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Modern society relies on technologies with integrated circuits (ICs) at

their heart. In the last several decades, as the performance and complexity of

ICs keep escalating, the semiconductor industry has demonstrated an ability

to develop new process techniques and product designs that are both manufac-

turable and reliable. However, as the transistor feature size is further shrunk

into extreme scaling (e.g., 10 nm and beyond), large scale integration of tran-

sistors and interconnects brings ever-increasing challenges revolving around

manufacturability and reliability.

The major issues in manufacturability and reliability for modern ICs

come from three aspects: (1) layout-dependent manufacturability (e.g., manu-

facturing yield sensitive to design patterns); (2) time-consuming process mod-

eling (e.g., complex lithography systems); (3) design-sensitive reliability (e.g.,

vi



lifetime related to layout designs). In order to close the gap between design

and manufacturing and enhance design reliability, automated layout genera-

tion requires cross-layer information feed-forward and feedback, such as accu-

rate process modeling and reliability-guided design optimization.

This dissertation attempts to address the aforementioned challenges in

manufacturing closure and reliability signoff through efficient machine learn-

ing techniques for lithography hotspot detection and lithography modeling,

and synergistic design optimization for electromigration (EM). Our research

includes efficient lithography hotspot detection, learning-based lithography

modeling, and EM-aware physical design to achieve efficient manufacturing

closure and reliability signoff.

For lithography hotspot detection, due to the increasingly complicated

design patterns, early and quick feedback for lithography hotspots is desired to

guide design closure in early stages. Machine learning approaches have been

successfully applied to hotspot detection while demonstrating a remarkable

capability of generalization to unseen hotspot patterns. However, most of the

proposed machine learning approaches are not yet able to answer two criti-

cal questions: model confidence and model efficiency. This study develops a

lithography hotspot detection framework capable of providing modeling con-

fidence with fewer training data and fewer expensive lithography simulations

needed, and also provides a holistic measure for the intrinsic class imbalance

in lithography hotspot detection.

For lithography modeling, one of the major limitations in process mod-
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eling is considered: the trade-off between modeling efficiency and accuracy.

The steady decrease of the feature sizes, along with the growing complex-

ity and variation of the manufacturing process, has tremendously increased

the lithography modeling complexity and prolonged the already-slow simula-

tion procedure. Different modeling frameworks are proposed in this study,

leveraging recent advancements in machine learning, particularly generative

adversarial learning, to generate virtually simulated silicon image efficiently

without running detailed optical simulations. With our proposed deep learn-

ing techniques, a significant improvement in modeling efficiency is achieved

while maintaining high modeling accuracy.

For EM-aware physical design, we demonstrate the limitation of con-

ventional design and EM signoff flow when faced with the ever-growing EM

violations in advanced technology nodes. Two essential directions are explored

with practical algorithms and new design flows: (1) Power grid EM detection

and optimization with several detailed placement techniques; (2) Learning-

based signal EM prediction and mitigation at different physical design stages.

The effectiveness of proposed design optimization and machine learning

techniques is demonstrated with extensive experiments on industrial-strength

benchmarks. Our approaches are capable of reducing turn-around time, saving

modeling costs, and enabling fast manufacturing closure and reliability signoff.

viii
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Chapter 1

Introduction

1.1 Motivation

In the last several decades, the semiconductor industry’s ability to fol-

low Moore’s law has been the core engine of a virtuous cycle. Through tran-

sistor scaling, new products with better performance are obtained. Each new

technology generation produces smaller and faster transistors that can switch

faster than those produced with the previous technology generation while si-

multaneously became cheaper to manufacture, which induces an exponential

growth of the semiconductor market. This in turn allows further investments

in semiconductor technologies which will fuel further scaling [91]. Such a con-

tinuous drive towards scaling integrated circuits (ICs) technologies has been

accompanied by a trend of the increasing complexity of chip functionalities.

Especially when the transistor feature size is shrunk into extreme scaling (e.g.,

10 nm and beyond), such large scale integration of transistors and intercon-

nects comes with significant challenges revolving around manufacturability and

reliability.

Very large-scale integration (VLSI) manufacturing with advanced lithog-

raphy has been a holy grail for the semiconductor industry to march at the
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pace of Moore’s Law. With continuous shrinking of semiconductor process

technology nodes, the minimum feature size of modern IC is much smaller

than the lithographic wavelength [3]. The 193-nm wavelength lithography is

still the mainstream for pitch scaling in advanced technology nodes, with help

from various innovative technologies to print features much smaller than the

wavelength, including restrictive design rules, resolution enhancement tech-

niques (RETs), and advanced source-mask optimization (SMO). Nevertheless,

IC designs are increasingly challenged to achieve manufacturing closure, i.e.,

being fabricated with high product yield due to feature miniaturizations and

process variations.

One fundamental limitation for sub-wavelength lithography is that what

one sees at the physical layout stage is not necessarily what one will get after

the chip is fabricated. These corresponding printability challenges not only

cause possible open/shorts, but also lead to parametric yield loss. Even with

complex source/mask optimizations for a single exposure, lithography hotspots

still exist after the patterning processes. Figure 1.1 shows the printed images

of two local regions from certain 32-nm design after applying RETs. We can

see that there are various types of process hotspots, featuring complex pat-

terns related to line-ends, jogs, corners, contacts, etc. Therefore, in physical

verification stage, detecting and fixing these lithography hotspots beforehand

play an important role in improving production yield.

Lithography is a patterning process where patterns of desired designs

were transferred on to a base substrate, mostly using masks, and has rapidly

2



(a) (b)

contact round-off

line-end

partial disappearance jog round-off

Figure 1.1: Examples of lithography hotspots [30].

become an extremely complex process step [80]. It covers optical lithogra-

phy and its variations, including immersion, multiple patterning lithography,

extreme ultraviolet (EUV), and electron beam (e-beam) lithography. For ad-

vanced process development and optimization, it is crucial to thoroughly an-

alyze process-limiting effects within the imaging system of an exposure tool,

taking the impact of mask and substrate topography on photoresist pattern-

ing into account. Moreover, when pushing the limits of resolution to achieve

extreme scaling, more physical phenomena happening during the process need

to be fully understood. Given the exorbitant cost of the lithography process,

lithography modeling and simulation have become increasingly indispensable

to bypass the cost-intensive and time-consuming experimentation stages dur-

ing process development and performance verification [78,82]. For the develop-

ment of new processes, simulation allows investigating the influence of process

3



variables like illumination, exposure dose, and proximity gap on the resist

pattern, before running experiments. Accordingly, critical processes could be

optimized, process windows and yield could be improved. In advanced technol-

ogy nodes, the complexities of lithography models have increased significantly.

Accurate and efficient simulation can reduce experimental engineering efforts

and short-loop experiments, bringing expedited process development, consid-

erable cost savings, and a faster time-to-market.

Reliability is another major issue in modern ICs, which usually refers to

how robust a chip is after manufacturing. Device aging and interconnect elec-

tromigration (EM) effects are likely to cause unexpected performance degra-

dation and even malfunctions at the end of circuit life cycles. Hence, the

reliability of designs needs to be verified and validated at all levels of the de-

sign phase. As IC technologies continue to scale, complex chip functionalities

have been made possible by virtue of increasing transistor densities and aggres-

sive scaling of interconnects. Besides, interconnects are getting thinner and

running longer. These factors bring along higher current densities in metal

wires, a phenomenon that further exacerbates EM.

EM is the gradual displacement of atoms in metal under the influence

of an applied electric field and is considered the primary failure mechanism for

metal interconnects. After the migration of atoms with electrons in a metal

line for a certain period, a void grows on one side, which increases the resis-

tance of the metal line and may eventually lead to open circuits. Hillock is

formed on the other side and may cause short circuits. Figure 1.2 shows the

4



scanning electron microscopy (SEM) images of void and hillock. In advanced

technology nodes, the failure time from EM is worsened even further by the

local temperature increase caused by self-heating of the underlying FinFETs.

It is worth mentioning that, while the interconnects degrade due to various

effects including electromigration (EM) and stress-migration, transistors also

degrade temporally due to aging caused by effects like negative bias temper-

ature instability (NBTI), time-dependent dielectric breakdown (TDDB), and

hot carrier injection (HCI).

Void

(a)

Hillock

(b)

Figure 1.2: A void and a hillock generated by electromigration [15].

1.2 Challenges in Manufacturing Closure and Reliabil-
ity Signoff

Design for manufacturing (DFM) techniques address the questions re-

lated to the exchange of information between design and manufacturing, and

the use of this information for better printability and enhanced yield. Although

various resolution enhancement techniques have been developed for extreme

scaling, they also impose additional design constraints and raise challenges in

5



design and manufacturing closure. The major issues come from the following

aspects.

Layout-dependent manufacturability. A lithography hotspot is

caused not only by a particular mask pattern, but also by the interaction

with neighboring patterns inside the lithography influence region. Lithogra-

phy hotspots still exist after the patterning processes with complex source

and mask optimizations for a single exposure. Therefore, in physical verifi-

cation stage, detecting and fixing these lithography hotspots beforehand play

an important role in improving manufacturing yield. Lithography hotspot

detection has been extensively studied in the computer-aided design (CAD)

community involving various approaches including machine learning. Machine

learning approaches are proposed for early and quick detection of lithography

hotspots during physical verification and have demonstrated good generaliza-

tion capability to recognize unseen hotspot patterns. Nevertheless, the general

machine learning approaches without certainty estimation are less practical in

real-world applications in the sense that they cannot help judge the trustwor-

thiness of the decision. Moreover, the imbalance in hotspot detection problem

degrades model performance, increases the cost of data preparation, and slows

down the design closure.

Time-consuming process modeling. Smaller and smaller feature

sizes require higher process modeling accuracy to guarantee manufacturability.

Meanwhile, lithography systems are becoming more and more complex to im-

prove resolution. The increasing concern for physical effects and the introduc-

6



tion of the aforementioned innovative technologies for advanced lithography

have greatly augmented the number of parameters whose effects must be an-

alyzed and characterized, increasing the difficulty in process modeling. In IC

manufacturing, modeling efficiency is crucial for fast design closure along with

modeling accuracy. Detailed computational lithography simulations [77, 112]

have been used to obtain accurate pattern images, but they are extremely

compute-intensive. Hence, they may not be suitable to be applied on a full-

chip scale while having fast turn-around-time to guide early IC physical design.

The state-of-the-art lithography modeling techniques still suffer from an exor-

bitant computational cost.

Another key nanometer IC challenge comes from reliability. With con-

tinued feature size shrinking and increased transistor density, reliability issues

are more and more severe. The major source of reliability issues on intercon-

nect is EM, which is initiated by current flow and may cause open and short

circuit failures over time. Recently, design for reliability (DFR) has obtained

more and more attention. Conventionally, designers need to increase design

margin to accommodate reliability considerations, which may limit circuit per-

formance, and yet the circuit lifetime uncertainty remains. Incorporation of

variation or uncertainty into the design stage, as well as the balance of circuit

performance and reliability, is critical in the DFR process.

Design-sensitive reliability. Power grid interconnects have always

been susceptible to EM failures as they carry large unidirectional currents.

In addition, the continuous drive toward extreme scaling keeps compounding
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the EM problem for long and thin signal nets that are expected to switch at

gigahertz speed. Conventionally, EM checking tools calculate current densities

in metal wires and detect EM violations with given design rules; then, these

violations are fixed with engineering change order (ECO) efforts. However,

traditional post-design fixing approaches such as spacing large-current cells

and widening metal wires are ill-equipped when faced with the ever-growing

EM violations in advanced technology nodes. Therefore, it is of vital impor-

tance to incorporate EM detection and fixing techniques into earlier stages of

physical design.

1.3 Dissertation Overview

The objective of this dissertation is to provide integrated design and

verification solutions that aim at facilitating fast and reliable manufacturing

closure and reliability signoff.

Chapter 2 presents our solutions to the two critical questions faced by

most of the previous machine learning approaches for lithography hotspot de-

tection: machine learning model confidence and efficiency. We first propose a

lithography hotspot detection framework capable of providing modeling con-

fidence with fewer training data and fewer expensive lithography simulations

needed. We further provide a holistic measure for the fundamental class imbal-

ance issue in the lithography hotspot detection task. The proposed measure is

directly used as an optimization objective and allows further boosting neural

network models for hotspot detection.
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Chapter 3 explores the critical trade-off in process modeling between

modeling accuracy and efficiency. We propose two distinct lithography mod-

eling engines to improve simulation quality. LithoGAN is the first com-

plete end-to-end lithography modeling framework leveraging generative learn-

ing to achieve significant simulation speedup. TEMPO features a generative

learning-based framework for efficient and accurate 3D aerial image prediction

considering mask topography effects.

Chapter 4 presents two detection and mitigation frameworks for signal

and power grid EM, both of which can be seamlessly integrated into standard

physical design (PD) flow. We first propose a series of incremental placement

techniques for EM in power grid wires with negligible impacts on wirelength

and placement density. Next, we further propose a signal EM hotspot detection

and mitigation framework. It identifies EM-suspicious signal nets based on

information available during placement and addresses those problematic nets

at physical design. We demonstrate that such fixing strategy can effectively

reduce iterative EM fixing costs and enable faster design closure.

Chapter 5 summarizes this dissertation and discusses potential future

research directions.
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Chapter 2

Lithography Hotspot Detection for Advanced

Manufacturing Processes

2.1 Introduction

With the rapid shrinking of semiconductor process technology nodes,

there is a widening gap between design demands and manufacturing capa-

bilities posed by the current mainstream 193-nm lithography. Due to the

complexity of lithography systems and process variation, the layout patterns

that are hard to print become lithography hotspots. Although numerous de-

sign for manufacturability (DFM) techniques have been proposed to improve

manufacturing yield, lithography hotspots still exist and need to be identified

and eliminated during physical verification. Efficient and accurate lithography

hotspot detection is critical for layout finishing and design closure towards yield

This chapter is based on the following conference papers.

1. Wei Ye, Mohamed Baker Alawieh, Meng Li, Yibo Lin, and David Z. Pan. “Litho-
GPA: Gaussian process assurance for lithography hotspot detection.” In 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 54-59. IEEE,
2019.

2. Wei Ye, Yibo Lin, Meng Li, Qiang Liu, and David Z. Pan. “LithoROC: lithography
hotspot detection with explicit ROC optimization.” In Proceedings of the 24th Asia
and South Pacific Design Automation Conference (ASPDAC), pp. 292-298. 2019.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.
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improvement in the physical verification stage.

Figure 2.1 shows an example of two clips where one encompasses lithog-

raphy hotspot marked by the red rectangle region (a) while the other does not

(b). Lithography hotspots can be accurately detected through full-chip lithog-

raphy simulations which compute the aerial images and contours of printed

patterns [54, 102]; though, at a tremendous computational cost [82]. Pattern

matching and machine learning based techniques have been proposed for early

and quick detection of lithography hotspots during physical verification [71].

Pattern matching is a direct and fast method for hotspot detection [126,140].

However, pattern matching, including fuzzy pattern matching [70,121], is still

insufficient to handle never-before-seen hotspot patterns. On the other hand,

machine learning approaches have demonstrated good generalization capabil-

ity to recognize unseen hotspot patterns [29,30,33,84,95,115,141–143].

(a) Hotspot (b) Non-hotspot

Figure 2.1: An example of lithography hotspot clip (a) and non-hotspot clip
(b).

In these approaches, a labeled dataset is used to train a machine learn-

ing model capable of detecting hotspots in new layout patterns with high
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accuracy. The primary objective is to achieve high accuracy while minimizing

false alarms. Practically, accuracy is given the highest priority; hence, a mod-

erate number of false alarms is typically tolerated for the sake of achieving

better accuracy. This is due to the fact that missing any hotspot may result

in significant yield degradation.

In the rest of the chapter, Section 2.2 presents our approaches to im-

prove learning confidence and reduce training cost, Section 2.3 explores the

effectiveness of the area under the ROC curve (AUC) optimization to boost

the model performance when faced with class imbalance.

2.2 Gaussian Process Assurance for Lithography Hotspot
Detection

Machine learning approaches have demonstrated good generalization

capability to recognize unseen hotspot patterns [29,30,33,84,95,115,141–143].

Recently, deep learning techniques have been actively explored to improve the

accuracy of hotspot detection [25,85,107,130,131,137].

Nonetheless, most of the proposed machine learning approaches are not

yet able to answer one critical question: how much a hotspot predicted from a

machine learning model can be trusted? With efforts mainly tailored towards

achieving better accuracy, little attention has been given to this confidence

issue. In practice, addressing this concern requires machine learning models

to provide confidence guarantees alongside the label predictions. For example,

in a deep learning model, the results of the softmax are usually interpreted as

12



probability estimates. However, it has been shown that these probability esti-

mates do not match the correct likelihood [63]; in fact, networks are often too

confident about their predictions. In other words, in a classification problem,

the output of the softmax can lead to correct labeling of samples; however,

the values of the softmax is not a good uncertainty measure.

Bayesian-based methods are the typical option when confidence esti-

mation is needed. In this work, we adopt a Gaussian Process (GP) based

classification that can provide a confidence metric for each predicted instance.

In practice, a GP prediction is used as a final label only when the confidence

level matches a user-defined metric, otherwise, the prediction is marked as

untrusted and lithography simulation can be used to further verify the results.

On the other hand, learning based approaches usually require a large

amount of training data to obtain models with good generalization, especially

for imbalanced datasets, as in the case of the hotspot detection task. This

imbalance increases the cost of data preparation and slows down the design

closure. This is mainly because each training data sample requires lithography

simulation to obtain its label and hotspot samples appear much less often than

non-hotspot ones. Therefore, we also propose an active learning scheme with

a sequence of weak classifiers to reduce the turnaround time and the cost of

data preparation. The combination of GP and active learning scheme is not

only able to achieve high accuracy, but also provides a confidence estimation

for predictions, with a small amount of training data.

13



2.2.1 Preliminaries

The hotspot detection task to be solved by machine learning techniques

can be formulated as a two-class image classification problem; a classical prob-

lem which has been studied extensively in literature. However, the problem at

hand has its unique characteristics that should be taken into account. First,

despite the fact that the lithography defects are critical, their relative number

is significantly small across the whole chip. This poses a major challenge when

formulating the task as a learning problem because the two classes are highly

imbalanced which necessitates a proper handling to remove the inherent bias

in the data.

Second, with such imbalanced data, the number of false alarms is usu-

ally comparable to, or even higher than, the number of true hotspots. In

practice, the number of false alarms is among the most important metrics

to evaluate hotspot detection methods [130]. Accuracy (i.e., true positive

rate [16]) and the number of false alarms (i.e., false positives) are the two

prevailing metrics used for detection evaluation. However, to make use of these

models, a new criterion should be considered which is trust. Among the ques-

tions we address in this work is should we trust all predictions from a highly

accurate model?

2.2.2 Lithography Hotspot Detection

In this section, we explain the details of the proposed Litho-GPA frame-

work for lithography hotspot detection. It consists of two key components:
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Gaussian Process for hotspot detection and active learning for data prepara-

tion.

2.2.2.1 Hotspot Detection using Gaussian Process

Gaussian Process (GP) classification falls under the category of proba-

bilistic classification where test predictions take the form of class probabilities;

this contrasts with methods which provide a class label only [92]. Since gener-

alization to test cases inherently involves some level of uncertainty, it is natural

to attempt to make predictions in a way that reflects these uncertainties. For

hotspot detection, GP can provide, alongside the label, a confidence measure

about the label which can help judge the trustworthiness of the obtained clas-

sification decision.

In literature, different schemes have been proposed for binary GP clas-

sification. Among the most commonly used are those based on logistic or

probit mapping where Laplace Approximation is used to estimate the poste-

rior distribution [100]. In other approaches, the binary classification is cast

as a regression problem where the objective is to predict a continuous label

that can be mapped through thresholding to binary labels. In theory, GP

classification with Laplace Approximation (GPC) uses a Bernoulli likelihood

in the Bayesian inference, thus incorporating the binary labels into the infer-

ence. While such likelihood is an accurate representation of the binary data,

it is not conjugate with GP prior; hence it makes the inference intractable and

requires approximating the posterior distribution. On the other hand, using a
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regression based GP for classification (GPR) moves the binary mapping out-

side the inference; hence, preserving the conjugacy that results in a closed form

posterior distribution. In the hotspot detection task, hotspots are assigned to

+1 and non-hotspots are assigned to -1; 0 can be a decision boundary which

maps the continuous quantity output of GPR to the two discrete classes.

