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Anisotropic seismic characterization of the Eagle Ford Shale: rock-

physics modeling, stochastic seismic inversion, and geostatistics 

Qi Ren, Ph.D 

The University of Texas at Austin, 2016 

Supervisors:  Mrinal K. Sen, Kyle T. Spikes 

Quantitative reservoir characterization using integrated seismic data and well log 

data is important in sweet spot identification, well planning, and reservoir development. 

The process includes building up the relations between rock properties and elastic 

properties through rock physics modeling, inverting for elastic properties from seismic 

data, and inverting for rock properties from both seismic data and rock physics models. 

Many quantitative reservoir characterization techniques have been developed for 

conventional reservoirs. However, challenges remain when extending these methods to 

unconventional reservoirs because of their complexity, such as anisotropy, micro-scale 

fabric, and thin beds issues. This dissertation focuses on developing anisotropic rock 

physics modeling method and seismic inversion method that are appliable for 

unconventional reservoir characterization. 

The micro-scale fabric, including the complex composition, shape and alignment 

of clay minerals, pore space, and kerogen, significantly influences the anisotropic elastic 

properties. I developed a comprehensive three-step rock-physics approach to model the 

anisotropic elastic properties, accounting for the micro-scale fabric. In addition, my

method accounts for the different pressure-dependent behaviors of P-waves and S-waves. 
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The modeling provides anisotropic stiffnesses and pseudo logs of anisotropy parameters. 

The application of this method on the Upper Eagle Ford Shale shows that the clay content

kerogen content and porosity decrease the rock stiffness. The anisotropy increases with 

kerogen content, but the influence of clay content is more complex. Comparing the 

anisotropy parameter pseudo logs with clay content shows that clay content increases the 

anisotropy at small concentrations; however, the anisotropy stays constant, or even 

slightly decreases, as clay content continues to increase.  

Thin beds and anisotropy are two important limitation of the application of 

seismic characterization on unconventional reservoirs. I introduced the geostatistics into 

stochastic seismic inversion. The geostatistical models, based on well log data, simulate 

small-scale vertical variations that are beyond seismic resolution. This additional 

information compensates the seismic data for its band-limited nature. I applied this 

method on the Eagle Ford Shale, using greedy annealing importance sampling as 

inversion algorithm. The thin Lower Eagle Ford Formation, which cannot be resolved by 

conventional inversion method, is clearly resolved in the inverted impedance volume 

using my method. In addition, because anisotropy is accounted for in the forward 

modeling, the accuracy of inverted S-impedance is significantly improved.
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Chapter 1:  Introduction 

1.1 OBJECTIVE AND MOTIVATION 

Quantitative reservoir characterization using integrated seismic data and well log 

data is important in sweet spot identification, well planning, and reservoir development. 

The purpose of quantitative reservoir characterization is to provide rock property maps of 

the reservoir and assess fluid content. The process includes building up the relations 

between rock properties, for example, porosity, clay content, kerogen content, and elastic 

properties through rock physics modeling, inverting for elastic properties from seismic 

data, and inverting for rock properties from both seismic data and rock physics models. 

Many quantitative reservoir characterization techniques have been developed for 

conventional reservoirs (Mukerji et al., 2001, Bachrach 2006, Spikes et al., 2007, Grana 

and Rossa, 2010). However, challenges remain when extending these methods to 

unconventional reservoirs because of their complexity, such as anisotropy, micro-scale 

fabric, and thin-bed issues.  

Seismic velocity measurements in the laboratory indicate that shale exhibits 

vertical transversely isotropic (VTI) symmetry, with the symmetry axis perpendicular to 

bedding direction (e.g., Vernik and Nur, 1992, Hornby, 1998, Dewhurst and Siggins, 

2006, Jones and Wang, 1981, and Wang, 2002). This elastic anisotropy controls seismic 

wave propagation and thus affects elastic wave amplitudes, travel times and ray paths 

(Banik, 1984, Sayers, 2005). Micro-structural studies have demonstrated complex 

morphologies and fabrics (e.g., Chalmers et al., 2012; Sondergeld et al., 2010). In the two 

cases in Chalmers et al. (2012) and Sondergeld et al. (2010), and in others, the complex 

fabric is likely the cause of the elastic anisotropy. The other issue for unconventional 

reservoir characterization is thin beds. Seismic data are one of the key datasets for 
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quantitative reservoir characterization. Because of its band-limited nature, seismic data 

cannot resolve thin layers below one-eighth of a wavelength in thickness (Widess, 1973). 

However, such thin layers might be significant reservoirs or sweet spots in 

unconventional reservoirs. The Eagle Ford Shale in the study area of this project is an 

example of this thin-bed issue. The Eagle Ford Shale is an upper Cretaceous shale located 

in south Texas. It is overlain by the Austin Chalk and underlain by the Buda Limestone 

(Hentz and Ruppel, 2010). The Eagle Ford contains two sub-formations: the Upper Eagle 

Ford and Lower Eagle Ford. Although both the Upper and Lower Eagle Ford are 

hydrocarbon reservoirs, the Lower Eagle Ford contains higher organic content and higher 

porosity. In the study area of this project, the Lower Eagle Ford is a thin layer with 

thickness varying from 0 to 40ft. The seismic data do not resolve this thin layer. 

Resolving this thin Lower Eagle Ford is critical for quantitative reservoir 

characterization.  

Although many challenges exist, ideas and techniques used in conventional 

reservoir quantitative characterization can still be used for unconventional reservoir 

characterization. Mukerji et al. (2001) introduced statistical techniques combined with 

log data and seismic information for quantitative reservoir characterization. This 

quantitative reservoir characterization framework contained three steps. Firstly, they 

defined the lithofacies based on well logs. Secondly, they derived the acoustic and elastic 

impedances from seismic data. Finally, they simulated the lithofacies distributions on 

inverted impedance cubes using a statistical approach. The final results were probability 

maps of the lithofacies. They applied this method to a North Sea turbidite system. In this 

work, they used statistical Bayesian classification to define lithofacies based on 

impedance and Vp/Vs, and extended the training data from log measurements to the 

entire model space by Gassmann’s equation. Impedance here refers to density times the 
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vertical propagation velocity of P- and S-wave; and Vp/Vs refers the ratio of vertical 

propagation velocity between P- and S-wave. The poststack inversion was done on a 

near-offset stack and far offset stack independently to obtain the acoustic impedance and 

elastic impedance volumes, using generalized least-squares inversion. Finally, 

geostatistical classification and simulation were applied to combine the training data and 

inverted impedance volumes in order to provide the spatial maps of most likely 

lithofacies and their occurrence probabilities. The geostatistical approach includes 

quadratic discriminant analysis, probability estimation based on the probability density 

functions for each facies, and a geostatistical indicator simulation to incorporate the 

spatial correlation of these faces. The three-step quantitative reservoir characterization 

framework became a standard process. Application of the framework could vary from 

reservoir to reservoir in terms of different rock physics models, inversion algorithms, and 

the statistical techniques. The choice of these detailed techniques should be based on 

careful analysis of the reservoir geological environment and data available.  

Bachrach (2006) applied quantitative interpretation to a clastic system for joint 

estimation of porosity and saturation. He showed that the porosity and saturation 

depended on each other; therefore, they should be inverted simultaneously. He used a 

Monte Carlo method to explore the joint distribution of porosity and saturation at all 

possible value ranges. The simulation results showed that the porosity estimation, based 

on inverted P- and S- impedance and density from seismic data, had smaller uncertainty 

than the saturation estimation. Spikes et al. (2007) developed a probabilistic seismic 

inversion method, which integrated rock physics models based on a Bayesian formulation 

for a clastic environment. This approach differed from Mukerji et al. (2001) in that 

Spikes et al. (2007) involved the rock physics modeling as a part of the seismic inversion. 

The model parameters for seismic inversion were rock properties (clay content, porosity, 
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and water saturation), instead of P-, S- impedance and density. The rock physics model 

provided the link between impedances and rock properties, based on which, each prior 

model of rock properties corresponded to a specified set of impedances. Synthetic 

seismograms generated from rock properties were compared to measured seismograms to 

calculate the likelihood functions. The posterior distributions of the best-fitting rock 

property models were obtained through acceptance or rejection in a full-grid search. 

Spikes at al. (2007) tested this method on well and seismic data from offshore western 

South Africa. They assumed the formation thickness was constant through the reservoir, 

and the reservoir was isotropic and homogeneous.  

Quantitative reservoir characterization for unconventional reservoirs is much 

more complex than for conventional reservoir. A few studies integrate anisotropic rock-

physics modeling and anisotropic seismic analysis for unconventional reservoirs. 

Bachrach et al. (2013) built a workflow for quantitative interpretation of unconventional 

reservoirs with integrating seismic inversion and rock physics modeling through wide-

azimuth, long offset-seismic data. In the workflow, a suitable inversion algorithm was 

first applied to the wide azimuth seismic data, and then the reservoir properties of interest 

were estimated by stochastic anisotropic rock physics modeling combined with the 

inversion results. The case study was from the Bakken Shale where they estimated high-

resolution fracture density and total porosity. Jiang (2014) and Jiang and Spirke (2013) 

investigated the seismic scale rock properties for the Haynesville Shale by integrating 

rock physics modeling, grid searching, and seismic inversion. In the rock physics 

modeling, she used the self-consistent (O’Connell and Budiansky, 1974) model to

account for the various shapes and sizes of grains and pores; then she applied Chapman’s 

model (Chapman, 2003) to build up a medium by introducing aligned fractures. 
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However, the seismic inversion algorithm she used was isotropic. The Hayesville Shale is 

a thick formation in her study area; therefore, thin beds were not an issue in her study.  

Directional velocity measurements from the laboratory in the study area of this 

dissertation showed that the Eagle Ford Shale exhibits VTI symmetry. Thomsen (1986) 

introduced three parameters (ε, γ, and δ) to describe the anisotropy. ε represents the P-

wave anisotropy, γ represents S-wave anisotropy, and δ represents a combination of P-

wave and S-wave anisotropy. In the study area, the measured ε is about 0.15 for the 

Upper Eagle Ford and 0.31 for the Lower Eagle Ford; measured δ is about 0.07 for the 

Upper Eagle Ford and 0.15 for the Lower Eagle Ford. The anisotropy is highly influenced 

by the shale micro-scale fabric, including complex composition, platy clay minerals, 

kerogen, and their preferred orientation patterns. The shale micro-scale fabric requires a 

comprehensive rock physics modeling method. In addition, thin beds are another 

challenge in Eagle Ford reservoir characterization. The Lower Eagle Ford, a target 

reservoir in the study area, is a thin layer with thickness varying from 0 to 40ft. This thin 

layer is not resolved from the seismic data. In this dissertation, I present a three-step 

comprehensive rock physics modeling method to account for the complex micro-scale 

fabric. For the thin bed issue, I present a geostatistics guided stochastic seismic inversion 

method to resolve the thin beds using inverted impedance.  

The main contributions of this dissertation include: 1) development of a 

comprehensive rock physics modeling method that links the rock properties and 

anisotropic elastic properties in a complex micro-scale fabric framework; 2) introduction 

of geostatistics models, which contain small scale vertical variation, as a guide for 

seismic inversion. Thus the thin beds could be resolved in the inverted impedance 

domain.  
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1.2 CHAPTER DESCRIPTION 

This dissertation broadly covers two main topics: anisotropic rock physics 

modeling (Chapter 3), and geostatistics guided stochastic seismic inversion (Chapter 4).  

Chapter 2 introduces the study area and the data used in the project. The geologic 

background of the Eagle Ford Shale is reviewed. The data, including prestack and 

poststack seismic data from a 3D seismic survey, and well log data from three vertical 

wells, are described in detail. In addition, petrophysically inverted lithology and fluid 

saturation values at one of the three wells are presented in this chapter. 

Chapter 3 investigates the anisotropic rock-physics relationships between elastic 

properties and rock properties in the Eagle Ford Shale accounting for the micro-scale 

fabric. The micro-scale fabric influences the elastic properties of rock formations. The 

complexity of the micro-scale fabric of shale results from composition, platy clay 

minerals, kerogen, and their preferred orientation patterns. This micro-scale fabric is also 

the likely cause of the elastic anisotropy of the rock. In Chapter 3, I present a 

comprehensive three-step rock-physics approach to model the anisotropic elastic 

properties of the Upper Eagle Ford Shale. The modeling provides anisotropic stiffnesses

and pseudo logs of anisotropy parameters. Results show that the clay content, kerogen 

content and porosity decrease the rock stiffness. The anisotropy increases with kerogen 

content, but the influence of clay content is more complex. Comparing the anisotropy 

parameter pseudo logs with clay content shows that clay content increases the anisotropy 

at small concentrations; however, the anisotropy stays constant, or even slightly 

decreases, as clay content continues to increase. This result suggests that the preferred 

orientation of clay clusters is preserved at low clay concentration but vanishes at high 

clay concentration.



7 

Chapter 4 presents a geostatistics guided seismic inversion method that aims to 

resolve thin beds and accounts for anisotropy. Thin-bed effects and anisotropy are two 

important factors limiting the use of conventional seismic characterization for the Eagle 

Ford Shale. To address these issues, I use the geostatistics guided greedy annealing 

importance sampling (GAIS) inversion. The geostatistical models simulate small-scale 

vertical variations that are beyond seismic resolution, which compensates for the band-

limited nature of seismic data. The geostatical realizations of the well logs are used as a 

priori models, and the GAIS inversion quickly searches for the most probable pseudo-

logs at all surface locations. GAIS first runs multiple independent very fast simulated 

annealing (VFSA), based on which grid importance sampling method was applied to 

explore the local best sample on the important regions. Finally, the weighted average of 

these local best samples provides the expected value of the target model distribution. This 

method provides an optimal balance between computational efficiency and accuracy of 

estimation. As for anisotropy, I used Ruger’s (Ruger, 1997) VTI model to account for the 

anisotropy in the forward modeling. This geostatistics guided inversion was applied on 

pre-stack 3D seismic data to estimate the reservoir elastic properties and anisotropy 

parameters of the Eagle Ford Shale. In my results, the lower Eagle Ford is clearly 

resolved in the inverted impedance volume. The sharp boundary and large impedance 

contrast between the Eagle Ford and the Buda Limestone are also very clear in GAIS 

inverted impedances. In addition, because anisotropy was accounted for, in the forward 

modeling the quality of the inverted S-impedance significantly improved.  

