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More than half a century ago, Piaget concluded from an investigation of 

children’s representational thinking about the nature of space that the development of 

children’s representational thought is topological before it is Euclidean. This conclusion, 

commonly referred to as the “topological primacy thesis,” has essentially been rejected. 

 By giving emphasis to the ideas that develop rather than the order in which they 

develop, this work set out to develop a new form of non-metric geometry from young 

children’s early and intuitive topological, or at least non-metric, ideas. I conducted an 

eighteen-week teaching experiment with two children, ages six and seven. I developed a 

new dynamic geometry environment called Configure that I used in tandem with clinical 

interviews in each of the episodes of the experiment to elicit these children’s non-metric 

conceptions and subsequently support their development. I found that these children 

developed significant and authentic forms of geometric reasoning. It is these findings, 
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which I refer to as qualitative geometry, that have implications for the teaching of 

geometry and for research into students’ mathematical reasoning. 
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Chapter One: Background and Significance 

 

STATEMENT OF PROBLEM 
 

Sit yourself down, take a seat. All you gotta do is repeat after me. 

– The Jackson 5 

 

The dominant focus of geometry instruction in elementary school is on 

knowledge of shapes (Clements, 2004, p. 8). Geometry is principally about identifying 

canonical shapes (e.g., squares, triangles, circles) and matching those shapes to their 

given names. Because the curriculum is so narrow and consequently disconnected from 

other domains of mathematics, the emphasis is typically on focusing and reinforcing what 

kids already know. Clements cites one study of kindergarten children (Thomas, 1982, as 

cited in Clements, 2004) that found that teachers added no new content or developed new 

knowledge beyond what kids already knew. Moreover, these picture-driven geometric 

experiences do nothing to move students beyond the level in which they identify shapes 

not by their properties – or even consider that shapes have properties – but by their 

appearance: “That’s a triangle, because it looks like a triangle.” As a result of this “low 

level” engagement, the targeted developmental level lies outside and “below” students’ 

zones of proximal development (Vygotsky, 1978). So it is not surprising that little change 

in children’s conceptions of shape occurs throughout the course of the elementary grades 
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(Lehrer & Chazan, 1998; Lehrer, Jenkins, & Osana, 1998). Still worse, there are other 

weaknesses to the traditional approach to the teaching of geometry in elementary school. 

What makes matters detrimental to the development of children’s learning 

geometry in this kind of environment is that concepts of shape are stabilizing as early as 

age six (Clements, 2004). This means that if young children’s engagement is not 

expanded beyond a set of conventional shapes, these shapes develop into a set of visual 

prototypes that could rule children’s thinking throughout their lives (Burger & 

Shaughnessy, 1986; Clements, 2004). Clements et al. (1999) suggest that the case of the 

square and the equivalent “diamond” is emblematic of this larger issue. Kids aged 4 to 6 

classify them both as squares, but as they progress through elementary school, they’re 

less likely to do so: “the limited number of exemplars [of shapes with multiple 

prototypes, such as triangles] common in school materials impedes, and possibly 

undermines, students’ development of rich schemas for certain geometric shapes (p. 208). 

Along the same line, young children often require that squares and triangles have 

horizontal bases, that all triangles are acute, and that one dimension of a rectangle must 

be twice as long as the other (Clements, 2004). In this study, it appeared that what kids 

had learned in school was “getting in the way” of my investigation. They differentiated 

between rectangles and “long rectangles,” and their primary mechanisms of naming 

shapes involved counting sides or “corners.” They come to assume that these are 

fundamental properties and, accordingly, as shape concepts are stabilizing, the properties 

become distinguishing criteria used for classification (Lehrer, Jenkins, et al., 1998). 
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 Similar unintended consequences for children’s geometric thinking also arise 

because their interactions with shape are limited. Geometry does, of course, possess a 

significant visual component. However, as children see it, geometric thinking is restricted 

to passive observation of static images. The problem is, children don’t only “see” shapes 

that way. They see shapes as malleable and often provide “morphing explanations” 

(Lehrer, Jenkins, et al., 1998, p. 142) for shapes they identify as similar. When geometry 

is about static images on paper, then engagement with, and understanding of, geometry is 

inevitably constrained to holistic representations of those shapes. Furthermore, attributes 

of shape emerge as fundamental properties when shapes are static. For instance, young 

children distinguish between a square and a regular diamond, because they see rotation as 

altering a figure’s fundamental properties. “Half of the first- and second-grade children 

[in Lehrer et al.’s study] believed that a line oriented 50° from vertical was not straight. 

They characterized the line as “slanted” or ‘bent’” (p.149). If interactions with shape do 

not allow for transformations of those shapes, then attributes of shape will arise as “false” 

fundamental properties, and actual fundamental properties cannot arise as significant. 

Piaget’s1 (Piaget & Inhelder, 1956) groundbreaking investigation into the child’s 

representational thinking about the nature of space revealed existence proofs of young 

children’s intuitive and informal topological thinking. That means that not only do young 

children have metric, Euclidean ways of thinking about shapes, but at least as soon as 

they enter into school, they also have non-metric, topological ways of thinking. 

Unfortunately, these thoughts almost certainly go unacknowledged in their classrooms. 
                                                 
1 I use “Piaget” to refer to both the man and his many collaborators. 
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There’s really no place for them there. Elementary school instruction in geometry is 

inconsistent with, and inconsiderate of, children’s non-metric ways of thinking. Its focus, 

albeit narrow, is metric. The consequence of disordering the content so as to only attend 

to children’s Euclidean conceptions is that it may render a student-centered, cognitive-

oriented, inquiry approach to instruction nonviable. 

Mathematics, Interrupted 

 
 In order to support the reader’s engagement, I provide a brief review of the 

mathematics. Without an even vague understanding of the domain, the reader will be at a 

loss as to how to make sense of qualitative geometry and the non-metric conceptions that 

structure it. Another sort of interruption appears in Chapter Two. Holding up young 

children’s geometric conceptions as sufficiently significant to make a “sideways move” 

from an investigation of their conceptions of a “legitimate” mathematical domain 

provides an interruption not of the narrative but of the domain of mathematics itself. 

 Topology2 is a branch of mathematics that deals with properties of a set of points 

that are invariant under bicontinuous transformations (i.e., both the transformation and its 

inverse are continuous). It is concerned with geometric properties that are dependent only 

upon the relative (as opposed to absolute) positions of the components of figures and not 

upon concepts such as length, curvature, size, or magnitude (which are Euclidean). 

Visualizing a set of points on an infinitely stretchable sheet of rubber may make the 

                                                 
2 I will use “topology” throughout to denote the most basic subfield of topology called point-set topology. 
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geometry that is commonly referred to as “rubber sheet geometry”3 more clear. The sheet 

may be stretched and twisted, but not torn or distorted so that two distinct points 

coincide. Straight lines may “become” curved and circles may become ellipses or even 

polygons. Bell (1951) elaborates: 

Imagine a tangle of curves drawn on a sheet of rubber. What properties of the curves 
remain unchanged as the sheet is stretched and twisted and crumpled in any way 
without tearing? Or what are the qualitative properties of the tangle as distinguished 
from its metrical properties – those depending upon measurements of distances and 
angles? (p. 156, italics in original) 
 

Intuitively, but not entirely, this is the idea of topology. Euclidean geometry, in 

contrast, deals with properties that preserve distances between pairs of points, like length, 

curvature, size, and magnitude. Because topological transformations preserve neither 

shape nor size and Euclidean transformations preserve both size and shape, it follows that 

most Euclidean properties are lost under topological transformations. Using “rubber-

sheet” language, topology is the study of “all those properties of extensible, flexible 

surfaces like sheets of rubber, which are invariant under stretching and bending without 

tearing” (Bell, 1951, p. 100). Euclidean transformations preserve congruence; topological 

transformations preserve nearness. Consequently, the set of Euclidean transformations is 

a subset of the set of topological transformations: topology is the more general geometry4 

and Euclidean geometry is, by definition, a special case of topology. Thus, the historical 

ordering of geometry instruction as Euclidean first and topological (for some) much, 

                                                 
3 The term “rubber-sheet geometry” is attributed to Edward Kasner (Bell, 1951). The reader might be 
interested to know that Kasner is the mathematician whose five-year-old grandson named the googol, that 
“large” number that is a 1 followed by 1 hundred zeros. 
4 Some texts (e.g., (Smart, 1998)) have begun to establish topology as a division of mathematics distinct 
from geometry. 
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much later is logically reversed. Unfortunately, most students cannot see the superset for 

the subset. Much like the study of linear functions absent any consideration of the class of 

functions for which the linear function is a special case (Stroup, 1996; Stroup & 

Wilensky, 2000), they never get the chance to.  

Back to Background 

 
 The common content of elementary school geometry is not only inconsistent with 

important elements of learners’ developing thinking, it privileges a particular kind of 

formal geometry over other forms of logical and coherent geometry. When Piaget (Piaget 

& Inhelder, 1956) showed parallels between the “prelogical” (Piaget, as quoted in 

Bringuier, 1980, p. 33) structures young children construct spontaneously and topology, 

the responses were especially critical of his informal use of the mathematics. Kapadia 

(1974) was particularly harsh: “Topology is, contrary to accounts in popular recreational 

books, a very precise, systematic subject. To claim that a child’s first vague and 

imprecise notions may be topological is a travesty” (p. 423). This critique demonstrates 

the privileging of a particular age-dependent account of what it means for mathematics to 

be formal on several counts. Besides the fact that what is useful among Piaget’s findings 

is ignored at the expense of critique on formal mathematical grounds, if one assumes that 

knowledge is rooted in experience, there is no reason that children’s conceptions should 

correspond entirely to those of formal mathematics (Lehrer & Jacobson, 1994). Inasmuch 

as their thinking more highly corresponds to their own real-world experiences than to 

formal mathematics, “children rarely attend to conventional properties because the 
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conventions are more useful for more formal geometry but have few implications for 

children’s everyday use of geometric concepts” (p. 8). This means that geometric ideas 

typically conceived as fundamental are not likely to coincide with those ideas that are 

fundamental to learners’ natural conceptual development in geometry. “Children’s 

topology,” as conceptually significant as it might be, might not be expected to look 

exactly like some features of formal geometry.  

Along the lines of Piaget’s reference to young children’s thinking as prelogical, 

Freudenthal (1971) sees their activity as “premathematics.” Not that their thinking is 

amathematical, but that their activity, whether conceived as intuitive or informal, is 

fundamental to more formal mathematical activity. “Mathematics… used to be allowed to 

start as an activity,” he argues, and “experiments… have shown that children can… 

develop an activity which on a higher level would be interpreted as mathematics” (the 

“real thing”). Finally, “this should be stressed against people [like Kapadia] who rightly 

object that it is no mathematics at all” (p. 417).  

Another critique of the traditional approach to the teaching of geometry is that, 

perhaps not unlike any other domain, the content is given. It is principally about 

identifying shapes. The shapes are conventional as are their names. Teachers elicit this 

conventional knowledge of shape from students (Clements, 2004) and verify that it aligns 

with the curriculum. The opportunities for engaging students’ thinking are restricted to 

only those occasions when elements of their thinking align with instruction, and the 

opportunities for pursuing connections to other domains of mathematics – even beyond 

geometry and topology – are severely limited. When geometric figures are seen as 



 8 

drawings on paper, then these connections are obscured. So geometry in elementary 

school becomes “elementary school geometry” – as if it were a domain in and of itself. It 

exists in isolation and is bound to be all about outlines of physical objects, nomenclature, 

and taxonomy (i.e., naming categories and putting things in those categories): “This is a 

circle, because it looks like the moon.” The pictorial emphasis seems consistent with 

other naming tasks in elementary school, such as in biology: “This is a stamen because it 

looks like a stamen.” The content is reduced to naming conventions as if children can 

only engage the iconic representation. 

BENEFITS OF THIS RESEARCH 

 
The situation presents itself quite differently in the context of arithmetic. Students 

solving problems may invent their own strategies, and if these strategies are logical, they 

are justified by well-understood, shared standards of sense-making (and also by 

fundamental theorems of arithmetic). This is what Cognitively Guided Instruction (CGI) 

(Carpenter, Fennema, Franke, Levi, & Empson, 1999) is about. Informed by a significant 

body of research that has helped us better understand the development of children’s 

thinking about number concepts, CGI has now become a professional development 

program designed “to help teachers develop an understanding of their own students’ 

mathematical thinking, its development, and how their students’ thinking could form the 

basis for the development of more advanced mathematical ideas” (Fennema et al., 1996, 

p. 404). Simply stated, beginning with an assumption that “children enter school with a 

great deal of informal or intuitive knowledge of mathematics that can serve as the basis 
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for developing much of the formal mathematics of the primary school curriculum” 

(Carpenter, Fennema, & Franke, 1996, p. 3), teachers use knowledge from research on 

children’s mathematical thinking to generate a space for the consideration of children’s 

informal and intuitive ideas about arithmetic, and instruction proceeds from there 

(Carpenter, Fennema, Franke, Chiang, & Loef, 1989). The formal mathematics is 

reconceived in such a way that considers and characterizes young children’s ways of 

thinking (e.g., “join/separate” rather than “add/subtract”). As a result, learners have 

opportunities to meaningfully engage with the mathematics, because conventional 

features (e.g., symbols, notations) of formal mathematics do not get privileged over their 

ways of thinking about it. Nor does an assumed curriculum constrain the space of what 

gets talked about in their mathematics classroom. In contrast, as Lehrer and Jacobson 

(1994) argue, the research on learners’ ways of thinking about geometry is lacking, 

particularly for children in the elementary grades. Clements and Battista (1992) seem to 

agree. Their call for research “to identify the specific, original intuitions and ideas that 

develop and the order in which they develop” (p. 426) is precisely what Piaget did over 

fifty years ago (Piaget & Inhelder, 1956), and with the exception of attention to the 

ordering of development, this is somewhat close to what I have attempted to accomplish 

herein.  

Currently, students’ mathematical potential is not being realized, because their 

teachers are not provided with the tools they need to build on the informal mathematical 

ideas their students bring into the classroom (National Research Council: Committee on 

Early Childhood Mathematics, 2009). If teachers do not understand how their students 
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are thinking about geometry and if the curriculum is not connecting to the informal 

mathematical knowledge that kids bring into schools, then teachers have no capacity to 

engage their students’ ideas and to subsequently support their development. By 

generating a space that lies beyond the dominant model of elementary school curriculum 

and instruction, we are prepared to better understand how children’s geometric thinking 

develops.  

METHODS AND RESEARCH QUESTIONS 
 

To begin the process of developing models of young children’s qualitative 

geometric conceptions, I used qualitative methods. In addition, because my focus is on 

qualitative geometric conceptions, I required a learning environment in which those 

conceptions were made salient and a tool with which to make them visible and 

subsequently support their development. In these and other ways, I conducted a teaching 

experiment (Steffe & Thompson, 2000) in which tasks were designed to model 

participants’ current and developing knowledge in the domain. The in situ and a 

posteriori analyses contributed to the development of those models. My research 

questions were: 

1. Given that early forms of topological, or at least non-metric, geometric 

reasoning have been identified and discussed in the research literature, can a 

software environment be developed in ways that support fundamental topological 

representations and transformations such that learners’ reasoning about 
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topological ideas are made visible and are able to further develop in ways that 

could credibly be seen as both mathematical and significant? 

2. What forms of topological or non-metric geometric ideas are made visible and 

can be seen to develop as a result of young learners’ systemic engagement with a 

computer environment that makes topological representations and transformations 

accessible? 

These questions structure the substance of this dissertation. In the following 

chapters, I further develop the rationale for the study, outline my conceptual framework, 

and discuss my methods, analysis, findings, and implications. In Chapter Two I interpret 

the relevant research on young children’s topological conceptions and discuss the 

mathematics relevant to the investigation. In Chapter Three I discuss my methodological 

approaches, including the research design, sources of data and their analysis, as well as 

the perceived strengths and weaknesses of the study. In Chapter Four I provide a 

narrative of the development of the software I used in the study. In Chapter Five I present 

the study’s findings in the forms of narratives of each of the participant’s experiences. 

Finally, Chapter Six concludes the paper with a discussion of the conclusions and 

implications of the study, as well as potential future directions for this research. 
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I close this chapter with the presentation of the word cloud that was developed 

from the text of this dissertation. It is meant to foreshadow for the reader the stories that I 

tell here. 

 

Figure 1. A word cloud of the text of this dissertation 
 

Like the dissertation itself, this representation might attend to new ways of understanding 

what discourse about geometry could be like. 
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Chapter Two: Literature Review 

 

In the previous chapter I provided an illustration of the dominant model of 

elementary geometry instruction and followed it with a variety of critiques of that model.  

I concluded by suggesting that, like CGI in arithmetic, a body of research into the 

development of children’s geometric thinking can provide teachers with the information 

they need about their students’ intuitive and informal geometric knowledge so as to be 

better prepared to engage and extend their students’ geometric thinking.  

In this chapter I provide a review of literature related to investigations of the 

development of children’s representational thinking about space that yield existence 

proofs of their topological thinking. Then, I draw some conclusions about the topological 

ways that young children think about shape. These conceptions are used to structure the 

development of a new domain of mathematics, or at least a new analysis of learning, I 

call “qualitative geometry.” Then, to frame the discussion of the impact, this literature 

review offers images of what a “qualitative move” beyond the dominant model might 

offer young students and their teachers.  

 Generating a space that lies beyond the dominant model of elementary school 

curriculum and instruction by identifying young children’s non-metric geometric 

conceptions provides teachers with the capacity to better support the development of their 

students’ geometric thinking. Now, the way I go about generating this space is of critical 

importance. Just as it is in the case of CGI, the primacy of mathematical content at the 
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core of research and practice will be emphasized here. This sense of what research is to 

be about is one that Piaget took very seriously, as Papert (1980) explains: 

For Piaget, the separation between the learning process and what is being learned is a 
mistake. To understand how a child learns number, we have to study number. And we 
have to study number in a particular way: We have to study the structure of number, a 
mathematically serious undertaking (p. 158). 

 
 Accordingly, the initial justification for analyzing the development of qualitative 

geometry follows from the observation that Piaget (Piaget & Inhelder, 1956) carried out 

the first systematic investigation of children’s representational thinking about the nature 

of space in a book titled, The Child’s Conception of Space. Piaget finds from that 

investigation that: 

… representational thought or imagination at first appears to ignore metric and 
perspective relationships, proportions, etc. Consequently, it is forced to reconstruct 
space from the most primitive notions such as the topological relationships of 
proximity, separation, order, enclosure, etc., applying them to metric and projective 
figures yielded by perception. (p. 4) 

 
This phenomenon that the development of children’s representational thought is first 

topological (assuming neither constant size nor constant shape), then projective 

(assuming constant size, but not shape) and finally Euclidean (assuming both constant 

size and shape), has come to be referred to as the “topological primacy thesis” (cf. 

Martin, 1976b) Before considering two of Piaget’s experiments that most significantly 

informed the work of this dissertation, it is necessary to explain the difference between 

“perceptual” and “representational” thought. As I elaborate below, that difference is 

significant for understanding both Piaget’s methods and my own.  
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Perceptual and Representational Thought  
 

It is important to acknowledge that Piaget was describing the development of 

children’s representations of space and not their perceptions of that space. “Perception,” 

as Piaget (Piaget & Inhelder, 1956) defines it, “is the knowledge of objects resulting from 

direct contact with them. Representation… involves the evocation of objects in their 

absence or, when it runs parallel to perception, in their presence” (p. 17). Representations 

are not mere copies of percepts – perceptual “reading[s] off” (Clements, et al., 1999; 

Flavell, 1963) – they are re/constructed from the coordination of percepts (or 

“centrations,” in Piaget’s words), each of which is initially acquired through the child’s 

sensori-motor actions.  

According to Piaget’s framework of cognitive growth (1970b), in order for a child 

to build a representation of a particular shape, properties of that shape must be abstracted 

through a series of coordinated, reversible actions (or operations (Piaget, 1970b, p. 15)), 

and these properties must then be related and synthesized into a coherent whole. In 

contrast to ordinary abstraction – or generalization, which is a process of deriving 

properties from things and not from operations on things, this sort of abstraction – one 

that Piaget refers to as reflective abstraction (1970b, p. 28) – requires action on the 

objects – in this case shapes – that possess them. Relative to shapes, the properties or 

patterns that are abstracted provide the elements for the construction of mental 

representations, or images, that are not necessarily pictorial, but do exhibit some sort of 

mental or operational correspondence to the thing perceived. The construction of the 
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representation of that shape from an active sense of perception of possible operations on 

objects is an instantiation of Piaget’s model (1970b)5 of the child’s representational 

thought as developing from his or her sensori-motor intelligence. For Piaget’s discussion 

of shape, he used a haptic environment, much less limited to visual perception than other 

investigations of geometric ideas. 

To illustrate, Piaget’s haptic perception experiments (Piaget & Inhelder, 1956) 

(involving tactile and kinesthetic perception, but not visual), presented in greater detail 

below, were conducted to analyze the child’s construction of a mental representation 

from active perception. The child is presented with a number of objects and actively 

manipulates each one without being allowed to see it. Based on patterns in his or her 

haptic experience, the child constructs a mental representation of each object as he or she 

manipulates it. Each instance of contact forms a percept, and percepts are coordinated to 

form a mental representation of the object. Then, the child is asked to name, draw, or 

point out the object from a collection of visible objects or drawings of them. This sense 

connects with a broader literature related to constructions and perception. Some of this 

literature is consistent with a notion of seeing as active, as composed of possibilities. In 

this sense, a square is also seen as any of its images upon transformation, such as a non-

square rectangle or even a triangle. When one actively sees the square, one also sees 

transformations of the square. As such, the square, rectangle, and triangle are not seen as 

distinct but as alike.  

                                                 
5 And its reflection in Gardner’s presentation of Piaget’s stage theory (Gardner, Kornhaber, & Wake, 
1996a, pp. 105-112) as a theory of representations provides me with new appreciation for a theory I had 
otherwise had relatively little use for.  
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In a collection of lectures called Ways of Worldmaking (1978), Nelson Goodman 

describes the work of psychologist Paul A. Kolers. Goodman mentions an experiment 

Kolers had conducted in which two dots were flashed on a screen with variable times 

between flashes. He found that in a particular time interval, an observer would see a spot 

moving from the first position to the second. He wondered what this apparent motion 

would look like if figures such as squares, triangles, and circles, or even three-

dimensional figures such as cubes, were flashed instead of dots. Noting that a notion of 

similarity only applies to two figures of the same shape, he wondered how dissimilar two 

figures of different shapes – and even different dimensions – would have to be before 

there could be no time interval in which there was apparent change from the first figure 

to the second. Given the diversity of shapes and dimensions, what he found was 

surprising: he showed that “almost any difference between two figures is smoothly 

resolved” (p. 75). One could use Kolers’s findings as evidence to support a claim that at 

the perceptual level, under particular conditions, all figures are topologically equivalent. 

This equivalence is developed by the observer in relationship to active operations or 

possible transformations; it is not in the objects themselves. 

As an example of how critiques could go wrong by not distinguishing between 

perception and representation, one could attempt to refute Piaget’s thesis by operating at 

the perceptual rather than representational level as Dehaene and colleagues tried to do 

(2006). Participants in their study were given arrays of six images and asked in their 

language to point to the “weird” or “ugly” one. One of the six figures did not possess the 

property or concept of interest, and some of these were topological (e.g., connectedness, 
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closed, holes). Among the authors’ findings is a conclusion that “does not support 

Piaget’s hypothesis of a developmental and cultural progression from topology to 

projective and Euclidean geometry, but rather suggests that geometrical intuition cuts 

across all of these domains” (pp. 382-383). Certainly, this exercise does not involve 

operations on representations, which is the essential feature of Piaget’s notion of 

structure. Representations are constructed from internalized actions, and so it is 

particularly troubling that participants in this study were not active. They were pointing at 

shapes, not operating on them.  

Like Piaget’s investigations (1956), I am interested in the development of 

children’s representational thinking. Having provided this clarification of the distinction 

between perception and representation, and I now return to review the literature related to 

those investigations.  

Returning to Piaget’s Investigations 
 

 Piaget (1956) identified five spatial relationships that he called topological: 

proximity, separation, order (or spatial succession), enclosure (or surrounding), and 

continuity. He defines them as follows: 

• proximity: the nearby-ness of elements belonging to the same perceptual field 
• separation: Two neighboring elements may be partly blended and confused. To 

introduce between them the relationship of separation has the effect of 
dissociating, or at least providing the means of dissociating them. 

• order (or spatial succession): when two neighboring though separate elements are 
arranged one before another 

• enclosure (or surrounding): In an organized series ABC, the element B is 
perceived as being ‘between’ A and C which form an enclosure along one 
dimension. 
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• continuity: In a series ABCDE etc., in which adjacent elements are confused or 
perceived without being distinguished (A = B, B = C, etc.), but where A and C or 
B and D are distinguished, the subject has an impression of continuity. (p. 8) 
 

Piaget realized that these relationships are among the basic perceptual relationships 

analyzed by Gestalt theory6. These five relationships were first presented among a set of 

nine by Max Wertheimer in 1923 (as reported in Wertheimer, 1938): 

• Law of Closure - Our mind adds missing elements to complete a figure. 
• Law of Similarity – Our mind groups elements that appear similar (e.g., in terms 

of form, color, size and brightness). 
• Law of Proximity - Our mind groups elements that are close together, even if they 

appear different. 
• Law of Continuity - Our mind continues a pattern, even after it stops. 

 
The five spatial relationships that are central to Piaget’s investigation are 

compatible with formal mathematics to the extent that this geometry deals with properties 

that are dependent on the relative components of figures and not upon concepts such as 

length, size, or curvature. And these properties are at least as meaningful from the 

perspective of Gestalt laws of perception.  

The consistency between Piaget’s “topology” and Gestalt’s basic perceptual 

relationships enables us to make sense of Piaget’s findings of “topological primacy” by 

considering the relationship between perceptual and representational thought. His thesis 

of topological primacy derives from the claim that the actions that elicit topological 

relationships are more elementary than those needed to abstract Euclidean relationships, 

which require greater ability in ordering, organization, and coordination of action. So 

properties “like” proximity and separation are abstracted earlier than properties “like” 
                                                 
6 Goodman, as discussed earlier, also draws upon the insights of Gestaltists. 
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side length and angle measure. Given that the topology referred to here is Piaget’s, and 

that “Euclidean figures” refers to those figures for which Euclidean properties are most 

salient, I find this re-presentation of Piaget’s findings more credible than “topological 

primacy.”  

Topology and “Piaget’s Topology” 

 
At some point it must be noted that, from a formal mathematical point of view, 

there is much about Piaget’s (1956) mathematics that can be critiqued. His confusion of 

the mathematical terminology along with his use of terminology that is not mathematical 

is widespread. This is unfortunate for at least three reasons. First, Darke (1982) and 

Martin (1976b) advise that we need to be aware of the sense in which terms are used and 

not extrapolate beyond that sense of usage. For example, a concept of separation as 

Piaget uses it seems to precede a concept of separation as mathematicians use it. Or, a 

finding of topological primacy may have too little to do with mathematical conceptions 

of topological concepts. Second, if a term is used that is not mathematical (such as 

Piaget’s uses of “irregular,” “simple Euclidean shapes,” and “topological figures”), it is 

not possible to provide the kind of mathematical definition that clarity requires. Third, it 

is with respect to terminology that most of the reactions to Piaget’s investigations (Piaget 

& Inhelder, 1956) have been leveraged, and these reactions have clearly distracted us 

from what it is we might learn from those investigations about the development of the 

child’s representational thinking. Consequently, as I elaborate later in this chapter, these 

critiques surrounding the issue of confusions around mathematical meanings provoked 
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me, in part, to make a sideways move from an investigation of children’s “capital T” 

topological conceptions to an investigation of their “qualitative” geometric conceptions, a 

cue I have taken from the journal Nature in which the word “topology” was first 

introduced to distinguish “qualitative geometry from the ordinary geometry in which 

quantitative relations chiefly are treated” (Wikipedia, 2007)7.  

That said, the “topological relationships” to which Piaget refers are actually 

“topological properties” (or “topological invariants”). Topological properties are those 

properties that remain invariant under continuous transformation. For example, a disc 

will never have a hole after a continuous transformation. On the other hand, a straight 

line could become curved upon transformation. Therefore, squares and circles are 

topologically equivalent. Finally, Euclidean transformations are those that preserve 

distances between pairs of points. A consequence of Euclidean transformation is that 

shape and size are preserved. Therefore, Euclidean properties include topological 

properties (because Euclidean properties preserve everything!), and this means that we 

cannot separate properties into distinct categories of topological and Euclidean.  

Martin (1976b) and Kapadia (1974) devote entire papers to the issue of meanings, 

and each of those who has conducted replicate experiments (Esty, 1971; Laurendeau & 

Pinard, 1970; Lovell, 1959; Martin, 1976a, 1976b) also consider the issue. I demonstrate 

the significance of the issue by exploring Piaget’s notions of separation and proximity. 