The comparison of GPR and GPC is shown in Figure 2.2. Examining

the figure, one can notice that, with the same number of samples, GPR is

always achieving higher prediction accuracy and the number of false alarms

resulting from GPR is lower than that from GPC when it converges. Moreover,

the fact that the posterior distribution can be obtained with no approximation

in GPR is reflected in the computational cost where GPC is significantly more

expensive computationally than GPR. Based on this comparison, GPR was

adopted in this work.

GPC GPR
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Figure 2.2: Comparison between GPC and GPR on Layout2 where accuracy
(a) and the number of false alarms (b) are shown.

For the hotspot detection task, the class label y is assumed to be a con-
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tinuous noisy version of an underlying GP f(x) with a Radial Basis Function

(RBF) kernel. Based on the prior distribution of f(x), the joint distribution

of the observed outputs y, and the GP function values for the test outputs,

the predictive posterior for the images in the test data p(f∗|y,X,X∗) is given

by [100]:

p(f∗|y,X,X∗) ∼ N(µ,Σ),

µ = K(X∗,X)
[
K(X,X) + σ2I

]−1
y,

Σ = K(X∗,X∗)−K(X∗,X)
[
K(X,X) + σ2I

]−1
K(X,X∗),

(2.1)

where X and X∗ are matrices containing the training and testing clip data

respectively. σ2 represents the level of noise in the data, y is a vector rep-

resenting the labels for training data, f∗ is a vector representing the function

prediction for the testing clip data, and the matrices K(·, ·) represent the

covariance matrices obtained by evaluating the RBF kernel.

In the GPR approach, the posterior distribution in Equation (2.1) rep-

resents the distribution of the class label in the continuous domain. To get a

point estimate of the class label, proper thresholding scheme (usually at 0) is

used for the mean of the posterior distribution. However, we are interested

in a predictive distribution that can provide a confidence to judge upon pre-

diction. This can be achieved by leveraging all information provided by the

posterior distribution; i.e., the distribution of the continuous class label. To

elaborate on this, we consider the example shown in Figure 2.3 where the pos-

terior distributions for two samples x1 and x2 are shown. By looking at the

point estimate, both samples have a mean value greater than 0; hence, they
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will be mapped to label 1. However, it is clear that the uncertainty associated

with x2 is much higher compared to that associated with x1. In other words,

there is a higher probability for the label of x2 to be less than 0.

Therefore, for a sample with mean greater than 0, a confidence metric

can be defined based on the probability that the predicted label is higher than

0. In such case, sample x1 has a probability of 98% compared to 65% for x2,

which implied higher confidence around the prediction of x1. To utilize this

information, a confidence metric α can be defined to judge upon the validity

of the predictions obtained from GPR.

However, while 0 is the intuitive choice for a boundary between the two

labels {−1,+1} in a classification task, the value of the threshold boundary

can be tuned for problems with special characteristics such as class imbalance

in the hotspot detection task. Hence, the compromise between accuracy and

false alarms can be controlled using a threshold different from zero. In other

words, such thresholding scheme can provide control over how conservative the

model is.

In this hotspot detection task, missing a hotspot can have much more

significant consequences when compared to having additional false alarms.

With this risk assessment in mind, the threshold can be set to a value κ,

where κ < 0, to bias the prediction towards the hotspot class. Therefore, the
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labeling processes can be performed according to the following scheme:

ŷi =


+1, if p(fi > κ) > α

−1, if p(fi < κ) > α

untrusted, otherwise.

(2.2)

In Equation (2.2), a class label is given to a particular sample if it meets the

user-defined confidence metric α. Otherwise, the prediction for the particular

sample is set to untrusted reflecting the low confidence in the model prediction

and requiring an actual simulation run to validate this sample. For example,

considering the two samples in Figure 2.3 with α = 0.7 and κ = 0, sample x1

will get a label of +1 while x2 will not be assigned a label, and a lithography

simulation is needed to get the right label.

p(f1 > 0) ≈ 98%

p(f2 > 0) ≈ 65%

−1 0 1
x

P
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p(f1|X,x1,y)
p(f2|X,x2,y)

Figure 2.3: The posterior distributions obtained through GPR for two samples
are shown. The distributions show higher confidence in the prediction of f1

compared to that of f2.

2.2.2.2 Active Learning for Data Selection

When formulating the lithography hotspot detection problem as a learn-

ing based classification problem, class imbalance comes forth among the major
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challenges characterizing the learning task. In practice, there is an abundance

in the non-hotspot data on one end and scarceness in the hotspot data on

the other. With such setup, a large number of samples is needed to guaran-

tee enough hotspot samples for building accurate classification models. This

translates to an enormous computational cost associated with running a large

number of lithography simulations. The main reason to endure this cost is

based on the fact that given a set of un-simulated data samples, one cannot

tell beforehand which ones are hotspots. Hence, the trivial way of collecting

data is to randomly select samples for simulation until enough hotspot samples

are available.

To address this issue, we propose an active learning framework with

the objective of selecting samples that are likely to be hotspots and simulating

them to get the actual labels. This way, a balanced training dataset, adequate

for model training, can be constructed with minimal simulation cost. The main

idea is to iteratively select hotspot candidates for simulation based on labels

obtained using trained weak classifiers. As a first step, a relatively small set

of randomly selected samples, for which simulations are performed and labels

are available, is used to build a weak classifier that can point out tentative

hotspot samples among the un-simulated ones. These selected samples are

then simulated and added to the available training dataset to help improve the

performance of the classifier in the next iteration. A weak classifier is adequate

here because its training cost is cheaper and the accuracy requirement at this

stage is not high.
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Here, a weak classifier is one that relies on a simple model; hence,

it does not require a large number of samples to train. Although such a

classifier may not have a high true positive rate, it can help guide the sampling

scheme, especially that the nature of the data will result in a relatively high

precision value even with a low true positive rate. Among the possible options,

Support Vector Machine (SVM) is used as the weak classifier in this active

sampling scheme mainly because of its relatively superior performance and

fast training [16]. The details of the active learning method are summarized

in Algorithm 2.1.

Algorithm 2.1 Active Learning for Data Selection

Input: A pool of unlabeled data samples P , n
Output: Labeled training dataset S

1: S ← Select m0 samples randomly from P and obtain their labels through
simulation;

2: k ← 0;
3: repeat
4: k ← k + 1;
5: Train the SVM model with the training dataset S;
6: Sk ← Select mk samples from P \ S with highest hotspot probability

by SVM and simulate the labels;
7: S ← S ∪ Sk;
8: until No hotspot in Sk or |S| ≥ n
9: return S.

Algorithm 2.1 takes a pool of unlabeled data samples P and the max-

imum allowable size n of final dataset S as input. An initial training set S

is generated by randomly sampling from the pool, followed by label queries

through lithography simulations (line 1). Next, the algorithm builds a se-
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quence of weak classifiers to seek more hotspots with the knowledge of pre-

vious sampled and simulated hotspots (lines 3 – 8). Each weak classifier is

trained with the obtained labeled dataset S so far (line 5) and is applied to

the remaining unlabeled samples in the pool P , i.e., P\S. The top mk samples

with the high probability of being hotspot are chosen from P \ S, and their

labels are obtained by lithography simulations (line 6). Then, the selected

set Sk is added to the labeled dataset S. Note that the algorithm will return

early if no actual hotspot is detected among the mk samples (line 8). That is

because, after several iterations, the trained SVM model is expected to have

good accuracy, hence, if no hotspot can be detected by the latest classifier, it

is likely that none are still present in the pool. Besides, the algorithm can exit

from the iterations of weak classifier building if there are enough samples for

the Gaussian Process in Section 2.2.2.1 (line 8).

2.2.2.3 Overall Flow

The proposed Litho-GPA framework is illustrated in Figure 2.4. We

first leverage the iterative weak classifier-based sampling scheme to prepare

a training set containing enough hotspots (Section 2.2.2.2). A GPR model is

trained with the selected data samples. We then apply the GPR model to make

predictions with confidence estimation on the testing set (Section 2.2.2.1). If

GPR gives the predicted label with high confidence, the result is trusted; other-

wise, the unsure testing samples will be verified with lithography simulations.
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Figure 2.4: Overall flow including data preparation with active sampling and
hotspot detection with Gaussian process.

2.2.3 Experimental Results

Our Litho-GPA framework is implemented in Python with the scikit-

learn library [96] and validated on the ICCAD 2012 CAD contest benchmark

set [116]. Layout1 is not used because it contains only a few clips and has a

different technology node from the rest of the four benchmarks. Layout5 has

a small number of hotspots, and hence we merge it with Layout4. Table 2.1

summarizes the benchmark information, the number of all the clips (#All)

and the number of hotspot clips (#H) in the training set (Train) and testing

set (Test). The input image is downsized to 128×128 by a nearest-neighbor

reduction to improve SVM and GPR training time. We run ten experimental

trials for each evaluation, each with a different random seed, and report the
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average results. It is important to note that, although all samples in the train-

ing sets are already labeled in these benchmarks, to validate our framework

we assume that they are not labeled at the beginning and obtain the labels

through simulations in the framework.

Table 2.1: ICCAD 2012 contest benchmark statistics [131].

Design
Train Test

#All #H #All #H

Layout2 5,459 174 41,796 498
Layout3 5,552 909 48,141 1,808

Layout4&5 7,289 121 51,435 218

2.2.3.1 Active Learning for Data Selection
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Figure 2.5: The number of selected hotspots and testing accuracy (without
validation simulations) for different sampling techniques are shown. “All”
represents the total number of hotspots in the entire training set.

The purpose of the proposed active sampling approach in Section 2.2.2.2

is to balance the dataset by selectively choosing tentative hotspots to be in-

cluded in the training set. Here, we compare random data selection and the
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proposed data selection scheme. In the experiments, we set m0 to 300 and

mk to 100 in Algorithm 2.1. SVM takes 22.3s at each iteration on average.

Table 2.2 displays the number of total sampled data (columns “#All”) and the

number of hotspots (columns “#H”) selected by the two schemes when setting

1400 as the maximum allowable size of training samples for both schemes. It

is observed that the active learning scheme converges before reaching the size

limit for Layout2 and Layout4&5.

Table 2.2: Comparison of different sampling strategies.

Design
Random Active

#All (%) #H (%) #All (%) #H (%)
Layout2 1,400.0 25.6 44.0 25.3 1,050.0 19.2 172.7 99.3
Layout3 1,400.0 25.2 222.3 24.5 1,400.0 25.2 886.3 97.5

Layout4&5 1,400.0 19.2 23.4 19.3 1,190.0 16.3 101.5 83.9

Varying the maximum training set size n in Algorithm 2.1, the com-

parison of the two sampling schemes is shown in Figure 2.5. The figure shows

that, with the same number of training samples, the proposed approach can

achieve higher accuracy compared to the random sampling. Note that the

accuracy is based on the GPR direct prediction results without lithography

simulations. This is in fact due to the higher number of hotspots available

in the training data when using the active sampling scheme compared to the

random sampling strategy as demonstrated also in Figure 2.5. Moreover, one

can easily notice that the iterative SVM evaluations are capable of detecting

most of the hotspots in the dataset within a few iterations.
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2.2.3.2 Validation of Gaussian Process

We demonstrate the effectiveness of the proposed GPR with validation

simulations for hotspot detection. Table 2.3 shows the comparison between the

state-of-the-art method [131] and our method, in terms of accuracy (ACC) and

the number of false alarms (#FA). In this table, “All” denotes model training

uses all the training samples in the benchmark, while “Random” and “Active”

denote the training data obtained from random sampling and the proposed

active sampling scheme in Table 2.2. For the method [131], we strictly use

its DCT representation and CNN structure for the comparison. To further

demonstrate that softmax output of CNN is not a good uncertainty measure,

we compare the performance of CNN and GPR after performing the same num-

ber of validation simulations (VS). For GPR, threshold κ in Equation (2.2) is

set to -0.2; the confidence metric α is set to 0.682, which is equivalent to one

standard deviation confidence interval for a Gaussian distribution. According

to this criterion, any untrusted sample needs to be further verified through

lithography simulation. Since there is no well-defined metric to quantify con-

fidence interval for CNN, to ensure fairness, we perform the same number of

validation simulations to the test samples which has nearly the same softmax

probability of being hotspot/non-hotspot and then compare the accuracy and

the number of false alarms; that is, we choose the samples which minimize

|softmax(NH) − softmax(H)|. Column “#Sim” gives the ratio of the number

of validation simulations to the testing data size.

Table 2.3 shows that the state-of-the-art work [131] using all the train-

26



T
ab

le
2.

3:
C

om
p
ar

is
on

of
d
iff

er
en

t
fl
ow

s
in

te
rm

s
of

ac
cu

ra
cy

an
d

fa
ls

e
al

ar
m

s.
T

h
e

re
su

lt
s

ar
e

av
er

ag
ed

ov
er

te
n

ru
n
s.

D
es

ig
n

A
ll

+
[1

31
]

R
an

d
om

+
[1

31
]

A
ct

iv
e

+
[1

31
]

A
ct

iv
e

+
[1

31
]

+
V

S
A

ct
iv

e
+

G
P

R
A

ct
iv

e
+

G
P

R
+

V
S

#
S
im

#
F
A

A
C

C
(%

)
#

F
A

A
C

C
(%

)
#

F
A

A
C

C
(%

)
#

F
A

A
C

C
(%

)
#

F
A

A
C

C
(%

)
#

F
A

A
C

C
(%

)
(%

)

L
a
y
o
u
t
2

23
4.

1
97

.4
37

0.
9

91
.3

1,
03

0.
7

99
.4

73
3.

3
99

.6
50

2.
8

99
.1

71
.4

99
.4

16
.4

L
a
y
o
u
t
3

3,
06

4.
1

98
.3

3,
33

3.
4

97
.7

6,
71

6.
3

99
.1

5,
18

9.
7

99
.5

4,
44

3.
2

98
.3

2,
46

3.
4

99
.0

17
.2

L
a
y
o
u
t
4
&
5

44
3.

4
91

.7
51

2.
5

64
.2

1,
59

8.
4

96
.3

1,
16

2.
3

98
.9

1,
13

0.
2

91
.2

17
7.

5
99

.1
26

.8

A
ve

ra
ge

1,
24

7.
2

95
.8

1,
40

5.
6

84
.4

3,
11

5.
1

98
.2

2,
36

1.
8

99
.3

2,
02

5.
4

96
.2

90
4.

1
99

.2
20

.1
R

at
io

1.
0

1.
0

—
—

—
—

1.
89

1.
04

—
—

0.
72

1.
04

—

27



ing dataset (All + [131]) achieves 95.8% accuracy on average. Our proposed

active learning data selection further improves the accuracy of its model to

98.2% (Active + [131]). However, the average number of false alarms of this

flow increases from 1247.2 to 3115.1. Active data selection together with our

GPR method (Active + GPR) gives a similar accuracy (96.2%) as the state-of-

the-art result. Moreover, given the strength of providing confidence of GPR,

the accuracy (Active + GPR + VS) is improved to 99.2% after performing

validation simulations, and meanwhile, it reduces the number of false alarms

by 28% compared with the All + [131] flow. Compared with the Active + [131]

+ VS flow, the Active + GPR + VS flow obtains comparable accuracy and

2.6× false alarm reduction, which demonstrates the effectiveness of employing

confidence measure provided by GPR. In the experiments, GPR training takes

296.6s, 1490.5s and 235.4s on average for the three benchmarks while testing

takes 579.4s, 1342.2s and 586.7s.

2.2.3.3 Control of Prediction Confidence

Lastly, we explore the effect of α to control the desired prediction con-

fidence. Figure 2.6 plots the testing accuracy after validation simulations and

the percentage of simulated testing samples using different values of α. The

accuracy reflects that of the trusted GPR predictions in addition to the in-

stances validated through simulation. As one would expect, larger α values

translate to better results in terms of accuracy and false alarms at the expense

of higher simulation cost. It is important to note that the choice of α gives
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Figure 2.6: The testing accuracy, number of false alarms and percentage of
simulated testing samples for different α are shown.

the user the flexibility to control the trade-off between the overall detection

quality and the number of simulations needed.

2.2.4 Summary

In this section, we have presented Litho-GPA, a hotspot detection

framework with Gaussian Process assurance to provide confidence in classi-

fier prediction. The prediction accuracy is improved by exploring both the

mean and confidence of prediction. Besides, an active data selection scheme

based on weak classifiers is developed to reduce the computational cost in

data preparation. Experimental results demonstrate Litho-GPA can achieve

comparable accuracy to the state-of-the-art deep learning approaches while

obtaining on average 28% reduction in false alarms.
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2.3 Explicit ROC Optimization for Lithography Hotspot
Detection

One special characteristic of lithography hotspot detection tasks is the

imbalance in the layout datasets [132]. Despite the fact that the lithography

defects are critical, their relative number is significantly small across the whole

chip after various resolution enhancement techniques are applied. Ideally, we

would like to have a model with a high true positive rate (TPR) and a low

false positive rate (FPR), but in real-world scenarios, there is always a trade-

off between the two metrics. Assume there are two classifiers at hand. The

first classifier successfully detects more hotspots than the second classifier, but

it also generates significantly more false alarms. It is hard to conclude which

one is better because we cannot tolerate such a high number of non-hotspot

clips falsely identified as hotspots. It is a waste of time and efforts to fix those

safe clips. A robust performance evaluation and model selection for imbal-

anced learning problems have been often accomplished with the support of

the receiver operating characteristic (ROC) curve which represents the rela-

tionship between the true positive rate and the false positive rate of a family

of classifiers resulted from different decision thresholds [110]. Hence, the area

under the ROC curve (AUC) is a more proper model evaluation criterion in

the sense of being a global metric for all thresholds regardless of class prior

probabilities.

Most existing methods still minimize misclassification error such as

cross-entropy during training while using certain class balancing techniques.
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The most straightforward and common approach dealing with imbalance is the

use of sampling methods. Undersampling and oversampling methods operate

on the training data to improve its balance. Other techniques, including cost-

sensitive learning and threshold moving, tackle the class imbalance on the

level of the classifier and adjust training or inference algorithms. Since AUC

has been widely used to measure performance for binary classification tasks

especially on imbalanced datasets, the question then arises: is it possible to

use AUC explicitly as the loss function in order to systematically handle the

class imbalance problem?

In this work, we examine the effectiveness of directly optimizing a sur-

rogate of AUC to boost the performance of neural network models when facing

class imbalance.

2.3.1 Preliminaries

2.3.1.1 ROC Curve and AUC Score

For binary classification tasks, in order to separate the positive class

from the negative class, a decision threshold is usually defined to map the

continuous predicted score given by the model to a binary category. For each

setting of the decision threshold (Figure 2.7(a)), a pair of true-positive rate and

false-positive rate values is obtained. By varying the decision threshold over

the range [0, 1], the ROC curve showing the relationship between true positive

rate and the false positive rate can be obtained (Figure 2.7(b)). Moreover, as

Figure 2.7(a) demonstrates, if the predicted score implies the classifier’s belief
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Figure 2.7: (a) An overlapping distribution of predicted scores for positive and
negative samples and (b) the ROC curves of two example classifiers. As the
threshold in (a) moves to the left, both FPR and TPR in (b) go up accordingly.

that an sample belongs to the positive class, decreasing the decision threshold

(e.g., moving the threshold to the left) will increase both true and false positive

rates.

AUC is a threshold-independent metric which measures the fraction

of times a positive instance is ranked higher than a negative one [39, 110].

Unlike single point metrics, the ROC curve compares classifier performance

across the entire range of class distributions, and therefore, the AUC score

is a general measure of classifier discrimination performance. Figure 2.7(b)

presents two ROC curves. The closer the curve is pulled towards the upper

left corner, the better is the classifier’s ability to discriminate between the two

classes. Therefore, in Figure 2.7(b), classifier 2 has a better performance than

classifier 1.
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2.3.1.2 Partial AUC Score

The AUC metric traces classifier performance across all thresholds.

However, it may summarize over regions of the ROC curve in which one would

never operate. For hotspot detection tasks, the primary goal is to detect all

possible hotspots. Nevertheless, a practical classifier is not allowed to accom-

plish the goal at the expense of introducing too many false alarms; the time

and money costs associated with fixing those false alarm hotspots render the

classifier less favorable than the traditional simulation approach. In this case,

our interest is to see the classifier’s ability to detect hotspots in the region of

the ROC curve corresponding only to acceptably low FPRs.