Chapter 5 presents the overall conclusions of the dissertation, as well as possible 

future work. The relationships between anisotropic rock properties and elastic properties 

of the Eagle Ford Shale are investigated. 



8 

Chapter 2: Study Area and Data 

This chapter introduces the study area and the data used in my analysis, which is 

focused on the Eagle Ford Shale located in south Texas. The data used here include three 

vertical wells, post- and pre- stack 3D seismic data, and a velocity model. Two of the 

three wells (B4 and B7) are located in the seismic survey area, but the third well (B5) is 

out of the area. Data from well B5 contains both directly measured rock properties (like 

P- and S- wave velocities, and density) and petrophysically inverted lithology and fluid 

saturation. The other two wells contain only directly measured rock properties.  

2.1 GEOLOGY 

The Upper Cretaceous Eagle Ford Shale is located in the Maverick Basin and the 

adjacent San Marcos Arch in south Texas. It extends farther northeastward to the East 

Texas Basin (Figure 2.1) (Hentz and Ruppel, 2010). Sequence stratigraphic analysis 

separates the Eagle Ford Shale play area into two different regions (Figure 2.2). In the 

Maverick Basin and San Marcos Arch, the Austin Chalk overlays the Eagle Ford Shale, 

and the Buda Limestone underlies it. In the East Texas Basin, the Eagle Ford Shale is 

separated into the Eagle Ford Group, the Woodbine Group/Pepper Shale, and the Maness 

Shale. In both areas, the Eagle Ford Shale contains two sub-formations: the Upper Eagle 

Ford and the Lower Eagle Ford. The thickness of each sub-formation varies from location 

to location. The Upper Eagle Ford only exists in the area southwest of San Marcos Arch. 

Its unit thickness reaches a maximum in the Maverick Basin, and it thins towards the 

southeast. The Lower Eagle Ford is present thoughout most of the play area; its thickest 

peak is in the Maverick basin and it thins towards south and east. In the seismic survey 

area of this project, the Lower Eagle Ford is a thin layer that varies from 0 to 40 ft, but 
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the Upper Eagle Ford is much thicker. At well B5, the Upper and Lower Eagle Ford are 

about the same thickness (~ 80ft). Data for this work comes from the Maverick Basin. 

Figure 2.1:  Location of the Eagle Ford Shale (Hentz and Ruppel, 2010).  The Eagle 
Ford Shale is located in the Maverick Basin and San Marcos Arch in south 
Texas and extends to the east Texas Basin to the northeast. Our study area is 
located in the Maverick Basin, which is in the southwest of this map. The 
orange lines show the contours of the base of the Eagle Ford Shale. 
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Figure 2.2:  Conventional lithostratigraphy of the Eagle Ford Shale (Hentz and Ruppel, 
2010). Stratigraphically, the Austin Chalk overlays the Eagle Ford Shale, 
and the Buda Limestone underlies it. Different from in the Maverick Basin 
and the San Marcos arch, in the East Texas Basin, the Eagle Ford Shale is 
separated into the Eagle Ford Group, the Woodbine Group/Pepper Shale, 
and the Maness Shale. Generally, the Lower Eagle Ford has higher organic 
content and porosity than the Upper Eagle Ford. Also, their coverage areas 
are different. 
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The Lower Eagle Ford consists mostly of dark-gray organic rich mudrock, with 

generally high gamma-ray values. The Upper Eagle Ford interval is characterized by 

overall lower gamma-ray values relative to the lower, and consists of interbedded dark- 

and light-gray calcareous mudrock. Figure 2.3 shows a typical gamma ray log, resistivity 

log, and lithology of the Eagle Ford Shale in south Texas. Total organic content (TOC) 

values from outcrops of the lower Eagle Ford Shale at several localities near Austin in 

Travis County along the San Marcos Arch range from 1 to 8.3 wt%, with an average 

value of 2.8 wt%. Based on the gamma-ray, core data, and outcrop samples, the Lower 

Eagle Ford is found to be richer in organic content than the Upper Eagle Ford.  
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Figure 2.3:  A typical log and lithology in the Eagle Ford in south Texas (Hentz and 
Ruppel, 2010). The Lower Eagle Ford consists mostly of dark-gray organic 
rich mudrock, with generally high gamma-ray values. The Upper Eagle Ford 
interval is characterized by overall lower gamma-ray values, relative to the 
lower, and consists of interbedded dark- and light-gray calcareous mudrock. 
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2.2 DATA DESCRIPTION 

The data used in this project include pre-stack and post-stack 3D seismic data, a 

velocity model, and three vertical wells. Two of the three wells (B4 and B7) are located 

in the seismic survey area, but the third well (B5) is not. The full seismic data contains 

1297 x 1001 traces. Each trace contains 2001 samples with a sample interval of 2ms, and 

the space between traces is 82.5ft. I picked the horizons (Austin Chalk, Eagle Ford, and 

Buda) based on post-stack seismic data; however, we do inversion only on a subsection 

of the seismic data, which contains 370 x 381 traces. This is based on two arguments: 1) 

computational cost; 2) the seismic data on the east end and west end are noisy, and it is 

difficult to pick the horizons. This subsection we chose covers both B4 and B7 wells, and 

it is large enough to demonstrate the objective for seismic inversion. The details of these 

data sets will be shown in this section. 

2.2.1 Seismic data 

Figure 2.4 is the map view of seismic data coverage used in the inversion analysis 

(the seismic survey coverage is much larger than this displayed area). The color in Figure 

2.4 represents the depth of the Buda horizon in two way travel time. The top of the Buda 

dips towards the east. The other two horizons (Austin Chalk and Eagle Ford) have the 

same east-west dip. The relative locations of Wells B4 and B7 to the seismic survey are 

also shown in Figure 2.4. Well B4 is located in the northeast corner of the inversion 

window, and Well B7 is located in the southwest corner of the inversion window. Well 

B7 is relatively shallower than Well B4. The thickness variation of the Eagle Ford Shale 

in the inversion window, including both the Upper and Lower Eagle Ford, is shown in 

Figure 2.5. The thickness is measured in two way travel time (TWT). Although it is not 
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in the depth domain, the relative thickness variation in this area is clear. In the inversion 

window, the Eagle Ford Shale thickness is about 60m. Extended to the entire seismic 

survey area, the maximum thickness of Eagle Ford Shale is about 60ms (~ 120m) and 

minimum about 5ms (~ 10m). The lower Eagle Ford is too thin to pick on post-stack 

seismic amplitude data. 
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Figure 2.4:  Map of the seismic survey in the inversion area, which is a subsection of the 
entire seismic survey. The color represents the Buda horizon depth in two 
way travel time (TWT). This inversion window contains 370 inlines and 381 
crosslines. There are two wells in the survey area: B4 (B4_of_sutur) and B7 
(B7_of_sutur).  
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Figure 2.5:  Eagle Ford Shale thickness in two-way-travel time (TWT), including both 
the Upper and Lower Eagle Ford. Red stars point out the location of well B4 
and B7.  
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Figure 2.6 shows the post-stack seismic data for a single inline (IL) section. The 

inserted log is P-impedance from well B4. Two blue lines are the horizons corresponding 

to the top of the Eagle Ford Shale and top of the Buda Limestone. These horizons were 

picked based on post-stack seismic amplitude data. The tops of the Austin Chalk, Upper 

Eagle Ford, and Buda are clear enough to identify on post-stack seismic data, but it is 

difficult to identify the top of Lower Eagle Ford. The horizons of the tops of the Austin 

Chalk, Upper Eagle Ford, and Buda were used as guides and constraints for building the 

geostatistical model in Chapter 4. The uncertainty of the picked horizons will propagate 

to the geostatistical model and eventually influence the inverted stiffness. However, there 

is no quantitative way to calculate the final influence of the picked horizons on inverted 

stiffness; both the seismic data and the prior model control the inversion.  

Figure 2.6 shows data only from 1200ms to 1320ms in TWT, but the inversion 

window also includes the Austin Chalk Formation above the Eagle Ford. Due to data 

confidentiality issues, the data in the Austin Chalk section is not shown. The top Buda is 

the interface that has the largest reflection amplitude in the study area. The impedance 

contrast between the Eagle Ford and the Buda is so large that it cannot be properly 

reconstructed using conventional inversion algorithms. Reconstructing the large 

impedance contrast between the Eagle Ford and Buda is one objective of the seismic 

inversion in this project. The top of the Eagle Ford has a small impedance contrast 

between Austin Chalk and Eagle Ford. Inside the Austin Chalk, there is another strong 

reflection, which is partially shown in Figure 2.6 (Xline 1600 – 1750). Using a 

deterministic inversion, it is difficult to identify this interface and the top of the Eagle 

Ford. However, using the inversion method I present in Chapter 4, these two interfaces 

are clearly identified.  
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The pre-stack seismic data is in the offset domain, but the seismic inversion is 

performed in the domain of incident angle. I transferred the pre-stack seismic data from 

the offset domain to the angle domain using the Straight Ray Method and root-mean-

square (RMS) velocity model (Figure 2.7). The straight ray conversion equation is 

𝐭𝐚𝐧𝜽 = 𝑿
𝑽𝒕𝟎

,             (2.1) 

where 𝑋 is the offset, 𝑉 is the RMS velocity, and 𝑡! is the total zero-offset travel time. 

Based on the conversion equation, and the RMS velocity model provided, the pre-stack 

seismic data is converted from the offset domain (𝑋) to angle domain (𝜽). The velocity

model in Figure 2.7 is a time migration velocity provided by the sponsor. I generate angle 

gathers (Figure 2.8) ranging from 4 to 42 degrees with 6 traces each. I used the angle 

range 4 – 36 for seismic inversion in Chapter 4. Again, based on the contract with the 

data owner, I am not allowed to show data in Austin Chalk. The wavelets used for 

inversion are angle-dependent statistical wavelets extracted from the seismic data, using 

deconvolution. Deconvolution is the process of filtering a trace to transform the wavelet 

of that trace into a form closer to the original wavelet. The filter used in the statistical 

wavelet extraction is the Wiener-Levinson Shaping filter, which is described by Equation 

2.2 
𝐹𝑓 = 𝑔 . (2.2) 

where 𝐹 is the autocorrelation of input seismic data, 𝑓 is the desired filter, and 𝑔 is the 

cross-correlation between the input seismic data and the desired output. The desired 

output is often a spike. A 90-degree phase shift is applied on the wavelets in order to 

match the wavelet phase. The wavelet amplitude spectrum is shown in Figure 2.9. The 

frequency range is about 10 – 50hz.  
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Figure 2.6:  (a) The locations of Well B4, Well B7, and the seismic volume for 
inversion. Well B4 locates at the northeast corner of the inversion area, and 
well B7 locates at the southwest corner.  (b) The PP data from the 2D slice 
from the red line in (a). The data is in TWT. The inserted curve is the P-
wave impedance curve in Well B4. Blue horizontal lines are picked horizons 
corresponding to the top Eagle Ford and Buda.  
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Figure 2.7: Velocity Model. This velocity model is a time migration velocity provided by 
the sponsor. 
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Figure 2.8: The P-P angle gathers from a 2D slice (red line in Figure 2.6a). The offset 
range is 4 – 41 degrees with 6 traces. The blue horizontal lines are picked 
horizons, the top Eagle Ford, and Buda. The interface between the Upper 
and Lower Eagle Ford cannot be resolved in the angle gathers.  
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Figure 2.9: Angle-dependent wavelets extracted from the seismic data. The average 
phases of these wavelets are 90-degrees. The frequency range is about 10 – 
50 Hz.  
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2.2.2 Well data 

There are three wells used in this project. Wells B4 and B7 are within the seismic 

survey area, and well B5 is out of seismic coverage. Wells B4 and B7 are used to build 

the geostatistical prior models for seismic inversion; details for this part of work are 

explained in Chapter 4. For these two wells, the required logs are P- and S- impedance 

and density. Well B5 is used for rock physics modeling, as explained in Chapter 3. At the 

location of this well, the thickness of both the Lower and Upper Eagle Ford is about 

700ft. I applied the rock physics modeling only on the Upper Eagle Ford; therefore, only 

the data from the Upper Eagle Ford is shown in this section.  

Figure 2.10 shows the logs from well B4; from left to right are Gamma ray (GR), 

density, and P- and S- wave velocity. Based on a confidential agreement, I am not 

allowed to show data from the Austin Chalk, but logs in the Austin Chalk are used to 

build a geostatistical model for seismic inversion. Compared with the overlaying Austin 

Chalk and underlying Buda Limestone, the Eagle Ford has higher GR, lower density, and 

lower velocities. The Lower Eagle Ford at well B4 location is about 30ft thick with 

significantly higher GR and lower density, compared to the Upper Eagle Ford. The 

velocities of the Lower Eagle Ford are also lower than the Upper Eagle Ford. The large 

property contrasts between the Lower Eagle Ford and the Buda Limestone make the 

Buda horizon the highest amplitude event in the seismic data. One purpose of the seismic 

inversion is to reconstruct such a large property contrast. Figure 2.11 shows the logs of 

Well B7. At this location, the thickness of the Lower Eagle Ford is almost zero. Other 

measured petrophysical properties of well B7 are similar to those in Well B4. 
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Figure 2.10: Log data from Well B4. From left to right, gamma ray, density, Vp, and Vs. 
The two red lines are the top and base of the Eagle Ford Shale. The 
formation above the Eagle Ford is the Austin Chalk and beneath it is the 
Buda Limestone. GR of the Eagle Ford Shale is higher than the Austin 
Chalk and Buda due to its high clay content, while Vp and Vs and density of 
the Eagle Ford Shale are lower than the other two formations. Around 
x650ft to x680ft the high GR of about 100 is a thin layer of the Lower Eagle 
Ford. Compared to the Upper Eagle Ford, the Lower Eagle Ford has higher 
GR, lower density and lower velocities because the Lower Eagle Ford has 
higher TOC content.  
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Figure 2.11: Log data from Well B7. From left to right, gamma ray, density, Vp, and Vs. 
The two red lines are the top and base of the Eagle Ford Shale. GR of the 
Eagle Ford Shale is higher than the Austin Chalk and Buda due to its high 
clay content, while Vp and Vs and density of the Eagle Ford Shale is lower 
than the other two formations. At this location, the thickness of the Lower 
Eagle Ford is almost zero. 
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Well B5 is the well used for rock physics modeling for the Upper Eagle Ford 

Shale. This well has a full suite of log measurements (Figure 2.12) including gamma 

rays, resistivity, density, neutron porosity, photoelectric factor and sonic logs; it also 

contains the porosity log, water saturation log, and lithology log (Figure 2.13) estimated 

from petrophysical inversion (Heidari and Torres-Verdin, 2013).  