                                                 
7 Coincidentally, at one point in their text on the subject, Chinn and Steenrod (1966) provide a proof that 
“exhibits that peculiar blending of numerical precision and rough qualitative geometry [emphasis added] so 
characteristic of topology” (p. 1). 
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First, consider “separation.” I propose that the deviation of separation in the 

Piagetian sense from separation in the mathematical sense could be dismissed as a 

technicality only if we simply accept that topology in the mathematical sense is not 

equivalent to topology in the Piagetian sense. If that is the case, then we could agree with 

Darke (1982) who argues that “the confusion of terminology alone seems to require a 

replacement of the topological primacy thesis by a ‘weird shape primacy thesis’” (p. 

121). But Martin (1976b) is more constructive, noting that loose everyday language is 

insufficient if these relationships are to be considered topological properties. Thus, we 

find it fitting to make sense of the Piagetian terminology.  

Separation in the Piagetian sense seems to mean disjoint, which refers to a 

property of two or more sets whose intersection is empty. The formal mathematical sense 

requires a notion of limit points: a point P is a limit point of a set A if every open set 

around P contains at least one point of A that is distinct from P. Two sets are separated if 

they are disjoint and if each set contains no limit points of the other. For example, 

consider the infinite sets,   
A = 0,1( ⎤⎦  and   

B = 1,2( ⎤⎦ . The intersection of A and B is empty,8 

so they are separate (disjoint) according to Piaget’s definition. But they are not separate 

in the formal mathematical sense because 1 is an element of A and it is also a limit point 

of B.9 As it turns out, in the case of Euclidean space and finite sets, it is true that Piaget’s 

                                                 
8 1 is an element of A but not of B. 
9 Any open interval around 1 will “capture” points in B other than 1. 
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usage is equivalent to the mathematical sense.10 Thus, Piaget’s use of separation is 

acceptable in the cases where he uses it and the criticism on mathematical grounds is 

unwarranted. 

 Now consider proximity. This is the more useful case precisely because the 

confusion is harder to resolve. I could follow Kapadia (1974), who asserts that proximity 

is “certainly not a topological relationship… for it involves a vague idea of distance, a 

concept foreign to topology” (p. 420), but my reluctance to privilege some aspects of 

formal mathematics over other logical forms of reasoning requires that I be more 

considerate. Piaget defines proximity as “the nearby-ness of elements belonging to the 

same perceptual field” (1956, p. 8). This sensori-motor-based criterion for nearby-ness is 

as far as Piaget goes to define proximity but his intentions are clarified in the tasks he 

uses to assess it. Given that Piaget was interested in children’s representational thinking 

and representations are constructions of mental representations through reflective 

abstraction, then nearby-ness must be arrived at in relation to perception. At this level, it 

makes little sense to talk about the proximity of two points since points are zero-

dimensional and thus cannot be perceived. But even at the perceptual level, it is not clear 

how close two points must be to deem them proximal. This point, as Kapadia argues, 

does suggest that Piaget’s proximity requires some notion of distance. But if proximity 

were a topological property, then, roughly, if two points are nearby one another in one 

set, their images under a topological transformation are also nearby one another. Indeed, 
                                                 
10 Finite sets have no limit points. Consider S = {1,2, 3} . It is trivial to find an open interval around any 

point P in S that captures only P. Simply pick ε  such that  0 < ε < 1. Then 
  

P − ε , P + ε( )  is just such an 
interval. 
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this could be the case, but the justification may not be so convincing. Recalling the 

rubber sheet and imagining that the images of nearby points can have images as far apart 

as we want gets us into trouble. Martin (1976b) provides just such an example (p. 20), 

shown in Figure 2. Note that the 

 

Figure 2. The homeomorphism defined by f(x) = x/(1 – x) 

 

images of points in X between 0 and 1 cover the positive values in Y, and the images of 

points in X that are less than 0 are between –1 and 0 in Y. It would appear, then, that 

proximity as a proxy for nearness is not a topological property. But the demonstration is 

misleading, probably because in order to illustrate the nearness of two points, we must be 

able to visually perceive it. In other words, the figure does present proximal points “in the 

same perceptual field,” but those points are not sufficiently nearby to satisfy a topological 

condition of nearness. I draw on one variety of the topological concept of neighborhoods 

to make the argument. In the case of two-dimensions (i.e., the plane), a neighborhood of a 

point P is the set of points inside a circle with center P and radius  ε > 0 . A reasonable 

criterion for nearness, then, is that two points are near each other if they lie in the same 

neighborhood, that is, the distance between them is less than the radius ε  of the 
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neighborhood. Because the concept of continuity makes use of the concept of 

neighborhood of a point, ε  is typically thought of as infinitesimally small, although it 

need not be. Piaget’s use of proximity, on the other hand, certainly suggests a more 

relaxed notion of nearness than this concept of neighborhood. Because we can choose a 

sufficiently “small” value of ε  to define the neighborhood out of our perceptual field, the 

image of two points that are nearby each other in the Piagetian sense apparently need not 

be in the same neighborhood. To conclude, because Piaget’s criterion for nearby-ness is 

perceptually based, it is not a topological property.  

 Consideration of the differences between the formal and informal concepts of 

separation and proximity may be demonstrative of the extent to which informal 

treatments of the subject matter become more accessible that more formal treatments. I 

elaborate this point later in the chapter when qualitative geometry is defined. For now, it 

suffices to say, this is one of the greatest advantages of a sideways move from an 

investigation of children's topological conceptions to their qualitative geometric ones. For 

if the investigation were of topological concepts, then findings lend themselves to 

binaries of topological or non-topological. But by relaxing the precisions, an 

investigation of children’s qualitative geometric conceptions could produce findings that 

lend themselves to rich and nuanced descriptions without a felt need to classify.  

Piaget’s Experiments 
 

My first analysis of the experiments of Piaget’s investigations (1956) was for the 

sake of my own review of his conclusion of topological primacy. When I became 
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uninterested in the order in which children’s geometric ideas develop, my re-view was for 

the goal of identifying young children’s topological conceptions of shape as revealed in 

the findings of Piaget’s investigations and the replicate studies. Therefore, all the details 

that do not support this goal are omitted from the following presentation of those 

experiments and their replicate responses. Also, for the sake of maximizing clarity, I 

should note that where there is a potential for confusion, I have reinterpreted some of the 

mathematical language. All of the references are to his investigations as reported in The 

Child’s Conception Space (1956).  

 

Experiment 1: Piaget’s Haptic Perception Tasks 
 

Haptic perception involves tactile and kinesthetic perception, but not visual.  The 

child is presented with a number of objects (such as a toothed semicircle, trapezoid, 

“irregular surface” with one or two holes, open and closed rings, intertwined and 

superimposed rings), familiar solids (ball, scissors, etc.) or “flat” shapes (squares, circles, 

etc.), and manipulates each one without being allowed to see it. The child is asked to 

name, draw, or point out the object from a collection of visible objects or drawings 

(Figure 3) of them. So that the experimenter can see the child’s methods of tactile 

exploration, the child is placed before a screen behind which it feels the objects handed to 

him or her.  
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Figure 3. Shapes used in Piaget’s haptic perception experiment 

 
 Piaget gives little indication, but his classification of “Euclidean forms” seems to 

include those shapes with straight sides in columns A, B, and C. His use of “purely 

topological form” seems to include the “irregular surface pierced by one or two holes” 

and the “open,” “closed,” or “intertwined rings” (p. 19) that appear in column D. He finds 

that by 3;6 – 4 (where a;b means a years and b months of age), children were able to 

recognize familiar objects, then “topological forms,” but not “Euclidean forms.” He 

argues that the first shapes recognized by the child are significant, not for the properties 

that are visually most salient, such as straight lines, curves, and angles, but rather for 

properties such as closed, open, and intertwined. The child easily distinguishes these 

features, but cannot differentiate “Euclidean shapes.”  

Piaget admits that errors arise from inadequate tactile exploration of the objects. 

For example, one child matched a held square to the model of a triangle, having touched 

only one of its corners. Another matched a held ellipse with the notched semicircle, only 
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having felt its curved edge. This is unfortunate for the conduct of the study in that Piaget 

had apparently designed it with the expectation of an analysis of shapes by handling, by 

“passing it from one hand to the other, turning it over in all directions” (p. 10), that is, 

through full tactile exploration by the child. He suggests that the lack of exploration is a 

result of a deficiency in perceptual activity, referring to combinations of centrations (such 

as touching one part of the object) and decentrations (moving on to another part of the 

object). He concludes that the child’s perceptions have yet to be integrated into a system 

that brings them together. This, he suggests, also explains the child’s difficulty with 

copying the object by drawing, since the source of an image of an object is perceptual 

activity. Abstraction of shape is therefore more than the abstraction of properties; it also 

involves the actions taken by the child to coordinate those properties that allow him or 

her to grasp the shape as a single whole. This, he concludes, explains why the topological 

relationships of proximity and separation (which follow from openness and closure) arise 

earlier than Euclidean relationships. There is something fundamentally alike about 

topologically equivalent shapes. 

 At age 4 – 6, Piaget finds in children a progressive recognition of “Euclidean 

shapes.” The child distinguishes between curvilinear and rectilinear shapes, but fails to 

distinguish the different sizes of the various shapes. The child explores the objects 

further, although not completely. Rectilinear shapes are identified by their angles, and “it 

is the analysis of the angle… that marks the child’s transition from topological 

relationships to the perception of Euclidean ones” (p. 30). Reconstructing a rectilinear 

shape by drawing requires that the child consider that an angle is the intersection of two 
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lines and not simply as “something that pricks” (“Leo,” p. 29).  Thus, abstraction of the 

angle must come from the action on the object rather than from the object itself. 

Specifically, it is the result of the coordination of hand and eye movements, which then 

gives the child an impression of straight sides.  

 By the end of 6;6 – 7, the perceptual activity is more organized than in the 

previous stage. The child demonstrates an operational (reversible11) method, which 

consists of grouping the perceived features in terms of a consistent search plan, and by 

starting at a particular point of reference and returning to it. Consequently, the distinctly 

perceived elements become connected with the others to form a single whole.  

Responses to Piaget’s Haptic Perception Tasks 
 

 Most of the responses to Piaget’s investigations have been critiques around 

informal use of the terminology, an issue I’ve attended to briefly above, but one that 

deserves to be revisited here. Recall Darke’s (1982) concern over false extrapolation and 

refer back to Figure 3. Note that all of the objects in columns A, B, and C, and object D7, 

are topologically equivalent. That is, each contains properties invariant under continuous 

transformation (i.e, each one can be stretched into any of the others). And so, if the 

topological primacy thesis were correct, a child could not distinguish between any of 

them. It’s fair to argue then, as Martin (1976a) does, that the child’s selection of 

topologically equivalent shapes could occur by chance. At a practical level, Kapadia 

                                                 
11 I elaborate on Piaget’s notion of reversibility on page 53 in the section where I introduce Qualitative 
Geometry. 
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(1974) suggests the topological equivalence of C, L, M, N, S, U, V, W, and Z (each sans 

serif), for example, would make it very difficult for children to learn the alphabet. 

 Replicate experiments were conducted by Lovell (1959) and Page (1959). Lovell 

gave 145 children aged 2;11 – 5;8 common objects and cardboard shapes like Piaget’s. 

The subjects were asked to examine figures by touch and then select them by sight, as 

Piaget and Inhelder had done. He concluded that “topological shapes” were identified 

more easily than “Euclidean” ones, but if the topological shapes were compared only 

with Euclidean curvilinear shapes (like the circle and ellipse), there was no significant 

difference in the ease of identification. Page used 60 children aged 2;10 – 7;9. In general, 

his results agreed with Piaget’s, except he noticed that children, even the youngest, did 

distinguish between curvilinear and rectilinear shapes. 

 I have already mentioned that, in the haptic perception experiment, errors arose 

because children did not adequately explore the objects. Piaget admits as much, and 

makes an effort to explain the nature of this behavior. Still, Page (1959) and Fisher 

(1965) are critical of Piaget’s findings on these grounds. But Fisher also hypothesized 

that children should be more likely to identify objects whose names they know, so he 

conducted a replicate experiment wherein he canceled the naming effect by teaching 

children nonsense names for all the objects. His results showed a “linear primacy,” that 

is, rectilinear shapes were more easily identified than curvilinear ones, but his study 

suffered from the same terminological issues as Piaget’s. “Topological figures” and 

“Euclidean figures” were not well-defined. 
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 Laurendeau and Pinard’s (1970) investigation replicated Piaget’s experiment. The 

authors used the same shapes as Piaget (Figure 4) and, like Piaget’s, their design was 

informed by confused notions of the relevant mathematics. They offer that eight of the 

shapes are “of a topological character” and four are “metric.” But they offer no indication 

as to which are which. I can see five in the first series that might map onto Piaget’s 

“topological shapes,” but in the second series I find only two.  

 

 
Figure 4. Shapes used by Laurendeau and Pinard (1970) 

 
The authors find that participants most easily identified curvilinear shapes, then 

rectilinear and “topological,” and finally “complex” rectilinear shapes. Unfortunately, I 

cannot make use of their findings, because I cannot make sense of them. Resorting to 

Piaget’s terms, curvilinear shapes are “topological shapes,” and I don’t know what 

criterion differentiates a rectilinear shape from a complex rectilinear one. 

 In the next phase of analysis, Laurendeau and Pinard looked at children’s errors. 

They categorized an error as either a “topological success” (one where the chosen shape 

was topologically equivalent to the correct shape) or a “topological error” (one where the 

chosen shape was not equivalent). This is problematic for two reasons. Figure 5 shows 
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their groupings of equivalent shapes. First, note that the “open rectangle” appears in two 

groups. This means that the groups are not equivalence classes, because an equivalence 

class containing the “open rectangle” would contain all of the shapes in the sets in which 

it appears. Second, note that the groups are not formed according to topological 

equivalence as the authors suggest. If they had been, all of the shapes in groups 3, 4, 5, 

and 6 would be sorted together. The shapes seem to be grouped as such to simultaneously 

determine topological primacy and the primacy of straight-sidedness or curvilinearity. 

 
Figure 5. Laurendeau and Pinard’s groupings of equivalent shapes (1970) 

 
 Schipper (1983) also recognizes this issue. He finds it “interesting to note, as 

Laurendeau and Pinard already know, that their classification differs from the 

mathematically correct one. In a footnote (1970, p. 52) they try to defend their unusual 

classification with psychological arguments” (p. 288). Such a classification scheme is not 

permissible if the authors want to speak of children’s attention to topological properties. 

However, Schipper sees “an important hint” (p. 289) in that scheme and that is the 

relevance of a shape’s boundary: “Apparently children perceive indentations and 

protuberances of boundaries as especially striking characteristics” (p. 289).  
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 Using their classification scheme, Laurendeau and Pinard found that “actual 

topological successes” nearly doubled “expected topological successes,” and so they 

concluded that topological primacy existed. They argue, “it is quite obvious that, at least 

for some children, the errors are not randomly distributed but are guided by a search for 

homeomorphisms” (p. 61), or topological equivalents. But Darke’s (1982) analysis 

proceeded differently. He analyzed their data with an assumption of topological primacy, 

which assumes that child would either choose the correct shape or one that is 

topologically equivalent. Then, an error would mean that the child chose a shape that is 

not equivalent. For example, of the objects in Figure 5, a closed ring and a disk with one 

hole are the only shapes in their topological equivalence class. And if topological 

primacy exists, a child is just as likely to choose one as the other. Now consider a second 

equivalence class that contains the nine topologically equivalent figures with no holes. 

We should expect a child to choose any shape in the class with equal likelihood. 

However, in both cases the actual responses are not as such. Subjects chose the same 

shape much more often than was expected under an assumption of topological primacy. 

Consequently, this analysis does not confirm topological primacy. 

 Martin’s (1976a) haptic perception experiment is more considerate of the relevant 

mathematics. Six models are presented to 90 children – 30 each from ages four, six, and 

eight. The child is asked to select the one of three copies that is most like the model. The 

first copy is topologically equivalent. The other two copies are not topologically 

equivalent, but retain most of the Euclidean features of the model: the first copy loses the 
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topological property of connectedness and the second loses closure. He found no age 

effect on children’s choice of “most like” and no evidence of topological primacy. 

 Esty (1971) used a similar experimental design. Whereas Martin’s (1976a) copies 

retained most of the Euclidean features of the model, Esty’s copies keep at least one 

topological property of the model, but ignore almost all of the model’s Euclidean 

features. Copy B allowed line segments to protrude, whereas in the model they did not. 

Otherwise, Copy B would be homeomorphic to the model. Copy C lost all of the model’s 

topological properties. Esty also used “bandwidth” to control the amount that a copy 

would deviate from its model. That is, he drew a copy of the model with a fatter pen. 

Then, within the region formed by the fatter pen, he would form his copies of the model 

with a thinner pen. You might imagine that if the model were a circle and the bandwidth 

were large enough, the homeomorphic copy (Copy A) could be a square. Figure 6 shows 

the original model, two copies of different bandwidths, copy A (the homeomorphic 

copy), copy B, and copy C (the model minus the topological properties of connectedness 

and closure). 
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Figure 6. The model, two bandwidth figures, and copies A, B, and C. 

 Consistent with Piaget’s findings, Esty found that four-year-olds tend to choose 

Copy A as “most like” the model and eight-year-olds choose Copy A as “least like.” 

Then he makes some interesting conjectures as to why this is so. He wonders if the 

children are ignoring Euclidean relationships or whether it has to do with the way they 

look at pictures. The things that are “wrong” with copies B and C are confined to small 

parts of the area the picture covers; on the other hand, to notice the “non-straightness” of 

the sides in Type A copies requires the coordination of several centrations (in Piaget’s 

terms). So maybe they chose Copy A not because of its topological inaccuracy, but 

simply because the kind of inaccuracy represented in homeomorphic copies is global 

rather than local, as it is in copies B and C. But this would require that they ignore the 

absence of angles, and Esty finds this unlikely, since there were other copies that 

represented the angles. 
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Experiment 2: Piaget’s Drawing Tasks 
 

 The child is asked to produce drawings of a series of models, shown in Figure 7. 

Piaget suggests that some of the models emphasize topological relationships (1 – 3), 

while others are “simple Euclidean shapes,” and still others combine both types of 

relationships. To eliminate the elements of skill and motor habits, children were also 

offered matchsticks with which to construct the straight-sided models. 

  

 
Figure 7. Models used in Piaget’s drawing task. 

 
Piaget finds that the drawings produced by children between 3;6 and 3;10 vary 

according to the models in that open shapes are distinguished from closed ones, and by 

age 3;10 – 4, they attend to some topological relationships, but “Euclidean relationships 

are completely ignored” (p. 55). In addition, he finds that squares and triangles are drawn 

as closed curves, but they are not distinguished from circles.  
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My interpretation of the presented drawings is different. Figure 8 shows drawings 

of models 4 (the circle) and 5 (the square) from a sample of drawings from children in  

 

 
Figure 8. A sample from a child in the age range 3;10 – 4 

 
this age range. These copies of the child’s drawings of a square and a circle have the 

distinguishing feature of lines. These might be seen to suggest that there is a Euclidean 

relationship that the child attends to. The copy of the square suggests that the child seeks 

to represent a square as a closed (a topological relationship), four-sided (a Euclidean 

relationship) figure. The segmenting of the shape into four pieces suggests it is the sides 

of the square that distinguish it in the child’s mind from a circle (which has no sides). 

 Also by 3;10 – 4, the child distinguishes the open-shaped cross from the circle 

and triangle, but is not able to distinguish rectangles, squares and triangles from circles 

and ellipses. Models 1 – 3 are drawn correctly, so attention is clearly paid to whether the 

smaller circle lies inside, outside, or upon the boundary of the larger figure. In 

topological terms, the child is representing properties of enclosure (by drawing the closed 

circle and larger figure), separation (by representing the distinction between the two 

figures), and proximity (by properly locating the circle in relation to the larger figure). 

 Darke (1982) suggests that at least some errors in the child’s drawings should be 

attributed to a lack of motor ability. They can’t always draw what they see. But Piaget 
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disagrees, noting that children at this stage are able to copy the cross and draw vertical 

tree trunks linked to horizontal branches, for example, each of which requires the skills 

that are necessary for drawing a square. Furthermore, it is a matter of the composition of 

elements identified in the original figure that result in the construction of a copy of it, and 

since topological relationships “are inherent to the simplest possible ordering or 

organization of the actions from which the shape is abstracted” (p. 67), those appear prior 

to projective and metric relationships which require more complex types of organization 

of elements such as those involving angles and directions (e.g., parallel). Piaget supports 

this finding with a rather convincing argument:  

“…the ‘abstraction of shapes’ is not carried out solely on the basis of objects 
perceived as such, but is based to a far greater extent on the actions which enable 
objects to be built up in terms of their spatial structure” (p. 68) This abstraction 
“actually involves a complete reconstruction of physical space, made on the basis of 
the subject’s own actions and to that extent, based originally upon a sensori-motor, 
and ultimately on a mental representational space determined by the coordination of 
these actions” (p. 76). “This is why the first shapes to be abstracted are topological 
rather than Euclidean in character, since topological relationships express the simplest 
possible coordination of the dissociated elements of the basic motor rhythms, as 
against the more complex regulatory process required for coordination of Euclidean 
figures” (p. 68).  

 
By ignoring Piaget’s use of “topological shapes” and considering “topological properties” 

instead, the argument seems sensible. Topological properties are more fundamental 

qualities of shape than Euclidean properties, which also have a metric component. Thus, 

they should be simpler to abstract – and these abstractions should be simpler to 

coordinate – than metric properties, which are characteristically more complex. Martin’s 

(1976b) response to this argument is presented later. 
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 The stage from 4 to 7 years is marked by progressive differentiation of shapes by 

“Euclidean” properties. Curved shapes begin to be distinguished from each other and 

from straight ones, although the latter still remain undifferentiated from each other, 

“notably the square and the triangle” (p. 56). It is the latter finding with which I cannot 

wholly agree. Figure 9 shows a sample of drawings of models 5 (the triangle) and 8 (the 

square) from a point just prior to this stage. According to Piaget, the child who drew  

 

 
Figure 9. Drawings by a child just younger than 4 years of age 
 
these copies fails to differentiate between the square and the triangle. My interpretation, 

however, is that the child who drew the copy of the triangle was attending to the three 

sides of the triangle.12 She drew two straight sides and then the third curved side, which is 

curved so that the child can close the figure. 

 Early in this stage, lengths are considered so that squares are distinguished from 

non-square rectangles and circles are distinguished from non-circular ellipses. An effort 

is made to represent relationships of connectedness and separation (models 9 – 16, Figure 

7) in drawings that are constructed fairly accurately, although the points of contact are 

                                                 
12 I watched my child at age 3; 11 produce this same figure when asked to copy a triangle. Goodnow (1977, 
as cited in Darke, 1982) suggests, “a child’s thought is often shown not so much in the end product of a 
drawing but in the process of producing it” (p. 134); I assert that I have an advantage if it is the case that 
Piaget missed the process while I did not. 
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not properly represented. Later in the stage, the child is able to represent inclinations and 

is finally able to draw the non-square rhombus (model 18, Figure 7).13  

 By 7 – 8 years all models are copied with consideration given to both topological 

and Euclidean relationships. 

Responses to Piaget’s Drawing Tasks 
 

 Lovell (1959) used Piaget’s figures and found no significant difference in the 

accuracy of representing topological and Euclidean properties. Moreover, he found that 

children could construct the models six months earlier, on average, than they could draw 

them. Piaget’s subjects were able to draw and construct the models at the same age. This 

is salient, because if Lovell’s findings are correct, they suggest that the difficulties in 

drawing are not conceptual but sensori-motor.  

 Dodwell (1968, as cited in Darke, 

1982) conducted a replicate experiment that was inconclusive. The three researchers 

involved in the experiment found it difficult to decide how well topological, projective, 

and Euclidean properties were reproduced in children’s copies. Ninio (1979) argues that 

because the accuracy of a copy is not a mathematical problem, it must be the case that 

any scoring system will be based on the relative tolerance of judges for deviations on 

different spatial attributes. Martin (1976b) uses Piaget’s samples of student work (Figure 
                                                 
13 This phenomenon was surprising to me, also. After my child, aged 3; 11, had correctly copied my model 
of a square, I added a diagonal to my model and asked her to add it to her copy, as well. She drew a 
horizontal segment that joined the midpoint of opposite sides of the square. Later I asked her to copy a ‘K’, 
which she can easily name by sight. She drew the vertical segment correctly, but the legs were drawn 
horizontally. If I were to ask her to name the copy she had drawn, I suspect she would guess that it was an 
‘F’. 
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10) to make this point. Assuming as Piaget does that the child meant to close figures that 

should have been closed, “the evidence that topological representation precedes 

Euclidean representation is hazy” (p. 13). With respect to the copy of model 12 from 

“Late Stage 1” and the copies of models 12, 13, 15, and 16, from “early Stage II,” Piaget 

finds that “the circumscribed figures are drawn correctly enough as regards their actual 

shapes but the points of contact are not properly represented” (1956, p. 56). Citing 

connectedness as a topological property, Martin (1976b) is correct that none of these 

drawings are topologically equivalent to the corresponding model (not even the copies of 

models 12 and 15 from “early Stage 2” which lack two points of tangency), because all of 

the models are connected [see Figure 7]. On the other hand, the copies of models 1 – 3 

are topologically equivalent to the corresponding model, as are the copies of models 9 – 

11.  

Now, as for Piaget’s claim, stated earlier, that the abstraction of shape from 

objects is not based on perception alone, but to a far greater extent on the actions one 

performs on the objects. Piaget has argued that the actions that elicit topological 

relationships are more elementary than those needed to abstract Euclidean relationships, 

which require greater ability in ordering, organization, and coordination of action. 

Moving beyond the then-fashionable critique of Piaget, Martin (1976b) suggests that the 

emphasis be placed on these abilities, rather than on trying to chronologically order 

spatial representations according to topology, Euclidean geometry, or projective 

geometry. 
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Figure 10. Sample drawings from Piaget’s drawing task 

 

Perhaps coordination of curvilinear motions precedes coordination of rectilinear 
motions. Where it is necessary to coordinate only curvilinearity, as is the case for 
Models 1, 2, 3, 9, 10, and 11, the copies resemble the models sooner than when 
rectilinearity is involved. This would also explain the early resemblance of the 
children's rendering of Models 4, 5, 6, 7, and 8 to the circle rather than to their 
respective models. The later developed coordination of rectilinearity allows near 
Euclidean congruence to the models for drawings of Models 5, 6, 8, 17, 19, 20, and 
21. Models 12, 13, 14, 15, and 16 involve both curvilinearity and rectilinearity; hence 
it is necessary to coordinate both types of action. (p. 15) 

 
Notice how much is revealed when Martin attends to ideas rather than the order in which 

they develop. It’s this move that informs my own investigation, which I elaborate upon 

later in Chapter Three. 

Next, learning from the difficulties of others in interpreting children’s drawings, 

Martin (1976a) used the same figures from his haptic perception experiment (where 

subjects were offered three copies per model) in a drawing test. This also allowed him to 
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make comparisons in the results across the two experiments. Martin found that the 

drawings made by the four-year-olds after their tactile examinations of shapes were 

nonhomeomorphic 90% of the time, and most of those drawings showed no discernible 

properties of the corresponding models. Only 30% of eight-year-olds’ drawings were 

nonhomeomorphic. Following visual examination, 60% of four-year-olds’ drawings were 

nonhomeomorphic but they did reveal discernible properties. Thus, “drawings as 

analyzed in [the] study did not indicate that the representational space of four-year-olds is 

predominantly topological in nature” (p. 37). Then Martin (1976a) went a step further. By 

comparing the children’s drawings to the figures they selected as “most like” and “worst” 

in his haptic perception experiment, he suggests that it is not attention to topological 

properties that enables children to draw homeomorphic copies, but the increasing 

coordination of Euclidean and projective properties that produces the homeomorphic 

drawings, because preservation of topological properties follows from the coordination of 

Euclidean and projective properties.  

Take What You Need: Summarizing the Findings and Moving on  
 

Investigations that are designed to confirm or deny topological primacy are not 

typically meant to inform our understanding about all the ways that young children 

reason about shapes. Fortunately, there is evidence among those findings that we can use 

in our investigations. What we gain from these studies is that young children do 

discriminate based on the informal topological properties of separation and 
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connectedness, and the also-non-metric properties that include the number of corners, the 

orientation, and curvature (i.e., between (Euclidean) curvilinearity and rectilinearity).  

In addition to critiques surrounding issues related to Piaget’s confusion of the 

mathematical terminology, other reactions to Piaget’s conclusion of topological primacy 

simply meant to confirm or deny it (Laurendeau & Pinard, 1970; Lovell, 1959; Martin, 

1976a; Page, 1959). Darke’s (1982) analysis does not confirm it; Vurpillot (1972, as cited 

in Darke, 1982) concludes that it is too extreme; and Martin (1976b) concludes it is “too 

strong” (p. 15). In fact, when the theory is presented in its totalizing form – 

“Representational space is first topological, then projective, and finally Euclidean,” then 

my own review also reveals very little hope for topological primacy. But recall that 

Piaget’s topology is not entirely consistent with formal topology. He had informal ways 

of describing shapes (as topological or Euclidean) that are indeed somewhat variably 

meaningful and, as such, completely inappropriate from a formal mathematical 

perspective. 

I have mentioned Martin’s (1976b) suggestion that emphasis be placed on 

abilities rather than on trying to chronologically order spatial representations according to 

topology, Euclidean geometry, or projective geometry. If I have been clear enough so far, 

it should be evident that his suggestion aligns with my goals for this study: I seek to 

better understand the nature of the child’s representational space by developing a model 

of children’s thinking in the domain of qualitative geometry. 

