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The Lee-Carter mortality model provides the very first model for modeling the

mortality rate with stochastic time and age mortality dynamics. The model is

constructed modeling the mortality rate to incorporate both an age effect and a

period effect. The Lee-Carter model provides the fundamental set up currently used

in most modern mortality modeling. Various extensions of the Lee-Carter model

include either adding an extra term for a cohort effect or imposing a stochastic pro-

cess for mortality dynamics. Although both of these extensions can provide good

estimation results for the mortality rate, applying them for the pricing of the mortal-

ity/longevity linked derivatives is not easy. While the current stochastic mortality

models are too complicated to be explained and to be implemented, transforming

the cohort effect into a stochastic process for the pricing purpose is very difficult.

Furthermore, the cohort effect itself sometimes may not be significant.

We propose using a new modified Lee-Carter model with a Normal Inverse Gaus-

sian (NIG) Lévy process along with the Esscher transform for the pricing of mor-

tality/longevity linked derivatives. The modified Lee-Carter model, which applies

the Lee-Carter model on the growth rate of mortality rates rather than the level of
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mortality rates themselves, performs better than the current mortality rate mod-

els shown in Mitchell et al (2013). We show that the modified Lee-Carter model

also retains a similar stochastic structure to the Lee-Carter model, so it is easy to

demonstrate the implication of the model. We proposed the additional NIG Lévy

process with Esscher transform assumption that can improve the fit and prediction

results by adapting the mortality improvement rate. The resulting mortality rate

matches the observed pattern that the mortality rate has been improving due to the

advancing development of technology and improvements in the medical care system.

The resulting mortality rate is also developed under a martingale measure so it is

ready for the direct application of pricing the mortality/longevity linked derivatives,

such as q-forward, longevity bond, and mortality catastrophe bond. We also apply

our proposed model along with an information theoretic optimization method to

construct the pricing procedures for a life settlement. While our proposed model

can improve the mortality rate estimation, the application of information theory

allows us to incorporate the private health information of a specific policy holder

and hence customize the distribution of the death year distribution for the policy

holder so as to price the life settlement. The resulting risk premium is close to the

practical understanding in the life settlement market.
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Chapter 1

Introduction

Life expectancy at an age x for a member of a specified population is defined as

the average number of years remaining at age x for the specific population under

study. It is a population specific average and deviation from this average at the

individual level is affected by quality of health care, environmental influences, diet,

wars, epidemics, and natural disasters. Because of improved public health and

other factors, life expectancy has risen throughout the developed world. Table 1.1

shows the life expectancy at age 65 for people in twelve developed countries. Life

expectancy continues to increase; in 2009 there were 455,000 Americans over 100

years old. This number is expected to increase 5.5% per year thereby doubling the

centenarian population every 13 years (United Nations, 2009 ).

The mortality rate at a given age is the number of people who die at that age

divided by the number of people who are alive at the beginning of that age interval.

Thus, the mortality rate at age 65 is the number of people who die at last age 65

divided by the number of people who reach age 65. Increased life span has finan-
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Male Female
1980 2006 1980 2006

United Kingdom 12.6 17.3 16.6 20.1
Germany 12.8 17.2 16.3 20.5
Italy 13.3 17.8 17.1 21.6
France 13.6 18.0 18.2 22.3
Norway 14.3 17.7 18.2 20.9
Greece 14.6 17.4 16.8 19.6
Spain 14.6 17.9 17.8 22.0
Ireland 12.6 16.8 15.7 20.2
Sweden 14.3 17.6 17.9 20.8
Switzerland 14.3 18.5 18.2 22.1
United States 14.1 17.4 18.3 20.3
Japan 14.6 18.5 17.7 23.4

Source: Credit Suisse, OECD

Table 1.1: Life expectancy at age 65

cial consequences for the individual, community, and society, and accordingly, with

decreasing mortality rates (for all ages) there is a need for improved capital manage-

ment strategies in order that annuity providers, insurers, pension plan fiduciaries,

and individuals are able to handle the additional financial burden. Current mor-

tality forecasting models have consistently underestimated mortality rates resulting

in pension and annuity providers taking on increasing risk and liabilities (Biffis and

Blake, 2009).

There are many ways to mitigate the financial consequences of mortality/longevity

risks. Insurance and reinsurance are traditional approaches, but these markets are

not sufficiently large in financial assets to support these risks by themselves (e.g.,

they lack sufficient capacity and liquidity) hence they are unable to support the
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gigantic global financial exposure currently estimated to be about 20 trillion dollars

(Loeys et al., 2007; Biffis and Blake, 2009). Pension and annuity providers are eager

to participate in mitigating their mortality/longevity risks but they need the assis-

tance of the much larger capital markets to be able to do this. The first step in cre-

ating a capital market instrument that can be used to mitigate mortality/longevity

risks is to develop a mortality model that reflects current mortality rates and has

the ability to project future mortality rates accurately. Next, they need to develop

a way to use the model to create financial instruments whose pay off is based on

actual and projected mortality rates so as to transfer mortality/longevity risks to

counter parties in a way that is both priced competitively and accepted within the

marketplace.

Modeling mortality began with Graunt (1662) who examined the London Bills

of Mortality who showed that the life span of individuals was predictable in the

aggregate, and developed a life table to describe this structured process of death.

Edmond Halley (1693) had better data and was the first to actually show how to

construct a rigorous (essentially modern) mortality table from empirical data and

how to price life annuities using this table. De Moivre (1725) first postulated a

functional form mortality table and showed how one could do annuity table cal-

culations using this mathematical model. He postulated a uniform distribution of

deaths model, and showed this simplified annuity calculation methods. Instead of

taking a strictly mathematical formulation as a postulate, Gompertz (1825) took

a biological approach and let the mathematical form arise as a consequence of the

biological considerations. Specifically, he postulated that the mortality rate at age
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x, m(x), reflected the body’s inclination to succumb to death at time t and that

w(x) = 1/m(x) was the body’s vitality or ability to resist death at age x. A further

postulate that changes change in the body’s vitality at age x is proportional to the

vitality (ability it has to withstand death) w(t) that it has to start with led to the

differential equation w(x) = cw(x), whose solution is an exponential function. Re-

ciprocating this formula for w(x) to obtain a mathematical model for the mortality

rate m(x), yielded a mortality curve known as the Gompertz curve. It fits mortality

data quite well from about age 30 to age 102-105 (Gavrilov and Gavrilova, 2011).

The above mortality models are static in nature, i.e., they involve the age x of the

person at a fixed point (year) in time but ignore the evolution of mortality over

time, and ignore random variation in mortality (i.e., the given mortality rates are

the expected rates at a frozen point in time). Recent mortality modeling which

attempts to incorporate both the age at death as well as the temporal dimension is

now mostly based on the two dimensional (age and time) structure supplied by Lee

and Carter (1992). The Lee-Carter model assumes two factors, an age effect and a

period or time effect, have an impact on mortality modeling. The temporal effect

reflects changes in mortality rates across all ages as time and medicine progress, and

the age component reflects that mortality increases with increasing age at any point

in time.

Although the Lee-Carter model provides a fundamental set-up for mortality mod-

eling, it does not adequately take into account rare events such as war, epidemics or

natural disasters. When such an event occurs, it creates a sudden abnormal increase

in the mortality rate. This is referred to as a mortality jump. To account for these
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jumps, extensions to the Lee-Carter model have been proposed1. Another extension

added to the Lee-Carter model was to incorporate another term which accounts for

the cohort effect found by Renshaw and Haberman (2006). This cohort effect ex-

tension attempts to reflect the observed phenomenon that in some times and places

people born in the period of years (say 1946) will experience a similar mortality rate

pattern which differs from those of their immediate predecessors (1945) or those

born in the following year (1947).

While the Lee-Carter model and each extension serve to improve mortality fore-

casting, an unintended consequence is that the mortality models so constructed can

become so complex that it is almost impossible to use them when attempting to cre-

ate financial instruments. To adequately price a mortality/longevity linked financial

derivative, a stochastic mortality model is needed along with a martingale measure2.

The mortality model must be easy to explain and not compromise the accuracy of

mortality forecasting. The Lee-Carter extensions without stochastic process spec-

ifications cannot be used for martingale pricing. And, as noted earlier, even the

extensions with stochastic process specifications tend to be complicated; and it is

not intuitive to link them to martingale pricing techniques common in the finan-

cial literature. Therefore, a new model is needed that ensures accurate mortality

forecasting and at the same time enables martingale pricing.

Lévy processes are used within finance and risk management disciplines but there

1See Ballotta and Haberman(2006), Deng et al. (2012), Milevsky and Promislow (2001), Ren-
shaw et al. (1996), and Sithole et al. (2000).

2A martingale measure is desired here (in order to serve as a risk-neutral measure) for arbi-
trage free asset pricing in an incomplete market (such as that governing mortality and longevity
derivatives which do not have an underlying tradable underlying security upon which they are
based).
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is limited literature discussing the use of employing Lévy processes on mortality rate

modeling. The major reason is because Lévy processes are stationary stochastic

processes while the process of mortality rates is not. To take into account the non-

stationary status of mortality rates within the Lee-Carter framework, Hainuat and

Devolder (2008) introduce an Ornstein-Uhlenbeck process with tempered α-stable

subordinators. They combine this with a Lévy process to account for small and

large jumps. To arrive at a martingale price they then use the Esscher transform

(Gerber and Shiu, 1994). Although using a Lévy-Ornstein-Uhlenbeck process solves

the non-stationary mortality issue and enables martingale pricing, it is a complicated

process involving many steps.

By looking at the growth rate of mortality rate at a fixed age x instead of level

of mortality as was done by Lee and Carter, Mitchell et al. (2013) (hereafter the

modified Lee-Carter model) structurally modified the Lee-Carter model. In so doing,

they are able to fit and forecast mortality rates better than the Lee-Carter model

and all the various extensions discussed previously.

The growth rate model of log mortality used by the modified Lee-Carter model

has similar properties to certain models of asset returns in financial theory. Since

modeling asset returns has developed substantially and since modeling the growth

rate of mortality behaves similar to asset returns we will first examine utilizing the

techniques developed in finance to accurately forecast mortality rates. Then we

shall adapt the the modified Lee-Carter model to include a Lévy process that will

enable us to obtain an equivalent martingale measure that can be used for pricing

and create a fair price for mortality/longevity derivatives. Finally, this model will
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be used for pricing of mortality/longevity linked securities, such as mortality swaps,

q-forward, and mortality bonds.

1.1 Structure of the Dissertation

Chapter 2 introduces Lévy processes and the Esscher transform. We first define a

Lévy process and characterize a Lévy process via the corresponding Lévy triplet,

on the characteristic function of the stochastic process which delineates the various

distributions that correspond to the Lévy process. For our application, we select a

Normal Inverse Gaussian (NIG) distribution to generate a Lévy process and then

we apply the Esscher transform and show how this can result in arbitrage free (risk

neutral or martingale) pricing. We show that the corresponding parameters for the

Esscher transformed equivalent martingale stochastic process have a closed form for

the corresponding parameter enabling a simplified calculation.

Chapter 3 discusses the Lee-Carter model and its various extensions, including

changing the distributional assumptions of error terms, the Lee-Carter model with

the cohort effect, and stochastic modeling with application of reduction factor model

and Affine process. These extensions are widely applied, and we will describe their

general structures. The advantages and disadvantages will also be presented.

Chapter 4 first introduces the modified Lee-Carter model. We propose an ad-

ditional assumption to the modified Lee-Carter model, which is the the modified

Lee-Carter model with an NIG Lévy driving process and transformed using the Es-

scher transform. The proposed model has a structure similar in many ways to the

Lee-Carter model so is easy to use and explain. The application of the Esscher trans-
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form enables a closed form martingale pricing formula for the mortality/longevity

linked derivatives.

Chapter 5 presents the estimation results from our proposed model. Using mor-

tality data from the United States and the United Kingdom (England and Wales)

we also compare our estimation results with the Lee-Carter model and the modified

Lee-Carter model.

Chapter 6 is concerned with another financial product that is sensitive to longevity

and mortality risk, namely life settlements which are newly created secondary mar-

kets in life insurance products. We first introduce the deterministic and probabilistic

approaches to life settlement pricing. Then we apply information theory to “cus-

tomize” the probability distribution of the death year for a policyholder when his/her

private information (such as a projected life expectancy) is available. We apply our

proposed model for mortality rate prediction and calculate the prices for a life set-

tlement. We also propose an approach to calculate the implied risk premium for a

life settlement. An empirical comparison is made with Murphy (2006).

In Chapter 7 we price the mortality/longevity linked derivatives, including q-

forward, mortality catastrophe bonds, and the EIB bond. We take into account

mortality improvement rates using the modified Lee-Carter model; therefore, our

proposed model produces lower mortality rate estimations. Hence, the prices and

premiums generated from our model are lower, which may stimulate market interest

in hedging the mortality or longevity risks. Chapter 8 summarizes our contributions

and findings. Future study and research questions are also discussed.
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Chapter 2

Lévy Processes and the Esscher

Transform

2.1 Introduction

Stochastic processes have been used in financial modeling for over a century. Bache-

lier is credited with being the first person to mathematically model the Brownian

Motion stochastic process in his 1900 PhD dissertation at the University of Paris

(the Sorbonne), five years ahead of Einsteins development for physics. Bacheliers

dissertation concerned the stochastic process of speculative prices in the securities

market, but this path was not commonly pursued until much later (especially in the

late 1960s or early 1970s). Financial markets are complex, however, using stochas-

tic processes, it is possible to create models that accurately represent complicated

statistical correlations. In so doing, we are able to make sense of various financial

markets and make predictions regarding rates of return and pricing structures. The
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main characteristics of the stochastic processes used in financial modeling include

the drift term, the diffusion term (if any), and a potential jump change process. Mer-

ton (1976) first used as a stochastic processes model in financial modeling. Merton

suggested that the dynamics of a stock return can be captured by a jump-diffusion

model with a mixture of independent Brownian motions and Poisson processes. In

financial modeling, a jump-diffusion model adequately describes the dynamics of

many asset returns. This model has a drift term, a diffusion term, and a jump

term. A drift term describes a long-term trend pattern. A diffusion term is often

assumed to have a Brownian motion structure and captures smooth but random

fluctuations of the asset return around the long term drift. The jump term captures

the potential large changes that may be caused by rare events and may be modeled

by a compound Poisson process. Diffusion together with jumps provide the random

resultant variations of asset returns. A jump-diffusion model implies that the size

of the small changes has a Gaussian distribution, but asset returns are recognized

to have non-Gaussian behaviors that exhibit fat tails and excess kurtosis because

of compound Poisson jump process. This realization means that another model is

needed to account for these non-Gaussian behaviors.

A general Lévy process (a stationary process with independent increments) can

be used to account for the non-Gaussian distribution of assets. It can be used to

generate a distribution that can have fatter tails than the normal distribution, have

excess kurtosis, and exhibit many other non-Gaussian behaviors (Wu, 2012). Lévy

processes have been recognized as valuable tools in finance and risk management

throughout recent decades. They are valuable because they can be used with data
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that appear to have components that conform to both Gaussian and non-Gaussian

distributions. A Lévy process is a continuous time stochastic process with station-

ary independent increments. Due to the stationary independent increments assump-

tion, each time-varying random variable at a fixed time in a Lévy process can be

expressed as a sum of independent identically distributed random variables. There-

fore, both large jumps and small jumps are characterized by additional distributional

assumptions. Hence, a Lévy process can combine greater flexibility with analytical

tractability. The potential distributions possible for Lévy process are delineated by

their characteristic functions (Fourier Transform) to have a representation given by

Lévy and Khinchine (Sato, 2000; Schoutens, 2003).

Constructing an exponential Lévy process that is a generalized version of a jump

diffusion model enables processing both small jumps and large jumps when proper

distributional properties are assumed. While the most studies of jump-diffusion

models that require a diffusion term to fill the gaps in between the arrival of jumps

modeled by a compound Poisson process, a Lévy process has infinite number of

jumps within any finite interval to process all jumps without adding a diffusion term

and a jump process (Carr et al., 2002; Carr and Wu, 2003; Wu, 2005). A specified

distribution that possesses high kurtosis (frequent small jumps) and fat tails (several

infrequent large jumps) can deal with the non-Gaussian nature of asset returns. In

this research, a Normal Inverse Gaussian (NIG) distribution will be specified for the

stochastic innovation term in the dynamics of the asset returns. An NIG distribution

characterizes the distribution of the jump. Since there are many small jumps and

few large jumps, the distribution of jump is high-kurtosis and fat-tailed, and the
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NIG distribution fits this requirement. An NIG distribution has four parameters

to specify location, degree of asymmetry, kurtosis, and skewness, so it provides an

excellent fit for the distribution of jumps. Combining the exponential Lévy process

with this NIG distribution will produce better estimation results for pricing assets.

Another aspect that must be considered within this research is calculating mar-

tingale prices. Martingale pricing is used to quantify asset prices within a risk-free

or risk-neutral environment. These risk neutral distributions are particularly useful

for determining arbitrage free prices in an incomplete market (such as that exhib-

ited by derived instruments based on mortality rates or other non-traded underlying

indices). There are many ways to calculate martingale prices. Here we will use the

Esscher transform. We use this method for two reasons. First, it is easier to use than

other methods, such as the application of the Radon-Nykodym derivative. Second,

the parameters estimated from an NIG Lévy process can be directly input into the

Esscher transform to get a closed form solution for the process thus eliminating the

need for numerical calculations.

When pricing a financial asset in an incomplete market, it is necessary to con-

vert the physical (or observed empirical) original measure of the asset to an equiva-

lent martingale measure to ensure that the pricing reflects an arbitrage free pricing

that allows for calculations in a risk-neutral environment so that discounted present

values can be calculated using the risk-free discount rate. The Radon-Nykodym

derivative, which determines the likelihood ratio of two measures, is often used to

calculate a martingale measure (Konstantopoulos et al., 2011). However, the Radon-

Nykodym derivative is difficult to use and sometimes martingale measure cannot be
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found.

The Esscher transform is a special case of the Radon-Nykodym derivative that

Gerber and Shiu discussed and used for asset pricing in 1994. They found, that

when using an exponential Lévy process, it is possible to sidestep the calculation

of the Radon-Nykodym derivative by applying the Esscher transform. Moreover,

a closed form solution for the parameter of the Esscher transform can be found in

these cases (Cawston and Vostrikova, 2009; Önalan, 2009).

In the rest of this chapter we introduce the Lévy processes that are commonly

applied in finance and risk management. Then we show how the Esscher trans-

form can be applied to these Lévy processes to find equivalent martingale measures.

We choose an NIG Lévy process as an example to illustrate how we can find the

parameter of the Esscher transform, as we shall utilize this process subsequently.

2.2 Lévy Processes

Lévy processes were named after the French mathematician Paul Lévy (1886-1971)

who introduced the processes that eventually become the crucial component in the

modern theory of stochastic processes as applied to asset pricing. The definition of

a Lévy process is presented below.

Definition 2.1. A stochastic process (Yt)t≥0 on (Ω,F ,P) having values in R
d is said

to be a Lévy process if it possesses the following properties:

1. Independent increments: For 0 ≤ t1 < t2 ≤ t3 < t4, (Yt2 − Yt1) and (Yt4 − Yt3)

are independent.
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2. Stationary increments: For any h > 0, (Yt+h − Yt) does not depend on t.

3. Right continuous: For all ǫ > 0 and h > 0,

lim
h→0

P(|Yt+h − Yt| > ǫ) = 0.

The definition implies the most important property of a Lévy process, namely

at any point in time the distribution of Yt is infinitely divisibility (Protter, 2002;

Schoutenes, 2003). This means that Yt at any fixed time can be expressed as the

sum of independent and identically distributed (i.i.d.) random variables. This char-

acteristic is particularly useful when the sequence exhibits large jumps, small jumps,

or both. It is not surprising that the Brownian motions that are frequently repre-

sented as diffusion processes and the Poisson processes that are often shown as jump

processes are both Lévy processes.

Since the distribution of a random variable X can be characterized by its char-

acteristic function obtained from the Fourier transform. The law (or probability

distribution) of a Lévy process can thus be determined by the same characteris-

tic function. Consequently, we next define the characteristic function of the Lévy

process so we may utilize it subsequently.

Definition 2.2. Let (Yt)t≥0 be a Lévy process on R
d, then there exists a continuous

function ψ(u) called characteristic exponent of Yt, such that

E(eiuYt) = etψ(u).
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In the Definition 2.2, the law (or distribution) of Yt is determined by the func-

tion ψ(.). From Definition 2.2, we observe the distribution of Y1, and by stationarity

the distribution of the entire process is determined. Therefore, to characterize the

distribution of a Lévy process (Yt)t≥0, we can just specify the ψ(.) for Y1. The

exact specification is determined by the Lévy-Khintchine representation which com-

pletely specifies the characteristic function of stationary processes with independent

increments.

Theorem 2.3 (Lévy-Khintchine representation). Let (Yt)t≥0 be a Lévy process on

R
d, then

E(eiuYt) = etψ(u),

where

ψ(u) = γui− 1

2
σ2
νu

2 +

∫ ∞

−∞

(

exp(iuy)− 1− iuyI{|y|<1}

)

ν(dy).

