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Abstract

The linear receptive field describes a mapping from sensory stimuli to a one-dimensional variable governing a neuron’s
spike response. However, traditional receptive field estimators such as the spike-triggered average converge slowly and
often require large amounts of data. Bayesian methods seek to overcome this problem by biasing estimates towards
solutions that are more likely a priori, typically those with small, smooth, or sparse coefficients. Here we introduce a novel
Bayesian receptive field estimator designed to incorporate locality, a powerful form of prior information about receptive
field structure. The key to our approach is a hierarchical receptive field model that flexibly adapts to localized structure in
both spacetime and spatiotemporal frequency, using an inference method known as empirical Bayes. We refer to our
method as automatic locality determination (ALD), and show that it can accurately recover various types of smooth, sparse,
and localized receptive fields. We apply ALD to neural data from retinal ganglion cells and V1 simple cells, and find it
achieves error rates several times lower than standard estimators. Thus, estimates of comparable accuracy can be achieved
with substantially less data. Finally, we introduce a computationally efficient Markov Chain Monte Carlo (MCMC) algorithm
for fully Bayesian inference under the ALD prior, yielding accurate Bayesian confidence intervals for small or noisy datasets.
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Introduction

A fundamental problem in systems neuroscience is to determine

how sensory stimuli are functionally related to a neuron’s response.

A popular mathematical description of this encoding relationship

is the ‘‘cascade’’ model, which consists of a linear filter followed by

a noisy nonlinear spiking process. The linear stage in this model is

commonly identified as the neuron’s spatiotemporal receptive field,

which we will refer to simply as the receptive field (RF) or ‘‘filter’’.

The RF describes how a neuron sums up its inputs across space

and time. It can also be conceived as the spatiotemporal stimulus

pattern that optimally drives the neuron to spike. A large body of

literature in sensory neuroscience has addressed the problem of

estimating a neuron’s RF from its responses to a rapidly fluctuating

stimulus, a problem known generally as ‘‘neural characterization’’

[1–17].

Here we focus on a highly simplified encoding model that

describes neural responses in terms of a linear filter and additive

Gaussian noise [5,11,18]. Although this model gives an imperfect

description of real neural responses, the RF estimators that arise

from it (such as the spike-triggered average) are consistent under a

much larger class of models [7,19,20]. The maximum likelihood

filter estimate under the linear-Gaussian model is the whitened

spike-triggered average (STA), also known as linear regression, reverse

correlation, or the first-order Weiner kernel [1–3]. The STA has an

extensive history in neuroscience and has been used to

characterize RFs in a wide variety of areas, including retina

[4,7,13,21,22], lateral geniculate nucleus [23,24], primary visual

cortex [5,25], and peripheral as well as central auditory brain

areas [8,9,11,26–28].

The STA is often high-dimensional (containing tens to hundreds

of parameters) and generally requires large amounts of data to

converge. With naturalistic stimuli, the whitened STA is often

corrupted by high-frequency noise because natural scenes contain

little power at high frequencies. A common solution is to regularize

the filter estimate by penalizing unlikely parameter settings,

generally by biasing parameters towards zero (also known as

‘‘shrinkage’’). Statisticians have long known that biased estimators

can achieve substantially lower error rates in high-dimensional

inference problems [29,30], and Bayesian methods formalize such

biases in terms of a prior distribution over the parameter space. In

neuroscience applications, priors for sparse (having many zeros) or

smooth (having small pairwise differences) filter coefficients have

been used to obtain substantially more accurate RF estimates

[9,11,12,15,31].

However, neural receptive fields are more than simply sparse or

smooth. They are localized in both spacetime and spatiotemporal

frequency. This is a structured form of sparsity: RFs contain many

zeros, but these zeros are not uniformly distributed across the

filter. Rather, the zeros tend to occur outside some region of

spacetime and, in the Fourier domain, outside some region of

spatiotemporal frequency. Although this property of receptive

fields is well-known [32,33], it has not to our knowledge been

previously exploited for receptive field inference. Here we

introduce a family of priors that can flexibly encode locality.

Our approach is to first estimate a localized prior from the data,

and then find the maximum a posteriori (MAP) filter estimate

under this prior. This general approach is known in statistics as

parametric empirical Bayes [34,35]. Our method is directly

inspired by previous empirical Bayes estimators designed to
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incorporate sparsity [36] and smoothness [11]. We show that

locality can be an even more powerful source of prior information

about neural receptive fields, and introduce a method for

simultaneously inferring locality in two different bases, yielding

filter estimates that are both sparse (local in a spacetime basis) and

smooth (local in a Fourier basis).

Results

The results section is organized as follows. First, we will describe

the linear-Gaussian encoding model and the empirical Bayes

framework for receptive field estimation. Second, we will review

several previous empirical Bayes RF estimators, to which we will

compare our method. Third, we will derive three new receptive

field estimators that we collectively refer to as automatic locality

determination (ALD). We will apply ALD to simulated data and to

neural data recorded in primate V1 and primate retina. Finally,

we will describe an extension from empirical Bayes to ‘‘fully

Bayesian’’ inference under the ALD prior.

Model-based receptive field estimation
A typical neural characterization experiment involves rapidly

presenting stimuli from some statistical ensemble and recording

the neuron’s response in discrete time bins. Let xi denote the

(vector) stimulus and yi the neuron’s (scalar) spike response at time

bin i. Here, xi is a vector of spacetime stimulus intensities over

some preceding time window that affects the spike response at time

bin i.

We will model the neuron’s response as a linear function of the

stimulus plus Gaussian noise:

yi~kTxizei, ei*N (0,s2), ð1Þ

where k denotes the neuron’s receptive field and ei is a sample of

zero-mean, independent Gaussian noise with variance s2. This

model is the simplest type of cascade encoding model (depicted in

Fig. 1 A), and plays an important role in the theory of neural

encoding and decoding [5,11,17,28,37,38]. For a complete dataset

with n stimulus-response pairs, likelihood is given by

P(Y jX ,k)~
1ffiffiffiffiffiffi

2p
p

s
� �n exp {

1

2s2
(Y{Xk)T(Y{Xk)

� �
, ð2Þ

where Y~½y1,y2, . . . ,yn�T is a column vector of neural responses

and X~½x1,x2, . . . ,xn�T is the stimulus design matrix, with i’th

row equal to xT
i . The maximum likelihood (ML) receptive field

estimate is:

k̂kml~ arg max
k

P(Y jX ,k)~(XTX )�1XTY : ð3Þ

This estimate, also known as the whitened spike-triggered average,

and is proportional to the ordinary spike-triggered average if the

stimulus ensemble is uncorrelated, meaning XTX!I .

A major drawback of the maximum likelihood estimator is that

it typically requires large amounts of data to converge, especially

when k is high-dimensional. This problem is exacerbated for

correlated or naturalistic stimulus ensembles, because the high-

frequency components of k are not well constrained by the data.

In the Bayesian framework, regularization is formalized in terms of

a prior distribution P(k), which tells us that we should bias our

estimate of k toward regions of parameter space that are more

probable a priori. The posterior distribution, which captures the

combination of likelihood and prior information, is given by

Bayes’ rule:

P(kjX ,Y )~
P(Y jX ,k)P(k)

P(Y jX )
: ð4Þ

The most probable filter given the data and prior is known as the

maximum a posteriori (MAP) estimator:

k̂kmap~ arg max
k

P(Y jX ,k)P(k)

~ arg min
k

½ 1

2s2
(Y{Xk)T(Y{Xk){log P(k)�:

ð5Þ

The log prior behaves as a ‘‘penalty’’ on the solution to an

ordinary least-squares problem, forcing a tradeoff between

minimizing the sum of squared prediction errors and maximizing

log P(k).

Biased estimators can achieve substantial improvements over

the maximum likelihood, particularly for high-dimensional

problems, without giving up desirable features such as consistency

(i.e., converging to the correct value in the limit of infinite data).

However, the important question arises: how should one select a

prior distribution? (Choosing the wrong prior can certainly lead to a

worse estimate!)

One common method is to set the prior (or ‘‘penalty’’) by cross-

validation. This involves dividing the data into a ‘‘training’’ and

‘‘test’’ set, and selecting the prior for which k̂kmap (estimated on the

training set) achieves maximal performance on the test set.

However, this approach is computationally expensive and may be

intractable for a prior with multiple hyperparameters. Empirical

Bayes is an alternative method for prior selection that does not

require separate training and test data.