Taken together, the results of Piaget’s experiments and the replications of those 

experiments are critical to my own research in several ways. First, they provide existence 
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proofs that young children represent the topological properties of separation and 

connectedness and the Euclidean property of curvature (i.e., between curvilinearity and 

rectilinearity). Moreover, while some of the distinctions young children make are 

topological and others are Euclidean, some appear to have qualities common to both 

topological and Euclidean properties. These distinctions have a comparative aspect that is 

not about length, for example, yet they are not entirely non-metric, either. In other words, 

the distinctions have features that are neither topological nor Euclidean; often they are 

based on properties fundamental to both topology and Euclidean geometry. For example, 

a square and a circle are topologically equivalent and “Euclidean-ly” distinct, but 

children (including those in my pilot study) often distinguish between them in a non-

metric but non-topological way by identifying “corners” as the distinguishing 

characteristic. When angles are referred to as corners, this property is Euclidean in the 

same sense that angles are Euclidean, but the property is also topological, since children 

are not attending to the measure of those angles. 

 Papert’s (1980) realization that, “for most people, nothing is more natural than 

that the most advanced ideas in mathematics should be inaccessible to children” (p. 161), 

and Bruner’s (1963) claim that “any subject can be taught effectively in some 

intellectually honest form to any child at any stage of development” (p. 33), move me to 

my next point: these findings provide a basis for new opportunities to develop young 

children’s geometric knowledge. In particular, a conceptual approach to the learning of 

non-metric geometry, one that is grounded in learners’ rich, intuitive, conceptual 

thinking, not in prescribed, pre-determined standards, challenges the “Euclidean 



 46 

assumption” in the learning of geometry. And one of the strengths of a qualitative 

approach to geometry may be just that – a direct and explicit challenge to dominant views 

of what geometry and geometry instruction look like in schools.  

By following the child’s thinking, informal14 understandings can provide the basis 

for new and developing understandings of this non-metric geometry. This approach is 

aligned with Piaget’s view of the development of knowledge as described by Allardice 

and Ginsburg (1983): “The child’s informal knowledge serves as a kind of cognitive 

underpinning or scaffolding for school learning” (p. 328). Furthermore, now that we 

realize that children “rarely attend to conventional properties perhaps because the 

conventions are more useful for more formal geometry but have few implications for 

children’s everyday use of geometric concepts,” (Lehrer & Jacobson, 1994) we can avoid 

the “great mistake” that Piaget warned us about: “the great mistake some people have 

made is going to formalization too quickly with students who aren’t at all ready to 

assimilate it” (as quoted in Bringuier, 1980, p. 129). In other words, because the 

qualitative geometry that I am proposing is developed from the conceptions of young 

children, and because it is informal (albeit coherent and logical), there is no risk that a 

                                                 
14 Piaget’s view of informal knowledge (or spontaneous concepts (Piaget, 1970b)) are those concepts that 
children develop spontaneously in their natural surroundings, such as elementary notions of more and 
causality. Ginsburg (1977, as reported in Allardice & Ginsburg, 1983), on the other hand, describes the 
development of two kinds of informal knowledge. Informal and natural knowledge are those “intuitive” 
concepts that are developed before or outside the context of school. Informal and cultural knowledge, such 
as counting, are those concepts that are socially transmitted (in schools, on television, by adults, etc.). I 
have used “informal” and “intuitive” interchangeably to describe “children’s topological concepts” with 
support from Clements and Battista (1992) who argue that the topological ideas I reference “are originally 
intuitions [italics added] grounded in action-building, drawing, and perceiving” (p. 426). 
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formal geometric framework gets privileged over the child’s own way of knowing this 

new geometry.  

Note how Kelly’s (1971) vision of what an arguably informal Euclidean geometry 

could look like in schools problematizes this dichotomy between real-world experience 

and formal mathematics. He begins with a thought experiment:  

There is a simple and natural way of regarding Euclidean geometry that has been 
largely ignored in the teaching of geometry. This is the view that Euclidean geometry 
is the mathematical study of the size and shape attributes of physical objects. It is my 
belief that this functional approach to the subject… leads to surprisingly sophisticated 
and vital mathematical concepts. (p. 477)  

 
Indeed, this creative approach to geometry is surprising, because it generates a space of 

pedagogical possibilities in which the mathematical concepts that are developed include 

those that are topological. The essay continues: 

The natural question, “What is an object?” translates to the mathematical question, 
“What properties of a geometric set make it the analog of a physical object?” An 
obvious requirement is that the set be bounded. But the key property of the “oneness” 
of the set as an object is connectedness. This can be expressed by the condition that 
each two points of the set be the ends of an arc in the set. However, this intuition 
simply shifts the difficulty to “What is an arc?” Though an answer to this presents 
difficulties, one partial answer is quite clear, namely, that a segment is an arc. Thus 
convexity provides a very simple form of connectedness. (p. 477) 
 

By the time the experiment is concluded, Kelly also encounters topological concepts of 

boundary, interior, exterior, and simple closed curves. “As for the concepts themselves, 

leaving proof aside, I believe these are wholly accessible to grammar school children” (p. 

478). Imagine handing out rubber sheets to a class of elementary school kids, having 

them draw a shape upon them, and then asking them in words they could understand, 
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“What’s invariant?” Given her commitment to attending to children’s ideas and forms of 

reasoning, I’m pretty sure Eleanor Duckworth (1995) would be into it. 

As if consideration of young children’s ways of thinking weren’t reason enough 

for the development of a qualitative geometry, its non-metric feature will give those who 

know it new access to proximal forms of geometry that an entirely Euclidean approach 

could not. For example, graph theory and topology are “close by.” Consider the case of 

electrical circuits: there are infinitely many topologically equivalent ways to build any 

circuit. In fact, there is a class of graphs called circuits. Similarly, nonhierarchical, 

nondirected concept maps are topologically equivalent. As part of some other research I 

have been a part of (Empson, Greenstein, Maldonado, & Chao, 2008), we developed a 

tool for discourse analysis called content maps, which are structurally similar to concept 

maps in that they have common topological properties. We have also developed a 

typology of connectedness (a topological construct) that has helped us characterize the 

maps we have created. On yet another project, a colleague and I have been trying to use 

topological concepts to better characterize the space of mathematical tasks than the 

commonly used spectrum of open and closed. Following one of our meetings, I walked 

down the hall to find that one of my peers is using social network theory in her research. 

Naturally (Scott, 2000), she used graph theory and topology in her analysis of several 

social networks. As a final example, consider the 3D online virtual world called Second 

Life. One feature of this world is that teleportation is possible. Consequently, the 
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environment is a discrete metric space:15 the distance between any two points X and Y is 

1 when X ≠ Y; it’s 0 when X = Y.   

Engagement with non-metric geometric conceptions also provides young children 

with access to the fundamental ideas of set theory. Here’s how: Metz (1995) finds that 

children begin to use categories during preschool and that their categories are theory-

laden. Also, attribute- and property-based reasoning about shape are two of the three 

most common ways that children reason about shape (Lehrer & Jacobson, 1994; Lehrer, 

Jenkins, et al., 1998)16.  Finally, research with children as young as kindergarten age has 

confirmed that they are prepared to identify, define, and apply distinguishing criteria to 

given sets of figures (Burger & Shaughnessy, 1986; Clements, et al., 1999; Lehrer, 

Jenkins, et al., 1998). Therefore, it is reasonable to expect that if geometry instruction 

were to include categorization and classification tasks of the sort I have used in this study 

to elicit young children’s non-metric conceptions, then they will be provided with new 

opportunities to engage with fundamental ideas from set theory. Additionally, if early 

geometry instruction is broadened to consider a greater variety of shapes than what 

learners are exposed to in a traditional prototype-only approach, and if this instruction 

also begins with an investigation of properties and the shapes that possess them, we 

might do a better job of scaffolding the development of children’s hierarchical thinking.  

 

                                                 
15 A metric space is a set of points (a topology) together with a notion of distance (called a metric). 
16 The third of the three most common forms of reasoning is resemblance-based. 
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“In all mathematical fields, the qualitative must precede the numerical (Piaget, 

1950, p. 79-80)” (quoted in Munari, 1994, p. 314)17 
 

INTRODUCING QUALITATIVE GEOMETRY 

 
While Euclidean properties are those that are invariant under Euclidean 

transformations, and topological properties are those that are invariant under topological 

transformations, in the same sense, qualitative properties are those that are invariant 

under qualitative geometric transformations. These properties are non-metric; they are 

qualitative but not quantitative. They have a comparative aspect that is not about measure 

but about differences in measure. For example, triangles and squares are distinct in the 

number of corners each has, but actual angle measures are irrelevant from a qualitative 

perspective. Similarly, in a qualitative sense, we might say that ∠A is larger than ∠B, but 

the measure of an angle is not a qualitative property, so it would be irrelevant from a 

qualitative perspective to consider the measures of either of these angles. Likewise, we 

would be interested to know that  AB  is longer than  CD , but not that AB = 10 and 

CD = 5.  

How might these comparisons be expressed in the context of my own study? 

Referencing another study, Piaget (de Zwaart, 1967, as cited in Piaget, 1970b) describes 

the language that children use to make comparisons of items in a collection of common 

                                                 
17 This quote has been appropriated out of context. The full statement, still relevant, is here: “The 
mathematical operation derives from action, and it therefore follows that the intuitional presentation is not 
enough. The child itself must act, since the manual operation is necessarily a preparation for the mental one 
[...]. In all mathematical fields, the qualitative must precede the numerical” (Piaget, 1950, p. 79-80). 
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objects (e.g., blocks, pencils) as either “scalar” and unitary (“That one is big”; “This one 

is little”) or “vector” and binary (“That one is bigger than the other”; “That one is longer 

and thinner, the other one is shorter and thicker”). The children who tended to use scalar 

language were identified as pre-operational (and therefore non-conserving); the children 

who tended to use vector language, on the other hand, were identified as operational and 

conserving. This latter group of children might be expected to use vector vocabulary to 

express a qualitative property in the comparative sense described above. 

 As I mentioned earlier, I took the term “qualitative” from a definition of topology 

that appeared in the journal, Nature. I also use it in a sense that is similar to the way 

Stroup (2002) uses it to describe a “qualitative” approach to calculus in which students 

engage with “qualitative or comparative” (p. 17) forms of rate-related reasoning. And his 

usage is drawn, at least in part, from Piaget, who used the phrase “qualitative speed” 

(1970b, p. 119) to refer to rate-based reasoning that is not ratio-based. 

 Figure 11 illustrates the way that qualitative geometry is situated among other  

geometries. While Euclidean properties are those that preserve distance, and topological 

properties are those that are dependent only upon the relative positions of the components 

of figures and not upon such concepts as length, size, or magnitude, qualitative properties 

are non-metric and preserve relative lengths, size, and magnitude. The set of Euclidean 

properties is the “largest” set, because Euclidean transformations preserve “everything.”  
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Figure 11. In terms of the number of properties each represents, qualitative properties lie 
“between” topological and Euclidean ones. 

 
The set of topological properties is “smallest,” because topological transformations 

preserve the fewest properties in comparison. 

 Qualitative geometry does have much in common with point-set topology. Again, 

one of the primary reasons for not referring to children’s intuitive and informal non-

metric conceptions as topological is to avoid the criticism incurred by Piaget for uses of 

terminology that are in some instances unclear and in others instances deviant from the 

definitions given by formal mathematics. But it is also true that topology and qualitative 

geometry are not equivalent, as the “corners and angles” example I provided earlier was 

meant to demonstrate. So although the notion of a “children’s topology” to parallel a 

particular “children’s mathematics” (Carpenter, et al., 1999) or a more general “students’ 

mathematics”18 (Steffe & Thompson, 2000)) is very appealing, it cannot adequately 

characterize the domain. Furthermore, by moving the investigation away from binaries 

                                                 
18 Les Steffe (personal communication, March 16, 2010) doesn’t see what “qualitative geometry” gets me. 
He suggests “geometry.” When I explain that I’m only interested in children’s non-metric conceptions, he 
suggests “spatial geometry.” 
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that answer they yes/no question, “Is it a topological property?”, I am better positioned to 

explore young children’s thinking and subsequently provide the rich and textured 

characterizations that the exploration potentially yields. 

My second research question, in part, seeks to determine the forms of young 

children’s qualitative conceptions of shape. To that end, I illustrate the significance and 

coherence of qualitative geometry by showing that it is a cognitive structure (Piaget, 

1970b). To demonstrate this structure, I begin as Piaget does by viewing the algebraic 

group19 as “a kind of prototype of structures” (p. 19). Showing that qualitative geometry 

is a cognitive structure means that it “behaves” as a group does, and this is accomplished 

by identifying a system of transformations – a patterning of actions – an organization of 

schemes or functions – an organized pattern of behavior – that gives it the group quality. 

Piaget generates the subject matter of topology in this way. Through the construction of 

new structures, Piaget establishes relationships between Euclidean and projective 

geometries, and topology. He starts with the group of displacements, which leaves 

invariant the dimensions, angles, parallels, straight lines, and so on of figures. This is the 

group that comprises Euclidean geometry. This group is a subgroup of higher groups that 

allow one or more of these properties to remain invariant while other properties are 

preserved. The group that constitutes projective geometry, for example, preserves straight 

lines while other properties vary. These are subgroups of the group I am interested in, 

which is topology. This group subjects all of these properties to transformation, leaving 

                                                 
19 A group is a set of elements together with a binary operation that has the following properties: it is 
closed; it contains an inverse; it contains an identity; and the operation is associative. 
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none of them invariant. It is interesting in a structuring/“Big Ideas” kind of way that these 

geometries, which are traditionally seen as disconnected from one another,20 “are thus 

reduced to one vast construction whose transformations under a graded series of 

conditions of invariance yield a ‘nest’ of subgroups within subgroups” (p. 22). 

In addition to identifying the operations that are constituent of the cognitive 

structure that is qualitative geometry, I also seek to identify the patterns in how one 

engages with it that give it wholeness. Given what the Bourbaki have declared to be the 

three irreducible, “mother structures” of algebra, order, and topology, these are the 

sources of all other structures and substructures (Piaget, 1970b). New structures are 

formed by combining two parent structures, such as the combination of algebra and 

topology to produce algebraic topology. New substructures are formed by adding or 

subtracting conditions, that is, by fixing one property while varying another. This is the 

process by which we deduce the concept of similar figures, for example, by fixing shape 

(i.e., making shape invariant) and varying dimension.  

As a cognitive structure, an understanding of qualitative geometry is typified by 

kinds of reversibility. The notion of reversible operations is central to Piaget’s 

characterization of operationalized thought (Piaget, 1970b). For example, in the case of 

algebraic structures, reversibility takes the form of the ability to undo what has been 

done, like applying a function first and following it with the application of its inverse. 

Even in the case of searching figures in his haptic perception experiments, Piaget 

                                                 
20 Topology, a branch of mathematics that initially grew out of geometry, is now often considered distinct 
from it. The rationale is that geometry is concerned with metric properties, but topology is not. 
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identified a kind of reversibility: beginning the search at a particular point of reference 

and later returning to it. In the case of qualitative geometry, one form of reversibility 

looks like applying a qualitative transformation to a figure (without altering its qualitative 

properties), and then transforming it back. In fact, Beth & Piaget (1966, as reported in 

Lesh, 1975) offer geometric transformations as the invertible cognitive operation that is 

roughly equivalent to the “mother structure” of topology. 

  While conceptually and cognitively significant in its own right, qualitative 

geometry’s relationship to topology may “help situate and deepen students’ 

understandings of the basics [emphasis added] as they are typically encountered in the 

traditional mathematics curriculum” (Stroup, 2005, p. 179) while also serving to lay the 

groundwork for later mathematical instruction (Carpenter, et al., 1989; diSessa, 2000). 

Given that a notion of transformation is so central to topology (not to mention the fact 

that transformations are the mechanism for the development of more complex cognitive 

structures from simple ones (Groen & Kieran, 1983; Piaget, 1970b)), and that 

transformational geometry with its consideration of the role of function is more relevant 

to just about every domain of mathematics than typical treatments of Euclidean geometry 

in elementary school, an understanding of qualitative geometry can be seen as transitional 

to these other domains. Chinn and Steenrod (1966) agree: Topology “is a kind of 

geometry… which underlies all geometries. A striking fact about topology is that its ideas 

have penetrated nearly all areas of mathematics [italics added]” (p. 1). Sowder and 

colleagues (2010) express a similar sentiment: “... from the mathematical point of view, 

transformation geometry is closer to the mainstream of modern mathematics than 
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geometry á la Euclid. Transformations of the plane are special cases of mathematical 

functions, an idea that appears in some form in every area of mathematics” (p. 491, 

emphases in original).  

As I have stated previously, a review of the literature related to the topological 

primacy thesis yields evidence that young children do possess early and intuitive ideas 

that are fundamental to both Euclidean geometry and topology. Recall that those who 

have conducted replicate experiments (Esty, 1971; Laurendeau & Pinard, 1970; Lovell, 

1959; Martin, 1976a, 1976b) did not dispute Piaget’s results (Piaget & Inhelder, 1956), 

only his conclusion of topological primacy. If we ignore the order in which these ideas 

develop, it may become easier to accept that, at least intuitively and eventually, children 

attend to notions of order, connectedness, enclosure, proximity, and separation. It is in the 

space common to Euclidean geometry and topology in which qualitative geometry is 

situated. Not coincidentally, each of these notions exists in that space. For this reason, it 

is a rather reasonable and straightforward conjecture to make that young children possess 

ideas fundamental to qualitative geometry. 

Earlier in this chapter, I provided a review of the literature around Piaget’s 

investigations into the development of representational thinking about the nature of 

space. Those studies and their replicates yielded findings that informed the mathematics I 

would investigate in this study. Now that an early definition of the domain of qualitative 

geometry has been provided, I conclude this section by providing two examples of 

empirical research findings that provide existence proofs of children’s qualitative ways of 

thinking. The first example comes from the work of Burger and Shaughnessy (1986). The 
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thinking they refer to as “imprecise” (p. 41) is exactly the sort of thinking I refer to as 

qualitative. They find that one student forms a class of figures that contains triangles that 

have a “small angle at the top, wider angles at the base.” This non-metric, comparative 

way of “measuring” angles gives it a qualitative property. A second example is provided 

from the findings of Lehrer, Jenkins, et al. (1998) and from Clements (1999). They find 

that young children describe lines that are neither vertical or horizontal as “slanty”; 

angles are described as “pointy”; shapes are described as “having corners,” skinny, fat, 

long, big, and small; and categories are formed by the number of sides or the number of 

angles. None of these descriptors are metric; rather, they all are qualitative. 
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Chapter Three: Methodology 

 

Sure, go ahead and prepare your research design. Plan away. But my advice, 

don’t hold on too tight. Constructivist/phenomenological methodologies require a certain 

spaciousness of thinking that allows for things to emerge on their own terms. Oh sure, we 

can review the literature and find those that have tromped this ground before us and 

conclude that things will go this way or that. Theories abound. Conclusions, too. Hitch 

your wagon. But in the end, let the kids or the teachers or the spawning salmon or 

whatever your ‘subject’ have their way with you; be present to their every word and 

wiggle. Pay attention. Resist that pressing urge to make sense of it all, to impose your 

questions, categories, and order too soon. (Thorp, 2005, p. 117) 

The Pilot Study 

 
 Early in Spring 2008, I conducted a pilot study. It was meant to be a first pass at 

exploring young children’s qualitative conceptions of shape and an evaluation of the 

effectiveness of the software for revealing those conceptions. A review of the literature 

related to the development of young children’s representational thinking about the nature 

of space provided me with a vague but tangible sense of their intuitive and informal 

topological conceptions of shape. I had conjectured a qualitative geometric cognitive 

structure to frame these ways of thinking, and I had planned the pilot study, in part, to 

explore it. 
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The goals of the study were to answer the following questions: 

 

1. In what ways do children distinguish between plane figures? 

2. If these distinguishing features are qualitative, what are their 

characteristics? 

3. What does it mean to understand these newly characterized distinctions? 

 

I conducted the study at Zapata Elementary,21 an urban school in which 93.2% of 

the students are identified as economically disadvantaged and 70.9% have been identified 

as at-risk. The school had been rated “academically acceptable” for 3 years prior. I chose 

this site through an existing relationship between the school’s mathematics instructional 

specialist and myself. I chose to conduct my study in an elementary school so that I could 

select participants to closely align in age with those in Piaget’s (Piaget & Inhelder, 1956) 

experiments, but also out of concern for the finding by Clements (2004) that conceptions 

of shape are stabilizing by age 6. 

 In order to select participants, I described the study and its purpose to the 

cooperating teachers of children in grades K through 3, and then asked the teachers to 

select two students whom they describe as average or above average (by ordinary school 

standards) and who are most articulate and likely to have interesting things to say. This 

                                                 
21 A pseudonym. 
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selection procedure closely follows one used in a classic article by Burger and 

Shaughnessy (1986). Ten students were selected to participate, two at each grade level 

from grades K, 1, and 3, and four from grade 2. One of the goals of my pilot study was to 

reduce the size of my participant pool for the dissertation study from ten to no more than 

three. I planned to select the three most vocal and productive students while maximizing 

representation by age and gender. As these were initial explorations into qualitative 

geometry, I was interested to see what might be possible. So a smaller sample size with 

extended engagement is more useful to me than a larger one. 

 In preparation for the study, I developed an iteration of the software (SoundTrack, 

which I describe in Chapter Four) that was apparently suitable for eliciting participant’s 

non-metric conceptions of shape. The inquiry was contextual in that investigations were 

situated within that software environment. I framed the interactions with participants with 

semi-structured clinical interviews. The “semi-structured” tasks and questions were 

informed by the review of the literature reported above. Guiding questions “seeded” the 

interview with tasks developed to elicit the features participants used to distinguish plane 

figures and apply those distinguishing features to classification and categorization tasks.  

Pilot Informs the Study 
 

The pilot study prepared me, both affectively and effectively, for the larger study. 

For all the ways it went right or wrong, it was useful in informing the design of the larger 

study. Rather than presenting those relevant outcomes here, they appear throughout this 

and the following chapters in places where “they do their work.” 
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This larger study is an exploratory one that uses a teaching experiment to develop 

models of young children’s thinking in the domain of qualitative geometry.  Specifically, 

the research questions I address in my study are: 

1. Given that early forms of topological, or at least non-metric, geometric reasoning 

have been identified and discussed in the research literature, can a software 

environment be developed in ways that support fundamental topological 

representations and transformations such that learners’ reasoning about topological 

ideas are made visible and are able to further develop in ways that could credibly be 

seen as both mathematical and significant? 

2. What forms of topological or non-metric geometric ideas are made visible and can 

be seen to develop as a result of young learners’ systemic engagement with a 

computer environment that makes topological representations and transformations 

accessible? 

To the extent that there are findings related to the second question, these will be seen as 

laying the foundation for the claim that there are forms of qualitative geometric reasoning 

available to young learners that can be identified as mathematical, are significant, and can 

develop in ways that would have implications both for research into students’ 

mathematical reasoning and as a focus for further curriculum development and design. In 

its broadest sense, the phrase “qualitative geometry” will refer to these findings and the 

attendant possibilities for future investigation and curriculum development. 

My goal in this study was to understand how children aged six and seven reason 

qualitatively about two-dimensional shapes. Thus, the investigation was exploratory in 
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the sense that qualitative geometric conceptions of shape are both identified and 

characterized as such throughout the course of the study. In other words, as the title of 

this dissertation suggests – Developing a Qualitative Geometry from the Conceptions of 

Young Children – a subdomain of geometry called qualitative geometry is iteratively 

defined22 as its elements are elicited from children and characterized in the conduct of the 

study. 

Like other investigations into children’s thinking that have traditionally involved 

qualitative methods (Mertens, 2005), the kinds of methodological approaches best suited 

to answer my research questions – and to allow for themes to emerge beyond them 

(Mertens, 2005, p. 420) – also involved qualitative methods. Quantitative methods 

yielding numerical summaries, in contrast, “throw out qualities of performance that are 

essential to getting adequate accounts of an individual’s understanding” (Stroup & 

Wilensky, 2000, p. 878). Thus, they have absolutely no capacity for yielding the sort of 

textured, narrative characterization of a child’s conceptual mathematical models that this 

study requires.  

With its recurring emphasis on individuals’ perceptions of experiences, my 

“exploratory” pilot study was at times phenomenological (Bogdan & Bilken, 2003, in 

Mertens, 2005), and the methods for data collection felt as if they had been borrowed 

from ethnography. Indeed, this was my thinking following the pilot study during the 

dissertation proposal phase, although I hadn’t the language nor the tools to describe it. If 

                                                 
22 The domain of Qualitative Geometry was preliminarily defined in Chapter 2 and some of its contents 
were presented there. 
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the microworld (Papert, 1980) of the software environment can be thought of as a 

mathematical place (R. Nemirovsky, 2005), then ethnographic techniques seem/ed well-

suited to the task as defined by goals that also aligned with some form of the 

ethnographic question, ‘What’s going on here in terms of  [kids’ qualitative thinking in 

the space of a topological microworld]?’ or “What do people in this setting have to know 

in order to do what they are doing?” (Wolcott, 1999, p. 69). These questions are just 

broad enough to generate an observational space, and the centering ideas so focused as to 

orient the looking. Even Spindler and Spindler’s (1987) standards for good 

phenomenological research resonate with my intentions: 

Observations are contextualized, both in the immediate setting in which behavior is 
observed and in further contexts beyond that context, as relevant. Hypotheses emerge 
in situ as the study goes on in the setting selected for observation. Judgment on what 
may be significant to study in depth is deferred until the orienting phase of the field 
study has been completed. Observation is prolonged and repetitive. Chains of events 
are observed more than once to establish the reliability of these observations. (pp. 18-
19) 

 
These phenomenological / ethnographic ways of thinking about my study kept me open 

to what was going on and to findings not necessarily linked to research questions, and led 

me to the methodology of the teaching experiment. 
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THE TEACHING EXPERIMENT: DEVELOPING MODELS OF CHILDREN’S 
UNDERSTANDING 

 
The aim of any clinical research in mathematics education should be the construction of 

models. (Thompson, 1982, p. 160) 
 
 The teaching experiment (Steffe & Thompson, 2000) is an “exploratory tool, 

derived from Piaget’s clinical interview and aimed at exploring students’ mathematics 

(…) Whereas the clinical interview is aimed at understanding students’ current 

knowledge, the teaching experiment is directed toward understanding the progress 

students make over extended periods” (p. 273).  

Steffe and Thompson (2000) “recommended strongly that the teacher-researcher 

engage in exploratory teaching before attempting to conduct a teaching experiment” (p. 

283). That strong recommendation is only moderately appropriate for this study, since my 

study is essentially exploratory in terms of both children’s thinking in the domain of 

qualitative geometry and the domain itself. While I did have the results of Piaget’s 

(Piaget & Inhelder, 1956) experiments, other replicate experiments, and my own pilot 

study as starting points with which to launch the development of qualitative geometry, I 

felt that these points were too few to establish a sufficiently rich topography of schema 

associated with qualitative geometry. Thus, I intended for this sort of exploration right 

from the start and throughout all episodes of the teaching experiment.  
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My goal as a psychologist has been to “enter the child's mind” – to discover as best I 
could how the child thinks... (Ginsburg, 1997, p. ix) 

 
 
 As Ginsburg (1997) describes it, the interview is an exploration in which the 

interviewer aims to discover and identify thought processes by combining several 

methods, such as observation, experimentation, and “think aloud,” to encourage the child 

to verbalize his or her thought processes as richly and explicitly as possible. Of the eight 

rationales provided by Ginsburg (1997) for using the clinical interview, I draw on these 

four to make the case for its use in this study: 

• Acceptance of constructivist theory requires that clinical interview methods be used. 
He is quite adamant on this point: “If you accept the constructivist position, you have 
no choice. You must use the clinical interview or some other method that attempts to 
capture the distinctive nature of the child’s thought” (p. 58, emphasis in original).  
 

• They offer the possibility of dealing with the problem of subjective equivalence. 
Traditional standardized testing methods cannot guarantee that all children interpret a 
problem in the way that it was intended, but the flexible nature of clinical interviews 
allows the interviewer to vary the questions and tasks for each student and then to 
determine whether the child has interpreted them in the way that was intended. 
 

• They are useful for understanding thinking in its personal context. Piaget developed 
the clinical interview, in part, to account for mental context by determining children’s 
motivation to deal with the task, their understanding of the question, and the strength 
of their convictions; and to identify their underlying thought processes. 
 

• They embody a special kind of methodological fairness, especially appropriate in a 
multicultural society. “If we want to understand what [children] are capable of and 
what lies beneath their performance, we must test them in flexible ways, acting like 
the artist attempting to capture their individuality” (p. 69). 

 
 Simply stated, I think of my teaching experiment as a sequence of clinical 

interviews. But conceptions of the clinical interview vary, so I will clarify. Given the 

emphasis on verbalization in Ginsburg’s clinical interview, I draw on Lythcott and 
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Duschl’s (1990) differentiation between the clinical interview method, which is 

interview/verbal data only, and the clinical exploratory method, which also includes a 

task. Because participants in my study also completed tasks on paper and in/using a 

software environment in ways that made their thinking not only verbal but visible, my 

episodes may be thought of as employing the clinical exploratory method as Lythcott and 

Duschl define it. This method feels more like Cobb and Steffe’s (1983) teaching 

episodes, which they distinguish from clinical interviews. 