Classifier 1 Classifier 2
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Figure 2.8: Comparison of the ROC curves over (a) the entire FPR range and
(b) the FPR range of interest.

To elaborate on this, consider the two classifiers shown in Figure 2.8.

Classifier 1 has better AUC than classifier 2 according to Figure 2.8(a). But if
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we zoom into the region of interest (e.g., FPR less than 2%) in Figure 2.8(b),

classifier 2 has better overall TPR in this region and it outperforms classifier

1. Therefore, besides measuring the overall AUC score of the classifier, we

look into the partial AUC defined in the following way [32,86]:

ÃUC(t0, t1) =

∫ t1

t0

ROC(t)dt, (2.3)

where the interval (t0, t1) denotes the false positive rate region of interest. We

can further scale the partial AUC and derive the normalized partial AUC given

by [86]

AUC(t0, t1) =
1

t1 − t0

∫ t1

t0

ROC(t)dt. (2.4)

2.3.1.3 Handling Class Imbalance

Due to the fact that the lithography hotspots are critical, various reso-

lution enhancement techniques are applied to significantly reduce their relative

number. Therefore, when a grid scheme is used to extract images from the

design, only a small number of images will encompass lithography hotspots

while the majority will correspond to sites in the design with no defects. This

poses a major challenge when formulating the task as a learning problem.

The class imbalance problem is encountered in many application do-

mains. It has been established that in certain cases, class imbalance hinders

the performance of standard classifiers [48], in terms of training convergence

and generalization of the model. Sometimes the classifiers even achieve a low
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error rate by trivially predicting each sample to be negative when the dataset

is biased towards the negative class.

Various methods have been proposed to deal with the class imbalance

problem. Among them, oversampling and undersampling alter the distribution

of training data to make it more balanced. Undersampling removes samples

from the majority class until all classes have the same amount of data. For ex-

ample, one-side selection carefully identifies and removes redundant examples

close to the boundary between classes [61]. A major disadvantage of undersam-

pling is that it discards potentially useful training samples. Therefore, under-

sampling is rarely adopted for hotspot detection tasks because those training

datasets are highly imbalanced but far from abundance. Oversampling is

one of the most commonly used methods. It simply replicates randomly se-

lected samples from minority classes, but this approach can increase the time

necessary to build a classifier, and may even lead to overfitting [20]. Advanced

sampling methods such as SMOTE [23] and its variant [41] create artificial

examples by interpolating neighboring data points. In addition, cluster-based

oversampling first clusters the dataset and then oversamples each cluster sep-

arately [50]. In this way, both between-class and within-class imbalances are

reduced. Since the input data samples of hotspot detection tasks are images

and optical sources are symmetric, [72, 130] augment the training data with

rotation and flipping; besides, although general convolutional neural networks

(CNNs) are not rotate invariant, data augmentation by rotation and flipping

can help obtain some rotation invariance.
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Figure 2.9: Example of threshold moving.

Cost sensitive learning assigns different cost to the misclassifica-

tion of samples from different classes [34, 120]. For hotspot detection tasks,

this is done by associating a greater cost with false negatives than with false

positives. [28, 53] study cost sensitive learning of deep neural networks. [118]

proposes a new loss function for neural network training to make the networks

more sensitive to the minority class. To incorporate the cost sensitivity into

neural networks, one can place a heavier penalty on misclassifying the minor-

ity class in the loss function such that minority class contributes more to the

update of weights. And then, we can train the network by minimizing the

misclassification cost instead of the standard loss function.

Threshold moving adjusts the decision threshold of a classifier to

cope with the class imbalance problem. This approach is usually applied in

the test phase. As demonstrated in Figure 2.9, it moves the threshold toward

the majority class such that samples from the minority class become harder
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Non-hotspot

Convolution Pooling Fully Connected

Figure 2.10: Example illustration of convolutional neural network architecture
for hotspot detection.

to be misclassified. For traditional machine learning methods, adjustment

of the decision boundary is straightforward. For example, it can be done

by shifting the bias in a support vector machine (SVM) model. However,

it is less practical to move the decision threshold directly when using neural

network based classifiers because these networks tend to be overconfident in

their prediction; the softmax outputs of the two neurons in last fully-connected

layer shown in Figure 2.10 are usually very close to 1 and 0. As it is hard to

control the appropriate shift amount, this method may take effect at cost of

a large number of false alarms. Instead, [131] biases the ground truth for

negative samples from 0 to ε during the training phase.

Other approaches explore different training methods specific to neural

networks. [44] proposes a two-phase training method which first trains the

network on the balanced set and then fine-tunes the output layers. The afore-

mentioned approaches to tackle class imbalance either operate on training data

or adjust training or inference methods. As we will demonstrate in the next

section, AUC can be interpreted as a ranking measure; that is, the AUC is

equal to the probability of ranking a random positive sample over a random
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negative sample. Therefore, orderings of data samples by the predicted prob-

abilities is consistent even in the face of class imbalance. In this sense, both

the shape of the ROC curve and AUC are insensitive to the class distribution.

The question then arises, given that AUC is a robust measure of classifica-

tion performances especially for imbalanced problems, is it possible to develop

algorithms that directly optimize this metric during the training phase? In

other words, can we optimize the ROC curve explicitly?

2.3.1.4 Problem Formulation

Traditionally, accuracy (i.e., true positive rate [16]) and the number of

false alarms (i.e., false positives) are the two prevailing metrics used for detec-

tion evaluation. Hence, the traditional hotspot detection problem is usually

defined as:

Problem 2.3.1 (Hotspot detection for accuracy optimization). Given a set

of layout clips consisting of hotspot and non-hotspot patterns, the object of

hotspot detection is to train a classifier that maximizes the accuracy and

minimizes the number of false alarms on the testing dataset.

As we demonstrated in Section 2.3.1.1, evaluation of hotspot detection

models using accuracy and false alarms separately is not effective, because

it is hard to find a good trade-off between the two metrics. Therefore, we

propose to assess hotspot detection models using the holistic metric, AUC.

Furthermore, the model is trained with the goal of optimizing the ROC curve

in the form of maximizing the normalized partial AUC score.
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Problem 2.3.2 (Hotspot detection for ROC optimization). Given a set of lay-

out clips consisting of hotspot and non-hotspot patterns, the object of hotspot

detection is to train a classifier that maximizes the normalized partial AUC

score on the testing dataset.

2.3.2 ROC Optimization

In this section, we derive the AUC with dedicated loss functions for

AUC optimization, and compare them with the cross entropy loss.

2.3.2.1 AUC Objective and Loss Functions

Given a dataset D = {(xi, yi)}Ni=1, where xi ∈ Rd is i-th data sample

in the feature space and yi ∈ {−1,+1} is the true class label of xi, we can

further divide the dataset D into two sets: the set of positive samples D+ =

{(x+
i ,+1)}N+

i=1 and the set of negative samples D− = {(x−i ,−1)}N−i=1, where N+

and N− denote the number of positive and negative samples respectively, and

N = N+ +N−. Let f(x) denote the prediction model. It has been proven that

AUC is equivalent to the Wilcoxon-Mann-Whitney (WMW) statistic test of

ranks in the following sense [43,83,122]:

AUC =
1

N+N−

N+∑
i=1

N−∑
j=1

I(f(x+
i ) > f(x−j )), (2.5)

where I(f(x+
i ) > f(x−j )) is the indicator function given by

I(f(x+
i ) > f(x−j )) =

{
1, if f(x+

i ) > f(x−j ),

0, otherwise.
(2.6)
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AUC averages the score of a positive sample having a higher probability

than a negative sample for all between-class pairs; it can also be viewed as the

probability that a positive sample is ranked higher than a negative sample.

This statistical interpretation led to the capability of computing AUC without

building the ROC curve itself, by counting the number of positive-negative

example misorderings in the ranking produced by classifier scores [125]. How-

ever, AUC defined in Equation (2.5) is a sum of indicator functions which is

non-differentiable, to which gradient-based optimization methods cannot be

applied. In order to make the problem tractable, it is necessary to apply con-

vex relaxation to the AUC. By replacing I(f(x+
i ) > f(x−j )) in Equation (2.5)

with pairwise convex surrogate loss Φ(f(x+
i ) − f(x−j )), we can minimize the

loss defined below as a way to maximize the AUC score:

LΦ(f) =
1

N+N−

N+∑
i=1

N−∑
j=1

Φ(f(x+
i )− f(x−j )). (2.7)

Various surrogate loss functions can be chosen here. Let z = f(x+
i ) −

f(x−j ), then the pairwise squared loss (PSL), one of the most commonly used

surrogate loss functions, is given by [31,35]

ΦPSL(z) = (1− z)2. (2.8)

In [109,144], pairwise hinge loss (PHL) is used as a surrogate function:

ΦPHL(z) = max(1− z, 0). (2.9)

Similarly, [103] utilizes the pairwise logistic loss (PLL) to replace the indicator
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function:

ΦPLL(z) = log(1 + exp(−βz)). (2.10)

[128] proposes the differentiable function given by the following expression as

the surrogate loss:

ΦR∗(z) =

{
−(z − γ)p, if z > γ,

0, otherwise,
(2.11)

where 0 < γ ≤ 1 and p > 1, and suggests that p = 2 or 3 generally achieves

the best results. Based on the observation that maximizing the objective with

Φ in the form of Equation (2.11) is ineffective to maximize the WMW statistic

because it focuses on maximizing the difference between f(x+
i ) and f(x−i )

instead of moving more pairs of f(x+
i ) and f(x−i ) to satisfy f(x+

i )−f(x−i ) > γ,

the authors further propose another function,

ΦR(z) =

{
(−(z − γ))p, if z < γ,

0, otherwise.
(2.12)

Figure 2.11 demonstrates the comparison of the four surrogate func-

tions. One can notice that the curve of function R is flat in the region [γ, 1],

which differentiates it from other three curves. The key idea is, during the pro-

cess of minimizing L in Equation (2.7), if a positive sample has a higher output

than a negative sample by margin γ, this pair of samples will not contribute

to the objective.
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Figure 2.11: Comparison of the four surrogate functions, where β = 3 in PLL,
and γ = 0.7 and p = 2 in R.

2.3.2.2 Comparison with Cross-Entropy Loss

Classifiers such as neural networks typically use cross-entropy (or log-

loss) as the cost function. Cross-entropy (CE) loss for binary classifiers is

defined as:

CE = − 1

N

N∑
i=1

yi log f(xi) + (1− yi) log(1− f(xi)). (2.13)

During the optimization process, CE in Equation (2.13) moves f(x+
i )

closer to 1 and f(x−i ) to 0, while AUC in Equation (2.5) tries to force f(x+
i ) >

f(x−i ). One might consider a weak relationship between CE and AUC, but

in general the two objectives are quite different. Cross-entropy takes into

account the uncertainty of the prediction based on how much the probability
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estimates vary from the actual labels, and it has been used when calibration

is important [36]. Whereas, AUC is a rank statistic and is only affected by

the ranking of the samples induced by the predicted probabilities. The order

of the samples can be maintained while changing their probability values.

For the hotspot detection problems where positive labels are few but

significant, we seek models that are able to predict positive classes more cor-

rectly. Table 1 displays an example dataset containing ten data samples with

only two positive labels, and two models provide their predicted scores for each

sample. As one can see, the two models only behave differently on sample 8

and 9. Model 1 correctly classifies sample 9 as positive, and model 2 correctly

classifies sample 8 as negative. Model 1 is better than model 2 for hotspot

detection tasks in the sense that it captures all the hotspots correctly even

with one false alarm, while model 2 achieves zero false alarms but misses one

hotspot.

Here we compare AUC with CE to see how differently they distinguish

the two corresponding models when facing class imbalance. The CE scores for

the two models are both 0.36. Clearly, cross-entropy believes the two models

are performing equally. However, the AUC scores of the two models are 0.94

and 0.75 respectively, and hence, the AUC metric prefers model 1 over model

2. Cross-entropy fails in this case because the loss function in Equation (2.13)

is symmetric and does not differentiate between classes. AUC captures the

difference in classifying the imbalanced class and thus suits better for class

imbalance.
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Table 2.4: Comparison of cross-entropy and AUC for model selection on im-
balanced dataset.

Sample No. 1 2 3 4 5 6 7 8 9 10

Label 0 0 0 0 0 0 0 0 1 1

Model 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8

Model 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8

2.3.3 Experimental Results

We implement the LithoROC framework in Python with the Tensor-

Flow library [8]. The effectiveness of AUC as the optimization objective for

neural networks is validated on the ICCAD 2012 CAD contest benchmark

set [116]. Table 2.1 summarizes the benchmark information, the number of

all the clips (#All) and the number of hotspot clips (#H) in the training set

(Train) and testing set (Test). We configure the CNN architecture in a way

similar to [131], which gives the state-from-the-art performance for hotspot

detection. Each training process is repeated five times on the same dataset

with different random seeds, and the average results on the testing set are

shown in this section.

Table 2.5 demonstrates the impact of different loss functions on classi-

fication performance. The CNN model in [131] is updated at each step using

the mini-batch gradient descent method which randomly picks a group of in-

stances. To overcome the bias towards the majority class during the training

process, [131] fixes the batch size to 32 and ensures that the number of positive

samples and negative samples are the same in each mini-batch. In addition to
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following this mini-batch configuration, we explore the impact of imbalanced

mini-batches by setting the the class ratio of positive samples per mini-batch

to 0.1 and 0.4 respectively. To ensure the number of hotspots is not too small

in each batch, the batch size is increased to 64.

There are four convex surrogate loss functions discussed in Section 2.3.2

and we choose the two representative loss functions, the pairwise square loss

for AUC maximization (AUC-PSL) in Equation (2.8), and the R loss for AUC

maximization (AUC-R) in Equation (2.12). We compare the two losses with

the traditional cross-entropy loss (CE). Here we set γ = 0.7 and p = 2 in

Equation (2.12). Table 2.5 shows the normalized partial AUC score on the

testing data using different loss functions and different mini-batch configu-

rations, where F(α) denote the the normalized partial AUC score given by

Equation (2.4) over the FPR range [0, α]. We consider α = 0.01, 0.02 and 1,

because the FPR reported in the recent literature is around 0.01 to 0.02 [131].

Reporting the results for α = 1 is to show the difference in the AUC score and

the partial AUC score. In Table 2.5, the state-of-the-art classifier from [131]

uses CE as the objective function, and sets the batch size to 32 and the ratio

of positive examples to 0.5. Its performance for hotspot detection is near sat-

uration, but we can still observe utilizing AUC as the objective function for

training the CNN model helps advance the performance of the model under

low false positive rates, especially on design ICCAD3.

Figure 2.12 presents the ROC curves for design ICCAD3. The mean

ROC curve of the five runs and the corresponding variance of the curve within
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Figure 2.12: Comparison of ROC curves with different loss functions.

±1 standard deviation are shown. One can see that the objective function

AUC-R generates a significantly better ROC curve than that of CE. A natural

question is then how to choose the margin parameter γ in Equation (2.12).

Figure 2.13 plots the AUC score versus the γ for various FPR ranges. To

show the difference between curves, instead of using FPR(0.01), FPR(0.02),

FPR(1), we use FPR(0.02), FPR(0.05), FPR(1), as the curves for FPR(0.01)

and FPR(0.02) are very close. As noted in Figure 2.13, when γ increases

from 0 to 0.5, the three AUC scores rise as well. That is because CNN is

typically overconfident in its predictions in the sense that the output of the

last fully-connected layer after softmax is very close to 0 or 1. In this way, it

is over-simple for the between-class sample pairs to satisfy the constraint that

a positive sample has as higher output than a negative sample by γ, which

actually does not help guide the model to a good optimum. When γ is large

enough, the AUC scores for the test data are relatively insensitive.
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Figure 2.13: The normalized partial AUC scores at different γ on design
ICCAD3 testing data.

2.3.4 Summary

In this work, we have proposed to use AUC as a robust measure of

classifier discrimination performance for hotspot detection tasks. Different

surrogate loss functions for AUC maximization are proposed to be used during

training to systematically handle the class imbalance problem. Experimental

results demonstrate that the new loss functions are promising to outperform

the traditional cross-entropy loss when applied to the state-of-the-art neural

network model for hotspot detection.
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Chapter 3

Lithography Modeling for Efficient

Manufacturing Closure

3.1 Introduction

Lithography holds a fundamental position in today’s semiconductor

manufacturing [124]. It transfers a designed mask pattern into a resist pattern

on the top surface of a semiconductor wafer [64, 80]. A typical lithography

system consists of four key components: illumination source, mask, lens, and

wafer, as shown in Figure 3.1. The illumination source sheds light through the

mask and exposes the wafer such that a variety of patterns are printed.

In practice, lithography simulations have been effectively used for pro-

cess development, performance prediction and a number of other tasks includ-

This chapter is based on the following conference papers.

1. Wei Ye, Mohamed Baker Alawieh, Yibo Lin, and David Z. Pan. “LithoGAN: End-
to-end lithography modeling with generative adversarial networks.” In 2019 56th
ACM/IEEE Design Automation Conference (DAC), pp. 1-6. IEEE, 2019.

2. Wei Ye, Mohamed Baker Alawieh, Yuki Watanabe, Shigeki Nojima, Yibo Lin, and
David Z. Pan. “TEMPO: Fast Mask Topography Effect Modeling with Deep Learn-
ing.” In Proceedings of the 2020 International Symposium on Physical Design
(ISPD), pp. 127-134. 2020.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.
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Figure 3.1: Typical lithography system.

ing model-based optical proximity correction (OPC). These simulations are

utilized to calculate correct resist shapes that can be used for physical verifi-

cation such as hotspot detection. However, as the technology node continues

scaling down, the trend to print features much smaller than the wavelength of

light used has tremendously increased lithographic and manufacturing process

complexity, as well as the lithography modeling complexity.

In the rest of this chapter, Section 3.2 introduces lithography mod-

eling leveraging machine learning techniques, and Section 3.3 explores mask

topography effects in lithography simulation.
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3.2 End-to-End Lithography Modeling

Lithography simulation mainly falls into two categories: physics-level

rigorous simulation and compact model-based simulation. Rigorous simula-

tion precisely simulates the physical effects of materials to obtain the printed

patterns [77, 112]. In practice, the physical properties of photoresist (resist)

and optical systems, the mask patterns, and the process variations are all cor-

related to the printing. As a rigorous model has to include these cross-related

quantities, it is computationally expensive. Also, the calibration of lithogra-

phy models can take several weeks at advanced technology nodes. In VLSI

manufacturing, modeling efficiency is crucial for fast design closure along with

modeling accuracy. Therefore, compact models stand as a speedup alternative

to rigorous computation with a small sacrifice in accuracy.

Figure 3.2 shows a typical flow of lithography simulation. First, an

aerial image is generated from a mask pattern using an optical model which

is characterized by the illumination type and projection lenses of an exposure

tool. Then a resist model is used to determine the locally varying slicing

thresholds [99]. Lastly, the thresholds are processed through extrapolation

together with the corresponding aerial image to evaluate the critical dimension

(CD) of the printed patterns or to generate the resist contours.

Although conventional variable threshold resist (VTR) models are highly

efficient, they fail to keep up their accuracy at advanced technology nodes [119].

To improve simulation quality, machine learning based techniques have been

proposed to construct accurate and efficient resist models [71, 72, 105, 119].
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Figure 3.2: Conventional lithography simulation flow consisting of multiple
stages and the proposed LithoGAN flow.

These approaches first take a set of training data to train (calibrate) a model

and then use this model to make predictions on test data. [105] proposes an

artificial neural network (ANN) to predict the height of resist after exposure.

However, efforts are spent on determining the appropriate set of features for

model training. To overcome the explicit feature extraction, [119] proposes a

convolutional neural network (CNN) model that predicts the slicing thresholds

in aerial images accurately. Recently, [72] proposed a transfer learning scheme

together with an active learning approach to cope with the deficiency in the

manufacturing data at advanced technology nodes.

Nevertheless, several drawbacks exist in the mainstream compact mod-

els and machine learning approaches. The proposed resist models rely on

optical simulation to generate aerial images, which are accompanied by a high

computational cost. Additionally, only resist height or slicing threshold is

predicted from the proposed models, which requires further processing to fi-

nalize the contour patterns. Hence, the state-of-the-art lithography modeling

techniques still suffer from an exorbitant computational cost while providing

partial modeling schemes that rely heavily on pre- and post-processing proce-
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dures.

