7.  

 

 

 

 

 

 

 

 

Fig. 4.6. (a) Id and (b) Ig relaxation in magnitude under positive and 

negative stress voltages. nMOS positive stress (substrate injection) 

induced more relaxable trapping, while greater portion of non-relaxable 

trapping was created by gate injection.  
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Fig. 4.7. Schematic energy diagram showing more probability of hole 

trapping than electron trapping under gate injection. During relaxation, the 

holes can’t be detrapped quickly, rather most of them remains trapped, 

ausing permanent degradation in the devices. 

 

4.8 Role of Bulk & Interface Trapping in Relaxation 

Fig 4.8 shows the fast transient relaxation in charge pumping (CP) current, Icp 

immediately after positive stress of 1.9V, 30min [27]. The initial fast transient 

relaxation in CP current includes both bulk and interface relaxation. To take the Icp due 

to interface only, in the rest of the section, we took Icp values after few seconds of initial 

transients to let the bulk trapping component of Icp to decay down. The gradual decrease 

in Icp values with times, as shown in fig. 4.8, indicates that interface also passivates 

with time after stress removal.  
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Fig. 4.8. Transient CP current, Icp relaxation, indicating that interface 

trapping also relaxes after being stressed. The fast initial transient 

relaxation immediately after stress was due to bulk detrapping.    

 

To investigate the role of bulk and interface trapping in transient relaxation, 

devices were stressed at 2V, 200s. ∆Vt and ∆Icp were taken right after stress. Device 

was then allowed to relax for 10s, after which negative pulses of –0.25V to -1V were 

applied. ∆Vt and ∆Icp measurements were carried out as usual. Vt recovered quickly 

with the increase of negative pulse voltages (fig. 4.9.a).  
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Figure 4.9. (a) Vt relaxation with or without post pulses after positive and 

negative stress voltages. Complete recovery could be obtained for devices 

under positive stress, while recovery is negligible for devices under 

negative stress. (b) Icp relaxation after the same stress conditions coincides 

in the same line, indicating that post pulses don’t have any effect on 

interface relaxation. 
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be relaxed by the application of negative pulses. But, for all of the cases, relaxation of 

interface states couldn’t be altered by application of short negative pulses, rather they 

coincided on the same curve (fig. 4.9.b). Also note that, increase in Icp after negative 

stress was slightly higher than that after positive stresses, but the passivation still 

follows the same trend. The results suggest that gate injection creates a greater portion 

of permanent degradation in the oxide. Hence it could be concluded that (a) both bulk 

oxide and interface trapping upon substrate injection show transient relaxation in high-k 

gate oxide, but bulk trapping is mostly relaxable, whereas interface trapping couldn’t be 

relaxed/passivated completely, (b) mechanism of interface passivation remains the 

same irrespective of stress histories, (c) gate injection creates more interface 

degradation than substrate injection, but still passivation mechanism remains the same.  

 

Now it has been shown that the bulk trapping causes device bias instabilities 

and is responsible for various undesirable characteristics in devices that manifested as 

PBTI (positive bias temperature instability), NBTI (negative bias temperature 

instability), TDDB (time dependent dielectric breakdown) etc. But question remains 

whether bulk trapping creates any permanent degradation in the oxide and, if so, how. 

To investigate further, nMOS devices were stressed at room temperature at 1.9V, for 

stress times 10-100s and 1000-1800s ranges (fig. 4.10). The reduction of %R for 

devices stressed longer  
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Fig. 4.10. %R comparison for devices stressed for short (10s-100s) and 

long (1000-1800) times. Slight difference in %R is possibly due to 

increase in oxide non-relaxable degradation, which increases characteristic 

time constants, τ. 

 

times could be due to damage created by bulk trapping, which possibly increases the τ 

values of %R equation, thus reducing the relaxation rate (note that uniqueness of %R 

between two stress ranges are different). To answer this question more clearly, the 

devices were stressed from 1.5V to 4V, 10s. Id relaxation (%R) diminishes with 

increasing stress voltages probably due to increase in bulk degradation (fig. 4.11). This 

is consistent with what Degraeve et al [28] reported stating that steep increase in HfO2 

bulk trap density for positive stress is likely to cause breakdown of the HfO2 layer. 
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Fig. 4.11. Id relaxation after increasing stress voltages. Significant 

decrease in %R was possibly due to dramatic increase in degradation due 

to bulk trapping. 
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which reduced the number of deep trappings (with shorter τ values) facilitating faster 

transient relaxation.  

 

 

 

 

 

 

 

 

 

Fig. 4.12. (a) Comparison %R between two dielectric structures shown. 

One showed faster detrapping possibly due to smaller τ’s compared to the 

other one. (b) Gate oxide stack with faster transient relaxation (HfO2-

top/HfON-bottom) showed higher trapping immunity, indicating that 

less number of electrons is likely to be trapped in deep potentials.  

 

Single pulse Id-Vg technique, which essentially probes the degradation due to the bulk 

trapping effect in high-k dielectrics, also showed the same bulk trapping immunity [16]. 