We use teaching episodes as well as [emphasis added] occasional clinical interviews 
as an observational technique. The interviews are used when we want to update our 
models of the children's current mathematical knowledge... However, the main 
emphasis is on the teaching episodes, as these give us a better opportunity to 
investigate children’s mathematical constructions. Our primary objective is to give 
the children opportunities to abstract patterns or regularities from their own sensory-
motor and conceptual activities. (p. 86) 

 
Related to Cobb and Steffe’s use of “teaching,” one person offered this interpretation of 

my study: “So you’re teaching kids topology?” Actually, my claim is that kids have 

topological conceptions and they bring these with them to my investigations. But as they 

spend time on the playground of the software I use in tandem with the interviews, current 

conceptions are developed and new ones are assimilated. I say more about this in Chapter 

Four when I present the software piece, but it should suffice to say that I had no plans to 

either implicitly or explicitly teach the kids topology. But the topologically-informed 

tasks and software design, and the assessment-slash-instructional nature of clinical 

interviews in general, provoked opportunities for participants to learn topology. This 

notion of teaching resonates with Cobb and Steffe’s illustration of a teaching episode 

above and thus clarifies the “teaching” in “teaching experiment.”  
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To summarize, I use “episode” to name each of the meetings I conducted with 

participants. These episodes may be thought of as hybrids of clinical interviews á la 

Ginsburg (1997) and teaching episodes á la Cobb and Steffe (1983), each featuring the 

clinical exploratory method of Lythcott and Duschl (1990). 

 Consistent with my research questions, a goal of this study was to develop models 

of children’s thinking in the domain of qualitative geometry. Thompson (1982) explains: 

“By “model” I mean a conceptual system held by the modeler which provides an 

explanation of the phenomenon of interest, in this case a student’s behavior within some 

portion of mathematics. The conceptual system held by the modeler, when applied to a 

particular student as an explanation of his behavior, is a model of that student’s 

understanding” (p. 162).  

In order to construct models of children’s thinking, the researcher comes to the 

episodes with tools and ideas about activities that the child will work on. These pre-

planned analytic interactions (Steffe & Thompson, 2000) loosely structure the interviews 

by serving as starting points for an unfolding conversation, and their outcomes serve as a 

resource to inform the subsequent episodes and the ongoing development of models. I 

want to be clear about my use of the phrase “loosely structure the interviews,” which I 

invented for the purposes of this study. As I mentioned early in this chapter when I 

described the pilot study, my coursework in research methods led me to believe that a 

semi-structured interview could productively frame my interactions with the participants 

in my study. This was my approach in the pilot study. Indeed, a script is just what the 

Office of Research Support demanded in the IRB application. What happened as a result 
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is that the space I meant to explore – that of children’s qualitative conceptions – was 

over-structured. A semi-structure provided too much structure. Planning, and a desire to 

execute the plans, dominated the interactions. My discussion above of the ethnographic 

quality of the study makes a similar point about the often overly constraining nature of 

the overarching research questions themselves. Not to say that an unconstrained, 

anything-goes sort of situation would be more productive, but rather to argue that less is 

more. Again, I submit that the loose structure of an interview allows for a richer 

exploratory environment than a semi-structured one. My pilot study was meant to be 

exploratory of a “smooth space” wherein any sort of thought or action was possible, but 

instead it collapsed under the weight of planning and preparation and a motivation to “get 

it right.” Any tendency on the part of the student toward “deterritorializing lines of flight” 

were “captured and reterritorialized as striated space,” “where options for movement are 

limited to rigid strata and uniform lines of thought and action” (Deleuze and Guittari's 

notion of "lines of flight" as interpreted by Lerner, n.d.). In other words, a child’s 

wonderings/wanderings were too often grounded by the intentions of a researcher with an 

agenda. I recall, for instance, wanting to grab the stylus of the tablet PC from a child who 

really just wanted to play around, and feeling anxiety that I might subsequently be left 

with “bad” data if I failed to do so. 

In contrast to the semi-structuring of interviews, a researcher implementing 

loosely structured interviews realizes a priori that it is neither the analytic questions nor 

the hypotheses that informed them that provide much of the richness and texture that a 

qualitative study requires. The extent of the power of loosely structured interviews lies in 
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their capacity to “get at the good stuff” by “setting research hypotheses aside and 

focusing on what actually happens” (Steffe & Thompson, 2000, p. 276), that is, by 

exploring the child’s responses and following up, on, and around them. In retrospect, I 

now realize that what the pilot study did not sufficiently allow for – but the larger study 

did – were responsive and intuitive interactions (2000, p. 278) informed by the 

researcher’s current model of the child’s thinking and moment-to-moment hypotheses 

about patterns in the child’s reasoning. With an emphasis on exploring the child’s 

reasoning, these unplanned actions are made by the researcher without explicit awareness 

or apparent expectation of how the child will respond. They’re often impromptu moves 

made “on the fly” (Ackerman, 1995, as cited in Steffe & Thompson, 2000, p. 276) as the 

researcher gets lost in the space between his or her own thinking and the thinking of the 

child. The interview’s loose structure generates those spaces and occasions opportunities 

to exploit and explore them.  

Thompson (1982) continues with his description of how models are constructed: 

As he or she watches a student (…), the researcher asks himself, “What can this 
person be thinking so that his actions make sense from his perspective? What 
organization does the student have in mind so that his actions seem, to him, to form a 
coherent pattern?” This is the ground floor of modeling a student’s understanding. 
The researcher puts himself into the position of the student and attempts to examine 
the operations that he (the researcher) would need and the constraints he would have 
to operate under in order to (logically) behave as the student did. (pp. 160-161) 

 
The effort to develop models of each participant’s thinking in the domain is an effort to 

answer my second research question, which is essentially about characterizing an 

understanding of qualitative geometry. As I described in Chapter Two in my discussion 

of what it means for qualitative geometry to be a cognitive structure, developing this 
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model of understanding requires attention to participants’ interactions on shapes, making 

sense of their explanations, identifying patterns in their actions, and considering the 

reversible operations underlying those actions. Thompson (1982) concludes by 

explaining how we know when the process of constructing models of participants’ 

understandings is complete: 

One does this for each student in the investigation, and as soon as one begins to see a 
pattern in ones mode of explanation, the job must be expanded to reflectively 
abstracting the operations that one applies in constructing explanations. When the 
researcher comes to the point that he is reflectively aware of these operations, and he 
can relate one with another, he has his explanatory framework (of the moment). That 
is, he has isolated the components and relationships among components which allow 
for explanations of individual children's behaviors. (p. 161) 
 

My second research question also seeks to model the development of 

understanding qualitative geometry. A note on the parallels between the design of my 

teaching experiment and the applications of Vygotsky’s “instrumental method” to model 

conceptual development provides an illustration of how I aim to answer this question.   

An experimentally evoked process of concept formation never reflects in mirror form 
the real genetic process of development as it occurs in reality. But this is not, in our 
eyes, a drawback, but rather a definite advantage of experimental analysis. 
Experimental analysis allows a dissection in abstract form of the very essence of the 
genetic process of concept formation. It provides us with the key to a true 
understanding and comprehension of the real process of concept development as it 
actually occurs in children. (Vygotsky, as quoted in El’konin, 1967, p. 36, as it 
appears in Cobb & Steffe, 1983, p. 86).  

 
 Whereas my first research question is related to the role of the software in 

eliciting children’s qualitative conceptions and subsequently supporting their 

development, my second question is related to the coherence of those conceptions and the 
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domain they inform. I draw on Steffe and Thompson (2000) to link the mathematics to 

the methodology: 

We regard the mathematics of students as a legitimate mathematics to the extent we 
can find rational grounds for what students say and do. Looking behind what students 
say and do in an attempt to understand their mathematical realities is an essential part 
of a teaching experiment (…) For us, this awareness is essential because teaching 
experiment methodology is based on the necessity of providing an ontogenetic 
justification of mathematics; that is, a justification based on the history of its 
generation by individuals….  (p. 269) 

 
This methodological choice is, in my mind, a necessary and essential way to proceed. An 

investigation into young children’s qualitative geometric conceptions is consistent with 

Steffe and Thompson’s view of “mathematics as a living subject rather than as a subject 

of being” (p. 269). Because qualitative geometry is developed from young children’s 

conceptions, it, too, is living. 

 

The Episodes of the Teaching Experiment 
 
 Informed by reports of teaching experiments in the mathematics education 

literature (cf. Kuhn et al., 1995; Lehrer & Chazan, 1998; Schauble, Glaser, Duschl, 

Schulze, & John, 1995; R. S. Siegler & Crowley, 1991; Steffe & Thompson, 2000), 

which ranged in duration from three weeks to ten weeks, my teaching experiment lasted 

approximately eighteen weeks. I met with participants between eight and ten times for 

episodes lasting between thirty and fifty minutes. The first episodes were conducted in 

the first week of October, 2009, and the last episodes were conducted by the third week 

of January, 2010, for a period of data collection lasting approximately 18 weeks.  
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I had developed a general plan (Figure 12) for each of those episodes. Some 

would be exploratory, some would be framed by a loosely structured interview, and 

others would feature 2 or more participants.  

 

 
Figure 12. Plans for the episodes of the teaching experiment 

 
But it didn’t play out that way. Analytic tasks launched the explorations in each of 

the episodes and those tasks were followed up by responsive and intuitive ones. My 

current and developing model of each child’s thinking and hypotheses about patterns in 

the child’s reasoning informed each of the tasks. Following the conclusion of each 

episode, findings from a retrospective analysis informed new hypotheses, and new 
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hypotheses informed the design of tasks for the subsequent episode. Figure 13 is the 

template of the record I used to summarize the analysis of each episode and plan for the 

subsequent episode.  

 

Figure 13. Template of the record used to summarize and plan for episodes 

 
To illustrate how these records were used, here is a sample of a completed one. It is the 

template for Amanda’s third episode. 

Amanda 
ep 3 
11/03/09 
 
Overarching theme: 
There was a bit of free-play at the end of episode 2, but this is the first "real" use of the 
software. Explore a conception of "most like" as transformational from the pretest in 
Configure. 
 
Leads followed: 
In episode 2, Amanda identified pairs of shapes as most like in three ways: transformational, 
common attributes, and resemblance/looks like: on the topological congruence of segments 
and curves: Use Amanda's suggestions that S and / are alike because you can straighten S 
to get /. 
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Take one of Amanda's equivalence classes and have her perform the transformation using 
Configure (e.g., S into / and T into “epsilon”). 
 
Activities completed: 
What is it about two shapes that makes them homeomorphic?: T or Y into X, square and 
triangle, sail and triangle, clover and shape of your choice. 
 
Notes: 
Multiple conceptions of likeness: Amanda identified Y and T as more alike than X. She notes 
that they're alike in the sense that they're all letters, and they're alike in the sense that they all 
have lines. But in the software environment, Y and T are alike and neither is like X.  
 
Successfully transforms Y and T, sail and triangle, square and triangle, clover and rectangle. 
Some progress toward identifying what makes a transformation possible. It requires that she 
pay attention to properties.  
 In the X, Y, T case, she says she needs one more line to transform the Y into the X. 
 In the sail, triangle case, she says she needs boxes [helper points] on the triangle in 
order to be able to bend them.  

In the X, Y case, she attempts a transformation of Y into X and ultimately realizes it's not 
possible: So what would it take for her to be able to recognize that before proceeding, in the 
planning stage? Does she develop what she believes is an adequate plan? Or does she 
proceed without first developing a plan or with developing only the initial stages of the plan? 
DOES she consider whether two shapes are homeomorphic before proceeding? Or, is 
anything possible/worth trying? What would make it NOT worth trying? 
 
Leads to follow: 
What does it mean for two shapes to be homeomorphic in this environment? 
Conjecture: ??? Amanda's plan for transforming two homeomorphic shapes...  
 
Activities to follow: 
Begin with one shape and have Amanda construct a homeomorphic one (rather than 
selecting from a set). 
Begin with one shape and ask Amanda to draw/select a shape that is NOT homeomorphic. 

 

The “overarching theme” is a brief description of what the episode was essentially about.  

“Leads followed” describes something Amanda did or said in the prior episode that was 

further explored in this episode. “Activities completed” describes the tasks that were 

conducted in this episode. “Notes” is used to record reflections about salient moments 

and often includes segments of the transcript. “Leads to follow” provides new questions 

or conjectures that might inform the design of the subsequent episode. Finally, “Activities 
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to follow” gives the activities whose designs are informed by the “leads to follow.” These 

components of the episode record should be seen as reflective of the teaching 

experiment’s “recursive cycle” of “hypothesis formulation, experimental testing, and 

reconstruction of the hypothesis” (Steffe & Thompson, 2000, p. 296). 

The Pretest 

 
 I conducted a pretest in the first episode of the teaching experiment to assess 

participants’ conceptions of “most like.” These conceptions are suggestive of the criteria 

participants use to distinguish between plane figures. The design of the pretest is 

informed by the “triads” of geometric shapes I used in my pilot study (Figure 14). These 

were the same triads that were developed by Lehrer, Jenkins et al. (1998) in collaboration 

with Clements and Battista whose research in children’s conceptions of geometry has 

significantly influenced the field over the past 15 years (cf. Clements & Battista, 1992).  
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Figure 14. Pilot study “triads” 

 

I redesigned these triads for the larger study, since they had been designed to elicit 

particular distinguishing characteristics that had more to do with Euclidean geometry 

than non-metric geometry. Some of the new triads (Figure 15) were designed to elicit 

metric conceptions, such as curvilinearity (row 1) and concavity (row 6); non-metric 

conceptions, such as closure (row 1) and connectedness (row 5); and both metric and 

non-metric conceptions, as in row 7, which considers the metric conception of 

curvilinearity and the non-metric conception of connectedness.  
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Figure 15. Pretest triads 

 
Knowing full well that it isn’t entirely possible to do so, I also wanted to get my 

conceptions out of the way of kids’ ideas. So I cut out the shapes and printed them on 

square cards. I handed participants five randomly chosen cards and asked them to sort 

them into groups of “most like.” Then, I realized that the square-ness of the cards was 

suggestive of only four ways to orient the cards, and I wanted to move participants 

beyond a conception of orientation as a fundamental property of shape. So I developed a 

second set of “follow-up” cards (Figure 16) and printed each one on a circular card so 

that they, too, could be used in five-card sorting tasks. In addition to an interest in 

moving beyond orientation, I found in the implementation of the first set of shapes that 

participants were highly attendant to curvature and resemblance to everyday objects and 
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canonical shapes. As the shape of the cards was informed by findings relative to 

conceptions of orientation, the design of the follow-up shapes themselves was informed 

by these two additional findings. As a result, the follow-up shapes were drawn to possess 

both curvilinear and rectilinear attributes. Only the first shape in the last row of the first 

set of shapes (Figure 15) has both curved and straight attributes. Second, the attempt was 

made to design them so as not to readily connote in children’s minds resemblance to 

everyday objects or canonical shapes. [Suffice it to say for now that the attempt was 

hardly successful.] 

 

Figure 16. Pretest follow-up shapes 

 

Finally, the pretest served the additional purpose of identifying the most vocal of 

the six students nominated by their teachers for participation in the study. Also, since the 
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investigation is related to children’s non-metric conceptions as elicited and developed 

using the software, I was interested, in a practical (as opposed to statistical) sense, in the 

effect of the software on the development of children’s geometric conceptions. Thus, the 

pretest served as a pre-software launching point of the trajectory of participants’ 

experiences in the study. The use of a post-test was considered but deemed inappropriate 

in gauging the effect of the software on participants’ conceptions, since those conceptions 

are informed by – and most salient in – the software environment. A post-test of 

equivalent design and implementation to the pre-test would necessarily be implemented 

outside of the software environment. 

The Participants 
 

The first criterion [for case study selection] should be to maximize what we can learn. 

(Stake, 1995, p. 4) 

 

 I conducted this study at Zapata Elementary where I had also conducted the pilot 

study. Similarly, as I had done in that study, in order to select participants, I returned to 

the teachers of participants in the pilot study who were in grades 1 and 2, and asked them 

to select two students whom they describe as average or above average (by ordinary 

school standards) and who are most articulate and likely to have interesting things to say.  

The age-related criterion is informed by multiple sources. First, Clements (2004) 

finds that shape concepts begin forming in the preschool years and stabilize as early as 

age 6. Second, Piaget (Piaget & Inhelder, 1956) finds that the development of children’s 
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representational space occurs from 3;6 – 7. Third, some of the most cited studies of 

children’s thinking in geometry (Clements & Battista, 1992; Clements, et al., 1999; 

Lehrer, Jenkins, et al., 1998) have been conducted with children who range in age from 

3;6 – 8. Fourth, because I’m interested in characterizing the developing thinking of young 

children’s qualitative geometric reasoning, and because it is not possible to pinpoint the 

occurrence and duration of development of these ways of thinking for the purposes of a 

longitudinal study with each of the participants, I think that a participant cross-section by 

age is likely to increase my opportunities to experientially abstract the elements required 

to develop a robust model of thinking in the domain (as long as I am explicit that this 

approach is not meant to substitute for a longitudinal study). Finally, it seems to me that a 

good starting point for the development of qualitative geometry from children’s 

conceptions is an investigation with children in the late pre-operational stage and early 

concrete operational stage of development. Because the identification of qualitative 

properties is a function of children’s actions on mental representations, children earlier in 

their development do not possess the abilities to engage in ways that are productive of the 

content of Qualitative Geometry.  

A Loosely-Structured Interview Protocol 

 
Each of the episode’s analytic tasks was informed by my research questions, 

which I re-present here to remind the reader. 

1. Given that early forms of topological, or at least non-metric, geometric reasoning 
have been identified and discussed in the research literature, can a software 
environment be developed in ways that support fundamental topological 
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representations and transformations such that learners’ reasoning about topological 
ideas are made visible and are able to further develop in ways that could credibly be 
seen as both mathematical and significant? 
 
2. What forms of topological or non-metric geometric ideas are made visible and can 
be seen to develop as a result of young learners’ systemic engagement with a 
computer environment that makes topological representations and transformations 
accessible? 

 
Consistent with these questions, these are some of the tasks that loosely structured the 

interviews. They were implemented by participants on paper and in/using the software. 

 
a. Given a set of shapes, sort into groups those that are alike. 
b. Given a class of shapes, identify a/the property that defines the class.  
c. Given a class of shapes, construct a new shape that belongs to that class.  
d. Given a class of shapes, determine whether this other shape does or does not 

belong to that class. 
e. Given a shape, describe and/or transform it into one that is alike or equivalent. 
f. Given two shapes, describe how one can be transformed into the other, if possible. 

Then complete the transformation. 
 
Situating each of these tasks in relation to the research questions produces the following 

matrix: 

 
Loosely-structured Interview Tasks  

a b c d e f 
1   •  • • 

RQ
 

2 • • • • •  
 
 
Consistent with my research questions, each of these tasks is informed by conceptions of 

qualitative geometry. Consequently, the design of the software that participants used to 

complete the tasks simultaneously informs and is informed by the domain. Presentation 

of that software appears in Chapter Four. 
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DATA COLLECTION 

 
I collected data from the following sources: 

a) pretest  
b) video recordings of the research space  
c) participant loosely-structured interviews 
d) screencasting software to produce a digital video and audio record of participants 

and their interactions using the software environment 
e) jottings taken during and following observational episodes and later expanded 

into field notes (Van Maanen, 1988) 
f) analytical memos (Strauss & Corbin, 1998) in the forms of local reflections on 

observations and more global reflections on salient and emerging themes 
 
These methods of data collection were approved in my IRB application (IRB# 2007-10-

0107; expires 02/18/2011). Situating each of these data sources in relation to the research 

questions produces the following matrix: 

 
Data Sources  

a b c d e f 
1 • • • • •  

RQ
 

2 • • • • • • 
 

As I mentioned above, the pretest was used to get some sense of the effect of 

participants’ interactions in the software environment on their qualitative conceptions of 

shape. The video recordings and screencasts were used to conduct retrospective analyses 

of participants’ activities on paper and in the software environment. The loosely 

structured interviews were designed to structure those activities so as to make 

participants’ qualitative conceptions visible and further develop them. Finally, field notes 

and reflections supported my analyses of the data. 

 



 83 

DATA ANALYSIS 
 

As I mentioned in the section detailing my cases, a critical point in the 

development of children’s thinking in the domain of qualitative geometry likely occurs at 

4 – 6 years of age. An investigation of development over a time period approximating 

two years would obviously be too time-intensive for this study, but Siegler & Crowley 

(1991) offer alternatives: either 1) “provide a high concentration of tasks which are 

hypothesized to lead to changes in performance,” or 2) “present a novel task and observe 

children’s changing understanding over some number of observations” (p. 607). Analytic 

interactions framed some of the interactions while responsive and intuitive interactions 

framed others, so the approach I took in my teaching experiment is somewhere between 

the first and second options. As such, I adopted Siegler and Crowley’s microgenetic 

method (1991) because, as they write, theirs is a “method that seems particularly well 

suited to studying change” (p. 606). In fact, Siegler and Jenkins (1989) is a report of what 

they refer to as a microgenetic experiment. Thus, and because Steffe and Thompson 

(1999) also suggest a “microanalysis” of the data, my methodology may be referred to as 

a microgenetic teaching experiment. 

Stages of Analysis 

 
The microanalytic methods I used to conduct the data analysis follow from this 

research design and are informed by Strauss and Corbin (2008; 1998). Consistent with 

their advice, analysis was ongoing during and following the data collection. One-week 

breaks between episodes allowed for light transcription and “retrospective conceptual 
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analysis” (Steffe & Thompson, 2000, p. 273), and two- and four-week breaks allowed for 

moderate transcription and retrospective conceptual analysis. Light and moderate 

transcripts were “scanned” for salient themes (as opposed to applying a full “line-by-line” 

analysis) (Corbin & Strauss, 2008, p. 70). 

Following the conclusion of data collection, reflective activities continued as light 

and moderate transcripts were elaborated to full ones and videos were re-viewed for a 

second (and an occasional third) round of retrospective analysis. Then, I generated codes 

(cf. Corbin & Strauss, 2008; Mertens, 2005; Miles & Huberman, 1994). Data analyses in 

studies of children’s geometric conceptions by Lehrer et al. (1998) and Clements et al. 

(1999) informed the first iteration of coding (e.g., language of morphing, resembles 

everyday, suggests orientation), which was meant to be descriptive of participants’ words 

and actions. Subsequent rounds of coding were implemented for the primary purpose of 

managing the data, of sitting down and spending time with it, of getting to know it and 

making sense of it so that I could craft narratives of the trajectory of each participant’s 

experiences across all episodes from salient moments indicative or at least suggestive of 

conceptual development.  

 
Writing forced me to see the whole theory and highlighted those parts that didn’t fit so 

well…. So, I would go back to the data…. This kind of building and verifying of various 

aspects of the theory continued throughout the writing process…  

(Strauss & Corbin, 1998) 
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 This quote is the text of a memo written by Paul Alexander, a former student of 

Strauss and Corbin’s. The goal of his analysis, that of developing grounded theory, 

differs from my own, which was to develop “some type of higher-order synthesis in the 

form of a descriptive picture” (Lincoln and Guba, 1985, as presented in Mertens, 2005) 

of participants’ experiences. But the essence of the quote is remarkably similar to the way 

I thought about developing the narratives that I use to address my research questions. At 

the conclusion of multiple rounds of re-viewing and coding the data, no new information 

was emerging. So I decided to conclude the “formal” stages of the analysis, and I began 

to write. The process of crafting each of the narratives was aided by each of the following 

sources:  

1. a clear analytic story as informed by the results of the analysis 

2. a sense of what stories to write as informed by the research questions 

3. a detailed outline as informed by the development of themes to characterize 

each of the episodes of the teaching experiment, and  

4. the process of developing outlines for preliminary talks about the findings 

In the same way that Paul thought about the writing as a tool for developing grounded 

theory, I saw the writing process as a tool for the development of narratives, each of 

which depends on the use I would make of the four sources above and the Vygotksyan 

sense (Bigge & Shermis, 1999) I would make as I translated emerging themes into the 

words that would eventually compose the narrative.  
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STRENGTHS AND LIMITATIONS OF THE RESEARCH 
 
 I believe that this study is worthy of attention. To make the argument, I address 

the strengths and limitations of the study by applying a set of criteria with which to judge 

the quality of qualitative research. These criteria have been put forth by Lincoln and 

Guba (1985) and endorsed by a host of others (cf. Anfara, Brown, & Mangione, 2002; 

Mertens, 2005). According to the authors (1982), they reflect another step in the move 

away from earlier positivist-sounding “rigor criteria” toward the more 

constructivist/interactionist-sounding “trustworthiness criteria,” so as to provide a better 

fit with naturalistic research.  

Table 1 Criteria for judging “trustworthiness” in qualitative research, as put forth by 
Lincoln & Guba (1985) 

Criterion (parallel 
criterion in quantitative 
research) 

Strategies I employed to enhance the criterion 

Credibility (internal 
validity) 

prolonged engagement and persistent observation, 
member checks 

Transferability (external 
validity) 

thick description, purposive sampling, multiple cases 

Dependability (reliability) audit trail, peer examination 

Confirmability 
(objectivity) 

reflexive journal, chain of evidence  

 
 Credibility is the criterion in qualitative research that parallels internal validity in 

quantitative research. Internal validity in an experimental situation has to do with the 
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attribution of a change in the dependent variable to the independent variable. Broadly 

speaking, credibility as the parallel notion in qualitative research gets at the 

correspondence between the participants’ actual perceptions of social constructs, 

phenomena, or experiences and the researcher’s portrayal of participants’ perspectives. In 

the context of this study, credibility may be thought of as the correspondence between 

“students’ mathematics” – that is, the students’ mathematical realities – and the 

“mathematics of students,” which are my models and interpretations of students’ 

mathematics (Steffe & Thompson, 2000, p. 268). 

 I aimed to establish credibility through prolonged and substantial engagement 

with – and persistent observation of – each of the three participants in the study. Senses 

of prolonged, substantial, and persistent that would be appropriate for my teaching 

experiment were informed by reports of teaching experiments in the mathematics 

education literature (cf. Kuhn, et al., 1995; Lehrer & Chazan, 1998; Schauble, et al., 

1995; R. S. Siegler & Crowley, 1991; Steffe & Thompson, 2000), which ranged in 

duration from three weeks to ten weeks. My teaching experiment lasted approximately 

eighteen weeks. I met with participants between eight and ten times for episodes lasting 

between thirty and fifty minutes. The first episodes were conducted in the first week of 

October, 2009, and the last episodes were conducted by the third week of January, 2010, 

for a period of data collection lasting just longer than four months. By the time the last 

episodes were conducted, I felt I had identified salient and recurring themes, language, 

and patterns in operations suitable for the development of an adequate model of the three 

participants’ thinking in the domain of qualitative geometry. Furthermore, at that point, I 
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felt I had developed a rich – although certainly incomplete – conception of the 

developing domain of qualitative geometry itself. 

 A sort of member checking is naturally inherent to the design of my teaching 

experiment, since it consists essentially of a series of clinical interviews (Ginsburg, 

1981), the purpose of which are to develop viable models of the interviewees’ thinking. 

Furthermore, a sort of episodic feedback loop was established in that participants’ 

responses informed and are further investigated in subsequent episodes. 

 The final strategy I consider with respect to credibility is triangulation. Mertens’ 

(2005) notion of triangulation involves checking information that has been collected from 

different sources or methods for consistency across those sources of data. Again, the 

analog of credibility in quantitative research is internal validity, so this sense of 

transferability is about making the same measurement in different ways. Guba and 

Lincoln (1989, as cited in Mertens, 2005) do not support that view, since it “contradicts 

the notion of multiple realities” (p. 255). In the context of this study, Guba and Lincoln’s 

objection is appropriate. The episodes I conducted with participants occurred 

predominantly within a “microworld” (Papert, 1980) called Configure (Steven Greenstein 

& Remmler, 2009) that operates according to a set of rules not found in other worlds. It’s 

supposed to be that way. So I hold neither hope nor expectation of finding consistency in 

the information gathered across that and other sources. 

 

 Transferability is the criterion in qualitative research that parallels external 

validity in quantitative research. External validity concerns the degree to which the 
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results may be generalized to other situations. In qualitative research, the transferability 

criterion is met by providing sufficient details about the research site so that a reader can 

judge the similarity between that site and another. In the context of a teaching 

experiment, then, transferability has nothing to do with the site. It is about the 

generalizability of my models of students’ mathematics (and perhaps slightly about the 

students themselves). 

Relative to the models, a model is generalizable if it is “useful in interpreting the 

mathematical activity of students other than those in the original teaching experiment” 

(Steffe & Thompson, 2000, p. 300). If in a new teaching experiment, the model is 

modified to produce a new model that supersedes my own, this further confirms the 

generalizability of the model, because the new model will have retained features of the 

old one.  