The (σ2
ν , ν, γ) is called Lévy triplet that uniquely characterizes the Lévy process.

The Lévy-Khintchine representation shows that a Lévy process can possess dis-

tributional properties that can be specified through the parameters of the Lévy

triplet. Moreover, when the moment generating function of a random variable ex-

ists, it can be determined from the characteristic function. The function ψ(−iu) is

the logarithm of the moment generating function and is used frequently for calcula-

tions involving moments. It is usually called cumulant generating function, and we

define it as κ(u); that is,

κ(u) := ψ(−iu) = γu+
1

2
σ2
νu

2 +

∫ ∞

−∞

(

exp(uy)− 1 + uyI{|y|<1}

)

ν(dy).
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We then have a proposition for the moment generation function.

Proposition 2.4. Let (Yt)t≥0 be a Lévy process with the triplet (σ2
ν , ν, γ). The

moment generating function MY (u) = E(euYt), ξ ∈ R, is finite if and only if

∫

|x|≥1

euyν(dy) <∞.

Then

E(euYt) = etψ(−iu) = eκ(u)

where ψ is the characteristic exponent of (Yt)t≥0.

The intriguing part of the proposition 2.4 is that it looks similar to an exponential

Lévy process, also called a geometric Lévy process. The definition of an exponential

Lévy process is defined below.

Definition 2.5. An exponential Lévy process (Xt)t≥0 is given as follows

Xt = X0e
Yt ,

where (Yt)t≥0 is a Lévy process.

An exponential Lévy process is often seen in the financial modeling. For example,

the asset return dynamics are often assumed to follow an exponential Lévy process

St = S0 exp(Yt),

where St is the stock price at time t, and Yt is the stock price dynamics which is
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assumed to be a Lévy process. Since the market is incomplete, pricing the asset

with physical (or real) measure has risk concerns. In pricing an exponential Lévy

process in an risk-free environment, the goal is to make the discounted stock price

as a martingale; that is,

S̃t = S0 exp(−rf t+ Yt) (2.1)

into a martingale under some corresponding martingale measure. This martingale

measure yields the risk neutral measure capable of evaluating expected discounted

present values using the risk-free discount rate. Without the martingale measure,

some other discount rate is needed to price. The assumption that the process to be

priced follows an exponential Lévy process has some benefits of calculating the risk

neutral price for financial derivatives. We will show this in the next section.

2.3 Esscher Transform

The Esscher transform is named in honor of the Swedish actuary Fredrick Esscher

who introduced this transformation for a special case in Esscher (1932). The trans-

formation is also known as an exponential tilting in the statistical literature. The

Esscher transform has been a popular approach in financial modeling, particularly

asset pricing. To achieve the pricing under the risk neutral environment, an equiv-

alent martingale measure must be selected. The minimal entropy martingale which

minimizes the entropy difference between the physical measure and the risk neutral

measure is an intuitive choice. However, calculation may be complicated. Prause

(1999), Esche and Schweizer (2005) and Hubalek and Sgarra (2006) show that for an
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exponential Lévy process applying Esscher transform process can obtain the mar-

tingale having the property of preserving the Lévy structure of the model as well as

approximating the minimal entropy martingale measure well.

The definition of the Esscher transform is described as follows.

Definition 2.6. Let Y be a random variable on a probability space (Ω,F ,P) and

θ ∈ R. The Esscher transform P
θ corresponding to Y and a parameter θ is defined

by its likelihood ratio

dPθ

dP
=

eθY

E(eθY )
,

provided that E(eθY ) exists.

By Proposition 2.4, the Esscher transform of a Lévy process is

dPθ

dP
=

eYtθ

E(eYtθ)
= eθYt−tκ(θ). (2.2)

In financial modeling, a pricing process can be constructed by utilizing the mar-

tingale measure obtained from the Radon-Nikodym derivative. This can be viewed

as the ratio of two likelihoods and is often applied when change of measures is needed

to obtain a risk neutral martingale measure related to the original physical measure.

However, the Radon-Nikodym sometimes may be complicated. Utilizing the Ess-

cher transform can simplify the process, because the Esscher transform provides a

measure change and is a special case of the Radon-Nikodym derivative by obtained

from the ratio of two measures.

Theorem 2.7 (Radon-Nikodym theorem). Let λ1 and λ2 be two measures on (Ω,F)

and λ2 be σ−finite. If λ1 ≪ λ2, then there exists a random variable Z on (Ω,F , λ1)
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such that Z ≥ 0 almost surely, and

λ1(A) =

∫

A

Zλ2 (2.3)

holds for A ∈ F .

The (2.3) can be re-written as

λ1(A) =

∫

A

dλ1 =

∫

A

dλ1
dλ2

dλ2 =

∫

A

Zλ2, (2.4)

and Z = dλ1/dλ2 is called the Radon-Nikodym derivative of λ1 with respect to

λ2. The Radon-Nikodym can be viewed as the ratio of two likelihoods. Compar-

ing (2.2) and (2.4), we observe that the Esscher transform is a special case of the

Radon-Nikodym derivative, wherein assume the ratio has a special form. Therefore,

the transformed measure P
θ is actually the equivalent measure with respect to the

original (physical) measure P. The issue in using the Esscher transform is to select

the parameter θ such that the resulting changed measure is a martingale.

To obtain the parameter θ for the corresponding martingale measure of the

Esscher transform in the Lévy process case, the following theorem may be used to

simplify the calculation.

Theorem 2.8. Let (Yt)t≥0 be a Lévy process, then the Esscher transformed process

P
θ is also a Lévy process and

κ(u) = κ(u+ θ)− κ(θ).
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The theorem 2.8 can also be demonstrated by Bayes’s theorem. For all 0 ≤ s ≤

t ≤ T, we have

EP
θ
T (eu(Yt−Ys)|Fs) =

EP(eu(Yt−Ys)Y θ
T |Fs)

EP(Y θ
T |Fs)

=
1

Y θ
s

EP[EP(eu(Yt−Ys)Y θ
T |Ft)|Fs]

=
1

Y θ
s

EP(eu(Yt−Ys)Y θ
T |Fs)

= EP(e(u+θ)(Yt−Ys)−(t−s)κ(θ)|Fs)

= e(t−s)(κ(u+θ)−κ(θ)).

Therefore, Theorem 2.8 holds. In most cases, including financial modeling and our

case, the u is one. Therefore, we have

κ(1) = κ(1 + θ)− κ(θ).

In (2.1), the Esscher transform can make it as a martingale with the correspond-

ing martingale measure, and κ(1) is rf (Cawston and Vostrikova, 2009; Önalan,

2009). Therefore, the θ∗ for the Esscher transform martingale measure is the solu-

tion to

rf = κ(1 + θ∗)− κ(θ∗). (2.5)

2.4 NIG Lévy Processes

If a process is an exponential Lévy process, then by Lévy-Khintchine representation,

we can characterize this Lévy process by the Lévy triplet. We specifically choose an
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NIG distribution for the further modeling.

2.4.1 NIG Distribution

An NIG distribution is a mixture of Normal distribution and inverse Gaussian (IG)

distribution. Let a random variable Z > 0 be an inverse Gaussian random variable

with density function

fIG(z;α, β) =
α√
2πβ

z−
3
2 exp

(

(α− βz)2

2βz

)

.

To construct an NIG random variable, let a random variable Z be an IG random

variable

Z ∼ IG(δ
√

α2 − β2,
√

α2 − β2).

The random variable Y has an NIG distribution if its conditional distribution is

a normal distribution

Y |Z ∼ N(µ+ βz, z),

and the upon unconditional density function of Y is

fNIG(y;α, β, µ, δ) =
α

π
exp(δ

√

α2 − β2 + β(y − µ))
K1(αδ

√

1 +
(

y−µ
δ

)2

√

1 +
(

y−µ
δ

)2
, (2.6)

where α > 0, β < |α|, δ > 0, and K1(.) is the modified Bessel function of the third

kind with order 1 (see Appendix A). To generate an NIG random variable, let X be
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a random variable drawn from a standard Normal distribution. Then

Y = βZ +
√
ZX + µ

where Y ∼ NIG(α, β, µ, δ).There are four parameters in the NIG density function to

control shape and location. Figure 2.1 shows how these parameters affect the shape

and location of an NIG distribution. The parameter α controls the tail heaviness. A

smaller α introduces heavier tail. The parameter β is to control how symmetric the

shape can be. When β is zero, the shape is symmetric. The parameter µ is called

the location parameter and designates the center of the distribution. The δ is called

scale parameter and controls the spread of the distribution. A lager δ results in a

high kurtosis shape.

An NIG distribution have nice convolution property and scaling property, making

an NIG distribution easy for many analytical applications (Blasild 1981; Kalemanova

et al., 2005). .

Proposition 2.9 (Convolution Property). Let Y1 and Y2 be NIG random variables

with

Y1 ∼ NIG(α, β, µ1, δ1)

Y2 ∼ NIG(α, β, µ2, δ2).

Then Z = Y1 + Y2 is also an NIG random variable where

Z ∼ NIG(α, β, µ1 + µ1, δ1 + δ2)
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Figure 2.1: Densities of an NIG distribution
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Proposition 2.10 (Scaling Property). Let Y be an NIG random variable where

Y ∼ NIG(α, β, µ, δ).

Given a non-negative constant c, then cY is also an NIG random variable where

cY ∼ NIG

(

α

c
,
β

c
, cµ, cδ

)

.

2.4.2 Estimation

There are two ways to estimate the parameters of the NIG. The first approach is

the method of moments.

Let γ =
√

α2 − β2, and the central moments of an NIG random variable (Kale-

manova et al., 2005) are

E(y) = µ+
δβ

γ

V ar(Y ) =
δα2

γ3

skewness =
3β

α
√
δγ

kurtosis =
3(1 + 4β2/α2)

δγ

(2.7)
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The sample moments are

mean = x̄ =
1

n

n
∑

i=1

xi

variance = σ̂2
Y =

1

n− 1

n
∑

i=1

(xi − x̄)2

skewness = ŜY =
1

n

n
∑

i=1

(

xi − x̄

σ̂Y

)3

kurtosis = K̂Y = −3 +
1

n

n
∑

i=1

(

xi − x̄

σ̂Y

)4

(2.8)

Equate (2.7) and (2.8), and we first can find the estimation for γ shown as follows

γ̂ =
3

σ̂Y

√

3K̂Y − 5Ŝ2
Y

,

and then we can find the estimation of all parameters shown as follows

δ̂ =
9

γ̂(3K̂Y − 4Ŝ2
Y )

α̂ = σ̂Y γ̂

√

γ̂

δ̂

β̂ =
√

α̂2 − γ̂2

µ̂ = x̄− δ̂β̂

γ̂
,

provided the condition 3K̂Y > 5Ŝ2
Y is satisfied for the existence of the moments.

The second approach is the maximum likelihood method. Prause (1999) shows

the log-likelihood function for a generalized hyperbolic distribution. Since the den-
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sity function of NIG distribution is (2.6) and an NIG distribution is one of the special

cases of generalized hyperbolic distributions, we can have a log-likelihood shown as

follows

LNIG(y|α, β, µ, δ) = log a(α, β, δ)− 1

2

n
∑

i=1

log
(

δ2 + (xi − µ)2
)

+

n
∑

i=1

(

logK−1

(

α
√

δ2 + (xi − µ)2
)

+ β(xi − µ)
)

where

a(α, β, δ) =
αδ

(2π)1/2(α2 − β2)1/4K−1/2

(

δ
√

α2 − β2
) .

The partial derivatives of the log-likelihood are shown as follows

d

dα
LNIG =n

δα
√

α2 − β2

−
n
∑

i=1

√

δ2 + (xi − µ)2R−1(a(α, β, δ)
√

δ2 + (xi − µ)2)

d

dβ
LNIG =n

(

− αβ
√

α2 − β2
− µ

)

+

n
∑

i=1

xi

d

dδ
LNIG =n

(

1

δ
+
√

α2 − β2

)

+

n
∑

i=1

(

−2δ

δ2 + (xi − µ)2
− αδ
√

δ2 + (xi − µ)2

)

d

dµ
LNIG =nβ

n
∑

i=1

xi − µ
√

δ2 + (xi − µ)2

×
(

2
√

δ2 + (xi − µ)2
+ αR−1

(

α
√

δ2 + (xi − µ)2
)

)
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where

R−1 =
1

π

∫ ∞

0

xdy

y
(

J1(
√

(y)) + Y1(
√
y)
)

(y + x2)
,

J1(.) and Y1(.) are Bessel function of the first order with degree 1 and Bessel function

of the second order with degree 1 (See Appendix B). We can furthermore derive

direct solutions for µ and β shown as follows

µ̂ =− δβ
√

α2 − β2
+

1

n

n
∑

i=1

xi

β̂ =
1

n

n
∑

i=1

xi − µ
√

δ2 + (xi − µ)2

×
(

2
√

δ2 + (xi −mu)2
+ αR−1

(

α
√

δ2 + (xi − µ)2
)

)

These two approaches sometimes yield different results. The method of moment

is calculated from the sample moments, and it may have better visual approxima-

tion of the shape. The method of moment also has the advantage of availability of

the close forms, although the solutions do not always exist. The maximum likeli-

hood method produces the estimation that is more likely to happen. It has useful

asymptotic properties for statistical inference. In practice, one can calculate the

estimations from the method of the moment first, and then use them as the starting

points for the itereatively solving for maximum likelihood estimates.
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2.5 NIG Lévy Process

Let (Yt)t≥0 be an NIG Lévy process. By the Lévy-Khintchine representation, we

can use the Lévy triplet (A, ν, γ) to characterize the process as follows

σ2
ν = 0

ν(dy) =
αδ

π

exp (βy)K1 (α|y|)
|y| dy

γ =
2αδ

π

∫ 1

0

sinh (βy)K1 (αy)dy.

We would like to determine the parameter of the Esscher transformation needed

to obtain the martingale equivalent measure of the exponential NIG Lévy process,

i.e., to apply (2.5) when we have (2.1). The moment generation function of an NIG

random variable Y is

MY (θ) = exp(µθ + δ(
√

α2 − β2 −
√

α2 − (β + θ)2)) = exp(κ(θ)), (2.9)

We can find the function κ(.) from (2.9), and plug it in (2.5). The solution θ∗ can

be formulated as follows

θ∗ = −β − 1

2
+

√

(µ− rf)2

δ2 + (µ− rf)2
α2 − (µ− rf)2

4δ2
. (2.10)

The transformed measure with respect to θ∗ is NIG(α, β + θ∗, µ, δ).
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Chapter 3

Lee-Carter Model

3.1 Introduction

Between 1900 and 2012 life expectancy in the developed countries has increased ap-

proximately 40 years. Table 3.1 shows the life expectancy at birth for populations

in twelve countries between 1900 and 2012. Technology has enabled vast improve-

ments in diverse industries such as medical care, public works, and nutrition thereby

increasing the overall survival rate of children and senior citizens. Consequently, the

mortality rate continues to decline.

Before the 1990s, forecasting mortality rates involved subjective judgments and

opinions of experts often leading to under-estimating the rate of mortality decline

(Lee and Miller, 2000). Expert opinions were based on demographic features includ-

ing medical, behavioral, and social influences. These demographic features created a

static sequence mortality model that did not account for random acts such as world

wars or epidemics. The inability of this forecasting to account for these real world
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Male Female
1900 2012 1900 2012

United Kingdom 46.4 78.1 50.1 82.4
Germany 43.8 77.9 46.6 82.6
Italy 42.9 79.2 43.2 84.6
France 45.3 78.4 48.7 84.3
Norway 52.3 77.7 55.8 83.1
Greece 38.1 77.5 39.7 82.8
Spain 33.9 78.3 35.7 84.5
Ireland 47.8 78.1 49.3 82.7
Sweden 52.8 78.9 55.3 83.6
Switzerland 45.7 78.3 48.5 84.2
United States 48.3 76.1 51.1 81.1
Japan 42.8 80.6 44.3 87.4

Source: CIA World Factbook and Kinsella (1992).

Table 3.1: Life expectancy at birth

occurrences means that this model does not truly reflect our society and therefore

cannot be used to accurately describe mortality rates.

The Lee and Carter (1992) removes the subjective aspects of previous static

forecasting methods by introducing a period effect and age effect. This means that

mortality rates are shown to change with time as well as age group. Many institu-

tions, including the U.S. Census Bureau, the United Nations Population Division,

and governments and actuaries in Canada, Mexico and some European countries

employ the model when forecasting (Sullivan, 2001; Booth et al., 2002).

Lee and Carter discovered a pattern and created an index that shows a decrease

in mortality rates over time. The problem with this forecasted index of mortality

rates is that it assumes a Gaussian (normal) distribution. However, the change
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of mortality rate is actually not a well-behaved Gaussian distribution because the

occurrence of a disaster or an epidemic can cause a dramatic increase in mortality

rates. These non-Gaussian aspects along with some other effects related to mortality

rates require extensions to the Lee-Carter model. In the following paragraphs we

will describe these extensions.

The first extension includes non-Guassian distributions such as Normal Inverse

Gaussian (NIG) distribution, Student’s t-distribution, and other generalized hyper-

bolic distributions to account for a change in mortality rate due to a disaster or

epidemic. The error terms in the Lee-Carter model thus are assumed to be the

aforementioned distributions.

The second extension adds a reduction factor that can be a number or a function

to exhibit the downward trend of mortality rates. Using this extension, the future

mortality rate of an age or an age group is modeled using the current mortality rate

with a reduction factor since mortality rates are decreasing due to technological

improvements. The reduction factor is modeled as an exponential function with

a stochastic jump-diffusion process that has a drift term as a general pattern and

a diffusion term to exhibit the randomness. Financial research has successfully

used this stochastic process to model the non-Gaussian distributed stock return

time series. Since the mortality rate also displays similar non-Gaussian behavior,

applying a stochastic process to mortality rate modeling is analogous to applying

the stochastic process in financial modeling.

As stated earlier, mortality rates have been decreasing since the turn of the last

century and these rates seem to trend similarly for similar populations. Yet, in
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the United Kingdom, research published by the Continuous Mortality Investigation

(CMI) Bureau shows that people born in the United Kingdom between 1925 and

1945 (centered on the generation born in 1931) have experienced more rapid im-

provement in mortality than generations born on either side of this period. Taking

into account this cohort effect, Renshaw and Haberman (2006) introduce the second

extension to the Lee-Carter model. In this model, an extra term is applied to cap-

ture the observation that people within the same birth cohort should have similar

mortality experiences. Although there are several other models with the cohort ef-

fect, Renshaw and Habermans (2006) is the most popular one and is widely applied

in actuarial science.

Finally, there are other models that use age effect and period effect for forecasting

mortality rates. Instead of modeling the mortality rate directly, these models apply

the Lee-Carter model on mortality odds that is the ratio of the mortality rate and

the survival rate. The advantage to modeling the mortality odds is that Generalized

Linear Models (GLMs) are applied. GLMs provide simple linear form, are easy to

estimate, and many distributional assumptions are available. Cairns et al. (2006)

and Cairns (2007) discuss how to implement a GLM on the mortality odds. Although

models for mortality odds are also popular for actuarial modeling, we will not discuss

this type of model since the response variable is different from the Lee-Carter model.

In the following pages we will introduce the original Lee-Carter model and the

extensions. We will show how to estimate the model parameters by the singular

value decomposition (SVD) method. A literature review discussing non-Gaussian

modifications to the original Lee-Carter model is included. Then we show how to
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apply a stochastic process on the Lee-Carter model and finally we show how to apply

the cohort effect on the Lee-Carter model.

3.2 Lee-Carter Model

The Lee-Carter model proposed by Lee and Carter (1992) is described as follows

mx,t = exp(ax + bxkt + ǫx,t) (3.1)

where mx,t is the mortality rate for the age group x in year t, kt is a time-varying

mortality index, ax describes the general shape of mortality rate, bx is the response

of each group to the mortality rate, and ǫx,t is the error term for the age group x

representing the information that is not captured by the model. The error term ǫx,t

is assumed to have a Gaussian distribution with mean zero and variance σ2
x that

is the variance of the log mortality rate within the age group x. The (3.1) can be

re-written as

log(mx,t) = ax + bxkt + ǫx,t, (3.2)

which is interpreted as that the logarithm of the mortality rate is linear in the

mortality index with age-specific components ax and bx.

The ax is mostly negative, corresponding to the fact that the pattern of decline

of mortality rate. The intriguing design of this model involves both bx and kt com-

ponents with both age effect and period effect. The bx describes how the logarithm

of the mortality rate changes when kt changes. If bx is large, the mortality rate

varies a lot when general pattern kt changes; if bx is small, the mortality rate varies
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little when kt changes. Using the influenza epidemic of 1918 as an example, we can

observe the change of value of bx. The disease raised death rates for people between

the ages of 25 to 34 years old. Thus, the estimated bx of age group 25 to 34 years

old people is higher than those bx’s for older age groups. The model seems to imply

that the all age-specific mortality rates move with the same direction, yet the bx is

not necessary to have the same sign for all age groups. A negative bx means that the

mortality rate at the age group tends to rise while other age group show decreasing

patterns, and vice versa.