It should be noted that, the reduction in τ values primarily came from the reduced bulk 

trapping efficiency in HfO2/HfON stack.  
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4.10 Effect of Dynamic Pulse Width in Transient Behavior 

Fig. 4.13 shows the transient relaxation in each of the off-periods after dynamic 

unipolar stress for 10% and 90% duty (stress time, Ton=30s, 1Hz). It could be predicted 

from our model that for the same stress “on” time, higher duty cycle should induce less 

relaxable trapping (thus increasing τ values) compared to lower ones. Therefore, %R 

for low duty cycle showed faster recovery (see inset). Now application of train of 

pulses of very short width (~50ns) could eliminate or significantly reduce the bulk 

trappings in high-k oxide [16].  

 

 

 

 

 

 

 

 

Fig. 4.13. Comparison of transient detrapping for device under dynamic 

stress of 10% and 90% duty (same Ton, 1Hz). Inset is %R for both cases. 
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Fig. 4.14 shows comparison of Id relaxation after being stressed for 9s (“on” 

time) by unipolar pulses of width 50ns (~0.1% duty) vs. 9950ns (~99,9% duty). As 

expected, short width makes the transient faster, possibly because of less deep trapping 

into the bulk oxide. Note that, the applied pulse amplitude is high (3V), so both devices 

degraded severely (as was observed in fig. 4.10), but the difference in Id relaxation 

possibly came from reduced bulk trapping.  

 

 

 

 

 

 

 

 

Fig. 4.14. Id relaxation for devices stressed at the same frequency and Ton 

with ~0.1% duty and ~99% duty. Faster transient was seen for very short 

pulses, due to reduction in bulk trapping (thus reduction of τ values). 
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monitored at 25°C, 75°C and 120°C, by turning the hot chuck “on” immediately after 

stress (fig. 4.15.a). Hot chuck took about 10s to ramp up as shown in the fig. 4.3(a). As 

shown %R increased with the increase in temperature applied during relaxation, but no 

increase in interface passivation was observed (fig. 4.15.b).  

 

 

 

 

 

 

 

 

 

Fig. 4.15. (a) Effect of temperature on %R. Device was stressed at 25oC 

and relaxed at 25oC and higher temperatures shown. (b) ∆Icp monitored at 

25oC and 75oC. Increase in Icp at 75oC indicates that dramatic %R increase 

wasn’t due to temperature, rather due to Vt dependency on temperature.  
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on temperature in high-k gate oxides. The slight increase in %R at higher temperature 

than room temperature (fig. 4.3.b) could be due to slight  τ dependence on temperature.  
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4.12 Summary 

In summary, integration challenges and proper methodology of defining 

reliability of HfO2 based high-k devices has to be taken into strong consideration. 

Transient relaxation is seen to be an undesirable issue in high-k gate oxides. Hf-based 

dielectrics show a unique relaxation behavior if stressed. HfO2 bulk charge trappings, 

which play a major role in bias instabilities, are mostly relaxable, while interface 

degradation can’t be passivated completely. Irrespective of stress history, interface 

passivation mechanism remains the same. Device with higher trapping immunity shows 

faster relaxation probably due to reduced bulk trapping efficiency which leads to faster 

relaxation. %Relaxation dependency of HfO2 on temperature is insignificant. A good 

agreement of the proposed simple model with experimental results has been obtained. 

Under substrate injection device degradation is mainly triggered by bulk charge 

trapping in the oxide, so process issues of Hf-based oxides need to be investigated 

carefully to reduce pre-existing defects and bulk trapping in the oxides.  
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Chapter 5 
 

Reliability Study of Hf-based Gate Oxides 
 

In this section, basically the reliability of Hf-based gate oxides, for example 

HfO2, Hf-silicate, will be discussed. To estimate the viability and projected life time of 

high-k dielectrics, reliability study in terms of TDDB (time dependent dielectric 

breakdown), TZDB (time zero dielectric break down), charge trapping characteristics, 

PBTI (positive bias temperature instability), NBTI (negative bias temperature 

instability), hot carrier degradation in high-k MOSFET devices demand profound 

significance. The quality and reliability of Hf-based gate oxides could be affected by 

process conditions [1], crystallization of gate oxides, phase separation [2], gate 

oxide/gate electrode material combination, crystallinity of gate electrode, surface 

roughness of gate electrode/gate oxide interfaces etc. Existence of hydrogen related 

species in CVD technique, contamination from precursors in ALD process and plasma 

damage from PVD affect Hf-based gate oxides’ reliability. So careful considerations of 

process parameters, choice of gate oxide and gate electrode materials are extremely 

necessary to obtain a reliable high-k gate oxide MOSFET device. Moreover, existence, 

quality and thickness of interfacial layer significantly affect bias instability and 

reliability of Hf-based gate oxides [3]. Intrinsic factors such as soft phonon [4], pre-

existing traps, existence of di-poles between high-k gate oxides and gate electrode are 

critical parameters that affect oxide reliability. Charge trapping under electrical stress 

causes instability and affects reliability of gate oxides [5-9]. It is generally recognized 
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that Hf-based gate oxides have significantly large amount of charge traps in comparison 

to SiO2. Thus reliability evaluation and requirements adopted from SiO2 would give 

erroneous results, which might lead to inaccurate conclusion. Understanding of all of 

the intrinsic and extrinsic factors in high-k gate oxides, and then investigation of proper 

technique to evaluate the reliability of high-k are burning issues in current scaled 

technology. In this work, reliability, charge trapping-detrapping study, and break-down 

model investigation of Hf-silicate and HfO2 have been investigated systematically.  