Empirical Bayes
Empirical Bayes can be viewed as a maximum-likelihood

procedure for estimating the prior distribution from data. It is also

known in the literature as evidence optimization, Type II maximum

Author Summary

A central problem in systems neuroscience is to under-
stand how sensory neurons convert environmental stimuli
into spike trains. The receptive field (RF) provides a simple
model for the first stage in this encoding process: it is a
linear filter that describes how the neuron integrates the
stimulus over time and space. A neuron’s RF can be
estimated using responses to white noise or naturalistic
stimuli, but traditional estimators such as the spike-
triggered average tend to be noisy and require large
amounts of data to converge. Here, we introduce a novel
estimator that can accurately determine RFs with far less
data. The key insight is that RFs tend to be localized in
spacetime and spatiotemporal frequency. We introduce a
family of prior distributions that flexibly incorporate these
tendencies, using an approach known as empirical Bayes.
These methods will allow experimentalists to characterize
RFs more accurately and more rapidly, freeing more time
for other experiments. We argue that locality, which is a
structured form of sparsity, may play an important role in a
wide variety of biological inference problems.

Receptive Field Inference with Localized Priors
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likelihood, and maximum marginal likelihood [11,34,39–41]. The basic

idea is that we can compute the probability of the data given a set

of hyperparameters governing the prior by ‘‘integrating out’’ the

model parameters. This probability is really just a likelihood

function for the hyperparameters, so maximizing it results in a

maximum-likelihood estimate for the hyperparameters. (Techni-

cally, this is parametric empirical Bayes, since we will assume a

particular parametric form for the prior; see [34,35,42] for a more

general discussion).

Let h denote a set of hyperparameters controlling the prior

distribution over k, which we will henceforth denote P(kjh). The

posterior distribution over the RF (eq.4) can now be written:

P(kjX ,Y ,h)~
P(Y jX ,k)P(kjh)

P(Y jX ,h)
: ð6Þ

The denominator in this expression is known as the evidence or

marginal likelihood. (Note that we ignored this denominator when

finding the MAP estimate (eq.5), since it does not involve k). The

evidence is the probability of the responses Y given the stimuli X
and the hyperparameters h, which we can compute by integrating

the numerator (eq.6) with respect to k:

P(Y jX ,h)~

ð
V

P(Y jX ,k)P(kjh)dk, ð7Þ

where V is the parameter space for k. Maximizing the evidence for

h therefore amounts to a maximum likelihood estimate of the

hyperparameters. The MAP estimate for k under this prior is an

empirical Bayes estimate, since the prior is learned ‘‘empirically’’

from the data.

Empirical Bayes can therefore be described as a two-stage

procedure: (1) Maximize the evidence to obtain ĥhml~

argmaxhP(Y jX ,h); (2) Find the MAP estimate for k under the

prior P(kjĥhml). Fig. 1 shows a diagram for this hierarchical

receptive field model the steps for empirical Bayesian inference.

Zero-mean Gaussian priors
Following earlier work [11,36,43,44], we will take the prior

distribution to be a Gaussian centered at zero:

P(kjh)~N (0,C(h)), ð8Þ

where C(h) is a covariance matrix that depends on hyperpara-

meters h in some yet-to-be-specified manner. This Gaussian prior

together with a Gaussian likelihood (eq.2) ensures the posterior is

also Gaussian:

P(kjX ,Y ,h)~N (m,L), L~(
1

s2
XTXzC{1){1, m~

1

s2
LXTY ,ð9Þ

where m and L are the posterior mean and covariance. The MAP

filter estimate k̂kmap is simply the posterior mean m, since the mean

and maximum of a Gaussian are the same. Moreover, the evidence

(eq.7) can be computed in closed form, since it is the integral of a

product of two Gaussians. This allows for rapid optimization of h.

We will in practice maximize the log-evidence, given by:

E(h)~log P(Y jX ,h)

~{
n

2
logj2ps2j{1

2
logjCL�1jz1

2
mTLm{

1

2s2
YTY ,

ð10Þ

where n is the number of samples (rows) in X and Y . All that

remains is to specify the prior covariance C(h), which we will

explore in detail below.

Figure 1. Neural encoding model and empirical Bayes receptive field inference. (A) Linear Gaussian encoding model: the stimulus x is
projected on the receptive field k and Gaussian noise is added to produce the neural response y. (B) Graphical model for a hierarchical Bayesian
receptive field model. The hyperparameters h specify a prior over the receptive field k, which together with stimulus x determines the conditional
probability of neural response y. Circles indicate variables, arrows indicate conditional dependence, and the square denotes a pair of variables
(stimulus x and response y) that are observed many times. (C) Empirical Bayes involves a two-stage inference procedure: first, maximize the evidence
p(yjx,h) for h (left), which can be computed by integrating out k from the generative model in (B); second, maximize the posterior over k given the
data and estimated hyperparameters ĥh (right). See text for details.
doi:10.1371/journal.pcbi.1002219.g001

Receptive Field Inference with Localized Priors
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Before continuing, we wish to distinguish two distinct notions of

‘‘dimensionality’’ for a receptive field. First, dimensionality may

refer to the number of parameters or coefficients in k. We will

refer to this as the parameter dimensionality of the filter, denoted d.

Second, dimensionality may refer to the dimensionality of the

coordinate space in which the filter is defined. In this sense, a filter

with d~100 elements arranged as a 100|1 vector is 1-

dimensional (e.g., a temporal filter), while a filter with the same

number of elements arranged in a 10|10 matrix is 2-dimensional

(e.g., an image filter). We will refer to this as the coordinate

dimensionality of the filter, denoted D.

Previous methods
We will examine three empirical Bayes RF estimators from the

literature: ridge regression [45], Automatic Relevance Determi-

nation (ARD) [36,43,44], and Automatic Smoothness Determina-

tion (ASD) [11]. Fig. 2 provides an illustrative comparison of these

methods, using a simulated example consisting with a 100-element

vector filter (d~100,D~1), stimulated with correlated (‘‘1/F’’)

Gaussian noise stimuli. The true filter was a difference of two

Gaussians, and the maximum likelihood estimate (middle left) is

badly corrupted by high frequency noise.

First, ridge regression assumes a prior with covariance matrix

proportional to the identity matrix: C~h{1I . This treats the filter

coefficients as drawn i.i.d. from a zero-mean Gaussian prior with

precision (‘‘inverse variance’’) h. Ridge regression is penalized

least-squares estimate with a penalty (eq.5) on the squared L2

norm of the filter, given by s2hkTk. This penalty shrinks the

coefficients of k towards zero. Larger h yields smaller filter

coefficients, and in the limit of infinite h, the MAP estimate shrinks

to all-zeros. Set correctly, the ridge prior can provide substantial

improvement over maximum likelihood, especially when the

stimulus autocovariance is ill-conditioned, as it is for naturalistic

stimuli (see Fig. 2). Ridge regression is perhaps the most popular

and well-known regularization method. Although it is not usually

employed in an empirical Bayes framework, it is straightforward

(and fast) to maximize the evidence for the ridge parameter h using

a fixed-point rule [36,45]. (See Methods).

Second, Automatic Relevance Determination (ARD) [36] assumes a

diagonal prior covariance matrix with a distinct hyperparameter hi

for each element of the diagonal. This resembles the ridge prior

covariance except that the prior variance of each filter coefficient

is set independently. The prior covariance matrix can be written

Cii~h{1
i , where i ranges over the number of elements in k. It

would be intractable to use cross-validation to estimate all the

elements in h (a 100-element vector in Fig. 2), so empirical Bayes

plays a critical role for inference. In practice, evidence maximi-

zation drives many of the prior variances to zero, making the

posterior a delta function at zero for those coefficients. The MAP

estimate for these coefficients is therefore zero, making the ARD

estimate sparse. The ARD estimate can be computed rapidly using

fixed-point methods, expectation-maximization, or variational

methods [43,44,46–49]. Fig. 2 (middle column) shows the ARD

and the lasso estimate [50], the latter of which is the MAP estimate

under an exponential (or L1) prior. We set the lasso parameter

here by cross-validation. Both estimates are sparse. The ARD

Figure 2. Comparison of estimators for 1D simulated example. A 1D difference-of-Gaussians receptive field with 100 elements was
stimulated with 2000 samples of correlated (1/F) Gaussian noise. Left column: True filter (top), maximum likelihood (linear regression) estimate
(middle), and empirical Bayes ridge regression (L2-penalized) estimate (bottom). Middle: Lasso (L1-penalized) estimate (top) and ARD (middle)
produce sparse estimates but fail to capture smoothness. The ASD estimate (bottom) captures smoothness, but exhibits spurious oscillations in the
tails. Right column: Three variants of automatic locality determination (ALD): Spacetime localization (ALDs, top), which identifies a spatial region in
which the filter coefficients are large; frequency localization (ALDf, middle), which identifies a local region of the frequency domain in which Fourier
coefficients are large, leading to a smooth estimate that closely resembles ASD; and joint localization in spacetime and frequency (ALDsf, bottom),
which simultaneously identifies a local region in spacetime and frequency, yielding an estimate that is both smooth and sparse.
doi:10.1371/journal.pcbi.1002219.g002

Receptive Field Inference with Localized Priors
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estimate is actually sparser and less biased towards zero for large

coefficients, but both fail to provide a close match to the smooth

filter used in this example.