The petro-physical model assumed here is that the organic shale is composed of 

clay minerals, non-clay minerals, kerogen, hydrocarbon, and water. We use vector X to 

represent the composition as 𝑿 = 𝐶!,𝐶!,… ,𝐶!,𝐶! ,∅! , 𝑆! !, where 𝐶! represents the

volume portion of i-th mineral, 𝐶! represents the volume portion of kerogen, ∅!

represents total porosity, and 𝑆! represents water saturation. X is subject to 0 ≤ 𝑋! ≤ 1,

and 𝐶!!
! + 𝐶! + ∅! = 1. The initial guess about the composition Xini is obtained from

X-ray diffraction data. With the guessed composition, we can model the petrophysical 

properties of the bed. The petrophysical properties include density, neutron migration 

length (correlated to neutron porosity), electrical conductivity (reciprocal of resistivity), 

photoelectric factor (PE), and thorium (Th), uranium (U), and potassium (K) 

volumetric/weight concentrations. We use P(X) to represent these properties modeled 

from composition X, and use Pm to represent the measured petrophysical properties. If the 

objective function:
𝑪 𝐗 = 𝑾! ∙ 𝑷 𝑿 − 𝑷! !

! + 𝛼! 𝑿 !
!,                         (2.3) 

is small enough, then the composition X will be accepted. Otherwise the composition will 

be updated until the value of the objective function is acceptable. In the objective 

function (Eq. 2.2), 𝑾! is the weighting matrix, and 𝛼 is the regulation factor.  

Figure 2.12 shows the measured petrophyscial properties. From left to right,

gamma ray, resistivity, density, neutron porosity, photoelectric factor, sonic logs, 

potassium (K) concentration, and thorium (Th) and uranium (U) concentrations. The GR 
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is about 50 GAPI, which is compatible with well B4 and B7. Density decreases in this 

interval; the velocity is about 2.2 km/s for S-wave and 4 km/s for P-wave. Figure 2.13 is 

the inverted rock properties for upper Eagle Ford at well B4. 
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Figure 2.12: Measured log data within Upper Eagle Ford at well B5. (a) The measured 
petrophysical properties. From left to right are gamma ray, resistivity, 
density, neutron porosity, photoelectric factor, sonic logs, and potassium. 
These measured properties are the input for petrophysical inversion. (K) 
concentration, and thorium (Th) and uranium (U) concentrations.  
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Figure 2.13: Petrophysically inverted composition. From left to right are porosity, water 
saturation, and lithology. Velocities are high at the top of this formation, 
corresponding to the high calcite volume. The decrease in velocities around 
x115ft corresponds to the increase in porosity, and the increase around 
x120ft corresponds to the increase of calcite volume. The major mineral 
components of the Upper Eagle Ford are calcite, clay, and quartz. The clay 
content variation is highly correlated with water saturation. The kerogen 
content varies from 0% to 13.1% volume concentration with an average at 
7.9% in this interval. Approximately 2% by volume of pyrite is present, and 
other minor minerals are dolomite, plagioclase and K-feldspar.  
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The Upper Eagle Ford is a calcareous mudrock with major mineral components as

calcite, clay and quartz. The organic matter, kerogen, varies from 0% to 13.1% in volume 

concentration with an average at 7.9% in this interval. There is about 2% volume 

concentration of pyrite, and other minor minerals are dolomite, plagioclase and K-

feldspar. The porosity varies from 2.7% to 12% with an average at 6.4%. Analysis of 

these composition logs shows that the stiffness is correlated with clay content, and 

Kerogen content + porosity. In Chapter 3, I chose clay content and kerogen content + 

porosity as two influential independent parameters for rock physics modeling. 

Well B5 provided the composition information needed in the rock physics 

modeling in Chapter 3. However, there are some other influential parameters in the rock 

physics modeling for which measurements are unavailable, for example, clay-cluster 

orientation patterns and pressure-dependent stiffness behaviors. The modeling 

uncertainty would reduce if there were additional datasets of X-ray diffraction 

measurements to estimate the clay cluster orientation and pressure-dependent stiffness 

measurements.  

In Chapter 3, I will introduce the developed anisotropic rock physics modeling 

method and its application to the Upper Eagle Ford Shale using data from Well B5. 

Chapter 4 presents the geostatistics guided anisotropic seismic inversion method and its 

application on the seismic data shown in this chapter to resolve the thin Lower Eagle 

Ford Formation. 
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Chapter 3: Modeling the effects of micro-scale fabric complexity on the 
anisotropy of the Eagle Ford Shale 

3.1 ABSTRACT 

Micro-scale fabric influences the elastic properties of rock formations. The 

complexity of the micro-scale fabric of shale results from composition, platy clay 

minerals, kerogen, and their preferred orientation patterns. This micro-scale fabric is also 

the likely cause of the elastic anisotropy of the rock. In this paper, we present a 

comprehensive three-step rock-physics approach to model the anisotropic elastic 

properties of the Upper Eagle Ford Shale. We start with anisotropic differential effective 

medium modeling, followed by an orientation correction and then a pressure adjustment. 

This method accounts for the micro-scale fabric of the rock in terms of the complex 

composition, shape and alignment of clay minerals, pore space, and kerogen. In addition, 

we account for different pressure-dependent behaviors of P-waves and S-waves. The 

modeling provides anisotropic stiffnesses and pseudo logs of anisotropy parameters. The 

modeling results match log measurements relatively well. The clay content, kerogen 

content and porosity decrease the rock stiffness. The anisotropy increases with kerogen 

content, but the influence of clay content is more complex. Comparing the anisotropy 

parameter pseudo logs with clay content shows that clay content increases the anisotropy 

at small concentrations; however, the anisotropy stays constant, or even slightly 

decreases, as clay content continues to increase. This result suggests that the preferred 

orientation of clay clusters is preserved at low clay concentration but vanishes at high 

clay concentration. This method could also be applied to other shales with carefully 

chosen parameters to model anisotropic elastic properties.1 

This chapter was published in Ren, Q. and K. T. Spikes, 2016, Modeling the effects of micro-scale fabric 
complexity on the anisotropy of the Eagle Ford Shale: Interpretation, 4, SE17 – SE29. The coauthor Spikes 
supervised the project. 
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3.2 INTRODUCTION 

Characterizing unconventional resources from geophysical data is becoming 

increasingly important to improve economic recovery. To understand the geophysical 

responses of shales, we must understand how their microstructures influence their elastic 

responses. Micro-structural studies have demonstrated complex morphologies and fabrics 

(e.g., Chalmers et al., 2012; Sondergeld et al., 2010). In these two cases and in others, the 

complex fabric is likely the cause of the elastic anisotropy. This elastic anisotropy in turn 

controls seismic wave propagation and thus affects elastic wave amplitudes, travel times 

and ray paths (Banik, 1984, Sayers, 2005). As the link between rock properties and 

seismic responses, rock-physics models should account for the complex micro-scale 

fabric and resulting anisotropy.  

Rock physics approaches have modeled the elastic properties of shales using 

various techniques. A popular approach has been through inclusion-based models. They 

have the flexibility to model the shapes of micro-scale grains and pore space by 

introducing aspect ratios of inclusions (Avseth et al., 2000). Examples of effective 

medium models are the self-consistent (SC) and differential effective medium (DEM) 

models (Norris, 1985; Berryman, 1992 and 1995; Mavko et al., 2009). Sayers and Den 

Boer (2011) applied the self-consistent method to deepwater subsalt Gulf of Mexico 

mudrocks and showed that the effective moduli varied as a function of different pore 

aspect ratios. The Jiang and Spikes (2013) study on the Haynesville Shale also showed 

that the pore aspect ratio had a strong influence on velocities. The work from Ren and 

Spikes (2014) on the Haynesville Shale with the anisotropic DEM method showed that 

grain aspect ratios, including that of clay and kerogen, and pore aspect ratios strongly 

affected both effective stiffness and anisotropy. Hornby et al. (1994) proposed an 

anisotropic effective medium model by aligning the inclusions in the horizontal plane to 
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build up an effective vertical transversely isotropic (VTI) medium. This method 

accounted for the complex shale composition and various grain shapes, but the platy clay 

minerals and clusters were fully aligned. However, the SEM images show that these clay 

minerals and clusters have different orientation directions. Bandyopadhyay (2009) used 

the DEM method to model the anisotropic elastic properties of the Bakken Shale. He 

showed that as the inclusion aspect ratio decreased, the effective stiffness components in 

the vertical direction decreased, whereas in the horizontal direction they increased; 

therefore, the anisotropy increased. Vasin et al. (2013) quantified the grain and pore 

shapes of the Kimmeridge shale from SEM and TEM images. The histogram of pore 

shapes indicated a significant number of both high aspect ratio (0.5–1) and low aspect 

pores (0.01–0.03).  They modeled how these two types of pores influence the shale 

stiffness, using the GeoMIXself (GMS) approximation (Matthies et al., 2001). The GMS 

added elements of the geometric mean approximation to the self-consistent scheme. This 

method can describe the elastic properties of porous polycrystalline graphite and biotite 

gneiss. The results showed that adding high aspect ratio pores decreased all stiffness 

components but did not influence anisotropy. To the contrary, the low aspect ratio pores 

influenced both stiffness components and anisotropy. Research on the Muderong Shale 

(Kanitpanyacharoen et al., 2014) showed results similar to that of Vasin et al. (2013).  

A rock-physics method for shale should be able to model the complex micro-scale 

fabric and anisotropy. More specifically, it should have the ability to model complex 

composition, various shapes of grains and pores, and various orientation distributions of 

the constituents. To accomplish this, the model should be anisotropic but coupled with an 

orientation distribution function (ODF) that describes the degree of alignment of grains 

and pores. Accordingly we developed an anisotropic rock-physics model that accounts 

for complex composition, shape and alignment of clay minerals, pore space, and kerogen, 
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followed by pressure-dependent behaviors of P- and S-waves. We applied this multi-step 

technique to the Upper Eagle Ford Shale and mapped the rock properties to anisotropy 

parameters. The results show that clay, kerogen, and porosity strongly influence the 

stiffness and anisotropy of the rock. The kerogen content increases anisotropy. Computed 

pseudo logs of anisotropy parameters show that the anisotropy correlates with clay 

volume at relatively low clay concentration but anisotropy does not increase with clay at 

relatively high clay concentration.    

Relationships among anisotropy, composition and alignment 

Seismic velocity measurements in the laboratory indicate that shale exhibits VTI 

symmetry, with the symmetry axis perpendicular to bedding direction (e,g., Vernik and 

Nur, 1992, Hornby, 1998, Dewhurst and Siggins, 2006, Jones and Wang, 1981, and 

Wang, 2002). This anisotropy relates to the complex fabric through (a) alignment of platy 

clay minerals, (b) alignment of clusters of clay minerals, (c) alignment of non-spherical 

pores and microcracks, (d) alignment of fractures, (e) fine-scale laminations of shaly 

materials with different stiffnesses, and (f) lenses of kerogen (Vernik and Liu, 1997). 

Each of these might play a role in the effective anisotropy. Our model accounts for each 

of these options except the alignment of fractures, and we focus on the contributions of 

clay and kerogen and their orientations. 

Many studies have been performed to understand how clay and kerogen 

contribute to the elastic anisotropy. Vernik and Milovac (2011) investigated the 

anisotropy of organic shale using core measurements, logging data, and heuristic models. 

The results showed that kerogen, porosity, and clay content controlled the elastic 

properties of organic shale. The velocity anisotropy mainly came from kerogen and the 

clay minerals with the preferred orientation parallel to the bedding plane. Vernik and Liu 
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(1997), based on various datasets consisting of low porosity black shale, showed that the 

Thomsen (1986) parameter epsilon increased with kerogen volume up to about 40%. 

However, Allan et al. (2014) showed that the contribution of kerogen to anisotropy was 

masked by clay when the shale contained high clay content (> 40%) and showed a high 

degree of clay mineral alignment. Johnston and Christensen (1995) investigated the 

relationship between the preferred orientation of clay minerals and the anisotropy for 

Devonian-Mississippian black shale formations, using laboratory velocity measurements, 

X-ray diffraction techniques, and electron microprobe backscatter imaging. Their 

research showed a strong positive correlation between the degree of preferred clay 

orientation and seismic anisotropy. Allan et al. (2014) studied the correlation between P-

wave anisotropy and both clay content and clay alignment of five mature organic rich 

shale samples. They used X-ray diffraction techniques (Wenk et al., 2008) to quantify the 

amount of clay minerals and capture their orientation distributions.  The velocity 

anisotropy was obtained from directional velocity measurements in the laboratory. This 

research suggested that the alignment of anisotropic clay species, rather than the volume 

of clay minerals, influenced the anisotropy. The contribution of clay to anisotropy for 

clay-rich shale would drop to zero when all the clay minerals were randomly oriented, 

according to their research. 

Additional complexity exists because alignments of clay minerals are not always 

present in shale formations. Scanning electron microscopy (SEM) images and 

backscattered electron (BSE) images from various shales (Sone, 2012; Hornby et al., 

1994; Vernik and Milovac, 2011) commonly show aggregates of aligned clay minerals. 

At the core scale, these locally aggregated clay mineral clusters might have different 

preferred orientation directions; therefore, the preferred orientation might vanish at the 

core scale. As a result, the clay mineral clusters no longer contribute to the anisotropy of 
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the rock (Sone, 2012). Figure 3.1 shows an SEM image from the Eagle Ford Shale, which 

reveals the variation of orientation direction of clay mineral clusters. The yellow circles 

in Figure 3.1 highlight the clay mineral clusters with different preferred orientations. 

Although the clay minerals within a cluster share an apparent similar direction, the 

preferred orientation differs among clusters. This difference reduces the degree of 

alignment of clay minerals at a larger scale and decreases their contributions to the 

effective anisotropy. Johansen et al. (2004) demonstrated numerically that the preferred 

orientation patterns of non-spherical grains strongly influence the elastic properties and 

anisotropy of shale. They evaluated how the orientation influenced the anisotropy using 

various orientation distribution models. The results showed that the higher the degree of 

alignment of grains corresponded to higher anisotropy. We incorporate this micro-scale 

orientation information into the rock-physics modeling through orientation distribution 

functions. 
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Figure 3.1: SEM image from the Eagle Ford Shale (Sone, 2012). The yellow circles point 
out the clay clusters with different orientation directions. 
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3.3 METHODOLOGY 

The anisotropic rock-physics method presented in this paper contains three parts: 

the anisotropic DEM modeling, orientation correction, and pressure adjustment. In this 

section, we discuss the details of these steps.  