 

5.1 Compositionally Varying Bi-layer Structure of PVD HfSixOy 

Dielectric 

 In comparison to HfO2, Hf-silicate shows superior properties in terms of better 

crystallization temperature, higher mobility, higher charge trapping immunity under 

stress, and so better reliability [7, 10-11].  Since the dielectric constant of Hf-silicate is 

comparatively higher than that of HfO2, the benefit came from sacrificing EOT of the 

device.  T. Yamaguchi et al [12] found that increase in Zr concentration in Zr-silicate 

films decreases the effective mobility and current drivability of the device due to the 

dominant effect of coulomb scattering of bulk charges.  Therefore, it is reasonable to 

expect that an increase in Si composition (thus decrease in Hf composition) close to the 

bottom interface of Hf-silicate dielectric would improve effective mobility, because of 

superior chemical similarity Hf-silicate/Si interface to SiO2/Si interface and decrease in 

coulomb scattering originating from the bulk oxide. On the other hand, decrease in Hf 
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composition would lower the overall dielectric constant of the gate stack, which would 

eventually increase the equivalent oxide thickness (EOT). To take advantage of both 

the low and high composition of Hf, in this work we have proposed a bi-layer structure 

comprising of low Hf composition at the bottom stack, and high composition at the 

upper stack and have shown that this structure dramatically reduces leakage current 

density (Jg) and C-V hysteresis, while it improves the gate oxide reliability.  

 

5.1.1 Process Flow and Experiments 

The MOSFET process flow started with cleaning of the active patterned wafers 

(p-type) in diluted HF solution. Afterwards, Hf and Si were deposited via DC 

magnetron co-sputtering (40 mTorr, Ar, room temperature). Film composition, 

measured by x-ray photoelectron spectroscopy (XPS), was varied by adjusting the Si 

target position up and down. Three compositions; (a) Film-A: 19.5% Hf (b) Film-B: 

24% Hf and (c) Film-C: 28.5% Hf and a bi-layer structure comprising of Film-A at the 

bottom and Film-C at the top were fabricated. Film thickness was measured by 

ellipsometer. All the deposited films were annealed in a rapid thermal anneal (RTA) 

chamber at 600°C in N2 ambient. TaN gate was deposited using DC sputtering (N2+Ar, 

10 mTorr, room temperature) for a thickness of ~2000Å. After gate patterning, reactive 

ion etching (RIE) in Cl2/He mixture was used to pattern the TaN gate material. 

Sputtered aluminum was used for backside metallization. Finally 450°C in forming gas 

anneal was carried out for 20 minutes. 
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Electrical characterizations were performed using HP4194 impedance/gain-

phase analyzer and HP4156A semiconductor parameter analyzer. EOT (effective oxide 

thickness) was extracted from accumulation capacitance measured at 1 MHz, after 

accounting for quantum mechanical effects.  

 

5.1.2 Electrical Characterization and Reliability Measurements 

Fig. 5.1(a) shows the C-V curves of the three compositions along with the Bi-

layer structure, whereas fig. 5.1(b) shows Jg (leakage current density) vs. EOT plot. As 

expected, EOT decreased with the percentage increase of Hf 

(%Hf={[Hf]/([Hf]+[Si]+[O])}x100) in the dielectric.  

 

 

 

 

 

 

Fig. 5.1. (a) C-V curves and (b) Jg-EOT plots for Film-A (19.5% Hf), 

Film-B (24% Hf), Film-C (28.5% Hf) and Bi-layer structure with Film-A 

at the bottom and Film-C at the top. For the same EOT, leakage current of 

bi-layer structure could be dramatically reduced in comparison to Film-A 

as shown. Inset shows the schematic structure of the four films. 
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Irrespective of Hf composition, the Jg-EOT data lies almost in the same line as shown. 

This is consistent with our previous report, where J-EOT line lies almost in the same 

line irrespective of Si composition (fig. 2.7). At the same EOT, the bi-layer structure 

(see inset of fig. 5.1.b) showed an order of magnitude of lower leakage current as 

compared to Film-A. So by introducing the proposed bi-layer structure, we could obtain 

lower leakage (making the total thickness physically larger), while maintaining low 

EOT. The arrow line indicates the advantage of this structure over Film-A.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2. Variation of (a) Vfb and (b) C-V Hysteresis for Film-A, -B, -C 

and bi-layer structure. Increase in %Hf composition increased negative 

fixed charges into the oxide. Vfb of bi-layer structure lied in between Film-

A and –C. Hysteresis was also significantly reduced. 
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Fig. 5.2(a) shows the flat band voltage (Vfb) values as a function of %Hf in the 

dielectric. From the figure, it is clear that the increase in Hf concentration adds negative 

fixed charges into the dielectric, thus shifting Vfb in the positive direction. Similar 

phenomena has been reported for Zr-silicate and the additional coulomb scattering from 

the fixed charge was found to result in reduction of effective mobility for film with 

high %Zr [12]. It is interesting to note that Film-A and the bi-layer structure have 

almost the same EOT, while Vfb is different. The results indicate that putting Film-C on 

the top of Film-A introduces negative charge adjustment, thus resulting in an 

intermediate Vfb value. C-V (capacitance-voltage) hysteresis trend with %Hf 

composition is shown in fig. 5.2(b). Hysteresis is seen to increase with increase in %Hf 

composition, which is due to increase in bulk trapping and defect generation. The bi-

layer structure was found to exhibit reduced C-V hysteresis compared to other three 

samples.   