Third, Automatic Smoothness Determination (ASD) [11] assumes a

non-diagonal prior covariance, given by a Gaussian kernel [51],

which is parametrized so that the correlation between filter

coefficients falls off as a function of their separation distance. The

rationale here is that RFs are smooth in both space and time, so

nearby coefficients should be highly correlated, while more distant

ones should be more nearly independent. For a 1D filter, the ASD

prior covariance takes the form of a ‘‘fuzzy ridge’’, with Gaussian

decay on either side of the diagonal. The (i,j)’th element is given

by Cij~exp({r{Dij=2d2), where Dij is the squared distance

between the filter coefficients ki and kj in pixel space, and the

hyperparameters h~½r,d� control the scale (analogous to the ridge

parameter) and smoothness (the width of the fuzzy ridge),

respectively. For filters with higher coordinate dimension (e.g., a

2D spatial filter), the hyperparameters include additional hyper-

parameters to control smoothness in each direction. Optimization

of h~½r,dx,dy, . . .� can be achieved by gradient ascent of the log-

evidence (see Methods). For our simulated example (Fig. 2, bottom

middle), the ASD estimate is indeed smooth due to the correlations

in the inferred prior.

Note that for smooth RFs, the ASD prior covariance matrix

becomes ill-conditioned, as some of its eigenvalues are very close to

zero. This implies that the ASD estimate is sparse, but (unlike

ARD) it is not sparse in the pixel basis. Rather, the ASD estimate

is sparse in a basis that depends on the hyperparameters (since the

eigenvectors of the ASD prior covariance vary with the

hyperparameters). The small-eigenvalue eigenvectors tend to have

high-frequency oscillations, meaning that the ASD estimate is

sparse in a Fourier-like basis, with the prior variance of high-

frequency modes set near to zero. In our view, ASD is the current

state-of-the-art method for linear filter estimation and indeed (as

shown in Fig. 2) it performs far better than previous methods for

realistic neural RFs.

Automatic Locality Determination (ALD)
The motivation for our approach is the observation that neural

receptive fields tend to be localized in space, time, and

spatiotemporal frequency (i.e., Fourier space). Neurons in the

visual pathway, for example, tend to integrate light only within

some restricted region of visual space and some finite window of

time, and respond only to some finite range of spatiotemporal

frequencies [25,32,52,53]. This is tantamount to a structured form

of sparsity: large groups of coefficients (e.g., those outside some

spacetime region) that fall to zero in a dependent manner. Here we

describe three prior distributions for exploiting this structure. We

refer to these methods collectively as automatic locality determination

(ALD).

Locality in spacetime (ALDs). First we formulate a prior

covariance matrix C(h) that can capture the tendency for RFs to

have a limited extent in space and time. We can achieve this with a

diagonal covariance matrix, but instead of using a constant

diagonal (as in ridge regression) or a vector of hyperparameters

along the diagonal (as in ARD), we use a functional form for the

diagonal that allows the prior variance to be large for coefficients

within some region, and small (decaying to zero) for coefficients

outside that region.

We parametrize the local region with a Gaussian form, so that

prior variance of each filter coefficient is determined by its

Mahalanobis distance (in coordinate space) from some mean

location n under a symmetric positive semi-definite matrix Y. The

diagonal prior covariance matrix is given by:

Cii~exp {
1

2
(xi{n)TY{1(xi{n){r

� �
, ð11Þ

where xi is the spacetime location (i.e., filter coordinates) of the i’th

filter coefficient ki, Y is a covariance matrix determining the shape

and extent of the local region, and r sets the overall scale of the

prior variance (as in ASD). We refer to this method as ALDs, for

automatic locality determination in spacetime coordinates. The

hyperparameters governing the ALDs prior are h~fr,n,Yg,
which can specify an arbitrary elliptical region of coordinate space

where prior variance is large.

Fig. 2 shows the ALDs estimate for the 1D example discussed

above. As expected, the RF coefficients are large within a central

region, and decay to zero outside it. Fig. 3 (top row) shows the

prior variance underlying this estimate (i.e., the diagonal of the

prior covariance matrix C) at the maximum-evidence h. The

method can be extended to filters of higher coordinate

dimensionality D. In this case, with n is a D|1 vector and Y is

a D|D symmetric, positive definite matrix specified by

D(Dz1)=2 parameters.

Computationally, ALDs is faster than ASD because, although its

parametrization is similar, the prior covariance matrix is diagonal.

As the localized region described by the hypearparemeters

becomes smaller, the prior variance of outer filter pixels falls

arbitrarily close to zero, and we can prune these coefficients (as in

ARD) because the prior effectively pins them to zero. This reduces

the dimensionality of k, making it sparse in pixel space, and

making evaluation of the log-evidence (eq.10) faster. The key

difference from ARD, however, is that pruning does not take place

independently for each coefficient, but occurs systematically as a

function of distance from n, the center of some spatiotemporal

region.

Note that the ALDs estimator does not assume any functional

form for the filter itself. Rather, it seeks to determine (via evidence

optimization) only whether there is some elliptical region beyond

which the filter coefficients fall to zero. If an RF is not localized, the

evidence will be maximal when the width of the region specified by

Y becomes much larger than the area covered by the RF

coefficients. In this limit, the diagonal of the prior covariance will

be nearly constant, where the ALDs prior is equivalent to the ridge

regression prior.

Although ALDs correctly identifies spacetime locality in

simulated examples, the estimates it provides are not smooth.

The use of a diagonal prior covariance C means that the filter

coefficients are independent a priori given h. We can address this

shortcoming by considering a different basis for the RF

coefficients.

Locality in frequency (ALDf). Neural receptive fields are

localized in spatiotemporal frequency as well as in spacetime,

which is apparent from their Fourier power spectra [53]. That is, a

neuron typically responds to sine waves over some limited range of

spatiotemporal frequencies, and is insensitive beyond this range.

We can design a prior covariance matrix to capture this structure

by employing the ALDs prior in the Fourier domain. We refer to

this as the ALDf, for automatic locality determination in frequency

coordinates.

We can define a Gaussian prior over the Fourier-transformed

RF coefficients ~kk using a diagonal covariance matrix C with

diagonal:

Cii~exp {
1

2
(jMvij{n)T(jMvij{n){r

� �
, ð12Þ

Receptive Field Inference with Localized Priors
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where vi denotes the frequency coordinates for the i’th coefficient

of ~kki, M is a symmetric matrix, and n describes the mean of

(symmetric) elliptical regions in Fourier space. The absolute value

ensures reflection symmetry through the origin, a property of the

Fourier transform of any real signal, while allowing localized

Fourier energy to exhibit orientations in spacetime and to extend

over different frequency ranges for different coordinate dimen-

sions. The hyperparameters are h~fr,n,Mg. (See Methods for

details).

The ALDf estimate can be computed efficiently by taking the

discrete Fourier transform of stimuli f~xxig, maximizing evidence

for h under the diagonal ALDf prior (eq.10), computing ~kkmap in

the Fourier domain (eq.9), and then taking the inverse Fourier

transform to obtain the spacetime filter k̂kmap. (See Methods). Note

that a filter in D coordinate dimensions requires the D-

dimensional Fourier transform. Fig. 2 shows the ALDf estimate

for the simulated 1D example, and Fig. 3 (second row) shows the

diagonal of the estimated prior covariance and Fourier spectrum

of the ALDf estimate, which exhibits modes at +4 Hz. Note that

this filter is more sparse in the Fourier domain than the space

domain, and that the ALDf estimate exhibits correspondingly

smaller error than the ALDs. Thus, locality in frequency is more

useful than locality in spacetime for smooth RFs.

Although the ASD and ALDf estimates look similar for this 1D

example, the latter achieves slightly lower error due to the fact that

it also suppresses low frequencies (e.g., the DC component), which

are also small for this filter. The ASD prior, in contrast, always

assigns highest prior variance to the lowest frequency Fourier

components. (This can be seen by inspecting the ASD prior

covariance matrix in the Fourier basis). ALDf can be expected to

outperform ASD whenever the Fourier spectrum is not a

monotonically decreasing function of frequency; however, for

realistic examples we considered, the two perform very similarly.

The main limitation of both methods is a failure to account for

locality in spacetime, which is evident in the ripples present in the

tails of both estimates (Fig. 2).

Locality in spacetime and frequency (ALDsf). The two

methods described above exploit locality by estimating a diagonal

prior covariance matrix in either a spacetime basis (ALDs) or a

Fourier basis (ALDf). However, neural receptive fields generally

exhibit both kinds of locality at once. One would therefore like to

design a prior that simultaneously captures both forms of locality.