3.3.1 Anisotropic DEM 

The DEM method models two-phase composites by adding one phase (phase 2) as 

a series of inclusions with specified shapes and stiffnesses to the matrix phase (phase 1). 

The combined two-phase effective medium is considered as the new matrix phase for 

further mixing. The anisotropic effective stiffness (Equation 3.1) is determined by a 

tensor (Hornby et al., 1994):  

!
!"

𝑐!"# 𝑣 = !
!!!

𝑐! − 𝑐!"# 𝑣 × 𝐼 + 𝐺 𝑐! − 𝑐!"# 𝑣
!!

.   (3.1) 

In (Equation 2), 𝑐!"# is the effective stiffness of the entire rock, 𝑐! is the stiffness

of i-th inclusion, ν is the volume portion of the i-th inclusion respect to the entire rock, 

and 𝐺 is the geometry factor containing inclusion shape information. The output is a VTI 

stiffness tensor, 𝑐!"#, with 5 independent components, which are 𝑐!!, 𝑐!!, 𝑐!!, 𝑐!!, and

𝑐!".

The DEM method assumes that all inclusions are fully aligned in the horizontal 

plane. The anisotropy comes from the alignment of non-spherical inclusions. The 

resulting error from fully aligned inclusions is corrected in the orientation correction in 

the next step. A previous study (Ren and Spikes, 2014) showed that the inclusion aspect 

ratio strongly affected both effective stiffness and anisotropy in this anisotropic DEM 

method. In the study, we used distributions of inclusion aspect ratios for clay, kerogen, 
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and pore space to account for the micro-scale complexity of grain shapes. The aspect 

ratio of each inclusion was drawn from a normal distribution with a given mean value. 

The mean value of each aspect ratio distribution was obtained from a series of numerical 

experiments. Comparing the modeled to the measured stiffnesses identified the best fit 

mean aspect ratios. 

 

3.3.2 Orientation Correction 

After constructing the effective VTI medium, the next step is the orientation 

correction to compensate for the effect of fully aligned inclusions. Laboratory 

measurements or empirical models can provide orientation distribution functions (ODF) 

for rock-physics modeling. Measurement-based methods include high-resolution X-ray 

texture goniometry (Ho et al., 1995, 1996, 1999, Aplin, 2006). This technique identifies 

the presence of clay mineral phases by a “2θ scan” and determines the degree of 

preferred orientation of the existing clay mineral phases by a “pole-figure scan”. A more 

comprehensive method is based on the synchrontron X-ray diffraction technique (Wenk 

et al., 2008, Kanitpanyacharoen et al., 2011). This method measures the preferred 

orientation patterns by 3D X-ray diffraction imaging as a function of the Bragg angle and 

azimuth. When none of the above measurements are available, the ODFs can be 

constructed either from statistical models or a compaction model. The statistical models 

define the alignment as a distribution spreading around a mean value, for example a 

Gaussian distribution. The compaction model describes the ODF as a result from vertical 

compaction of sediment. Johansen et al. (2004) reviewed and compared these different 

models in terms of calculated Legendre coefficients. Their study showed that all the 

statistical models generated almost identical Legendre coefficients, and the results from 

compaction models were only slightly different from those using statistical models. 
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Legendre coefficients are calculated from expanding an ODF into generalized spherical 

harmonics (Roe, 1965). Sayers (1994) gave formulas for computing the effective stiffness 

of transversely isotropic media from the stiffness modeled with fully aligned inclusions 

and the Legendre coefficients.

The compaction-model ODF we use in this disseration is defined as 
𝑊 𝜉 = !

!!!
!!

!!! !!!! !! !/! ,   (3.2)

where 𝑎 is the compaction factor, and 𝜉 is the cosine of bedding direction with respect to 

the horizontal plane (Owens 1973; Baker, Chawla and Krisek 1993). The Legendre 

coefficients are calculated based on the ODF as: 
 𝑊!"" =

!
! !!!

, (3.3)

 𝑊!"" =
!
!

𝑊 𝜉!
!! 𝑃! 𝜉 𝑑𝜉, (3.4)

 𝑊!"! =
!
!

𝑊 𝜉!
!! 𝑃! 𝜉 𝑑𝜉, (3.5)

where the 𝑃! 𝜉  are the Legendre polynomials of order l.

𝑃! 𝜉 = !
!
3𝜉! − 1 , (3.6)

𝑃! 𝜉 = !
!
35𝜉! − 30𝜉! + 3 . (3.7)

Here we account for the Legendre coefficients 𝑊!"# with 𝑙 ≤ 4 because stiffness

is a fourth-rank tensor (Morris, 1969, Sayers, 1994). For a transversely isotropic medium, 

the non-zero 𝑊!"# only occurs with even l and m, and 𝑛 = 0. In addition, for a VTI

medium, m equals zero as well. Following Sayers’s (1994) procedure, Johansen et al. 

(2004) showed that the corrected stiffness could be calculated as: 

𝐶!"##$!%$& = 𝑇!!! +𝑊!""
! 𝑇!"" +𝑊!""

! 𝑇!"" 𝐶!"#$%,                      (3.8) 

𝑊!""
!  and 𝑊!""

!  are normalized Legendre coefficients, 𝐶!"#$% are the modeled stiffness

with fully aligned inclusions, and 𝑇!"" are constant matrices as:
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T000 =
1
15

8 3 4 8 0
8 3 4 8 0
6 1 8 −4 −10
1 1 −2 6 5
1 1 −2 6 5

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

(3.9) 

T200 =
1
21

8 −6 −2 −4 0
−16 12 4 8 0
−6 1 5 −4 14
1 1 −2 3 −7
−2 −2 4 −6 14

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'           (3.10)

T400 =
1
35

3 3 −6 −12 0
8 8 −16 −32 0
−4 −4 8 16 0
−4 −4 8 16 0
1 1 −2 −4 0

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'     

 (3.11)

3.3.3 Pressure Adjustment 

In addition to the micro-scale fabric, pressure is another influential factor on 

elastic properties and anisotropy. Sone and Zoback (2013) measured the directional-

dependent velocities corresponding to stiffnesses (𝑐!!, 𝑐!!, 𝑐!!, and 𝑐!!) of the Eagle 

Ford Shale under different effective pressures. The measured data are presented in Figure 

3.2. As shown in Figure 3.2, the four stiffness components are all pressure dependent.

However, the pressure-dependent behaviors are different among c!!, c!! (Figure 3.2a),

which correspond to compressional wave, and c!!, c!! (Figure 3.2b), which correspond

to shear waves. Figure 3a explains the difference between compressional wave and shear 
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wave dependence on pressure. These different pressure-dependent behaviors could relate 

to the pores that close as effective pressure increases. As pressure increases, the pore 

space with low aspect ratio closes; the pore space with high aspect ratio remains open. 

Therefore, one response of rock to the increase of pressure is the closure of flat pore 

space. We modeled the response of c!! c!! and c!! c!! with respect to the increase of

pore aspect ratio, as shown in Figure 3.2.13. As the pore aspect ratio increases, the 

stiffness ratios increase. This observation agrees with measurements in Figure 3.2.12 in 

that as the effective pressure increases, the ratio of compressional to shear stiffness 

increases. Because the P- and S-waves respond differently to pressure, the anisotropic P-

wave and S-wave velocity data cannot both be modeled correctly without accounting for 

the pressure effect. In this study, we modeled 𝑐!! and 𝑐!! to match the log data by

anisotropic DEM and orientation correction, and then we applied pressure correction on 

𝑐!! and 𝑐!!. We used the difference of 𝑐!! 𝑐!! and 𝑐!! 𝑐!! between in situ (41Mpa) and

reference effective pressure (5Mpa) to adjust the modeled shear stiffness components. 

The reference effective pressure is the assumed model pressure for effective medium 

modeling. The value of reference effective pressure affects the pressure adjustment; 

however, we do not know the exact value.  The 5Mpa reference effective pressure was 

chosen based on multiple tests. The adjusted shear stiffness components are: 
𝑐!!_!"#$%&'" =

!!!_!"#
!!! !!! !"#!∆ !!! !!!

,        (3.12)   

and 
𝑐!!_!"#$%&'" =

!!!_!"#
!!! !!! !"#!∆ !!! !!!

,        (3.13)        

where ∆ 𝑐!! 𝑐!!  and ∆ 𝑐!! 𝑐!!  are the differences of each respective ratio between in

situ and low measured effective pressure. The subscript DEM refers to the results from 

the orientation correction. This pressure correction is applied only to the 𝑐!! and 𝑐!!

terms. 
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Figure 3.2: Pressure dependence of the dynamic moduli (a) 𝑐!! and 𝑐!!, (b) 𝑐!! and 𝑐!! of
the Eagle Ford Shale. Data are from Sone and Zoback (2013). The 𝑐!! and
𝑐!! correspond to the horizontally and vertically propagating compressional
waves, respectively, whereas 𝑐!! and 𝑐!! correspond to the horizontally and
vertically propagating horizontally polarized shear waves, respectively. All 
four stiffness components increase with effective pressure at low effective 
pressure and tend to flatten at high effective pressure. However, the 
pressure-dependent behaviors of these four stiffness components are 
different.  
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Figure 3.3: (a) Pressure dependence of the stiffness component ratios 𝑐!! 𝑐!! in blue, and
𝑐!! 𝑐!! in red. The points are calculated from the measurements from Sone
and Zoback (2013), and the two lines are fitted exponential curves. The in 
situ effective pressure of Eagle Ford Shale is about 41Mpa. The difference 
of 𝑐!! 𝑐!! and 𝑐!! 𝑐!! between in situ and low effective pressure (about
5Mpa) was calculated from the fitted curve. (b) Pore aspect ratio 
dependence of 𝑐!! 𝑐!! (red) and 𝑐!! 𝑐!! (blue). As the aspect ratio
increases from 0.1 to 0.8, both 𝑐!! 𝑐!! and 𝑐!! 𝑐!! increase and then go to
flatten. In this modeling, we only changed the pore aspect ratio, but we did 
not reduce the porosity.  
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3.4 APPLICATION TO THE UPPER EAGLE FORD 

3.4.1 Study Area and Data 

The Upper Cretaceous Eagle Ford Shale is located in the Maverick Basin and the 

adjacent San Marcos Arch in south Texas. It extends farther northeastward to the East 

Texas Basin (Hentz, 2010). The Eagle Ford Shale is overlain by the Austin Chalk and 

underlain by the Buda Limestone. The Eagle Ford Shale contains both Upper and Lower 

intervals, and we focus on the Upper Eagle Ford.  

The Upper Eagle Ford is a calcareous mudrock with major mineral components 

that include calcite, clay and quartz. This study contains one well, whose log panel is 

shown in Figure 3.2.12 and 2.13. Figure 3.2.12 shows the petrophysical properties from 

the well. From left to right are gamma ray, resistivity, density, neutron porosity, 

photoelectric factor, sonic logs, potassium (K) concentration, and thorium (Th) and 

uranium (U) concentrations. The middle part of the formation has constant relatively low 

resistivity, density, velocity, uranium concentration and relatively high neutron porosity 

and potassium concentration. The properties in the upper and lower part of this formation 

fluctuate. Figure 3.2.13 shows the porosity log, water saturation log, and mineralogy logs. 

These composition logs were estimated from a petrophysical inversion algorithm (Heidari 

and Torres-Verdin, 2013), which is explained in Chapter 2. The composition logs show 

that the kerogen content varies from 0% to 13.1% volume concentration with an average 

at 7.9% in this interval. Approximately 2% by volume of pyrite is present, and other 

minor minerals are dolomite, plagioclase and K-feldspar. The porosity varies from 2.7% 

to 12% with an average at 6.4%.  The porosity changes from high to low at round 9115ft 

corresponding to the velocity variation. 

Sone and Zoback (2013) measured the directional-dependent velocities 

corresponding to stiffnesses (𝑐!!, 𝑐!!, 𝑐!!, and 𝑐!!) of the Eagle Ford Shale under 
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different effective pressures. The measured data are presented in Figure 3.2. Cores from 

which these measurements were obtained are not from the well used in this work, but the 

velocities measurements are applied in this work. The four stiffness components are all 

pressure dependent, but the pressure-dependent behaviors are different among 

compressional (Figure 3.2a) and shear (Figure 3.2b) stiffness components. Figure 3.3a 

shows the pressure-dependent ratios 𝑐!! 𝑐!! and 𝑐!! 𝑐!!, which are the ratios of 

compressional and shear stiffness components in the horizontal and vertical directions, 

respectively. Exponential curves were fitted to the ratios.  

3.4.2 Modeling Result 

We modeled how rock stiffness changes with porosity and kerogen volume, using 

the three-step rock-physics method. To reduce the model parameter space, we used the 

average volume concentration within the Upper Eagle Ford for calcite, quartz, pyrite, 

dolomite, plagioclase, K-feldspar, and average fluid saturation in the rock-physics 

modeling. The volume of a mineral refers to the volume portion of the mineral with 

respect to the entire rock. These average mineralogy volume concentrations come from 

the petrophysical inversion; the average fluid saturations are from available core 

measurements at several depths within the Upper Eagle Ford. These composition data are 

listed in Table 3.1. The volume ratio of kerogen and porosity was kept constant at 1.14, 

which is the average ratio in the well logs. 
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Calcite 
(V/V) 

Quartz 
(V/V) 

Pyrite 
(V/V) 

Dolomite 
(V/V) 

K-feldspar 
(V/V) 

Plagioclase 
(V/V) 

Sw 
(V/V) 

Sg 
(V/V) 

So 
(V/V) 

Upper EF 0.53 0.11 0.025 0.0064   0.0064 0.038 0.35       0.45       0.20 

Table 3.1: Mineralogy, fluid of Upper Eagle Ford. (Reference to entire rock) 

We used isotropic mineral and fluid stiffnesses, as listed in Table 3.2. The density 

of clay was calculated from the density log and composition logs by linear regression. 

The moduli and densities of minerals, other than clay density, were from Mavko et al. 