 

 

 

 

 

 

Fig. 5.3. Change in EOT (∆EOT) with post-metal anneal temperature for 

Film-A, -B, -C and bi-layer structure.  

600 700 800 900
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

 Sample A
 Sample B
 Sample C
 Bi-layer

 

 

∆
EO

T 
(Å

)

Temperature (oC)



 140

It should be mentioned that thermal stability of bi-layer structure with post-metal anneal 

temperature could be retained smaller as compared other compositions as shown in fig. 

5.3. Fig. 5.4 shows the SILC (stress induced leakage current) for the four different 

samples after the same stress voltage, Vox (=Vg-Vfb). SILC is defined as difference in 

leakage current after stress from that of fresh current (Jo). The result shows that there 

was negligible SILC in the bi-layer structure due to negligible defect generation and 

bulk trapping under gate injection into the oxide. The charge trapping (ie. SILC and 

hysteresis) increases as %Hf increases. It should be pointed out that Film-A showed 

decrease in Jg initially followed by increase in leakage current with stress times. Thus 

the bulk charge trapping could significantly be reduced using bi-layer structure of Hf-

silicate dielectric. 

 

 

 

 

 

 

 

Fig. 5.4. SILC comparison for Film-A, -B, -C and bi-layer structure. Bulk 

trapping and defect generation could significantly be reduced by using bi-

layer structure. Stress and sense voltage for SILC measurements were 

same for the four films 
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Fig. 5.5 shows the TZDB (time zero dielectric breakdown) of these four samples. Still 

Film-A shows better breakdown characteristics than the other two compositions, while 

bi-layer structure showed the highest breakdown voltage in comparison to all other 

devices. Therefore, reduction in bulk trapping by using bi-layer structure essentially 

improved the breakdown behavior, and thus reliability of the gate stack.  

 

 

 

 

 

 

 

 

Fig. 5.5. TZDB (Time Zero Dielectric Breakdown) for Film-A, -B, -C and 

bi-layer structure. Bi-layer structure showed highest time zero breakdown 

characteristics in comparison to the other three structures.  
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5.2 TDDB Study of Si-Inserted HfOxNy with TaN Gate Electrode 

 TDDB (time dependent dielectric breakdown) study was carried out on nMOS 

capacitors being stressed at a constant voltage (CVS) in accumulation condition (gate 

injection). TDDB is a very important technique to determine the reliability of gate 

oxide. It is well known that high-k dielectrics are trap-rich material. Pre-existing traps, 

oxide defects, oxide impurities, surface roughness, oxide crystallinity, material quality, 

process conditions greatly influence high-k gate oxide reliability. Reliability becomes 

more critical for very thin oxides. Proper methodology to assess the accurate projection 

of gate oxide lifetime is also another challenge to be addressed. In this regard, 

percolation model was proposed to explain the thickness dependence of TDDB for SiO2, 

which has been widely accepted [13-14]. In this concept, defects with a specific 

diameter, ao are randomly generated inside the dielectric during TDDB stress. When 

these defects are accumulated and make an overlapping path between two electrodes, 

the path becomes conductive and the dielectric breaks down. The breakdown is a 

stochastic event and therefore has a distribution. The distribution due to the percolation 

model can be modeled with weibull distribution using the following equation;  

 F(x)=1-exp[-(x/α)β] 

where F is the cumulative failure probability, x is the time, α is the characteristic 

lifetime where 63.2% of samples fail, and β is the weibull slope parameter [14]. This β 

is a very important parameter in predicting lifetime distribution for gate oxides. 

According to the percolation model, the slope β is a function of the dielectric thickness. 



 143

For the SiO2 based gate oxides, β becomes smaller as thickness decreases and 

approaches 1 as the thickness smaller than 30Å [14]. As β increases the distribution 

becomes tighter. A larger β is desirable from reliability point of view, since a fairly low 

failure rate is required for commercial devices.  

 Moreover, due to stochastic nature of the breakdown, TDDB has area 

dependence as well (ie. shorter TDDB for the larger capacitors), which can be 

expressed as follows,  

 

1/A
A

βα
α

′ ⎛ ⎞= ⎜ ⎟′⎝ ⎠   

where α and α’ are the characteristic lifetime for the devices with different are A and A’ 

respectively.  

  

5.2.1 Soft and Hard Breakdown  

 As in SiO2, high-k gate oxides also exhibit both soft and hard breakdown 

characteristics [15-16]. In general, soft breakdown is considered to result from a weak 

localized path between the gate electrode and the substrate. A critical number of 

electron traps generated in the gate dielectric layer and at the interface, which in turn 

form percolative clusters [13, 17-19]. The origin of soft breakdown in high-k could be 

quite different from SiO2, since high-k is basically a bi-layer structure (an interfacial 

layer and a bulk high-k). For high-k dielectrics, soft breakdown has been predominantly 

observed as the first breakdown event. The sharp rise in gate current following soft 

breakdown is the hard breakdown as shown in fig. 5.6. Hard breakdown is the complete 
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breakdown of the gate oxide. In the case of SiO2, the first breakdown could be either 

soft or hard breakdown, but both breakdown events have similar β values and thus a 

common origin in statistical characteristics [16]. However, the β values for high-k gate 

oxides for soft and hard breakdown events are quite different. It could be due to the 

difference in physical and chemical nature of interfacial layer and bulk high-k layer [3].  