3.2.1 Estimation for Lee-Carter Model

From (3.2), besides for ax and bx, the kt is also unknown. Therefore, there is no

regressor and thus the regression techniques cannot be used here. However, the SVD

technique is applicable for the Lee-Carter model. The SVD technique is the special

case of the principal component method that is to express the data in such a way as

to highlight their similarities and differences of the data. That is, we apply the SVD

technique to extract the general pattern of mortality rates across all age groups and

the specific factor for the mortality rate of each age group.

The ax can be viewed as an average response over the sample period, so the

estimation for ax is shown as follows

âx =
1

T

T
∑

t=1

log(mx,t).

Then subtract âx from the original logarithm of the mortality rate, and denote it as
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Yx,t shown as follows

Yx,t = log(mx,t)− âx.

Apply the SVD technique on Yx,t to find bx and kt. Assume that there are n age

groups. The SVD technique is shown as follows

SV D(Yx,t) =

n
∑

i=1

ρiUx,iVt,i, (3.3)

where Un×n is a unitary matrix, Vt×t is a unitary matrix, and ρi is the singular value

of Yx,t. From (3.3), bx and kt can be estimated by

SV D(Yx,t) =
n
∑

i=1

ρiUx,iVt,i =
n
∑

i=1

bixk
i
t,

where bix is the ith element of bx, and k
i
t is the i

th element of kt. The bx and kt can

be arbitrary, since one of these two elements can be multiplied by a constant while

the other is divided by the constant without changing the estimated values by the

model. Lee and Carter (1992) suggest two constraints shown as follows to specify

the estimation

∑

x

bx = 1

∑

t

kt = 0.

Therefore, the estimated results are b̂x = Ux,1 and kt = ρ1Vt,1.
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3.2.2 Specification for the Error Term

The mortality rate is declining year by year, so kt is expected to trend downward.

Therefore, kt is a non-stationary time series and it cannot be applied on any forecast-

ing models directly. To forecast the mortality rate, the kt is needed to be de-trended.

Moreover, the kt may show some jumps, such as the phenomenon that the mortality

rate of the United States shows jumps during the influenza epidemic of 1918. Lee

and Carter (1992) assume that the kt has a lag term with Gaussian innovations;

that is,

kt = kt−1 + c+ et (3.4)

where c is a constant, and et is an error term to exhibit the uncertainty in kt. The

error term has a Gaussian distribution with mean zero and variance t. From (3.4),

we can observe that the change of the mortality index is assumed to be Gaussian. In

response to the event that can have significant impacts on kt, such as the influenza

epidemic of 1918, Lee and Carter (1992) suggest replace c with a dummy variable,

so that the impact of the event can be disclosed more obviously.

3.3 Extensions of the Lee-Carter Model

3.3.1 Application of Non-Gaussian Error Terms

Lee and Carter (1992) assume a structure with Gaussian innovations for mortality

index meaning that the distribution of the difference of mortality index is Gaussian

and the distribution of error terms are Gaussian. In fact, the difference of mortality
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index is high-kurtosis, fat tail, and asymmetric, due to some extreme events such

as wars and epidemics. Therefore, some researchers propose to modify the distribu-

tional assumption to incorporate the non-Gaussian innovations and mortality index

change.

In financial modeling, non-Gaussian innovations have been researched for decades.

Bølv and Benth (2000), Eberlein and Keller (1995), Lillestøl (2000), Prause(1997),

and Rydberg (1997) suggest that a normal inverse Gaussian (NIG) involving a Lévy

process can provide a good fit for the distribution with high kurtosis and fat tails.

Prause (1999), Barndorff-Nielson and Shephard (2011), and Mencia and Sentana

(2004) show that Student’s t-distribution and its skew extensions, such as the gen-

eralized hyperbolic skew Student’s t-distribution can fit the distribution with asym-

metry well.

Wang et al. (2011) apply these non-Gaussian distributions, including NIG, Stu-

dent’s t-distribution, and generalized hyperbolic skew Student’s t-distribution, to

the error terms (both ǫt and et) in the Lee-Carter model. Their research results are

based on the data from six countries, including the United States, France, and sev-

eral other countries. They first apply normality test proposed by Jarque and Berra

(1980) on the error terms of the Lee-Carter model. They find that applying the

assumption of Gaussian distributions on the error terms is not appropriate, because

error terms have a non-Gaussian shape. They then apply non-Gaussian distributions

on the error terms and find that the prediction results are much better than those of

the original Lee-Carter model under different criteria, including Akaike information

criterion (AIC), Bayesian information criterion (BIC), and other criteria.
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It seems reasonable to assume non-Gaussian error terms. However, this assump-

tion means that the abnormal jumps are from error terms or simply noises. It does

not solve the issue that the mortality rate time series itself has abnormal jumps.

We should looking for the technique that can model the mortality rate (mortality

index) itself as a process with abnormal jumps.

3.3.2 Application of Stochastic Processes on the Lee-Carter

Model

The innovation of the Lee-Carter model is motivated by the decreasing pattern of

the mortality rate over time. The time-varying component in the Lee-Carter model,

kt is estimated based on past information for the mortality rate shown in (3.4). In

other words, from (3.1) and (3.4), we can derive the equation shown as follows

mx,t = mx,t−1 exp (bxc+ bxεt + ex,t) ,

For forecasting, we can further derive the equation shown as follows

mx,t = mx,0 exp(axt + bx

t
∑

i=1

k1 +
t
∑

i=1

ǫ1),

where mx,0 is the current mortality rate or the initial mortality rate for age group

x. Therefore, when forecasting the mortality rate, it is intuitive to formulate the

mortality model as the current mortality rate times some factor that becomes smaller

over time, which is called the reduction factor; that is, the mortality rate model can
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have the general form shown as follows

mx,t = mx,0RFx,t, (3.5)

where RFx,t is the reduction factor. The models with the form shown in (3.5) are

categorized as the reduction factor method.

The Lee-Carter model allows introduction of the reduction factor method, and

enables observation that the variation of the mortality dynamics is captured by the

reduction factor. The reduction factor method is thus an extension of the Lee-Carter

model. However, the Lee-Carter model uses the central mortality rate for modeling

purposes. The reduction factor model although derived from the Lee-Carter model,

for the most part, does not use the central mortality rate for modeling. Therefore,

lx,t is the number of people who are age x and exposed to risk at time t and dx,t

is the number of deaths at time t for people age x. The central mortality rate is

calculated as follows

mx,t =
dx,t

lx,t+lx+1,t

2

.

Originally the reduction factor method was used to compute annuity pricing involv-

ing life contingencies. However, central mortality rate data are published yearly

by governments and thus are insufficient for computing purposes. More elaborate

mortality measures must be used that have a continuous estimation. Two measures

other than the central mortality rate are often used: the initial mortality rate and

the force of mortality rate. The initial mortality rate can be adjusted directly by

population estimation, which provides the flexibility of incorporating population
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demographics. The initial morality rate is defined as

qx,t =
dx,t
lx,t

. (3.6)

The qx,t is the probability that individual dies exactly at age x, meaning that an

individual lives x complete years. In reality, people are more likely to die in the year

of age x and x+ 1, so we need another mortality rate to describe the death rate in

the year of age x and x+ 1.

The force of mortality is the instantaneous mortality rate, meaning the proba-

bility that an individual age x dies in the next instant of time. Denote hqx as the

initial mortality rate that a person age x dies before reaching x+h years. The force

of mortality can be approximated by taking the limit as h approaches zero. Denote

µx as the force of mortality rate, the µx is shown as follows

µx = lim
h→0

hqx,t
h

= −
d
dh
lx,t

lx,t
.

We can observe that the force of mortality rate is the relative rate of decline in this

group at age x. If we assume a constant force of mortality, the force of mortality

rate can be estimated as the central mortality rate (Bravo, 2010; Bravo et al., 2010).

The relationship between these three mortality measures are shown as follows

mx,t ≃ − log(1− qx,t) ≃ µx+1/2. (3.7)

The application of the reduction method on the initial mortality rate is adopted

by the United Kingdom CMI Bureau and the United States Society of Actuaries
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as an extrapolative approach. The United Kingdom CMI Bureau published the

reduction factor in 1999 shown as follows

RFx,t = αx + (1− αx)(1− fx)
t/20

where

αx =











0.13, x < 60

1 + 0.87x−110
50

, 60 ≤ x ≤ 110

and

fx =











0.55 x < 60

0.55(110−x)+0.29(x−60)
50

, 60 ≤ x ≤ 110.

The United States Society of Actuaries recommends to use

qx,t = qx,0(1− AAx)
t

where AAx is the age-dependent mortality improvement factor (Scale AAx) and the

time 0 is the year 1994. The reduction factors are different due to the different

evolution pattern of the mortality rates in different countries.

Currently, the reduction method is built on the force of mortality rate and models

the reduction factor as a stochastic process proposed by Ballotta and Haberman

(2006), Renshaw et al. (1996), Sithole et al. (2000), and Milevsky and Promislow

(2001). The reduction factor is shown as follows

RF (x, t) = exp((a+ bx)t) + σYt) (3.8)
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where a represents the general change of the reduction factor, bx is the age-specific

change of the reduction factor, (Yt)t≥0 is a stochastic process to describe the ran-

domness of mortality rate with corresponding variation σ, and change of (Yt)t≥0 is

usually modeled as an Ornstein-Uhlenbeck process to incorporate the fact that the

change of the mortality rate is mean-reverse; that is, the (Yt)t≥0 may be modeled as

dYt = −aYtdt+ dBt,

where the first part is the mean-reverse drift term and the Bt is a standard Brownian

motion. Milevsky and Promislow (2001) simplify (3.8) by modeling force of mortality

rate for fixed cohort and the model is called Brownian Gompertz model.

Applying the Affine process on the reduction factor method regarding the force

of mortality rate is the latest modeling development. Denote the hpx as the survival

probability of an individual age x and survives to age x+h. The (3.7) can be written

as follows

µx = −
d
dhh

px

hpx

and we can further derive the survival probability as follows

hpx = exp

(

−
∫ x+h

x

µx,sds

)

.

The conditional (spot) survival probability for the time h given the end of time T

and the current age x can be assume to have the form shown as follows

T−hpx+h = E

[

exp

(

−
∫ n

h

µx,sds

)

|Fh

]

= exp(Ax(h, T ) +Bx(h, T )Wh) (3.9)
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where Fh is the information set up to time h and Wh is a stochastic process. The

(3.9) is the special case of the Affine process.

Dahl (2004) first proposes an Affine mortality structure shows as follows

T−hpx+h = exp(Ax(h, T ) +Bx(h, T )µx+h) (3.10)

and the dynamics of the force of mortality is specified by the equations shown as

follows

dµx+h = αµx,hdt+ σµx,hdB
µ
h

αµx,h = δαx,hµx,h + ξαx,h

σµx,h =
√

δσx,hµx,h + δσx,h,

where many parameters in the stochastic components are needed to be estimated.

The detailed descriptions are shown in Dahl (2004). Dahl and Møller (2006) propose

this structure on the reduction factor directly. They also apply the dynamic model

for the short rate on the force of mortality rate. Bliff (2005) applies a two dimensional

Affine process on the force of mortality rate. The first component is the random

intensity of force of mortality and the second component describes the dynamics of

the stochastic drift.

The Affine mortality structure has been applied in the pricing of the mor-

tality/longevity linked derivatives. Although the Affine mortality structure pro-

vides details for the continuous mortality rate movement, it is complicated and

computation-intensive. Moreover, it may make the dynamics of mortality movement
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too complicated to be explained, especially when the martingale pricing technique

is required for pricing related derivatives.

3.3.3 The Lee-Carter Model and the Cohort Effect

The cohort effect is generally referred as the birth cohort effect, meaning that people

born in the same year or same period of years should have similar mortality improve-

ment experience. Renshaw and Haberman (2006) describe a cohort as follows

cohort = period− age.

For example, the cohort 1962 means people who are 50 years old in 2012 were born

in 1962. Considerable research related to the cohort effect has been conducted in

the United Kingdom. Those born between 1925 and 1945 show a negative cohort

effect; that is, a higher mortality improvement rate than those born after 1945

(Willets, 2004; Willet et al., 2004; Renshaw and Haberman, 2006; Booth and Tickle,

2010). Table 3.2 and 3.3 show the average annual rate of mortality improvement

for England and Wales, stratified by age group, mortality decade, and sex. The

mortality improvement rate of the cohort of males who were born between 1925

and 1935 is higher than the other cohorts . Table 3.4 shows the average mortality

improvement by birth cohort and gender for England and Wales between 1961 and

2001. Notice that the 1925 to 1944 birth cohort has a higher mortality improvement

rate.

Renshaw and Haberman (2006) propose an age-period-cohort model (APC)
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Age Group 1960’s 1970’s 1980’s 1990’s

25-29 1.5 0.1 0.4 -0.9
30-34 1.7 1.4 -0.6 -0.8
35-39 1.7 1.0 0.3 0.9
40-44 0.1 2.1 2.1 0.5
45-49 -0.2 1.8 2.3 1.3
50-54 0.2 0.9 3.1 2.3
55-59 1.0 0.9 3.1 2.4
60-64 1.0 1.0 2.0 3.2
65-69 0.1 1.4 1.6 3.1
70-74 0.1 1.2 1.7 2.2

Source: Willet (2003) and Gustafsson (2011).

Table 3.2: The average annual rate of mortality improvement (in percentage) for the
England and Wales male population, stratified by age group and mortality decade

Age Group 1960’s 1970’s 1980’s 1990’s

25-29 1.6 0.7 2.6 0.4
30-34 2.5 1.2 0.8 0.6
35-39 1.7 1.5 1.4 0.7
40-44 0.5 2.0 1.7 0.3
45-49 0.4 1.8 2.2 1.2
50-54 0.0 0.6 2.7 1.4
55-59 0.3 0.3 2.0 2.0
60-64 1.1 0.3 0.9 2.7
65-69 0.2 0.9 0.6 2.4
70-74 0.4 1.3 1.0 1.2

Source: Willet (2003) and Gustafsson (2011).

Table 3.3: The average annual rate of mortality improvement (in percentage) for the
England and Wales female population, stratified by age group and mortality decade
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Birth cohort Male Female

1900-1924 1.2 0.8
1925-1944 2.2 2.0
1945-1959 0.4 1.0

Source: Willet (2003) .

Table 3.4: Average mortality improvement by birth cohort and gender for the pop-
ulation of England and Wales over the period 1961-2001.

known as M2 model shown as follows

mx,t = exp(ax + bxkt + βxγt−x + ǫx,t),

where γt−x is the cohort effect. The APC model successfully capture the cohort

effect additional to a period effect and an age effect in the mortality rate of the

United Kingdom. The APC model shows significant improvement over the Lee-

Carter model. Currie (2006) introduces the simpler version of Renshaw and Haber-

man (2006) model known as M3 model shown as follows

mx,t = exp(ax +
1

na
kt +

1

na
γt−x + ǫx,t),

where na is the number of ages (or age groups) in the data.

The cohort effect generally has a smaller impact than the period effect, and

sometimes it is not even significant (Booth and Tickle, 2010). The cohort effect

may be included in the period effect and the age effect, so sometimes the cohort

effect may not be shown. Besides, the cohort effect is different from country to

country and long-term data is needed for further estimation. It is also difficult to
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convert the model with cohort effect to the model with martingale pricing technique.

3.4 Summary

The Lee-Carter model provides the fundamental framework for contemporary mor-

tality modeling meaning it includes a period effect and an age effect. Originally,

Gaussian distributions were assumed for error terms and the change of mortality

rate. The first extension of the Lee-Carter model is to relax the assumption of the

error terms to have non-Gaussian distributions. Although changing the assumption

of distributions can provide a better fit, it does not solve the issue that the change

of mortality rate shows non-Gaussian behaviors, such as fat tails and high kurtosis.

The Lee-Carter model was originally applied on the central mortality rate and

can be converted into a reduction factor method. The reduction factor method

provides a general pattern for the mortality improvement. Because the purpose of

mortality modeling is primarily used for the calculation of products involving life

contingencies, the initial mortality rate and the force of mortality are used in the

reduction factor method. Now that the reduction factor method uses the Affine

process it has become very complicated. Although the reduction factor method was

originally designed to capture mortality dynamics for pricing purposes, it may be

difficult to explain what those parameters mean in the reduction factor method,

especially when the martingale pricing technique is involved.

Although the Lee-Carter model has an age effect and a period effect, some ob-

served mortality dynamics are still not captured. The cohort effect means that

people born in the same year or during the same period of years should have a sim-
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ilar mortality experience. The age-period-cohort model adds an additional cohort

effect to the Lee-Carter model. The additional cohort effect in the Lee-Carter model

may improve the fit and provides a practical explanation of the mortality dynamics,

but the cohort effect may be too insignificant to be noticed due to the fact that some

part of the cohort effect is already included in the age effect and period effect. It is

also difficult to convert the model with cohort effect to the model with martingale

pricing technique.
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Chapter 4

Modified Lee-Cater Model with a

Lévy Process

4.1 Introduction

The purpose of mortality modeling is to accurately estimate mortality dynamics.

If an accurate model can be created, it is assumed that the results can be used

to calculate mortality/longevity derivatives and annuities. As stated previously,

the Lee-Carter model takes into account that mortality rates change with time, as

well as age group thus making it more reliable than subjective, expert opinions.

Also, the Lee-Carter model is simple and elegant making it easy to use and easy to

interpret its results. Adding the cohort effect to the model and renaming it the age-

period-cohort (APC) model takes into account that people born in the same year or

range of years exhibit similar mortality rates thus providing a richer explanation of

mortality evolution. And other extensions to the model have taken into account the
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impact events such as war, famine and disease have on mortality rates by applying

stochastic processes. However, these models do not work well or are not easy to

interpret/implement when trying to calculate derivatives and annuities.

All mortality forecasting models have drawbacks and limitations. The most

extensions of the Lee-Carter model are related to stochastic mortality modeling. As

mentioned previously, they require data manipulation and intensive computation.

The complexity of the models are to improve the performance of the forecasting,

so the settings of the models are not intuitive. There are many parameter needed

to be estimated and those variables are difficult to explain. Moreover, it is even

more complicated to involve the martingale pricing technique for pricing the related

derivatives.

The APC model may perform better than the Lee-Carter model for both in-

sample estimation and out-of-sample forecasting, although the additional cohort

effect may be very small or insignificant (Booth and Tickle, 2010). Moreover, al-

though the APC model has a regression form, similar to the Lee-Carter model, it is

not a regression model. Some statistical techniques are needed to extract variables

from the data. Also, the Lee-Carter model only requires central mortality rate in-

puts and estimations are arrived at using the Singular Value Decomposition (SVD)

while the APC model requires additional information such as number of deaths and

number of people at risk for all ages in each calendar year, which is not readily

available. A data extrapolation process is needed before further implementing the

APC model. The extrapolation process smooths the curves of number of deaths and

number of people at risk so that the annual number of deaths and people at risk
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for all ages can be found. The process generates numbers to “fill up” the missing

values of numbers of deaths and the numbers of people at risk for all ages in each

calendar year due to the fact that annual data for all ages are not available.

There are other obstacles when using the APC model. Namely, APC model

calculation requires intensive computing resources. Moreover, calculating the cohort

effect often requires extensive, historical data which sometimes are not available.

Additionally and most importantly for this research, the APC model does not lend

itself to stochastic modeling that is first needed to arrive at a martingale price which

then enables accurate annuity pricing and creation of valuable derivatives. The

abundance of data required by these mortality models combined with accounting for

rare events and the cohort effect push the complexity factors of these models beyond

the point of comprehension. It becomes impossible to understand and explain the

results each model produces. Therefore, to create fair-pricing for derivatives and

annuities a new model is necessary that is able to accurately model mortality rates,

accepts stochastic processing, takes into account jumps and ensures that the results

are easy to interpret.

We propose a model based on the simple and elegant Lee-Carter model. However,

instead of using the Lee-Carter data structure based on the level of mortality we

incorporate the Mitchell et al. (2013) data structure that uses the growth rate of

mortality. By doing this we overcome the complexity issues that the extensions

introduced to care of de-trending issues and jumps simultaneously. We identify the

Mitchell et al. (2013) model as the modified Lee-Carter model. Analysis shows

that the modified Lee-Carter model performs better than the Lee-Carter model,
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its extensions and the APC model. Using data from the United States, United

Kingdom, Canada, Sweden, Australia, and six other countries they apply different

criteria such as root sum squared errors and the unexplained variance to arrive at

their conclusion.

There are other distinguishing features of the proposed model. It requires no

prior data manipulation and simply uses data readily available from governmental

websites. Additionally, we keep the original form of the Lee-Carter model and only

change assumptions regarding jump characteristics in mortality rates.

The modified Lee-Carter model also performs better than the Lee-Carter model,

its extensions and the APC model for out-of-sample prediction purposes if the proper

distributional assumptions of the mortality index are considered. Remember that

the Lee-Carter model does not account for jumps therefore its results produce a

Gaussian distribution; however, epidemics and natural disasters happen and must

be accounted for in a mortality model. The modified Lee-Carter model takes jumps

into account by introducing a Normal Inverse Gaussian (NIG) distribution. The NIG

distributional assumption enables the modified Lee-Carter model to adapt the fact

that the distribution of the mortality rate change is high kurtosis and fat tailed. The

predicted mortality rates under the NIG distributional assumptions have a narrower

confidence interval and yield more stable prediction results.