In spite of various rigorous models and compact models at hand, it is

extremely desirable to further improve lithography modeling efficiency with-

out compromising much accuracy. Considering the fact that machine learning

based approaches have demonstrated superior efficacy in a particular stage

during lithography modeling, a natural question then arises: is it possible

to build an end-to-end lithography model with machine learning techniques?

Toward this goal, we propose LithoGAN, a novel lithography modeling frame-

work based on conditional generative adversarial network (CGAN) that has

demonstrated tremendous success in computer vision over the past few years

[37,47,62,89,145]. CGAN manifests itself among numerous generative models

with an inherent capability to perform image translation tasks such as im-

age colorization and background masking, where an image in one domain is

mapped to a corresponding image in another domain. In addition, CGAN

has been adopted for optical proximity correction (OPC) enhancement in IC

manufacturing [129].

Our proposed LithoGAN framework is the first complete end-to-end

lithography modeling approach mapping the mask pattern at one end to the

resist pattern at the other. This approach builds on a CGAN to translate an

image from the layout to the resist shape. It turns out that this translation

can achieve high accuracy in predicting the shape and size of the resist pat-

tern. Moreover, to further boost the performance of the CGAN, LithoGAN

integrates a CNN that can predict the pattern center to help with localization.
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3.2.1 Preliminaries

An accurate end-to-end lithography model should produce patterns

consistent with the manufactured (golden) ones. In order to evaluate the

accuracy of a model, evaluation metrics are required to quantify the critical

mismatches. Edge placement error (EPE) is a commonly used metric in lithog-

raphy to characterize pattern fidelity [80,127]. Technically, EPE measures the

Manhattan distances between the printed resist contours and the intended

mask patterns at given measurement points. However, our focus is to mea-

sure the performance of the proposed LithoGAN framework where we expect

a well-trained model to produce contours similar to the golden contours. In

other words, the objective is not to optimize EPE, but rather to mimic the

golden contours obtained from rigorous simulation. Hence, we propose a new

measure, denoted as edge displacement error, which is tailored to our problem.

Definition 3.2.1 (Edge Displacement Error, EDE). Given the bounding boxes

of the golden and predicted contours respectively, the edge displacement error

for a given edge in the bounding box is defined as the distance between the

golden edge and the predicted one.

The definition of EDE is very similar to EPE, except that EDE is

defined between two contours, while EPE is defined between a contour and

a design target. Figure 3.3 illustrates how EDE measures the edge distance

between the model predicted contour and the golden lithography contour.

However, this measure is not effective in capturing the details of the mismatch
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Figure 3.3: An illustration of the EDE evaluation metric.

between the two contours. While evaluating the quality of the contours is still

an open problem, we introduce additional metrics to provide a comprehensive

evaluation. Considering that the essence of the LithoGAN task is to predict

the color of each pixel in a monochrome image, we adopt the metrics commonly

used in computer vision tasks such as semantic segmentation [76].

In this work, three metrics are used to evaluate the quality of the syn-

thesized image besides the EDE metric. For the generality of the terminology,

we use class i to represent color i of a pixel in the following discussions. Let

pi,j be the number of pixels of class i predicted to belong to class j, where

i, j ∈ {0, 1}. Let ti =
∑

j pi,j be the total number of pixels of class i.

Definition 3.2.2 (Pixel Accuracy). Pixel accuracy is defined as the percent-

age of pixels in the image which are correctly classified, (
∑

i pi,i)/(
∑

i ti).

Definition 3.2.3 (Class Accuracy). Class accuracy is defined as the average

percentage of pixels in the image which are correctly classified for each class,

1
2

∑
i(pi,i/ti).

Definition 3.2.4 (Mean IoU). Intersection over union (IoU) measures the
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number of pixels present in both the golden and predicted patterns (intersec-

tion) divided by the number of all pixels present in either of them (union).

Mean IoU is an average of the IoU scores for all classes, 1
2

∑
i(pi,i/(ti − pi,i +∑

j pj,i)).

The proposed lithography modeling framework first builds a CGAN

model using a set of layout clip pairs, where each pair includes a mask pattern

and a resist pattern of the center contact as shown in Figure 3.4(a) and Fig-

ure 3.4(b) respectively. We define the CGAN-based end-to-end lithography

modeling problem as follows.

Problem 3.2.1 (End-to-End Lithography Modeling). Given a dataset con-

taining the pairs of mask patterns and corresponding resist patterns of center

contacts, the objective of end-to-end lithography modeling is to train a model

that can accurately predict the resist pattern of the center contact based on a

given mask pattern.

3.2.2 LithoGAN Framework

3.2.2.1 Data Preparation

For training the proposed framework, a dataset consisting of paired

images corresponding to mask patterns and resist patterns is needed. Proper

resolution enhancement techniques (RETs) such as sub-resolution assist fea-

ture (SRAF) generation and OPC have been applied to the original input mask

clips of size 2 µm× 2 µm. Towards a better localization around the target con-
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(a) (b)

Figure 3.4: (a) Mask pattern and (b) resist pattern of target contact. Green
rectangle denotes the center contact after OPC; red rectangles represent other
contacts after OPC; blue rectangles denote the SRAFs.

tact, these clips are then cropped to 1 µm× 1 µm such that, in each clip, the

target contact is located exactly at the center of the clip.

The obtained clips are converted to RGB images of size 256× 256 pixels

where the target contact of interest is encoded into the green channel, neigh-

boring contacts are encoded into the red channel, and SRAFs are encoded

into the blue channel. This coloring scheme, demonstrated by the example in

Figure 3.4(a), maps the different types of objects to different colors to help the

model discriminate these objects during the learning and inference processes.

On the other hand, the target contact is designed to be 60 nm× 60 nm; hence,

we use the window size 128 nm× 128 nm to crop the golden resist pattern of

the target contact. Although synthesizing a 128× 128 image might be enough

for generating the pattern, the cost of misprediction could be high. For ex-

ample, mispredicting 1 pixel may result in 1 nm error to the contour, hence,

imposing an extremely high requirement to the model. Therefore, we scale

the 128 nm× 128 nm clip to a monochrome image of size 256× 256 pixels as
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in Figure 3.4(b) such that error from mispredicting 1 pixel is around 0.5 nm.

Further improvement to the accuracy is possible by scaling the clip to larger

images, but it may cause additional overhead in the modeling effort.

3.2.2.2 CGAN Architecture Design

GANs are deep neural networks that use a training dataset to learn the

distribution of the input, typically images, and generate new images from the

learned distribution. At the highest level, GANs consist of two networks that

compete with each other: a generator and a discriminator [37]. The generator

G generates fake samples to fool the discriminator, while the adversarially

trained discriminator D distinguishes between real images and fake images

generated by the generator. The competition throughout the training process

drives both to improve: the discriminator guides the generator on what images

to create, while also improving itself by learning what distinguishes real images

from the fake ones from the generator.

At the end of the training process, the generator learns the distribution

of the training data and is eventually able to generate real-looking images. On

the other hand, it is hard for the discriminator to distinguish between training

set images and generated images. After the GAN model converges, the role of

the discriminator is over, and the main interest is in the generator who is now

able to generate high-quality images. In this way, a GAN learns a generative

model that maps a random noise vector z to output image ŷ: ŷ = G(z).

Unlike the aforementioned unconditional GAN, the goal of a CGAN
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is to learn how to generate fake samples with a specific condition or char-

acteristics rather than a generic sample purely based on random noise [89].

Specifically, for image translation tasks, both the generator and discriminator

observe another input image y. CGAN requires the generated image G(x, z)

to not only fool the discriminator but also to be close to the ground truth

output corresponding to the particular input image. Hence, in this work, we

adopt this image translation idea proposed in [47].

D

z G

Real

D

x

y

Fake

G(x,z)

`1 Loss
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Figure 3.5: CGAN for lithography modeling.

Figure 3.5 shows the training process of our proposed lithography mod-

eling CGAN. x represents the mask pattern image after SRAF insertion and

OPC, and y represents the golden resist pattern of the target contact given by

lithography simulation. The generator generates a fake resist pattern G(x, z)

when fed with the input mask pattern x. The discriminator is responsible

for classifying this image pair (x, G(x, z)) as fake, and meanwhile, it needs to

predict the image pair (x,y) as real. Here “real” means that y is the output
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image corresponding to input x. In other words, the target contact in x after

resist development will become y.

The discriminator outputs a value D(x,y) indicating the chance that

(x, y) is a real pair. As demonstrated in Figure 3.5, the objective of the

discriminator is to maximize the chance of recognizing the image pair (x, y)

as real and the image pair (x, G(x, z)) as fake. Mathematically, the objective

function of D is given by [37]

max
D

Ex,y[logD(x,y)] + Ex,z[log(1−D(x, G(x, z)))]. (3.1)

On the generator side, the objective is to generate images with the highest

possible value of D(x, G(x, z)) to fool the discriminator. Besides, the generator

wishes that the generated image G(x, z) is close to the ground truth y. The

objective of G is defined as [47,89]

min
G

Ex,z[log(1−D(x, G(x, z)))] + λ · Ex,y,z[‖1‖y −G(x, z)], (3.2)

where `1 norm is used to quantify the pixel-wise difference between the gen-

erated image and the ground truth. In practice, it has been shown that `1

norm encourages less blurring when compared to `2 norm [47]. Combining

Equation (3.1) and Equation (3.2), we have the following objective function

for CGAN,

min
G

max
D

Ex,y[logD(x,y)] + Ex,z[log(1−D(x, G(x, z)))]

+ λ · Ex,y,z[‖1‖y −G(x, z)].
(3.3)
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The details of the CGAN architecture are summarized in Table 3.1.

The problem that we consider maps a high-resolution input (256× 256) to a

high-resolution output (256× 256), and a common approach to design such a

generator is the use of an encoder-decoder network [37,47,89,98]. The encoder

passes the input through a series of layers that progressively downsample the

input until a bottleneck layer; then the decoder reverses the process by pro-

gressively upsampling. In Table 3.1, column “Filter” gives the size and stride

of the filter. All convolutional (Conv) and deconvolutional (Deconv) layers

have 5× 5 filters with a stride of 2. Batch normalization (BN) [46] is selec-

tively applied on certain convolutional layers. The encoder uses leaky ReLU

(LReLU) as the activation function, whereas the decoder uses ReLU. The dis-

criminator is a convolutional neural network that performs classification to

distinguish between the real image pairs and fake image pairs.

The standard approach to train GANs alternates between one step of

optimizing D and one step of optimizing G [37]. In this way, we train both

the generator and the discriminator to improve simultaneously, thus avoiding

the case where one network is significantly more mature than the other. Here

we use mini-batch stochastic gradient descent (SGD) for gradient update and

apply the Adam solver [59] during the training stage.

3.2.2.3 LithoGAN

CGAN has demonstrated proven success in image generation tasks

[47, 89] where generated images follow the distribution of the training data
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conditioned on the input images. However, for traditional computer vision

tasks, locations of the objects in the generated image are not a major concern.

For example, when trained to generate car images, the output of the GAN

is judged upon based on the quality of an image as seen by a human while

neglecting the exact location of the car in the image. However, for the lithog-

raphy modeling task, the center of the generated resist pattern is as important

as the shape of the pattern. Here the center refers to the center of the bound-

ing box enclosing the resist pattern. In fact, we are interested in predicting a

resist pattern which is accurate in both the shape and center.

With these two objectives in mind, and based on our experiments shown

in Section 3.2.3, it is evident that CGAN falls short of predicting the correct

center location of the resist pattern while demonstrating excellent results pre-

dicting the shape of the pattern. Hence, we propose a dual learning framework,

referred to as LithoGAN, which splits the modeling task into two objectives:

• Resist shape modeling: a CGAN model is used to predict the shape of

the resist pattern while neglecting the center;

• Resist center prediction: a CNN model is used to predict the center

location of the resist pattern.

The application of the proposed LithoGAN framework is illustrated

in Figure 3.6 where two data paths are shown. In the first path, a trained

CGAN model is utilized to predict the shape of the resist pattern. During

training, the golden pattern is re-centered at the center of the image, and the
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Figure 3.6: The proposed LithoGAN Framework.

coordinates of the original center are saved for CNN training. In other words,

the model is trained to predict resist patterns that are always centered at the

center of the images. On the other hand, the second path is composed of a

CNN trained to predict the center of the resist pattern based on the mask

image. The CNN architecture for the resist center prediction task is shown in

Table 3.2, where max-pooling (P) with filter size 2× 2 and stride 2 is applied

after each convolutional layer.

In such a way, the shape and the center of the resist pattern are pre-

dicted separately. They are combined in the last step before output. As shown

in Figure 3.6, the image generated by CGAN is adjusted by recentering the

resist shape based on center the coordinates predicted from the CNN. The

resulting adjusted image is the final output of the LithoGAN framework.
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3.2.3 Experimental Results

The proposed framework for lithography modeling is implemented in

Python with the TensorFlow library [8] and validated on a Linux server with

3.3GHz Intel i9 CPU and Nvidia TITAN Xp GPU. The experiments are per-

formed on two benchmarks obtained from [72], where 982 and 979 mask clips

are generated at 10nm technology node (N10) and 7nm node (N7) respec-

tively. [72] performed SRAF insertion and OPC using Mentor Calibre [87], and

then ran rigorous simulation to generate resist patterns using Synopsys Sen-

taurus Lithography [111] calibrated from manufactured data. In this work, the

resist patterns generated by rigorous simulation are considered as the golden

results. To guarantee highly accurate resist patterns, the pattern correspond-

ing to the center contact in a clip is the only one adopted after each simulation.

In other words, obtaining the golden resist pattern for each contact in a mask

layout requires one rigorous simulation [58], and similarly, predicting this pat-

tern using LithoGAN requires one model evaluation.

Each data sample for model training is a pair of the mask pattern

image and the resist pattern image created using the color encoding scheme

presented in Section 3.2.2.1. We randomly sample 75% of the data for training

different models for N10 and N7 respectively, and the remaining 25% clips are

for testing. In our experiments, we set the batch size to 4 and the number of

maximum training epochs to 80. The weight parameter λ in Equation (3.3)

is set to 100. The learning rate and the momentum parameters in the Adam

optimizer are set to 0.0002 and (0.5, 0.999). The training time for each of
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CGAN and LithoGAN is around 2 hours. Note that we train the CGAN and

LithoGAN models five times each with different random seeds to eliminate

random performance variation. The results reported in this section are the

average of the five runs.

3.2.3.1 CGAN vs. LithoGAN

To demonstrate the performance of both frameworks discussed in this

work: (i) the proposed lithography modeling CGAN and (ii) the improved

LithoGAN, we visualize their performance in Figure 3.7. The top two rows

are for samples from the N10 dataset, and the bottom two rows are for samples

from the N7 dataset. According to [72], there are three types of contact arrays

in the dataset, and Figure 3.7 includes at least one sample from each type.

One can clearly see that CGAN outputs a shape very close to the golden

resist pattern but the resist center can be quite far from the golden center;

whereas, LithoGAN predicts both the shape and the center accurately. By

examining the histogram showing the distribution of EDE in Figure 3.8, one

can notice that LithoGAN can achieve lower EDE values when compared to

CGAN; hence, making it closer to the golden solution.

LithoGAN achieves better accuracy compared to CGAN with the assis-

tance of the CNN which predicts the location of the resist shape center. The

average Euclidean distance between the golden location of the center and the

predicted location on the test set is used to measure the CNN prediction error.

The error values for N10 and N7 datasets are 0.43 nm and 0.37 nm respectively.
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(a) (b) (c)

Figure 3.7: (a) Mask pattern input (b) CGAN output and (c) LithoGAN
output. Each row represents one clip example. The golden contour is outlined
in black. The prediction pattern is filled with green and outlined in red.

Figure 3.9 gives a visualization example of how resist pattern images

generated by LithoGAN progressively become more real and closer to the

golden results along the training process. Besides, the loss changes of the

generator and discriminator are depicted in Figure 3.10. It shows that the

model converges after 50 epochs and produces resist patterns of high quality.
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Figure 3.8: EDE distributions for CGAN and LithoGAN.
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Figure 3.9: Visualization of the model advancement process. The prediction
results for two testing samples using the LithoGAN model trained at different
numbers of epochs are shown. Each row represents one clip example.
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Figure 3.10: Loss curves of the generator and discriminator in LithoGAN.
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3.2.3.2 Framework Validation

We first compare the accuracy of our proposed LithoGAN with the

state-of-the-art work on lithography modeling [72]. The work [72] first runs

the optical simulation with Mentor Calibre [87] on the mask pattern clips.

Then it uses the trained CNN model to predict four thresholds for each clip

and performs threshold processing to generate the final contours. Instead, the

proposed CGAN and LithoGAN for direct lithography modeling only need the

mask pattern clips as input and directly output the resist shapes.

Table 3.3 gives a detailed comparison among the three methods using

the proposed metrics in Section 3.2.1, where the average results over all the

test samples are reported. In this work, the goal is to mimic the results of

the rigorous simulation; hence, these results are considered a reference and all

metrics are computed with reference to them. In addition to the mean EDE

error over all the test samples, we also report the standard deviation for their

EDE values. By examining the results in Table 3.3, one can easily find that

LithoGAN outperforms CGAN in all the metrics, and the detailed comparison

has been shown in Section 3.2.3.1. Besides, although [72] achieves slightly

better results, LithoGAN is still competent for lithography usage at advanced

technology nodes. That is because the average error of the critical dimension

obtained from LithoGAN, 1.99 nm and 1.65 nm for N10 and N7 respectively,

fall within the acceptable range (10% of the half pitch for contacts) [72,119].

Next, we demonstrate the runtime comparison in Table 3.4. It is re-

ported in [72] that the rigorous simulation for both of the two datasets takes
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Table 3.3: Comparison of evaluation metrics among different lithography mod-
eling methods.

Dataset Method
EDE (nm)

Pixel Acc. Class Acc. Mean IoU
Mean Std. dev.

N10
Ref. [72] 0.67 0.55 0.98 0.99 0.98
CGAN 1.52 0.95 0.96 0.97 0.94

LithoGAN 1.08 0.88 0.97 0.98 0.96

N7
Ref. [72] 0.55 0.53 0.99 0.99 0.98
CGAN 1.21 0.77 0.98 0.98 0.96

LithoGAN 0.88 0.67 0.99 0.99 0.97

more than 15 hours. For a fair comparison, we rerun the proposed lithography

modeling flow in [72] on our platform. The first step in [72], optical simulation,

takes around 80 minutes. We use the same training dataset as that of CGAN

and LithoGAN to train their proposed CNN model. Prediction of the four

thresholds for each sample in the entire dataset using the CNN model takes

8 seconds. Contour processing is performed on 6 cores in parallel and takes

15 minutes. On the other hand, prediction for an entire N10 or N7 dataset

using our CGAN or LithoGAN model takes less than 30 seconds. By compar-

ing the runtime of generating resist patterns for all clips reported in Table 3.4,

one can notice that CGAN/LithoGAN can achieve ∼1800× runtime reduction

when compared to rigorous simulation and ∼190× when compared to the flow

with machine learning based threshold prediction approach [72]. Hence, the

proposed LithoGAN framework achieves significant runtime reduction while

obtaining evaluation results that fall within the accepted lithography range.

Therefore, given its compelling speedup, LithoGAN paves the way for

a new lithography modeling paradigm that can address the ever-increasing
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Table 3.4: Runtime comparison among different methods.

Method
Rigorous Ref. [72] Ours

Sim Optical Sim ML Contour (CGAN/LithoGAN)
Time > 15h 80m 8s 15m 30s
Ratio > 1800 190 1

challenge of lithography simulation. This new paradigm can provide an accel-

erated framework which can perform within the adequate accuracy range for

lithography.

3.2.4 Summary

In this work, we have presented the LithoGAN framework for end-to-

end lithography modeling. LithoGAN is a dual learning network that predicts

the resist shape using a CGAN model and predicts resist center using a CNN

model. Experimental results show that the proposed framework predicts resist

patterns of high quality while obtaining orders of magnitude speedup compared

to conventional lithography simulation and previous machine learning based

approach.