 

 

 

 

  

 

 

 

 

 

Fig. 5.6. Leakage current density with constant voltage stress time. Figure 

shows both soft and hard breakdown events in HfOxNy gate oxides 

including the trap generation phase with stress time. 
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breakdown, interfacial layer properties, nature of pre-existing traps all are different for 

different high-k materials. As the thickness increases, β values for HfO2 also increases 

[3] as is seen for SiO2. Kauerauf et al reported that based on the analysis of weibull 

slope for Al2O3 as a function of physical thickness, breakdown in high-k layer is 

dominated by an extrinsic mechanism [20]. A. Kerber et al. reported the thickness 

dependence of wear out properties of Al2O3 tend to support intrinsic breakdown 

mechanism [21]. ZrO2, however, shows week thickness dependence [22]. Thus the 

thickness dependence of high-k dielectrics is not well understood. The polarity of stress 

also influences the charge trapping and defect generation in high-k gate oxides [21]. For 

substrate injection, it was proposed that the reliability is limited by electron trap 

generation in the bulk of Al2O3 rather than in the thin SiO2 interfacial layer, thus strong 

thickness dependence of β values was observed, as expected from the percolation 

theory. For gate injection, on the other hand, it was also suggested that the breakdown 

of Al2O3 is determined by process induced defects causing weak spots in oxide [20]. It 

has also been reported that high voltage breakdown of thick Ta2O5/SiO2 stack is 

completely determined by the interfacial SiO2 layer due to high electric field at the 

interface. This causes Ta2O5 to breakdown immediately after interface degradation [23]. 

Thickness of interfacial layer and barrier height of the gate electrode material 

significantly influences β values of the HfO2 materials [3]. The lower β values for HfO2 

in comparison to SiO2 of same thickness might be explained by the factors such as 

defect density and defect size. In comparison to SiO2, HfO2 may have smaller defect 

density to breakdown and/or larger spacing between defects, where tunneling of a 
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trapped electron becomes probable. Moreover, the defects in high-k are more 

delocalized than SiO2. Delocalized defects have larger sphere of influence. Thus there 

is no universal model which can explain all existing results for high-k reliability. In 

other words, high-k system may require considerations different from SiO2, e.g. 

bimodal defect generations due to different physical nature of both interface layer and 

bulk layer, voltage drop as a function of interface layers, different charge fluences by 

different polarities, and critical defect density for breakdown which varies with 

thickness.  

 

5.2.3. Process Details of Si-Inserted HfOxNy 

The MOSFET process flow started with cleaning of the active patterned wafers 

(p-type) in diluted HF solution. Afterwards, HfO2 was deposited via DC magnetron 

sputtering (30 mTorr, Ar, room temperature). All the deposited films were annealed in a 

rapid thermal anneal (RTA) chamber at 600°C in N2 ambient. For HfOxNy, flow of N2 

was used during sputtering. For some samples, a thin Si layers (~6Å) was inserted 

according to the following schematic diagram shown in fig. 5.7.  

 

 

 

 

Fig. 5.7. Schematic Diagram showing Si-inseted HfOxNy dielectrics. 
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TaN gate was deposited using DC sputtering (N2+Ar, 10 mTorr, room temperature) for 

a thickness of ~2000Å. After gate patterning, reactive ion etching (RIE) in Cl2/He 

mixture was used to pattern the TaN gate material. Sputtered aluminum was used for 

backside metallization. Finally 450°C in forming gas anneal was carried out for 20 

minutes. Fig. 5.8 shows the C-V profile of three structures of Si-insertion into the gate 

oxide. Top-Si insertion shows the lowest EOT, probably because of higher amount of 

nitrogen incorporation into the film as compared to the other two structures [24]. 

 

 

 

 

 

 

 

 

Fig. 5.8. C-V curves for the three structures. The Top Si-insertion show 

lowest EOT, because of higher percentage of nitrogen capture into the film. 
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5.2.4 TDDB Analysis 

 In this work, breakdown data only after hard breakdown have been taken for 

failure probability analysis. Before stressing, devices were screened by C-V and I-V 

measurements. Only devices with identical C-V and I-V were taken for stressing. For 

each set of data, almost 25-30 devices were stressed for statistical analysis purpose. 

Devices were stressed at constant voltage stress in accumulation until the devices break. 

For fair comparison, all the devices were stressed at the same Vg-Vfb. HP 4156A was 

used for stressing the gate terminals while all the other terminals of MOSFETs were 

kept grounded. Fig. 5.9 shows the weibull distribution of three dielectric structure 

stressed at different stress voltages. The slope of each distribution corresponds to β. The 

area was chosen to be 4x10-6cm2. Fig. 5.10 shows the average βav for the three stacks.  