(2009); the values for kerogen and fluid came from (Heidari and Torres-Verdin, 2013). In 

the modeling, the mean aspect ratio was set to 0.15 for clay mineral, 0.1 for pore space, 

0.1 for kerogen, and 1 for all other minerals. The size of each inclusion was modeled as a 

normal distribution with mean value of 0.05% by volume of the matrix rock. We first 

modeled the isotropic solid background using the DEM. The solid background included 

calcite, quartz, pyrite, dolomite, K-feldspar, and plagioclase. Then the non-spherical 

kerogen grains and the clay-fluid composites were added to the background using the 

anisotropic DEM method. The clay-fluid composites are the combination of clay minerals 

and fluid in the pore space. Fluid was added to clay minerals using anisotropic DEM 

modeling with an aspect ratio of 0.1; then the composites were added to the entire rock 

with aspect ratio at 0.15.  

Calcite Clay Quartz Pyrite Kerogen Water Gas Oil Dolomite Orthoclase Plagioclase 
Density (g/cm3) 2.71 2.80 2.65 4.93 1.25 1.07 0.13 0.7 2.87 2.64 2.63 

μ(GPa) 32 7 45 132.5 4 0 0 0 45 29.45 23.63 
K (GPa) 73 21 36.6 1474 5 2.2 0.21 0.6 94.9 62.87 75.6 

Table 3.2: Mineral and fluid properties used in the modeling. 
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Up to this point, all the non-spherical inclusions were fully aligned in the 

horizontal plane, establishing an effective VTI medium. The modeled anisotropy was as 

high as 0.7 for epsilon, which is much larger than the measured epsilon of 0.2 (data 

provided by the sponsor). The fully aligned inclusions caused this significant 

overestimation of modeled anisotropy. We applied the orientation distribution correction 

on this established effective VTI medium to compensate for the overestimated 

anisotropy. Equation 3 defines the ODF with the compaction factor set to 3, based on 

which the Legendre coefficients were calculated, and the corrected stiffness was modeled 

by equation 9. Finally, we used equation 13 and 14 to calculate the pressure-adjusted 

shear stiffness components. The calculated ∆ 𝑐!! 𝑐!!  equals 0.57, and ∆ 𝑐!! 𝑐!!

equals 0.12. In Figure 3.4, we show how the modeled 𝑐!! and 𝑐!! change through these

three steps. 
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Figure 3.4: The change of modeled (a) 𝑐!!, and (b) 𝑐!! from step 1 to step 3. In both
figures, each color represents the modeled stiffness components for a given 
step: step 1 (anisotropic DEM) results in blue, step 2 (orientation correction) 
results in red, and step 3 (pressure adjustment) results in black. The three 
lines in each color represent the increase of clay volume from 1% (thick 
solid lines) to 11% (dash lines), and 21% (thin solid lines), as from top to 
bottom. The orientation correction increased 𝑐!! and 𝑐!!; the pressure
adjustment decreased 𝑐!!. The pressure adjustment is only applied to 𝑐!!, so
there is no black line in (a). 
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Each value of modeled stiffness corresponded to a specific pair of modeled {clay 

volume, porosity plus kerogen volume}, and had associated values of modeled anisotropy 

parameters. On the other hand, the mineralogy logs provided the {clay volume, porosity 

plus kerogen volume} value at every measured depth. Comparing the measured {clay 

volume, porosity plus kerogen volume} pairs at each measured depth to the modeled 

values in a grid search, we obtained the corresponding modeled stiffness and modeled 

anisotropy parameters at that depth. Repeating this procedure for all the measured depths 

provided the modeled stiffness logs and modeled anisotropy parameter pseudo logs.  

Modeled and measured stiffness components 𝑐!! and 𝑐!! are plotted as a function

of porosity plus kerogen in Figure 3.6. The lines represent models for different modeled 

clay volumes, and the points are the log measurements in color of clay volume. Both the 

models and the log measurements show that 𝑐!! and 𝑐!! decrease as clay volume

increases and as porosity plus kerogen increases. The measured points with relatively low 

clay volume are located in the upper left corner of these two figures; they match the 

model with 1% clay volume relatively well. Towards the lower right, the measured points 

show higher clay volume, and they match the models with higher clay volume as well. 

The models do not perfectly represent all the measured points, but they match fairly well. 

Figure 3.6 shows measured (calculated from measured velocity and density) and modeled 

stiffnesses as a function of depth. The closest match of modeled and measured pairs of 

{clay volume, porosity plus kerogen volume} were found for each depth sample. The 

corresponding stiffnesses are displayed in Figure 3.6, with 𝑐!! on the left and 𝑐!! on the

right. The overall trends match for both stiffnesses. 
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Figure 3.5: The modeled stiffness (a) 𝑐!! and (b) 𝑐!! as a function of porosity plus
kerogen volume changing from 0.04 to 0.16. The lines represent 
stiffness models with different volumes of clay, whereas the points are 
calculated from log measurements (a) P-wave and (b) S-wave, colored 
by clay volume. The models with 1% clay volume match the measured 
point with low clay volume at upper left. Towards the lower right, the 
models with higher clay volume represent the measured points with 
higher clay volume. Although the models do not represent every 
measured point, the models follow the trends in the data.  
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Figure 3.6: Modeled stiffness log for (a) 𝑐!!, and (b) 𝑐!!. In both figures, the red lines
represent the modeled stiffnesses obtained by grid searching in the 
model space, and the black dashed lines represent the stiffnesses 
calculated form log measurements. As shown in this figure, the modeled 
stiffnesses agree with the measured stiffnesses fairly well.  
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In Figure 3.7, we evaluate the same dataset in Figure 3.5 in a different domain, by 

which the correlation between the clay volume and elastic properties become more 

evident. Figure 3.7 shows the crossplot of 𝑐!! − 2𝑐!! 𝜌 as a function of 𝑐!!𝜌. The lines

represent models of different clay volumes, and the points are the log measurements 

colored by clay volume. The measurements, from upper right to lower left, show the 

increasing clay volume trend. The models with clay volume increasing from 1% to 21% 

show the same trends as the measurements. Each model line covers a range of porosity 

plus kerogen volume from 0.04 to 0.16 from the top of each line to the bottom. However, 

at relatively large clay volume, the measured porosity plus kerogen volume is limited to a 

narrow range around 14%. These measured points are those points in orange at the 

bottom right in Figure 3.5. As a result, the 21% clay volume model line only crosses the 

measurements at its lowermost part.  
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Figure 3.7: Crossplot of 𝑐!! − 2𝑐!! 𝜌 and 𝑐!!𝜌. The lines are the models.  The scattered
points are calculated from log measurements, in color of clay volume. 
From upper right to lower left, both the measured points and models 
show the trend of increasing clay volume. Each model line covers a 
range of porosity plus kerogen volume from 4% to 16% from the top of 
each line to the bottom. 
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Based on the modeled stiffnesses, the Thomsen (1986) parameters were 

calculated, and their contour maps are shown in Figure 3.8. The modeled anisotropy 

increases with porosity plus kerogen volume. The increase of clay volume increases 

anisotropy at low clay concentration up to a turning point. The turning point corresponds 

to the clay volume, above which, the anisotropy is nearly constant, or slightly decreases, 

as clay volume continues to increase. We calculated the turning point for every modeled 

porosity plus kerogen value. This turning point is different for different values of porosity 

plus kerogen. The black lines connect these turning points in Figure 3.8. Superimposed 

on the color are the log measurements of clay volume as a function of porosity plus 

kerogen volume in Figure 3.8a and 8b (blue points). Most of the points fall in the epsilon 

range 0.17 to 0.3, and gamma range 0.17 to 0.27. This matches with values of 0.2 for 

epsilon and 0.18 for gamma obtained from laboratory-based directional velocity 

measurement. Pressure-dependent 𝑐!" measurements were not available, without which,

the stiffness component 𝑐!" could not be pressure corrected. Therefore, the modeled

Thomsen delta is not accurate. We compared the modeled anisotropy to the anisotropy 

parameters computed from Sone and Zoback (2013). The average composition for their 

samples included 15% clay, 10% kerogen, and 6% porosity, measured epsilon was 0.24, 

and measured gamma was 0.20. 
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Figure 3.8: Contour map of (a) epsilon, and (b) gamma in space of {porosity plus 
kerogen volume} – Clay Volume. The scattered points are porosity plus 
kerogen volume versus clay volume, but they do not have an associated 
measured or calculated anisotropy value. The black lines in both pictures 
connect the turning points at every porosity plus kerogen volume. 
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Figure 3.9 demonstrates different correlations between anisotropy and clay 

volume. Using the same searching method to determine the stiffness logs, we built the 

anisotropy parameter pseudo logs (Figure 3.9a).  In this figure, epsilon is in blue, and 

gamma is in red. The Thomsen parameters are relatively constant in the middle depth 

range, at about 0.3 for epsilon and 0.27 for gamma. At the top and base of the reservoir, 

the Thomsen parameters fluctuate. In Figure 3.9a, we compare the pseudo anisotropy 

logs to the clay volume. The black dashed lines are at depths corresponding to relatively 

low clay volumes, whereas the orange dashed lines correspond to depth with relatively 

high clay volumes. Figure 3.9b shows the crossplot of the gamma pseudo log and epsilon 

pseudo log for depth points whose corresponding clay volumes are to the left of turning 

points. This crossplot refers to the black dashed lines in Figure 3.9a. In Figure 3.9b, the 

depth points are colored by clay volume. Figure 3.9c is the same crossplot of gamma 

pseudo log and epsilon pseudo log for depth points whose corresponding clay volumes 

fall to the right of turning points. This crossplot corresponds to the orange dashed lines in 

Figure 3.9a. In Figure 3.9c, the depth points are colored by clay volume as well, but this 

time, the anisotropy, particularly epsilon, does not correlate with clay volume. Figure 3.9 

reveals that at relatively low clay concentration, the anisotropy increases with clay 

volume, but at relatively high clay concentration, clay does not contribute to anisotropy. 
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Figure 3.9: a) The anisotropy parameter pseudo logs, left (ε in blue and γ in red), and the 
clay volume on right. Black dashed lines indicate some depths where the 
anisotropy correlates with clay volume changing. Orange dashed lines 
indicate where the anisotropy does not correlate with clay volume. b) 
The crossplot of modeled ε and γ for the Upper Eagle Ford Shale. The 
points are the depth points where the clay volume falls to the left of the 
turning points, colored by clay volume. c) The crossplot of ε and γ. The 
points are the depth points where clay volume falls to the right of the 
turning points, colored by clay volume. 
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Johnston and Christensen’s (1995) study on Devonian-Mississippian black shale 

formations showed that with a higher degree of clay alignment parallel to the bedding 

direction, the higher the degree of anisotropy for both P- and S- waves. The clay 

orientations in their study were detected by X-ray diffraction technology, and the 

anisotropy was calculated from laboratory velocity measurements. Similar to the 

Johnston and Christensen study, Allan et. al (2014) showed that the degree of alignment 

of clay matrix governed the effective anisotropy of organic-rich shale. The alignment 

degree of clay was more influential than volume of clay. They drew these conclusions 

based on both rock-physics laboratory measurements of ultrasonic velocity and high-

resolution imaging techniques. From these previous studies on organic-rich shale, it is 

reasonable to suggest that the clay-anisotropy relation shown in Figure 3.9 is related to 

the preferred orientation pattern of clay clusters. Sone (2012) studied the clay mineral 

alignment of shale gas reservoir rocks of various shale formations using the scanning 

electron microscope. Figure 3.1 is one of these microscope images. He observed that at 

the local scale, the aggregates of aligned clay minerals were observed in all samples. 

These local scale clay mineral aggregates form many clay clusters. However, the 

preferred orientation of the clay clusters was not observed at core scale in many samples 

using optical microscopy. Combining the work of Johnston and Christensen, Allan et. al, 

and Sone, we suggested that the preferred orientation of clay clusters is preserved at low 

clay concentrations but vanishes at high clay concentrations for the Upper Eagle Ford 

Shale. Therefore, at relatively low clay concentration, the anisotropy increases with clay 

volume, but at relatively high clay concentration, clay does not contribute to anisotropy. 

One source of uncertainty of this anisotropic modeling is that we assumed the clay aspect 

ratios were constant when the clay concentration changes. However, the clay aspect ratio 

could change with concentration, and then could influence the modeled anisotropy. 
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3.5 DISCUSSIONS AND CONCLUSIONS 

The micro-scale fabric strongly influences the elastic properties of the Upper 

Eagle Ford Shale. In shale, the complex composition, the platy clay minerals, non-

spherical kerogen, and their preferred orientation patterns largely increase the complexity 

of the micro-scale fabric. Such a complex fabric affects the rock stiffness and induces 

effective anisotropy; therefore, it should be accounted for in the rock-physics modeling. 

In this paper, we presented a three-step rock-physics method to model the anisotropic 

elastic properties of the Upper Eagle Ford Shale. We started with the anisotropic DEM to 

construct a VTI effective medium, then we applied the orientation correction to 

compensate for the overestimated anisotropy caused by the fully aligned inclusions; 

finally, we applied the pressure adjustment to account for the different pressure-

dependent behavior between P- and S-waves. The method accounted for the micro-scale 

fabric in terms of complex composition, shape and alignment of clay mineral, pore space, 

and kerogen.  

 The modeling results match the log measurements relatively well. Both the 

modeling results and log measurements show that the stiffness decreases with clay 

volume, kerogen volume and porosity. The correlation between elastic properties and 

clay volume, as revealed in this work, could be used to identify the regions with different 

clay concentration. The porosity and kerogen volume increase anisotropy, but the 

influence of clay volume on anisotropy is more complex. The anisotropy increases with 

clay volume at low clay concentration (Vclay < 10%); however, the anisotropy is nearly 

constant, or even lightly decreases, as clay content continuous to increase. This result 

suggests that a preferred orientation of clay clusters is preserved at low clay 

concentration but vanishes at high clay concentration in the Upper Eagle Ford shale. In 

addition, using this method we are able to map the rock properties to anisotropy 
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parameters and build the anisotropy parameter pseudo logs. The estimation of the 

anisotropy is another potential application of this three-step rock-physics method.  