We can accomplish this by forming a ‘‘sandwich’’ matrix out of the

two prior covariance matrices defined above. We define the prior

covariance to be:

C~C
1
2
s (BTCf B)C

1
2
s , ð13Þ

where C
1
2
s is the square root of the diagonal ALDs prior covariance

(eq.11), Cf is the diagonal ALDf prior covariance matrix (eq.12),

Figure 3. Estimated filters and prior covariances for ALD methods. (Same example filter as shown in Fig. 2). Left column shows the true filter
(dotted black) and ALD estimates (red) replotted from the right-most column of Fig. 2. Top: Space-localized estimate. The estimated prior variance
(black trace, middle) is a Gaussian form that controls the falloff in amplitude of filter coefficients (red) as a function of position. The prior covariance
(right) is a diagonal matrix with this Gaussian along the diagonal. The prior is thus independent with location-dependent variance. Middle:
Frequency-localized estimate. A Gaussian form (reflected around the origin due to symmetries of the Fourier transform) specifies the prior variance as
a function of frequency (black trace, middle). The Fourier power of the filter estimate (red) drops quickly to zero outside the estimated region. The
prior covariance matrix (right) is diagonal in the Fourier domain, meaning the Fourier coefficients are independent with frequency-dependent
variance. Bottom: Space and frequency localized estimate. The estimated prior covariance matrix is not diagonal in spacetime or frequency, but
takes the form of a ‘‘sandwich matrix’’ that combines the prior covariances from ALDs and ALDf (see text). The resulting prior covariance matrix can
be visualized in either the spacetime domain (left) or the Fourier domain (right). It is localized (has a local region of large prior variance) in both
coordinate frames, but has strong dependencies (off-diagonal elements), particularly across space.
doi:10.1371/journal.pcbi.1002219.g003
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and B is an orthogonal basis matrix for the D-dimensional discrete

Fourier transform. (That is, ~kk~Bk, k~BT~kk, and BTB~BBT~I .)

This formulation effectively imposes the two forms of locality in

series: first, the spacetime prior covariance (outer matrix); then

Fourier transform and the frequency domain covariance (inner

matrix). Although there are other combination schemes are

possible (see Discussion), we found this one to give the best

performance on simulated data. We call the resulting estimate

ALDsf, for automatic locality determination in spacetime and

frequency.

The hyperparameters for ALDsf are union of the ALDs and

ALDf hyperparameters, h~½ns,nf ,Y,M,r�, where subscripts s and

f indicate parameters for the spatial and frequency domain

matrices Cs and Cf , respectively. We perform evidence optimi-

zation over this full set of hyperparameters, although it is helpful to

initialize with the values estimated for each of the two above

methods individually to avoid sub-optimal local maxima. Fig. 2

(bottom right) shows the ALDsf estimate for our 1D example,

which is nearly indistinguishable from the true filter. Fig. 3 shows

the estimated prior covariance matrix C, represented in both pixel

and Fourier bases. As expected, the prior covariance exhibits

locality in both coordinates (bases), but is no longer diagonal in

either. This indicates that the resulting prior covariance imposes

dependencies between neighboring coefficients in both k and its

Fourier transform ~kk.

One useful feature of ALDsf is that it defaults to ALDf if the

filter is not localized in space, to ALDs if not localized in

frequency, or to ridge regression if not localized in either basis.

When the filter is not localized, the evidence will favor regions that

are sufficiently broad (i.e., sufficiently large Y and M�1) that the

matrices Cs or Cf (or both) will approximate the identity matrix,

eliminating the prior preference for locality in the corresponding

basis. When both Cs and Cf are the identity matrix, the resulting

covariance matrix C corresponds to the ridge regression prior.

Application to simulated data
To compare performance with previous receptive field

estimators, we began with simulated data. We generated six

different 2D spatial receptive fields with varying degrees of

locality in space and frequency. Each filter consisted of a 2D

array of 20|20 pixels, making for a parameter space of d~400
dimensions. Noisy responses were simulated using 1600 samples

of 1/F correlated Gaussian noise according to (eq.1). Results are

shown in Fig. 4.

Figure 4. Menagerie of simulated examples. Noisy responses to 1600 random 1/F Gaussian stimuli were simulated and used for training. The
leftmost column shows the true filter (a 20|20 pixel image), while subsequent columns show various estimates. The mean squared error of each
estimate is indicated below in red. Filters shown include: (A) Oriented Gabor filter, typical of a V1 simple cell; (B) Smaller Gabor filter; (C) center-
surround ‘‘difference-of-Gaussians’’ filter, typical of retinal ganglion cells; D) grid cell with multiple non-zero regions (localized in the Fourier domain
but not in space); (E) circularly windowed Gaussian white noise (localized in space but not in frequency); (F) full field Gaussian noise (not localized in
space or frequency). ALDsf performs at or near the optimum for all examples we examined.
doi:10.1371/journal.pcbi.1002219.g004
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Each row of Fig. 4 shows one of the six filters, and the estimates

provided by maximum likelihood (ML), ridge regression, ARD,

ASD, and (highlighted in blue) ALDsf. The numbers in red below

each estimate indicate the mean squared error between the true

filter and the estimate. (We did not show ALDs or ALDf because

ALDsf always performed best of the three new methods). The

simulated examples included: (A) a large Gabor filter; (B) a small

Gabor filter; (C) a retina-like center-surround RF; (D) a grid cell

RF with several non-zero regions; (E) circularly windowed

Gaussian white noise; and (F) a pure Gaussian white noise filter.

The grid cell filter did not exhibit strong locality in space, while the

windowed white noise did not exhibit locality in frequency, and

the pure white noise filter did not exhibit locality in either space

nor frequency. Nevertheless, the ALDsf estimate had the smallest

error by a substantial margin for all examples except the white

noise filter. For the white noise filter, the ridge prior (i.i.d. zero-

mean Gaussian) was in fact the ‘‘correct’’ prior. For this example,

the ASD and ALDsf estimates were not distinguishable from the

ridge regression estimate, consistent with the expectation that both

should default to the ridge prior when the evidence did not favor

smoothness (ASD) nor locality (ALDsf).

We examined the convergence properties of the various

estimators as a function of the amount of data collected. We

simulated responses from the first filter in Fig. 4A according to

(eq.1), using two kinds of stimuli: Gaussian white noise, and 1/F

correlated Gaussian noise, which more closely resembles natural

stimuli. The results (Fig. 5) show that the ALDsf estimate achieved

the smallest error for both kinds of stimuli, regardless of the

number of training samples. The upper plots in Fig. 5 show that

for white noise stimuli, traditional estimators (ML and ridge

regression) needed more than four times more data than ALDsf to

achieve the same error rate. For naturalistic stimuli, traditional

estimators needed twenty to thirty times more data. The bottom

row of plots shows the ratio of the average mean-squared error

(MSE) for each estimate to the average MSE for the ALDsf

estimate, showing that the next best method (ASD) exhibits errors

nearly 1.8 times larger than ALDsf.

Application to neural data
Next, we compared the various estimators using neural data

recorded from simple cells in primate V1 [53]. The stimuli

consisted of 16 ‘‘flickering bars’’ aligned with each cell’s preferred

orientation. We took the receptive field to have a length of 16 time

bins, resulting in a 16|16 filter with two coordinate dimensions

(space|time), resulting in a 256-dimensional parameter space.

Because the ‘‘true’’ filter was not known, we quantified perfor-

mance using relative cross-validation error, defined as the

prediction error on an 8-minute test set (See Methods). We varied

the amount of data used for training, and performed 100

repetitions with randomly selected subsets of the full training data

to obtain accurate estimates for each size training set.

Fig. 6 (left) shows ML, ridge regression and ALDsf estimates for

an example cell with a 1, 2 or 4 minutes of training data. Numbers

in red indicate the average cross-validation error of each estimate.

Note that with only 1 minute of data, ALDsf performed nearly as

well as ML and ridge regression with 4 minutes of data. The

middle panel shows a summary of cross-validation error for each

of the five empirical Bayes estimators discussed previously, as a

function of the amount of training data. ALDsf once again

achieved substantially lower error than other methods. The right

panel shows how many times more data were required to achieve

the same level of cross-validation error as ALDsf. On average,

ALDsf required 1.7 times less data than the next best method

(ASD) and five times less data than maximum likelihood.

Fig. 7 shows the ML and ALDsf estimates for all 16 V1 simple

cells in the population obtained with 1 minute of training data, as

well as the ML estimate obtained using all the data available for

each cell (40 minutes of data, on average). Note that for ALDsf

recovers the qualitative structure of these RFs even when the

underlying RF structure is barely discernible in the 1-minute ML

estimate. Also note that the population exhibits substantial

variability in RF shape, with many neurons whose RFs would

not be well described by a fixed parametric form such as a Gabor

filter.