 

 

 

 

 

 

 

 

 

 

 



 149

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9. Weibull distribution of (a) Top, (b) Center, and (c) Bottom Si-

inserted HfOxNy dielectrics for various stress voltages.  
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Fig. 5.10. Average βav for the three stacks (Top Si, Center Si, and Bottom 

Si-insertion) 

 

The results show that the β for top Si insertion has the highest value as compared to the 

other two structures. It should be mentioned that nitrogen capture by Si insertion was 

the highest for Top-Si structure. Thus it could be possible that Si insertion further away 

from the bottom interface is advantageous to reduce the defects and trapping sites in the 

oxide.  
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Fig. 5.11. C-V hysteresis for top, center, and bottom Si-insertion. 

Hysteresis was found to be lowest for top Si-insertion structure.  

 

 

 

 

 

 

 

 

Fig. 5.12. SILC for top, center, and bottom Si-insertion. SILC was found 

to be lowest for top Si-insertion structure 
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Fig. 5.13. Shifts in Vth for top, center, and bottom Si-insertion under 

constant voltage stress at the same (Vg-Vf).  Top Si structure showed the 

lowest shift in Vth. 

 

Fig. 5.13 shows the shifts in Vth for three structures stressed at constant voltage stress. 
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I. Interface Traps 

II. Bulk Traps 

III. Geometric Effect 

IV. Leakage Current 

Thus as the frequency is decreased, bulk traps play roles in charge pumping current. 

Moreover, to eliminate or reduce the geometric effect, the size of the transistor should 

not be too small or too large. If the device is leaky, then the leakage current would give 

erroneous results. In this experiment, we used 4.0-4.5nm thick device. Thus the effect 

of leakage current in Icp is expected to be negligible. Now if we divide the equation by 

area, A and frequency, f, then we get pumped charge, Qcp per unit area per cycle, 

expressed as Qcp=(Icp/A*f). Fig. 5.14 shows the variation of Qcp with frequency of 

charge pumping in a high-k device.  

 

 

 

 

 

 

 

 

Fig. 5.14. Variation of Qcp with CP frequency for a high-k device 

 

0 5x105 1x106 2x106 2x106 3x106

60

80

100

120

140

160

180

 
 

Q
cp

 (c
ol

ou
m

b/
cm

2 -c
yc

le
)

Frequency (Hz) 

CP Amplitude=2V



 154

As shown, Qcp is high at low frequencies starting at 10KHz. As the frequency increases, 

the contribution from the bulk decreases. So CP technique measured at higher 

frequencies probes more into the interface between high-k and Si-substrate. But still 

this technique takes the bulk effect into consideration. Qcp measurement by varying the 

rise time and fall time (tr and tf) gives more accurate results in estimating the interface 

traps. If we can vary the tr and tf, then we can eliminate the effect of 2nd, 3rd and 4th term 

in the above equation. Thus by varying tr and tf, and taking the slope of Icp vs ln(tr* tf)0.5 

plot, we can get the Qcp resulting from the interface only as shown in fig. 5.15. In this 

way, we can separate the contribution of bulk traps and interface traps in charge 

pumping current. 

 

 

 

 

 

 

 

Fig. 5.15. Separation of bulk and interface Qcp by meaureing Icp varying 

CP frequency and varying rise-fall times. 
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interface line is the bulk traps, while area below is the interface traps. Using the same 

technique in determining the bulk traps in the oxide, it was found that Top Si-insertion 

still showed the lowest bulk traps compared to the other two structures as shown in fig. 

5.16, while there was no significant different in interface traps as shown in fig. 5.17. 

 

 

 

 

 

 

 

Fig. 5.16. Variation of Bulk-Qcp with Si-insertion into the HfOxNy 

gate oxide. Top Si-insertion showed the lowest bulk trapping 

characteristics.   

 

 

 

 

 

 

 

Fig. 5.16. Variation of Interface-Qcp with Si-insertion.   
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There is little increase in interface Qcp for the bottom Si-insertion structure, probably 

because of nitrogen pile up at the interface. Thus this technique confirms the fact that 

the improvement in β value for Top Si-insertion was due to reduction of bulk trapping 

in the high-k gate oxide. The results also demonstrate that nitrogen profiling using Si-

insertion into the HfOxNy gate dielectric is an effective way to control the reliability of 

the device. Pushing the nitrogen location further away from the interface not only helps 

to reduce the EOT, but also improves the reliability of the oxide. It should be noted that 

under the unipolar stress condition, the values of βav (i.e. βac) is smaller than those of βdc 

for all of the Si-insertion structures as shown in fig. 5.17.  

 

 

 

 

 

 

 

 

Fig. 5.17. Comparsion of β values for the three Si-insertion structures 

under static and dynamic (unipolar) stress conditions.   
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incurred additional displacement current effect due to high dV/dt overshoot effect 

during these rise and fall times. More study need to be done to understand these effects 

clearly.  

 

5.3. A Novel Approach in Understanding the Breakdown Mechanism 

in HfO2 Gate Dielectrics under Substrate Injection Condition 

As discussed previously, the well accepted breakdown model for SiO2 based gate 

oxide was percolation mode [13-14]. Several other models, for example, hole trapping 

model [26], modified hole trapping model [27], interface softening model [28] have 

been proposed to understand the underlying physics behind breakdown mechanisms in 

SiO2 based oxides. But high-k dielectrics are known to be trap rich materials. Pre-

existing traps, defects density, crystallization effect with temperature, grain size, dipole 

effects, all of them make the high-k dielectrics hard to come up with a unique 

breakdown model. On the other hand, the transient relaxation effects, which have been 

addressed as undesirable issues in high-k dielectrics, make the understanding further 

complicated [29-31]. Thus to achieve a unified model, careful attention need to be paid 

to consider all of the effects in breakdown. Recently, breakdown (BD) model involving 

grain boundary and field-assisted wear-out in high-k dielectrics has been proposed [32]. 