Uncertainty of the rock physics modeling comes from multiple aspects. Firstly, 

the petrophysical inversion for rock composition is non-unique. Rock composition is one 

of the most influential factors for rock physics modeling. Secondly, various studies 

showed that aspect ratios are highly influential on the DEM model. There is no direct 

measurement available to identify mineral and pore space aspect ratios; the inclusion 

aspect ratio values of each mineral and pore space applied in this chapter were based on 

multiple numerical experiments. Thirdly, I used the compaction model to simulate the 

orientation distribution function of clay clusters. The compaction factor in the 

compaction model was also set based on multiple numerical experiments. Fourthly, I 

modified Sone and Zoback’s (2013) pressure-dependent directional stiffness 

measurements for the Eagle Ford Shale from another location for pressure adjustment of 

Eagle Ford Shale in the study area of this chapter. The reference effective pressure was 

set based on multiple tests as well. Both the measurements and the reference effective 

pressure contribute uncertainty to the modeled stiffnesses. For these four types of 

uncertainty, there are no explicit equations to calculate how large the uncertainty is. 

However, sensitivity analysis of the influence of each factor on modeled stiffnesses could 

provide an estimate of the uncertainty. 

This method could also be applied to other shales with carefully chosen 

parameters. The appropriate inclusion aspect ratios, ODFs, and pressure-dependent 

compressional and shear stiffnesses ratio need to be determined. In the Upper Eagle Ford 

Shale case, we investigate how clay volume, kerogen volume, and porosity influence the 

stiffnesses and anisotropy. However, this method is not limited to clay, kerogen, and 
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porosity. We could model and interpret the anisotropic stiffnesses with respect to other 

influential parameters based on careful investigation for each particular shale formation. 
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Chapter 4: Geostatistics Guided Seismic Inversion of 3D Seismic Data 
From Eagle Ford Shale 

4.1 ABSTRACT 

Thin-bed effects and anisotropy are two important factors limiting the use of 

conventional seismic characterization of Eagle Ford shale. To circumvent these issues, I 

use the geostatistics guided GAIS inversion. The geostatistical models simulate small-

scale vertical variations that are below seismic resolution; the geostatical realizations of 

the well logs are used as a priori models and the GAIS inversion quickly searches for the 

most probable pseudo-logs at all surface locations. GAIS uses the greedy importance 

sampling method based on multiple parallel very fast simulated annealing results.  It 

explicitly explores the target distribution by grid search of the important regions with 

fixed step lengths along axis-parallel directions. This method performs an optimal 

balance between computational efficiency and accuracy of estimation. As to anisotropy, I 

used Ruger’s VTI model to account for anisotropy in forward modeling. This 

geostatistics guided inversion was applied on a pre-stack 3D seismic data to estimate the 

reservoir elastic properties and anisotropy parameters of Eagle Ford shale. In our results, 

the Lower Eagle Ford is clearly resolved in the inverted impedance volume. The sharp 

boundary and large impedance contrast between Eagle Ford and Buda are also very clear 

in GAIS inverted impedances. In addition, because of the accounted anisotropy, the 

quality of inverted S-impedance is significantly improved. The thin-bed issue and 
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anisotropy are common issues in seismic reservoir characterization. The methods I 

applied on Eagle Ford shale can also be applied to data from other reservoirs. 

4.2 INTRODUCTION 

The Eagle Ford shale is the upper Cretaceous shale located in south Texas. It is 

overlain by the Austin Chalk and underlain by the Buda Limestone (Hentz and Ruppel, 

2010). Eagle Ford contains two sub-formations: Upper Eagle Ford and the Lower Eagle 

Ford. Although both Upper and Lower Eagle Ford are hydrocarbon reservoirs, the Lower 

Eagle Ford has higher organic content and higher porosity. However, our study is focused 

in an area in which the Lower Eagle Ford is a thin layer with thickness varying from 0 to 

40ft. This thin layer is not resolvable using conventional seismic data analysis. One 

objective of this paper is to resolve both Upper and Lower Eagle Ford Formations in the 

inverted impedance volume. This thin-bed issue is a common problem in seismic 

characterization. Because of its band-limited nature, seismic data cannot resolve thin 

layers below one-eighth of a wavelength in thickness (Widess, 1973). However, such thin 

layers might be significant reservoirs or sweet spots inside reservoirs, especially in 

unconventional reservoirs. The method used in this paper could be applied to solve thin-

bed issues for other reservoirs as well.  

The other issue that is addressed in this paper is anisotropy. Anisotropy influences 

seismic waves by affecting their amplitude, travel time and ray paths; further, it 

introduces and propagates errors in inversion and amplitude versus offset analysis that 

assume isotropy (Sayers, 2005). In addition, works by Crampin (1981, 1985), Lynn and 

Thomsen (1986), and others demonstrated that anisotropy has first order influence on 

shear and mode-converted PS-waves. Seismic velocity measurements in the laboratory 

indicate that shale exhibits VTI symmetry, with the symmetry axis perpendicular to 



65 

bedding direction (e,g., Vernik and Nur, 1992, Jones and Wang, 1981, and Wang, 2002). 

The laboratory-measured anisotropy for Eagle Ford Shale in our study area are 0.15 for ϵ

and 0.07 for δ. Exact equations for plane wave reflection coefficients are very complex 

even for isotropic media. Therefore, most reflection coefficients are calculated based on 

different level of approximation. Barnik (1987) used the Thomsen parameter δ, the 

difference between the P-wave and SV- wave anisotropies of the medium, to describe the 

effects of transverse isotropy on P-wave reflection amplitude. He expressed the reflection 

coefficient in linearized terms of changes in elastic properties. By this approximation, the 

observed systematic depth errors in the North Sea were corrected.  However, this 

approximation only works for small propagation angles. Ruger (1997) used both ε and δ 

to describe the anisotropy effect on transverse isotropic medium. ε represents the P-wave 

anisotropy. His approximation is valid for propagation angle range up to 40 degrees. Both 

Barnik’s (1987) and Ruger’s 1997 expression of P-wave reflectivity are based on weak-

contrast, weak-anisotropy assumptions. For the measured anisotropy of Eagle Ford, 

Ruger’s expression is still valid, and I used this approximation for forward modeling. The 

results showed that the quality of inverted S-impedance by anisotropic inversion is 

significantly improved, compared to the isotropic inversion. 

For the thin-bed issue, many different inversion methods have been developed to 

improve the impedance resolution. Sparse seismic inversion methods (e.g. Reil and 

Berkhout, 1985) have been reported in which reflectivity solutions contain frequency 

beyond the original seismic data. Zhang and Castagna (2011) developed the basic pursue 

inversion (BPI) method to construct the reflectivity series from post-stack seismic 

reflection data. This method uses basis pursuit decomposition (Chen et al., 2001) to 

decompose the seismic trace to a wavelet dictionary, which consists of even and odd thin 

layer seismic response. Then seismic traces are constituted as a superposition of these 
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seismic response patterns. Based on wedge model tests, Zhang and Castagna (2011) 

suggested that BPI could better resolve thin beds than comparable sparse-spike inversion. 

The downside of BPI is that it depends on the correct wavelet. A sparse layer inversion 

similar to BPI implemented in frequency domain is spectral inversion (Partyka, 2005; 

Portniaguine and Castagna, 2004, 2005; Puryear and Castagna, 2006, 2008). Marfurt and 

Kirlin (2001) showed the effectiveness of seismic spectral decomposition as a thickness-

estimation tool. Spectral inversion (Partyka, 2005; Portniaguine and Castagna, 2004, 

2005; Puryear and Castagna, 2006, 2008) uses spectral decomposition to unravel the thin-

bed reflectivity created complex interference patterns, and then uses these patterns to 

invert for the original reflectivity. Based on spectral shape information, spectral inversion 

provides better vertical resolution and improves the thickness estimation. 

In this chapter, I propose to use geostatistic guided stochastic seismic inversion 

for Eagle Ford Shale to resolve the thin-beds. Geostatistical models are built based on 

well logs using the kriging technique  (Haas and Viallix, 1976; Xu, et. al 1992; et. al). 

Kriging (Krige, 1951, Matheron, 1970) is the first applicable geostatistical method. It is 

essentially a generized linear algorithm that extends the data-to-data correlation to data-

to-unknown relation. Based on the basic system, there are different modifications to adapt 

various situations, for example, ordinary kriging (Goldberger, 1962), cokriging 

(Goovaerts, 1997) etc. Extending the kriging idea beyond two-point simulation, there are 

covariance-based simulation algorithms, like sequential Gaussian simulation (Deutsch 

and Journel, 1998). Kriging based techniques (including sequential Gaussian simulation) 

still remain a major data integration tool, which is widely used in most geostatistical 

estimation and simulation algorithm. 

Compared with seismic data, the geostatistical models include small-scale vertical 

variations that are not revealed by seismic data because of its band-limited nature. Using 
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a geoststistical model as an initial model compensates the seismic data for small scale 

variation (Bosch, 2010). This feature is especially beneficial for thin-beds, since they 

cannot be resolved using conventional seismic data analysis, but are clearly identified in 

geostatistical models. Also, geoststistical models are constrained by spatial correlation; 

therefore, the models are geologically consistent. The downside of geostatistical models 

is that they are inadequate for lateral heterogeneity (Hass and Dubrule, 1994). The 

inversion process modifies and validates the initial geostatistical model with seismic data. 

I chose greedy annealing importance sampling (GAIS) (Xue et.al., 2011; Xue, 

2013) method as the inversion algorithm. GAIS is a stochastic process that combines very 

fast simulated annealing (VFSA) (Ingber, 1989) and greedy importance sampling (GIS) 

(Schuurmans and Southey, 2000, 2002). Compared to the Markov Chain Monte Carlo 

(MCMC) based important sampling methods, VFSA provides fast convergence to the 

highest peak of the posterior probability function by reducing the random walk behavior. 

It is an efficient method, but the results might be biased when the distribution of samples 

is skewed (Sen and Stoffa, 2013). Compared to VFSA, GIS provides unbiased estimation 

independent of the prior distribution and improves inferences quality. However, GIS 

requires each individual searching block must contain at least one or two important 

points. Also, although GIS is independent of a prior probability distribution, the locations 

of the starting points for use in greedy search are essential for fast convergence and 

accurate estimation, especially in a high dimensional problem. For those two reasons, it is 

important to start GIS with proper starting points in prior distribution. Xue (2011, 2013) 

modified the GIS to the new GAIS methods in order to optimize the balance between 

computational efficiency and accuracy of estimation. Instead of sampling directly from 

prior distribution, GAIS applies multiple VFSA threads first and uses the end points of 
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each VFSA thread as an initial point for greedy search. Since VFSA can converge to 

some important region GAIS speeds up GIS.  

In this chapter, I first describe the algorithm of GAIS in brief, and the details of 

implementation of the algorithm. Then I show the GAIS seismic inversion on Eagle Ford 

using the geostatistical initial model. The geostatistical initial model was built by 

sequential Gaussian simulation. The inversion model parameters include P-, S- 

impedance, δ, and ϵ at each time sample. The inverted P- and S- impedances are

compared with inversion results using those from conventional deterministic methods.  

4.3 METHODOLOGY 

In this section, I explain how to implement the GAIS algorithm. In additional to 

the inversion algorithm, seismic inversion involves forward modeling, defining the 

objective function (error function), and setting up an initial model. The methodologies 

used in these four parts will also be explained in this section. 

Figure 4.1 shows the algorithm of GAIS. Multiple independent VFSA threads are 

applied first; then each result from VFSA thread is expanded to a block of points. The 

local minimum of the objective function in each expanded block is found in step 3 as the 

final samples, and the corresponding weight to those final samples are assigned in step 4. 

The local minimum of the objective function in an expanded block corresponds to the 

local maximum of the likelihood function, which is P 𝑑|m  ~𝑄 𝑚 ∗ e!|!|. P 𝑑|m  is

the conditional probability, Q represents the prior distribution, and E is the objective 

function. Because the prior distribution is a uniform distribution, the likelihood function 

reduces to P 𝑑|m  ~e!|!|. Finally, the weighted average of the final samples are

calculated as the expectation of true model. The detailed algorithm for VFSA is shown in 

Figure 4.2. The next issue is how to define the weighting function 
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w! m! = P m! α!,! Q m!  in step4. Here P represents the distribution of true model.

The prior distribution Q is constructed from VFSA. Although the exact shape of 

distribution of true model P is unknown, it is known that P m ∝ e!|!|Q m  for a Gibbs

distribution at temperature equals one; where E is the objective function. Therefore, I will 

have w! m!  ∝ e! ! .
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Figure 4.1: Algorithm for Greedy Annealing Importance Sampling (GAIS) (Xue et al, 
2013).  
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Figure 4.2. A pseudo FORTRAN code of VFSA (Sen and Stoffa, 2013). 
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The objective function used here is normalized L2 norm of the difference between 

the synthetic seismogram and observed seismic data as follows (Srivastava and Sen, 

2010): 

obj = ! !!"#! !!"#
!

!,!

!!"#! !!"#
!

!,! ! !!"#! !!"#
!

!,!
 , (4.1)

where S!"# represents the amplitude of observed seismogram, and S!"# represents the

amplitude of synthetic seismogram generated by forward modeling. Note that this 

objective function is similar to the L2 norm of data misfit. The forward modeling 

algorithm contains two parts: generating reflectivity series R at each boundary of time 

samples, and generation of a synthetic seismogram from the reflectivity series. In this 

paper I used Ruger’s transversely isotropic model (Ruger, 1997) to generate the 

reflectivity series, and applied the convolution model (Cooke and Schneider, 1983) for 

seismogram generation. The assumption of modeling the Eagle Ford Shale using Ruger’s 

VTI model increases the uncertainty of the forward modeling. This uncertainty could be 

accounted for in an updated objective function as 

𝑜𝑏𝑗 𝑚 =  1/2 𝑆!"# − 𝑆!"#
!𝐶!!! 𝑑!"# − 𝑆!"# ,                         (4.2)

where 𝑆!"# is the measured seismogram, 𝑆!"# is the synthetic seismogram, and 𝐶! is the

data covariance matrix, which contains both observation error and theory (modeling 

assumption) error.  

The convolutional model (Cooke and Schneider, 1983) is a typical forward 

modeling algorithm for model-based inversion. At normal incidence, a seismic trace can 

be calculated by S = W ∗ R+ N (4.3) Here S is the synthetic seismic data trace; W 

represents the wavelet extracted from the seismic and well log data, or a synthetic 

wavelet; R is the reflectivity series, and N is the random noise. 
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R is calculated by Ruger’s anisotropic model (Ruger, 1997) for vertical transverse 

isotropic (VTI) medium. The P-P wave reflectivity coefficient at the boundary of an 

isotropic layer over a VTI layer is calculated as: 
R!! θ =  !