Mortality modeling has made significant progress since the inception of the Lee-

Carter model. Our proposed model intends to build on the modified Lee-Carter

model by combining a stochastic process with an NIG distribution to model the

mortality index and arrive at fair-pricing of derivatives. We propose an NIG Lévy
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process for modeling mortality dynamics. A Lévy process allows for an infinite num-

ber of jumps therefore large rare jumps and small normal jumps are captured. The

additional NIG distribution specification is assumed for the non-Gaussian behavior

of the mortality index.

The modified Lee-Carter model and the NIG Lévy process specification are well-

suited for applying the Esscher transform to achieve martingale pricing inspired

by Milevsky and Promislow (2001). Once we have applied the Esscher transform

we can re-formulate the modified Lee-Carter model so that the resulting mortality

rate is under a martingale measure. In Chapter 5 we show improved results in

estimated and predicted mortality rates compared with the Lee-Carter model and

the modified Lee-Carter model. These results enable us to price mortality/longevity

linked derivatives, such as a q-forward, a mortality catastrophe bond and a longevity

bond.

In the following sections we first show that we can formulate the modified Lee-

Carter model to look similar to the Lee-Carter model. We then introduce an NIG

Lévy process. Using an analogy to martingale pricing in financial modeling, we

explain how mortality rates under a martingale measure can be achieved. The

Esscher transform on the modified Lee-Carter model is then presented.

4.2 Modified Lee-Carter Model

In the Lee-Carter model the mortality rate is an exponential function with an age

effect and a period effect shown in (3.1). The change of mortality index is modeled

with a lag term shown in (3.4). Therefore, from(3.1) and (3.4), we can re-write it

53



as follows

mx,t = mx,t−1 exp (bxc+ bxet + ǫx,t − ǫx,t−1) .

We can find that part of mortality dynamics depends on the information from the

previous period, which is natural due to the fact that the mortality rate is a time

series. Denote (ǫx,t− ǫx,t−s) as ζ
s
x,t, alternatively we can have the equation shown as

follows

log(mx,t)− log(mx,t−1) = bxc+ bxet + ζ1x,t. (4.1)

From (4.1), we observe that the age effect appears on all components of the model,

which is a feature of the Lee-Carter model. Besides, because the components of the

Lee-Carter model are all tangled with age effect and period effect, the additional co-

hort effect may improve the fit. However, the improvement depends on the strength

of the age effect and period effect. Besides the age effect, we also find that the

difference of the logarithm of mortality rate can be modeled as the combination of a

drift term, a random variable, and an error term that depends on not just the time

t but also the past information s (s is 1 in (4.1)). The (4.1) shows that taking the

difference of the the logarithm of mortality rate for the first step essentially does

the same thing as modeling on the logarithm of the mortality rate and then taking

the difference of the mortality index. To predict future mortality rates, we further

derive a form based on the current mortality rate by the iterations shown as follows

mx,t = mx,0 exp

(

bxct+ bx

t−1
∑

i=0

et−i + ζ tx,t

)

. (4.2)
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The (4.2) shows that the future mortality rate at time t can be obtained by mul-

tiplying the current mortality rate with an exponential function that delivers the

dynamics of the mortality rate changes.

The mortality rate change of the Lee-Carter model has a drift term and some

random components that are accumulated with time. If the random components
∑t−1

i=0 et−i can have both the scaling property and the convolution property, it is

appropriate to convert the original Lee-Carter model with some stochastic compo-

nents. Thus, et is assumed to have an independently identical distributed (i.i.d.)

Gaussian distribution with mean zero and variance t, and ζsx,t is assumed to have

i.i.d. Gaussian distribution with mean zero and variance σ2
xs where σ2

x is the vari-

ance of the mortality rate change for age group x. The common argument lies on

the assumption of et. Because the mortality rate change performs non-Gaussian be-

havior due to the rare events, the realized distribution of the et is non-Gaussian

(Wang et al., 2011).

Because the mortality index of the Lee-Carter model is needed to be de-trended

before further modeling can take place, it makes sense to take the difference of the

logarithm of mortality rate at the the first step. By doing so, the kt will be stationary

and ready for modeling. Mitchell et al. (2013) suggest that constructing a model

on the difference of the logarithm of mortality, rather than on the level and then

taking difference, can provide a better fit. They propose the modified Lee-Carter

model shown as follows

mx,t = mx,t−1 exp(ax + bxkt + εx,t)
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or alternatively,

log(mx,t)− log(mx,t−1) = ax + bxkt + εx,t. (4.3)

By comparing (4.1) and (4.3), we see they look similar; the only difference is the

modified Lee-Carter model is less restrictive on parametrization. Mitchell et al.

(2013) apply the model on data from eleven countries and compare the results

with the Lee-Carter model and its extensions such as the Lee-Carter model with

cohort effect proposed by Cairns et al. (2007), Haberman and Renshaw (2011), and

Renshaw and Haberman (2006). The modified Lee-Carter model performs better for

in-sample fitting under different criteria, such as BIC, root sum of squared errors,

and unexplained variance. The modified Lee-Carter also performs better than the

APC model.

To forecast the future mortality rate, the modified Lee-Carter model can be

re-written as follows by iterations

mx,t = mx,0 exp(axt+ bx

t
∑

i=1

ki +

t
∑

i=1

ǫx,i).

which is again similar to (4.2). The error term is usually assumed to have a Gaussian

distribution, so
∑t

i=1 ǫx,i has a Gaussian distribution. Mitchell et al. (2013) choose

an NIG distribution by taking the advantage of the fact that an NIG can fit the dis-

tribution with the high kurtosis and the fat tails well. The out-of-sample forecasting

shows more accurate predicted values and the narrower confidence interval.

Since the kt series is derived from log mortality change, each element represents

a change for the time point. This similar fashion applies on the error term ǫt series.

56



Assume that each element in these two series is an i.i.d. random variable from some

distribution, we can re-write the equation as follows

mx,t = mx,0 exp(axt + bx

t
∑

i=1

k1 +

t
∑

i=1

ǫ1).

If the k1 can have a distribution that have the convolution property and the scaling

property, bx
∑t

i=1 k1 will also have the same distribution. An NIG is an excellent

choice, and it provides nice fit for the distribution of k1 that has high kurtosis,

asymmetry, and fat tails.

Let k1 be a NIG(α, β, µ, δ) random variable. By the convolution property and

the scaling property of an NIG distribution, we have

Nx,t := bx

t
∑

i=1

k1 ∼ NIG(α′, β ′, µ′t, δ′t)

where

α′ = α/|bx|, β ′ = β/|bx|, µ′ = bxµ, and δ
′ = |bx|δ.

The convolution property and the scaling property also make the conversion of the

modified model to the model with Lévy process possible.

Assume (Nx,t)t>0 be an NIG Lévy process, the modified Lee-Carter model be-

comes

mx,t = mx,0 exp(axt+Nx,t), (4.4)

which is an exponential Lévy process. We should note that there is no error term. If

an error term is included in the model, it will be a diffusion term. Carr et al.(2002),
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Carr and Wu (2003), Cont and Tankov (2004), Schoutens (2003), and Wu (2005)

mention that the diffusion term can be dropped since a Lévy process can incorporate

both large jumps and small jumps well. The addition of a diffusion term will not

have significant impacts on the estimation.

4.3 Mortality Rate Under Martingale Measure

4.3.1 Concept

In financial modeling, when the market is complete, all state prices can be observed.

The expected price can be calculated according to a measure that describes how the

price is going to change. However, in reality, the market is incomplete, so not all

state prices are ever available. When one invests in a financial product with risk,

there is a risk premium that compensates his/her risk-taking behavior. However,

the risk appetite of each investor is usually unknown. Such circumstance means

that it impossible to price under the original physical measure. Therefore, a risk

neutral pricing methodology must be constructed to create fair pricing of a financial

instrument.

Moreover, when one invests in a financial product with risk, the risk premium

is considered in the price. The risk is the volatility of the return of the financial

product. For example, The expected return of a financial product should be at least

better than the return of a risk-free bond.

To arrive at a fair price a martingale pricing technique is used. The expected

rate of return under martingale pricing is the risk-free rate, which is the expected
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Figure 4.1: The illustration of the mortality rate under the martingale measure

rate of return of the risk-free bond. Under a martingale measure we do not need to

know all possible state prices and we do not need to know the risk appetite for each

investor. When a pricing procedure is under a martingale measure, the probability

of each state is adjusted with the volatility of the financial instrument, meaning that

the expected variance of the return change is zero. Therefore, the price under the

martingale measure is risk-free or risk-neutral, so the expected return is simply the

risk-free rate.

A similar technique to a martingale measure can be applied when pricing mor-

tality/longevity linked derivatives. Mortality rates and asset returns have patterns

and the movement along the curves, whether up or down, show similarities. While

the mortality improvement rate represents the expected rate of change of the mor-
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tality rate, the dynamics of the mortality index show the volatility of mortality

rates. Based on the mortality improvement rate we can construct martingale pric-

ing for mortality/longevity derivatives similar to the martingale pricing based on

the risk-free rate in financial modeling. The mortality rate possesses some stochas-

tic jumps similar to the rates of return of most financial derivatives. Imagine that

we can estimate the mortality improvement rate from historical data and apply it

for prediction purposes. The prediction results are used for the mortality/longevity

linked products. Since there is a volatility risk in the mortality rate, there is a risk

premium for it. Different hedgers require different risk premiums, and we do not

know the risk appetite for each of them. The mortality rate under a martingale

measure means that the volatility of the mortality rate change is considered, so that

the expected mortality rate change is zero. In this sense, the expected mortality rate

under the martingale measure is simply calculated from the mortality improvement

rate.

Figure 4.1 illustrates the mortality rate under the martingale measure. The black

solid line is the mortality rate with only the estimation of the mortality improvement

rate. Since there is no mortality variation, the mortality rate is as expected and

shows no variance. It is the adjusted mortality rate under a martingale measure.

The blue dashed line is one of the possible mortality rates with variations and

mortality improvement. It does have the mortality risk generated from the variance

of the mortality rate under the real measure. For pricing purposes, we need to adjust

the blue dashed line to the black solid line, producing a risk-free mortality rate for

further pricing.
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Mortality risk derivatives are related to the mortality rate and longevity risks

derivatives are related to the survival rate. Since we know mortality rates under

a martingale measure, we can use it to price mortality linked derivatives, such as

q-forward, mortality swap, and mortality bond. However, the pricing of a longevity

linked derivative and annuities requires knowledge of survival rates which are the

exponential function of negative mortality rates. To calculate the survival rate

under a martingale measure, first researchers adjust the parameters of the stochastic

processes to mimic the mortality dynamics. Then, they calculate the mortality rate

under the martingale measure and derive the survival rate. Another approach is to

assume a special exponential form and a constant force of mortality. Milevsky and

Promislow (2001) assume that the hazard rate has a Gompertz expectation with a

squared root volatility and they include an approximation formula for the survival

rate. We will use the mortality rate under the martingale measure for survival rate

calculation in later chapters.

4.3.2 Application of Esscher transform

In the previous chapter, we introduce the Esscher transform as a short cut for the

martingale measure calculation when we have an NIG Lévy process. The modified

Lee-Carter model with NIG Lévy process shown in (4.4) is indeed an exponential

Lévy process. We would like to apply Theorem 2.8 and (2.5) to calculate θ for the

corresponding Esscher transform.

We previously discuss that the mortality improvement rate is similar to the risk-

free rate in financial modeling. Compare (4.4) and (2.1), we can re-write (2.5) as
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follows

κ(θ∗ + 1)− κ(θ∗) = −ax.

Since we already assume an NIG distribution for the Lévy process, we can apply

formula (2.10) to calculate θ∗ as follows

θ∗ = −β ′ − 1

2
+

√

(µ′ + ax)2

δ′2 + (µ′ + ax)2
α′2 − (µ′ + ax)2

4δ′2
.

After applying the martingale measure, the transformed mortality index N θ
x,t has

an NIG distribution; that is,

N θ
x,t ∼ NIG(α′, β ′ + θ, µ′t, δ′t).

Therefore, the mortality rate shown as follows is under a martingale measure ob-

tained from the Esscher transform

mθ
x,t = mx,0 exp(axt+N θ

x,t).

The transformed mortality rate mθ
x,t has included the information of the stochastic

change of mortality rate change, and this change depends on the parameter for the

age group x.
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4.4 Summary

The modified Lee-Carter model performs better than the Lee-Carter model, its

extensions, and the APC model. Mitchell et al. (2013) show that the modified

Lee-Carter model with an NIG distributional specification for the mortality index

has more accurate predicted values and a narrower confidence interval. We pro-

pose an NIG Lévy process on the modified Lee-Carter model to not only improve

performance but to also provide access to the pricing of mortality/longevity linked

derivatives.

The convenience of the NIG Lévy process is not only for simplifying the cal-

culation process of the martingale measure, but also for simplifying forecasting

procedures, which is particularly useful for pricing purposes. When pricing mor-

tality/longevity linked derivatives, we need to forecast by using a martingale mea-

sure. Although many mortality modeling approaches are available, they either only

provide excellent mortality rate forecasting ability or are able to perform annuity

calculation in some complicated way. By assuming mortality rate dynamics as an

exponential NIG Lévy process shown in (4.4), we can produce accurate predictions

enabling easy access to martingale pricing through the Esscher transform.

63



Chapter 5

Mortality Modeling

5.1 Introduction

Using two data sources, we present estimation results from the Lee-Carter model,

the modified Lee-Carter model, and from our proposed model, modified Lee-Carter

model with Normal Inverse Gaussian (NIG) Lévy process and the Esscher transform

(hereafter proposed model)1. The data sources include United States mortality rate

data from HIST290 of the National Center for Health Statistics and mortality rate

data for England and Wales from the Human Mortality database. The data can be

found respectively at

http://www.cdc.gov/nchs/datawh/statab/unpubd/mortabs.htm

and
1We will not have estimation results of the age-period-cohort model (APC) and the Lee-Carter

model with the extensions, since Mitchell et al. (2013) have already shown that the modified Lee-
Carter model performs better than these models. Also, we will not estimate any models related to
the Affine process because such models are applied on the force of mortality rate and the National
Center for Health Statistics and Human Mortality Database contain central mortality rate data.
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http://www.mortality.org/.

The data sets from the National Center for Health Statistics include death rates

per 100,000 people from 1900 to 2006. The data are broken into eleven age groups:

(<1), (1-4), (5-14), (15-24), then every ten years until (75-84), and finally (>85).

The data sets from the Human Mortality Database include death rates from 1930

to 2009. The data is broken into 24 age groups: (<1), (1-4), (5-9), (10-14), then

every five years until (105-109), and finally (>110). Some data sets are missing

data from the age groups over 100, therefore we only use data up to the 95-99 age

group. The two data sets also include tables listing gender specific mortality rates.

Furthermore, first we focus on the general population of the United States, then the

female population of the United States. Lastly, we analyze the male populations of

England and Wales. In this analysis we will show the in-sample estimations and the

out-of-sample forecasting of our proposed model, the modified Lee-Carter model,

and the Lee-Carter model. The parameter estimates for all three selected popula-

tions are also presented. In later chapters, we will utilize these estimation results

to price mortality/longevity linked derivatives including a q-forward, a mortality

catastrophe bond, an EIB bond, and a life settlement.
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Modified Lee-Carter Lee-Carter

United States (general) 0.1200 0.1232
England and Wales (male) 0.2818 0.3097
United States (female) 0.0312 0.1246

Table 5.1: RSSE for the estimaiton results

5.2 Comparison of the Lee-Carter Model and Mod-

ified Lee-Carter Model

5.2.1 Comparison of the Estimation Results

We observe that mortality estimation results regarding our three primary popu-

lations are similar when using the Lee-Carter model and the modified Lee-Carter

model. Figure 5.1 shows the estimation results of the Lee-Carter model and the

modified Lee-Carter model for United States general population 65-74 age group

from 1900 to 2006. Figure 5.2 shows the estimation results of the Lee-Carter model

and the modified Lee-Carter model for the United States female population 65-

74 age group from 1900 to 2006. Figure 5.3 shows the estimation results of the

Lee-Carter model and the modified Lee-Carter model for the England and Wales

male population 65-69 age group in from 1960 to 20092. We can observe that the

Lee-Carter model and the modified Lee-Carter model seem to show the similar es-

2Although the data of the male populations of England and Wales are available prior to 1960,
we only use data after 1960. This follows current research trends that use data after 1960 to model
mortality of England and Wales. Secondly, mortality rates for the male population in England
and Wales do not have severe jumps. This characteristic can be used to examine whether the NIG
distributional assumption can produce the robust estimation results when the realized distribution
tends to be Gaussian.
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Figure 5.1: The estimation results of the Lee-Carter model and the modified Lee-
Carter model for United States general population 65-74 age group from 1900 to
2006.6
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Figure 5.2: The estimation results of the Lee-Carter model and the modified Lee-
Carter model for the United States female population 65-74 age group from 1900 to
2006
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Figure 5.3: The estimation results of the Lee-Carter model and the modified Lee-
Carter model for the England and Wales male population 65-69 age group in from
1960 to 2009

timation results for three populations. Table 5.1 shows the root sum of squared

errors (RSSE) for the estimation results of three distinct populations. The modified

Lee-Carter model has a smaller RSSE value for all three populations signifying that

it performs better than the Lee-Carter model.

5.2.2 Estimation of the distributions

In order to predict the future mortality rate, we need to fit some distribution onto

the mortality index kt. We first draw a time series plot of the kt to check the

frequency and the amplitude of the jumps. Figure 5.4 shows the time series plot

of the mortality index kt for the general population of the United States from 1900

to 2006. Figure 5.5 shows the time series plot of the mortality index kt for the
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Figure 5.4: The time series plot of the mortality index of the general population of
United States from 1900 to 2006

female population of the United States from 1900 to 2006. We can observe that

there are some large jumps around 1918 due to the influenza epidemic of 1918. The

World War I and World War II also cause some minor jumps around 1915 and 1950.

Figure 5.6 shows the series plot of the mortality index kt for the general population

of the England and Wales from 1950 to 2009. The jumps of the mortality index are

minor and the amplitude of a jump decreases by time, because the mortality rate

was generally improved after 1960’s in the United Kingdom.

We then would like to fit the distribution onto the mortality index kt. We select

a Gaussian distribution and an NIG distribution. When the time series plot of the

kt does not show significant large jumps, such as the kt from the male population

of England and Wales, a Gaussian distribution should fit well. However, if the

time series plot show some abnormally large jumps, such as the kt from the general
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Figure 5.5: The time series plot of the mortality index of the female population of
the United States from 1900 to 2006
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Figure 5.6: The time series of the mortality index of the male population of England
and Wales from 1960 to 2009
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Figure 5.7: The fitted distribution of mortality index of the general population of
United States from 1900 to 2006

population of the United States or the female population of the United States,

an NIG distribution will fit better. The parameters of an NIG distribution can

characterize a distribution with high kurtosis and fat tails, which is particularly

suitable for fitting a distribution with abnormal jumps.

We fit an NIG distribution and a Gaussian distribution and compare the results.

Figure 5.7 shows the fitted distribution of the mortality index of the general popula-

tion of the United States from 1900 to 2006. Figure 5.8 shows the fitted distribution

of the mortality index of the female population of the United States from 1900 to

2006. The red solid lines in Figure 5.7 and 5.8 are fitted by an NIG distribution.

An NIG can indeed capture both the peak and tails of the distribution. The blue

dashed lines in both figure fit a Gaussian distribution. A Gaussian distribution
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Figure 5.8: The fitted distribution of mortality index of the female population of
the United States from 1900 to 2006
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Figure 5.9: The fitted distribution of mortality index of the male population of
England and Wales from 1960 to 2009
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clearly misses the fit for high kurtosis and long tails. Figure 5.9 shows the fitted dis-

tribution of the mortality index of the male population of England and Wales from

1960 to 2009. Since there is no significant jump when we examine the time series

plot of the kt of England and Wales, the NIG distribution and Gaussian distribution

produce similar results.

Next we include estimation results for our three specific populations. In Chapters

6 and 7 we use these results to price mortality/longevity linked derivatives including

a q-forward, a mortality catastrophe bond, an EIB bond, and a life settlement. The

estimation results of parameters for the Esscher transform are also calculated. Table

5.2 shows the parameter estimates for our proposed model when using United States

general population mortality data from 1900 to 2002. These results will be used for

pricing the mortality catastrophe bond. Table 5.3 shows the parameter estimates

for our proposed model when using United States female population mortality data

from 1900 to 2006. These results will be used for pricing the life settlement. Table

5.4 shows the parameter estimates for our proposed model when using England and

Wales’ male mortality data from 1960 to 2005. These results will be used for pricing

a q-forward.