We examined a second dataset of retinal ganglion cells (RGCs)

in primate retina, which stimulated with 2D spatiotemporal white

noise (‘‘binary flicker’’) [54,55]. The RFs considered had 3

coordinate dimensions (space|space|time), and a 2500-dimen-

sional parameter space (10|10 pixels in space|25 8.33 ms-bins

in time). Fig. 8 shows the spatial (2D) and the temporal (1D) slices

through the estimated 3D RFs (schematized at left). Even with

only 1 minute of training data, the ALDsf estimate recovered the

qualitative structure of the RF at all time points, including the

filters’ departure from spacetime separability (i.e., the center pixel

has different timecourse than surround). By contrast, the ML

estimate is indistinguishable from noise in many places, indicating

that ALDsf can reveal qualitative structure that is not visible in the

ML estimate. We examined 3 ON and 3 OFF RGCs, and found

that error was 18 times higher in ML estimates and 6 times higher

in ridge regression estimates than in ALDsf (where error was

computed with respect to the ML estimate using a full 20 minutes

of data).

Quantifying uncertainty: Bayesian confidence intervals
How can we quantify uncertainty in a receptive field estimate?

The error bars shown in Figs. 5 and 6 represent variability in k̂k

Figure 5. Comparison of error rates on simulated data.
Responses of a 20|20 pixel Gabor filter (shown in Fig. 4 A) were
simulated using white noise stimuli (left) or ‘‘naturalistic’’ 1/F Gaussian
stimuli (right). (A): Filter error using white noise stimuli, for varying
amounts of training data (See Methods). (B) Average filter error under
each method. (C–D) Analogous to A–B, but for 1/F stimuli. For both
kinds of stimuli, ALDsf achieved error rates almost 2 times smaller than
ASD, the next best method. By examining horizontal slices through
panels (A) and (C), it is apparent that traditional methods (ML and ridge
regression) required four times more data on white noise stimuli, and
twenty to thirty times more data on 1/F stimuli, to achieve the same
error rate as ALDsf.
doi:10.1371/journal.pcbi.1002219.g005
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across resampled or permuted datasets. However, we would like to

be able to measure the uncertainty in a single estimate given a

single set of training data. Given the hyperparameters ĥhml , the

model specifies a Gaussian posterior (eq.9) with mean k̂kmap and

covariance L. The diagonal of L specifies the posterior variance

for each element of k, giving us 95% credible intervals (Bayesian

confidence intervals) of the form

ci~k̂ki+ 1:96
ffiffiffiffiffiffi
Lii

ph i
: ð14Þ

The interpretation of these credible intervals is that, given the data

and ĥhml , P(ki[ci)~:95. More generally, for any unit vector u, the

credible interval of size (1{a) for the projection uTk is

cm~uTk̂k+ W{1({a=2)
ffiffiffiffiffiffiffiffiffiffiffi
uTLu
ph i

, where W{1(:) is the inverse

normal cumulative density function.

However, these credible intervals, and the associated Gaussian

posterior for k, are conditioned on maximum-evidence estimate of

the hyper-parameters ĥhml . These intervals fail to take into account

uncertainty in h, which may be substantial if the evidence

P(Y jX ,h) is not tightly concentrated around its maximum. The

true uncertainty in k will therefore generally be greater than that

captured by the posterior covariance L.

Fully Bayesian inference
To accurately quantify uncertainty, we may wish to perform

fully Bayesian inference under the priors introduced above.

Empirical Bayes (EB) inference can be interpreted as an

approximate form of fully Bayesian (FB) inference in a hierarchical

model [35,45]. If we incorporate a prior P(h) over the

hyperparameters at the top level of the graphical model shown

in Fig. 1 B, also known as a hyperprior, we will have a complete

Figure 6. Receptive field estimates for V1 simple cells. (Data from [53]). Left: Filter estimates obtained by ML, ridge regression, and ALDsf, for
three different amounts of training data (1, 2, and 4 min). Numbers in red beneath each filter indicate relative cross-validation error. Middle: Relative
cross validation error for each method, averaged across 16 neurons. ALDsf achieved the lowest average error, for all amounts of training data. Right:
Number of times more training data required by each method to obtain the same error level of as ALDsf with 30s of training data. On average, the ML
estimator required 5 times more training data, while ASD required 1.7 times more training data to match the performance of ALDsf.
doi:10.1371/journal.pcbi.1002219.g006

Figure 7. Receptive field estimates for the full set of sixteen V1 simple cells analyzed. (Data from [53]). Left: ML filter estimates from
1 minute of training data. Middle: ALDsf estimates from 1 minute of training data. Right: ML estimates from all data (an average of approximately
40 minutes of data per cell). Note the heterogeneity across cells, and that ALDsf captures the qualitative RF structure even when the 1-minute ML
estimate is nearly indistinguishable from noise.
doi:10.1371/journal.pcbi.1002219.g007
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hierarchical model of the neural response. The difference between

EB and FB inference for k comes down to the fact that the FB

prior involves marginalizing over h:

P(k)~

ð
P(kjh)P(h)dh, ð15Þ

while the EB prior is just the conditional distribution P(kjĥhml).
When are these priors equivalent or, more importantly, when do

the EB and FB estimates agree?

The relationship between EB and FB inference can be

understood by examining the posterior distribution over k. The

full posterior is

P(kjX ,Y )~

ð
P(k,hjX ,Y )dh~

ð
P(kjh,X ,Y )P(hjX ,Y )dh, ð16Þ

where P(kjh,X ,Y ) is the posterior over k given h, and P(hjX ,Y ) is

proportional to the evidence (i.e. the exponential of (eq.10)) times

the hyperprior:

P(hjX ,Y )~
1

Z
P(Y jX ,h)P(h), ð17Þ

where Z is a normalizing constant. Note that if the evidence is

proportional to a delta function at its maximum, then the posterior

over h is itself a delta function, P(hjX ,Y )~d(h{ĥhml). The full

posterior then reduces to

P(kjX ,Y )~
1

Z

ð
P(kjh,X ,Y )d(h{ĥhml)dh~P(kjX ,Y ,ĥhml), ð18Þ

which is the EB posterior (i.e., the posterior over k conditioned on

h~ĥhml ). Thus, EB and FB inference are identical when the

evidence is proportional to a delta function, and the two methods

will in general give similar results whenever the evidence is highly

concentrated around its maximum [45]. In general, EB and FB

estimates will always agree given enough data, since by central

limit theorem, the evidence will concentrate around its maximum

with variance that falls as 1=n. However, for finite datasets, the two

may differ.

To examine the proximity of EB and FB estimates and credible

intervals, we developed a sampling-based algorithm to perform FB

inference under the ALD prior. The factorization shown in (eq.16)

suggests an efficient method for sampling from P(kjX ,Y ) via

Markov Chain Monte Carlo (MCMC), using a Markov chain over

the space of the hyperparameters whose stationary distribution is

proportional to the evidence. The summary of the algorithm for

sampling P(kjX ,Y ) is as follows:

(1)Sample ht*P(hjX ,Y ) via MCMC

(e:g:, Metropolis{Hastings 56½ �),

(2)for each ht, sample kt*P(kjX ,Y ,ht),

which is Gaussian(eq:9):

ð19Þ

A nice feature of this approach is that the hyperparameters live in

relatively low-dimension (e.g., 5 for a 1D filter and 11 for a 2D

filter under ALDsf). The Markov Chain therefore only has to

explore this low-dimensional space, instead of the high-dimen-

sional space of k, which contains tens to thousands of parameters

in typical cases [57]. Samples kt are obtained by drawing from the

Gaussian conditioned on each MCMC sample ht. These samples

may be averaged to the posterior mean E½kjX ,Y �, also known as

Figure 8. Comparison of 3D receptive field estimates for retinal data. (Data from Chichilnisky lab, [55]). Top row: Maximum likelihood and
ALDsf estimates for an OFF retinal ganglion cell (RGC) receptive field, stimulated using 1 minute of binary spatiotemporal white noise. Left column
shows a schematic of the 10|10 pixel |25 time bin receptive field, containing 2500 total coefficients. Each time bin was 8.33 ms, corresponding to a
frame rate of 120 Hz. Colored lines indicate specific pixels whose timecourses shown at right, and spatial time-slices, depicted as images at right
(taken at the 4th and 8th time bins, indicated by green and purple arrows, respectively). The ML and ALDsf estimates with 1 minute of training data
are shown alongside the ML estimate computed from 20 minutes of data. Pixel time-courses were rescaled to be unit vectors, so that differences in
temporal profiles (i.e., spacetime non-separability of filter) can be observed. Bottom row: Similar plots for an ON RGC, with spatial profiles shown for
the 5th and 8th time bins. In both cases, the ALDsf accurately recovered the shape and timecourse of the RF, while the ML estimate was often
indistinguishable from noise. We examined RF estimates from 3 ON and 3 OFF cells, and found that, with 1 minute of training data, the average
mean-squared-error between each estimate and a reference estimate (the ML estimate computed with 20 minutes of data) was 18 times larger for
ML and 6.6 times larger for ridge regression than for ALDsf.
doi:10.1371/journal.pcbi.1002219.g008
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the Bayes Least-Squares estimate, and their quantiles provide

credible intervals. (See Method).