!
∆!
!
+  !

!
∆!!"
!!"

−  !∆!!"
!!"

! ∆!
!
+  ∆δ sin! θ  +  !

!
∆!!"
!!"

+  ∆ϵ sin! θ tan! θ,    (4.3)

where θ represents the wave propagation angle, Z =  ρV!" is the vertical P-wave

impedence, G = ρV!"!  represents the vertical shear modulus, δ and ϵ represent Thompson

parameters. The prefix ∆ indicates the difference between upper and lower layer, and  

represents the average of two layers. Convolving the reflectivity coefficient series with 

the wavelet using Equation 6 provides the synthetic seismogram.  

I used Sequential Gaussian Simulation (SGS) (Deutsch and Journel, 1998) to 

generate the geostatistical initial model. SGS is commonly used for continuous variables 

simulation, and it is used to generate the P- and S-impedances in this paper. There are 

four basic steps in SGS: 1) generate a random path through the given simulation grid; 2) 

visit the first node along the path and use kriging to estimate a mean and standard 

deviation for the variable at that node based on surrounding data values; 3) randomly 

select a value from the corresponding normal distribution generated in previous step, and 

set the selected value to this node; 4) visit the successive nodes in the random path and 

repeat step 1-3 until all nodes in the random path has been assigned a value.  

Kriging applied in step 2 estimates the value of random node from the 

surrounding nodes using Equation 4.4. In Equation 4.4, Z∗ u  stands for the value at the

random node, Z u!  stands for the value of surrounding nodes, m is the mean value, and

λ! is the weight for corresponding surrounding node that minimize E Z u − Z∗ u . The

variance of Z∗ u  is σ! = Var Z u − Z∗ u .

Z∗ u −m = λ! Z u! −m! .                                     (4.4)



74 

In this chapter, I used the geostatistical model built by SGS as the initial model 

for GAIS inversion, the Ruger’s transverse isotropic model and convolutional model to 

implement the forward modeling, and GAIS as inversion algorithm to invert the P-, and 

S- impedance and anisotropy of Eagle Ford shale from pre-stack 3D seismic data.  

4.4 DATA 

The study area is located in Maverick Basin in south Texas; the project includes 

pre-stack seismic data and two wells.  

4.4.1 Seismic Data 

The 3D seismic data is shown in Figures 2.6 and 2.8: stacked P-P seismic data 

(Figure 2.6) and pre-stack P-P gathers (Figure 2.8). Each trace contains 2001 samples 

with a sampling interval of 2ms, and the space between traces is 82.5ft. The pre-stack 

gathers were transformed to angle gathers using the velocity model provided by Shell Oil 

Company. The offset range is 4 – 42 degree, and I used 4 – 34 degree range for GAIS 

inversion. The tow horizons in Figure 2.6 and 2.8 are Eagle Ford and Buda; the interface 

between the Upper and Lower Eagle Ford cannot be resolved from seismic data. I used 

angle – dependent statistical wavelets extracted from angle gathers for inversion. The 

wavelets are shown in Figure 2.9. 

4.4.2 Well Data 

I have measurements from two wells (Well B4 and B7 shown in Figure 2.10 and 

Figure 2.11), including gamma ray, density, P-wave, and S-wave velocities. P-wave and 

S-wave velocities are highly correlated, but independently measured. The thick red lines 

in Figure 2.10 and 2.11 indicate the top and base of the Eagle Ford Shale. The Eagle Ford 
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Shale is clearly separated from Austin Chalk and Buda Limestone in Density, Vp, and 

Vs. Gamma ray (GR) shows gradually increasing from Austin Chalk to Eagle Ford, and 

sharply decrease towards Buda Limestone. In well B4 (Figure 2.10), from 8650 – 8700ft, 

there is a significant thin layer above Buda with high GR, low density, and low velocity. 

This thin layer is the Lower Eagle Ford. In well B4, the Lower Eagle Ford thickness is 

about 35ft, however, the Lower Eagle Ford is negligible in well B7. 

4.5 RESULTS 

I applied trace-by-trace GAIS inversion method on pre-stack seismic data to 

estimate the reservoir elastic properties and anisotropy parameters. The model parameters 

are P-, S- impedance, δ, and ϵ at each time sample. Forward modeling uses Ruger’s 

anisotropic model (Ruger, 1997) to calculate the  reflection coefficient series, and 

convolving the reflection coefficient series with wavelets to generate synthetic 

seismograms. The objective function used here is defined by Equation 5. The initial 

models of P- and S- impedance and density are built based on well logs using Stanford 

Geostatistical Modeling Software (SGeMS). The assumption for the initial models is that 

the variograms of impedances and density are the same in the horizontal direction and 

vertical direction. The variograms in the vertical direction are calculated from log 

measurements at the log scale.  Besides wells B4 and B7, I also used other wells in the 

Eagle Ford Shale that are outside of the seismic area to construct our initial model. The 

initial models for anisotropy are set at: ϵ equals 0.15 and δ equals 0.07 for Eagle Ford; ϵ 

equals 0 and δ equals 0 for both Austin Chalk and Buda. These values are determined 

based on lab measurements provided by the sponsor. GAIS inversion control parameters 

include cooling schedule, number of parallel VFSA, number of iterations per VFSA, step 

length, the number of steps for greedy search. Based on multiple tests, I used 10 VFSA 
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threads with 200 iterations per VFSA, and 100 steps of greedy search after each VFSA. 

The step lengths for P- and S- impedance were set as 20, and were set as 0.01 for δ and ϵ.  

The cooling schedule is T = T!e!!"
! !, where I chose T! = 10, D = 0.45, and k is the

iteration number. 

Figure 4.3 shows the change of error function with iterations on a single trace. I 

compared the GAIS result with the deterministic inversion results using standard low 

frequency initial model. The deterministic inversion is done using a commercial software. 
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Figure 4.3. error function change with VFSA + GIS at well B4. 
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The inverted P- and S- impedances at the well locations are shown in Figure 4.4. 

The results from GAIS (blue lines) inversion match the well logs very well. The inverted 

impedances resolves the decreasing trend in Eagle Ford, the thin Lower Eagle Ford with 

low impedances in well B4, and the sharp boundaries between Eagle Ford and Buda. 

However, the deterministic inversion method (magenta lines) works like a low frequency 

filter for impedance logs. The inverted impedances miss the sharp boundaries between 

Eagle Ford and Buda at both wells, as well as the low impedance of the Lower Eagle 

Ford at well B4. At well locations, the GAIS inverted results are very close to the initial 

model as expected. But away from well location, the inverted impedances are different 

from those in the initial model; the differences are shown in Figure 4.6. 
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Figure 4.4  (caption next page)
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Figure 4.4. Comparing between GAIS inversion and deterministic inversion results at 
well B4 (a, b), and B7 (c, d). Left two figures (a, c) are P-impedance, and 
right two figures (b, d) are S-Impedance. In all four figures, the yellow color 
lines represent the measured logs, blue lines represent the GAIS inverted 
impedances, black lines represent the geostatistical initial model, and 
magenta lines represent the inverted impedances by deterministic method. 
Three black horizontal lines in each figure are tops of Austin Chalk, Eagle 
Ford, and Buda. The initial model used for deterministic method was 
standard low frequency model generated in Hampson Russell. Eagle Ford 
formation is the target reservoir. 



81 

Figure 4.5 shows the inverted P- and S- impedances on a 2D section. The updates 

of initial P- and S- impedance models from GAIS on the same 2D section are shown in 

Figure 4.6. GAIS inversion results (Figure 4.5a, c) show a decrease in impedance in 

Eagle Ford, and it varies laterally. The thin the Lower Eagle Ford with lower impedance 

is clearly identified in the inverted P- and S- impedance sections and the volume. The 

sharp boundary and large impedance contrast between Eagle Ford and Buda are very 

clear in the GAIS inverted impedances. Compared to them, in deterministic method 

inverted impedances plot (Figure 4.5b, d), Eagle Ford is a block with relatively lower 

impedance other than Austin Chalk and Buda. The boundary between Eagle Ford and 

both Austin Chalk and Buda are ambiguous in P-impedance (Figure 4.5b). The large S-

impedance contrast between Eagle Ford and Buda is not clear in Figure 4.5d.  In addition, 

the GAIS inverted impedances show higher lateral variation, but the continuity is still 

preserved. The inverted S-impedance is highly improved by GAIS method. One reason 

for this improvement is that I accounted for the anisotropy in GAIS inversion. Works by 

Crampin (1981, 1985), Lynn and Thomsen (1986), and others showed that anisotropy has 

first order influence on S-impedance. Also, as shown in Equation 7, both S-impedance 

and anisotropy influence the amplitude/reflectivity at mid-high angle range. Without 

accounting anisotropy independently, the anisotropy influence on amplitude will be 

superimposed to S-impedance. 
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Figure 4.5. Comparison between GAIS inverted impedances (a, c) and deterministic 
method inverted impedances (b, d) at IL690 in two way travel time. Top two 
figures (a, b) shows inverted P-impedances, and bottom two figures (c, d) 
shows inverted S-impedances. The inserted well is well B4 in color of 
calculated impedances from measurements (P-impedance for (a, b); S-
impedance for (c, d). In all four figures the horizontal blue lines, from top to 
bottom, represent horizon Eagle Ford and Buda. The inversion window of 
GAIS is from upper Austin Chalk to upper Buda. The magenta color above 
and at upper part of Austin Chalk in (a, c) are the area out of inversion 
window. Eagle Ford formation is the target reservoir. 
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Figure 4.6. The difference between GAIS inverted impedances and the initial models at 
IL690 in two way travel time: (a) updates on P-impedance, and (b) updates 
on S-impedance. The white (a) and red (b) colored areas on top and bottom 
part of each figure are areas out of inversion window. 
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Figure 4.7 shows the inverted P- and S- impedances on a horizon slice (The 

middle horizon slice between Eagle Ford and Buda). Figures 4.7a and 4.7c are seismic 

amplitude date on the horizon slice; Figure 4.7b and Figure 4.7e are GAIS inverted P- 

and S- impedance; and Figure 4.7c and 4.7f are deterministic method inverted P- and S- 

impedance. Comparing inverted P-impedance with post-stack seismic amplitude (a – c), I 

observed that the GAIS inversion preserved the lateral variation and continuity better 

than the deterministic method. The northeast to southwest strip patterns of seismic 

amplitude is well reflected in the GAIS inverted P-impedance within the entire survey 

area. In Figure 4.7d – f, I compare the inverted S-impedance with the difference of pre-

stack seismic amplitude between middle angle range and small angle range. As shown in 

Equation 7, the near angle reflectivity is determined by P-impedance only, and the S-

impedance influences middle angle reflectivity. Therefore, the post-stack seismic 

amplitude is determined by P-impedance, while middle angle pre-stack seismic amplitude 

is influenced by both S-impedance and P-impedance. That is the reason why I compare 

inverted P-impedance with post-stack seismic data, but compare S-impedance with the 

difference between middle angle and near angle pre-stack seismic data. The amplitude 

variation from northeast to southwest in Figure 4.7d is reflected in S-impedance variation 

in Figure 4.7e, but not in Figure 4.7f. Figures 4.7e and 4.7f represent the inverted S-

impedance using GAIS method and deterministic method respectively. Figure 4.7 shows 

that GAIS provides better inverted impedance in terms of lateral continuity and variation. 
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Figure 4.7. A horizon slice inside Eagle Ford colored with post-stack seismic amplitude 
(a), GAIS inverted P-impedance (b), deterministic method inverted P-
impdance (c), difference of pre-stack seismic amplitude between middle 
angle range and small angle range (d), GAIS inverted S-impedance (e), and 
deterministic method inverted S-impdance (f). The P-impedance slices (b, c) 
have the same color bar, and the S- impedance slices (d, e) have the same 
color bar as well. 
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Besides P- and S- impedances, GAIS inversion also updates the Thompson 

parameters ϵ and δ. Figure 4.8 shows inverted ϵ (a), and δ (b). Austin Chalk and Buda are 

isotropic; therefore, ϵ and δ for these two formations are 0. The inverted ϵ is around 0.15, 

and inverted δ is around 0.07. The anisotropy in the Lower Eagle Ford is relatively higher 

than that in the Upper Eagle Ford, but the lateral variation is small. Compared with the 

initial model, GAIS inversion provides some lateral variation for anisotropy, but overall 

the updates are limited. Since I are using the lab-measured values as initial model, 

negligible update is expected. 
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Figure 4.8. The GAIS inverted epsilon (a) and delta (b) at IL690 in two way travel time. 
The inserted blue line is well path of B4. In both figures the horizontal blue 
lines from top to bottom, represent horizon Austin Chalk, Eagle Ford, and 
Buda. The inversion window is from upper Austin Chalk to upper Buda. 
Both Austin Chalk and Buda are isotropic and Eagle Ford is vertical 
transverse isotropic.  



88 

4.6 DISCUSSION AND CONCLUSIONS 

Thin-bed effect and anisotropy are two influential factors in seismic 

characterization of Eagle Ford shale. Here I used the geostatistics guided GAIS inversion 

to resolve the thin bed problem. The high-resolution geostatistical initial model was built 

by sequential Gaussian simulation. The geostatistical models simulate small-scale vertical 

variations that are beyond seismic resolution. Using those as initial models compensates 

forthe band-limited nature of seismic data. GAIS is a combination of very fast annealing 

method and greedy importance sampling. It seeks the importance regions using GIS 

based on multiple parallel VFSA results, which are already close to the importance 

region; then it explicitly explores the target distribution by grid searching the importance 

region with fixed step length along axis parallel directions. . As to anisotropy, I used 

Ruger’s VTI model to account for the anisotropy in forward modeling.  

I applied this geostatistics guided inversion on pre-stack 3D seismic data to 

estimate the reservoir elastic properties and anisotropy parameters. The GAIS inversion 

results are compared with deterministic inversion done using a commercial software. The 

GAIS inversion clearly resolves the thin Lower Eagle Ford in P- and S- impedance. The 

sharp boundary and large impedance contrast between Eagle Ford and Buda are very 

clear in GAIS inverted impedances. Also, the low impedance thin- bed inside Austin 

Chalk is also resolved by GAIS inversion. However, these features are not shown in 

deterministic inversion result. In addition, because of accounted anisotropy, the inverted 

S-impedance is significantly improved by GAIS. The GAIS inverted P- and S- 

impedances vary laterally, but the lateral continuities are preserved. The update of 

anisotropy from inversion is negligible. This is expected since I used the lab measured ϵ 

and δ as initial model.  
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The thin-bed issue and anisotropy are common issues in seismic reservoir 

characterization. The methods I applied on Eagle Ford shale could also applied to other 

reservoirs. Although I only showed the expectation value of model as the final result in 

this paper, the samples created in GAIS Step 3 samples form the target distribution, and 

the weights assigned in Step 4 represent the relative probability of corresponding 

samples. The histogram of these samples represents the target distribution, based on 

which quantitative uncertainty can be analyzed. 