5.2.3 Comparison of Forecasting Results

Finally, we compare the forecasting abilities of the Lee-Carter model, the modified

Lee-Carter model and our proposed model. We omit the last twenty-five-years of

data from the United States’ mortality rate data and the last ten-year data from

the England and Wales’ mortality rate data and compare predicted mortality rates
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age group ax bx θx

<1 -0.029785 0.049203 18.820900
1-4 -0.039399 0.146032 5.808083
5-14 -0.030146 0.129953 6.594559
15-24 -0.018681 0.211881 3.496684
25-34 -0.019956 0.234177 3.046362
35-44 -0.015863 0.122966 6.918658
45-54 -0.012140 0.051462 17.899149
55-64 -0.010599 0.026487 35.486287
65-74 -0.008750 0.018142 52.108885
75-84 -0.007842 0.008247 115.345985
>85 -0.005424 0.001450 658.591948

Table 5.2: The parameter estimates of the proposed model by using mortality data
of the general population in the United States 1900-2002

age group ax bx θx

<1 -0.029734 0.056170 17.206336
1-4 -0.040439 0.163779 4.675276
5-14 -0.032172 0.152349 4.732417
15-24 -0.024550 0.194816 2.556976
25-34 -0.023961 0.213318 2.070498
35-44 -0.018204 0.108566 6.055575
45-54 -0.014110 0.050465 16.990611
55-64 -0.012468 0.026635 36.315323
65-74 -0.010954 0.018690 53.222012
75-84 -0.009393 0.009130 112.756512
>85 -0.006539 0.006082 169.727237

Table 5.3: The parameter estimates of the proposed model by using mortality data
of the female population in the United States 1900-2006
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age group ax bx θx

<1 -0.032198 0.023333 -178.133699
1-4 -0.031987 0.111591 -13.495506
5-9 -0.034720 0.021364 -201.019097
10-14 -0.021513 0.010027 -444.440563
15-19 -0.017207 0.016941 -223.883720
20-24 -0.012190 0.015223 -224.593224
25-29 -0.007775 -0.004471 -974.714395
30-34 -0.006461 -0.009347 -354.663995
35-39 -0.009081 0.009287 -402.117895
40-44 -0.011161 0.026122 -84.264573
45-49 -0.013071 0.024732 -106.291354
50-54 -0.016521 0.042925 -46.705424
55-59 -0.019693 0.045441 -49.273238
60-64 -0.019310 0.041984 -56.129553
65-69 -0.018400 0.058065 -28.450457
70-74 -0.016900 0.061690 -22.797928
75-79 -0.014691 0.083243 -9.666672
80-84 -0.011796 0.084675 -6.573880
85-89 -0.011457 0.106949 -3.249793
90-94 -0.007503 0.118011 -0.425454
95-99 -0.006616 0.112216 -0.133826

Table 5.4: The parameter estimates of the proposed model by using mortality data
of the male population in England and Wales 1960-2005
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and realized mortality rates. The predicted value is the average of 100,000 simula-

tions and a 95 % confidence level is also provided. Figure 5.10 shows the predicted

mortality rate of the general population of the United States. Figure 5.11 shows the

predicted mortality rate of the female population of the United States. We observe

that predictions from the modified Lee-Carter model and our proposed model are

more accurate than the Lee-Carter model, and the confidence interval of our pro-

posed model is narrower. Because our proposed model has the tightest confidence

interval it provides the most stable prediction results. Figure 5.12 shows the pre-

dicted mortality rates of England and Wales’ male population. With less data than

our other populations and no abnormal jumps, the Lee-Carter model and the mod-

ified Lee-Carter cannot effectively predict the mortality rates because the realized

mortality rates are out of the confidence intervals. Our proposed model produces

better predicted values and an appropriate confidence interval that includes the

realized values.

5.3 Summary

A comparison of estimation results from the Lee-Carter model, the modified Lee-

Carter model, and from our proposed model suggest that the modified Lee-Carter

model performs better than the Lee-Carter model. Although it uses the same struc-

ture as the Lee-Carter model by using the mortality growth rate instead of the level

of mortality rate, the modified Lee-Carter model produces better results. Further-

more, the NIG distributional specification fits the mortality index better than a

Gaussian distribution because the mortality rate distribution may be high-kurtosis
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Figure 5.10: The predicted mortality rate of the general population of United States

1900 1920 1940 1960 1980 2000

0.
01

0.
02

0.
03

0.
04

0.
05

year

m
or

ta
lit

y 
ra

te

Lee−Carter
Mitchell et al (2013)
ours

Figure 5.11: The predicted mortality rate of the female population of the United
States
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Figure 5.12: The predicted mortality rate of the male population of England and
Wales

and fat-tailed due to the mortality jumps. If the mortality index does not show

significant jumps, such as the mortality index of England and Wales, fitting with

a Gaussian distribution or an NIG distribution will have similar results. A com-

parison of prediction results from the Lee-Carter model and our proposed model

shows more accurate predicted values of the mortality rate, as well as more stable

prediction results with a narrower confidence interval.
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Chapter 6

Life Settlement Pricing

6.1 Introduction

A life settlement, also called a viatical settlement, is a legal financial instrument that

enables a life insurance policyholder to receive a cash value from the policy while

still alive. A third party purchases the life insurance policy from the policyholder for

a lump sum greater than its cash surrender value but less than the net death benefit

value. The third party then takes ownership of the policy, pays the premiums and

when the insured dies, receives the full death benefit. Often used by terminally ill

or chronically ill people, a life settlement enables the insured to have access to the

returns from the policy rather than leave it to a beneficiary.

The HIV-AIDS epidemic of the 1980s spurred interest in life settlements in the

United States. At that time, mostly young, gay men were diagnosed with the HIV-

AIDS virus. With high mortality rates and prohibitively expensive medications,

many with life insurance policies opted to sell the policy and use the proceeds to
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cover their expenses. This created a secondary market for life insurance policies.

Although the impetus for creating a secondary market for life insurance policies

was the HIV-AIDS epidemic, the appeal came from investors offering to buy the

policy for more than the holder could obtain by surrendering the policy or simply

letting it lapse. The cash value was calculated according to life tables created by

reputable institutions, such as the Commissioners Standard Ordinary (CSO) and

Society of Actuaries. The transaction created a win-win situation for both parties.

Policyholders received a lump sum payment while still alive and investors obtained

an acceptable rate of return. Given that HIV-AIDS medications did not exist in the

1980s, investors often saw rates of return up to 15% (Quinn, 2008; Siegert, 2010).

Following the financial success of life settlements, several companies began spe-

cializing in life settlement transactions. However, this new market soon collapsed

because rates of return were diminishing. By 1996 new HIV-AIDS treatments were

prolonging the lives of those infected with the virus making the investment less at-

tractive to investors. The dramatic decrease in mortality rates caused investors to

significantly decrease the offer price to policyholders infected with HIV-AIDS. Since

the policies might take longer to mature, the price of a life settlement plummeted

(Stone and Zissu, 2006).

Wanting to grow the secondary market for life insurance, life settlement special-

ists made senior citizens their new target market. Life insurance policyholders 55

years old or older often hold policies with death benefits worth $250,000 or more.

Targeting those who no longer can afford the premium and others who simply no

longer need the insurance and would prefer a lump sum payout while still alive,
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the settlement market is growing. In 2005 it was estimated to be worth $10 billion

and in 2008, $21.5 billion (estimated by Conning & Company). Today, the market

is estimated to be worth $35 billion (estimated at the end of 2011 by Conning &

Company). As stated in Chapter 1, in 2009 there were 455,000 Americans over

100 years old. This number is expected to increase 5.5% per year thereby doubling

the centenarian population every 13 years. Life settlement specialists see this aging

population as a market that will be worth approximately $117 billion in 2017. Also,

the Social Security Advisory Board predicts that approximately 1% of the general

population will be centenarians in 2050 (Sisk, 2011).

Demographic and market conditions suggest that life settlement instruments are

excellent investments. However, to make the instrument attractive to investors and

policyholders, pricing life settlements must be optimized. Policyholders want a sig-

nificant payout and investors want a high rate of return. If this can be accomplished,

then the life settlement market will flourish.

In the following sections we explain the two currently used settlement pricing

methodologies and then introduce a new pricing model that uses information theory

to more accurately price the life settlement. Information theory takes into account

private information about the policyholder. We include this information to calculate

and create an adjusted life table. This adjusted life table enables an optimized

strategy for pricing life settlements. Using our proposed model, we apply information

theory to price a life settlement policy. We describe how to calculate a settlement

price by applying the density of death years. We also propose ideas of how to

calculate risk premiums for life settlements.
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6.2 Deterministic and Probabilistic Life Settle-

ment Pricing

There are two currently accepted life settlement pricing methodologies. The deter-

ministic pricing methodology came before probabilistic pricing. To calculate set-

tlement pricing, both methodologies use data from the Commissioners Standard

Ordinary (CSO) and Valuation Basic Table (VBT) life tables. The deterministic

methodology as its name suggests, assumes mortality occurs at the exact time listed

in the mortality tables. This assumption was reasonable when life expectancies were

shorter and easier to predict than today and during the HIV-AIDS epidemic. Longer

life spans have necessitated that a probabilistic pricing methodology be used to price

life settlements. In so doing, it does not assume mortality as occurring at an exact

time but accounts for it occurring within a curve of life expectancy.

Let us use an example from the life tables. The CSO and VBT tables show that

a 65-year-old woman in 2013 is expected to live another about 17 years. However,

today, many senior citizens suffer from chronic illnesses such as COPD (chronic ob-

structive pulmonary disease), whose symptoms can be treated by modern medicine

but whose cause cannot be cured. Chronic illnesses decrease life expectancy. Cur-

rent mortality tables do not take this phenomenon into account but if they did, the

accuracy of pricing of life settlements would improve.

Calculating deterministic life settlement pricing

Given a face value of an insurance policy B and the discounting factor v =

1/(1 + r), where r is the required rate of return, the present value of payoff of a life
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insurance policy is Bvn where n is the number of year that the policy elapses. A

policyholder pays a periodical premium. Let P denote the premium and än denote

the present value of an annuity due1 with one dollar payable at the beginning of

each year starting at time zero. The price calculated from the deterministic life

settlement pricing method is

Bvn − P än (6.1)

when n is deterministic and given.

The problem with the deterministic life settlement pricing is that the year of

settlement, which is the year that the policyholder will die, actually is unknown

and hence not deterministic. Life expectancy is based on averages. Therefore our

example of the 65 year old woman in 2013 living 17 more years could actually be

shorter if she suffers from a chronic or debilitating illness. The woman’s longevity

is actually a random variable. Therefore, the price of a life settlement should be the

expected value of (6.1) with respect to n, and this value is greater than or equal to

the price from the deterministic life settlement pricing (Brockett et al., 2013).

Calculating probabilistic life settlement pricing

Concluding that a policyholder’s actual length of life is a random variable, the

probabilistic life settlement pricing considers the expected value of a life settlement

shown as follows

E(Bvn − P än). (6.2)

1The explicit form for än is shown as follows

än = 1 + v + v2 + · · ·+ vn−1.
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To calculate (6.2), we only need to know the probability distribution of n (Bowers

et al., 1986). The density of n can be obtained from mortality rate table. According

to Forman (2010), most life settlement companies use the 2008 VBT table. Since

some private information of a policyholder can be obtained, each company has its

own way to modify the mortality rate table.

A popular adjustment approach is to start with a standard table and then mul-

tiply the mortality rate for each age by a selected constant to obtain a new table

that takes account of the policyholder’s private information. Forman (2010) gives

an example report of life expectancy calculation results for an 84-year-old woman

whose medical records led the underwriter to come up with an estimate of 9.2 years

of mean life expectancy, a median life expectancy of 9.3 years and an 85% mortality

value of 13 years. The suggested multiplier is 2.03. Although easy to implement, this

method is limited because it does not take into account all the private information

that the policyholder discloses2.

6.3 Information Theory

6.3.1 Motivation

If it is possible to correctly price life settlements then investors and policyholders

would be interested in these financial instruments. Using information theory we

adjust original probabilities of mortality and create a policyholder specific “cus-

2The report states “Please note it is recommended that the information provided in this life
expectancy evaluation be used in its entirety. If only subset of the data is used, you will be losing
the interrelationships between the analytics.”
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tomized” life table that produces optimized pricing of life settlements.

Consider two densities f(t) and g(t), where t is a random number denoted the

year of death. The g(t) is the density of death year for general population in each

year. The f(t) is the density of death year for a specific individual in each year.

The difference between f(t) and g(t) is that the f(t) is derived from g(t) with

incorporating the information of the personal information of the individual. To

make the calculation possible, we apply the minimum discrimination information

estimation in the information theory.

6.3.2 Minimum Discrimination Information Estimation

Consider two densities f(t) and g(t) as mentioned above, the statistics ln(f(t)/g(t))

is a sufficient statistics and is a log odds ratio. When we have a long sequence of

observations, (ti)i≥0, the long-run odds ratio is shown as follows

E

(

ln
f(t)

g(t)

)

=
∑

i

ln
fti
gti

(6.3)

which is the expected amount of information for discriminating between two densities

f and g. Denote (6.3) as I(f |g), and I(f |g) is the quantity to measure how much

divergence between densities f and g. It is not difficult to show that I(f |g) is zero

if and only if f = g (Brockett et al. (2013)).

Let us rephrase the problem in a general setting. Assume that a density function

g is given, and we wish to find another density f that is “as close as possible” to g

with sanctification of k+1 number of generalized moment constraints including the

expected value of some collection of functions. Let aj(t) denote one of such function,
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so we can have a collection of equations shown as follows

θ0 = 1 =
n
∑

i

f(i)

θ1 =

n
∑

i

aj(i)f(i) = E(a1(n))

...
...

θk =

n
∑

i

aj(i)f(i) = E(ak(n)).

The first constraint is to assure that f is a probability density function. The second

to the k + 1 constraint can be modified according to what the private information

we can obtain from the policyholder. If we set a1(i) = i and θ1 = m, then the

second constraint means the policyholder is expected to live m more years. We can

also have the information of the distribution of length of life. For example, if the

85 percentile of length of life is 13 years, then we can modify the condition to the

equation shown as follows
13
∑

i=1

f(i) = 0.85.

Such construction of the conditions is versatile and can be utilized whatever infor-

mation we can obtain from the policyholder.

To find the f , we need to solve the problem presented as follows

min
f
I(f |g) (6.4)

with the conditions derived from the personal information of the policyholder.

86



Brockett et al. (1980) show that the optimization (6.4) with linear conditions

is a convex programming problem and that the dual mathematical programming

problems are actually unconstrained and involve only exponential and linear terms

(Brockett et al., 2013). The number of dual programming problems is equal to the

number of constraints, and the unique solution proposed by Brockett et al. (1980)

has the general form

f(t) = g(t) exp(−(β0 + 1)− β1a1(t)− ...− βkak(t)).

6.4 Adjusting Mortality with Known Information

6.4.1 Applying the Minimum Discrimination Information

Estimation

In this section we apply the minimum discrimination information estimation. Sup-

pose we can obtain mortality rate table for the general population and calculate the

density g. For an individual who is willing to sell his/her life insurance policy, we

know the number of years that he/she is expected to live is m . We would like to

find a density function f with the information of his/her expected length of life and

is “as close as possible” to g. The f should satisfy the conditions shown as follows

k
∑

i=1

f(i) = 1

k
∑

i=1

f(i)i = m.

(6.5)

87



Hence the optimization problem is shown as follows

min I(f |g) = min
∑

i

f(i) ln(f(i)/g(i))

subject to the constraints (6.5). Let β0 and β1 be the Lagrange multipliers and then

the original optimization problem can be rephrased as to minimize the Lagrange

function shown as follows

L(f, β0, β1) =
∑

i

f(i) ln(f(i)|g(i))− β0

(

1−
∑

i

f(i)

)

− β1

(

m−
∑

i

f(i)i

)

with the conditions that f(i) ≥ 0 for all i. The first order conditions are shown as

follows

ln(f(i)|g(i)) + 1 + β0 + iβ1 = 0, for i = 0, ...k,

− 1 +
∑

i

f(i) = 0,

−m+
∑

i

f(i)i = 0.

The first condition gives the function shown as follows

f(i) = g(i) exp(−1− β0 − iβ1)

for all i. To utilize the information of the last two conditions, Brockett et al. (1980)

suggest to consider the function Φ(β) =
∑

i g(i) exp(−iβ). Since the sum of densities
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is one, we have

1 =
∑

i

g(i) exp(−1 − β0 − kβ1) = exp(1− β0)Φ(β1),

so we can derive β0 shown as follows

β0 = lnΦ(β1)− 1.

To obtain β1, note that Φ
′(β1) = −

∑

i g(i)i exp(−iβ1), so we then has the equation

shown as follows

Φ′(β1) = −
∑

i

ig(i) exp(−iβ1)

= − exp(1 + β0)
∑

i

ig(i) exp(1− β0 − iβ1)

= − exp(1 + β0)
∑

i

if(i)

= −Φ(β1)m

Hence, β1 can be obtained by solving Φ′(β1) = −Φ(β1)m numerically.

6.4.2 Example

For the purpose of illustration, assume that the distribution of deaths during the

year of death is assumed to be a uniform distribution. Consider the 2008 VBT table

as the mortality table for general population, and a 70-year-old female illustrated in

the table is expected to live another 8.5 years estimated by the medical underwriter.
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Her whole life insurance paid up at age 110 was issued on a female standard risk

at age 40 based on the 2008 VBT. The face value (death benefit) of the policy is

$50,000 with annual premium P = $565.5. Our goal is to apply the estimation

described in the previous section and obtain a new probability of death in each year

for this female based on the information of her 8.5 life expectancy. Then we will

calculate the price of her life settlement.

Table 6.1 shows the estimation results with β0 = −2.4558 and β1 = 0.1300.

Figure 6.1 compares the original mortality rate curve and the adjusted mortality

rate curve for the 70 year old female. The adjusted mortality rate increases about

six percent at age 70 and continues until death. The adjusted density of death

year puts more probabilities for the early years to disclose the information that the

policyholder has the shorter life expectancy.

6.5 Comparison of Life Settlement Pricing

When we utilize the additional private information of the policyholder, the resulting

value of the life settlement will be higher than the value without knowing the infor-

mation. The additional private information has its own value. Table 6.2 shows the

comparison of the life settlement prices calculated without adjustment of informa-

tion and the price from deterministic life settlement pricing by using four mortality

tables: disabled retirees, healthy annuitants3, the CSO 2001, and the 2008 VBT.

We can find that no matter what mortality table we are using, the deterministic life

3The mortality rates of disabled retirees and healthy annuitants are from the mortality table
RP-2000 and it is available at
www.soa.org/files/research/exp-study/rp00 mortalitytables.pdf
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probability adjusted
mortality of death probability adjusted

rate in year of death mortality
age year (2008 VBT) (2008 VBT) in year rate

70 0 0.019540 0.019540 0.083785 0.083785
71 1 0.021490 0.021070 0.079333 0.086588
72 2 0.023550 0.022594 0.074700 0.089260
73 3 0.025680 0.024057 0.069843 0.091636
74 4 0.027990 0.025548 0.065130 0.094073
75 5 0.030680 0.027219 0.060933 0.097150
76 6 0.033820 0.029084 0.057173 0.100963
77 7 0.037340 0.031025 0.053554 0.105194
78 8 0.041280 0.033018 0.050047 0.109862
79 9 0.045710 0.035052 0.046655 0.115054
80 10 0.050840 0.037204 0.043483 0.121174
81 11 0.056690 0.039376 0.040412 0.128143
82 12 0.063200 0.041409 0.037318 0.135726
83 13 0.070390 0.043206 0.034191 0.143880
84 14 0.078380 0.044723 0.031078 0.152760
85 15 0.087330 0.045925 0.028023 0.162578
86 16 0.097360 0.046728 0.025037 0.173459
87 17 0.108570 0.047035 0.022130 0.185492
88 18 0.121010 0.046732 0.019308 0.198691
89 19 0.134700 0.045724 0.016589 0.213037
90 20 0.149610 0.043945 0.014000 0.228460
91 21 0.165730 0.041397 0.011580 0.244939
92 22 0.183030 0.038141 0.009369 0.262453
93 23 0.201470 0.034300 0.007398 0.280999
94 24 0.220990 0.030043 0.005690 0.300592
95 25 0.240780 0.025500 0.004241 0.320322

Table 6.1: Partial standard life table and adjusted life table that achieves a life
expectancy equal to 8.5 years
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Figure 6.1: The comparison of mortality rate curves

settlement pricing that is adjusted by the private information (expected length of

life is 8.5 years) is always higher that the price without the adjustment.

When we have our pricing methods adjust with the private information of the

policyholder, the probabilistic life settlement pricing will produce the higher value

than the deterministic life settlement pricing. This is because the probabilistic life

settlement pricing considers the uncertainty of the year of death contribute a value

to prices. Since no matter what mortality table we are using, the life settlement

pricing with the adjustment of the policyholder’s private information is always the

highest, we only compare the pricing results from the 2008 VBT with the pricing

from the modified Lee-Carter model with Lévy processes and the Esscher transform.