3.3 Lithography Modeling Considering Mask Topogra-
phy Effects

This continuous device scaling has posed the mask topography ef-

fects among the major challenges in lithography modeling. In the past, thin

mask approximation, or so-called Kirchhoff approximation, was widely used

in lithography simulation, as shown in Figure 3.11(a). With such an approx-
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Figure 3.11: Imaging process of a lithography system. (a) Thin mask model
and (b) thick mask model result in different near-fields and aerial images.

imation, the three-dimensional structure of the mask is ignored despite its

critical influence on the amplitudes, phases, and polarizations of the transmit-

ted light, as demonstrated in Figure 3.11(b). When the feature sizes start to

be comparable to the wavelength, the thin mask approximation is no longer

adequate with the increasingly pronounced impacts of thick mask effects on

the lithography imaging [38, 104, 123]. As a consequence, the failure to con-

sider mask topography effects in lithography modeling could lead to critical

dimension error and focus shift, resulting in the shrinkage of process window

and the decrease of the image quality and the process robustness.

In the lithography process, many important properties, such as expo-

sure and development latitude, can be derived from aerial images after optical

simulation [81]. These images contain the intensity of the exposure radiation
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in the plane of the wafer; and hence, the topography effects of the mask can

significantly impact their accuracy. Moreover, in lithography simulation, an

accurate 3D view of aerial images at different resist heights is crucial to eval-

uate cross-section views of the resist pattern in order to find defects on the

top or bottom position. These defects, if gone undetected, can lead to catas-

trophic manufacturing failures. Therefore, accurate prediction of 3D aerial

images with the mask topography effects considered is important in lithogra-

phy development and verification.

Conventionally, rigorous simulators capable of capturing mask topogra-

phy effects have been developed for aerial image calculation. Technically, the

precise description of the mask diffraction spectrum in lithography is accom-

plished by using rigorous algorithms to solve Maxwell’s equations for the elec-

tromagnetic field [90]. However, despite their superior accuracy, such rigorous

methods are prohibitively expensive since performing rigorous calculations at

the full-chip level, during OPC for example, is computationally intensive. Un-

der the governing trade-off between accuracy and efficiency, different compact

models were formulated as less accurate yet more efficient mask models [9,114].

However, these compact models fail to maintain the accuracy level at advanced

technology nodes since newly pronounced lithography effects invalidate several

key assumptions in these models as shown in [75,79].

Recently, advances in machine learning have been leveraged to devise

new mask modeling techniques. In [10], an ANN model was proposed to model

the rigorous spectrum with respect to the feature vector containing the am-
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plitude and the phase information of the scalar spectrum from different mask

patterns. The output of the ANN is used to compute the aerial images using

Abbe’s method. In [79], for an arbitrary thick mask, its near-field is calculated

using the nonparametric kernel regression model and the pre-calculated train-

ing libraries; then the aerial image is calculated using Abbe’s method as well.

The aforementioned machine learning approaches rely on conventional model-

ing techniques that require intensive feature engineering and depend heavily

on post-processing methods which affect the model accuracy.

In the recent past, CGANs have attracted attention due to their wide

range of applications in image related tasks [89]. Among the state-of-the-art

machine learning models, CGAN stands out due to its inherent capability

to perform image translation tasks such as image colorization and background

masking, where an image in one domain is mapped to a corresponding image in

another domain. In practice, this model has been recently adopted to perform

different lithography related tasks [11, 71]. Of particular significance is the

application of CGAN in the end-to-end lithography simulation framework,

LithoGAN [133]. While LithoGAN has demonstrated impressive efficiency, it

only assumes a thin mask model which limits its capability of handling the

mask topography effects. Besides, its output format is a monocolor image,

while the desired output in the mask modeling task is the intensity map which

has a higher accuracy requirement. Moreover, the aerial image estimation

requires intensity map prediction at different resist heights. While the default

approach is to train different CGAN models for prediction at different heights,
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such an approach is not efficient both in terms of training time and model size.

In this section, we propose TEMPO as a novel thick mask effect mod-

eling framework using a single, one-fits-all model capable of predicting aerial

image intensity at different resist heights. Besides the advantages in terms of

the training cost and model size, incorporating the different modeling tasks

into a single model can significantly improve the model accuracy. This is

mainly due to the fact that various features and information are shared across

all heights. Hence, having data from different heights available for training

a single model results in a more robust model that has better generalization

capabilities when compared to a set of models individually trained on a subset

of the available data. To enable such a one-fits-all model, we propose a CGAN

architecture that uses the desired prediction height as an additional input ap-

pended to the low-level latent representation in the model architecture. With

such representation, the height information is efficiently incorporated at the

CGAN bottleneck layer where it can have the most powerful impact on output

generation.

3.3.1 Preliminaries

3.3.1.1 Mask Topography Effects

As shown in Figure 3.11, in an optical lithography system, the light

source illuminates the mask and generates the near-field underneath the mask.

Then, the light rays propagate through the projection lens and produce the

aerial image on the wafer [79].
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In the past, a mask in lithography was mostly considered as an infinitely

thin object with homogeneously transparent and opaque areas as demonstrated

in Figure 3.11(a). The conventional application of Kirchhoff’s boundary con-

ditions on the mask surface provides the so-called thin mask approximation of

the near-field.

However, mask topography effects have been observed since the mini-

mum feature size on the mask dropped below the exposure wavelength [104].

The light scattered by mask edges and corners changes the near-field of the

light on the mask level. As shown in Figure 3.11(b), the scattering affects both

the amplitude and the phase of the incident field, and thus not only changes

the aerial image intensity on the wafer level, but also changes the resist pro-

file after resist development. The failure to consider mask topography effects

could lead to critical dimension error and focus shift, resulting in the shrinkage

of the process window, and the decrease of the image quality and the process

robustness. Therefore, mask topography models (thick mask models) have

been indispensable since 28 nm tech node and below.

To precisely model the thick mask effects, rigorous simulators have

been developed based on fundamental electromagnetism principles. However,

they are rather slow and infeasible to apply on full chips within acceptable

runtime. Generally, the intensity distribution in the aerial image calculated

by a rigorous thick mask simulation is lower than the calculation result by a

thin mask simulation because of a waveguide effect due to the topographical

structure of the mask [106]. Nevertheless, there is no simple transformation
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between the outputs of these two kinds of mask models since the magnitude

of the mask topography effects varies at different locations on the wafer and

is also affected by the design of mask patterns.

There are efforts attempting to construct fast compact models for ap-

proximating mask topography effects [9, 114]. However, as shown in [75, 79],

newly pronounced lithography effects and conditions keep invalidating some

simple assumptions in conventional compact models and render them inap-

plicable at advanced nodes. The impacts of key factors on the accuracy and

efficiency of the compact models need further study and verification, and ad

hoc compact model building is incapable of providing models that are adequate

for advanced lithography.

3.3.1.2 3D Aerial Image

In order to simplify the analysis of a lithography process, the optical

effects of the lithography tool are usually separated from the resist effects of

the resist process. As one of the direct outputs of optical analysis, the aerial

image is defined as the spatial intensity distribution at the wafer, and is simply

the square of the magnitude of the electric field [108]. The aerial image is the

source of information that is transferred into the resist, and therefore dictates

the quality of the final resist profile. Moreover, from the aerial image, we can

easily predict the performance of a given lithographic process in terms of depth

of focus, exposure latitude, etc [81].

The spatial image intensity distribution inside the resist bulk is cal-
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culated up to the defined resist thickness, and henceforth will be referred to

as 3D aerial image or 3D intensity map, as shown in Figure 3.12. 3D aerial

image is valuable in evaluating cross-section views of the resist profile in or-

der to find defects on the top or bottom position. Typically, an aerial image

simulation extracts the 2D intensity at one specific resist height; thus, the

calculation of the entire 3D image is distributed among different threads in

rigorous simulation tools [111].

Note that for a pure aerial image setup where the substrate, stack and

resist are all set as air, the extraction height of the 2D aerial image does not

matter. However, the resist and the stacks are practically composed of one or

several non-air like optical materials, which results in standing waves due to

interference effects of the incoming and backscattered light in the resist [111].

For the systems where standing waves can be very pronounced, the evaluation

of the image intensity at a certain extraction height h must be performed

carefully. For example, consider the extraction height h = 10 nm and h =

70 nm in Figure 3.12. It is obvious that the extraction height h = 70 nm will

yield a higher image contrast than h = 10 nm. Therefore, it is necessary to

model 3D aerial images.

3.3.1.3 Problem Formulation

For image generation tasks, multiple evaluation metrics are typically

used to judge upon model accuracy. Let I denote the golden aerial image and

Î denote the predicted aerial image, where I, Î ∈ Rn×n. One of the commonly
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Figure 3.12: Example of the 2D aerial image slices inside a 3D aerial image.

used accuracy metrics is the root-mean-square error (RMSE), which is given

by

RMSE =
1

n
‖F‖Î − I, (3.4)

where ‖F‖A = (
∑

i,j A
2
i,j)

1/2 represents the Frobenius norm.

Since the overall light intensity of different aerial image samples in

the dataset could vary significantly, we also adopt the normalized root-mean-

square error (NRMSE) to quantify model performance. The NRMSE between

the predicted image and the golden image is defined as the RMSE normalized

by the averaged Frobenius norm of the golden image:

NRMSE =
RMSE

‖F‖I/n =
‖F‖Î − I
‖F‖I . (3.5)

79



We define the problem studied in this work as follows.

Problem 3.3.1 (3D Aerial Image Learning). Given a training dataset con-

taining mask pattern samples and the corresponding 2D aerial images at m

resist heights for each mask pattern sample, the objective is to train a model

that can accurately predict the aerial images of a test mask pattern, where

the accuracy is measured in terms of the RMSE and the NRMSE.

3.3.2 TEMPO Framework

In a rigorous thick mask simulation flow, the simulator takes as input

a mask pattern and generates the corresponding aerial image as shown in

Figure 3.13(a). While such an approach is the common practice today, its

inordinate runtime hinders its application in the early stages of the process

development and mask optimizations. For example, simulating 1000 clips with

mask topography effects could take up to 4 days. With this in mind, we

propose TEMPO as a fast modeling framework that can significantly speed

up the thick mask modeling task and hence, allow the consideration of the

mask topography effects in the early stages of the process development. In

practice, TEMPO provides in one of its schemes a CGAN model capable of

mimicking the rigorous simulation process as shown in Figure 3.13(b). Under

the same input/output set as in the rigorous simulation scheme shown in

Figure 3.13(a), the CGAN model in TEMPO can translate the image from

mask pattern to aerial images with orders of magnitude speedup. Hereafter,

this direct translation using our proposed CGAN architecture is referred to as
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Scheme 1, and its details will be covered in Section 3.3.2.2.

It is evident that, compared to the rigorous simulation scheme, Scheme

1 in TEMPO is capable of achieving immense speedup at some compromise

in accuracy. This accuracy compromise is due to the fact that the optical

modeling inside the lithography system is a complicated process; aerial image

is the outcome of the interactions among light source, mask pattern and the

projection lens. Hence, given the limited information available in the input

image containing only the mask patterns, the accuracy of Scheme 1 is not

expected to be ideal but can still be acceptable for early exploration stages

given its attractive efficiency.

For applications with high accuracy requirements, TEMPO provides

an alternative framework, namely Scheme 2 shown in Figure 3.13(c), which

represents a compromise between the accurate yet time-consuming rigorous

simulation, and the efficient Scheme 1 with imperfect accuracy. Compared

to Scheme 1, Scheme 2 sacrifices some additional runtime for better accuracy

while still maintaining impressive speedup compared to the rigorous simula-

tion. As a first step, TEMPO in Scheme 2 runs a fast thin mask model to

generate aerial images assuming no mask topography effect, and the output

aerial image is used along with the mask pattern as the input to the CGAN

model. In this way, the aerial image given by the thin mask model provides

the CGAN model with additional information not present in the mask pattern

image, and hence improves its accuracy. In the next subsections, we first in-

troduce the conventional CGAN model for image translation, then we present
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Figure 3.13: (a) Traditional rigorous thick mask simulation flow, (b) proposed
Scheme 1 for high efficiency and (c) Scheme 2 for high accuracy in TEMPO.

TEMPO for aerial image generation.

3.3.2.1 Generative Adversarial Networks

Generative adversarial networks (GANs) have demonstrated remark-

able success in various computer vision tasks such as image generation [89], im-

age translation [47, 145], and super-resolution imaging [62]. Originally, GANs

were developed for the purpose of learning the distribution of a given dataset
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with the intent of generating new samples from it [37]. A typical GAN model

consists of two modules: a generator and a discriminator. The generator is

trained to produce samples that cannot be distinguished from real images by

the adversarially trained discriminator which is trained to do as well as possible

at detecting the generator fakes [37].

The conventional generator in a GAN is basically an encoder-decoder

network where the input is passed through a series of layers that progressively

downsample it (i.e., encoding), until a bottleneck layer, at which point the

process is reversed (i.e,, decoding) [37,89,98]. On the other hand, the discrim-

inator is a convolutional neural network whose objective is to classify fake and

real images. Hence, its structure differs from that of the generator and re-

sembles a typical two-class classification network [37, 89, 98]. This adversarial

scheme is represented in the objective function given as:

min
G

max
D

Ex[logD(x)] + Ez[log (1−D(G(z)))], (3.6)

where D(·) represents the probability of a sample being real; i.e., not generated

by G, Ex denotes the expectation over the input data x, and z is a random

noise vector used as a seed for image generation.

A GAN model is typically trained with mini-batch stochastic gradient

descent (SGD) [37]. The training alternates between one gradient descent step

on the discriminator, and then one step on the generator. After training, the

generator part of the GAN is used to generate new samples using random

noise vectors while the discriminator is discarded as it is only needed for the
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training process [37].

Stemming from the core GAN model, different variants of generative

neural networks were developed to address challenges in various fields of study,

especially computer vision. Technically, many tasks in computer vision and

graphics can be thought of as translation problems where an input image is to

be translated from domain A to another domain B. Isola et al. [47] introduced

an image-to-image translation framework that uses GANs in a conditional set-

ting where the generator transforms images conditioned on the input image.

Instead of randomly generating images from the learned distribution, it trans-

fers an input image into another domain, hence, acting as an image translator.

To train such a model, a paired training dataset is needed where each sample is

a pair of an input image (i.e., image in the input domain) and its corresponding

output image (i.e., translated image in the target domain).

Mathematically, the loss function used for training the CGAN can be

given as [47,89]:

LCGAN = Ex,y[logD(x, y)]

+ Ex,z[log (1−D(x,G(x, z)))]

+ λ · Ex,y,z[‖1‖y −G(x, z)],

(3.7)

where x is a sample in the input domain, y is its corresponding sample in the

output domain, and λ is the weight parameter. Comparing equations (3.6)

and (3.7), one can notice the addition of the loss term which penalizes the

difference between the generated sample G(x, z) and its corresponding golden
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reference y.

3.3.2.2 TEMPO Architecture Design

Image translation using CGAN was proposed as a means for domain

transfer between two distinct domains. However, different applications require

more comprehensive translation schemes with one-to-many domain transfers.

Aerial image generation requires domain transfer from the single mask pattern

domain to multiple resist height domains. Another popular application of such

a scheme is facial image translation, where an input facial image is translated

into different target domains representing different facial expressions or ap-

pearances [26]. For aerial image generation and other similar tasks, the most

straightforward option is to train multiple domain-to-domain models. So, for

m target domains, m such models are needed.

Clearly, the approach of building m individual models has multiple

drawbacks. Most evident is the size of the model that scales with the number

of target domains. This also requires a large dataset from all domains to train

different independent models. Besides, when assuming that different target do-

mains are independent, an opportunity for information sharing between those

slightly different tasks is missed. In terms of the data, since we model the light

intensity in a 3D continuous space in the aerial prediction task, the intensity

values change continuously. The aerial images extracted from discrete resist

heights should be highly correlated. In terms of the model, the input encoding

performed by the generator’s encoder is very similar across different domains
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in many applications. This is true in the aerial image generation as well as the

facial translation scenario. Mainly, the important features for the translation

tasks are common across different target domains, and the target specification

is rather important in the decoder that generates the images. Hence, if an

adequate information-sharing scheme is developed, the performance can be

enhanced by exploiting the high correlation between images in different do-

mains. Therefore, model scalability and information sharing render the setup

of multiple individual models ineffective.

To overcome these two drawbacks, new variants of CGAN have been

proposed, such as ComboGAN [14] and StarGAN [26]. In ComboGAN, infor-

mation sharing is addressed through a joint training scheme for the m different

2-domain transfer models [14]. On the other hand, StarGAN tries to address

the scalability issue by building a single generator and incorporating the target

domain into its input. However, the target domain representation in StarGAN

still carries high redundancy since it requires m additional channels in the in-

put image to one-hot encode the chosen k-th target domain out of m domains.

In other words, the size of the input image scales linearly with the number of

target domains. Better scalability necessities a more compact input domain

encoding scheme.

Towards the goal of a compact model with an information-sharing

scheme, two important features of the one-to-many domain transfer task in

this work should be noted. First, the target information is not necessary for

the input encoding task. It is fair to assume that the features that are needed
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from the input image to generate the aerial image at different heights are

the same. It is the way these features are later decoded that is impactful

on the image generation. Hence, the target information is not needed as an

input to the encoder in the generator network. The second feature is that

the bottleneck layer in the generator carries the most critical information as it

represents the latent representation of the input upon which the output image

is generated; thus, the information in this layer is of significant impact on the

result. Therefore, we propose within TEMPO a new one-fits-all model where

a one-hot encoding vector of length m carrying the target domain informa-

tion is appended to the latent space representation in the bottleneck layer,

as shown in Figure 3.14. This way, the information is appended at a criti-

cal location in the network where it can guide the output image generation

while having a compact representation. Compared to that used in StarGAN

where each one extra input channel is needed for each domain, the encoding

scheme in TEMPO requires only a single channel for all the domains. This can

significantly improve the scalability of TEMPO when faced with a significant

increase in the number of target domains.

In the next subsections, the details of both the generator and discrim-

inator used in TEMPO are shown. These implementations are adapted from

the deep convolutional generative adversarial networks framework proposed

in [98].
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Figure 3.14: Overview of the TEMPO model.

3.3.2.3 Generator

We adopt the encoder-decoder network which is commonly used to de-

sign a generator [37, 47, 89, 98]. The input is passed through a series of layers

in the encoder that progressively downsamples it, until a bottleneck layer, at

which point the process is reversed in the decoder. The details of the encoder

and decoder are summarized in Table 3.5. Specifically, eight convolutional

and deconvolutional layers are used for the encoder and decoder, respectively.

In Table 3.5, the column “Size” and the column “Stride” give the size and

stride of each filter, and the number of layers sharing the same filter setting is
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shown in the column “Count”. “Additional” indicates the additional layers for

normalization and activation function. Here, batch normalization (BN) [46]

is selectively applied on certain convolutional layers both in the encoder and

decoder. The encoder uses leaky ReLU (LReLU) as the activation function,

whereas the decoder uses ReLU. The input of the generator is the images of

200× 200 pixels, and can have single channel (mask pattern) in Scheme 1 or

two channels (mask pattern and thin-mask aerial image) in Scheme 2. “Con-

cat” denotes the concatenation of the one-hot label vector of size m and the

latent space vector of size 512. For image translation tasks using CGAN, a

significant amount of information is shared between the input and the out-

put, and we followed the design of U-Net [101] with skip connections between

encoder layers and decoder layers.

3.3.2.4 Discriminator

On the other hand, the discriminator is a convolutional neural network

that performs classification to distinguish between the real image pairs and

fake image pairs. Meanwhile, the target domain information is fed into the

discriminator that is trained to discriminate image pairs from different tar-

get domains. Here, the target information is encoded by appending to the

input image a single channel whose pixel values reflect the target domain. In

practice, since the different domains in this application correspond to different

resist heights, there exists a true ordering for the target domains themselves.

Therefore, an ordinal encoding scheme is used to encode the ID of the target
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domain k (k ∈ {0, 1, . . . ,m− 1}) on the additional input channel whose pixel

values are the same and are set as follows:

pmax − pmin

m− 1
· k + pmin, (3.8)

where pmin and pmax denote the minimum and maximum possible values in the

additional input channel. Commonly used settings include pmin = 0, pmax =

255 or pmin = −1, pmax = 1.

Table 3.5 summarizes the details of the discriminator which constitutes

of four convolutional layers and one fully connected layer (FC) whose output

is the binary classification results.

3.3.3 Experimental Results

In this work, we explore mask topography effects on contacts as ac-

cording to the existing studies and reports, the mask topography effect should

be considered more carefully for contact hole patterns than line and space

patterns [88]. We generate 966 clips of size 2 µm× 2 µm containing various

contact patterns following the clip generation method described in [72]. Each

contact is designed to be 60 nm× 60 nm, and the contact pitch is 128 nm. We

perform sub-resolution assist feature (SRAF) insertion and OPC on contact

patterns using Mentor Graphics Calibre [87].