It has been argued (Steffe & Thompson, 2000) that generalizability in the case of 

teaching experiments is not about the students but about the researchers’ models of their 

mathematics. They don’t discount the value of evaluating models by sampling for 

students in the same age group, but they don’t see this as related to the issue of 

generalizability. Still, I include the students in matters of transferability, because I believe 

that doing so will support my intention that the findings of this study have implications 

for teaching. Therefore, a consideration of the students’ ages is relevant. So I have 

established transferability relative to the participants through the purposive sampling 

method (Patton, 2002) I described above in Chapter Three, and by conducting data 

analysis throughout and following the data collection of this teaching experiment with an 
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eye toward the observation of conceptual development across “multiple cases.” I did 

expect to find a group story. The literature predicts it (Darke, 1982; Esty, 1971; 

Laurendeau & Pinard, 1970; Lovell, 1959; Martin, 1976a, 1976b; Piaget, 1970b; Piaget 

& Inhelder, 1956), as do other investigations of children’s mathematical thinking (cf. 

Carpenter, et al., 1996). In addition, because clinical exploratory interviews were 

adequately “prolonged and engaging,” they yielded all the elements that “thick 

description” requires. Even Ginsburg (1997) goes so far as to argue that “the clinical 

interview can provide a kind of ‘thick description’ of the mind (to borrow from Geertz, 

1973)” (p. ix). And fortunately, the literature provided me with extraordinary models 

(Ricardo Nemirovsky & Noble, 1997; Ricardo Nemirovsky, Tierney, & Wright, 1998) of 

thick description that guided the presentation of my own findings and which should meet 

or exceed the strongest requirements for transferability. 

 

Dependability is the qualitative parallel to reliability or reproducibility or 

stability over time. In order to establish dependability in qualitative studies, Lincoln and 

Guba (1985) recommend overlapping methods and stepwise replication by taking 

multiple passes or using multiple researchers to do field work. Unfortunately, the scale of 

the study could not permit those strategies. But Guba and Lincoln (1989, as cited in 

Mertens, 2005) also suggest conducting a dependability audit, where each of the steps in 

the research process is documented and detailed. These were the expectations I assumed 

as I outlined my techniques for participant selection, data collection (including the design 

and functionality of the software), and data analysis in Chapter Three. Moreover, check-
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ins with Dr. Walter Stroup to discuss plans for interviews and their outcomes during data 

collection and emergent findings during data analysis, along with check-ins with 

colleagues Scott Eberle and Stephanie Peacock to review the mathematics of qualitative 

geometry, served as an admittedly weak but significant independent audit of the research 

process.  

Still, data analysis has a personal component. The data and I do our analytic jazz 

dance, and when it’s over – maybe the song stops or I unplug the jukebox – themes have 

emerged and I’ve made sense. Strauss and Corbin (1998) use “interplay” to name what 

goes on between the researcher and the data, noting that the interplay “is not entirely 

objective” and that operating objectively “is not entirely possible” (p. 58). In my mind, 

this way of talking positions “interplay” closer to objective than the “dance.” Given the 

nature of the study as qualitative / clinical / exploratory and my efforts at presenting their 

mathematical reality, I suspect that things could have gone another way. Such is jazz, 

after all. 

 

 Confirmability is the qualitative parallel to objectivity in quantitative research. It 

concerns freedom from bias, that is, the minimization of the influence of the researcher’s 

judgment on the outcomes. Confirmability means that the connection between the data 

and the interpretation is logical and that the “chain of evidence” that extends from the 

source of the data to its synthesis can be confirmed. Toward this end, I followed Lincoln 

and Guba’s (1985) suggestion that the researcher keep a reflexive journal. I recorded in 

that journal reflections related to the design of the study, the development of the software, 
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and happenings within and across episodes for each participant and across all 

participants. Entries were recorded almost daily during analysis as it was conducted both 

during and following data collection. If the purpose of analysis is to bring meaning, 

structure, and order to data (Anfara, et al., 2002, p. 31), then these reflections should be 

seen as playing a significant role in conducting the data analysis. The canvas of the blank 

page provided me with a space to reflect on the interactions between actions of 

participants, the supports that the software provided, and the development of the domain 

of qualitative geometry. These reflections, then, supported the crafting of the stories I tell 

in the findings in Chapter Five. 
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Chapter Four: Developing the Software 

 

Considering Technology 
 

I realized early in the development of this study that an investigation of young 

children’s qualitative geometric thinking would require some sort of tool that could be 

used in tandem with a sequence of clinical interviews to make that thinking visible (Lesh, 

Hoover, Hole, Kelly, & Post, 2000), a tool that would simultaneously open a window into 

their mathematical thinking and allow them to explore geometric figures in ways not 

possible with physical objects (Clements, Sarama, Yelland, & Glass, 2008, p. 143), while 

also enabling me as the researcher to develop a better sense of their thinking and 

providing me with something tangible to discuss with the participants. 

Andrew diSessa (2000) offers that “although you may think you are designing a 

computer system, you are really designing mediated activities. That is, you are designing 

the material context that supports particular activities” (p. 105). Similarly, Vygotsky’s 

(1978) notion of mediated activity expresses the dialectic relationship between the tool 

and the sense-making. “The use of artificial means, the transition to mediated activity, 

fundamentally changes all psychological operations just as the use of tools limitlessly 

broadens the range of activities [emphasis added] within which the new psychological 

functions may operate” (p. 55). This new environment, then, could be a tool in the 

Vygotskyian sense in that it is an instrument that makes topological activities possible. 

Moreover, a tool that changes not only how mathematics is learned, but what 
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mathematics can be learned could provide de facto challenges to 1) traditional forms of 

geometry instruction that are having little or no effect on the development of children’s 

geometric concepts (Lehrer & Chazan, 1998), and 2) to van Hiele theory (1986), which I 

explicitly address in the findings section of Chapter Five. 

Technology Takes Shape(s) 

 
Domain-general, technology-centered approaches to teaching and learning tend to 

begin with a technology like a graphing calculator or spreadsheet software followed by 

considerations of “What might be taught / assessed / accomplished with this technology?” 

In contrast, a domain-centered approach to technology use in classrooms offers a move 

toward solutions to pedagogical problems by starting with the content and engaging with 

questions like, “How might we design a learning environment in which students 

participate in the kinds of experiences that support the coming to know of X?” The 

answer may or may not involve a form of computing technology. Accordingly, tools 

make sense in relation to particular kinds of activity. Thus, useful advice about which 

spreadsheet software is best or which graphing calculator is most appropriate must 

consider the purpose or the context in which these might be used.  

In the following section, I document the iterative cycle of “progressive 

refinement” (Collins et al., 2004, p. 18) by which the software used in my pilot and 

dissertation studies came to be. This is just as much a tale about design-informed 

development of software as it is about a teacher-researcher’s tumultuous, year-long 
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relationship with educational technology and the variable and potential roles it might play 

in the conduct of the study.  

The development of a tool to make children’s qualitative ways of thinking visible 

was deemed a critical and essential way to proceed in this investigation. Without it, I 

would certainly have nothing to talk about. But it wasn’t the simple matter I was prepared 

for. Development took far more than a year before I got to a version I could use in the 

pilot study. Then, it took several months beyond the conclusion of the pilot study to 

incorporate its findings into modifications of the software for use in the larger study. 

What follows is an account of the design-informing process. 

The ongoing development of a web 2.0-based application called Distributed 

Biography (Olmanson, Greenstein, Smith, & Brewer, 2007) gave me the design-

informing research experience I have drawn on to develop the environment. In 

collaboration with the other members of the Digital Spaces Working Group, we began 

with shared notions of what it means to know some one, some thing, some where, or 

some time, and proceeded by asking ourselves, “What might such a biography look 

like?”, “What sort of technological tool might support users in its development?”, and 

“How can relevant theories and epistemologies inform its design?” Informing the design 

of the software by exploring answers to questions like these resonated with the domain-

centered view I take on knowing and learning. A description of the evolution of the 

project from initial design to alpha development is provided in Olmanson, Greenstein, 

Smith & Brewer, (2007, October), but the experiences I drew on most heavily to prepare 

me for the development of my own software occurred early on. In the fall of 2006, we 
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created a white paper and began meeting biweekly to discuss overarching issues of the 

application. In the spring of 2007, we worked to convert the theory and beliefs into some 

guiding wireframes, and throughout the summer of 2007, we continued the iterative 

design and initial development process. The first iteration of my software was 

uninformed by these experiences, but by the second iteration I had met with a colleague 

who would be programming the software. That partnership put me in the role of primary 

designer and it allowed to me engage with her in discussions about my ideas for the 

design of the software and her knowledge of what’s possible.  

Aligned with the essentially Piagetian framework upon which this study is built – 

especially related to 1) his framework of genetic epistemology (Piaget, 1970a), 2) his 

model of conceptual development, particularly as it relates to the development of 

cognitive structures (Bringuier, 1980; Gardner, Kornhaber, & Wake, 1996b; Piaget, 

1970b), and 3) his investigation of the development of children’s representational 

thinking (Piaget & Inhelder, 1956) – I realized that I would require a software 

environment that could support the construction of (mental) representations of shape 

from perception. To summarize an earlier discussion (which begins on page 15), this 

distinction between representations and perceptions is significant, because conceptual 

thought proceeds from representational thought, and representational thought proceeds 

from perception. I’m interested in children’s qualitative conceptions of shape, and I can 

only attend to those conceptions if I provide them with the means of constructing mental 

representations, the elements of which must be reflectively abstracted via actions on 
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shape. In addition, conscious attention to those components of shape simultaneously 

supports my goal of getting kids to attend to fundamental properties.23  

So the theoretical frame informs the design of the software to the extent that it 

should allow users to construct mental representations through their actions on shapes. 

But what shapes? And what actions? The review of the literature, particularly related to 

the models of children’s thinking in the domain of informal topology as provided by 

Piaget (Piaget & Inhelder, 1956) and “the replicates” (Esty, 1971; Laurendeau & Pinard, 

1970; Lovell, 1959; Martin, 1976a, 1976b) were useful in engaging these questions so as 

to further inform the design of the software. 

Iteration One: SimTop 

 
The first iteration in the development of a microworld (Papert, 1980) that I would 

use for the purposes of this study was a collection of “topological worlds” built in 

NetLogo (Wilensky, 1999) called SimTop (S. Greenstein, 2007) (to allude to a Simulated 

Topology). The idea was that there would be multiple worlds and that the shapes of these 

worlds would be topologically distinct. That is, they would vary in terms of their 

topological properties. For example, one of these worlds was equivalent to a circle, 

another was equivalent to a segment, and another was equivalent to a figure eight. This 

might be easier for users familiar with NetLogo to imagine if they consider an analog in 

that the built-in options for the shape of the “world” are a “box,” a horizontal or vertical 

cylinder, and a torus. Each user would control a single spaceship, and the ultimate goal 

                                                 
23 That’s van Hiele Level 2: Abstraction (1986) for anyone who’s keeping track. 
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would be to describe the shape of that space. Because these worlds are not globally 

visible, a snapshot of the environment cannot reveal them, but Figure 17 illustrates the 

operations that are available with which to control a spaceship.  

 

 

Figure 17. Screenshot of SimTop 

The chessboard environment only appears to be a segment of the plane. The drop-

down menu labeled “topology” allows the user to select from among the available 

topological worlds. In the world that is shaped like a ring, for example, only the spaces 

along that ring are accessible. At some points along its boundary, it is not possible to 

move to one of the adjacent spaces on the board. In worlds like the torus, at some points 

an attempt to move to an adjacent space results in landing at some other unexpected 

space across the board. 

The blue spaceship is the turtle that the user controls. The pink spaceship is an 

android that, if turned on, will chase the blue spaceship around the (topological) space. 
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Similar androids (with similar agendas) appear in the NetLogo model Disease (Wilensky 

& Stroup, 2002). Hence, the leftover “infect person” and “infect an android” buttons in 

my model. My thinking was that the android would provide some incentive for the user to 

further explore the space.  

I played around with this idea as I was developing my proposal and pilot study, 

and then I abandoned it. Translating increasingly “complex” shapes into code was too 

laborious, and might suggest that exploration of the world would draw more on cognitive 

resources associated with spatial visualization skills than those associated with the forms 

of reasoning I was interested in attending to (not that they should be entirely distinct). 

Furthermore, I found that the worlds weren’t sufficiently interesting to explore, nor did I 

sense any “internal necessity” (Steffe & Thompson, 2000, p. 282) to explore them 

thoroughly. Children having a similar experience might only attend to the most salient 

features at the expense of a more thorough and adequate search of the worlds, just as in 

Piaget’s haptic experiments (Piaget & Inhelder, 1956) where errors arose because 

children did not adequately explore the objects they were given.  

Iteration Two: QualiGeo 

 
The second iteration of the software, called QualiGeo (Steven Greenstein & 

Remmler, 2008a) (Figure 18), was also built in NetLogo Like The Geometric 

superSupposer (Schwartz & Yerushalmy, 1992b), the environment had two “facilities” 

(p. 178), one for construction (the “build space”) and one for operation (the “play 

space”). New shapes could be transformed in the build space by dragging the blue “hot 
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spots” of a built-in circle, triangle, quadrilateral, or pentagon. Then, the user would drag 

the shape into the play space and render them invisible before “scanning.”  

 

 

Figure 18. Screenshot of QualiGeo with an arrow reflecting the movement of the shape 

downward through the keyboard. 

 

The utility of the build space makes possible an analog to the sort of “mental 

animation” of shape that Lehrer and colleagues (1998) find to be the “one exception” to 

the trend that geometry instruction throughout the elementary grades does little to change 

children’s conceptions of shape. They identified among children “an increasing 

propensity to reason about similarity between and among figures by mentally animating 

the action of pulling or pushing on a vertex or side of a two-dimensional form” (p. 145). 

Not only does such a tool fit with this way that children think about shapes, Clements and 
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colleagues go so far as to suggest that the development of geometric thinking may be 

achieved through engagement with images that are flexible, dynamic, and manipulable, 

and through the development of abilities to act on those images (Clements & Sarama, 

2004; Clements, et al., 1999).  

One goal of supporting kids’ identification of qualitative properties of shape as 

one conceptual component in the development of a notion of figure via engagement with 

a dynamic geometry environment that focuses the user on underlying relationships rather 

than on the particulars of a specific drawing is to work toward a resolution of 

conventional claims about kids’ analytical abilities: van Hiele (1986) predicts that the 

development of geometric conceptions is hierarchical and ordered, and that learners do 

not progress to the level in which they are able to coordinate and order properties, so 

conventional classifications of shapes cannot emerge until much later.24 Another goal is 

to provide manipulable images so that children are more tolerant to the orientation effect 

(Clements, 2004). That is, to provide them with experiences that might “break” them of 

the inductive inference that orientation is a fundamental property (which would imply 

that squares and regular diamonds are not equivalent). One fortunate but unintended 

consequence that is common among participants in my own pilot study and in a study by 

Lehrer, Jacobson, et al. (1998) is that users come to see the environment as a playground 

for “morphing”: “some children regarded figures as malleable objects that could be 

pushed or pulled to transform them into other figures” (p. 142). For example, one child 

stated that a chevron and a triangle are alike because “if you pull the bottom [of the 

                                                 
24 Implications of this research for van Hiele theory are considered in Appendix E. 
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chevron] down, you make it into [the triangle]” (p. 142). Coincidentally, the 

transformation that turns a chevron into a triangle is topological: it demonstrates that a 

chevron and a triangle are topologically equivalent.  

Once in the play space, when a shape is dragged across the keyboard (Figure 18), 

the keys that are “touched” by the shape are illuminated and tones are played that 

correspond to the keys’ location on the keyboard. [A better illustration of this process is 

featured later in the presentation of the next iteration of the software, called SoundTrack.] 

That is, this kind of interaction provides simultaneous visual and auditory feedback. For 

instance, only the edges of an unfilled triangle will light keys on the keyboard and 

produce their corresponding tones, whereas the filled-in triangle will light the keyboard at 

all “points” between and including the edges and play the full set of corresponding tones. 

But the auditory and visual feedback induced by a variety of non-congruent triangles will 

have common features that could come to signify that topological equivalence. It is in 

this respect that QualiGeo provides a playground that focuses learners on metric and non-

metric properties of shape.  

The significance of this feedback mechanism is related to my earlier mention of 

Piaget’s notion of reflective abstraction (Piaget & Inhelder, 1956) of properties of shape 

as something other than the ordinary abstraction – or generalization – of its properties. 

Reflected abstraction involves the (possible) actions taken to coordinate those properties 

into a single whole. QualiGeo was designed to support users’ coordination of abstracted 

properties into a single whole. The role of invisible shapes corresponds to the role of 

hidden shapes in Piaget’s haptic perception task (Piaget & Inhelder, 1956), but QualiGeo 
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also allows invisible shapes to be used for engagement with one or more particular 

qualitative properties. This feature is meant to oppose the “What shape am I?” task used 

by Burger and Shaughnessy (1986) in which the properties are given and the shape is the 

answer. 

 The way that users employ the dragging capability together with the keyboard to 

“scan” figures is meant to resolve Piaget’s realization and Page’s later claim (1959) that 

young children only passively explored shapes in Piaget’s haptic perception tasks (Piaget 

& Inhelder, 1956); that is, shapes were inadequately searched for all of their parts. 

Searching via QualiGeo is more comprehensive so that more features of the figure are 

explored than those that are most salient (such as holes and corners), familiar, or are 

encountered by accident. The method also encourages greater “perceptual activity” 

(Piaget & Inhelder, 1956, p. 10), which refers to the coordination of centrations (such as 

touching one part of the object) and decentrations (moving on to another part of the 

object) in order to construct mental representations of objects from percepts. 

Furthermore, the search procedure yields immediate and coordinated visual and auditory 

feedback. In contrast, feedback provided to participants in Piaget’s haptic perception 

tasks was limited to the acknowledgment of direct contact with the object. 

This iteration marked a significant improvement over the previous iteration in that 

it was designed to allow for active engagement with representations. As I mentioned 

earlier, Piaget’s stance is that in order for a child to build a representation of a particular 

shape, properties of that shape must be reflectively abstracted and coordinated into a 

coherent whole. From a constructivist perspective, not only does active engagement 
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enable greater inference about learners’ representational space, but because action (e.g., a 

reversible operation, or action which can return to its starting point) is the vehicle for 

developmental progress (Flavell, 1963; Piaget, 1970b; Piaget & Inhelder, 1956), it is an 

essential aspect of a study of the development of children’s thinking. 

Eventually, this “agent-based” model was retired. I decided it was inadequate and 

inappropriate, because the turtles moved in discrete – as opposed to continuous – steps. 

As a result, a shape composed of turtles could only be dragged across the keyboard in 

discrete steps, thereby producing discrete tones25. Thus, the feedback produced by the 

shapes was not true to the shapes themselves. Considering the fundamentality of 

continuity to topology, the microworld I would develop had to afford users opportunities 

for “reasoning by continuity” (Sinclair & Yurita, 2005, p. 5). This feature is critical to 

topological investigations, since continuity is so fundamental to topology. Reasoning by 

continuity is a concept identified by Sinclair and Yurita (2005) in a study that involved 

the use of a dynamic geometry environment called The Geometer’s Sketchpad (Jackiw, 

2001): 

Reasoning by continuity is a form of geometric reasoning that enacts Poncelet’s 
Principle of Continuity: the properties and relations of a geometrical system or figure, 
be they metric or descriptive, remain valid in all of the successive stages of 
transformation during a motion that preserves the definition properties of that figure 
or system. The Poncelet Principle finds, perhaps for the first time, a physical 
embodiment through the use of Sketchpad, where dragging qualifies as a continuous 
motion that can preserve the system’s initial properties. (p. 5) 
 

If my software featured this dynamic quality, it could support the elicitation of 

users’ non-metric conceptions by allowing the user to identify properties that remain 

                                                 
25 Analogously, the interval [0, 4] would be reported as the sequence {0, 1, 2, 3, 4}.  
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invariant under transformation and, as a result, to submit these defining properties as 

fundamental to qualitative geometry. “The principle of continuity guarantees that any 

member of the set of parallelograms may be obtained from another via dragging” (p. 5), 

and under the defining conditions of qualitative geometry, it could also guarantee, for 

example, that any closed figure may be obtained from another. It is worth noting that any 

transformation that changes one “breed” of parallelogram into another is not Euclidean, 

because magnitudes would not be preserved. For instance, a transformation that turns a 

rectangle into a non-square rhombus increases the lengths of a pair of the rectangle’s 

opposite sides and decreases the measures of a pair of its opposite angles. The 

transformation is topological, though, since both the preimage and the image of the 

transformation are simple closed curves. [Recall the rubber sheet if that helps.]  

My next steps were informed by Judah Schwartz’s essay, “The Right Size Byte” 

(1995), in which he offers his own thinking about the design of educational software. 

These guidelines provided me with a check and refinement of my thinking about the 

design of the software and how it might help me accomplish my goal of making 

children’s geometric thinking visible. I had already decided that whatever form my 

software would take, it would use a “new approach to new content” (p. 172). Guided by a 

claim by Schwartz (1999) that important mathematical ideas can be introduced early on 

in the mathematical education of all students if the introduction is done in the context of 

interesting and powerful exploratory environments, the new approach would be via a 

domain-specific exploratory environment (Schwartz, 2007), like “Geometric Supposer 

[which] allows users to make Euclidean geometric constructions and explore the effects 
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of modifying measures and constraints” (p. 163). Because the new content would be 

qualitative geometry, it would differ from Geometric Supposer in terms of the geometric 

constructions that would be possible. And maybe the approach is old to the far-too-few 

who know of it, but for everyone else (which is almost everyone), it is new. [For contrast, 

even the newest Computer-Assisted Instruction (CAI) environments can be seen to be 

using old approaches to old content.] 

Next, I considered how much “instructional responsibility” the software should 

have. Schwartz delineates the opposite ends of the spectrum are:  

a) the software runs the conversation with the user, making inferences where 
necessary about the intentions of the user, and  
 
b) the software simply responds to the user, displaying the consequences of the user's 
actions (p. 174) 
 

My sense is that the software would fit with (b), because I wanted an exploratory 

environment, not an instructional one. The design of my teaching experiment was 

informed by an interest in exploring children’s developing thinking, so I expected 

learning to occur. But I had neither pre-specified objectives in mind nor any prepared 

trajectory to get them to objectives.  

Then, I considered what would be the “intellectual scope” (p. 175) of the 

program. Young children’s informal topological conceptions as I’ve identified in the 

literature parallel the “rubber sheet geometry” way of thinking about topology. Therefore, 

the ways that plane shapes could be manipulated so as to produce topological equivalence 

classes defined the boundary of the intellectual scope. These axioms could correspond to 
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primitive commands like stretching and bending, but not breaking, since these operations 

on a particular shape maintain its fundamental topological properties. 

The next step was to consider the pedagogical style that would be embedded in 

the software. This step was not of primary concern, since I wasn’t yet interested in 

instructional implications. But because the environment would be exploratory, it would 

also support a teacher/student guided/inquiry style of pedagogy. So that decision was a 

consequence of earlier decisions. Finally, I considered “the problem of simplicity and 

complexity” (p. 177) by responding to the following questions: 

1. What actions do you want users to be able to carry out in this software 
environment? 
 
2. What elementary tools do you wish to put at the disposal of the users to make it 
possible to carry out these actions? 
 

Again, the “rubber sheet” conception informed the response to question (1). “Simplicity” 

would come naturally, since the allowable actions would correspond to the axioms of 

rubber sheet topology. Furthermore, these axioms would simultaneously clarify 

qualitative geometry and open up a space for rule-based play (Ares, Stroup, & 

Schademan, 2009; Vygotsky, 1978) in a qualitatively geometric world, wherein “thought 

is separated from objects and action arises from ideas rather than things” (p. 97). It is 

Vygotsky’s position that “the importance of play on a child's development is enormous” 

(p. 96): 

Play continually creates demands on the child to act against immediate impulse. At 
every step the child is faced with a conflict between the rules of the game and what he 
would do if he could suddenly act spontaneously…. Subordination to a rule and 
renunciation of action on immediate impulse are the means to maximum pleasure. 
Thus, the essential attribute of play is a rule that has become desire (p. 99). [Engaging 
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that desire, then,] … creates a zone of proximal development of the child. In play a 
child always behaves beyond his average age, above his daily behavior; in play it is as 
though he were a head taller than himself. As in the focus of a magnifying glass, play 
contains all developmental tendencies in a condensed form and is itself a major 
source of development. (p. 102) 
 

In essence, play in a qualitatively geometric microworld constrained by the axioms of 

“rubber sheet topology” could foster children’s qualitative ways of thinking about shape. 

In other words, as Sarama and Clements (2005) have it, “high-quality mathematics… can 

emerge from children’s play, their curiosity, and their natural ability to think” (p. 11) .  

To respond to question (2), I considered the age range of the participants and then 

assumed that these kids would have no background experience using computers. From a 

usability perspective, the software had to be child-friendly – if not child-centric (Papert, 

1980).  

Iteration Three: SoundTrack 
 

 The next iteration of the software following QualiGeo was SoundTrack (Steven 

Greenstein & Remmler, 2008b) (Figure 19). This is the software that I used in my pilot 

study. 



 109 

 

Figure 19. Screenshot of SoundTrack 

SoundTrack essentially does what QualiGeo does, only better. It is a dynamic 

geometry environment featuring a build space that allows for active engagement with 

shapes, and a play space that features a keyboard (Figure 20) that provides the user with 

visual and auditory feedback to support the development of mental representations of 

shape. Written in the open source programming language called Python (Python Software 

Foundation, 1990-2009), SoundTrack solves QualiGeo’s problem of discrete motion by 

allowing for the (apparently) continuous dragging of the components of shape.  
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Figure 20. A shape dragged across the keyboard illuminates the keys that it touches and 

plays the tones that correspond to each key’s location on the keyboard. 

There are two sets of built-in shapes (Figure 21), one containing “solid” shapes and the  

 

Figure 21. Built-in shapes available to users 

other containing “empty” shapes. One reason that these sets were built in was to parallel 

the objects used in Piaget’s haptic perception experiments that were designed to get at the 



 111 

topological distinction between shapes with differing numbers of holes. Each set contains 

a regular 3-, 4-, 5-, or 6-sided polygon, and a circle. When the user double-clicks on a 

circle, two hot spots appear at the end of a diameter. These hot spots may be dragged to 

alter its eccentricity and produce a variety of ellipses. When the user double-clicks on a 

polygon, hot spots appear at each vertex. These hot spots can be dragged to alter the 

shape by making it irregular or, by dragging one vertex on top of another, by reducing the 

number of sides. Although this capacity did render the equivalence of the triangle, square, 

and pentagon to each other and to the polygon (because a polygon with 6 sides could be 

transformed into one with 3, 4, or 5 sides), these four shapes were built in for a second 

reason of matching the likely geometric experiences of the children who would be using 

the software. An additional button reveals a hidden “mystery” shape. When a user presses 

the mystery shape button, a question mark appears over a hidden shape. This hidden 

shape is a random selection of one of the ten default shapes. Other features include 

rotation by triple-clicking – to counter the “orientation effect” (Clements, 2004) – and 

hiding a shape by right-clicking – so that I could design shapes and hide them for study 

participants to explore (not by visual perception of the shape itself, but by visual and 

auditory perception of feedback provided by the keyboard). 

Pilot Study Findings Inform the Next Iteration 

 
SoundTrack was implemented in the pilot study on a tablet PC. The participants 

jumped right in and were even willing to struggle through the variety of functions 

implemented through single clicks, double clicks, and right clicks. The hot spots were 
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sufficiently large and the dragging was quick and continuous. In its capacity as a dynamic 

geometry environment, this was all good news. However, in terms of its utility at eliciting 

children’s qualitative conceptions of shape, there were too many significant defects. In 

tandem with the given tasks, the build space proved to be a useful playground for 

participants to develop and elaborate on their responses in my replication of Lehrer and 

colleagues’ “two most like among the triads” (Lehrer, Jenkins, et al., 1998) activity. But 

those triads (Figure 22) were developed to identify the “Euclidean” distinctions that  

 

Figure 22. Triads developed by Lehrer et al. (1998) 

children make. This is evidenced by the fact that all the shapes are polygons. If they had 

been developed to also get at children’s topological distinctions, we would expect to also 

see “curvilinear” shapes in addition to ones formed solely from segments. Similarly, 

although SoundTrack’s polygons could be transformed into other polygons, the 

circle/ellipse could not be transformed into any one of the “rectilinear,” topologically 
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equivalent polygons, or vice versa. This lack of “topological” consideration in the design 

of the environment and replication of the triad activity was an unfortunate oversight, 

because it could result in children making a distinction across topologically equivalent 

shapes.  

Furthermore, SoundTrack’s set of “solid” figures proved to be unuseful. Beyond 

the fact that the solid figures were different from empty ones because they illuminate 

additional lights on the keyboard, there really wasn’t anything else to talk about. As a 

result, my thinking following the pilot study was that the software really needs the 

capacity to construct new shapes, perhaps by adding segments and arcs and/or a 

capacity to transform segments to arcs and arcs to segments.  

Even more critical than the weakness in the designs of shapes, participants had 

trouble interpreting the auditory information provided by the keyboard. Thus, because 

shapes were built in, there were no opportunities to support the construction of a mental 

representation from perception. As a result, many of the interview questions could not be 

used. Moreover, it seemed that the kids did not have the language to describe what they 

were hearing. The juxtaposition of sound and shape was opaque, ambiguous, or, as with 

perceived volume differences, misleading. For example, many participants used “loud” to 

describe increases both in pitch (i.e., tones played further to the right on the keyboard) 

and in volume (i.e., more keys played simultaneously). Consequently, because the 

auditory feature didn’t work, participants spent most of their time in the play space. On 

its own, that space proved so unconstrained that neither my participants nor I knew what 
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to do when we got there. As a result, all I found is that it did not support a systematic 

engagement with shape. 