Fig. 9 shows a comparison of EB and FB estimates and credible

intervals for the 1D simulated example shown previously. The

hyperprior P(h) was taken to be uniform over a large region (See

Methods). For a small dataset, the FB credible intervals were

noticeably larger than the EB credible intervals, as expected,

owing to the effects of uncertainty in h [35]. For larger datasets,

this discrepancy was much smaller, and was smaller in general for

ALDsf than ALDs or ALDf intervals. The EB and FB (Bayes least-

squares) filter estimates, however, did not differ noticeably even for

small amounts of data. Fig. 10 shows a comparison of EB and FB

inference for the V1 neural data presented in Fig. 6. For small

datasets, the FB credible intervals were larger than EB intervals,

but cross-validation error did not differ noticeably across dataset

sizes. This suggests that the higher computational cost of FB

inference may not be justified unless one is interested in obtaining

accurate quantification of uncertainty from a small or noisy

dataset.

Discussion

We have described a new family of priors for Bayesian receptive

field estimation that seek to simultaneously exploit locality in

spacetime and spatiotemporal frequency. We have shown that

empirical Bayes estimates under a localized prior are more

accurate than those obtained under alternative priors designed to

incorporate sparsity and smoothness. Although the ALD prior

does not explicitly impose sparseness or smoothness, the estimates

obtained with realistic neural data were both sparse and smooth.

Sparsity arises from the fact that pixels outside a central region fall

to zero, while smoothness arises from the fact that Fourier

coefficients outside some low-frequency region fall to zero.

However, for a receptive field dominated by high frequency

components, ALD should outperform ASD and other smoothed

estimates (e.g., smooth RVM [47], fused lasso [58]), since it can

also select regions centered on high frequencies.

We have also derived an algorithm for performing fully

Bayesian inference under ALD, ASD, and ridge regression priors.

The algorithm exploits the low-dimensionality of the hyperpara-

meter space and the tractability of the evidence to perform

MCMC sampling of the posterior over hyperparameters. The full

prior takes the form of a Gaussian scale mixture [59,60], a mixture of

zero-mean Gaussians with covariances C(h) and mixing weights

P(h), resulting in a Gaussian posterior over k given h that is trivial

to sample. MCMC sampling allows for the calculation of fully

Bayesian credible intervals over RF coefficients, which we found to

be systematically larger than empirical Bayesian intervals.

Nevertheless, we found no differences in the quantitative

Figure 9. Empirical Bayes (EB) and fully Bayes (FB) credible
intervals on simulated data. Left: FB and EB 95% credible intervals,
computed from 100 samples of training data, for ALDs (above), ALDf
(middle), and ALDsf (bottom). The true filter is shown in black. FB
intervals are larger than EB intervals, due to the incorporation of
uncertainty in the hyperparameters under fully Bayesian inference.
Right: Credible intervals computed from 500 samples of training data.
As the amount of training data increases, the FB and EB credible regions
became indistinguishable, indicating that the evidence is tightly
constrained around its maximum. For both amounts of training data,
the posterior mean under FB and EB were virtually identical.
doi:10.1371/journal.pcbi.1002219.g009

Figure 10. Empirical Bayes (EB) and fully Bayesian (FB) estimates on V1 data. (A) ALDsf estimates for a single V1 simple cell under EB and
FB inference, from 30 seconds (above) and 4 minutes (below) of training data. There was no significant difference in cross-validation error (numbers
below in red, averaged over 100 resampled training sets). (B) Marginal posterior variance of RF coefficients, averaged across pixels and across all 16
cells, under EB and FB inference. As expected, FB estimates of the posterior variance were higher, especially for small datasets, reflecting the effects of
posterior uncertainty in the hyperparameters. (C) Average cross-validation error across 16 cells for FB and EB estimates. For all amounts of training
data, error rates were nearly identical, indicating that the FB posterior mean (computed via MCMC) is not superior to the more computationally
inexpensive EB estimate.
doi:10.1371/journal.pcbi.1002219.g010
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performance of EB and FB receptive field estimates with either

simulated or real neural data (Figs. 9 and 10). Of course, both

intervals rely on the linear-Gaussian model of the neural response,

which may be inaccurate in cases where the neural response noise

is highly non-Gaussian (e.g., heavy-tailed).

More generally, this work highlights the advantages of locality

as an additional source of prior information in biological inference

problems. Shrinkage and sparsity have attracted considerable

attention in statistics, and they have advantageous properties for a

variety of high-dimensional inference problems [29,50,61,62].

ALD exploits a stronger form of prior information, assuming that

large groups of coefficients go to zero in a correlated manner. This

may not hold for generic regression problems; for a sparse filter

with randomly distributed non-zero coefficients, the ARD estimate

substantially outperforms ALD (not shown), but such filters are

unlikely to arise in neural systems.

Two general ideas that arise from ALD may be useful for

thinking about statistical inference in other biological and non-

biological systems. The first is the idea of exploiting an underlying

coordinate system or topography. Whenever the regression

coefficients can be arranged topographically (e.g., temporally,

spatially, spectrally), it may be possible to design a prior that

exploits dependencies within this topography using a small

number of hyperparameters. This idea is central to ALD as well

as to ASD, which uses the distances between RF pixels to set their

prior correlation. But other coordinates and prior parameteriza-

tions are possible. For example, although ALD performs

reasonably well for a simulated grid cell (Fig. 4 D), locality in

space does not hold for grid cells, and a prior that exploits the

‘‘natural’’ parameters of grid cell responses (e.g., grid spacing,

size, orientation, phase) might perform even better. Optimizing

the hyperparameters governing such a prior is tractable with

empirical Bayes. The second idea that arises from ALD is that of

simultaneously constraining a set of regression coefficients in two

(or more) different bases. The ALDsf method combines a local

prior in a spacetime basis and a local prior in Fourier basis via a

‘‘sandwich matrix’’ (eq.13), which effectively applies prior

constraints in series: first in spacetime and then in frequency.

Another solution would be to combine the two priors symmet-

rically, e.g., using prior covariance C~(Cs
{1zC{1

f ){1. (This is

the covariance that results from taking the product of the ALDs

and ALDf Gaussian priors). We found this formulation to

perform slightly worse on test data, but results were similar. Note

that the sum of prior covariances C~(CszCf ) would not achieve

the desired goal of imposing the prior constraints simultaneously,

since it would prune only those coefficients in the (effective) null

space of both Cs and Cf . A large literature has examined

regularization and feature selection in overcomplete dictionaries

(e.g., ‘‘basis pursuit’’) [62–65], but combining structured prior

information defined in different bases poses an intriguing open

problem.

One potential criticism of ALD is that the linear-Gaussian

encoding model (eq.1) is overly simplistic. Despite its simplicity,

this model has a long history in the neural characterization

literature [5,11,18], and the estimators considered here are

consistent (i.e., converge asymptotically) for responses generated

by any linear-nonlinear response model, so long as the stimuli are

elliptically symmetric and the expected STA is non-zero [20]. We

addressed whether the linear-Gaussian modeling assumption

undermines our results by re-analyzing the V1 simple cell data

with maximally informative dimensions (MID) [66], an informa-

tion-theoretic estimator that incorporates neural nonlinearities

and Poisson spiking. The results (shown in Supporting Informa-

tion (Text S1), Fig. S1), indicate that MID errors were large,

comparable in size to those of the maximum likelihood (linear

regression) estimate. Even when comparing to the MID filter

computed from test data, ALDsf outperformed MID by a

substantial margin. This shows that the limitations of the

linear-Gaussian model do not substantially undermine its

performance on simple cells. However, we have applied ALD

only to neurons whose responses exhibit a quasi-linear relation-

ship to the stimulus. ALD would indeed fail for a neuron with a

symmetric nonlinearity (e.g., squaring) and cannot recover

multiple filters (e.g., those driving a complex cell). A variety of

techniques exist estimating multi-dimensional feature spaces (e.g.,

spike-triggered covariance (STC) [67–69], MID [20,66], iSTAC

[70], spike-triggered ICA [71]). However, the ‘‘kernel trick’’

[17,41], which involves using linear methods on nonlinearly

transformed stimuli, provides the simplest method for extending

ALD to nonlinear response models. Many nonlinear transforma-

tions (e.g., transforming the stimulus to its Fourier power [72])

preserve the topography of the underlying stimulus, making this

approach directly applicable to ALD.