We run rigorous optical simulation to generate 3D aerial images using

Synopsys Sentaurus Lithography [111]. A quasar light source is used for this

experiment. The wavelength of the light source is set to 193 nm, and the

90



Table 3.5: Network architecture of the proposed TEMPO.

Network Layer Count Channel Size Stride Additional
Input — 1 (2) a — — —

Generator Conv 1 64 5 2 LReLU,BN
Encoder Conv 1 128 5 2 LReLU,BN

Conv 1 256 5 2 LReLU,BN
Conv 5 512 5 2 LReLU,BN

Concat 1 512 +m — — —
Deconv 4 512 5 2 ReLU,BN

Generator Deconv 1 256 5 2 ReLU,BN
Decoder Deconv 1 128 5 2 ReLU,BN

Deconv 1 64 5 2 ReLU,BN
Deconv — 1 5 2 ReLU

Input — 3 (4) — — —
Conv 1 64 5 2 LReLU

Discriminator Conv 1 128 5 2 LReLU
Conv 1 256 5 2 LReLU
Conv 1 512 5 2 LReLU
FC 1 1 — — Sigmoid

a (·) denotes the number of channels in Scheme 2.

numerical aperture (NA) of the imaging system is 1.2. The simulation window

of 1.5 µm× 1.5 µm is configured as nonperiodic and centers each of the clips.

Since the resist thickness is 120 nm and simulation resolutions in X, Y and Z

directions are set to 7.5 nm, 7.5 nm and 10 nm respectively, we got 2D aerial

images of 200× 200 pixels at 13 different resist heights for each clip, i.e.,

n = 100 in Equation (3.4) and Equation (3.5), and m = 13.

In this work, the aerial images generated by rigorous simulation con-

sidering mask topography effects are used as the golden data for TEMPO

training. Each sample in the training set is a collection of the mask pattern
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image and the corresponding aerial images at 13 different resist heights. Note

that the mask pattern clip within the simulation window is 1.5 µm× 1.5 µm

and the grid unit in the original layout is 1 nm, so we size it down to a grayscale

image of 200× 200 pixels using average filtering. Each pixel in the aerial image

is an intensity value stored in the 32-bit single-precision format.

The proposed TEMPO is implemented in Python with the Tensorflow

library and validated on a Linux server with 3.3GHz Intel i9 CPU and Nvidia

TITAN Xp GPU. In our experiments, we randomly sample 75% of the data

for training the model and the remaining 25% clips are for testing. We set

the batch size to 4 and the number of maximum training epochs to 70. The

weight parameter λ in Equation (3.7) is set to 1000. We also build 13 individual

models to predict 2D aerial images at each resist height separately which work

as the baseline approach. Each of the individual models takes as input the

dataset of aerial images at only one resist height and is trained with the same

hyperparameter setting as TEMPO. Note that the 13 individual models have a

total of 1.17× 109 trainable parameters (weights and biases), whereas TEMPO

has 1.03× 108. Therefore, TEMPO effectively reduces the model size for the

3D aerial image prediction task.

We first demonstrate the accuracy of our proposed TEMPO. Table 3.6

gives a detailed comparison between the individual models and our TEMPO

under Scheme 1 and Scheme 2 using the proposed RMSE and NRMSE metrics

in Section 3.3.1.3. The number shown in the table is the average of all the test

samples on each resist height. One can easily see that TEMPO outperforms
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Table 3.6: Comparison of evaluation metrics among different modeling meth-
ods.

Height (nm)
RMSE (× 10−4) NRMSE (%)

Scheme 1 Scheme 2 Scheme 1 Scheme 2
Baseline TEMPO Baseline TEMPO Baseline TEMPO Baseline TEMPO

0 11.88 10.87 4.96 4.12 4.55 4.15 1.96 1.62
10 12.53 11.48 5.41 4.21 4.55 4.15 2.03 1.57
20 13.50 12.63 5.24 4.50 4.51 4.19 1.79 1.54
30 15.30 13.26 6.11 4.74 4.97 4.25 2.02 1.56
40 14.26 13.32 5.53 4.79 4.63 4.31 1.82 1.58
50 14.36 13.11 5.96 4.93 4.71 4.29 1.98 1.63
60 14.37 13.22 7.99 5.23 4.63 4.24 2.63 1.70
70 15.18 13.61 7.32 5.71 4.62 4.13 2.27 1.76
80 15.58 14.52 7.71 6.24 4.48 4.17 2.26 1.81
90 16.42 15.25 8.00 6.79 4.57 4.23 2.26 1.90
100 16.79 15.59 8.40 7.42 4.62 4.28 2.34 2.05
110 17.16 15.75 8.96 8.17 4.68 4.29 2.46 2.23
120 17.11 15.74 13.27 8.66 4.63 4.26 3.67 2.34

Average 14.96 13.72 7.30 5.81 4.63 4.23 2.27 1.79
Max 17.16 15.75 13.27 8.66 4.97 4.31 3.67 2.34

Std. dev. 1.69 1.58 2.24 1.52 0.12 0.06 0.49 0.27

the individual modeling approach (denoted as Baseline) under both schemes.

Besides, whether using the 13 individual GAN models or the proposed TEMPO

approach, Scheme 2 always gives better accuracy than Scheme 1. Moreover,

TEMPO improves the RMSE from 14.96× 10−4 to 13.72× 10−4 on average,

and NRMSE from 4.63% to 4.23% in Scheme 1, while improving the RMSE

from 7.3× 10−4 to 5.81× 10−4 and NRMSE from 2.27% to 1.79% in Scheme 2.

Clearly, Scheme 2 in TEMPO can help gain better improvement in accuracy

because the aerial image produced by the fast thin mask simulation, as an

additional input in Scheme 2, provides more information about the lithography

system, and hence TEMPO is able to achieve notable improvement under

such situation. To visually examine the accuracy difference between the two

schemes in TEMPO, the aerial images for two samples of distinct pattern
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designs are shown in Table 3.7.

As one of the most important outputs of optical models, the aerial

image can be used together with resist models to simulate final resist pro-

files. Therefore, in addition to the direct comparison of aerial images, we also

evaluate the effectiveness of our proposed methods based on the quality of

generated resist patterns. We calculated the CD value of the resist pattern

for the center contact in each sample using the average of the aerial images at

13 resist heights. Using the CD values derived from the golden aerial images

as reference, Table 3.8 shows the comparison of CD errors in the X and Y di-

rections among different mask topography effect modeling methods. The row

“thin mask sim.” represents the CD errors when using the aerial images with-

out considering mask topography effects, and the errors could go up to more

than 20 nm. Our proposed TEMPO in Scheme 2 gives very small CD errors,

for example, 0.38 nm in the X direction and 0.45 nm in the Y direction, which

qualifies it for practical lithography usage. Besides, TEMPO gives smaller

CD errors when compared with the baseline with 13 individual GAN models,

which further demonstrates the advantages of our one-fits-all approach.

Last, we demonstrate the runtime comparison in Table 3.9, where the

total runtime of generating the 3D aerial images for all the test samples,

i.e., 242 samples, are shown. We can clearly see that the two schemes in

TEMPO satisfy different needs for speed and accuracy at lithography devel-

opment phases. Scheme 2 in TEMPO achieves ∼ 26.5× runtime reduction

when compared to rigorous thick mask simulation while achieving satisfactory
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Table 3.8: Comparison of CD errors in the X and Y directions among different
methods.

Method
CD error X (nm) CD error Y (nm)
Average Max Average Max

Thin mask sim. 2.77 20.67 3.93 33.49

Scheme 1
Baseline 0.75 4.64 0.73 3.19
TEMPO 0.72 3.38 0.67 2.82

Scheme 2
Baseline 0.48 2.05 0.50 3.89
TEMPO 0.38 1.88 0.45 3.11
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Figure 3.15: Distribution of CD errors using different methods: (a) error in
the X direction and (b) error in the Y direction.

96



accuracy. Considering the acceptable CD degradation in Scheme 1 compared

to Scheme 2 while being 50× faster, Scheme 1 in TEMPO is suitable for the

early exploration stages where speed is favored over high accuracy.

Table 3.9: Runtime comparison between rigorous simulation and the proposed
TEMPO framework.

Rigorous TEMPO TEMPO (Scheme 2)
mask sim. (Scheme 1) Thin mask sim. GAN Total

Runtime 20.5 h 1.1 m 45.3 m 1.1 m 46.4 m
Ratio 26.51 0.02 — — 1.00

3.3.4 Summary

In this work, we have presented TEMPO, a novel and scalable frame-

work which is capable of generating 3D aerial images efficiently and accu-

rately for modeling mask topography effects. Essentially, TEMPO comprises

a one-fits-all CGAN model for multi-domain image-to-image translation, with

the accuracy and compactness further boosted by across-domain information

sharing. Besides, the two flexible schemes of operations in TEMPO provide

different trade-offs between accuracy and efficiency, which promotes the wider

application of TEMPO in different stages of process development. The exper-

imental results demonstrate that TEMPO can achieve superior performance

in both speed and accuracy for advanced lithography usage.
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Chapter 4

Analysis and Optimization for

Electromigration Reliability

4.1 Introduction

As IC technologies continue to scale, electromigration (EM) comes forth

as one of the prominent reliability issues challenging the design of robust cir-

cuits [68]. Complex chip functionalities have been made possible by virtue of

increasing transistor densities and aggressive scaling of interconnects. How-

ever, these two factors bring along higher current densities in metal wires,

a phenomenon that further exacerbates EM. Particularly, high current den-

sities lead to the migration of atoms in metal wires resulting in opens and

shorts over time [17]. Hence, the continuous drive toward extreme scaling will

This chapter is based on the following conference papers.

1. Wei Ye, Yibo Lin, Xiaoqing Xu, Wuxi Li, Yiwei Fu, Yongsheng Sun, Canhui Zhan,
and David Z. Pan. “Placement mitigation techniques for power grid electromigra-
tion.” In 2017 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), pp. 1-6. IEEE, 2017.

2. Wei Ye, Mohamed Baker Alawieh, Yibo Lin, and David Z. Pan. “Tackling signal elec-
tromigration with learning-based detection and multistage mitigation.” In Proceed-
ings of the 24th Asia and South Pacific Design Automation Conference (ASPDAC),
pp. 167-172. 2019.

I am the main contributor in charge of problem formulation, algorithm development, and
experimental validations.
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keep compounding the EM problem, making EM design closure a challenging

task [1, 51].

Addressing the EM challenge requires a two-step process: (i) violation

detection and (ii) EM mitigation. Conventionally, EM checking tools are in-

voked after the detailed routing stage [2,65]. These tools compare the current

densities in metal wires with technology-specific design rules to detect EM vi-

olations. Next, the violations are fixed with engineering change order (ECO)

efforts [5]. EM checking tools leverage post-routing information to detect vio-

lations, which consequently limits the efficiency of their mitigation techniques.

In the routing phase, the locations of standard cells and the corresponding

current distribution are already fixed and the traditional fixing approaches

such as wire widening and cell resizing are not effective enough to handle

the ever-growing number of violations [1]. In fact, the methodology of “EM-

analysis-then-fix” is becoming obsolete at advanced nodes [45], which makes

it of vital importance to incorporate EM detection and fixing techniques into

earlier stages of physical design (PD).

Two clear benefits are associated with such early stage EM handling.

First, the number of EM violations can be decreased as a result of using a

larger set of mitigation techniques. Second, introducing early stage mitigation

techniques can help reduce the resulting overhead when compared to post-

routing fixing techniques. Thus, moving the EM detection and resolving steps

to earlier stages of the physical design can help in reducing runtime or the

number of iterations needed for design closure.
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In the rest of the chapter, Section 4.2 describes placement mitigation

techniques for power grid EM, and Section 4.3 presents the signal EM detection

and mitigation framework.

4.2 Placement Mitigation for Power Grid Electromigra-
tion

Due to unidirectional current flow and high current density, power grid

is one of the most vulnerable interconnect structures to EM failure. EM check-

ing tools calculate current densities in metal wires and detect EM violations

in power grids with given design rules; then these violations are fixed with

engineering change order (ECO) efforts [134]. However, traditional fixing ap-

proaches such as spacing large-current cells and widening metal wires are not

effective enough to handle the ever-growing number of violations in power

grids. Therefore, it is necessary to mitigate EM degradation in power grids at

earlier design stages, such as placement. The locations of standard cells and

the corresponding current distribution are determined during placement stage

and the placement solution can directly affect the final quality of EM design

closure.

Power grid consists of horizontal power rails connecting standard cells

together, and these rails are connected with wider vertical power stripes [136].

As illustrated in Figure 4.1(a), power tile is the region between two adjacent

VDD (or VSS) power stripes and the adjacent power rails [45], and the chip

region is partitioned into multiple power tiles. It is observed that lower-level
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Figure 4.1: (a) An initial cell placement in a power tile and (b) the corre-
sponding current distribution in the power rail; (c) An EM-friendly placement
and (d) the corresponding current distribution.

metal layers of power grids are more susceptible to EM failures due to smaller

wire width, and EM violations are most likely to occur around weak power grid

connections, which deliver current to high power-consuming regions. [45] pro-

poses a global placement problem with a bin-packing formulation to constrain

power consumption of each power tile, so that high-power cells are forced to

spread across the placement region and current densities are flattened over the

chip.

However, placement with globally balanced current density does not

guarantee EM friendliness. As illustrated in Figure 4.1, the metal wire seg-

ments touching vias on both sides carry the largest currents in a power rail.

They feed all the cells in the tile and are the weakest points to EM. Current
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densities of these segments may still exceed the current limit even if the total

current density of the power tile is below the threshold. Figure 4.1(a) shows a

placement within a power tile, and the number on each cell denotes its normal-

ized current. Suppose the DC current limit for power rail is 10. Figure 4.1(b)

shows the simulation result of the current distribution on the power rail. The

total current drawn by all the cells is 17, which is less than the power tile total

current limit 20. But an EM violation occurs on the left side because the cur-

rent exceeds the EM limit. The placement shown in Figure 4.1(c) guarantees

that the maximum current in the power tile will not exceed the EM current

limit.

Globally balancing current density over chip cannot completely resolve

EM violations because the maximum current constraint for power tiles is more

strict than the total current constraint. Therefore, as illustrated in Figure 4.1,

besides determining which cells to be placed in the power tile, we need to

figure out the order and spacing of these cells under the EM current limit.

4.2.1 Problem Formulation

Hsu et al. [45] propose an average power-based model to evaluate power

grid static EM at placement stage. With given supply voltage, we use the

DC current limit Ilimit of power rail metal wires to evaluate power grid EM

violations. For a standard cell, we consider the sum of the dynamic current

and leakage current at this stage, which is calculated as:

I = α · C · VDD · f + Ileak,
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where α is the cell activity factor, VDD is the supply voltage and f is the system

clock frequency. C is the sum of the load capacitance and the output pin

capacitance. Load capacitance further includes downstream gate capacitance

and interconnect capacitance. Since nets have not been routed at this stage, we

use half-perimeter wirelength (HPWL), which is widely adopted in placement

[13], to estimate interconnect capacitance.

Figure 4.2 demonstrates how we calculate the maximum current in the

local power rails within a power tile. Pl and Pr are the left and right endpoints

of the VDD power rail. dli and dri are the distances from the midpoint of the

i-th cell to Pl and Pr, respectively. Rl
i and Rr

i are the wire resistances of

the corresponding metal segments, which are proportional to dli and dri . The

following equations hold:

I li · Rl
i = Iri · Rr

i , I li + Iri = Ii.

Thus,

I li =
dri

dli + dri
Ii, Iri =

dli
dli + dri

Ii. (4.1)

The currents drawn by all the cells in the power tile from Pl and Pr are

computed as:

I l =
∑
i

I li , Ir =
∑
i

Iri , I l + Ir =
∑
i

Ii. (4.2)

Since the cells in the tile only draw current via Pl and Pr, the peak current

that occurs in the local power rail is max{I l, Ir}.
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Figure 4.2: The model for current calculation in a power tile.

Definition 4.2.1 (EM Violation). There is an EM violation in the power tile

if max{I l, Ir} > Ilimit.

According to Equation (4.1) and Equation (4.2), it is necessary to know

the current and location of each cell in the power tile to compute I l and Ir.

Therefore, once a cell is relocated, we update its current because the load

capacitance is also changed. When a cell is moved to a new power tile, we

need to predict whether this movement will cause an EM violation in the new

power tile. Since we may not decide the new location of the cell immediately,

we derive a total current constraint of the power tile to estimate the EM

violation. Combining Equation (4.2) with the property that an EM-friendly

power tile satisfies I l ≤ Ilimit and Ir ≤ Ilimit, there is a relaxed constraint on

the total current of power tile as follows:

∑
i

Ii = I l + Ir ≤ 2Ilimit. (4.3)

Satisfying the above constraint is a necessary condition for the power

tile to be free from EM violation. When the total current of the cells in the

power tile is less than 2Ilimit, cell placement in the power tile further determines
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I l and Ir.

In this work, we follow ICCAD 2013 placement contest [57] to use scaled

half-perimeter wirelength (sHPWL) defined below to quantify the quality of

placements:

sHPWL = HPWL ·(1 + ABU),

where HPWL is the wirelength metric, and average bin utilization (ABU)

is used to evaluate placement density [56]. The bin used for ABU density

calculation contains multiple rows of power tiles.

Problem 4.2.1 (EM-Aware Detailed Placement). Given an initial legalized

detailed placement and the EM DC current limit Ilimit, we seek a legal place-

ment to minimize the number of EM violations and further reduce sHPWL.

4.2.2 Algorithms

4.2.2.1 Cell Move

The major objective of the first technique is to achieve cell current

balance among power tiles from a global scope. We use the cell move approach

[27,97] and try to move cells out from current-overfilled tiles to other tiles which

can accommodate them and help improve sHPWL.

Power tiles with total currents greater than the threshold 2Ilimit will

definitely have EM violations and such violations cannot be fixed by local

permutation. In addition, an EM violation may exist for a power tile even if

its total current density is below the threshold. Therefore, we define a current
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threshold parameter tc and the tiles with total cell current greater than 2Ilimit·tc
are regarded as the source tiles for cell move. The cell with the largest current

will be moved to a target tile in the search region [73] that has enough area

and current capacity. Note that the total current of the target tile after the

cell movement should be less than the predefined 2Ilimit · tc to avoid cell move

loops. We sort the candidate target tiles according to their distances to the

optimal region [94] and the tile with the minimum cost will be chosen. The

cost of moving cell i to target tile j is defined as:

cost(i, j) = ∆ sHPWL(i, j) + β · density(j),

where ∆ sHPWL(i, j) denotes the sHPWL change and density(j) denotes the

total current density of tile j after the cell movement. Both of them are

normalized in the scale of site half-perimeter.

We only decide the target tile for the cell to move into by the above

procedure. The cell is temporarily put in the center of the target tile, and

its precise location and possible overlaps will be solved by the subsequent

techniques. We iteratively repeat the above procedure until we cannot find

cells to move or the maximum number of iterations is reached.

4.2.2.2 Single Row Placement

After cell move, we perform the ordered single row placement that

minimizes wirelength under the total current constraint for each power tile

in a row. The ordered single row placement for minimizing wirelength has

106



been well-studied [19, 52, 113, 117]. Under the maximum displacement m for

each cell, the problem can be transferred to the shortest path problem, and

a DP-based algorithm is able to solve it in O(m2n) [113, 139]. However, the

additional constraint of total current makes the problem more complicated,

which cannot be solved by the above approaches. We define the ordered single

row placement problem under the total current constraint in Problem 4.2.2.

We provide our main SingleRowDP algorithm in Theorem 4.2.1 which in-

vokes SingleTileDP in Theorem 4.2.2. Note that our entire algorithm is still

optimal even if we replace SingleTileDP by other algorithms that are able

to output optimal solutions, which makes our single row placement algorithm

widely applicable. The straightforward way to implement SingleTileDP

has quadratic dependence in m, but we can achieve linear dependence in m

by using some standard tricks [60]. For any positive integers n,m, we use [n]

to denote set {1, 2, · · · , n}, and [n,m] to denote set {n, n + 1, · · · ,m}. To

give a more general formulation, we use cost to denote wirelength and value

to denote current.