The algorithm used in this work can be considered as an alternative to a standard 

geostatistical simulation. Geostastical simulations simply estimate a field from using 

spatial statistics. Here I validate and modify the geostastistically simulated models by 

matching seismic data. Unlike the conventional geostatistical inversion methods, our 

method is computationally fast, includes anisotropy and is able to estimate uncertainty 

rigorously. 
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Chapter 5: Conclusion and Future Work 

5.1 CONCLUSIONS 

A typical quantitative reservoir characterization process includes building up the 

relations between rock properties and elastic properties through rock physics modeling, 

inverting for elastic properties from seismic data, and inverting for rock properties by 

integrating seismic data and rock physics models. There are many quantitative reservoir 

characterization techniques for conventional reservoirs. However, challenges exist when 

extending these methods to unconventional reservoirs because of the complexity of shale. 

This dissertation investigates anisotropic rock physics modeling with shale’s complex 

micro-scale fabric accounted for, and the geostatistics guided anisotropic seismic 

inversion to resolve thin beds of shale.  

In Chapter 3, I presented a comprehensive three-step rock-physics approach to 

model the anisotropic elastic properties, accounting for the micro-scale fabric of the rock

in terms of the complex composition, shape and alignment of clay minerals, pore space, 

and kerogen. This method also accounted for different pressure-dependent behaviors of 

P-waves and S-waves. The modeling provided anisotropic stiffnesses and pseudo logs of

anisotropy parameters. The application of this method on the Upper Eagle Ford Shale 

showed that the clay content, kerogen content and porosity decrease the rock stiffness. 

The anisotropy increased with kerogen content, but the influence of clay content was 

more complex. Comparing the anisotropy parameter pseudo logs with clay content 

showed that clay content increases the anisotropy at small concentrations; however, the 

anisotropy stays constant, or even slightly decreases, as clay content continues to 



91 

increase. This result suggests that the preferred orientation of clay clusters is preserved at 

low clay concentration but vanishes at high clay concentration.

Chapter 4 presents a geostatistics guided seismic inversion method and its 

application on the Eagle Ford Shale. Thin beds and anisotropy are two important factors 

limiting the use of conventional seismic characterization for unconventional reservoirs. 

To address these issues, I used the geostatistics guided greedy annealing importance 

sampling (GAIS) inversion. The geostatistical models, based on well log data, simulate 

small-scale vertical variations that are beyond seismic resolution. This additional 

information compensates for the band-limited nature of seismic data. I used the 

geostatical models as a priori models and then applied the GAIS inversion to quickly 

search for the most probable pseudo-logs at all surface locations. GAIS used the greedy 

importance sampling method based on multiple parallel very fast simulated annealing 

(VFSA) results; then it explicitly explored the target distribution by grid searching of the 

important regions with a fixed step length along the axis parallel directions. This method 

performed an optimal balance between computational efficiency and accuracy of 

estimation. To account for anisotropy, Ruger’s VTI model was applied in forward 

modeling. This geostatistics guided inversion was applied on a pre-stack 3D seismic data 

to estimate the reservoir elastic properties and anisotropy parameters of the Eagle Ford 

shale. Compared to the conventional deterministic method inverted impedances, the 

geostatistics guided GAIS inversion clearly resolved the lower Eagle Ford in the inverted 

impedance volume. The sharp boundary and large impedance contrast between the Eagle 

Ford and Buda are also very clear in GAIS inverted impedances. Compared to it, the 

inverted impedances derived by the deterministic method appear as several thick blocks, 

whose layer boundaries were ambiguous. In addition, because anisotropy was accounted 

for, the quality of the inverted S-impedance is significantly improved. 
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This dissertation involved modeling and inversion at various scales. The 

developed rock physics model was at the grain scale. However, the composition used in 

the rock physics modeling was at the log scale, and the pressure dependent P- and S-wave 

behaviors were measured at the core scale. The rock physics modeled stiffnesses were at 

the log scale. The geostatistical models used as prior models for GAIS inversion were at 

the log scale, while the surface seismic data was at the seismic scale. Therefore, the 

inverted impedances were at a scale between the well log and the seismic scale. The 

integration of multi-scale data and modeling increases the uncertainty of modeled 

stiffnesses and inverted stiffnesses.  

The main contributions of this dissertation include multiple aspects. Firstly, in the 

rock physics modeling, I developed a comprehensive method to model the anisotropic 

elastic properties. This new method accounts for the micro-scale fabric of the rock in 

terms of the complex composition, shape and alignment of clay minerals, pore space, and 

kerogen; also, the different pressure-dependent behaviors of P-waves and S-waves are 

accounted for. Most of the previous studies only accounted for part of the micro-scale 

fabric. In addition, most of those previous studies using effective rock physics modeling 

methods did not account for the pressure effect. Secondly, in this dissertation, the 

anisotropic geostatistics model is introduced to seismic inversion for resolving thin beds. 

Most of the previous studies focused on improving the seismic resolution itself to resolve 

the thin beds. However, because of the band limited nature of seismic data and the noise 

in data, these methods did not work well in many cases. By integrating the small-scale 

vertical variation from well logs with seismic data, the thin beds could be clearly 

identified in the inverted impedance volumes. Finally, anisotropy was modeled and 

accounted for in both rock physics modeling and seismic inversion. The rock physics 

modeling showed that anisotropy was highly correlated with clay content and kerogen; 
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the anisotropy information could help to identify high clay areas or zones with high 

kerogen content. Beside that, anisotropy has a first order influence on S-wave and 

converted P-S wave. Therefore, including anisotropy in seismic inversion significantly 

improves the inverted S-wave impedance accuracy. The improvement was observed on 

the Eagle Ford Shale seismic inversion as shown in Chapter 4. 

5.2 FUTURE WORK 

A standard quantitative reservoir characterization process includes building up the 

relations between rock properties and elastic properties through rock physics modeling, 

inverting for elastic properties from seismic data, and inverting for rock properties from 

both seismic data and rock physics models. This dissertation discussed the 

implementation of first two steps in unconventional reservoir characterization, but the last 

step has not been investigated yet. The grid search method could provide a good 

approach for the last step. The rock physics modeling provided the relationship between 

anisotropic elastic properties and rock properties (e.g. porosity, clay content) at the log 

scale, and the seismic inversion provided 3D anisotropic elastic property volumes at the 

seismic scale. The grid search method could estimate the seismic scale rock properties 

and the associated uncertainties based on the seismic inverted elastic properties and the 

rock physics models. In the grid searching process, P- and S-impedances from the rock-

physics models could be compared with the ones inverted from the seismic data. The 

modeled impedances that satisfied specific criteria could provide the estimated rock 

properties. For each trace at each time, grid searching would provide a large number of 

estimated rock properties based on the objective function. The mean value and standard 

deviation were calculated for each rock property at each point. The standard deviation 
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would show the uncertainty of the estimations spatially and vertically. Using the grid 

search method to invert for rock properties from both seismic data and rock physics

models could be a good future research direction.
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Appendix A: Influence of Anisotropy on Surface Seismic Data 

Anisotropy influences seismic waves by affecting their amplitude, travel time and 

ray paths; further, it introduces and propagates errors in inversion and amplitude versus 

offset (AVO) analysis that assume isotropy (Sayers, 2005). In addition, works by 

Crampin (1981, 1985), Lynn and Thomsen (1986), and others demonstrated that 

anisotropy has a first-order influence on shear and mode-converted PS-waves. Table A.1 

shows the laboratory-measured anisotropy for Eagle Ford Shale in our study area. In this 

appendix, I firstly show the influence of anisotropy on seismic waveforms by comparing 

the synthetic seismograms on a four layer earth model using both vertical transverse 

isotropic (VTI) and isotropic models. Secondly, I compare the calculated P-P reflection 

coefficient at the Lower Eagle Ford – Buda interface computed by using an exact 

analytical formula and Ruger’s (1997) approximation.  

Anisotropy Upper Eagle Ford Lower Eagle Ford 

ε 0.15±0.05 0.31±0.08 

γ 0.13±0.05 0.32±0.09 

δ 0.07±0.03 0.15±0.04 

 Table A.1: laboratory-measured anisotropy for Eagle Ford Shale in our study area. 

Graebner (1992) derived the analytical solution of plane-wave reflection and 

transmission coefficients, as functions of ray parameters, for a transversely isotropic 
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system. These solutions worked well on systems where the ray parameter is the 

independent variable. In the paper, he presented the solutions for both a welded contact 

and a fluid-solid contact. I applied his welded contact solution to simulate synthetic 

seismograms, and compared those with the synthetic seismograms simulated using an 

isotropic model (Figure A.1). From Graebner (1992), the reflection coefficient of the 

downward propagating wave can be calculated as 

𝑅 =  𝑃!!! 𝑄!𝑃!!! +  𝑄!𝑃!!! !! 𝑄!𝑃!!! −  𝑄!𝑃!!! 𝑃!,                  (A1)

where subscript 1 and 2 represent properties of upper layer and lower layer respectively,  

and R, P, Q are all matrices such as 

𝑅 =
𝑟!! 𝑟!"
𝑟!" 𝑟!! ,           (A2) 

where subscript pp, sp, ps, and ss represent P-P wave, S-P mode converted wave, P-S 

mode converted wave, and S-S wave respectively, 𝑟 represents reflectivity coefficient. 

𝑃 = 𝑙! 𝑚!
𝑐 𝑑

,       𝑄 = 𝑚! −𝑙!
𝑎 𝑏

.                                   (A3)

where l, m, a, b, c, d are functions of density, velocity and anisotropy for the 

corresponding layer, subscript 𝛼 and 𝛽 represent P- and S-wave respectively.  

The earth model (Figure A.1a) used in this simulation contains four layers, which 

are the Austin Chalk, Upper Eagle Ford, Lower Eagle Ford, and Buda. Among these 

layers, the Austin Chalk, and Buda are set to be isotropic; the Upper Eagle Ford and 

Lower Eagle Ford are VTI media, whose Thomsen parameters are set at the average 

values of the laboratory-measured anisotropy shown in Table A.1. Thickness, density, 

and velocities of these four layers are shown in Table A.2. 
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Thickness (m) Density (g/cm3) Vp (km/s) Vs (km/s) 

Austin Chalk 206.9 2.65 4.91 2.61 

Upper Eagle 
Ford 57.9 2.5 4.42 2.5 

Lower Eagle 
Ford 13.4 2.3 4.02 2.3 

Buda 27.2 3 5.68 3 

 Table A.2: Thickness, density, and velocities of the four layers in earth model (Figure 
A.1a). 

Figure A.1 shows the comparison between the synthetic seismograms generated 

based on VTI earth model (Figure A.1b) and on isotropic earth model (Figure A.1b). The 

seismograms based on the VTI earth model uses Graebner’s (1992) analytical reflection 

coefficient solutions for welded contact layers. There are three reflections shown in 

Figures A.1b and A.1c, which are the top of Upper Eagle Ford, the top of Lower Eagle 

Ford, and the top of Buda. The P-P reflection shows a stronger AVO effect on VTI earth 

model than isotropic earth model. In addition, the P-S reflection behaviors are very 

different between using the VTI earth model and isotropic earth model. In seismograms 

generated from the VTI earth model (Figure A.1b), the P-S reflection is weak at near 

offset, and becomes stronger towards mid-offset. The strongest reflection shows at an 

offset of nearly 1.62km. The P-S reflection on isotropic earth model (Figure A.1c) is 
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much weaker than it on isotropic earth model (Figure A.1b). This study suggests that 

anisotropy is an important influential factor on seismic data for the Eagle Ford 

Formation, and it should be accounted for in seismic inversion. 

Figure A.1: a) Earth model. The earth model used in this simulation contained four 
layers. Both Upper and Lower Eagle Ford were set as VTI formation; Austin 
Chalk, and Buda were set as isotropic formation; b) Synthetic seismograms 
of the earth model in a); c) control group. Synthetic seismograms using the 
earth model in a), but setting both Upper and Lower Eagle Ford as isotropic 
formation. The amplitude scale in c) is same as in b). 
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Although Graebner (1992) derived the analytical reflection coefficient solutions 

for VTI media, the solutions are very complex. Also, the solutions are computational 

expensive, since they contain several matrix inversion operations. Therefore, most 

reflection coefficients are calculated using different levels of approximation. I compared 

the calculated P-P wave reflection coefficients using Graebner’s (1992) analytical 

solution with using Ruger’s (1997) VIT approximation on the Lower Eagle Ford – Buda 

interface. The Buda formation was set as an isotropic formation, and the Lower Eagle 

Ford was set as a VTI formation whose Thomsen parameters were the average values of 

the laboratory-measured anisotropy shown in Table A.1. Figure A.2 shows the calculated 

P-P wave reflection coefficients using Graebner’s solution, Ruger’s approximation, and 

isotropic exact solution as a function of wave propagation angle. For angles less than 12 

degrees, the calculated reflection coefficients using these three methods are same. The 

VTI solutions and isotropic solution start to diverge beyond 12 degree, and show clear 

differences after 20 degree. The calculated reflection coefficients using Graebner’s 

solution and Ruger’s approximation are similar from 0 to 35 degrees, and then they start 

to diverge. Since I used the seismic angle gathers with offset range 4 to 34 degrees for 

seismic inversion, there won’t not be clear difference on inversion results between using 

Graebner’s exact solution and Ruger’s approximation.  
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Figure A.2: Comparison of calculation P-P reflection coefficient on the Lower Eagle 
Ford – Buda interface using Graebner’s analytical solution and Ruger’s 
approximation. P-P reflection coefficient is plotted as a function of 
propagation angle. Red solid curve represents the calculated reflection 
coefficient using Graebner’s solution, blue star curve represents the 
calculated reflection coefficient using Ruger’s approximation, and blue dash 
curve represent the calculated reflection coefficient using isotropic exact 
solution. 
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