Iteration Four: ShapeShifter 
 

To prepare for the development of the next iteration of the software, I considered 

whether or not to impose a metaphor on the environment. Schwartz (1995) offers his 

thoughts on the matter: 

I believe it is important for the software designer to design software in such a way as 
to make the intellectual content of the software appealing and engaging. If it is 
necessary to have a “cover story” that drives users through the software by a series of 
external motivating “gimmicks,” then, in my view, the design is not yet as good as it 
can be. (p. 177) 
 

I considered a microworld featuring a “topologically sensitive troll.” In one scenario, the 

user would carry shapes along a bridge guarded by a troll, and the troll would decide, 

based on a set of “topological criteria,” whether the user could cross the bridge or not. 

The user would then decide, based on which figures were accepted or rejected, what 

criteria the troll was using. For instance, if the troll had accepted shapes like the 

topologically equivalent letters C, U, and I – each of which is a simple, open curve, and 

rejected the topologically equivalent T and Y – each of which is a non-simple open curve, 

the relevant properties would describe the shapes’ connectedness. In another scenario, the 

user would play the role of a troll and decide the criteria the troll would use to determine 

which shapes would be allowed or rejected. 

I went back and forth on this issue of metaphor. Going “forth,” as Matthew 

Berland (Personal Communication, January, 29, 2009) suggested, a metaphor is useful “if 
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it gets me something. Kids would rather hear the troll ask whether two shapes are alike 

than me.” Going “back,” I realized that the focus in that case would be on the troll’s 

thinking instead of the user’s, and I worried that the software might not support transfer 

when the trolls goes away. Moreover, it seemed unnecessary to import a troll given the 

pilot study participants’ sustained interaction with the software. I didn’t want to persuade 

them to participate via an attribute of the software that had nothing to do with the 

eliciting of their conceptions.  Moreover, I have seen far too many pieces of educational 

software in the domain of mathematics where the goals of the game are the sugar that 

help the mathematical medicine go down. “Simplify the expression and save the 

Universe!” It’s an approach that could be called “digital behaviorism” – a Flash-y dress 

on an old approach to creating a teaching machine (Skinner, 1968). 

 So I abandoned the idea of a troll before it was seriously considered, not only 

because the development of the software would be much too time- and cost-prohibitive 

for a dissertation study, but also more importantly, because the shapes would be given, 

the activities would essentially be categorization tasks that did not allow for opportunities 

for transformations of shape to identify fundamental topological properties. 

Following the decision not to impose a metaphor on the environment, I 

considered a gaming environment. The software environment (Figure 23) would consist 

of a hybrid “build space” / “play space” that works a bit like Tetris. The shapes that 

appear are topologically equivalent to the shapes in one of several classes of shapes, each 

in a different bin surrounding the space. When a shape appears, the user would transform 

the shape and then drag the shape into the bin that contains the shapes to which it is 
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equivalent. As more shapes are sorted, the duration with which shapes appear decreases. 

When the time expires, the shape disappears and a new one appears. Ideally, the time 

constraint would persuade users to act quickly and thereby allow me to witness 

qualitative differences between (preoperational / perceptual) goal-absent and (operational 

/ representational) goal-oriented transformations of shape. Users could also design their 

own “levels” by designing the shapes that get dropped and/or the classes of shapes that 

appear in the bins. 

The development of ShapeShifter proceeded as far as the construction of shapes 

and their transformation. The gaming aspect was abandoned because, again, its 

development would have been too time- and cost-prohibitive. But I was also concerned 

that the external motivations of a gaming environment might compromise the intrinsic 

motivation to explore.  

The next iteration of the software is essentially ShapeShifter minus the gaming 

aspect.  
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Figure 23. Screenshot of ShapeShifter 

Iteration Five: Configure 
 

Configure (Figure 24) (Steven Greenstein & Remmler, 2009) is the latest version 

of the software and the version that was implemented in the dissertation study. Like 

SoundTrack, it is a dynamic geometry environment featuring opportunities for reasoning 

by continuity and consisting of a hybrid “build space” / “play space.”  
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Figure 24. Screenshot of Configure 

Fundamental Shapes 
 

The arc26 and the segment are Configure’s only two fundamental, built-in 

shapes. While the environment is meant to be a “topological space,” and the 

segment and the arc are topologically equivalent, elementary-age students 

have typically spent most of their “geometric time” with polygons and circles. 

Thus, the segment is provided to meet the students where they are, and the arc, 

potentially, gives them somewhere to go. That is, the environment is designed to support 

                                                 
26 The term “arc” is used most often to refer to a portion of the circumference of a circle. I use it in a more 
general sense to refer to any curve joining two points.  
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the possible realization of their (topological) equivalence. This equivalence is instantiated 

in the environment with the operations that “make a segment into a curve” and “make a 

curve into a segment” (described below). 

The arc consists of two endpoints and a “helper point.” The endpoints may be 

dragged to change the length of the arc; the helper point may be dragged to alter the 

curvature of the arc. The segment consists of two endpoints, each of which may be 

dragged to either change the length of the segment or change its orientation. 

The Tools 
 

Some of Configure’s tools are given intuitive icons and are otherwise unlabeled. In their 

descriptions below, quotes surround the ways I talked to kids about what the tools do. 

 

Dragging is the default operation. When in “Drag” mode, a user can 

click on a hot spot and drag. For example, dragging an endpoint of a 

segment changes its length, dragging a corner varies the degree of the angle that contains 

it, and dragging a helper point alters the curvature of an arc. 

 

In my interactions with participants, the “glue” and “unglue” tools 

were used only to build shapes. Since topology is the study of the 

properties of geometric objects that are preserved under stretching and 

twisting but not under cutting and gluing, these tools were not used in the transformations 

of shapes.  
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These tools were used to transform shapes. They will “make a segment 

a curve” or “make a curve a segment.” As I mentioned above, an arc 

could be transformed into a segment by altering its curvature, but for 

kids who don’t think about them as equivalent, these tools are provided to support the 

transformation in a conceptually prior way. That is, these are tools that children may 

eventually see no reason to use. 

 

This “transform tool” will “add a corner” to a segment or a hot spot to 

an arc. 

This tool will “make a copy” of a shape.  

 

This tool will “change the size” of a figure by either enlarging or 

shrinking it.  

 This tool will “turn” or “rotate” a shape. 

 

These are erasers. From top to bottom, these tools “erase part of a 

shape,” “erase a whole shape,” and “erase all shapes” on the screen. 

 

 

  

The “save” tool was not made available to users. I used it to store a 

collection of shapes that I wanted to use during the episodes so that I wouldn’t have to 
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take the time to construct them in situ. In order to save a shape, the shape is first 

constructed. Then, when the save button is pressed and the shape is clicked, code for that 

shape appears in a box further down the screen. That code is then inserted into the 

software’s html code. It’s an intricate process, because it’s easier to program this way 

and, because I’m the only one who uses it, the save process need not be user-friendly. 

Figure 25 is a screenshot of the shapes that were saved when the software was 

implemented. 

 

Figure 25. Saved shapes that were used in the study 

These shapes were chosen to provide opportunities for kids to identify the topological 

properties that were planned for the study. They were drawn first and named later. Some 
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shapes were given obscure names in the hopes that the participants would pay more 

attention to their attributes than to their resemblance to everyday objects.  

Improving Configure 
 
 Qualitative Geometry is topology as enacted in Configure. Whereas topological 

properties are those that are invariant under transformations, the properties of the non-

metric geometry that is embodied in Configure are those that are invariant under 

whatever transformations are possible as determined by the rules, or “axioms,” of the 

environment. For example, Amanda’s transformation of a circle [G2, Figure 15] into the 

“lollipop” [G1, Figure 15] as illustrated in Figure 26 is possible in Configure, although 

it’s non-two-dimensional quality – dragging one object over or under another – means 

that it shouldn’t be. Ideally, the software should not allow these three-dimensional 

transformations. 

 

Figure 26. Excerpts from Amanda’s transformation of a circle into a “lollipop.” 

Similarly, when Eva wanted a “corner take away” tool to support her 

transformation of the diamond into a circle (in Episode 7), there was no tool that she 

could use to effectively “push” the corners of the diamond thereby transforming an angle 

into an arc. Given that the environment has a tool that will “add a corner” to a shape in a 
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way that is equivalent to dragging a corner “into” it, ideally it should also have an inverse 

operation that will “remove a corner.”  

Lastly, since a “hot spot” is required for dragging a component of a shape, the 

software requires that a corner be added where a “hot spot” is desired. Unfortunately, 

adding a corner to an arc has the resultant effect of transforming a single arc into an 

angle, as illustrated in Figure 27. Ideally, the tool should allow the placement of a hot 

spot at any point on a shape. 

 
Figure 27. The addition of a corner to an arc (left) results in an angle (right). 

 

Conclusion 
 

The development of a tool that would be used for the “simple” task of making 

children’s mathematical thinking visible was hardly a simple task in itself. Much of the 

complexity of the task arose from varying and variable considerations of “What might a 

topological experience look like?” and “What kinds of experiences make topological 

notions salient?”, but also from the development of my thinking about the role the tool 

would play, from initial thought about its capacity to make topological thinking visible to 

the eventual realization that the development of qualitative geometry not only proceeds 

from children’s conceptions, it is dialectically informed in the development of those 
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conceptions as informed by the interactions between the tool as a form of topological 

representation and the topological operations afforded by it (Vygotsky, 1978). 

Triangular considerations of the content, the design of the software, and the 

children who would and did use it (Figure 28) were integral in the development of the 

final iteration of the environment. For example, the discrete movement of shapes in the  

 
Figure 28. Software development is informed by the interactions between the content, the 
design, and the children. 

 

second iteration, QualiGeo (Figure 18), signified insufficient attention to the 

fundamentality of continuity to topological investigations. Similarly, the failure of the 

auditory feature of the third iteration, SoundTrack (Figure 19), signified inadequate 

consideration of its usability by children. The clarity arrived at by the final iteration 

developed in response to shortcomings such as these in previous iterations of the 

environment. And the successful use of an iterative design process informed by these 

considerations resulted in an environment that now seems as if it is obviously as it should 

have been all along. 
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 This entire chapter has been a response to my first research question, which I 

restate here: 

Given that early forms of topological, or at least non-metric, geometric reasoning 

have been identified and discussed in the research literature, can a software 

environment be developed in ways that support fundamental topological 

representations and transformations such that learners’ reasoning about topological 

ideas are made visible and are able to further develop in ways that could credibly be 

seen as both mathematical and significant? 

The answer to this question, then, is, “Yes.” This chapter has documented the 

development of a software environment that “obviously” has these capacities. 

Illustrations provided in the following chapter of the dissertation lend further support to 

this response to my first research question. Now I move on to my second question. 
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Chapter Five: Findings 

 

This chapter provides a response to my second research question, which I restate here: 

What forms of topological or non-metric geometric ideas are made visible and can be 

seen to develop as a result of young learners’ systemic engagement with a computer 

environment that makes topological representations and transformations accessible? 

Throughout the pretest, participants distinguished between shapes in ways that provide 

somewhat of a replication of a study by Lehrer, Jenkins, and Osana (1998). These 

researchers were also interested in the criteria children use to distinguish between plane 

figures, although I was only interested in a particular subset of those criteria. Thus, the 

triads I developed were different from theirs and my participants had the additional tasks 

of choosing the “most like” among five randomly selected shapes. Still, the tasks were 

essentially similar and the findings remarkably alike. In part because I wish to recognize 

the quality of their study and acknowledge its significance for informing aspects of my 

own, I quote directly from their findings section, and the only edits I provide are to 

replace their parenthetical quotes with ones from my own study. 

Children’s reasoning varied from triad to triad and also varied within triads.  [Their] 
reasoning most often involved the visual appearance of figures… This appearance-
based reasoning, however, encompassed many distinctions. Sometimes children 
compared figures to prototypes of other figures (“kinda like a circle” and “just like a 
line”) or to prototypes of real-world objects (“surfing board”, “lollipop”, and “fish 
head”). At other times, children focused on the size of the figure (they’re different, 
because “that one is bigger than that one” and “those are more alike, because they’re 
more small than that one”) or to attributes that resulted from properties of angles (the 
triangle and the diamond are more alike than the rectangle, because the rectangle is 
not “pointy”). Some children regarded figures as malleable objects that could be 
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pushed or pulled to transform them into other figures [emphasis added]…” (pp. 141-
142). 

 
Their study clearly demonstrates that children use a wide variety of criteria to 

distinguish between shapes and they’re certainly not consistent in the application of those 

criteria. It is a particular subset of those criteria, however, that I make central in this 

investigation. Those are essentially related to the last statement in the paragraph of 

findings above, since transformations of shape are critical in this investigation for their 

capacity to support the development of participants’ qualitative reasoning (which depends 

on in the identification and application of qualitative properties of shape).  

Consistent with my research questions, I provide accounts of moments in 

participants’ activities throughout the episodes of the teaching experiment, a trail of 

documentation of the development of their qualitative geometric reasoning. 

To briefly review the fundamentals of qualitative geometry that were presented in 

Chapter Two, a qualitative geometric property is an attribute of shape that remains 

invariant under continuous qualitative transformations. The forms of those 

transformations are informed by topology and defined by the functionality of Configure, 

the software environment presented in Chapter Four. Using the “infinitely stretchable 

rubber sheet” conception of informal topology to describe these transformations, a shape 

printed on that rubber sheet may undergo stretching or shrinking but not tearing or 

gluing. Any attribute of shape that remains invariant as the shape stretches or shrinks is 

likely a qualitative property. Thus, the development of qualitative geometric reasoning 

may be characterized in part by the initial identification of qualitative properties. 



 128 

Furthermore, since two shapes are deemed equivalent if each can be “qualitatively” 

transformed into the other (in the ways that the software environment allows), developing 

a conception of qualitative geometric equivalence is synonymous with the identification 

of these properties. This is because it is exactly those properties that remain invariant 

throughout the transformation that determine the equivalence. For example, a circle may 

be qualitatively transformed into a square. The qualitative property that remains invariant 

– that makes the transformation possible – may be called closed-ness. To reason 

qualitatively might look like using the property to identify other equivalent (or distinct27) 

shapes. Thus, attention to the equivalence of shapes is synonymous with determining that 

those shapes have common qualitative properties. 

CASE 1: THE STORY OF AMANDA 

“Hello, are you looking for shapes?” 

 
At the time of the study, Amanda was seven years old and in second grade.  

 

Episode 1: Everything’s alike 

In this episode the pretest was administered using the seven triads (Figure 29, also 

in Appendix A) and the five-card sorting task. When asked which of the two shapes in 

the first triad, row A, were most alike, Amanda had no response. Then, when asked to 

describe how they’re different, she said that A1 was “like an S,” A2 is “like a circle,” and 

                                                 
27 I use “distinct” as synonymous with “nonequivalent,” a term that is used in the context of logic and 
logical operations to mean the opposite of equivalent.  
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A3 was “like a square.” This description of shapes as resembling everyday or canonical 

shapes was common across her responses in the pretest.  

Phrasing the question that would be most productive at getting what I’m 

interested in – identifying the criteria participants use to distinguish between shapes – 

was complicated. The phrasing “Which two are more alike?” was most productive during 

the pretest. It seems to me that the form of the materials – printed shapes on paper – 

seemed more suited to that phrasing. When I gave participants cards with a shape printed 

on each one and asked them to “Put together the ones you think are more alike,” one 

child would pick up two and assemble them, and then talk about the shape that was 

produced. Inhelder and Piaget (1969) had a similar experience. 

“The instruction “Put together whatever is alike” gives a slight advantage to similarity 
relations of resemblance, but does not exclude spatial belonging, while the instruction 
“Put together whatever goes together” reinforces the latter without excluding the 
former” (p. 39). 
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Figure 29. Pretest triads (rows A through G) [Also in Appendix A] 

 

Amanda’s distinction between an “awake” “S” [A1] and a “laying down” one 

[C3] are suggestive of attention to orientation. So to determine whether she sees 

orientation as a fundamental property of shape, I presented her with a picture of a triangle 

with a horizontal base – she called it a triangle. And when I asked her to name a triangle 

with a vertex pointed downward, she also called it a triangle. In four of the seven triads, 

she used the language of morphing to describe how one shape could be transformed into 

another by untwisting, bending, or pushing.  
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The following excerpt illustrates Amanda’s working conception of alikeness by 

the end of episode 1. She has been presented with the following cards containing shapes 

A1/C3, B2, E2, E3, and G2 (Figure 30). 

 

Figure 30. Amanda’s sorting of all five cards into a single group (Episode 1) [left to 
right: B2, A1, E2, G3, G2] 
 

Interviewer28: I want you to put together the ones you think are more alike. <pause> 

 Make a group of the ones that you think are more alike. 

Amanda sorts all of the shapes into a single group. 

Interviewer: Put ‘em all together? 

Amanda nods to affirm and then sorts all shapes into a single group. 

Interviewer: OK. How come? 

Amanda: For this one [A1], I would say you just cut, like, this part off, and make it 

 straight and then get the rest, put it straight, and then you got this one [E3]. 

– To make this one, you just – To make this one [E3], you just cut one off, and like, 

 cut it off to <string?>, make it like that. 

– And these two [E2 from B2], just cut two, like, one right here and, like, one right 

 here. Put ‘em together and then get a X [E2]. 

– For this one [A1 from E2], you just – to make this one [A1], just, like, get glue and 

 attach ‘em [the two “pieces” of E2], and then make a little curvy line.  

– Done. 

 

                                                 
28 I remind the reader that I was the sole interviewer in the study. 
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Amanda sees all five shapes as alike in the sense that she can transform any one 

into any of the others. The transformations that “put it straight” and “make a little curvy 

line” have a topological quality, while others – those that involve breaking, cutting, 

gluing, and attaching – do not. Later, in a way that parallels the conventional use of 

“equivalence” to describe homeomorphic copies, Amanda says that after the ellipse [G2] 

is transformed into the square [G3], “they’ll be twins.” 

 

Episode 2: Multiple conceptions of alikeness 

 To follow up on questions provoked by aspects of Amanda’s selections of most 

like in Episode 1, this episode commenced with a second round of the pretest that was 

administered using the “follow-up” set of shapes (Figure 31, also in Appendix B) 

described in “The Pretest” section of Chapter Three. These were printed on circular cards 

and placed in a bag with the pretest shapes that had been printed on square cards. 

Amanda chose five cards at random and was asked to “Put the ones together that you 

think are alike. You can make as many groups as you want.” Then the task was repeated 

a second time.  
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Figure 31. Follow-up shapes (H1 through H6) [Also in Appendix B] 
 
 Amanda grouped two shapes [the inverted Y (E1) and the X (E2)] based on their 

resemblance to “letters.” Although resemblance to everyday objects remained salient to 

Amanda throughout the teaching experiment, she was also interested in moving beyond 

it. When I followed up by asking, “When you look at the shapes of those letters, how are 

they alike?”, Amanda replied, “They both have lines.” 

Amanda grouped a diamond [B3] and a concave pentagon [F3] together, because 

the pentagon could be transformed into the diamond by first “getting more string and 

gluing it.” She then takes it upon herself to describe the transformation of the diamond 
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into the pentagon, which is accomplished, in part, by cutting. From a topological 

perspective, two shapes are equivalent if they are homeomorphic under a bi-continuous 

transformation. That means that the transformation from one shape into the other must 

be, in the spirit of Piaget’s (cf. 1970b) use of the word, reversible: a doing of the 

transformation followed by an undoing must produce the original image. Of course, 

Amanda is not operating from that perspective, so it is interesting to find that she feels 

the need to also express the inverse transformation. 

As in Episode 1, Amanda used morphing language (e.g., “stretch”, “straighten”) 

to describe components of transformations. She could “straighten” the “S” [A1/C3] to 

produce the segment [C3], and the epsilon [H5] to produce the T [E3]. While these 

transformations are topological, other transformations involved “cuts” [B3 to B2] and 

“moves” [H3 to H2]. 

Amanda operated with at least three forms of alikeness in this episode: 

resemblance-based, attribute-based, and “transformational.” Respectively, she said two 

shapes are alike if they are “both letters,” if “they both have lines,” and if they can be 

transformed into each other. The nature of the transformations varied, so the alikeness of 

a shape and its “transformational equivalent” was not based exclusively in a particular 

geometry. Again, some were topological and others were not. In Episode 3, my plan was 

for Amanda to spend more time with the third conception by further exploring the 

transformations she had described that could also be accomplished through 

transformations that are topological (e.g, the “S” and the segment; the Y and the T; and 
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then the diamond and the triangle) and through those that are not (the T and the “S”, the 

Y and the X). 

 

Episode 3: Two shapes are alike if one can be transformed into the other. 

In this episode, Amanda used the software for the first time. Here my goal was to 

have her explore a qualitative conception of alikeness (as defined by the transformations 

supported by the rules of the software). This exploration was meant to support the goal of 

having Amanda identify the properties of equivalent shapes. The shapes that are built into 

the software are presented in Figure 32 (also in Appendix C).  

To begin the episode, I drew a Y [E1] and T [E3] in Configure. I reminded her 

that she chose these two shapes as more alike than the X [E2]. 

Interviewer: Do you remember why you said they were alike? 
Amanda: ‘Cuz they’re letters.  
Interviewer: Well, they’re all letters. When you look at ‘em now, which two would 
 you say are more alike? 
Amanda: None. [?] 
Interviewer: Last time you said these [T and Y] are more alike. Do you remember 
 why? 
Amanda: Yes.  
Interviewer: Why? What’s alike about them? 
Amanda: Look. Watch. You can make it [T] into a Y. <she drags two branches of the 
 T to form the Y> 
Interviewer: Exactly, that’s why. You said you could bend it. Alright, can you make 
 that one [Y] into a T? 
Amanda drags the same 2 branches to form the T. 
Interviewer: OK, we say that these are alike, because you can turn into the other.  
Amanda: Mm hmm. 
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Figure 32. Shapes built into Configure [Also in Appendix C] 

 
 

This is the first segment of the teaching experiment in which Amanda is presented 

with the conception of alikeness that is informed by the functionality of the software. She 

is told that the “transform tools” (i.e., the tools that either make a segment into a curve, 

make a curve into a segment, or add a “corner” to a segment or curve) will be used to 

transform shapes, and that the “build tools” (i.e., the tools that glue or unglue) will be 

used to build shapes. As Amanda has transformed shapes through gestures outside of the 

software environment by cutting or attaching, this distinction between tools that 

transform and tools that build is repeated throughout the experiment. It is a somewhat 

arbitrary distinction. But the space has rules and the exploration is informed by those 

rules. The arbitrary nature of the constraints on the mathematical activity that occurs in 

the space might be seen as a weakness, but these sorts of rule-based explorations should 
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are entirely and authentically mathematical. For example, consider the differences 

between operating in universes that are spherical, hyperbolic, or flat. The activity that 

occurs within those universes is defined by the shape of the space. Consider the 

effectiveness of the Pythagorean Theorem in each of those universes. [Then, if you’re 

prepared for the consequences, consider the fate of the universe itself.] 

In the following segment, Amanda attempts a transformation between two 

topologically distinct shapes, the T or the Y, and the X. 

Interviewer: Can you turn either one of these [T or Y] into the X without gluing or 

 ungluing? 

Amanda: I think, yes, but – <pause> How do you break it again?  

Interviewer: We’re not breaking. You would unglue, but we’re not going to unglue it.  

Amanda drags branches of the T around, apparently trying to find a way to drag out a 

 third branch. 

Interviewer: How are you thinking about doing it?  

Amanda: Like this [has three branches of the X] but I need just one more line.  

Interviewer: Can you do it without adding another line?  

Amanda is persistent. She adds a corner to one branch. 

Amanda: I caannn't.  

Interviewer: Yeah, I can’t do it, either, without adding another line. So we’re going to 

 be interested in which shapes can you turn into other shapes without breaking or 

 adding a part. That’s what we’re looking at.  

 
Following this segment, Amanda states that she wants to try to transform the Y into the 

“open square” [A3].  

Amanda: I wanna do this one [A3]. 

Interviewer: Can you make one of those [T or Y] into this shape? 
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Amanda: Yeah. <drags 3 branches of Y> Uhhhhhh.  

Amanda has attempted the transformation for two minutes when I interrupt. I’m 

 interested in the extent to which she’s planned the transformation or whether she 

 is proceeding through unplanned trial and error. 

Interviewer: What's going on? 

Amanda: It’s hard. I thought I could make this go to that, but I can't.  

Interviewer: Do you see why you can’t? <pause> What would you have to do in order 

 to make it look like that? 

Amanda: I would have to take this string off and replace it right here. 

 
Only by attempting the transformation does Amanda realize that it’s not possible. She 

does not articulate why the transformation is not possible, but she does identify what it 

would take to make it possible.  

Following Amanda’s successful transformation of a rectangle into a triangle, an 

“S” [A1/C3] into a segment [C2], and “sail” [the first shape in the first row Figure 32] 

into a triangle, I ask Amanda, “When you look at those two [sail, triangle], what do you 

see that’s alike? What makes you think it’s possible to turn that [triangle] into that 

[sail]?” She replies, “Mmmm. I need squares.” In this response she is referring to the 

“helper points” that make it possible to change the curvature of an arc. Only by 

converting the segments of the triangle into arcs is the transformation of the triangle into 

the sail possible.  

For the final transformation of the episode, I present Amanda with the clover [the 

second shape in the third row of Figure 32] and ask her, “Can you see one on this 

[pretest, Figure 29] page that you can turn it into?” Amanda’s selection of the rectangle 

[B2] was surprising to me given that the two shapes are visually so distinct. But she 
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proceeds with the transformation by adjusting the curvature of each of the clover’s petals 

and then adding a corner to produce the rectangle. Figure 33 below provides the 

preimage and image of the transformation. Still, she provides no response to my query, 

 

Figure 33. Amanda’s transformation of the clover (left) into a rectangle (right) 

“What makes you think you can turn it [the clover] into that [the rectangle]?” Thus, it 

appears that her operations on the clover are entirely concrete – as opposed to formal, 

which might be implicated by Amanda’s explicit consideration of possible 

transformations of the clover – it seems that Amanda is still assimilating the space. She is 

fluent with the software and she has successfully transformed shapes into equivalents, but 

she has yet to articulate the properties of those equivalent shapes. Similarly, she has not 

yet expressed what it is about two shapes that makes them distinct. Each of these tasks 

requires attention to properties. The plan for Episode 4 is to make progress toward 

supporting Amanda’s attention to properties, or, if she is indeed attending to properties, 

to support her verbalizations of those properties. 
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Episode 4: Developing equivalence 

Episode 4 is essentially about transforming shapes in Configure and then 

reflecting on the outcomes. It is themed “developing equivalence,” because it provides 

some evidence that Amanda is increasingly attentive to the properties of shapes that make 

transformations possible or impossible. Salient moments occurred during a subset of 

those transformations.    

Amanda transformed the “open square” [A3] into the “arc” [C1] by converting the 

three segments into arcs and then adjusting the curvature. This appeared to be a simple 

task for her, but it was her response upon completion of the task that was salient. She 

appeared quite pleased with what she had accomplished. She leaned back in her chair and 

turned to smile at me. Because she had completed so many transformations prior to this 

one without concluding them with a smile, it seems to me that this smile points to 

cognitive structure (not to mention positive affect toward being a participant, the 

software, and perhaps even the mathematics). 

In Chapter Two, I explained that a cognitive structure is a system of 

transformations – a patterning of actions (Stroup, 2002) – an organization of schemes or 

functions – an organized pattern of behavior. I also provided a demonstration of the way 

that Piaget generates the cognitive structure of topology. As evidenced by Amanda’s 

behavior following this latest transformation, I argue that, likewise, children possess a 

cognitive structure of qualitative ways of thinking about shape.  

To support my claim that this instance provides evidence of that structure, I draw 

from an episode of a teaching experiment conducted by Steffe and Thompson (2000) to 
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identify the tools I need to do so. Two students, Jason and Patricia, are asked if each 

could break a (virtual) stick of candy into four “fair shares.” After several attempts they 

recognize as failed, they eventually drew a stick that accomplished the task. Steffe and 

Thompson suggest that these attempts “confirm the internal necessity that the children 

must have felt that the four pieces together must be exactly the same length as the 

original stick. The two children had constructed an equipartioning scheme…” (p. 282). 

Dubinsky et al.’s (2001) eloquent framing of a scheme as a “collection of actions, 

processes, objects, and other schemas which are linked by some general principles to 

form a framework in the individual’s mind that may be brought to bear upon a problem 

situation involving that concept” (p. 3), also contributes to my understanding of this 

interaction. That framework is the cognitive structure (Piaget, 1970b), which is 

implicated by Jason and Patricia’s felt need for the four pieces of the stick to “sum” to the 

length of the original stick. Piaget elaborates in the following exchange (Bringuier, 

1980): 

Bringuier: How do you know, experimentally, that you are dealing with a structure? 
In what form is it encountered? 
 