Problem 4.2.2 (Fixed Order Single Row Placement). Given n ordered cells,

M locations and B tiles, m denotes the maximum displacement and Li denotes

a set of feasible locations1 where the i-th cell can be placed, i.e., maxi∈[n]

Li = m. Let ci,j and vi,j denote the cost and value corresponding to placing

the i-th cell at the j-th location, ∀i ∈ [n], j ∈ Li. Let vmax(= 2Ilimit · tc) denote

1Note that Li is a set of consecutive integers (i.e., Li = [x, x + 1, · · · , y − 1, y]) in the
problem as we claimed. Our algorithm is also working for the general case that Li contains
gaps.
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the value threshold. The goal is to find a feasible, non-overlapping placement

that keeps the initial order (∀i ∈ [n−1], π(i) < π(i+1), where π(i) ∈ Li is the

new location for i-th cell), such that the value (current) constraint is satisfied,

and the total cost (wirelength) is minimized.

Theorem 4.2.1 (Single Row Dynamic Programming). There is an algorithm

(Procedure SingleRowDP in Algorithm 4.1) running in O(Bt3m + Bn)

time2 that is able to output a placement π : [n] → [M ] such that ∀b ∈ [B],∑
i,π(i)∈Jb vi,π(i) ≤ vmax holds, and

∑
i∈[n] ci,π(i) is minimized, where Jb denote

the set of locations belong to tile b ∈ [B], and t denote the maximum number

of cells per tile.

Proof. Let fi,j denote the cost that all the first i cells are placed in the first

j tiles if there is no violation over all the first j tiles, otherwise fi,j = ∞.

Let f̂i1,i2,j denote the cost that for placing from the i1-th cell to the i2-th cell

to tile j if there is no violation, otherwise f̂i1,i2,j = ∞. The total running

time consists of three parts. The first part (lines 2–5) is computing all Qj

and L̂ji in O(Bn) time, where Qj is the set of cells that can be placed in tile

j, and L̂ji denotes the feasible locations for cell i in tile j. Before we define

t = maxj∈[B] |Qj|. The second part (lines 6–8) is from calling SingleTileDP

O(Bt2) times and the running time of SingleTileDP is O(tm). Thus, the

running time for the second part is O(Bt3m). The third part (lines 9–11) is

2Our current result assumes that vi,j = vi,j′ for any j, j′ in the same tile. Our algorithm
can be extended to the case without that assumption, the running time becomes O(Bt3m ·
vmax +Bn).
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dominated by computing set Si2,j O(Bt) times, and computing Si2,j takes O(t)

time. Overall, the running time is O(Bt3m + Bn). The correctness can be

proved by induction. Let Si2,j denote a set of possible states i1 such that i2

is coming from i1. For each iteration, we update fi2,j by taking the minimum

from |Si2,j| states. For each state, suppose we transform from some i1 ∈ Si2,j,

the cost contains two parts: the first part is the cost of placing all the first i1

cells in the first j − 1 tiles, i.e., fi1,j−1; the second part is the cost of placing

cells i1 + 1, · · · , i2 in the tile j, i.e., f̂i1+1,i2,j.

Remark 4.2.1. For simplicity, our DP algorithms (in Algorithm 4.1) demon-

strate the case where each cell has the same unit site, all the tiles have the same

length, and the maximum displacement for each cell is the same. It is easy to

extend it to the general setting. We also omit the details of backtracking to

output the optimal solution.

Theorem 4.2.2 (Single Tile Dynamic Programming). Given t cells and a tile

with ` locations, let Li denote a set of feasible locations for cell i ∈ [t] and

m = maxi |Li|. Let ci,j denote the cost of placing cell i at the j-th location.

There is an optimal algorithm3 (Procedure SingleTileDP in Algorithm 4.1)

running in O(tm) that is able to output a placement π : [t] → [`] such that∑
i∈[t] ci,π(i) is minimized.

Proof. Let gk,l denote the optimal cost of cells i1, · · · , k being placed in the

3The running time is optimal, because the input size (the number of feasible locations)
is already Ω(tm).
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Algorithm 4.1

1: procedure SingleRowDP(c, v) . Theorem 4.2.1
2: for j = 1→ B do
3: Qj ← {i|Li ∩ Jj 6= ∅, i ∈ [n]}
4: for i ∈ Qj do
5: L̂ji ← Li ∩ Jj
6: end for
7: end for
8: for j = 1→ B; i1 ∈ Qj ; i2 ≥ i1, i2 ∈ Qj do
9: if

∑i2
i=i1

vi,j ≤ vmax then

10: f̂i1,i2,j ← SingleTileDP(c, L̂j , i1, i2)
11: end if
12: end for
13: for j = 1→ B; i2 ∈ Qj do
14: Si2,j ← {i1|i1 ∈ Qj , i1 ≤ i2, fi1,j−1 6=∞, f̂i1+1,i2,j 6=∞}
15: fi2,j ← min

i1∈Si2,j

(fi1,j−1 + f̂i1+1,i2,j)

16: end for
17: return minj∈[B] fn,j
18: end procedure
19: procedure SingleTileDP(c, L, i1, i2) . Theorem 4.2.2
20: for k = i1 → i2 do
21: τ(k) to be the last location of Lk
22: for l ∈ Lk do
23: if l − 1 /∈ Lk−1 then
24: l′ ← τ(k − 1)
25: else
26: l′ ← l − 1
27: end if
28: gk,l ← min(gk,l−1, gk−1,l′ + ck,l)
29: end for
30: end for
31: return gi2,τ(i2)

32: end procedure

first l locations of the tile. Lk denotes a set of feasible locations that cell

k can be placed, we use τ(k) denote the last location of Lk. Because we

have two nested for loops, one is going through all the cells, and the other is

going through all the feasible locations of the cell, thus the running time is
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O(
∑i2

i=i1
|Li|) = O((i2 − i1 + 1)m) = O(tm). By induction, we can show that

the optimal solution is gi2,τ(i2). In each iteration, we update the gk,l by taking

the minimum of two states. One is placing cell k at location l, whose cost is

gk−1,l′+ck,l. Note that we cannot set l′ to be l−1 directly, because it is possible

that l−1 is not a feasible location for cell k−1. The other state is not placing

cell k at location l, whose cost is gk,l−1, and gk,l−1 =∞ if l − 1 /∈ Lk.

Our SingleTileDP algorithm finds the optimal solution by checking

the states whether the current cell is placed at a certain location. Thus, the

time complexity of it is O(tm), which is the same as the work in [74] by

pruning solution spaces. In most cases, the single row placement can help

reduce the number of the current-overfilled tiles to zero. However, in some

extreme cases with tight maximum displacement or existence of blockages, it

may fail because the cells cannot be shifted much in the row.

4.2.2.3 Single Tile Placement

After the steps mentioned above, we determine the cells in each power

tile. We now present the single tile placement which helps address the maxi-

mum current violation in a power tile if the total current constraint has been

satisfied.

Problem 4.2.3 (Single Tile Placement). Given the cells within a power tile,

find a non-overlapping placement for these cells so that HPWL is minimized

under the constraint that the maximum current in the power tile is less that

the EM current limit Ilimit.
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In this section, we use C to denote the set of cells in the power tile and

N to denote the set of nets. Let L denote set of all possible site locations in

the tile. For the i-th cell in C, we use Wi to denote its width and Ii to denote

the its current. W denotes the width of the entire power tile. Let pi,k denote

the horizontal distance between the i-th cell and the pin corresponding to the

i-th cell associated with the k-th net.

MILP Formulation A power tile with an EM violation usually contains

more than ten cells and thus the sliding window approach for cell reorder-

ing [21] cannot be applied. Placement problems using mixed integer pro-

gramming (MIP) [22] and MILP [42, 66], by contrast, are more scalable by

applying branch-and-cut approach. Hence, we propose an MILP formulation

to determine the order and locations of cells in the power tile and consider the

no-overlap and maximum current constraints simultaneously. Since cells are

only moved inside the power tile, the y-coordinate of each cell is fixed. Assum-

ing the cells in other tiles is also fixed for the time, the total HPWL can be

formulated by the sum of the difference between the left and right boundary

of the bounding box for each net. We define the MILP model minimizing the

total HPWL as follows:
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min
x,y,l,r

∑
k∈N

(rk − lk) (4.4a)

s.t. xi,j,yi,j ∈ {0, 1}, ∀i ∈ C, j ∈ L, (4.4b)∑
j∈L

xi,j = 1, ∀i ∈ C, (4.4c)∑
i∈C

yi,j ≤ 1, ∀j ∈ L, (4.4d)∑
j∈L

yi,j = Wi, ∀i ∈ C, (4.4e)

j′+Wi∑
j=j′

yi,j −Wi · xi,j′ ≥ 0, ∀i ∈ C, ∀j′ ∈ L, (4.4f)∑
i∈C

∑
j∈L

Ii · (j +Wi/2) · xi,j ≤ Ilimit ·W, (4.4g)∑
i∈C

∑
j∈L

Ii · (W − j −Wi/2) · xi,j ≤ Ilimit ·W, (4.4h)

lk ≤
∑
j∈L

j · xi,j + pi,k ≤ rk,∀i ∈ C,∀k ∈ N . (4.4i)

Formulation (4.4) is optimized over four kinds of variables, where xi,j, yi,j are

binary variables and lk, rk are continuous variables. If the lower left corner of

cell i locates at site j then xi,j = 1, otherwise xi,j = 0. If cell i occupies site

j then yi,j = 1, otherwise yi,j = 0. Constraint (4.4c) makes sure that each

cell is placed at only one location, and Constraint (4.4d) guarantees that cells

do not overlap. Constraints (4.4e) and (4.4f) ensure that each cell occupies

the same number of total sites as its width, and all occupied site locations for

the cell are contiguous. According to Equation (4.1) and Equation (4.2), we

calculate the currents in the leftmost and rightmost power rail segments and
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force them to be smaller than the maximum current limit in Constraint (4.4g)

and (4.4h). The left boundary lk and right boundary rk of the bounding box

of each net are defined in Constraint (4.4i).

Speedup Techniques The aforementioned MILP formulation is optimal

as it considers the orders of cells and spacing simultaneously, but may suffer

from long runtime overhead. Here we propose a set of speedup techniques that

breaks the single tile placement into two phases, where cells are reordered and

shifted subsequently.

Figure 4.3 illustrates the fast way to solve the single tile placement

problem. Given the cells in the problematic power tile (Figure 4.3(a)), we pack

all the cells to the center (Figure 4.3(b)) and run the MILP algorithm shown

in Formulation (4.5) to determine the order of cells and ignore whitespaces in

the tile temporarily under the maximum current constraint (Figure 4.3(c)).

After that, the tile-based ordered placement SingleTileDP (in Algorithm

4.1) is run to determine the locations of cells if the wirelength can be improved

further under the maximum current constraint. The final placement is shown

in Figure 4.3(d).

Let D denote the distance of the leftmost cell to left power stripe, we
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define FastMILP as follows:

min
z,s,l,r

∑
k∈N

(rk − lk) (4.5a)

s.t. zi,j ∈ {0, 1}, ∀i 6= j ∈ C, (4.5b)

zi,j + zj,i = 1, ∀j > i ∈ C, (4.5c)

zi,j + zj,k − zi,k ≤ 1, ∀i 6= j 6= k ∈ C, (4.5d)

si =
∑
j 6=i

zj,i ·Wj +D, ∀i ∈ C, (4.5e)∑
i∈C

Ii · (si +Wi/2) ≤ Ilimit ·W, (4.5f)∑
i∈C

Ii · (W − si −Wi/2) ≤ Ilimit ·W, (4.5g)

lk ≤ si + pi,k ≤ rk, ∀i ∈ C,∀k ∈ N . (4.5h)

Formulation (4.5) is optimized over four kinds of variables, where zi,j is a

binary variable, and si, lk and rk are continuous variables. We use variable

zi,j to represent the relative order of cell i and j. If cell i is on the left of

cell j then zi,j = 1, else zi,j = 0. Variable si denotes the placement site of

lower left corner of that cell. For any three cells i, j and k, we also need

to make sure that if cell i is on the left of cell j and cell j is on the left

of cell k, then cell i must be on the left of cell k, which is guaranteed by

Constraint (4.5d). Constraint (4.5e) transfers the relative orders of a group of

cells to their site locations. The maximum current limit constraint is addressed

by Constraint (4.5f) and Constraint (4.5g). Constraint (4.5h) is identical to

Constraint (4.4i) in Formulation (4.4) to formulate HPWL.
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(a)

D

(b)

D

(c)

(d)

Figure 4.3: Speedup techniques for single tile placement. (a) The initial
placement, (b) the placement after packing cells, (c) the placement after cell
reordering and (d) the final placement after SingleTileDP.

Notice that the number of binary variables in Formulation (4.4) is 2 ·

|C| · |L|, and the number of binary variables in Formulation (4.5) is |C|2 − |C|.

It is observed that |L| � |C| in our benchmarks, which is the reason for that

solving Formulation (4.5) is much faster than Formulation (4.4) in practice.

Although these speedup techniques cannot guarantee an optimal solution of

the single tile placement problem, experimental results demonstrate that it can

achieve noticeable runtime speedup without sacrificing too much performance.
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Cell Move

Initial Placement

Single Row Placement

Output Placement

Single Tile Placement

MILP

FASTMILP

SINGLETILEDP

Figure 4.4: Overall flow of our detailed placement techniques.

There are some corner cases where the maximum current constraint

cannot be satisfied by any cell placement within the tile, even if the total cur-

rent of the tile is less than the threshold. Our MILP models become infeasible

in this situation and will report that no feasible solution can be found.

4.2.2.4 Overall Flow

The proposed detail placement flow for power grid EM mitigation is

shown in Figure 4.4. The first two stages are cell move and single row place-

ment to reduce the total currents in current-overfilled tiles. The third stage is

single tile placement to reduce the maximum current in each of power tiles with

EM violations. Single tile placement has two available algorithms, including

the original MILP algorithm and a series of speedup techniques (FastMILP

and SingleTileDP).
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4.2.3 Experimental Results

Our placement framework was implemented in C++ and run on a 3.40

GHz Linux machine with 32 GB memory. Since EM violations are more notice-

able at advanced nodes, we validated our algorithms on the set of benchmarks

from [74], which integrated NanGate 15nm standard cell library [7] into IC-

CAD 2014 placement benchmarks [55] and used RippleDP [27] to generate the

initial detailed placements. Table 4.1 presents the characteristics of this set of

benchmarks. ICCAD 2014 placement contest defines two maximum displace-

ment limits for each design, and we chose the smaller one for less perturbation

to the original placements, as listed in column “Disp. (um)”. GUROBI [40]

was used as the MILP solver. We set the user-defined parameters tc and β

to 0.7 and 5. Note that for some extremely dense power tiles, it takes a long

time to find the optimal solution. Thus, we set a time limit for each run of

the MILP solver to 200s.

We set the supply voltage, operating temperature and clock frequency

to 0.88V, 125◦C and 1GHz in the experiments. Cell current was calculated

from the NLDM file in NanGate 15nm standard cell library [7]. We studied

the typical values of the metal width of power grids at 16-nm nodes and set

power rail and power stripe wire width to 0.09um and 0.32um, respectively.

The power tile width was set to 5.76um. The EM DC current limit under

this setting was 0.067mA. To demonstrate the effectiveness of the proposed

flow, we set the EM DC current limit tighter to 0.026mA for benchmarks

b19, mgc edit dist and mgc matrix mult with small initial violation numbers
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(≤ 40).

Table 4.2 shows the detailed placement results. “MILP flow” and “Fast

flow” denote the flows using the original MILP algorithm (Section 4.2.2.3) and

the speedup techniques (Section 4.2.2.3) respectively in the single tile place-

ment step. “EM vio.” denotes the number of EM violations. “∆ HPWL” and

“∆ sHPWL” denote the change in wirelength and scaled wirelength. “CPU”

denotes the total runtime in second. The MILP flow is effective to fix 96% of

the EM violations on average and its impacts on wirelength (0.31%) and place-

ment density (0.2%) are very small. Furthermore, compared with the MILP

flow, the fast flow is at least 8× faster while achieving comparable results,

regarding EM violation reduction (95.4%), wirelength (0.35%), and density

(0.21%). It is worth mentioning that the fast flow performs better than the

MILP flow for the vga lcd benchmark. It is because although the MILP ap-

proach theoretically gives an optimal solution to the power tile placement, the

optimal solutions to the local sub-problems do not necessarily lead to the final

globally optimal solution.

The key ideas of our work are first reducing the total currents for

current-overfilled power tiles by cell move and single row placement, and fur-

ther reducing the maximum current in each power tile by single tile placement.

Figure 4.5 demonstrates that the two types of placement techniques are indis-

pensable for EM violation reduction. The first two techniques for total current

reduction can remove a part of the EM violations, but more EM violations are

fixed by single tile placement. As shown in Figure 4.6, the initial number of
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(a) (b) (c)

Figure 4.5: The EM violation map of design leon2. The tiles with violations
are marked in red. (a) The initial design, (b) after single row placement, and
(c) after single tile placement.

EM violations is largely dependent on the EM current limit, and our placement

flow can achieve zero EM violations in a wide range of current limits. The pro-

posed placement techniques are designed to serve as an incremental placement

step that can be used in ECO stage as well. It can be easily integrated into

the existing physical design flow to eliminate EM violations iteratively.

4.2.4 Summary

This work presents a set of detailed placement mitigation techniques to

handle power grid EM, including cell move, single row placement, and single

tile placement. Experimental results show that these techniques achieve high-

quality placement results regarding EM violation reduction, total wirelength,

and placement density.

121



0.04 0.06 0.08 0.10 0.12 0.14 0.16

EM DC current limit (mA)
0

500

1000

1500

2000

2500

3000

#E
M

vi
ol

at
io

ns

Before
After
Runtime

0

200

400

600

800

1000

R
un

tim
e

(s
)

Figure 4.6: The number of EM violations before and after placement and
runtime vs. EM DC current limit for design leon2.

4.3 Learning-Based Detection and Multistage Mitiga-
tion for Signal Electromigration

While EM and its impact on design reliability have long been under-

stood, in the past, its effects were limited and were not a severe concern for

signal nets. Signal wires were considered to be less susceptible to EM failures

than power grids, as they usually carry small average currents and benefit from

the healing effect of bidirectional currents [69]. However, the scaling trends

in advanced technology nodes, along with strict and complex EM rules, make

advanced designs more susceptible to signal EM. Driven by the continuous

push for better performance, signal nets that are usually thin and long are

expected to switch at gigahertz speed, a scenario that further exacerbates the

effects of signal EM in advanced technology nodes [1, 51]. Besides, EM rules

have also become more complex to take into consideration the physical effects
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of advanced technologies. In mature technology nodes, the rule-specified limits

provided by the foundry were primarily metal width and temperature. At 28

nm and below, we see the addition of more dependencies, such as interconnect

length, via dimensions, and temperature increase.

EM failure has been dealt with at different design stages, including

placement [138] and routing [24, 49, 67, 93]. However, the focus has been con-

centrated on applying optimization techniques after EM violations are already

detected, or using approximation methods to guess possible violations. In this

work, we propose a novel signal EM hotspot detection and mitigation frame-

work based on information available at the placement phase. In particular,

three main steps constitute our proposed approach. As a first step, a classifi-

cation model is trained through machine learning techniques to detect signal

EM hotspots based on features extracted from the placement scheme. This

model can be trained using data obtained from designs where EM hotspots are

already known, and then, it can be applied to detect hotspots in new designs.

In addition to its main role in hotspot prediction, the model helps identify the

placement-based features that are critical for hotspot identification. Know-

ing these features is fundamental for constructing effective EM adjustment

techniques at the placement stage.

In the second step, the placement scheme is adjusted by incorporating

signal EM hotspot mitigation mechanism in the cost function of the placement

problem. This mechanism incorporates the detection model information about

critical features to address the EM hotspots. At the end of this step, a new
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placement is obtained. As a last step, the classification model is used again

to detect hotspots still present after placement adjustment and non-default

routing (NDR) rules are applied to address these hotspots in the routing stage.

4.3.1 Problem Formulation

The key idea of our proposed approach is to leverage machine learning

techniques to detect EM hotspots at placement stage and exploit the trained

models to guide EM mitigation. An overview of the framework is presented in

Figure 4.7.

Figure 4.7(a) shows the process of training an EM hotspot prediction

model. Starting from the input netlist of the training set, a PD tool is used

to get the placement result. Next, routing and EM evaluation are performed

to get the EM hotspots in the designs. Finally, the placement information is

used along with the EM hotspot results to train a classification model for EM

detection.