One advantage of the linear-Gaussian model is its computa-

tional tractability. ALD is fast because the evidence can be

calculated and optimized entirely from the sufficient statistics

XTX , XTY , and YTY (the raw stimulus covariance, the STA,

and sum of squared responses, respectively). This means that the

computational cost does not scale with the amount of data

(unlike MID and maximum-likelihood point process methods).

Evidence optimization is also much faster than cross-validation,

particularly with the 5*15 hyperparameters employed by

ALDsf. The computational cost of ALD is still at least O(d3)
in the number of filter coefficients, since evidence evaluation

requires left-division by matrices of size d|d . However, the

number of approximately zero coefficients often falls consider-

ably during optimization, and eliminating these coefficients by

thresholding small eigenvalues of C can speed convergence

considerably.

Given the hyperparameters, the log-posterior over k is concave,

with a single maximum that can be computed in closed form

(eq.5). Although the log-evidence (eq.10) is not concave in the

hyperparameters h, there are far fewer hyperparameters than

parameters, making ALD far easier than non-convex optimization

in the full space of k (e.g., as in MID). We can maximize the

evidence more rapidly by using its first and second derivatives,

which we can compute analytically (see Methods). We also exploit

a heuristic strategy for initializing the ALDsf hyperparameters

using the estimates from ridge regression (to identify the scale),

ALDs (to identify a spatiotemporal region) and ALDf (to identify a

Fourier region). Although it is substantially more computationally

expensive, the fully Bayesian estimate based on MCMC avoids the

issue of local maxima because it explores the entire evidence

surface, not just its modes.

However, we do not ultimately view ALD and other model-

based or information-based methods as in conflict. Rather, we

regard ALD as providing a prior distribution over RFs that can

be combined with any likelihood. Computing and optimizing

the evidence under nonlinear models with non-Gaussian noise

represents an important direction for future work. We suggest

that locality is a general feature of neural information

processing and anticipate that it will be useful for neural

characterization in a wide variety of brain areas, including

those where response properties are not yet well understood

[73]. We expect hierarchical models and empirical and fully

Bayesian inference methods to find application to a wide range

of problems where structured prior information can be usefully

defined.
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Methods

Implementation of RF estimators
Ridge regression. For simulated and real datasets, we

computed the empirical Bayes ridge regression estimate as

follows. First, we initialized the noise variance to s2~
1

n

Xn

i~1
(yi{kT

0 xi)
2 where k0~(XTX ){1X T Y was the ML

estimate, and the inverse prior variance to h~10{6. Then, we

ran an iterative fixed-point algorithm [36,45] to optimize the

evidence for h and s2,

hnew~
d{hTr(L)X

j
m2

j

, (s2)new~
(Y{mTX )(Y{mTX )T

n{
X

j
(1{hLjj)

, ð20Þ

where d is the parameter dimensionality (number of RF

coefficients), n is the number of samples, m is the posterior mean

(eq.9), and Ljj are the diagonal elements of the posterior

covariance. The posterior mean and covariance are recomputed

after each update to s2 and h. Note that (following [11,36]) we

treat the noise variance s2 as a hyperparameter, maximizing

instead of integrating it out, which is computationally more

tractable, although technically it appears in the likelihood rather

than the prior.

Automatic Relevance Determination (ARD). We

initialized the noise variance and ARD hyperparameters using

the maximum-evidence values obtained from the ridge regression

prior: s2~s2
ridge and inverse prior variance hi~hridge. Then, we

updated hi and s2 using the fixed-point rule given in [36]:

hnew
i ~

1{hiLii

m2
i

, (s2)new~
(Y{mTX )(Y{mTX )T

n{
X

i
(1{Liihi)

: ð21Þ

Lasso. We computed the Lasso estimate using the algorithm

introduced in [74,75], using software available at http://www-stat.

stanford.edu/,tibs/glmnet-matlab. This implementation performs

cyclical coordinate descent in a pathwise fashion. We used a test

dataset with 2000 samples to find the optimal value of the lasso

parameter (Fig. 2).

Automatic Smoothness Determination (ASD). We

computed the ASD estimate by gradient ascent of the log-

evidence function, following the methods in [11]. Briefly, we

initialized using the hyperparameter estimates from ridge

regression: s2~s2
ridge, and r~{log(hridge), initialized the

smoothness parameter d to 1, then minimized the negative log-

evidence for (s2,r,d) using analytically computed gradients

(provided in [11]) and Hessians, which we derive below. We

performed minimization using fmincon in MATLAB, with

boundary conditions for the hyperparameters and the noise

variance set to {20ƒrƒ20, 10{6
ƒdƒ106, and 10{6

ƒs2

ƒ106, which we selected to be far larger than the range of

probable values.

Automatic Locality Determination (ALD). We computed

ALD estimates by numerical optimization of the log-evidence

using the analytically computed gradient and Hessian (second

derivative matrix). For notational convenience, we will denote
L
Lh A, the first derivative of a quantity A with respect to a

parameter h, as A(h), and denote the second derivative L2

Lh2Lh1
A as

A(h1h2).

The first derivatives of the log-evidence E with respect to the

hyperparameters h and the observation noise s2 are given by [11]:

E(h)~
1

2
Tr (C{L{mmT )C{1

(h)

h i
,

E
(s2)

~
1

2s2
{nzd{Tr½LC{1�
� �

z
1

2s4
R2,

ð22Þ

where C
{1

(h) is the derivative of C{1 with respect to h, n is the

number of training samples, d is dimensionality of x, R2~

(Y{Xm)T (Y{Xm) is the squared residual error, and L and m
are the posterior covariance and mean, respectively (eq.9). The

corresponding second derivatives are given by:

E(hihj )~Tr C(hj ){L(hj ){2mmT
(hj )

� �
C{1

(hi )

h i

zTr (C{L{mmT )C{1
(hihj )

h i
,

E
((s2)2)

~{
1

2s4
{nzd{Tr½LC{1�
� �

{
1

2s2
Tr½L

(s2)
C{1�

{
1

s6
R2z

1

s4
{Y T Xm

(s2)
zmX T Xm

(s2)

� �
,

E
(hs2)

~{
1

2
Tr L

(s2)
z2mmT

(s2)

� �
C{1

(h)

h i
:

ð23Þ

These expressions involve the derivatives of L and m and with res-

pect to h and s2, which are matrices and vectors of the same size as

L and m, given by:

L(h)~{LC{1
(h) L, m(h)~{LC{1

(h) m,

L
(s2)

~
1

s4
L(X T X )L, m

(s2)
~{

1

s2
LC{1m:

ð24Þ

Here, C{1
(h)

~{C{1C(h)C
{1. Note that C{1 is numerically

unstable when C becomes ill-conditioned. Thus we never compute

the inverse C explicitly. Instead, we exploit the Woodbury matrix

identity to compute the evidence and other quantities using

matrices that are well-conditioned. The resulting expressions

involve matrix left division instead of inversion (computed via the

backslash operator in Matlab; see Supplementary Information for

details). Code is available from the last authors website (http://

pillowlab.cps.utexas.edu/code.html). Below, we provide the partial

derivatives C(h) for the various ALD hyperparameters, which are

all that is required for computing the gradient and Hessian of E.

ALD in spacetime (ALDs). The hyperparameters governing

the ALDs prior covariance matrix C are (n, Y, r), where n defines

the mean of the localized RF, Y defines its elliptical extent, and r
defines the scale of the prior variance (as in ASD). For filters with

coordinate dimension Dw2, n is a vector and Y is a D|D matrix

that we parametrized (e.g., for D~2) as

Y~

y2
1 wy1y2

wy1y2 y2
2

0
B@

1
CA: ð25Þ

For a one-dimensional filter, Y~y2, while for D~3, we have Y
defined in terms of six hyperparameters ½y1,y2,y3,w1,w2,w3�. The

first and second derivatives of C with respect to these

hyperparameters (for D~1) are given by:
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C(r)~{C, C
(r2)

~C, C(rn)~{C(n),

C(n)~
1

y2
DC, C

(n2)
~ {

1

y2
z

1

y4
D2

� �
C,

C(ry)~{C(y),

C(y)~
1

y3
D2C, C

(y2)
~ {

3

y4
D2z

1

y6
D4

� �
C,

C(ny)~ {
2

y3
Dz

1

y5
D3

� �
C,

ð26Þ

where D~(x{n) is a matrix of differences between pixel

coordinates in spacetime and n.