As mentioned before, the 2008 VBT table is the most popular one for life settlement
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required Disabled Retiree Healthy Annuitant CSO 2001 2008 VBT

rate of not not not not
return adjusted deterministic adjusted deterministic adjusted deterministic adjusted deterministic

1% 37,122.82 41,260.97 34,083.33 41,252.18 33,934.03 41,259.48 34,895.90 41,249.14
2% 32,745.97 38,094.60 28,862.04 38,072.68 28,686.22 38,091.47 29,852.70 38,065.30
3% 29,091.04 35,330.87 24,611.75 35,293.86 24,426.17 35,326.56 25,704.35 35,281.79
4% 26,016.99 32,904.81 21,129.08 32,852.29 20,945.07 32,900.09 22,271.93 32,835.71
5% 23,413.66 30,763.66 18,257.13 30,696.11 18,082.06 30,759.37 19,415.50 30,675.55
6% 21,194.36 28,864.31 15,874.11 28,782.76 15,712.54 28,861.29 17,025.01 28,758.86
7% 19,290.44 27,171.32 13,884.84 27,077.07 13,739.34 27,170.31 15,013.47 27,050.55
8% 17,647.18 25,655.39 12,214.56 25,549.84 12,086.31 25,657.03 13,311.73 25,521.41
9% 16,220.67 24,292.14 10,804.17 24,176.71 10,693.41 24,296.95 11,864.55 24,147.04
10% 14,975.47 23,061.21 9,606.67 22,937.25 9,513.03 23,069.59 10,627.60 22,906.96
11% 13,882.80 21,945.48 8,584.53 21,814.26 8,507.23 21,957.73 9,565.11 21,783.88
12% 12,919.16 20,930.51 7,707.56 20,793.17 7,645.60 20,946.83 8,648.08 20,763.16
13% 12,065.25 20,004.01 6,951.40 19,861.60 6,903.66 20,024.53 7,852.90 19,832.36
14% 11,305.12 19,155.55 6,296.26 19,008.97 6,261.58 19,180.32 7,160.26 18,980.85
15% 10,625.54 18,376.15 5,725.99 18,226.23 5,703.22 18,405.17 6,554.28 18,199.49
16% 10,015.48 17,658.13 5,227.38 17,505.56 5,215.39 17,691.36 6,021.88 17,480.43
17% 9,465.68 16,994.84 4,789.52 16,840.24 4,787.27 17,032.19 5,552.19 16,816.89
18% 8,968.36 16,380.51 4,403.40 16,224.42 4,409.90 16,421.88 5,136.17 16,202.99
19% 8,516.91 15,810.13 4,061.54 15,653.00 4,075.88 15,855.39 4,766.29 15,633.59
20% 8,105.72 15,279.31 3,757.68 15,121.54 3,779.04 15,328.32 4,436.20 15,104.23

Table 6.2: The comparison of the life settlement prices calculated without adjustment of information and the
price from deterministic life settlement pricing by using four mortality tables
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Figure 6.2: The comparison of the curves of density of death year

pricing and it is the latest mortality table.

Figure 6.2 compares the 2008 VBT distribution of the death year with our ad-

justed model when the expected number of years to live is 8.5. The 2008 VBT shows

the expected number of years remaining to be approximately 16.5 years. The 2008

VBT shows the higher probabilities for the first seven year. Our model shows the

higher probabilities from year seven to nineteen. Using information theory and ad-

justing for mortality improvement suggests, that this policyholder has a disposition

to live longer than current mortality tables suggest. Figure 6.3 shows the adjusted

probability distribution for the 2008 VBT and our model. The adjusted probability

distribution is the primary cause of the difference in price . The adjusted probability

distribution of the 2008 VBT is higher than the probability of our model in the first
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Figure 6.3: The comparison of the curves of adjusted density of death year

five years. Due to this difference, we expect the life settlement price calculated from

the 2008 VBT will be higher than ours. The discounted value of a life policy is very

high for the first five years. Although our model shows the adjusted probability will

be higher in the later 10 years, our model produces a lower price for a life settlement.

Table 6.3 shows the present value of a life settlement calculated with life ex-

pectancy of 8.5 years . The deterministic life settlement pricing shows the lowest

prices because it does not consider that the uncertainty of the year of death has a

value. Compare the price of the 2008 VBT and our model when the required rate

of return is higher than 10%; our model produces a price of $22,459.07, between

$450.00 and $600.00 less than the price calculated using the 2008 VBT. This dif-

ference is because the 2008 VBT has a higher probability of death in the first five
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rate deterministic 2008 VBT ours

1% 41,052.48 41,259.48 41,224.31
2% 37,546.01 38,091.47 38,001.25
3% 34,356.27 35,326.56 35,170.19
4% 31,452.17 32,900.09 32,672.48
5% 28,805.93 30,759.37 30,459.51
6% 26,392.70 28,861.29 28,490.87
7% 24,190.20 27,170.31 26,732.74
8% 22,178.47 25,657.03 25,156.75
9% 20,339.60 24,296.95 23,738.95
10% 18,657.47 23,069.59 22,459.07
11% 17,117.61 21,957.73 21,299.90
12% 15,706.99 20,946.83 20,246.72
13% 14,413.87 20,024.53 19,286.94
14% 13,227.65 19,180.32 18,409.75
15% 12,138.79 18,405.17 17,605.97
16% 11,138.65 17,691.36 16,867.01
17% 10,219.42 17,032.19 16,186.36
18% 9,374.04 16,421.88 15,557.93
19% 8,596.10 15,855.39 14,976.02
20% 7,879.82 15,328.32 14,436.11

Table 6.3: Present value of the life settlement starting from VBT table 2008 and
our model both adjusted to have life expectancy of 8.5 years

years when the discounted value of a life settlement is high.

6.6 Risk Considerations

In the previous section of the discussion of the pricing a life settlement, we consider

only a pure premium or expected actuarial present value. We do not discuss a risk

premium. In the life settlement market, pricing is based on the expected rate of

return of a life settlement, and the risk premium means there will be an additional
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expenses and a cost for the investors who bears the mortality risk. Moreover, since

the nature of the financial market of life settlements is actually close to an auction

market for policies, the actual risk premium varies company by company. Besides,

the risk premium can be correlated with other factors and the level of impacts may

be different for different companies. Hsieh et al. (2012) analyze several hundred of

successful life settlement transactions from a major life settlement company, Con-

ventry4. They find that the risk premium can be correlated to the issuing insurance

company rating, the age of the policyholder, and the length of time the policy has

been in force.

There is no common approach to calculate the risk premium for a life settlement.

The risk associated with a life settlement policy is related to the policyholder’s indi-

vidual risk. Moreover, each life settlement company has its own pricing methodology.

Since purchasing a life settlement can be viewed as an investment project, the in-

ternal rate of return (IRR) is a good way to evaluate the transaction. The IRR is

frequently used for understanding the profitability of investment opportunities in

corporate finance. If the required rate of return (may be a risk-free rate) is known,

then the difference between the IRR and the required rate of return is called the

implied risk premium (Damodaran, 1999). Murphy (2006) indicates that the usual

IRR of investing a life settlement ranges from 15% to 18%. The average T-bill rate

in 2006 is 4.68%. If the average T-bill rate is assigned as the required rate of return,

the implied risk premium ranges from 10.32% to 13.32%.

From Table 6.3, we can obtained the prices of a life settlement under different

4Conventry is a global financial services firm leading the development of the life settlement
market. It is also one of the originators and the creators of the life settlement market in the
United State.
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purchase expected
required rate price expected risk
of return (our model) IRR premium

1% 41,224.31 4.3356% 3.3356%
2% 38,001.25 6.9273% 4.9273%
3% 35,170.19 9.5165% 6.5165%
4% 32,672.48 12.0994% 8.0994%
5% 30,459.51 14.6725% 9.6725%
6% 28,490.87 17.2327% 11.2327%
7% 26,732.74 19.7778% 12.7778%

Table 6.4: Calculating the risk premium of a life settlement by using IRR

discount rates. Because the discount rate has been under 7% since 1991, we assume

that the life settlement company purchases the policy with different required rate of

return ranging from 1% to 7%. Under our model, the purchase price is calculated

with the adjusted length of years to live at 8.5 (the last column of Table 6.3). We

then can calculate the expected IRR for each price and thus generate the implied

risk premium. Table 6.4 shows the results. When the discount rate is about 5%,

the implied risk premium is 9.6725% that is similar to calculations arrived at by

Murphy (2006).

6.7 Summary

A life settlement is a financial instrument that enables a third party to purchase

an existing life insurance policy from a policyholder. Because the policy was is-

sued for an individual, the mortality risk mostly depends on the individual’s health

conditions. When the individual negotiates the transaction with a life settlement
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company, some medical records may be disclosed. The traditional pricing methods

either do not modify the pricing model for the availability of the personal medical

information or do adjust the pricing method with the a multiplier method that ac-

tually cannot reflect all available information. We propose a method to adjust the

probability distribution of death year by the minimum discrimination information

estimation. Our method is capable of adopting different kinds of information for

adjustment, such as the number of years that the policyholder is expected to live

and a given probability for which year that the policyholder is going to die.

We first use a variety of published mortality tables, such as the PR-2000, the 2008

VBT, and the CSO 2001 to implement our method. We also include the deterministic

life settlement pricing for comparison. The deterministic life settlement pricing

produces the lowest price since it does not place a value on the randomness of the

death year. Settlement prices from published mortality tables are similar, and we

compare the prices from 2008 VBT with prices from our proposed model. Our

model produces lower settlement prices because we take mortality improvement

into consideration. This lowers the probability of death in the early years due to

the adaption of the mortality improvement.

There is no common way to calculate risk premium for a life settlement. The

pricing is generally calculated based on the expected actuarial present value. We

propose the application of the IRR to calculate the implied risk premium. The

IRR has been frequently used in corporate finance for measuring the profitability

of an investment opportunity. Given a required rate of return, we can calculate

the purchase price and the expected IRR. The difference between the IRR and the
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required rate of return is the implied risk premium. Our estimation results are close

to the practical experience in Murphy (2006).
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Chapter 7

Pricing Mortality/Longevity

Linked Securities

7.1 Introduction

Underestimating life expectancy whether by individuals or governments causes longevity

risks. Indeed, in recent decades, the individual cost of aging has risen, but our focus

here is the increased liabilities pension funds and insurance companies have incurred

because people in developed countries are living longer than expected.(Biffis and

Blake, 2009). As mentioned previously, improved medical care and technological

advances will continue to lower the death rate and simultaneously longevity risks

will increase. Public spending on senior citizens is increasing and pension funds

and insurance companies are increasing their payouts to pensioners and retirees.

Table 7.1 shows age related pension and public health expenditure projections. We

see that the projected increases are high in Europe, Japan and the United States.
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Pension Public Health
Expenditure Expenditure Total

Country 2010 2030 2010 2030 2010 2030

Brazil 8.5 9.8 3.6 5.1 12.1 14.9
China 2.2 2.4 1.9 2.8 4.1 5.2

EMG6 India 1.7 2.1 1.1 1.5 2.8 3.6
Mexica 2.4 4.5 2.7 3.8 5.1 8.3
Russia 9.4 14.0 3.5 4.6 12.9 18.6
Turkey 7.3 10.5 3.5 4.8 10.8 15.3

France 13.5 14.2 9.0 10.5 22.5 24.7
Germany 10.2 11.5 8.1 9.0 18.3 20.5

G6 Italy 14.0 14.8 6.9 7.5 4.1 22.3
Japan 10.3 10.1 6.8 7.8 17.1 17.9
United Kingdom 6.7 7.6 7.3 10.6 4.1 18.2
United States 4.9 6.0 7.6 12.7 12.5 18.7

Source: IMF, Credit Suisse.

Table 7.1: Age related government expenditure projections (in percent of GDP)

Better means of mitigating longevity risks are needed to keep pension funds and

insurance companies solvent so that they can adequately meet the needs of people

living longer than ever expected.

Traditionally, pension funds and insurance companies have used insurance and

reinsurance to mitigate risk. Today, these approaches lack the capacity and liquidity

to support the gigantic global exposure currently estimated to be about $20 trillion

(Loeys et al., 2007; Biffis and Blake, 2009). Capital markets do not have the same

liquidity and the capacity issues associated with insurance and reinsurance and thus

can provide more transparent and competitive pricing for longevity risks. In 2006

United Kingdom pension funds began transferring their longevity risks to capital

markets (ARTEMIS, 2012). Market size from 2007 to 2010 was approximately £8
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billion each year (Chang, 2011). In 2011, market size rose to £12.4 billion. Although

the numbers are not currently available, in 2012 hedging transactions are expected

to exceed £30 billion (Kiff, 2012).

Currently there are four ways to transfer longevity risks to capital markets: buy-

outs, buy-ins, longevity bonds, and longevity swaps. Buy-out and buy-in financial

instruments attempt to mitigate not only longevity risks but also demographic and

market risks. A buy-out transaction means that all pension fund liabilities are ceded

to an insurer1 through a bulk annuity. The pension fund is fully discharged of liabil-

ities and the uncertainties of asset returns. The pensioner retains no connection to

the original pension fund. Therefore, a buy-out not only transfers longevity risks but

also other types of risk, such as demographic risks and market risks. The first buy-

out transaction was made between Paternoster and Cuthbert Health Family Plan

in November 20062. Various buy-out transactions followed increasing in value each

time. In June 2012, a buy-out transaction between General Motors and Prudential

was valued at $26 billion .

Increased life expectancy and high cost to transfer the full amount of risk makes

buy-out transactions prohibitively expensive. The transaction of a buy-out keeps

reaching a record high, many pensioners are now facing large funding deficits due to

the underestimate of longevity risks and cannot always afford the cost to transfer the

full amount of the risk. Mercer Global launched a pension buyout Index3 in 2010.

1The insurer is referred as a regulated life insurer defined by the Financial Services Authority
(FSA) in the United Kingdom.

2The Cuthbert Health Family Plan is the pension scheme of a former Lloyd’s of London under-
writer. There are approximately 50 funds in the scheme. The transaction amount is not disclosed
but commonly understood to be around £10 million.

3The Pension Buyout index is based on the pricing data from Aviva, Legal General and Pensions
Insurance Corporation to provide companies with a monthly snapshot of the affordability of a buy-
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They anticipate it will cost a mature pension scheme with liabilities and assets

of £100 million an additional £44 million to complete a buy-out transaction with

an insurer (Investment and Pensions Europe, 2010; Mercer Global, 2010). Buy-

out transactions are costly, therefore, most longevity risks hedgers prefer buy-in

transactions that have lower premiums and are easier to implement (Chang, 2011).

A buy-in hedge is similar to a buy-out although the pensioner continues to be

connected with the original pension fund. A buy-in can be viewed as a partial buy-

out. In a buy-in transaction, the pensioner purchases an insurance contract that

guarantees a portion of the benefits to transfer the liabilities. For example, the fund

could elect to transfer only the pension of deferred members4 that are a subgroup of

the pension members. The transaction can also include the transfer of liabilities that

come from the payable over a limited time-horizon, such as the liabilities with more

than 10 years maturity. A buy-in transaction has a lower premium and is usually a

part of the de-risking strategy for reducing the risk exposure of a pension plan. The

first buy-in transaction was made between Lane Clark and Peacock & Hunting PLC

in the United Kingdom in January 2007, and the value of the transaction was £100

million. Many buy-in transactions followed since then but they all took place in

the United Kingdom. The first buy-in deal outside the United Kingdom took place

in Canada in 2009 involving Sun Life Financial, and the value of transaction was

$50 million. Hickory Springs Manufacturing Company and Prudential Retirement

transacted the first buy-in in the United States worth $75 million dollars. The fact

that the cost of a buy-in is lower makes that buy-ins are now more popular than buy-

out or buy-in.
4A deferred member is a member who has left service or opted out and is currently entitled to

a deferred pension.
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outs among pensioners for the de-risking purpose and sometimes for the investment

strategy tilting toward liability hedging (LCP, 2011; Biffis and Blake, 2009).

Unlike the buy-ins and the buy-outs, which are instruments to mitigate all

sources of risks, the transaction of a longevity bond and a longevity swap are used

to transfer only the longevity risks. The first attempt of issuing a longevity bond

was in November 2004 when BNP Paribas announced the issue of a 25-year bond

linked to a cohort survivor index based on the realized mortality rates of English

and Welsh males aged 65 in 2003 . The bond was issued by European Investment

Bank (EIB) and is commonly known as the EIB bond. However, the bond was not

actually launched due to insufficient investor demand.

The mortality catastrophe bond is another type of bond that is linked to mor-

tality rates by the mortality index. The short-term structure and the catastrophe

bond feature make the mortality catastrophe bonds successfully marketed by Swiss

Re since 2003. Learning lessons from the failure of the EIB bond and the success

of mortality catastrophe bonds, Swiss Re launched a longevity catastrophe bond

in 2010, which has the design similar to mortality catastrophe bonds. Beginning

in 2012 and continuing until 2020, the Swiss Re longevity bonds hedge relative

changes in the mortality rate of United States males between the ages of 55 to 65

and United Kingdom males between the ages 75 to 85. A new sense of urgency to

manage longevity risks combined with investor anticipated short-term wins makes

longevity catastrophe bonds very popular financial instrument investments. There

is a difference between the EIB bond and a longevity catastrophe bond. The EIB

bond was designed to offer pensioners with a price which they could hedge for the

105



Time
Index Launched Population Index Group

Credit Suisse
Longevity Index

2005 U.S. Overall, gender and age-
specific sub-indices

J.P. Morgan Life-
Metrics Index

2007 US, England and
Wales, the Nether-
lands and Germany

Overall, gender and age-
specific sub-indices

Deutsche Börse
Xpect Age and
Cohort Indices

2008 Germany, the Nether-
lands and England
and Wales

Overall, gender and age-
specific sub-indices

Source: Credit Suisse and the Bloomberg Professional service.

Table 7.2: Longevity indices

longevity risks, but the longevity catastrophe bond was designed to offer a premium

to investors who are willing to assume some longevity risks from Swiss Re.

Longevity swaps5 are another derivatives that concern only longevity risks, thus

they have lower transaction costs. A longevity swap is essentially tied to a longevity

index, such as J.P. Morgan LifeMetrics, the Credit Suisse Longevity Index, and

Deutsche Börse Xpect Age and Cohort Indices. Table 7.2 shows the detailed in-

formation of the indices6. Credit Suisse and Babcock completed the first longevity

swap in May 2009, in the amount of £750 million. Several longevity swaps have fol-

lowed including a successful 10-year q-forward lunched by J.P. Morgan in 2008. This

J.P. Morgan contract is the world’s first longevity derivative that involves market

5There are two types of the longevity swaps, indemnity-based and index based. This paper
concerns index-based swaps because they are easier to be construct than indemnity-based swaps
and popular among pension funds.

6The Goldman Sachs QxX index launched in 2008 is not included in the discussion. The target
population of the QxX index does not reflect the general population. The data refers to 46,290
people aged 65 or older with an impairment other than HIV-AIDS. The QxX was discontinued in
2010 due to lack of commercial activity.
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transactions. In February 2011, J.P. Morgan executed another 10-year q-forward

contract with the Pall U.K. pension fund in the amount of £70 million (Mortimer,

2012; Cobley, 2012). It is the world’s first longevity swap for non-pensioners 7. Af-

ter the introduction of longevity swaps the buy-out and buy-in markets shrank by

more than 50 percent (Wang, 2011). In 2012 Deutsche Bank and the Dutch insurer

Aegon transacted a 12 billion Euro dollars longevity swap, the largest to date. The

demand of low-cost longevity swaps shows that investment banks are eager to write

more of them. Thus, the investment banks recognize the necessity of a standard of

a longevity index and the format of a contract, which leads to the launch of the Life

and Longevity Markets Association (LLMA) in 2010.

The LLMA is professional organization for those involved with life and longevity

risks related products. The LLMA, establishes guidelines, standards, best practices,

and pricing structures to promote liquidity and transparency in the trading of fi-

nancial instruments that are linked to longevity or mortality related risks. Deutsche

Bank, J.P. Morgan, Morgan Stanley, Munich Re, Prudential PLC, Swiss Re, and

several other insurance companies and pension funds are active members of the

LLMA.

In the following section we show the pricing for a q-forward. We give an example

of a q-forward pricing under an LLMA pricing structure. We also show the pricing

of a mortality catastrophe bond and the EIB bond. We apply our proposed model

to arrive at the mortality prediction .

7A non-pensioner means either an active member or a deferred member of a pension scheme in
an occupational pension scheme. An active member is a member of a pension scheme who is in
the employment and accruing benefits under the scheme.
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Figure 7.1: A q-forward transaction at maturity

7.2 q-forward

A q-forward is named after the letter q that is denoted as the mortality rate in

actuarial science. A q-forward is linked to the mortality rate and is used to hedge the

longevity exposure particularly for pension or annuity funds. Figure 7.1 illustrates

the transaction of a q-forward at maturity for two parties. Party B is the hedger,

typically a pension fund. A decreasing mortality rate means that more people will

live longer than expected, meaning the pension fund will have to pay out more than

originally anticipated. The pension fund hedges this longevity risks by exchanging

the varying payment generated from a floating mortality rate for the fixed payment.

In other words, the pension fund wants to ensure a positive cash flow to hedge the

longevity risks when the mortality rate is lower than expected. Party A is the fixed

mortality rate payer, usually an investment bank. The bank receives the payment

linked to the varying mortality rate and takes over the longevity risks.