However, the role of electron and hole trapping in dielectric BD has not been addressed 

in detail. To systematically study the fundamental BD mechanism HfO2 dielectrics, this 

work separates the role of electrons’ transient charging and hole trapping by interrupting 
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the electrical stress and applying high temperature annealing for detrapping purpose. It 

has been reported that hole accumulation in the bulk of the Hf-based dielectrics is 

primarily responsible for dielectric breakdown under substrate injection, although both 

holes and electrons are trapped in the dielectrics. A model has been given supporting the 

experimental observations.  

TiN/ALD HfO2 (EOT of 1.2nm) and TaN/PVD HfO2 (EOT of 1.4nm) nMOS 

devices were chosen for this study. Electrical stress under substrate injection was 

applied using HP 4156C. The single-pulse Id-Vg measurements were done by Keithley 

Model 4200-SCS and a pulse generator. Post-stress furnace anneal was done in 20min.  

 

5.3.1 Stress-Anneal Experiments  

Three sets of ALD HfO2 devices underwent a constant voltage stress (CVS) of 

2.2V for 500s. Then set-1 and set-2 were annealed in forming gas (FG) and N2 at 500oC 

respectively, while set-3 was untouched for 90 hours. The same sets were stressed again 

while monitoring Vth. The stress-anneal cycle was repeated several times (fig. 5.18.a). 

The Vth shifts in each phase of stresses were almost identical, except that the initial Vth’s 

(post-anneal Vth) after each anneal was seen lower than the preceding one, irrespective 

of anneal ambient of FG or N2 (fig.5.18.a-b, fig. 5.19). After 90 hours of no-anneal (set-

3), device relaxed slightly, but Vth quickly jumped up after few stress intervals. Even 

leaving the devices untouched for another 190 hours followed by stress showed the same 

phenomena (fig. 5.18.c). To avoid any parametric effect due to anneal, ALD HfO2 went 

through the same set of experiments except that the anneal was carried out at 400oC (fig. 
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5.18.d). It showed the same decreasing trend of post-anneal Vth, irrespective of the 

anneal ambient (FG/N2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.18. Vth shifts in ALD TiN/HfO2 vs. time with time-span of 500s. 

After each 500s, 500oC anneal was applied with (a) FG, (b) N2  and (c) no 

anneal, (d) Vth shifts in ALD TiN/HfO2 with post stress anneal at 400oC 
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5.3.2. Underlying Schematic Model 

The schematic energy band diagram model could explain the above observations 

(fig. 5.20).  

 

 

 

 

 

 

 

 

 

Fig. 5.20. Schematic energy band diagram (a) during substrate injection 

and (b) after high-temperature anneal. According to the model, breakdown 

of HfO2 is triggered by conduction path caused by hole accumulation, not 

by electron charging.  
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injected) at a deep potential could be detrapped leaving holes behind (fig. 5.20.a). After 

annealing, electron trappings are annealed out leaving holes. This resulted in the 

downward shift of initial Vth after anneal (fig. 5.20.b). Successive stresses cause an 

accumulation of holes, which couldn’t be annealed out, pulling the initial Vth further 

downward.  

 

5.3.3 Supporting Experimental Data 

To confirm this observation, devices were stressed at different stress times and 

annealed at 500oC (fig. 5.21).  

 

 

 

 

 

 

Fig. 5.21. Vth shifts at different stress times and corresponding post-

anneal Vth reductions (shown dotted arrow) after 500oC FG anneals. 
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slope as a function of time, indicating that holes are not accumulated at the Si interface 

and the interface characteristics aren’t degraded much. A single-pulse Id-Vg 

measurement was performed (fig. 5.23).  

 

 

 

 

 

Fig. 5.22. Small decrease in Gmax and small increase in sub-threshold 

swing (S) observed with stress times. The gradual trend was observed. 

 

 

 

 

 

 

Fig.5.23. Reduction of bulk trapping after anneal of stressed devices. 

Significant reduction of bulk trapping indicates that electron trapping 

anneals out by temperature treatment. Inset shows up and down sweep in 

single pulse Id-Vg. 
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Id degradation (∆Id), which is primarily governed by bulk charge trapping, occurs during 

the pulse width time. Significant reduction in Id degradation after N2 anneal indicates 

that temperature treatment anneals out injected electron trapping.  To further support our 

argument, leakage current of fresh sample and post-stress annealed sample has been 

compared (fig. 5.24). Existence of holes should reduce energy band diagram (as shown 

in fig. 5.20.b) at the hole locations, and should enhance leakage current of the post-stress 

annealed sample under substrate injection (fig. 5.24). 

 

 

 

 

 

 

Fig. 5.24. Jg of the sample increased after annealing in comparison to 

fresh states, due to change in band diagram as shown if fig 5.20(b).  