Piaget: How do we define it? It’s the new feeling arising in the individual’s 
consciousness, a feeling of necessity [emphasis added]. It’s the links that, considered 
simply as given or observed, are experienced as necessary. The individual can’t think 
otherwise. Take transitivity as an example. If A = B, if the child observes that B = C, 
does A = C? On can, for instance, ask a child to compare a stick of a certain weight 
with a rod of the same weight, then with a ball. For the child at the preoperatory level, 
before the construction of structures, there is no relationship among the three objects. 
He says he doesn’t know. He saw A and B; he saw B and C, but he didn’t see A and C 
together. Or he draws a conclusion about what he believes to be possible or probable. 
A child at the level of structures finds it obvious, necessary. He smiles and shrugs his 
shoulders at being asked such a simple question: If A = B and B = C, then, obviously, 
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A = C. Necessity is the criterion of the structure’s closure, the achievement of a 
structure.  (p. 40-41) 

 
Jason and Patricia’s assimilation of a scheme for dividing the stick of candy illustrates the 

process by which the problem situation provokes attention to the relevant conceptual 

structure. So if “assimilation is just the proof that structures exist” (Piaget, in Bringuier, 

1980, p. 42), and structures are patterns of operations, how can we identify their existence 

in the ways that kids operate on shapes? An answer to this question informs this analysis. 

To organize the evidence that qualitative geometry is a cognitive structure, I refer 

to the fundamental elements that form structures: reversible operations. Just as Jason and 

Patricia’s felt need was expressed in their attempts to divide the stick of candy into fair 

shares, and Jason’s concluding smile and shrug of his shoulders, Amanda’s expression is 

suggestive of a similar sort of “obvious necessity” and evidence of a structure of non-

metric geometry. She follows the completion of the transformation by sitting back and 

smiling at having been asked to perform such a simple task.  

When asked if the “pyramid” [third shape in the last row of Figure 32] is “alike or 

different” from the theta [second shape in the second row of Figure 32], she says the 

pyramid is bigger. When I reduce its size, Amanda says, “You need to make it a little 

circle.” I interpret this statement as a declaration that the straight sides of the pyramid 

would need to be curved. So I convert the segments to arcs. Then Amanda proceeds to 

complete the transformation. Obviously, Amanda is again distinguishing between shapes 

by size and curvature, neither of which is a topological property. Since the point is not to 

rid her of these ways of thinking about shapes, but to instead focus the activity on a 
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particular subset of those distinguishing characteristics, I make accommodations and then 

continue the exploration. When asked about H6 and the diamond [B3] (Figure 34), she 

does not provide a verbal response. Instead, she performs the transformation.  

 
Figure 34. Shape H6 and the diamond [B3] 
 

My next step is an attempt to provoke Amanda to perform the transformations 

internally through operations of her mental representations of shapes. I ask if the 

transformation of the epsilon [H5] to the “fork” [fourth shape in the first row of Figure 

32] is “easy or hard.” She says it’s “easy.” Then I ask her about the Y [E1] and the fork, 

and she also says it’s “easy.” So I ask her if either the Y or the “fork” can be transformed 

into the “S” [A1/C3]. Again she replies, “easy.” Knowing that the shapes are actually not 

equivalent, I ask her to perform the transformations in Configure. She attempts to bend 

the segments that form the Y and then realizes that “That one [extra piece] is messing up 

my S.” It turns out that even in her final episode, Amanda sorts shapes together that are 

“made out of stems,” but she does not verbalize a distinction between ones that are 

actually distinct, such as the Y and the X. 

Later in the episode, Amanda is asked whether a circle could be transformed into 

a “curve” [C1]. She attempts the transformation and then decides, “I can’t make it.” 

When I ask her why not, she replies, “It’s glued.” This moment is salient because it 
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reflects Amanda’s assimilation – as tentative as it may be – of the rules of the 

environment for informing what transformations are possible.   

At this point, Amanda has transformed numerous shapes into equivalent ones, but 

is inconsistent in the identification of properties that make those transformations possible. 

Exploring shapes in pairs may not be so supportive of the development of Amanda’s 

qualitative conceptions, because she is not required to attend to the properties that define 

their equivalence. She only has to determine whether a transformation from one to the 

other is possible. So the plan for Episode 5 is to further develop a conception of alikeness 

as equivalence in the software environment and then attempt to provoke Amanda’s 

attention to prototypes of equivalence classes. Identifying a circle as a prototype for 

closed shapes or a segment as a prototype for open ones, for example, can support 

Amanda’s identification of the property that defines each class. To elaborate, the 

elements of equivalence classes reveal transformations of shapes structured by the 

wholeness of the property that defines the class. They are representative instances of the 

patterning of actions (Stroup, 2002) that determine the cognitive structure of qualitative 

geometry.  

 

Episode 5: Given a shape, identify an equivalent one. 

 At the beginning of this episode I presented Amanda with her “sorting 

worksheet” (Figure 35). The worksheet identifies the equivalence classes of shapes 

Amanda has transformed through the prior episode. Amanda hadn’t transformed each 



 145 

shape into every other shape in the class, but every shape in the class is either the 

preimage or image of Amanda’s transformation of a shape in the class.  

The following excerpts portray my attempts to provoke Amanda’s attention to 

properties that define equivalence classes of shapes. 

Interviewer: So when you look at these shapes [in the first row and column of the 

 sorting worksheet, Figure 35], do you see anything about them that’s alike? 

 Something that makes you think I can take any one of these and turn it into any of 

 the other ones? 

Amanda: This one and this one? <refers to the square and the triangle > 

Interviewer: Yeah, you’ve actually transformed them all. So what is it about these 

[square, rectangle] that’s alike? 

Amanda: It’s alike ‘cause – if <?> was a triangle, but all you do is just make it a little 

 longer, and then shorten it down. And to make this one [the square from the 

 rectangle], you just push that over quite a bit. 
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Figure 35. Amanda's “sorting worksheet” (Episode 5) 

Although I asked Amanda to consider the entire class of eight shapes, she instead 

considers only two – the square and the triangle. Perhaps Amanda has simply 

accommodated our repeated pairwise consideration of shapes. 

It turns out that attention to properties that define a class is a newly developing 

ability for children at this developmental level (Inhelder & Piaget, 1969, p. 17). The 

question I’m asking Amanda is meant to focus her attention on these properties, yet it is 

very difficult to phrase in a way that makes sense to her. Her responses to my queries 

indicate that she has indeed assimilated the conception of (pairwise) alikeness that means 

that one shape can be transformed into the other, since she is now operating with it. 

According to Piaget, Amanda is operating “at the level of graphic collections [where] 

relations of similarity and difference are applied pairwise and unconnected with part-
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whole relations” (p. 19). The level of graphic collections is developmentally prior to the 

level of class inclusion. “A class involves two kinds of properties or relations: 1) (a) 

properties which are common to the members of the given class and those of other 

classes to which it belongs, and (b) properties which are specific to the members of the 

given class and which differentiate them from members of other classes” (p. 17). Getting 

Amanda to attend to the property that defines the equivalence classes of shapes requires 

that she operate at the level of class inclusion. Toward that end, I ask her to consider 

three shapes simultaneously. 

Interviewer: What’s alike about these three [“arc” (C1), “S” A1/C3, “open square” 

 A3] that makes it possible to take any one and turn it into any of the others? 

Amanda: You can turn this one [“arc” (C1)] into this one [“open square” (A3)]. Just 

 make that straight, and that one, and make that straight. 

 
The outcome is the same. Alikeness to Amanda means that one shape can be transformed 

into another. This is just as the term was defined in earlier episodes. For instance, in 

episode 3, I tell Amanda, “We say that these are alike, because you can turn one into the 

other.” Later in that same episode, I remind her, “What we’re interested in is things that 

are alike, because you can turn one into the other.” In retrospect, I realize the unintended 

consequence of defining alikeness in this way is its explicit consideration of shapes in 

pairs. What also should be stressed is that alikeness is also a property of any number of 

shapes. 

Next, Amanda completes a handful of transformations of shapes in the same 

classes, and then I return to the effort to focus her attention on pairwise equivalence. 
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Interviewer: When you look at these shapes [the “pyramid” and the theta in row 3, 

 column 2, of the sorting worksheet, Figure 35], what do you see that’s alike about 

 them? 

Amanda: They have a line in the middle.  

 
Although she is only considering two shapes, that response is indicative of conceptual 

progress. The first time these two shapes were considered in episode 4, Amanda 

explained that she required that the size of the pyramid be reduced and its sides converted 

to arcs in order to complete the transformation. In this second investigation of those two 

shapes, her response does not involve the language of transformations. Instead, Amanda 

describes the property that defines the equivalence of the two shapes, although she may 

not see it that way. It could be argued that Amanda is simply attending to common 

attributes of those shapes, since she may not realize that the attribute is a fundamental 

property of each shape. My next step is to investigate how Amanda operates using that 

property. 

Interviewer: Is there another one on this [pretest] page that you can turn either of 

 these [“pyramid”, theta] into? <pause> You can make up one, you can take one 

 of these, anything you want to. 

Amanda: <No response> 

 
Perhaps she could not find another shape with a “line in the middle.” Perhaps she was 

overwhelmed by the task. 

Interviewer: So how about another one here [in the class of “open” shapes, row 2, 

 column 1 of Figure 35]? 

Amanda places her fingers at the endpoints of the “S” and gestures to close the shape. 

 Then she sits back as if to reconsider, perhaps deciding that a closed shape like 
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 the circle that would result from “closing” the “S” would not belong in the class. 

 A full minute later, she draws a segment. 

 
Just as she did in Episode 4 following a successful transformation of the “open square” 

[A3] into the “arc” [C1], Amanda sits back and smiles as she reflects on the “obvious” 

accomplishment of drawing a shape that is equivalent to the others in the class. Now that 

Amanda has identified a property that defines an equivalence class, the primary focus of 

Episode 6 is to continue that effort by developing appropriate names for the classes of 

shapes on the sorting worksheet. 

 

 

 

Episode 6: Identify the property that defines the class. 

I initiate the episode with another attempt at directing Amanda’s attention to the 

property that defines each class of shapes on her sorting worksheet (Figure 35). Prior 

attempts have apparently been unsuccessful – although not entirely – so this time I appeal 

to Amanda for help. 

Interviewer: I need you to help me out here. I’m trying to find a word -- I need a word 

 to describe the shapes here [in the first row, first column of her sorting worksheet, 

 Figure 35]. 

Amanda: What kind of word?  

Interviewer: A word that describes how they’re all alike.  

Amanda: Uhhhhh - 
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Interviewer: See, these [in another class] are different, right? So I need a different 

 word for these two [classes], because they’re not alike. I can’t turn that into that. 

 Or – Why don’t we start with a word that you would use to talk about – 

Amanda: I can probably make this [“fork”, row 1, shape 4, Figure 32] into this [Ψ , 

 Figure 35, row 2, column 2, third shape] if I just move that one up and turn it 

 around.  

 
Given a request to consider the property that defines the equivalence of a class of eight 

shapes, Amanda responds by describing how one shape in a class can be transformed into 

one other. Four minutes later, we repeat the attempt, but this time I ask Amanda to 

consider a second class of shapes that contains only two items, those that are in the third 

row and first column of her sorting worksheet (Figure 35).  

Interviewer: Is there a word that you could use to describe these? <pause> Actually, 

 let’s just make a list of words that we could use to describe these shapes. 

Amanda: Uhhhh. So you want me to name ‘em? 

Interviewer: No, just words that describe how they’re alike. We can start with this 

 group or any one you want. <pause> Say you're on the phone with somebody and 

 you wanted to talk about the shapes in that set. How would you describe it over 

 the phone? 

Amanda: <pretends to pick up a phone> Uhhh, hello. I got one cherry that has a 

 straight stem and I have one cherry that has a curved stem. Which one would you 

 like to buy? OK bye, bye. 

 
Earlier, Amanda described the “pyramid” and the theta as alike, because “they have a line 

in the middle.” This characterization of the two shapes as “cherries” is similarly 

indicative of her attention to a common attribute of shape (since she may not realize that 

the attribute is a fundamental property of each shape). But this more holistic 
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identification of the alikeness of two shapes could reasonably be seen as conceptually 

proximal to the identification of fundamental properties. Exploiting the momentum, I ask 

Amanda to continue. 

Amanda <picks up the phone>: Hello. Are you looking for shapes? 

Interviewer <on the phone>: Yes, I’m looking for candy-flavored shapes.  

Amanda: OK. We have just the ones. We got a lot, lot, lot. We got ones with lines in 

 the middle that are easy to cut open. One’s a triangle <the “pyramid” and one’s a 

 circle <the theta>. That’s all we have left.  <There are only two shapes in this 

 class.> 

Interviewer: <labeling the set> Lines in the middle – that are easy to cut open. What 

 makes them easy? Because they have the line in the middle? 

Amanda: Yeah. They’re already cut.  

Interviewer: Alright, this is working.  

Amanda <picks up the phone again>: Are you here for letters? OK. Lowercase? 

 <referring to the class of shapes that are equivalent to an X, in row 2, column 2 

 of Figure 35> We got T in lowercase and a lowercase X. Yes, they are candy.  

Interviewer: How are they alike? I need one word for both <x and t>, like you gave 

 me here <the class of shapes with “lines in the middle”>.  

Amanda: They’re both stems.  

Interviewer: Stems?  

Amanda: Yeah. Made out of stems.  

Interviewer: <labeling the set> Made out of stems. Alright, keep going. How about 

 these <that are equivalent to the segment, row 2, column 2 of Figure 35>? 

Amanda <picks up the phone>: Are you here for candy? We got letters.  

Interviewer: Well, that’s a letter <in the class of shapes that are equivalent to a “T”, 

 row 1, column 2 of Figure 35>, but it doesn’t go here. What’s alike about those 

 <in this set>? 
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Amanda <on the phone>: Are you here for candy letters? Yeah? A big T and a stem Y 

 and a curvy fork? 

Interviewer: How are these “stems” [equivalent to a T] different from these 

 [equivalent to an X]?  

Amanda: ‘Cuz those [equivalent to an X] aren’t straight.  

Interviewer: What do you mean? 

Amanda: They’re like – they’re not like this [gestures vertically].  

Interviewer: That one’s <“lowercase t”> straight. How is that one different from that 

 one? 

Amanda: This one’s lowercase and this one’s uppercase. 

Interviewer: Let’s talk about the shape, not the letter.  

Amanda: OK? You called the wrong place then. 

 
Amanda describes the class of shapes that are equivalent to an X as “made of stems.” She 

initially distinguishes between the class of equivalents to the X and the class of 

equivalents to the T by appealing to the orientation of segments that compose the shapes, 

but ultimately abandons the argument (and hangs up the phone). Even though she 

realized in episode 3 that the T could be transformed into the Y, but in order to transform 

the T into the X she would “need just one more line,” she is never able to determine the 

distinction.  

 We conclude the episode by considering one more class of shapes, those that are 

equivalent to a segment (row 2, column 1 of Figure 35, plus the segment she drew in 

episode 5).  

Interviewer: How are these alike? How would you describe the ones in there if you 

 were on the phone selling candy? 
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Amanda <on the phone>: Hello? Yes? How would you like to buy some candy? OK, 

 we got W, S, U, and we got two more shapes that come with it.  

Amanda: I can turn all these to this <Amanda describes how each of the other four 

 shapes can be transformed into the segment.>. 

Interviewer: Yes! Great. Exactly. So how are they alike that you can do that? 

Amanda: I would call them – candy. 

Interviewer: But I thought they were all candy. So if you’re on the phone and you say, 

“I got candy,” how are they going to picture that [set]? 

Amanda: OK. Ummmm. Letter candy. 

Interviewer: But that’s letter candy [in another set]. 

Amanda: Ohhh, god. 

Interviewer: Can I suggest a word and you tell me if it fits?  

Amanda: Yeah. 

Interviewer: How about – have you ever had gummy worms? 

Amanda: Yeah.  

Interviewer: How about worms? Does “worms” work for this? Can you – 

Amanda: Oh yeah! They're worms – called worms.  

Interviewer: OK. Alright, good. 

 
 It was important to me throughout the teaching experiment to use Amanda’s own 

language so that my reports could do their best to represent her ideas and not my 

reinterpretation of them. Using words that made sense to her – because she invented them 

– also served to facilitate communication between us. In this excerpt, however, I decided 

to offer her a word since she had not come up with one of her own. My thinking was that 

her acceptance or rejection of the word could give me some indication as to the validity 

of my model of her thinking. It turns out that Amanda not only accepted the word, but her 

exclamation of “Oh yeah!” strikes me as suggestive of the goodness of fit of my model. 
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Episode 7: What’s equivalent is determined by what doesn’t change – by what remains 

invariant. 

Topological properties are those that remain invariant under bicontinuous 

transformations. Similarly, qualitative properties are those that remain invariant under the 

transformational operations allowed in Configure. Therefore, we can sidestep the 

previous method for getting at qualitative properties of shape: those that we can identify 

as common across shapes identified through transformation as equivalent. Instead, since a 

qualitative property is one that remains invariant through Configure’s dragging, bending, 

and stretching operations, participants can operate on shapes in these ways in order to 

identify those properties. That method defines the theme of this episode.  

It also defines one of the “big ideas” of mathematics. Judah Schwartz (1993, 

Winter) identifies invariance as one of the “big ideas” included in the reform 

curriculum.29 “Mathematical invariance is what allows us to see commonality in many 

situations that, on the surface, may appear to be very different” (Stroup, 2005, p. 193). 

Schwartz (1999) claims that although these ideas traditionally only appear in advanced 

courses, exploratory software environments can support their introduction early on in the 

education of all students. Similarly, Stroup (2005) draws a “significant “meta-lesson”” 

from seeing “basic concepts… as deeply interwoven with what are often considered 

advanced topics...” (p. 193). Schwartz’s claim and Stroup’s meta-lesson speak to this 

                                                 
29 Coincidentally, transformation is another one. The others are representation, symmetry, scale, continuity, 
order and betweenness, boundedness, uniqueness, relaxation and constraint, successive approximation, and 
proof and plausibility.  
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study relative to its involvement of the youngest children exploring some of the most 

advanced mathematical ideas.  

 To begin the episode, I followed up on Amanda’s consideration of shapes she 

describes as “made out of stems” by presenting her with other shapes made of stems 

(Figure 36) and eventually asking her sort them into equivalence classes. The idea is that 

 

 

experimental transformations of shapes will support Amanda’s identification of 

qualitative properties of those shapes. Then, once properties have been identified, 

Amanda will be able to sort shapes into equivalence classes on the sorting worksheet.  

A “T” is drawn to “seed” the first class of shapes; no other sets on the worksheet 

contain shapes. 

Interviewer: This time I want to talk about what doesn’t change. Let’s start with this 

 one [the built-in arc].  

Amanda: That’s simple.  

Interviewer: Tell me what doesn’t change about it. 

Amanda: It doesn’t break. 

Interviewer: Tell me what doesn’t change about this shape [the spiral, last row, fourth 

shape of Figure 32]. What stays the same? 

Amanda: The little dots and all that. They don’t come off. 

Interviewer: What else? 

Amanda: That doesn’t come off, all these [“branches”]. Ooh, ooh. Put the spiral in the 

 T section [on the sorting worksheet].  

Figure 36. Shapes made of “stems” 
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Amanda adds the spiral to the set on the worksheet that contains the T. 

Interviewer: What about this one [the “wire”, first row, fifth shape of Figure 32] 

Amanda: Oooh, I can make a Y out of that thing! 

 
 Amanda’s realization that the “branches” of the spiral “don’t come off” is a 

realization of the spiral’s topological property of connectedness. In the case of the spiral 

and the other shapes “made out of stems,” it is this property that determines equivalence 

or distinction. 

As in previous episodes when the task is about identifying equivalent shapes, 

Amanda proceeds to develop equivalence classes not by identifying (invariant) properties 

through transformations, but through attempts to transform one shape into another. She 

determines through these transformations that the Y and the Ψ  [Figure 35, row 2, 

column 2, third shape] are distinct and that the X and the Ψ  are equivalent. Then, she 

considers the “S” [A1/C3]. Without the use of the software, Amanda realizes that the “S” 

is distinct from the X and the Ψ , places it in a new set by itself, and congratulates herself 

by singing a short tune. Given that the development of this new equivalence class is 

accomplished outside of the software environment in which she developed the conception 

of alikeness with which she operates, this distinction between the “S” and the X and Ψ  is 

cognitively and mathematically significant in that it is determined through mental 

transformations.  

Next, Amanda uses the software to confirm her conjecture of the equivalence of 

the “wave” [last row, last shape of Figure 32], the segment, and the S.  Then, I ask her to 

consider a circle. She uses the software to “close” an S by gluing its endpoints to form a 
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circle, but when I remind her that gluing is not allowed in the transformation of shapes, 

she places the circle into a new equivalence class by itself, thus acknowledging its 

distinction from all of the shapes “made out of stems.” Finally, in the task that concludes 

the episode, I ask Amanda to consider a triangle. 

Interviewer: When I drag the triangle around, what about it stays the same? 

Amanda: It stays attached. 

Interviewer: What still stays the same, even if I bend things? 

Amanda: It’ll still be attached.  

 
In this brief exchange, Amanda identifies a property of triangles that remains invariant 

under transformation. This “attached” quality of triangles corresponds to the same 

topological property that earlier determined the equivalence or distinction of shapes 

“made out of stems.”  

In the prior episode, Amanda identified the properties that define equivalence 

classes of shapes. The names she gave to equivalence classes of “cherries” and shapes 

with “lines in the middle” are suggestive of the property that defines the class, and my 

suggestion that shapes equivalent to a segment could be called “worms” seemed to 

resonate with the way she thought of the class. She also identified a group of shapes 

“made out of stems,” but was either unable or unprepared to describe a fundamental 

distinction between the two equivalence classes that formed the group. In this episode, 

attention to fundamental properties was supported by dragging shapes so as to make 

those properties salient and visible. Amanda identified a correlate to the topology 

property of connectedness as instantiated in the distinction between shapes that feature 
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four (e.g., X and Ψ ) or three (e.g., T and Y) segments with a common endpoint, shapes 

that are equivalent to a segment, and shapes that are equivalent to a circle. In the next 

episode, the effort to identify qualitative properties that define equivalence classes is 

continued. Whereas in this episode, Amanda was given shapes to sort into equivalence 

classes, in the next episode the classes of shapes were given and Amanda is asked to 

name them as she did earlier when she named the classes of “cherries” and shapes with 

“lines in the middle.”  

 

Episode 8: Given a class of shapes, identify the property that defines the class. 

This is the final exploratory episode with Amanda. In the activities of the prior 

episode, she was not given the opportunity to use what she learned, if anything, about the 

properties that determine the equivalence of shapes through dragging. Thus, the format of 

the sorting task that begins this episode should give her the opportunity to demonstrate 

what, if anything, she learned as a result of that exploration of shapes. The sorting 

worksheet as it appeared at the conclusion of the episode is shown in Figure 37.  
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Figure 37. Amanda’s sorting worksheet for Episode 8 (as it appeared at the conclusion of 
the episode) 

I started by reviewing the names we’ve given to the sets of “cherries,” shapes 

with “lines in the middle,” and “worms.” Then we considered the class of simple closed 

curves30 that appears in the upper left quadrant of the worksheet. 

Interviewer: We haven’t done shapes like these [simple closed curves] yet.  

Amanda: I would call ‘em blocks. 

Interviewer: How are they all blocks? Tell me what that word means. 

Amanda: See the block - this, this, this <tapping the pen to simulate block-ing> 

Interviewer: How is this <“figure 8”, the leftmost figure in the bottom left quadrant of 

the sorting worksheet> not a block? 

                                                 
30 A simple curve is one that does not cross itself. A closed curve is one that has no endpoints and encloses 
and area. Thus, a simple closed curve, or “Jordan” curve, is one that is topologically equivalent to a circle. 
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Amand: ‘Cuz how could it be a block when it’s like this? <gestures to draw a figure 

8> 

Interviewer: I don’t know. Is this <”figure 8”> a block? 

Amanda: I would call this an 8. 

Interviewer: Could you draw another shape that would go there, that’s like the 8? 

<pause> Does this one go here <I draw the “hourglass,” the rightmost figure 

in the bottom left quadrant of the worksheet>? 

Amanda: Yeah, that one’s there, that one’s there. 

Interviewer: OK, tell me why. 

Amanda: ‘Cuz all you gotta do is... make those straight... and for that one, you curve 

it. <describes and gestures the transformation from the “figure 8” to the 

“hourglass” and back> 

Interviewer: Alright, so tell me about blocks. I think I know what you mean. 

Amanda: Blocks. Blocks. They never lose their shape. 

Interviewer: They never lose their shape? 

Amanda: Yeah. 

Interviewer: I can stretch them and bend them, though, right? 

Amanda: Oooh! Blocks are made out of wood. 

Interviewer: Yeah? OK. And? Couldn’t I make that <“hourglass”> out of wood? 

Amanda: No. 

Interviewer: I like it. I wanna be clear about what you mean. <pause> What about a 

cherry? Is that a block? 

Amanda: No. 

Interviewer: OK, how is that different from a block? I’m going to call these <simple 

closed curves> blocks. If you just tell me what are and what aren’t blocks, I 

can get a better sense of what you mean by it. 

Amanda: Well, blocks, like, ... <turns the worksheet over> This is a block <draws a 

square >. This is not a block <draws the non-simple curve recreated in Figure 
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38>. They need to be, like, colored in. These <points to the non-simple curve> 

can’t last, so they’re just like that.  

 

 
 

Figure 38. Amanda’s drawing of a shape that is “not a block” (recreated) 

 
Interviewer: <repeating> They need to be colored in. <I label the set of simple closed 

curves “colored in.”>  

Amanda: I’m coloring them in. <Amanda colors in the three now-shaded shapes in 

the set of simple closed curves (Figure 37)> 

 
As I mentioned in the review of the literature in Chapter Two, Piaget’s (1956) 

thesis of topological primacy derives from his claim that the actions that elicit topological 

relationships are more elementary than those needed to abstract Euclidean relationships. 

Action is originally sensori-motor, and “this is why the first shapes to be abstracted are 

topological rather than Euclidean in character, since topological relationships express the 

simplest possible coordination of the dissociated elements of the basic motor rhythms, as 

against the more complex regulatory process required for coordination of Euclidean 

figures” (p. 68). Similarly, I also expected that the first class of shapes that participants in 

the study would name – by identifying the property that defines the class – would be the 

class of simple closed curves. But it wasn’t until the eighth episode that Amanda 

provided a name for them. Given my expectation, and its consistency with Piaget’s claim, 

I would conclude that Amanda was attentive to the property of “closedness” early on. 
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Thus, I believe that this finding is worthy of further attention. Perhaps Amanda was 

attentive to the property, but she lacked the language to express it. Or perhaps she was 

not attentive and it was only through engagement in the activities throughout the episodes 

that made the property sufficiently salient to her. 

I conclude the episode by asking Amanda to describe two classes of shapes that 

similarly “overlap.”  

Interviewer: <Amanda has scribbled over her drawing of a shape that is “not a block,” 

so I redraw it.> Do you have a name for shapes that do that? Like this one <I draw a 

lowercase gamma>? 

Amanda: That’s – this <gamma> would be “swoosh.” 

Interviewer: And that [Figure 38]? 

Amanda: This would be “guard,” ‘cuz you know how some people have, like, their 

sword? They go like this? <Amanda draws a person standing next to the “gamma.”>  

Interviewer: Do you see something similar about those two [Figure 38 and the 

“gamma”]? 

Amanda: Uh, yeah. 

Interviewer: What is that? 

Amanda: They overlap. 

 
I review the names she’s given to other classes of shapes, and then we consider the 

equivalent “hourglass” and “figure 8.”   

Interviewer: Alright, so we have cherries, worms. These [the class that contains the 

 “figure 8” and the “hourglass”]?  

Amanda: <No response> 

 
This marked the conclusion of the teaching experiment with Amanda. 
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Summarizing Amanda 

These were the enacted themes that characterize each of Amanda’s episodes. 

They describe the elements of the experiment’s teaching trajectory. 

1. Everything’s alike. 
2. Multiple conceptions of alikeness 
3. Two shapes are alike if one can be transformed into the other. 
4. Developing equivalence. 
5. Given a shape, identify an equivalent one. 
6. Identify the property that defines the class. 
7. What’s equivalent is determined by what doesn’t change – by what remains 
 invariant. 
8. Given a class of shapes, identify the property that defines the class. 

 
At the beginning of the teaching experiment, Amanda described how all of the 

shapes she was given were alike using resemblance-, attribute- and transformation-based 

conceptions of alikeness. She used morphing language to describe how any one shape 

could be transformed into any of the others. Some of these transformations were 

topological, while others were not.  

As she progressed through the episodes of the teaching experiment, she moved 

further away from attribute- and resemblance-based conceptions of alikeness toward the 

assimilation of alikeness as determined by the rules of the environment. As those rules 

were correspondent to the axioms of qualitative geometry, this progression indicated the 

development of qualitative reasoning. For example, by Episode 4, Amanda was much 

more likely to say that a circle and a square were alike than she was when the experiment 

began.  

By the conclusion of the experiment, Amanda had developed a conception of 

alikeness as “transformational” that was so robust that when she was asked if two shapes 
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were alike, she would respond by describing the transformation of one into the other. The 

development of this conception prepared her to describe fundamental properties of 

equivalence classes of shapes and to use a class-defining property to either identify or 

draw new shapes that rightfully belonged to a given class. 