Denote the realized mortality rate at maturity as mrealized, and the fixed mor-

tality rate in the contract as mfixed. The net settlement amount for the bank at
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maturity is shown as follows

notional amount× (mrealized −mfixed), (7.1)

and the net settlement amount at maturity for the pension fund, the counter party,

is shown as follows

notional amount× (mfixed −mrealized).

Table 7.3 shows an illustration of a q-forward net settlement for the bank when

outcomes of the realized reference rate vary. If the realized rate is lower than the

fixed rate, the bank needs to pay the net settlement to the pension fund, which

means the fund is protected from a decreasing mortality rate. Table 7.4 shows

the illustrative term sheet for a single q-forward for hedging the longevity risks. We

notice that the fixed rate is pre-determined in the contract. The present value of the

net settlement of the bank is to discount (7.1) with the risk-free rate or the required

rate of return of the bank. The discounted net settlement should be the premium

for the bank, but the realized mortality rate is unknown. Therefore, replace the

realized mortality rate to the expected mortality rate and then discount value of the

net settlement is the premium that the bank charges the hedger.

Ideally, the net settlement is zero when the fixed rate and the realized rate are the

same, meaning that the risk is hedged perfectly and the bank does not receive any

payment from the transaction. However, the risk from the mortality improvement

is inherent in the realized mortality rate varying over the contract duration, and
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Reference Rate Notional Settlement
(Realized Rate) Fixed Rate (GBP) (GBP)

1.00% 1.2% 50,000,000 10,000,000
1.00% 1.2% 50,000,000 5,000,000
1.20% 1.2% 50,000,000 0
1.30% 1.2% 50,000,000 -5,000,000

Source: J.P. Morgan.

Table 7.3: An illustration of q-forward net settlement for a bank when outcomes of
the realized reference rate vary.

the bank takes this risk from the transaction. The bank should be rewarded for

taking the risk, so the bank will propose a fixed rate that is generally lower than the

expected mortality rate in order to have a positive cash flow at maturity. The fixed

rate is calculated according to not only the information of the expected mortality

rate but also the risk tolerance of the bank, so it is also called a forward rate.

7.2.1 LLMA structure

The LLMA structure of a q-forward provides a simple way to quantify the mortality

risk. The fixed rate, assigned by the bank, contains the information of the future

mortality rate and the risk appetite of the bank. The LLMA proposes the structure

which was originally used by J.P. Morgan when it proposed the q-forward in 2007

shown as follows

mx,t = mx,0

t
∏

i=1

(1− (m̂x,i + ξ)), (7.2)

where the x can be an age, an age group, or a group of age groups, the mx,t is the

forward rate at future time t, m̂x,i is the best estimate of the mortality improvement

110



Notional Amount 50 million GBP
Trade Date 31 December 2006
Effective Date 31 December 2006
Maturity Date 31 December 2016
Reference Year 2015
Fixed Rate 1.20 %
Fixed Amount Payer J.P. Morgan
Fixed Amount Notional Amount × Fixed Rate × 100
Reference Rate LifeMetrics graduated initial mortality rate for 65-

year-old males in the reference year for England and
Wales national population
Bloomberg ticker: LMQMEW65 Index <GO>

Floating Amount Player XYZ Pension
Floating Amount Notional Amount × (Realized) Reference Rate × 100
Settlement Net Settlement= Fixed Amount-Floating Amount

Source: J.P. Morgan.

Table 7.4: An illustrative term sheet for a single q-forward to hedge longevity risks

rate, and ξ is the adjustment term for the risk appetite. The forward rate is the fixed

rate given in the standard q-forward contract. The m̂x,i involves the information of

how the future mortality rate evolves. We can re-write (7.2) by dropping ξ as shown

below to understand the LLMA structure better

mx,t = mx,0

t
∏

i=1

(1− m̂x,i). (7.3)

The (7.3) is similar to the estimation of the mortality rate with the mortality im-

provement rate shown as follows

mx,t = mx,0

t
∏

i=1

(1− rx,i). (7.4)
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where rx,k is the mortality improvement rate for the age x at time i defined as follows

rx,i := 1− mx,i

mx,i−1
.

Compare (7.4) and (7.3), we can find that the best estimate m̂x,i is estimated as a

mortality improvement rate.

The LLMA suggests an average mortality improvement rate as the best estimate

of the mortality improvement rate. If the reference mortality rate is the rate of an

age group or a group of age groups, such as males, 65 to 69 years old, the best

estimate can be the average predicted mortality improvement rate of the males who

belong to the range of age over the contract duration. If the reference rate is for a

specific age, the best estimate of the mortality improvement rate can be estimated

by the average predicted mortality improvement rate over the contract duration.

Therefore, the (7.3) can further be simplified as follows

mx,t = mx,0(1− m̂t
x)
t,

where m̂t
x is the average predicted mortality improvement rate over the contract

duration t.

The (7.3) shows the forward rate is the expected mortality rate at maturity and

contains no information of the bank’s risk appetite. If the bank uses (7.3) as the

fixed rate, it means that the bank expects zero net payment because the forward

rate is the expected mortality rate. In the q-forward transaction, the bank receives

the floating payment and the decreasing mortality rates result in a lower payment.
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The variation and the trending-downward mortality rate is the risk taken over by

the bank. Therefore, the forward rate proposed by the bank will be lower than

the forward rate in (7.3), i.e. the expected mortality rate, so that the bank can

have a positive future cash flow at maturity. The mortality improvement rate is

thus estimated as a best estimate plus an adjustment term that incorporates the

information of the bank’s risk appetite shown in (7.2). In the standard q-forward

contract, the fixed rate is given and we can calculate the ξ which is used to measure

the risk appetite of the transaction. If the bank perceives more improvement of the

mortality rate, the bank increases the value of the ξ.

7.2.2 Graduation

The purpose of graduation is essential because the age-specific mortality rates for

each calendar year are generally not available. Mortality data are mostly presented

in an abridged form, such as the values of death rates are shown at age 0, age group

1 to 4, 5 to 14, 15 to 24, and so on up to 75 to 84, and the open age group 85 and

over. Such a layout is not sufficient for the computation of some monetary functions

involving life contingencies, such as annuities that require probabilities of death for

every single year of age.

The published data for mortality rates are age-group-specific, and they should

be graduated to be age-specific mortality rates for most actuarial applications such

as the construction of a life table. The graduated mortality rates should incorporate

the important property of the mortality rate: the mortality rates for adjacent ages

are similar and highly correlated. Besides, the graduation process should not destroy
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the integrity of the data, and the process should magnify the information yet reduce

the noises in the mortality rates.

The traditional graduation methods are parametric, such as Beers ordinary min-

imized fifth difference method and the Gompertz-Makeham method. Although they

are commonly seen in demographical and actuarial science literature, these para-

metric models can be applied only when we understand the data very well. Both

LLMA and J.P. Morgan suggest a non-parametric method, a smoothing cubic splines

method, which provides a supurb fit and is much better than the traditional meth-

ods for graduation purpose. J.P. Morgan (2007b) runs several tests to compare the

goodness of fit of these three graduation techniques, including signs test, runs test,

Chi-square goodness of fit test, serial correlations, standardized deviations test, and

cumulative deviations test. The report concludes that the smoothing cubic splines

method provides the flexibility for fitting the data best.

Splines are piecewise polynomial functions with the assumption that each spline

is differentiable (for some defined number of times) at knots, which are connecting

points of those polynomial functions. Therefore, splines are determined by the

locations of knots and the coefficients of the polynomials. The cubic spline is a

smoothing function defined by a polynomial of degree three, which fits cubic curves

among data points.

The smoothing cubic splines method is the splines method with a modification

for better goodness of fit. The modification is made through a smoothing parameter

used to penalize too much smoothing which deteriorates the goodness of fit (see

Appendix C). A small value of the smoothing parameter could result in a too rough
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curve while a large value could result in non-monotonic mortality rates. J.P. Morgan

(2007b) runs several tests to find an appropriate estimation interval for the value of

the smoothing parameter. The report concludes that the appropriate interval of the

value for the mortality rate of the United States is between 0.2 and 0.8, while the

interval for the England and Wales data is between 0.2 and 0.4. The LLMA (2012)

suggests the value 1/3 for the smoothing parameter.

The data we applied for construction of in-sample estimates and out-sample pre-

dictions are the death rates for males in England and Wales from 1960 to 20048. The

data are available for download from Human Mortality Database. We first fit data

with the modified Lee-Carter model and obtain the estimates of the parameters for

the Normal Inverse Gaussian (NIG) distribution. We then use these estimates and

the modified Lee-Carter model with the corresponding NIG Lévy process and the

Esscher transform to predict 10-year mortality rates by running 100,000 simulations.

Since the reference mortality rate of the J.P. Morgan q-forward shown in Table 7.4 is

the mortality rates for 65-year-old males, we apply smoothing cubic splines method

on our estimation results which are age-group specific mortality rates to obtain the

age-specific mortality rate for 65-year-old males. The selected value of the smooth-

ing parameter is within 0.3 to 0.4, which is consistent to J.P. Morgan (2007b) and

the reports of LLMA.

Figure 7.2 shows the fitted and prediction results compared to the LifeMetrics

index. The LifeMetrics index is estimated by eight models9 with some adjustments

from the raw data of population and deaths. We first observe that our fitted mor-

8See previous chapters for details.
9J.P. Morgan (2007) applies Lee and Carter (1992), Renshaw and Haberman (2006), Currie

(2006), Currie et al. (2004), Cairns et al. (2006), and three extensions to Cairns et al. (2007).
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Figure 7.2: The mortality estimation and prediction for age 65 males in England
and Wales

tality curve is close to the LifeMetrics index for the in-sample fitting (from 1961 to

2005). Besides, our model also preserves the jumps that are shown in the LifeMetrics

index. We predict the mortality rate for year 2006 to 2015, which is the contract

duration of the J.P. Morgan q-forward shown in Table 7.4. Since the LifeMetrics

index is updated to year 2010, we can compare part of our prediction results with

the LifeMetrics index. We can find that our prediction results of the mortality rate

for year 2006 to 2010 are also close to the LifeMetrics index.
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7.2.3 Estimation

Consider the fixed rate as 1.2% given in the J.P. Morgan q-forward shown in Table

7.4. We calculate the premium for the q-forward by applying formula (7.2). The

best estimate of the mortality improvement rate for the year i during the contract

duration is formulated as the mortality improvement rate, m̂i,65/m̂i−1,65, and the

initial mortality rate (of year 2005) is m0,65 = 1.5170%. We find the corresponding

ξ by solving the equation shown as follows

1.2000% = 1.5170%
10
∏

i=1

(

1−
(

m̂i,65

m̂i−1,65

+ ξ

))

.

The ξ is 0.3769% and the resulting premium is £1,534,992.

7.2.4 The fixed rate

The fixed rate in the standard q-forward is given, but how does the bank determine

that it is the right number? Nothing is mentioned regarding this in the LLMA

documents. However, Loeys (2007) proposes applying the concept of an interest

rate forward on the construction of the fixed rate. An interest rate forward is the

market’s expectation of the interest rate at a specific future time plus term premium

to compensate investors for taking the duration risk. Therefore, the forward rate

is the expected rate plus a mark-up value for the reward of taking the risk. The

mark-up value increases when the duration becomes longer, because the variation

and uncertainty of the change of the interest rate increases over time. This is similar

to a q-forward except that the interest rate is replaced by a mortality rate.
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The reference mortality in the J.P. Morgan q-forward contract shown in Table

7.4 reflecting the mortality rate for 65 year old English and Welsh males in 2015,

meaning that they were 55 years old in 2005. The longevity risks of this cohort of

males is the risk that the pension fund wants to transfer. The risk that the bank

carries over is actually from this cohort so the bank should calculate the forward

rate according to this cohort. The risk premium during the contract duration is

calculated by the Sharpe ratio suggested by Loeys (2007).

The Sharpe ratio is originally defined as excess return to cash dividends divided

by the volatility of return. Since the mortality rate in a q-forward transaction func-

tions similar to the interest rate, the Sharpe ratio is defined as the excess mortality

rate to expected mortality rate divided by the volatility of mortality rate. The long-

term returns of equities and bonds can generate a Sharpe ratio between 0.2 to 0.3.

Moreover, Burton et al. (2008) mention that a simple buy-and-hold strategy for ten

year swaps can return a Sharpe ratio of 0.25. Loeys (2007) suggests a Sharpe ratio

of 0.25 for the calculation of the forward rate of a q-forward, since the rate of return

of a q-forward has to be at least as good as the return from equities and bonds.

Thus a q-forward can attract the interest of investors.

Loeys (2007) proposes the formula for calculating the forward of a q-forward as

follows

qforward = (1− t× Sharpe Ratio× σ)× qexpected, (7.5)

where t is the contract duration, σ is the annualized historical standard deviation

of the reference age or age group, and qexpected is the expected mortality rate of the

reference year. We will use (7.5) to calculate the forward rate for the J.P. Morgan
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Figure 7.3: Mortality estimations and predictions for 55 year-old English and Welsh
males in 2005

contract shown in Table 7.4 with the Sharpe ratio 0.25.

The first step in calculating the forward rate is to forecast the ten year mortality

rates for the cohort of English and Welsh males who were 55 years old in 2005.

We apply the modified Lee-Carter model with NIG Lévy process and the Esscher

transform and simulate 100,000 times. Figure 7.3 shows the expected mortality

rates and the 95% confidence interval of the expected mortality rate of the cohort.

The confidence interval becomes larger over time which means the uncertainty of

the mortality rate movement increases. Table 7.5 shows the estimation results for

males aged from 56 to 65 in 2006 to 2015. The numbers in bold are the expected

mortality rates for the English and Welsh cohort. The mortality rates of the cohort
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year
2006 2007 2008 2009 2010

56 0.5990 0.5891 0.5891 0.5790 0.5691
57 0.6788 0.6588 0.6475 0.6362 0.6251
58 0.6765 0.7273 0.7142 0.7014 0.6889
59 0.7476 0.8052 0.7900 0.7749 0.7603

age 60 0.8284 0.8909 0.8732 0.8562 0.8399
61 1.0147 0.9846 0.9647 0.9458 0.9277
62 1.1195 1.0862 1.0643 1.0435 1.0239
63 1.2320 1.1958 1.1722 1.1500 1.1289
64 1.0139 1.3063 1.2792 1.2539 1.2301
65 1.1462 1.4406 1.4121 1.3856 1.3606

year
2011 2012 2013 2014 2015

56 0.5593 0.5497 0.5402 0.5310 0.5219
57 0.6141 0.6034 0.5928 0.5827 0.5725
58 0.6767 0.6647 0.6529 0.6417 0.6305
59 0.7462 0.7320 0.7182 0.7051 0.6920

age 60 0.8241 0.8084 0.7932 0.7787 0.7643
61 0.9104 0.8931 0.8765 0.8606 0.8449
62 1.0051 0.9863 0.9682 0.9510 0.9340
63 1.1087 1.0886 1.0693 1.0508 1.0326
64 1.2072 1.1848 1.1633 1.1426 1.1225
65 1.3365 1.3129 1.2903 1.2683 1.2471

Table 7.5: The mortality rate for a 55 year-old male in 2005
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Figure 7.4: The expected mortality rates and forward rates for 65 year-old English
and Welsh males in 2005

of males in England and Wales who was 55 years old in 2005 is increasing over time

because the fact that the mortality rate increases with age.

The second step is to calculate the forward rate. The historical standard devia-

tion of the mortality rate for the 65 year old English and Welsh males is 0.6692%.

The expected mortality rate is 1.2471% as shown in Table 7.5. We can calculate the

forward rate by applying formula (7.5) and the result is 1.2262%, which is higher

than 1.2% given in the J.P. Morgan q-forward contract. Figure 7.4 shows the ex-

pected mortality rate, the forward curve from our model, and the forward curve

from the J.P. Morgan q-forward contract. We can observe that the risk premium

for the duration risk of the J.P. Morgan q-forward is very high. The corresponding
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Figure 7.5: The expected mortality rate and the forward rate for 65 year-old English
and Welsh males

Sharpe ratio is 0.4457, which is higher than the suggested value 0.25.

We can apply the forward rate 1.2262 % calculated from our model as a fixed

rate to obtain ξ and risk premium for a q-forward. The resulting ξ is 0.1650% with

the corresponding risk premium £680,138. Figure 7.5 shows the expected mortality

rate curve, the forward rate curve generated from the 1.2262% fixed rate obtained

from our model, the forward rate curve generated from the 1.2% assigned in the J.P.

Morgan contract. Since J.P. Morgan proposes the 1.2% fixed rate much lower than

ours, the risk adjustment term ξ is much higher than ours.

Our proposed model has an in-sample estimation similar to the LifeMetrics index

that is computed from several other models with some complicated adjustments.

Our model also provides a higher forward rate with a lower premium that reduces
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Figure 7.6: The basic structure of a mortality catastrophe bond lunched by Swiss
Re

the costs of hedging the longevity risks. This could be the incentive to stimulate

interest in hedging longevity risks.

7.3 Mortality Catastrophe Bond

The Swiss Re successfully lunched and marketed a mortality catastrophe bond in

2003. The basic structure of a mortality catastrophe bond is shown in Figure 7.6.

The purpose of a mortality catastrophe bond is to mitigate the risk of a catastrophic

event that would cause a life insurance company to compensate all the beneficiaries

at once.

The bond is triggered by a dramatically rise in the mortality rate for a certain

population, which is similar idea to the catastrophe bond. The first mortality catas-

trophe bond was issued by Vita Capital, as a special purpose vehicle enabling Swiss

Re to remove extreme catastrophe risk from its balance sheet. The bond had a three

year maturity, a principal of $400 million and a 135 basis point coupon rate plus
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LIBOR. The reference mortality index is calculated from a certain age group and is

a weighted average value from five countries10. The principal is paid in full if the

reference mortality index does not exceed 1.3 times its 2002 base level before the

maturity date. The scheduled payment is shown as follows

xt =











LIBOR+spread , t = 1, ..., T − 1

LIBOR+spread + max(0, 1−
∑

t Lt) , t = T

where Lt is shown as follows

Lt =























0 , if mt < 1.3m0

(mt − 1.3m0)/0.2m0 , if 1.3m0 ≤ mt ≤ 1.5m0 for all t

1 , if 1.5m0 < mt

The goal of pricing is to know what the risk premium in term of interest rate.

Demographic information is not available for all countries; therefore, we only

use United States mortality rate data from 1900 to 2002. The weighted average

mortality index is calculated from the weight of each age group that is obtained

from year 2000 mortality estimation for the standard population. Table 7.6 shows

the weight for each age group of the United States based on the year 2000 standard

population.

We first use the modified Lee-Carter model with the NIG distribution and Lévy

process but without the Esscher transform to forecast the mortality rate. We run

100,000 simulations. For each simulation, we calculate the internal rate of return

10The weights for five countries are U.S.A. 70%, U.K. 15%, France 7.5%, Italy 5%, and Switzer-
land 2.5%.
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age group weight

<1 0.013818
1-4 0.055317
5-14 0.145565
15-24 0.138646
25-34 0.135573
35-44 0.162613
45-54 0.134834
55-64 0.087247
65-74 0.066037
75-84 0.044842
>84 0.155080

Table 7.6: The weights for age groups of the United States (year 2000)

(IRR) of the bond from an investor’s perspective. The average IRR is 0.66%. We

then forecast the mortality rate with the Esscher transform, and the average IRR

is -0.22%. The mortality rate prediction with the Esscher transform considers the

downward trend of the mortality rate, so it shows less inclination to have a large

positive mortality rate jump. Therefore, it is less likely to have a mortality rate

much higher than the base level of 2002. Moreover, if we consider the mortality

catastrophe bond as a tool to mitigate the extreme risk of a catastrophic rise in

the mortality rate, then the premium, in terms of interest rate, can be viewed as

the difference between the risk-free rate and an IRR. In our example, the IRR is

-0.22% and the risk-free rate is the LIBOR, so the premium that a pension fund

pays to be protected from a mortality jump is (LIBOR + 0.22%). Although there

are other ways to quantify the risk premium, such as Blake et al. (2006), applying

an IRR calculation may be the most intuitive way to understand the cost of hedging
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Figure 7.7: The cash flows from an EIB bond as viewed by investors

a catastrophic rise in the mortality rate.

7.4 EIB Longevity Bond

Although the 2004 EIB longevity bond never launched due to a combination of

issues discussed previously, it did receive a great deal of public attention. The bond

was issued by the European Investment Bank, and Partner Re was the reinsurer for

the longevity risks. The face value of the bond is 540 million GBP with a 25-year

maturity. The bond had floating coupon payments that were linked to a cohort

survivor index based on the realized mortality rates of English and Welsh males

age 65 in 2003. Figure 7.7 shows the cash flows from an EIB bond as viewed by

investors.

Blake (2005) mentions that the risk-adjusted value for the bond should be shown

as follows

V (0) =
25
∑

i=1

P (0, i)EQ(S(i)|M0) (7.6)

where P (0, i) is the discount factor and EQ(S(i)|M0) is the expected risk-adjusted

survival index (or survival rate) at time i under conditional on the current informa-

tion set.
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Figure 7.8: The comparison of the survival curves

To apply (7.6), we need to decide what discount rate and survival rate to use.