During optimization, local maxima can be a problem if one

initializes with a prior region that does not cover the location

where the receptive field is largest. To avoid local maxima, we

initialized s2 and n to the noise variance from ridge regression and

to the center of mass of the ridge regression estimate, respectively.

We used a coarse grid search for initializing Y, with off-diagonal

terms w~0. From the best initial point, we then descended the

negative log-evidence using fmincon in MATLAB, with analyti-

cally computed gradients and Hessians given above. Hyperpara-

meters were constrained to fall within the ranges 10{6
ƒs2

ƒ106,

{1ƒniƒdiz1, 0:1ƒyiƒ2di, {1ƒwƒ1, {20ƒrƒ20, where

di is the number of filter elements along the i’th coordinate

dimension.

ALD in spatiotemporal frequency (ALDf). We

implemented ALDf using the method similar to that described

above for ALDs, after performing an orthogonal fast Fourier

transform (FFT) on the stimuli X , which amounts to a change-of-

basis (i.e., multiplication by a unitary matrix).

As described in Results, for filters with coordinate dimension D,

n is a D|1 vector. M is a D|D symmetric matrix, parametrized

as

M~

h11 � � � h1D

..

.
P

..

.

h1D � � � hDD:

0
BBBB@

1
CCCCA ð27Þ

The first and second derivatives of C in 1D with respect to these

hyperparameters are given by:

C(r)~{C, C
(r2)

~C, C(rn)~{C(n),

C(n)~DC, C
(n2)

~{CzD2C, C(rM)~{C(M),

C(M)~{jDC, C
(M2)

~{j2Cz(jD)2C, C(nM)~jC{jD2C,

ð28Þ

where D~(jMvj{n) is a matrix of differences between pixel

coordinates in frequency and n, and j~sign(Mv).

Analogously to ALDs, to avoid local maxima, we initialized s2

and n to the noise variance from ridge regression and to the centroid

of the region of maximal power in the Fourier transform of the

ridge-regression estimate, respectively. We used a coarse grid search

for initializing M. From the best initial point, we then performed

optimization as described above, with boundary conditions for

the noise variance and hyperparameters 10{6
ƒs2

ƒ106,

{1ƒniƒ
1

2
diz1, 10{6

ƒMiƒ106, {20ƒrƒ20, where di is

the number of filter elements along the i’th coordinate dimension.

Once we found the filter estimate in Fourier domain, we projected it

back to the spacetime domain via the inverse FFT.

ALD in spacetime and frequency (ALDsf). For the jointly

localized prior, we first obtained the maximum-evidence estimates

for the ALDs and ALDf covariance matrices Cs and Cf (eqs. 11

and 12). We then performed the optimization of the log-evidence

for the full set of ALDsf hyperparameters using fmincon in

MATLAB, using analytic gradient and Hessian (introduced

above), with the boundary conditions for the noise variance and

hyperparameters set to the same values as above.

Application to simulated and real neural data
For the simulated data shown in Fig. 5 , we used a 2-

dimensional Gabor filter (shown in Fig. 4 A) and two types of

stimuli: Gaussian white noise and ‘‘naturalistic spectrum’’ noise–

Gaussian noise with a 1=F power spectrum. Simulations were

carried out with various numbers of stimulus samples

n[f800,1600,3200,6400,12800, 25600g, noise variance s2~2,

signal variance of 1, and a 20|20 pixel filter (coordinate

dimension D~2, filter dimension d~400). To quantify perfor-

mance, we defined the filter error ef as ef ~(
Xd

i~1
(ki{k̂ki)

2)
1
2,

where k is the true filter and k̂k is an estimate. To obtain reliable

estimates of mean error, we ran 100 simulations at each sample

size. To calculate the relative error (Fig. 5 B and D), we computed

the error ef (k̂k) for each method, and then computed the geometric

mean of the error ratio ef (k̂k)=ef (k̂kALDsf ) across datasets.

For V1 data shown in Fig. 6 , the data and experimental

methods are described in [53]. Briefly, cells were stimulated with

1D spatiotemporal binary white noise stimuli (‘‘flickering bars’’)

aligned with each neuron’s preferred orientation. Stimuli were

presented at a frame rate of 100 Hz. The number of bars dx varied

for different neurons, dx[f12,16,24g. The linear receptive field

was assumed to extend over a time window of dt~16 frames

before a spike (a 160 ms time interval). The full dimensionality of

the filter was thus dt|dx, ranging from 192 to 384 parameters.

For retinal ganglion cell data shown in Fig. 8 , the data and

experimental methods are described in [54,55]. Briefly, cells were

stimulated with the spatiotemporal binary white noise stimuli

presented at a frame rate of 120 Hz, contained in 10610 pixels in

space. We assumed the size of the linear receptive field to be

10|10 pixel |25 time bin, making for 2500 total coefficients in

the RF.

We used cross-validation to quantify the performance of the

various estimators (Fig. 6), and resampled the training data to

examine performance as a function of training sample size. To

quantify error reliably, we performed 100 repetitions for each sample

size, drawing the training data randomly without replacement in

blocks of size 2s, which helped to minimize the effects

of non-stationarities in the data. To quantify cross-validation

performance, we used relative cross-validation exv, defined

as exv~
1

n

Xn

j~1
(ytest,j{Xtest,j k̂k)2{

1

n

Xn

j~1
(ytest,j{Xtest,j k̂ktest)

2,

where n is the number of samples of test data, ytest,j is a spike count in

the j’th time bin in the test set, Xtest,j is the jth row of the design

matrix Xtest, k̂k is the RF estimate obtained by each method (from

training data), and k̂ktest is the ML estimate obtained on the test data.

Essentially, this is the ordinary test error minus the error of the ML

estimator trained on test data (which provides an absolute lower

bound on the performance of any linear model). We computed the

relative cross-validation errors from five methods (ML, Ridge, ARD,

ASD, and ALDsf) using 8 minutes of test data. In Fig. 6, we

normalized the errors by dividing them by maximum average error

across methods (the ML estimate using 30 seconds of data yielded
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the maximum cross-validation error). We computed the standard

deviation of the normalized cross-validation error across 100

different training sets for each dataset size.

Fully Bayesian inference (MCMC)
To perform fully Bayesian inference, we used Metropolis-

Hastings (MH) sampling to sample from the distribution over

hyperparameters h given the data X ,Y . We used an isotropic

Gaussian proposal distribution with variance given by the largest

eigenvalue of inverse Hessian of the log-evidence around ĥhmap.

(More advanced proposal distributions and sampling methods are

found in [76,77], but this simple proposal sufficed for our purposes

and mixed reasonably quickly). Thus, we first optimized the

evidence to obtain the mode ĥhmap of log P(hjX ,Y ), which is the

mode of log P(X ,Y jh)zlog P(h). We assumed a non-informative

hyperprior P(h), taken to be uniform over the range of values

permitted during constrained optimization of the log-evidence (see

above).

To carry out MH sampling, we sampled from the Gaussian

proposal distribution centered on the current state ht of the

Markov chain, h�*N (ht,s
2I), then computed a~

p(h � )

p(ht)
, with

the p(h)~P(hjX ,Y ). We accepted the proposal randomly with

probability min(1,a), setting htz1~h�, and otherwise rejected it,

setting htz1~ht. Given each sample ht, we drew a sample of the

receptive field kt*P(kjX ,Y ,ht). These samples were averaged to

compute the posterior mean (or Bayes Least Squares estimator).

Their quantiles were used to compute credible intervals for each

filter coefficient.

In Fig. 10 , we compared fully Bayesian (FB) and empirical

Bayes (EB) filter estimates obtained from V1 simple cell data [53].

For each set of training data, we drew 5000 samples using MH to

compute the posterior mean and credible intervals. The average

acceptance rate of the MH sampler was 0.12. For Fig. 10 A, we

computed the average of the EB and FB error from 100 repetitions

with independently drawn sets of training data. We computed the

average cross-validation error of both estimates of the example cell

(in red). For Fig. 10 B, we computed the average posterior variance

by averaging the posterior variances in the estimates from the 100

iterations in each cell, which we then averaged across all 16 cells.

For Fig. 10 C, we computed the average cross-validation error by

averaging the errors from the 100 iterations in each cell, and we

averaged these across 16 cells. The same 8 minutes of held out test

data was used for cross-validation, for all training iterations.

Supporting Information

Figure S1 Figure S1 shows the comparison of ALD and MID

estimates.

(EPS)

Text S1 Supporting information to 1) compare the performance

of the ALDsf estimator under the linear Gaussian model to the

MID estimator which is equivalent to the maximum likelihood

estimator under the linear-nonlinear Poisson cascade model; 2)

provide expressions for the quantities for computing the log-

evidence.

(PDF)
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