 

To investigate the hole accumulation BD (breakdown), two sets of NMOS 

capacitors with guard rings (to supply enough electron in inversion) were chosen. Set-1 

went through CVS at 3.5V until the devices breakdown and the corresponding injected 

charges were monitored (Fig. 5.25.a-“1QBD without anneal” curve). Set-2 was stressed at 

the same 3.5V close to breakdown (fig. 5.25.a-“2Qinj before anneal” curve) followed by 

Fresh Stress Anneal

4.3

4.4

4.5

4.6

4.7 W:L=30µmx30µm
450oC, 20m Anneal
2.06V, 30m Stress

 

 

J g (m
A

/c
m

2 )x
10

-3
 @

 V
g=1

.2
V

Conditions



 164

400oC N2 anneal. This heat treatment annealed out the trapped electrons leaving holes 

behind. After annealing, set-2 was again stressed at 3.5V until the devices break. The 

summation of injected charges in two phases (before and after anneal) are plotted (fig. 

5.25.a-“2QBD with intermediate anneal” curve).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.25. Breakdown distribution (BD) of two sets of devices. Set-1 went 

through direct breakdown under CVS. Set-2 was stressed at 3.5V, close to 

breakdown and went through 400oC anneal. (a) BD of set-2 at 3.5V after 

anneal  (b) BD of set-2 at -3.5V after anneal. Upper script in figures 

indicates set number. 

20

40

60

80

100

3.5V3.5V

3.5V

Anneal
2QBD

2Qinj

1QBD

2Qinj

  1QBD without Anneal

  2QBD with Intermediate 
           Anneal

  2Qinj Before Anneal

Area=1x10-5cm-2
CVS=3.5V

 

 
C

um
ul

at
iv

e 
Fa

ilu
re

QBD

103 104 105 106
0

20

40

60

80

100
Area=2x10-5cm-2

 

 

C
um

ul
at

iv
e 

Fa
ilu

re

Qinj (coulomb/cm2)

- 3.5V3.5V

3.5V

Anneal
2QBD

2Qinj

1QBD

(a)

(b)

20

40

60

80

100

3.5V3.5V

3.5V

Anneal
2QBD

2Qinj

1QBD

2Qinj

  1QBD without Anneal

  2QBD with Intermediate 
           Anneal

  2Qinj Before Anneal

Area=1x10-5cm-2
CVS=3.5V

 

 
C

um
ul

at
iv

e 
Fa

ilu
re

QBD

103 104 105 106
0

20

40

60

80

100
Area=2x10-5cm-2

 

 

C
um

ul
at

iv
e 

Fa
ilu

re

Qinj (coulomb/cm2)

- 3.5V3.5V

3.5V

Anneal
2QBD

2Qinj

1QBD

(a)

(b)



 165

As one can see, the BD distribution was almost the same as that of set-1. The results 

suggest that the rest of the amount of hole density to BD was generated by after-anneal 

additional substrate charge injection at 3.5V. If one changes the polarity to -3.5V (gate 

injection) after the intermediate anneal, BD occurs almost immediately (fig. 5.25.b). 

Under the gate injection polarity, major portion of injected carriers are holes (which 

causes Vth shift negatively) causing early breakdown (fig. 5.25.b). This further supports 

that it is the hole traps build-up that causes dielectric breakdown in high-k dielectrics. 
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5.4 Summary 

 In this chapter reliability of HfSixOy, HfO2 and HfOxNy has been discussed in 

terms of process issues, nitrogen effect and understanding the breakdown mechanism.  

 For compositionally varying HfSixOy bi-layer structure, the increase in Hf 

composition in Hf-silicate gate stack increases bulk trapping characteristics, which 

results in an increase in C-V hysteresis, mobility degradation, and oxide breakdown 

voltage reduction.  On the other hand, the reduction of Hf composition essentially 

decreases the dielectric constant, thus resulting in an increase in EOT. Introduction of 

bi-layer structure with low percentage of Hf at the bottom stack, and high percentage of 

Hf at the top can effectively merge the positive attributes of the two compositions, thus 

enhancing overall electrical performance and oxide reliability. 

 For HfOxNy with Si-insertion structure, it was found that trapping of nitrogen 

atoms by incorporating Si into the dielectric further away from the interface helps to 

enhance the reliability of dielectrics. The weibull distributions get tighter with Top Si-

insertion in comparison to Center and Bottom Si-insertion. Reduction of bulk trapping, 

and defect density in the bulk of the oxide have been attributed to the improvement. In 

comparison to dc stressing, β values for ac stressing were found to be smaller, possibly 

due to dV/dt transient effect in the oxide.  

 Furthermore, a model for understanding the breakdown mechanism in HfO2 gate 

oxide has been proposed based on stress-anneal experiments to separate the effect of 

electrons and holes into the oxide.  The model successfully confirms that hole 

accumulation in the HfO2 is the primary reason of dielectric breakdown (BD) under 
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substrate injection. No significant interface degradation was observed. Thus the bulk of 

the HfO2 plays a major role in degradation of high-k gate oxide devices. The better 

understanding of BD mechanism provides additional insights into high-k dielectric 

process optimization. The role of interface thickness still remains a question to be 

investigated its effect in breakdown of HfO2. So further study might be needed to clarify 

the accurate breakdown mechanism.  
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