Figure 4.7(b) demonstrates the application of the EM detection and

mitigation framework. After having a trained model for EM detection, PD

tool is used to do placement, and then EM hotspots are predicted using the

classification model given the placement-related features. Next, placement is

incrementally updated to mitigate predicted EM hotspots. Then, the EM

detection model is used again to detect remaining hotspots that are finally

routed using NDR rules.
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Figure 4.7: An overview of the hotspot detection model training (a) and its
application in EM detection and mitigation (b) is shown.
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4.3.2 Machine Learning for EM Detection

4.3.2.1 Features Extraction

Despite the fact that the current profile for the design is not available

at the placement stage, multiple features that are highly correlated with the

current can be crafted. To elaborate on this, we consider the three nets in

Figure 4.8, A, B and C. One can expect net A to have the highest current

density. This is mainly because, unlike the 2-pin nets B and C, A is a 6-pin net

connected with two large cells. On the other hand, net C is the one least prone

to EM. In practice, although both B and C are 2-pin nets, Figure 4.8 clearly

shows that the neighborhoods around the pins of net B are more congested

(i.e., high pin density). This in turn can lead to detours when routing net B;

hence, longer wires, large wire capacitance and higher current.

B A

Blockage

A

A

C

B

A

C

A

Figure 4.8: An illustration of a placement scheme with three nets is shown.
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In our approach, we extract a set of features from the placement to be

used for training the model for EM detection. These features can be divided

into two categories: (i) net-specific features and (ii) neighborhood related fea-

tures. The net-specific features used are the following:

1. Net half-parameter wirelength (HPWL)

2. Number of net pins

3. Net switching activity

4. Maximum fall transition time

5. Maximum capacitance

6. Circuit frequency

On the other hand, neighborhood related features are used to capture

information about possible congestion around net pins. To define these fea-

tures, the placement region is divided into a grid with fixed window size as

shown by the gray-colored grid in Figure 4.8. Then, for each net, a set of

features is defined over all grid windows containing pins connected to the net.

Using Figure 4.8 as an example, we consider the feature defined as the

average number of pins. To compute this feature for net A, we first identify

the grid windows containing pins of net A which are the three windows in the

first row, and second and third window in the second row counting from the

left. Then, we average the number of pins in the five windows counting all pins
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in the windows, not only those connected to net A. This results in a feature

value equal to 21
5

for net A. Computing the same feature for nets B and C

gives 5 and 2 respectively. The full list of neighborhood related features used

is as follows:

1. Average number of pins

2. Average number of cells

3. Average cell area

4. Average area capacity (space not occupied by blocks)

5. Average number of placement sites

It is important to note that all the features mentioned above can be

extracted without any knowledge about the final routing scheme. Moreover,

with the exception of switching activity that can be obtained through high-

level hardware simulation, all features can be extracted from the placement

scheme.

4.3.2.2 Data Preparation

Starting from the labeled training set, features defined in the previous

section are extracted resulting in a feature vector with a Boolean class label for

each net in the design. Two important characteristics of the resulting dataset

should be examined. First, the dataset is significantly imbalanced. In other
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words, the EM hotspot class (H) is enormously outnumbered by the non-

hotspot class (NH). Secondly, the different features have different ranges of

values. For instance, HPWL has a wider range of possible values compared to

the number of pins. These two characteristics can affect the training process

and the interpretability of the model, and hence, they should be addressed

before training.

In the scenario where the two classes are imbalanced, the training is

expected to be biased towards the objective of learning the larger class while

neglecting the errors in predicting the smaller one. Among the methods used to

address such bias is class weighting where higher weights are given to instances

in the smaller class when formulating the training objective. This can be

done by associating different costs with mispredicting instances from different

classes; i.e., mispredicting an instance from the smaller class is associated with

higher cost compared to mispredicting an instance from the larger one.

On the other hand, having features with different ranges of values can

affect both the model training and its interpretability. During training, numer-

ical issues arising from such case can cause convergence problems. In addition,

in distance-based classification models, different ranges of values can result in

unwanted weighting for the features. Moreover, having features with different

ranges makes the task of interpreting any model more challenging. For exam-

ple, important features in a trained model are usually inferred from the weight

given to each feature after the training phase. For the case where all features

have similar ranges, it suffices to compare the absolute values of the weights
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to judge upon the importance of the features. However, with features taking

values in different ranges, this comparison does not hold any more. Therefore,

a normalization step is done to map all features to the [0, 1] interval to ensure

they all have the same weight when training the EM detection model.

4.3.2.3 Cascaded Model for False Alarm Avoidance

The EM detection problem can be cast into a classification problem. In

practice, a wide range of classification models are available for use, and these

models vary in their complexity and application space [16]. Two important

characteristics of the EM detection application contribute to the decision upon

the classification model to use. First, the problem is a binary classification

problem (i.e., two class problem) with relatively small number of features.

Secondly, the EM detection model is a part of an EM detection and mitigation

framework. Hence, in addition to the detection task, we are interested in

analyzing the trained model to arrive at the features contributing the most

to the prediction decision. Knowing these features plays a significant role

in the EM mitigation process described in the next section. Therefore, the

interpretability of the trained model is critical from this perspective.

In practice, as the complexity of the classification model increases, in-

terpretabilty becomes more challenging. And since the problem at hand is

low-dimensional, we choose to use logistic regression [16, 18] as the classifi-

cation model. Such model is known to behave well with binary classification

problems and its regression coefficients can be used to interpret the importance
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of the different features.

As will be demonstrated in the result section, logistic regression can

achieve high EM detection accuracy at a small false alarm rate. However,

by examining the overall flow of the EM detection and migration framework

and the relative number of H and NH instances, false alarm rate should be

addressed from a different perspective. Technically, in a general classification

problem, correctly labeling 99% of the target group (H in our case) with 3%

false alarm rate can be acceptable. However, given that the two groups are

unbalanced, even a 3% false alarm rate can result in a number of false alarms

that is a multiple of that of H instances.

Hence, with such number of false alarms, mitigation techniques will

perform a large number of unnecessary changes to the placement and routing

schemes; thus, introducing additional overheads. To address this issue, we

introduce the two-stage detection approach shown in Figure 4.9. In the first

stage, a classification model M1 is trained to detect EM hotspots using all the

nets in the training dataset. After the first stage, all nets with NH prediction

will be labeled as NH without further processing. For nets labeled H by M1,

a new model, M2, is trained to prune out false alarms. M2 is trained using

nets in the training dataset labeled H by M1. For those nets going through

the second stage, the final label will be the prediction of M2.

In practice, when two models are trained, inference for new nets can be

done in a way analogous to the training process. First, an initial prediction

is obtained by applying M1, and if the prediction is NH the net is given that

131



as the final label. Otherwise, a new prediction is obtained from M2, and the

final label is that generated by M2.

Input Net 
Features

M1 Prediction

Hotspot?

Label: NH

M2 Prediction

Hotspot?

Label: H

True

True
False

False

Figure 4.9: The flow of the two stage detection approach is shown.

This proposed approach helps reduce the number of false alarms while

preserving the interpretability characteristic of the model. This translates to

reducing the overhead incurred by the mitigation process.

4.3.3 Machine Learning guided EM Mitigation

4.3.3.1 Placement Adjustment

Besides its main role in detecting nets susceptible to EM failures, the

trained EM detection model points out the potential directions to mitigate

them The coefficients in the trained model indicate that wirelength and cell

density, the two features that can be optimized in the given placement, con-
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tribute significantly to EM severity. Therefore, we propose an incremental

placement approach to mitigate signal EM violations with minimal perturba-

tion to the layout. The major purpose of this technique is to achieve selective

wirelength reduction and cell density improvement.

Similar to a timing-driven placement [13], a net ni is assigned a weight

wi based on its EM criticality. The higher the weight assigned to a given net

is, the more is the push by the placer to reduce its wirelength. Considering

cell density as well, the cost for a cell move is defined as:

wHPWL(1 + α · cd), (4.6)

where wHPWL is the weighted wirelength sum of all the nets connected to

this cell, i.e., wHPWL =
∑

iwi HPWL(i), and cd denotes the cell density cost

computed according to [57,57].

The incremental placement scheme is summarized in Algorithm 4.2.

After detailed placement, PD tools are able to output high-quality placement

results in term of timing, power, and routability of a design, which serve as

the starting point for our signal EM optimization. As a first step, the trained

EM prediction model is used to detect the set of EM hotspot nets H in the

input placement scheme. Next, the set of cells C connected by the nets H

is identified and reordered by their area. At this stage, the objective of the

proposed incremental placer is to move the cells in C in a way to minimize the

wirelength of the nets in H and mitigate the cell density around the target

cells.
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Algorithm 4.2 Cell Move

Input: Initial placement, predicted EM hotspot nets H;
1: C ← set of cells connected by H;
2: Reorder C;
3: repeat
4: for ci ∈ C do
5: Determine the search region of ci;
6: Move ci to the position that minimizes the objective;
7: end for
8: until converged or maximum iteration reached
9: Legalize placement;

The principal idea is to find a search region for a cell in the placement

region and move the cell to the best location in this region. Different from the

classical optimal region calculation method [94], we use the weighted median to

compute the optimal region for cell move since the nets have different weights

in the current scheme. Then, the optimal region is extended to larger search

region.

We perform wirelength optimization to improve both wirelength and

density until less than 1% of the target cells are moved in an iteration or the

maximum number of iterations is reached. After that, legalization is performed

to remove possible overlaps.

4.3.3.2 Non-Default Routing for EM Adjustment

While the aforementioned incremental placement algorithm is tailored

to address the EM hotspots, it does not guarantee the mitigation of all de-

tected hotspots. In other words, some EM hotspots can be still present after
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the incremental placement adjustment stage. For example, for the nets with

high fanouts, the current flowing through the main metal branch drives large

capacitive loads, therefore, improving wirelength is not effective enough to

solely resolve the current issue.

However, we can still utilize the EM prediction model after the proposed

incremental placement. That is, we can set the router to route those predicted

hotspot nets with wider widths to avoid iterative fixing. Practically, this option

is readily available in many PD tools through the non-default routing (NDR)

rule option. As the name implies, NDR applies non-default routing geometries

to those selected nets in the design based on user specification; i.e., instead of

the default single-width single-spacing (1W1S) scheme, a user set scheme can

be used to route specific nets in the design. This option is leveraged to address

the EM hotspots detected by the model in Section 4.3.2.3 after incremental

placement using a double-width single-spacing (2W1S) NDR rule.

4.3.4 Experimental Results

Throughout the experiments, TSMC 40nm CMOS physical design kit

(PDK) [6] was used for evaluating the efficacy of our proposed framework.

Moreover, slow process, voltage and temperature (PVT) corners were used to

generate a worst-case EM environment. The five benchmark circuit netlists

used are taken from ICCAD 2014 placement contest [57] and OpenCores [4]

respectively. In addition, physical design was performed using Synopsys IC

Compiler (ICC) 2017 [5].
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4.3.4.1 EM Prediction Model Comparison

Among the five available designs, three were used to train the hotspot

detection model, while the remaining two were used for testing. The training

data set consisting of designs b19, ecg, and mmm contains a total of 426152

nets of which 2681 are hotspots. Meanwhile, designs med and vga with 298197

nets, including 648 hotspots, are used for testing.

The confusion matrix summarizing the evaluation of the model on the

testing data when a single stage logistic regression (M1) was used is shown in

Table 4.3. While the results demonstrate high true positive rate, the number

of false alarms is more than 10× the number of actual hotspots. On the

other hand, Table 4.4 shows the confusion matrix when the cascaded model

(M1+M2) described in Section 4.3.2.3 was used. One can notice a reduction

of 65% in the number of false alarms at the cost of missing 21 of the hotspots.

This cascaded model provides a compromise between the high accuracy of the

hotspot detection and the overhead induced from fixing nets wrongly labeled

as hotspots. The details will be demonstrated in Section 4.3.4.3.

Table 4.3: Confusion matrix of M1.

NH H

N̂H 290084 2

Ĥ 7465 646
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Table 4.4: Confusion matrix of M1+M2.

NH H

N̂H 295178 23

Ĥ 2371 625

4.3.4.2 Incremental Placement + NDR

As mentioned earlier, our mitigation flow consists of two steps: incre-

mental placement and NDR. We performed the two mitigation techniques on

the five designs to verify the effectiveness. The placement algorithm in Sec-

tion 4.3.3.1 was implemented in C++. During EM mitigation at the placement

stage, at most 6 incremental placement iterations were allowed in the exper-

iments, and the parameter α in formulation (4.6) was set to 1. We set the

same weight w for all the hotspot nets as w = 2000/ |H|, while keeping unity

weight for NH nets. The information of the detected hotspots is provided to

ICC for performing NDR.

To demonstrate the efficacy of each individual component in the pro-

posed multistage mitigation framework, we run several flows as described be-

low and the results are summarized in Table 4.5. We first run clock tree

synthesis (CTS) and default routing on the initial placement generated by

the PD tool, and the number of the final EM violations without any repair

approaches is shown under the column “Initial”. Second, we performed incre-

mental placement with the actual EM hotspots being known, and then run

CTS and routing. The number of final EM violations under this flow is un-

der column “Incr. place”. Lastly, we run the incremental placement, CTS
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and NDR routing and reported the final number of EM violations under the

column “Incr. place + NDR route”. Note that the target EM violations to re-

pair for all the flow shown in Table 4.5 are reported from ICC EM evaluation.

It can be observed that incremental placement solely reduces 37.1% of the

violations on average, and incremental placement and NDR routing reduces

74.1% violations, which is about the same performance achieved when using

EM fixing in PD tool (73.1%).

Table 4.5: Comparison of PD tool EM repair, the incremental placement flow,
and incremental placement combined with NDR flow in terms of final EM
violations is shown.

Design Initial PD tool Incr. place Incr. place + NDR

b19 302 104 260 108
ecg 225 3 70 21
mmm 2,154 1,637 1,997 1,320
med 252 6 34 6
vga 396 80 360 83

Avg. improve — 73.1% 37.1% 74.1%

4.3.4.3 Framework Validation

The EM detection model was trained on three benchmarks, b19, ecg

and mmm, and we integrated the trained model into the proposed framework,

which is applied to the five benchmarks. Table 4.6 reports the number of EM

violations, routed wirelength (Wirelength), net area (Area), overall runtime,

worst negative timing slack (WNS), and total negative timing slack (TNS) at

the end of detailed routing in different flows. “Initial” denotes the default PD
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Figure 4.10: Runtime comparison between the PD fixing flow (CTS + default
route + PD fixing) and the proposed M1+M2 flow (incr. place + CTS +
NDR) is shown.

flow without any EM fixing attempts, while “PD fixing” denotes using wire

widening throughout during the fixing stage. “M1” and “M1+M2” represent

the proposed EM detection and mitigation flow with M1 and M1+M2 as the

EM prediction model respectively.

We can see that the proposed M1+M2 flow fixes about the same number

of EM violations as the PD fixing flow. It also achieves 15× speedup compared

with the PD fixing flow. The runtime decomposition for the PD tool fixing

flow and our proposed flow with the cascaded model is shown in Figure 4.10.

One can see that, compared to PD fixing flow whose runtime is dominated by

post-route EM fixing, the M1+M2 flow can perform the incremental placement

in less than 10 seconds and NDR takes nearly the same runtime as the default

routing.
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4.3.5 Summary

In this work, we propose a novel EM hotspot detection and mitigation

framework using learning-based detection and multistage mitigation. Utilizing

features extracted from the placement, a classification model is proposed to

detect EM hotspots in the design. In addition, an incremental placement

strategy is proposed to mitigate the detected EM hotspots. EM hotspots still

present after the placement-stage mitigation are addressed through the NDR

scheme in the routing stage. Contrary to conventional EM mitigation flows,

the proposed approach addresses the EM problem at an earlier stage in the

PD process resulting in faster closure and versatile mitigation techniques.
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Chapter 5

Conclusions

This dissertation has proposed a set of physical design algorithms and

modeling methodologies to enhance design manufacturability and reliability.

The major contributions include:

• Chapter 2 has explored machine learning approaches to improve accu-

racy and efficiency for lithography hotspot detection. (a) Section 2.2

has presented LithoGPA, a hotspot detection framework with Gaussian

Process assurance to provide confidence in classifier prediction. Besides,

an active data selection scheme based on weak classifiers is developed

to reduce the computational cost in data preparation. (b) Section 2.3

has investigated the usage of AUC as a robust measure of classifier dis-

crimination performance. Different surrogate loss functions for AUC

maximization are proposed to be used during training to systematically

handle the class imbalance problem. Experimental results demonstrate

that the proposed loss functions are promising to outperform the tra-

ditional cross-entropy loss when applied to the state-of-the-art neural

network model for hotspot detection.
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• Chapter 3 has studied effective and efficient lithography modeling method-

ologies to enable fast design closure and improve manufacturing yield.

(a) Section 3.2 has presented the LithoGAN framework for end-to-end

lithography modeling. LithoGAN is a dual learning network that pre-

dicts the resist shape using a CGAN model and predicts resist center

using a CNN model. The experiments on N10 and N7 datasets demon-

strate that the proposed framework predicts resist patterns of high qual-

ity while obtaining orders of magnitude speedup compared to conven-

tional lithography simulation and previous machine learning based ap-

proach. (b) Section 3.3 has described TEMPO, a lithography modeling

framework for mask topography effects that is capable of generating 3D

aerial images efficiently and accurately. The two flexible schemes of op-

erations in TEMPO provide different trade-offs between accuracy and

efficiency, which promotes the wider application of TEMPO in different

stages of process development.

• Chapter 4 has focused on physical design for emerging reliability chal-

lenges and design constraints. (a) Section 4.2 has presented a set of

detailed placement mitigation techniques to handle power grid EM, in-

cluding cell move, single row placement, and single tile placement. Ex-

perimental results show that these techniques achieve high-quality place-

ment results in terms of EM violation reduction, wirelength, and place-

ment density. (b) Section 4.3 has demonstrated the ineffectiveness of the

traditional design-then-fix flow in advanced nodes. A novel EM hotspot
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detection and mitigation framework has been proposed based on the in-

formation available at the placement stage. A multistage EM mitigation

approach has been proposed to address the problematic nets detected by

the classification model.

With the above explorations and discussions, this dissertation has demon-

strated the effectiveness of advanced modeling and optimization techniques

such as machine learning and optimization algorithms. Especially with the

rising of deep learning, many conventional and emerging issues in VLSI de-

sign can be relieved, enabling further scaling, faster design closure, and more

cost reduction. In particular, the following future research directions and open

problems are interesting:

• DFM with machine learning. While conventional machine learning mod-

els are typically applied in the scope of regression and classification,

generative learning has taken one step further in DFM to act as a stand-

alone simulator as in LithoGAN [133] and TEMPO [135] and as an op-

timizer in GAN-OPC [129] and GAN-SRAF [12]. It is expected that

such models will be introduced into different early exploration stages in

DFM to achieve orders of magnitude speedup compared to traditional

approaches. Besides, there are several practical issues needed to con-

sidered: pattern coverage, data preparation cost, and model efficiency.

Active learning, adversarial learning, and transfer learning are possible

candidates to resolve those issues and revolutionize the DFM flow.
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• DFR with machine learning. This dissertation has demonstrated the

benefits of bringing machine learning to the EM fixing flow. It en-

ables the incorporation of EM detection and fixing techniques into earlier

stages of physical design. Machine learning methods can be potentially

applied to address other reliability issues, including aging due to NBTI

and HCI, to be identified and automatically fixed concurrently with the

design process. In this way, not only are the reliability issues addressed

earlier and entirely in the design process, but the trade-offs between tim-

ing, power, signal integrity, and reliability are considered simultaneously.

Designs that are truly optimized and meet all performance and reliability

requirements can be obtained.

It is worthwhile to mention that the manufacturability and reliability

problems shall not be considered separately, as they do affect each other, e.g.,

the interconnect printability and signal EM failures. Future process modeling

and design methodologies are expected to involve more cross-layer optimiza-

tion, where synergistic modeling and optimizations of joint manufacturability

and reliability effects will be needed. At the same time, VLSI circuits are likely

to be highly optimized according to different application domains for perfor-

mance, power, and cost. Such domain specifications require CAD tools to learn

different design objectives from application domains and perform automatic

adjustments to optimization strategies in the design flow.
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