For the expected risk-adjusted survival rate, we can apply our model to generate

the mortality rate under a martingale measure. The resulting mortality rate has

adjusts with the long-term mortality change and hence adjusts the mortality risk.

We simply convert it to the survival rate and then apply the resulting survival rate

to (7.6). Figure 7.8 shows the comparison of our results with Blake (2005). Our

estimated survival curve is slightly lower than Blake (2005) but they are close to

each other.

Now we need to decide what discount rate should be used. Blake (2005) suggests

applying a 4% discount rate. We apply a 4% interest rate along with our mortality

rate model and obtain 11.2533 for the price of the longevity bond that is close to
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11.442 shown in Blake (2005). The choice of interest rate can be more sophisticated,

because the duration of the bond lasts for 25 years. In financial modeling, a Cox-

Ingersoll-Ross (CIR) model is usually applied for interest rate modeling. Introduced

by John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross in 1985, it is widely

applied to arrive at the valuation of interest rate derivatives. A CIR model for the

interest rate dynamics is shown as follows

dri = k̄(r̄ − ri)dt+ σ̄
√
ridBi

where ri is the interest rate, k̄, r̄ and σ̄ are the constants, and Bi is a standard

Brownian motion. Deelstra and Delbaen (1995) furthermore show that the CIR

model will can have the approximation property shown as follows

E

(

exp

(

−
∫ t

0

rudu

))

∼ exp

((

σ̄2

2k̄2
− 1

)

r̄i

)

. (7.7)

The P (0, i) in (7.6) can be replaced by (7.7). By applying the historical annual

LIBOR data from 1990 to 2003, (7.7) is estimated as exp(−0.039052)i. The resulting

price for the longevity bond is 11.2702 which is also close to 11.442 in Blake (2005).

7.5 Summary

Decrease in mortality rates has increased longevity risks creating an urgent need for

pension funds and annuity providers to find ways to mitigate these risks. Insurance

and reinsurance lack the capacity and liquidity to mitigate these risks so pension
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funds and annuity providers are now passing their longevity liability risks onto the

capital markets.

Mortality/longevity linked derivatives such as q-forward, mortality catastrophe

bonds, and the never launched but interesting EIB longevity bond are financial

instruments pension funds and annuity providers may use to mitigate risk. Using

our model we have shown how to price a q-forward under the LLMA structure.

Our results show that we can obtain lower q-forward premiums reducing the cost

of hedging longevity risks. The results also provide an incentive to stimulate more

interest in using a q-forward to hedge longevity risks.

Mortality catastrophe bonds, similar to catastrophe bonds transfer the risk of

a catastrophic mortality event to capital markets. Using our proposed model, we

use the IRR to evaluate possible premium values. Since our model has adjusted to

adopt the mortality improvement, the predicted mortality rates tend to be low. For

a mortality catastrophe bond, the pensioner wants to hedge the risk when there is

a sudden rise in mortality rate. The possible value of the premium is the difference

between the LIBOR and the IRR .

We apply our model for pricing an EIB longevity bond proposed by Blake (2005).

An EIB longevity bond is priced on the risk-adjusted survival rate, so we need to

transfer the predicted mortality rate to the survival rate. We obtain the results close

to Blake (2005 ).
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Chapter 8

Summary

8.1 Findings and Contributions

Thanks to modern medicine, technology and increased standards of living in the de-

veloped world, mortality rates are in decline. However, this decline poses a longevity

risk for pension and annuity providers. It is well known that actuarial tables do not

accurately reflect mortality rates; therefore improved mortality models such as the

Lee-Carter and its extensions have increased our understanding of the dynamics of

the mortality rate. Working with these models reveals some shortcomings that we

take into account with our proposed model. After comparing our mortality modeling

results with previous models and seeing an improvement, we proceed to price mor-

tality/longevity linked derivatives. Based on our proposed and improved mortality

model, our results indicate lower premiums and reduced costs to hedge longevity

risks. Since insurance and reinsurance are no longer capable of satisfying the liabil-

ity needs of pension and annuity providers there is an urgent need for new financial
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instruments. Therefore, our proposed strategies should be an incentive for pen-

sion and annuity providers to consider financial instruments such as the q-forward,

mortality catastrophe bonds and future EIB bonds to mitigate longevity risk.

Careful examination of the Lee-Carter model and its extensions reveal the fol-

lowing. The Lee-Carter model assumes that two factors, age effect and period effect,

have impacts on the mortality rate. However, the model does not consider the jumps

of mortality rate due to rare events or the current acceleration in the mortality im-

provement. The first extension of the Lee-Carter model adds non-Gaussian error

terms representing the occurrences of abnormal jumps in mortality rates, but this

extension does not solve the issue that the mortality dynamics are non-Gaussian.

The second extension of the Lee-Carter model adds a cohort effect, which is called

the age-period-cohort (APC) model. The cohort effect captures the phenomenon

of accelerated mortality improvement for some birth cohorts. Although the APC

model has shown success in mortality modeling in many countries, the cohort effect

sometimes may not be significant. Additionally, it is almost impossible to convert

the APC model to a stochastic mortality model making the pricing of the mor-

tality/longevity linked derivatives impossible. Another extension is the stochastic

mortality rate models. However, current stochastic mortality rate models are very

complicated and require complex computational resources.

We propose the modified Lee-Carter model with Normal Inverse Gaussian (NIG)

Lévy process and Esscher transform. Borrowing from a similar model used in finan-

cial modeling, our proposed mortality model improves mortality modeling results

and enables accurate pricing of mortality/longevity linked derivatives. Replacing
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current mortality modeling methods that are constructed on the level of mortality

rate with adaptations of Mitchell et al. (2013) idea to build the mortality model on

the growth rate of the mortality we then can apply Lévy processes, found in financial

modeling, to price the derivatives. An accurate predicted mortality rate and a nar-

rower confidence interval for the stable forecasting result when using our proposed

model. The application of the Esscher transform provides a short cut for converting

the regular mortality rate to the mortality rate under a martingale measure which

adapts the information of the mortality improvement.

Previously, lack of urgency, inefficient pricing and poor design all factored into

the limited interest in mortality/longevity linked derivatives, such as q-forward,

EIB longevity bond, and mortality catastrophe bonds. However, pricing these in-

struments based on our proposed model generally shows that reasonably priced

premiums will be sufficient to create the hedge incentive, because that the cost to

pension and annuity providers will decrease. This is because our model tends to

predict lower mortality rates that accurately reflect real life.

The decrease in mortality rates is also a cause for increased interest in life set-

tlement instruments. In many cases, individuals are either opting or in need of the

money accrued in annuity accounts. Using our proposed model we also price life

settlements. Using an information theory approach, we propose a pricing procedure

that adjusts the price of a life settlement according to a policyholder’s medical in-

formation. Since the pricing of a life settlement is based on the expected rate of

return, there is still no common way to calculate the risk premium for a life settle-

ment transaction. Again borrowing from corporate finance, we use the internal rate

132



of return (IRR) to calculate the implied risk premium. The results are close to the

practical experience mentioned in Murphy (2006 ).

Pension and annuity marketplaces are in urgent need of financial instruments to

hedge their unprecedented $20 trillion in liabilities. Without such business, many

companies will go bankrupt leaving the insured with nothing or having to be bailed

out by governments who really do not have the means to do so. To keep pension

and annuity providers liquid, they must enter the capital markets and be able to

invest in financial instruments that cover their liabilities and give investors incentive

to take on the risk. Carefully examining the Lee-Carter mortality model and its

extensions have led us to create a new model that is easy to understand and compute.

Additionally, by borrowing from established financial models we are able to price

the q-forward, bonds and life settlement policies in a compelling manner so that

pension and annuity providers as well as investors will be interested in partaking in

these markets.

8.2 Future Studies

8.2.1 The Improvement of the Model

Mortality indices are comprised mostly from the mortality rates of elderly people.

It is said that when a long-time spouse dies, the survivor may soon follow (Red-

fern, 2012). Such phenomenon is called the widowhood effect. A study from the

University of Glasgow asked more than 4,000 married couples between the ages of

45 to 65 to determine their risk of death after becoming a widow or widower. The
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survey results show that death rates increase about 30 percent in six months fol-

lowing a spouse’s death. Similar research results were reached from a University

of St. Andrew longitudinal study of a Scottish population (about 58,000 men and

58,000 women). The results show that the widowhood effect could contribute about

a 40 percent higher risk of death for the survivor (Pelley, 2011). In statistics or

financial modeling, the correlation of the survival rates is called coupled survival

rate or joint survival probability. The joint survival probability has been applied

in biostatistics, financial modeling, and risk management for years. There is still

no related research that applies the ideal of the joint survival probability for the

pricing mortality/longevity linked derivatives. There is still no related research that

applies the ideal of the joint survival probability for the pricing mortality/longevity

derivatives. The application of the joint survival rate can be included in the model

for more accurate forecasting.

We apply our mortality modeling on mortality rates from only one country.

Could it be possible that the morality rates of two countries are correlated? Since

globalization has substantially increased international travel, deadly infectious dis-

eases could break out and quickly cross the borders (Daulaire, 1999; Lin et al., 2013).

Also, recent financial innovation provides insurers and reinsurers a viable option to

transfer the risk of catastrophic mortality caused by either epidemics or disastrous

terrorist attacks. Almost all the transactions of mortality catastrophe securities are

bound with three or more population mortality indices1. It is natural to question

if these mortality indices are correlated. Lin et al. (2013) apply the technique

of exponential tilting on the Lee-Carter model with Brownian motion specification

1The only one exception is the Tartan mortality bond sold in 2006.
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to estimate the correlation of mortality rate among the United States, the United

Kingdom, Japan, and German. They conclude that the price of risk can be very

different depending on the correlation among the countries.

Recently, financial literature has widely applied the exponential Lévy process

with the NIG distributional specification. One major reason is that a Lévy process

can technically be thought as the combination of a Brownian motion and a jump

process2. Therefore, the alternative choice of applying Lévy processes is to model

asset returns with a Brownian motion and a compound Poisson process as a jump

process, which is common to see in financial modeling. Mortality dynamics are sim-

ilar to the time evolution of the rate of return in finance. It may be that other ideas

from financial modeling can be borrowed applied for stochastic mortality modeling.

For example, our proposed model contains no diffusion term. However, if the corre-

lations are concerned, such as the couple survival rates and multinational mortality

rates, the diffusion term can be used to generate such relationships. Huang and

Wu (2004) suggest that a diffusion return component is useful in their time-changed

Lévy process setting for generating correlations with the diffusive activity rate pro-

cess (Wu, 2005). The multidimensional Lévy copula can also be incorporated to

include the correlations among the mortality indices of different countries.

The NIG distributional assumption has been emphasized in the previous chap-

ters because it is capable to capture the frequent normal jumps and rare large jumps.

However, some extreme events, such as sudden breakout of a worldwide epidemic

disease or a disastrous flood occur with extremely low frequency, and the NIG dis-

2By Lévy Ito decomposition, a Lévy process can be separate into four parts, a drift term, a
Brownian motion, a jump process, and a martingale.
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tributional assumption may not be sufficient for prediction. To take the extreme

events into account, the extreme theory should be included for better performance

of forecasting. The extreme theory is helpful for pricing derivatives that are related

to the extreme event, such as a mortality catastrophe bond.

8.2.2 The Public Policy

In the developed countries, both private companies and governments provide the

social security benefits and pension benefits that serve as an insurance for individuals

against the situation when they outlive their resources (Brown and Orszag, 2006;

Antolin and Blommestein, 2007). However, companies and governments are facing

increasing liabilities due to longevity. Longevity risks can be decomposed into two

parts, the systematic longevity risks and the specific longevity risks (Blake et al.,

2013). The systematic risk is a trend risk that was resulted from the change of

life style or the advances of medical technology and affects entire populations. The

specific risk is the risk that an individual’s set of mortality rates differs from the

expected rates. The specific risk theoretically can be eliminated in the aggregate

(e.g., at the pension fund or social security) level by pooling over individuals using

the law of large numbers to reduce the variability of the risk. The systematic risk

is generally caused from mortality improvement and is difficult to be diversified by

its nature.

While the public sector still has a large proportion of their promised pension and

security benefits unfunded3, the private pension sector faces a not-so-well-developed

3In the United Kingdom, the most recent estimates for state pension liabilities were 3,843 billion
in respect of social pensions, and 1,156 billion were unfunded among them (Blake et al., 2013). In
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annuity markets (Brown and Orszag, 2006). The private sector especially has to

address the issue of adverse selection. Mitchell et al. (1999) mention that those

who purchase annuities tend, on average, to live longer than those who do not

purchase annuities. The correlation among individual mortality rates is thus positive

(Bohn, 2005) making the traditional way for diversification, say, pooling, not work

as efficiently. Annuity providers could use other tools to diversify their longevity

risks, such as diversifying across the age distribution and diversifying internationally,

although such efforts still cannot eliminate the risk entirely (Brown and Orszag,

2006).

Yarri (1965) mentions that an individual could obtain substantial welfare by

having an annuity. While the private sector does not have the power to create a

guideline and improve the management of longevity risks (after pooling), govern-

ments can use fiscal policy (including taxes, social insurance, transfers and public

debts) and mandate a standard procedure for managing longevity risks if there is

any. The government can create or promote longevity indices that can be used as

benchmarks in the markets for mortality/longevity linked derivatives. The govern-

ment has access to detailed information and legal documents for estimating mortality

rates. The government can provide the indices for different population subgroups

stratified by gender or other socio-economic factors. Our proposed model can be

modified for calculating the longevity index easily.

Another perspective is that the government itself can issue longevity bonds to

fund social security programs and be used by pensions to hedge aggregate longevity

the United States, the amount of unfunded social security benefits from Medicare for baby boomers
are now estimated about 25 trillion (Cauchon, 2011).
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risks. Blake et al. (2013) mention important reasons why the government should

engage in sharing the longevity risks through the issuances of longevity bonds. The

first reason is to ensure there is an efficient annuity market. While the private sec-

tor could sell annuities or increase the annuity prices due to the failure of hedging

systematic longevity risks, the government could provide additional benefits to sup-

plement pensioners’ income, such as receiving lower income tax rate and expenditure

taxes. The other reason is that the government can engage in intergenerational risk

sharing by providing risk protection against systematic trend risk. The government

would issue the longevity bond and receive the risk premium. Thus the current

retired population pays the future generation a risk premium to hedge the current

systematic risk. The design and pricing of the longevity bond is still developing,

but it is a great financial instrument, particularly for the government, to manage

the longevity risks.
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Appendix A

The Modified Bessel Functions

The modified Bessel equation of order ν is shown as follows

x2
dy2

d2x
+ x

dy

dx
− (x2 + ν2)y = 0.

The solution to the modified Bessel equation of order ν shown as follows

y = CIν(x) +DKν(x), x > 0

where C and D are arbitrary constants,

Iν(x) =

∞
∑

k=0

1

k!Γ(ν + k + 1)

(x

2

)(2k+ν)

,

Kν =
π

2

I−ν(x)− Iν(x)

sin νπ
,
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and the gamma function Γ(.) is defined as

Γ(n) = (n− 1)!.

The modified Bessel function of the third kind with order ν is Kν .
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Appendix B

The Bessel Functions

The Bessel equation of order ν is shown as follows

x2
dy2

d2x
+ x

dy

dx
+ (x2 − ν2)y = 0.

The solution to the Bessel equation of order ν shown as follows

y = AJν(x) +BYν(x), x > 0

where A and B are arbitrary constants,

Jν(x) =

∞
∑

k=0

(−1)k

k!Γ(ν + k + 1)

(x

2

)2m+ν

Yν(x) =
Jν(x) cos(νπ)− J−ν(x)

sin(νπ)
.
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The Jν(x) is the Bessel function of the first kind with order ν. Yν(x) is the Bessel

function of the second kind with order ν.
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Appendix C

Smoothing Cubic Splines Method

Given n data points {xi}ni=1, we can observe data and find some turning points if

we wish to fit a curve. Let {tk}qk=1 be knots such that x1 < t1 < t2 < ... < tq < xn.

For all xi within [tk, tk+1), we define a smoothing function f as a cubic spline that
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is formulated as following

f(x) = β0,k + β1,k(x− tk) + β2,k(x− tk)
2 + β3,k(x− tk)

3

s.t.

β0,k−1 + β1,k−1(x− tk−1) + β2,k−1(x− tk−1)
2 + β3,k−1(x− tk−1)

3

= β0,k + β1,k(x− tk) + β2,k(x− tk)
2 + β3,k(x− tk)

3

β1,k−1 + 2β2,k−1(x− tk−1) + 3β3,k−1(x− tk−1)
2

= β1,k(x− tk) + 2β2,k(x− tk) + 3β3,k(x− tk)
2

2β2,k−1(x− tk−1) + 6β3,k−1(x− tk−1)

= 2β2,k(x− tk) + 6β3,k(x− tk)

β2,0 = β3,0 = β2,q = β3,q

The first three conditions are to ensure that the smoothing function f itself and its

first two derivatives are continuous at knots. The last condition is the boundary

condition, and it is to make f is linear on the two extreme intervals [a, t1] and [tq, b].

The way that cubic splines estimate piecewise smoothing curves is to minimize

integrated squared second derivatives,
∫

(f ′′)2. The design is to have a smooth curve

with small data variation yet does not consider the error between observed datum

and fitted value.

The smoothing cubic splines integrate a function to measure the goodness of fit.

Goodness of fit and smoothness are different fitting directions; the best fit is just

data set itself and the fit is not smooth, yet the smoothest fit is a straight line and

it is not a good fit. Smoothing spline was proposed to find a balance point between
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how well the function can fit and how smooth it can be.

We already assume the smoothing function as cubic splines, so we would like to

find a smoothing function f̂(x) with corresponding β ′s that also continuous itself

and its first two derivatives by minimizing the penalized sum of squares (PSE)

n
∑

i=1

(yi − f(xi))
2 + λ

∫

(f ′′(x))2dx

where λ is the smoothing parameter. The first part is the sum of squared error,

and it controls the goodness of fit. The second part is to control the degree of

smoothing. If f is very smooth, then
∫

(f ′′(x))2dx will be large. The smoothing λ

is used to control how much smoothing impact that f can have. The larger λ will

lead a smoother function. The choice of λ is generally based on the cross validation

method. The basic idea of the cross validation method is to leave one datum out

every time to obtain a estimator and then to do so for all data. Repeat the process

with different λ to obtain the optimal choice for λ that can minimize the PSE. Most

statistical software have programs to implement the process. For detailed of the

cross validation method, see Wang (2011) and Wood (2006).
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to mathematical finance. International Research Journal of Finance and Economics

34, 56-68.

[104] Pascucci, A., (2011). PDE and Martingale Methods in Option Pricing, Bocconi &

Springer Series, Springer-Verlag Italia. The American Journal of Sociology 114, 738-

780.

[105] Pelley, L. (2011). Widowhood can shorten a partner’s lifespan. CBC News, 17 May

2011. Available from

http://www.cbc.ca/news/health/story/2011/05/06/f-milestogo-broken-hear

t-syndrome.html

[106] Quinns, S., (2008). The transformation of morals in markets: Death, benefits, and

the exchange of life insurance policies.

[107] Pension Advisory Group, J.P. Morgan, (2007). LifeMetrics, a toolkit for measuring

and managing longevity and mortality risks, technical document. Available from

http://www.jpmorgan.com/cm/BlobServer/lifemetrics technical.pdf

[108] Prause, K., (1997). Modelling financial data using generalized hyperbolic distribu-

tions. FDM Preprint 48, Albert-Ludwigs-Universität Feiburg.

[109] Prause, K., (1999). The generalized hyperbolic model: Estimation, financial deriva-

tives, and risk measurement. Dissertation, Institute für Mathematiche Stochastik,

Albert-Ludwigs-Universität Feiburg.

155



[110] Promislow, S.D., (2006). Fundamentals of Actuarial Mathematics. John Wiley and

Sons, Ltd.

[111] Protter, P. E., (2002). Stochastic Integration and Differential Equation, Applications

of Mathematics (New York), Springer-Verlag Berlin.

[112] Raible, S., (2000). Lévy processes in finance: Theory, numerics, and empirical facts.

Dissertation, Institute für Mathematiche Stochastik, Albert-Ludwigs-Universität

Feiburg.

[113] Redfern, R., (2012). When long-time spouse dies, survivor may soon follow. Available

from

http://www.toledoblade.com/local/2012/02/12/When-long-time-spouse-dies

-survivor-may-soon-follow.html

[114] Renshaw, A., and Haberman, S., (2003). Lee-Carter mortality forecasting with age-

specific enhancement. Insurance: Mathematics and Economics 33, 255-272.

[115] Renshaw, A., and Haberman, S., (2006). A cohort-based extension to the Lee-Carter

model for mortality reduction factors. Insurance: Mathematics and Economics 38,

556-570.

[116] Renshaw, A., Haberman, S., and, Hatzoupoulos, P., (1996). The modelling of recent

mortality trends in United Kingdom male assured lives. British Actuarial Journal 2,

449-477.

[117] Rydberg, T. H. (1997). The normal inverse Gaussian Lévy process: Simulation and
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