 The development of Amanda’s conception of alikeness from the first to the final 

episode of the teaching experiment, and the forms of alikeness with which she operated 

in the later episodes of the experiment, are findings that will be collected with the 

findings from the second participant’s teaching experiment to help me answer my second 

research question, which I restate here to remind the reader: 

Question 2. What forms of topological or non-metric geometric ideas are made 

visible and can be seen to develop as a result of young learners’ systemic engagement 

with a computer environment that makes topological representations and 

transformations accessible? 
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CASE 2: THE STORY OF EVA 

“They’re all in the family.” 
 
At the time of the study, Eva was six years old and in first grade. 
 
 
Episode 1: Curvilinearity is salient 
 

In this episode the pretest was administered using the seven triads (Figure 29) and 

the five-card sorting task. In three out of four triads composed of “curvilinear” and 

“rectilinear” shapes (rows A, C, D, and G), Eva identified the curvilinear shapes as “most 

like.” Only in the case of row D was the form of the compositions of those shapes more 

salient than curvilinearity. In addition, in both of the five-card sorting tasks, the 

distinction between the two groups she formed was according to the curvilinearity or 

rectilinearity of shapes. In the first of these tasks, she sorted the X, Y, and T [row 5] into 

one group and the circle [B2] and “figure 8” [D1] into the second group, Similarly, in the 

second task, she sorted the “open square”, diamond, and “double square” [A3, B3/F2, 

D3] into one group and the “S”, circle, concentric circles, and “figure 8” [D2, A1/C3, D1, 

B2] into the other. Then she added the previously chosen X, Y, and T [row 5] to the first 

group and the “arc” [C1] into the second group. Eva’s “strong” distinction between 

shapes based on curvilinearity was so salient that it suggested and informed the design of 

the follow-up shapes (Figure 31) which are composed of both curvilinear and rectilinear 

attributes. 
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In her justifications of “most like,” Eva described transformations involving 

cutting, squooshing, bending, unfolding, unwrapping, pushing, curving, and 

straightening. For example, she said, “you can just straighten” the “arc” [C1] and the “S” 

[C3] into the segment [C2], “you can just curve” the segment [C2] into the “arc” [C1] or 

the “S” [C3], “you could just bend” the branches of the X [E3] into the Y [E1], and “you 

could push” the ellipse [G2] to form the rectangle [B1]. These transformations served to 

justify the alikeness of shapes with curvilinear attributes, the alikeness of shapes with 

rectilinear attributes, and the distinction between the two groups. It is also worth noting 

that Eva, like Amanda, in her descriptions of the alikeness of the “arc”, the “S”, and the 

segment, offered descriptions of both the transformations and inverse transformations of 

each into the other that formal topological equivalence requires.  

The language of transformation figures quite prominently in Eva’s justifications 

of the alikeness of shapes, but it is not the nature of the transformations that determines 

alikeness, it is the forms of the shapes themselves. This is an attribute-based conception 

of alikeness that should be seen as conceptually and developmentally prior to a property-

based one, which would depend on the transformations defined by the geometry (e.g., 

Euclidean, projective, topological). In other words, for Eva, “curved shapes” are 

distinguished from “straight shapes,” and the general form of a transformation that 

produces one from another is essentially, “whatever it takes to turn one shape into 

another one like it.” This, too, was the conception of alikeness with which Amanda 

operated as she sorted all five cards into one group in Episode 1.  
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Episode 2: Resemblance to everyday objects and canonical shapes is primary  
 

The second round of the pretest was administered using the “follow-up” set of 

shapes (Figure 31). Eva chose two cards at random from the follow-up set [H2, H6] and 

three at random from the pretest triads (B3, C1, G2, of Figure 29).  She sorted the shapes 

into the three groups shown in Figure 39. This arrangement of the groups is just as Eva 

had arranged them on the table. 

 
Figure 39. Eva’s first sorting of her first five-card sorting task (Episode 2) [left to right: 
B3, H2, H6, C1, G2] 

These groupings are striking in that they appear to be well informed by a conception of 

alikeness as curvilinearity-based. That is, the leftmost group consists of a single shape 

(the diamond), which is a polygon (consisting of only straight sides). The rightmost 

group (the arc and the ellipse) consists of “curvilinear” shapes. The grouping in the center 

has rectilinear and curvilinear attributes. When I asked Eva, “How are those [arc and 

ellipse] alike?”, she reflected for a moment and then re-sorted the shapes multiple times. 

Eventually, she settled on the two groups shown in Figure 40.  
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Figure 40. Eva’s final sorting of her first five-card sorting task (Episode 2) [left to right: 
B3, H6, G2, C1, H2] 
 

Interviewer: How come you put these together? 

Eva: ‘Cuz they both have corners and they both aren’t as curvy as these [in the 

 other group] are. Well, this one [H6] is kinda curvy, but that’s o.k. 

Interviewer: OK, and what about those three <in the other group>? 

Eva: These, they’re all really the same. See? If you put a magnifying glass on this 

 [ellipse, G2], the bottom would look like this [arc, C1]. And if you cut off that 

 [the arc] <Eva places her straightened hand across the arc, from one endpoint to 

 the other>, it kinda looks like that [H2], except it’s more stubby... and round. 

 They’re all in the family of this [ellipse, G2]. They’re all a different half of [it]. 

 
In the midst of this sorting task, Eva seems to have shifted schemes for sorting from the 

attribute-based distinction of curvilinearity that she employed in Episode 1 to an 

attributed-based distinction that also considers the role of corners. The shapes in the 

pretest triads could not have provoked this latter criterion, since no shapes in that set are 

composed of both curves and corners.  

Later in the episode, Eva similarly sorted a diamond [B3] together with a triangle 

[B2], because each “has corners.” The epsilon [H5] was distinguished from the diamond 

[B3] and the triangle, because it has “no corners.” In contrast, Eva grouped it with the 

segment [C2] and H4, because they are “made of lines.” In another sorting task, Eva’s 
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reasoning shifted. Whereas earlier she identified the diamond and triangle as alike in that 

they have corners, a distinguishing criterion also identified by Piaget (1956), she also 

identified them as “ordinary,” and, thus, as distinct from “weird” shapes (Darke, 1982, p. 

121) (in the follow-up set of shapes (Figure 31)), such as H3, which she described as 

“like nothing I’ve ever seen before.” In Episode 9, she expresses a similar sentiment 

when she describes “shapes” as “things you see all over the place.” Otherwise, figures are 

“not shapes.” 

Eva also employed resemblance-based criteria for distinctions when grouping the 

“double square” [D3], “figure 8” [D1], and H3, which are “all masks.” In the task that 

followed, she grouped the “rounded square” [H1] with the “double square” [D3], because 

they’re “both squares.” Similarly, in the final sorting task of the episode, when Eva was 

asked to consider another participant’s groupings of five shapes (Figure 41), she said she 

agreed that the T [E3] and the epsilon [H5] belong together, because “they’re both  

 
Figure 41. The final five-card sorting task of Episode 2 [from left to right: H5, E3, 
A1/C3, C2, H3] 

kinda letterish.” Then she added, “they’re both lines, but I would have put this one [the T 

(E3)] with this one [the segment (C2)],” which had been grouped with the “S” (A1/C3)].  

When asked, “Why do you think she put these [segment (C3), “S” (A1/C3)] together?”, 

Eva replied, “You could just straighten this [“S”] out and it would be this [segment]; you 



 170 

could just squiggle that [segment] a little bit and it would be this [“S”].” This moment is 

salient in that it marked the only instance in the episode in which Eva used a 

“transformational” conception of alikeness.  

In Episode 1, Eva used morphing language to describe the alikeness of the 

topologically equivalent “arc” and segment, and the T and Y. In this episode, she grouped 

the topologically equivalent “masks” as well as the also-equivalent diamond and the 

triangle, but did not use morphing language to explain either of the groupings. This was 

her only use of morphing language in Episode 2, but it is not clear what provoked such a 

distinction. Like many children completing tasks like these (Lehrer, Jenkins, et al., 1998), 

Eva’s reasoning varied across tasks. It seems that the other participant’s groupings 

(Figure 41) of the “S” and the segment – a grouping that Eva says she would not have 

made – provoked the consideration of a “transformational” conception of alikeness. Thus, 

Eva operates from conceptions of alikeness that are attribute-based (e.g., “has curves,” 

“has corners,” “made of lines”), resemblance-based (e.g., to everyday objects or 

canonical shapes), and “transformational,” although the latter is less salient than the other 

two. 

In this second episode, Eva identified topologically equivalent shapes as alike 

(e.g, the arc and the segment, and the T and the Y) although it was resemblance that 

determined the alikeness and not topological properties. In the following episode, the 

plan was for Eva to use Configure to transform the shapes in each of these equivalence 

classes. 
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Episode 3: Two shapes are alike if one can be transformed into the other. 
 

In this episode, Eva used Configure for the first time, and through her activities, 

she became more familiar with the ways it worked. The theme of the episode was Eva’s 

assimilation of what it means to be alike according to the rules of the software. The 

shapes she transformed were identified as alike in the prior episode using attribute- and 

resemblance-based conceptions of alikeness. 

 Whereas Amanda and Eva used attributes to determine the alikeness of – or 

distinction between – shapes, the properties of shapes that we’re interested are 

qualitative. They are the non-metric transformations that are defined by the tools of 

Configure. To get a sense of the relationship between attributes and properties, consider 

that the T and the Y are similarly “connected,” but the X is not. The form of 

connectedness of those shapes is a topological property, and it is one that is readily 

apparent in the transformational capacities of Configure: the T can be transformed into 

the Y (and vice versa), but neither can be transformed into (or from) the X.31 

Following Eva’s transformation of the T into the epsilon, I move toward that 

conception of alikeness by explaining, “These are alike, because you could take that one 

[the T] and you could turn it into that one [the epsilon].” In subsequent episodes, the 

focus will also move to the properties of shapes identified as equivalent through 

transformations. Next, I present Eva with the segment and the “S.” 

                                                 
31 It can also be determined by considering the effect of removing the “center” point of each of the letters. 
In the case of the T and the Y, removing that point leaves three pieces. In the case of the X, four pieces are 
left. 
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Interviewer: So one of the other questions I asked you was about these two shapes. 

 How did you say that they’re alike? 

Eva: Because, if you curve that one [the segment], it would become that one. If 

 you straighten that one [the “S”], it would become that one. 

 
Then I present her with the “arc” [C1], the ellipse [G2], and the arch [H2] (Figure 42), 

which she identified as “all really the same” in the previous episode, because “they’re all 

in the family of” the ellipse. When she explains that in order to transform the arch into  

 

Figure 42. The ellipse, the arc, and the arch 

the “arc,” she would “push that [the eraser button] and then erase that [the segment-ed 

component of the arch] and turn it upside down and make it a little narrower,” I clarify 

how we’ll determine that two shapes are alike by reminding her, “I want to know which 

ones we can make into the other ones without gluing or erasing.” Then I repeat the task. 

Interviewer: Can you turn one into another without erasing or gluing? 

Eva: If I could just – Hmmm. <moves the cursor to the ellipse> You can’t get all 

 these things off? That’s impossible!  

 
Eva identifies the ellipse and the “arc” as distinct, because the transformation of the 

ellipse into the “arc” requires that part of the ellipse be removed. In contrast, after 

completing the transformation of the ellipse into the arch by altering the curvature of one 

of the two arcs that forms the ellipse, she declares, “I’m finished.” 
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In the final task of the episode, I was interested in the extent to which Eva 

identifies a property of two equivalent shapes. I presented her with the “sail” [first shape 

of row 1, Figure 32] and the triangle [fourth shape of row 3, Figure 32]. 

Interviewer: What do you think about those two shapes? Do you see anything that’s 

 alike about them? 

Eva: It [the sail] kinda looks like a triangle, a curved one.  

 
 Whereas in Episodes 1 and 2 Eva rarely used a conception of alikeness as 

“transformational,” in this episode she developed such a conception through multiple 

tasks in which she identified two shapes as alike because one could be transformed into 

the other. The next efforts are seen as promoting the development of qualitative reasoning 

by provoking Eva’s attention to properties of equivalent shapes. Her remark that the 

“sail” looks like a “curved” triangle is suggestive of such a property.  

 

Episode 4: Given a shape, identify an equivalent one. 

 In the prior episode, Eva used the software to determine whether one shape could 

be transformed into another. The theme of this episode was developing the notion of 

topological equivalence by considering that equivalence is a function of invariant 

properties. That consideration requires not only the determination of the 

“transformational” alikeness of two shapes, but also attention to the properties of shapes 

that are “transformationally” alike.  
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 At the conclusion of the previous episode, Eva remarked that the “sail” [first 

shape of row 1, Figure 32] “kinda looks like a triangle, a curved one.” To follow up, I 

asked her to consider the arch [H2] and that same triangle.  

Interviewer: What do you see that’s alike about these two shapes? 

Eva: This [arch] is kinda like a triangle. If you made that pointy, it would be a 

 triangle. 

 
Eva used curvilinearity as a criterion for distinction all throughout the pretest in 

Episode 1. In contrast, these observations that the arch looks like a “curved” triangle, and 

the triangle is like a “pointy” arch, draw on curvilinearity as a criterion for alikeness. 

Because Configure was new to Eva in Episode 2, and because curvilinearity is “lost” in 

that non-metric microworld, this “reversal” seems to have been supported by Eva’s 

explorations in the software environment. This is salient, because it suggests that Eva’s 

qualitative conceptions are developing as a result of those explorations. It also suggests a 

response to my first research question in terms of the capacity of the environment for 

supporting the development of children’s qualitative reasoning. 

 Next, I ask Eva to consider the X, the Y, and the T. In the pretest of Episode 1, 

she chose the Y and the T as more alike than the X, because you can “bend” the T to get 

the Y and “straighten” the Y to get the T. 

Interviewer: What makes these two shapes [T, Y] more alike than this one [X]? 

Eva: Yeah, because -- swing that out [branches of Y] -- those two -- and it’ll be like 

 that [T]. Bend those [branches of T] like that and it’ll be that [Y]. 

Interviewer: You can’t do anything with that [X]? 
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Eva: Yeah. If there was one [branch] on top of the other [the Y or the T], you could 

 open those up. 

Interviewer: Can you show me with that Y? 

Eva transforms the Y into the T. 

Interviewer: And what about the X? Can you make any of those [T, Y] into the X? 

Eva: <rotates three branches of the Y to make room for a fourth branch> But I need 

 another one [branch] to do that [turn the Y into an X].  

Interviewer: That’s what we’re interested in, whether you need to add pieces or take 

 pieces away. So do you see that the only way to do it would be to add a piece?  

Eva: Yeah. <grabs a new segment and attaches to the Y to form the X> There! 

 Perfect. 

Interviewer: Alright, so what did you have to do to make it into an X? 

Eva: All I needed was one of these [another built-in segment] and that [a T], and then 

 I could turn it into that by using glue and turn and drag. 

 
This exploration in which Eva required glue in one instance but not in another was seen a 

preparatory for the subsequent conversation in which I inform her that we will no longer 

be using glue to attach pieces in our transformations.  

Eva: [If you can’t use glue,] then how do you do it? 

Interviewer: That’s the question, can you do it or not? Sometimes you can and 

 sometimes you can’t. Can you see a way to do it? 

Eva: Can you? 

Interviewer: I’ll ask you first and then I’ll tell you what I think.  

Eva: Uhhh, no. 

Interviewer: No, it’s not possible. 

 
Eva recognizes the Y and the T as distinct from the X in that the now-allowable 

transformations do not include gluing. Taking this realization together with her many 
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experiences transforming one shape into another, my next attempt is to investigate the 

extent to which Eva considers aspects of shapes that make the transformation of one into 

the other possible. 

Interviewer: Earlier, you did this [arch] and you turned it into a triangle. Right? 

Eva: Yes. 

Interviewer: Alright, so I want to know if you can draw another shape that you can 

 turn into a triangle, here [on paper] or if you want to use that [computer] you can 

 draw it on there. Draw a shape that’s not a triangle but that you can turn into a 

 triangle.  

Eva: I could make a square, couldn’t I? 

 
Subsequently, Eva wants my help to unglue the square, but I remind her that gluing is not 

allowed. The rule still seems arbitrary, but Eva doesn’t resist. Instead, she grabs a vertex 

and moves it around as if she believes it might be useful but she had no plan for it. Then, 

a drag of a vertex of the square results into two sides converging into one.  

Eva: Is it like that? That’s a kind of a triangle. There! 
 
I continue explorations on the theme by presenting Eva with the epsilon [H5]. 
 

Interviewer: Pick one of these on the [pretest] page and tell me which one you can 

 turn it into. 

Eva: Maybe if I work really, really hard for a while, I could make it probably into  –  

 Maybe I could make into that [inverted “lollipop” (G1)], maybe, if I could just 

 move that [outer arcs of the epsilon] into a circle.  

Interviewer: How would you turn it into a circle? 

Eva struggles for about a minute until she realizes that forming the circle would 

 require gluing.  

 
Apparently, Eva chose the “lollipop,” because she had imagined how the components of 
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the epsilon could correspond to the components of the “lollipop.” Then, she realized that 

the transformation that would produce the “lollipop” could not be achieved without 

gluing. Next, I present her with the “clover” [second shape, row 3 of Figure 32]. 

Interviewer: Can you make it into one of these shapes [on the pretest]? 

Eva: I could make it into a circle.  

Interviewer: Alright, let’s see it.  

Eva completes the transformation. 

Interviewer: Alright, let’s do it again. [I give her a second clover.] Can you find 

 another one? 

Eva: I could turn it into a triangle? 

Interviewer: Really!? 

Eva: Uh huh. <She completes the transformation.> 

 
 Eva’s confident identification of the circle and the triangle as transformable from 

the “clover” is significant. To say that Eva identified the clover as equivalent according 

to the rules of the environment is probably not going too far. She has had multiple 

experiences transforming one shape into one that is “alike.” Furthermore, she has had 

experiences where a failed attempt to transform one shape into another is assimilated as, 

or at least compatible with, a “non-alikeness” of those shapes and, at times, a 

consideration of the “forbidden” transformations of gluing and breaking, which, when 

required, also indicate that the two shapes are not alike.  

 It may even be the case that in addition to operating with a conception of 

alikeness as “one can be transformed into the other,” Eva’s identification of the circle and 

the triangle as transformable from the “clover” points to a consideration of a common, 

fundamental property of the three shapes. But there is insufficient evidence to support the 
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claim, especially since Eva was not able to transform the epsilon into her choice of the 

seemingly transformable “lollipop,” which occurred just prior to these transformations, 

could arguably be seen as counterevidence. Thus, the next episode is designed, in part, to 

gather more evidence of property-based of reasoning (or at least scaffold its 

development). 

 

Episode 5: Developing equivalence 
 
 The plan was to provoke Eva to attend to properties of shape by considering what 

it is that makes two figures homeomorphic. The episode began with Eva using the 

software to transform shape H6 into a diamond [B3], which was significant, but only 

relative to the complexity of the task. On paper, however, she sorted the segment [C2] 

together with the “S” [A1/C3] and subsequently justified the grouping by describing the 

transformations that would take one into the other, as she had done several times before. 

Still, none of the conversations got to what it was that made those transformations 

possible. In the following episode, the effort to provoke Eva’s attention to properties is 

continued. 

 
Episode 6: Developing equivalence 
 

The effort to attend to properties is made in order to support the development of 

Eva’s qualitative reasoning. Whereas she has demonstrated successful transformations of 

equivalent shapes, and has even confirmed her predictions that the transformations were 

possible, she has yet to articulate the properties of those equivalent shapes. This is likely 
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because she was operating from a conception of alikeness which means that one shape 

can be transformed into the other. So when she is asked whether two shapes are alike, or 

even if one can be transformed into the other, she simply considers what actions would be 

necessary in order to turn one into the other. Worth noting, this consideration is obviously 

guided at least in part by mental operations on shape. Thus, it is likely that Eva’s plans 

for transforming one shape into the other are substantive but not fully developed a priori. 

For if they had been, she wouldn’t eventually be struck by a realization that, in the case 

of two shapes that are nonequivalent, gluing or ungluing is required to complete the 

transformation. I witnessed this phenomenon late in Episode 4 in Eva’s inability to 

transform the epsilon into her choice of the seemingly transformable “lollipop.” Two 

other examples occur in this episode. In the first, which occurs at the beginning of the 

episode, Eva asks if she can turn the “sail” [first shape of row 1, Figure 32] into a theta 

[second shape, row 2 of Figure 32]. In the second, which occurs at the end of the episode, 

Eva asks, “Can I turn a kite [B3] into a fork [fourth shape of row 1, Figure 32]?” When I 

ask her, “What makes you think you can do it?”, she responds by initiating the 

transformation. Ultimately, she realizes she would need to glue components of the fork to 

form the kite. 

The following excerpt illustrates an attempt to investigate Eva’s developing 

conception of equivalence. The shapes are equivalent and the invariant property is 

“closedness.” 

1 Eva: I can turn that [the heart, third shape of row 2, Figure 32] into a square? 

2 Interviewer: What makes you think you can turn it into a square? How did you  
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3      know that? 

4 Eva: Because.   

5 Eva completes the transformation. 

6 Interviewer: I want to know if you can describe how you knew you could take  

7      that [heart] and turn it into that [square]? 

8 Eva: I knew if I could turn them straight and be able to drag a lot, I’d be able to  

9      make a square. 

10 Interviewer: Alright, so straightening and dragging lets you make it into a square. 

11 Eva: Uh huh. 

12 Interviewer: What about from here [square] to here [triangle]? 

13 Eva: I knew that if I just put this like that <gestures to indicate the dragging of a 

14      vertex to reduce two sides into one> and stretched it a little bit, I would be able 

15       to make that [triangle]. 

 
At this point, I was interested in the extent to which Eva attends to properties – or at least 

common attributes – of equivalent shapes, in particular, “closed” shapes. Unfortunately, 

my phrasing of the question in line 2 is regrettable, since it clearly reinforces Eva’s 

consideration of nothing other than the form of the transformation that determines the 

alikeness of two shapes.  

 In the tasks that followed, Eva explored other “closed” shapes. She transformed a 

triangle into a square and a square into a pentagon, each of which involved “adding a 

corner.” I collected these shapes along with some of the other simple closed curves she 

explored in this episode on a sorting worksheet (Figure 43). The theta was crossed out  
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Figure 43. The set of simple closed curves explored by Eva at the conclusion of 
Episode 6 

when Eva realized the “sail” could not be transformed into it. When I asked her, “What 

makes this shape [the theta] different from all these?”, she did not respond. She played 

instead. So my plan for the subsequent episode was to follow up on Eva’s considerations 

of “closed” shapes, like the “kite”, square, and triangle, using activities that make 

properties of equivalent shapes more salient.  

 

Episode 7: Identify the property that defines the class. 

 I begin this episode by presenting Eva with a diamond [B3] and a circle [A2]. I 

chose these two shapes to follow up on her considerations of “closed” shapes in the prior 

episode, and also because her distinctions between shapes on paper have so often been 

based on curvilinearity. My thinking is that if she’s asked to comment on what is alike 

about two shapes that she earlier identified as not alike – one of which is “rectilinear” and 
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the other which is “curvilinear” – she will be encouraged to “move past” that distinction 

and consider other criteria. 

Interviewer: What’s alike about those? 

Eva: Well, I can say that– I can’t really explain. What if you disappeared that --- 

 maybe these corners [of the diamond] disappear. Let me see. <Eva goes to the 

 computer. Apparently, she wants to remove the corners of the diamond, but 

 Configure does not have such a tool.> 

Interviewer: What are you trying to do? 

Eva: I’m trying to take the corners away.  

Interviewer: So how do you take the corners away? 

Eva: Is there a “corner take away”? 

I show her how to bend the sides in a way that essentially removes the corners. 

Eva: It would turn into a circle! See? There. 

 
 Eva used “corners” as a distinguishing characteristic in each of the first two 

episodes. During the pretest, she identified the “S” [A1] and circle [A2] as more alike, 

because they are “curved,” and the “open square” [A3] as different, because it “has 

corners.” Then, in the second episode, she grouped H6 with the diamond [B3], and the 

diamond with the triangle [B2], because each group is composed of shapes that “have 

corners,” whereas the other shapes in each of the tasks did not. So, not only did this task 

require that Eva ignore the curvilinearity-based distinction between the two shapes, it 

also gave her the experience of identifying two shapes as alike, which she earlier 

identified as different. This is significant, because it represents a conceptual move toward 

the assimilation of a qualitative conception of alikeness. 
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 Eva has employed attribute-, resemblance-, and “transformation”-based 

conceptions of alikeness. But another version of alikeness is instantiated in the tools of 

the software. Thus, the following tasks are designed to elicit from Eva a word that is 

similar to “alike” and that describes shapes that can be transformed into each other. 

Toward that end, I appeal to her to help me find words that name the shapes she has 

identified as alike using the software. Those are presented in the sorting worksheet in 

Figure 44. 

I explain to Eva that the use of the word “alike” to describe shapes that can be 

transformed into each other hasn’t worked so well, because, for example, she has 

described “curvy” shapes as alike. But she also knows that the “curvy” “S” [A1] and the 

“straight” segment [C2] are alike, because she has transformed one into the other “about 

189 times.” 

Interviewer: I need another word I can use to describe shapes that I can turn into each 

 other.  

Eva: <referring to the set that contains the “S” and the “segment” [upper right 

quadrant of Figure 44]> They’re both lines. 

Interviewer: They’re both lines? We can use the words “both lines.” 

 
This response marks the first time Eva has given a name to an equivalence class of 

shapes. 

Interviewer: You [transformed] this one earlier, the kite into the circle [the two shapes 

 in the second row of the class of shapes in the upper left quadrant of Figure 44]. 

Eva: They’re both simple.  

Interviewer: They’re both what? 

Eva: Simple.  
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Interviewer: Should I use the word “simple” to talk about these? What about the 

 heart [the first shape in the first row of the class of shapes in the upper left 

 quadrant of Figure 44]? Is that simple?  

Eva: No. 

 

 

Figure 44. Eva’s sorting worksheet (Episode 7) 

 
Eva goes on to explain that the circle cannot be transformed into the heart, because the 

circle “doesn’t have these two lines [the two arcs that form the heart] that could turn 

curvy. It just is a plain circle.” When I suggest that she attempt the transformation, she 

says she “[doesn’t] think it’s gonna work out so good,” which certainly seems to indicate 

that she has developed no plans for a suitable transformation. Still, she attempts a 

transformation and eventually completes it by performing a relatively complicated move, 

using the “add a corner” tool to turn one of the arcs that composes the circle into the two 

that form the heart. So, perhaps it is the complexity of a suitable transformation of the 
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circle into the heart that informs Eva’s conception of topological alikeness. To explore 

this conjecture, in a later episode I will guide Eva in an exploration of properties of 

equivalent shapes in ways that do not depend on the consideration of a transformation 

that turns one into the other. 

I missed the opportunity to explore Eva’s conceptions of “simple” when I asked 

her whether the heart is simple, so I follow up on it in Episode 9. My conjecture at this 

point is that “simple” refers to convex canonical or “near canonical” “closed” shapes 

given Eva’s rejection of the heart, which she essentially identified as distinct from the 

“simple” (and “plain”) circle. This conjecture is informed by Piaget’s investigations 

(1956) and the replicates which, in their own ways, made some reference to a distinction 

between simple and more complex shapes. For example, as I wrote earlier, given Piaget’s 

(1956) claim that “topological relationships express the simplest [emphasis added] 

possible coordination of the dissociated elements of the basic motor rhythms, as against 

the more complex regulatory process required for coordination of Euclidean figures” (p. 

68), he might have argued that the actions needed to reflectively abstract the form of the 

circle are more elementary that those required of the heart, whose actions require 

relatively greater ability to abstract and coordinate. Next, we consider “open” shapes 

before returning to “closed” ones. 

Interviewer: What about these [“S”, segment]? Can you think of a word that 

 describes how these are alike? 

Eva: They’re both lines! 

Interviewer: They’re both lines. Alright. So what word do you want to use over here 

 [in the class of closed shapes]? 
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Eva: Mmmmm. They’re all really simple shapes, and they’re not like, uh, they’re all 

 not like a “swoosh” [last figure in the bottom row of the class of shapes in the 

 upper left quadrant of Figure 44].  

 
Similar to the way she thought about the heart, which she identified as distinct 

from the “simple” circle, Eva sees the “swoosh” as also distinct. Perhaps the 

identification of the heart and swoosh as distinct from the circle is a matter of concavity. 

Even so, it is reasonable that such a distinction be left to an issue of the “complexity” of 

shapes and thus ignored since it’s non-topological nature deems it less worthy of our 

attention.  

 On several occasions in this episode, Eva’s attention to properties of shapes was 

distracted by a requisite consideration of the forms of transformations of one shape into a 

(supposed) equivalent. So as to redirect her attention, in the following episode, Eva will 

engage in activities that support the identification of topological properties of shape.  

 

Episode 8: What’s equivalent is determined by what doesn’t change – by what remains 

invariant. 

 Until now, Eva has been tasked with identifying fundamental properties by class 

membership (whose members were determined by successful transformations). She has 

only slightly been able to do so, probably because, as I mentioned above in Amanda’s 

case (because she experienced a similar difficulty), the identification of a property that 

defines a class is a newly developing ability for children at this developmental level 

(Inhelder & Piaget, 1969, p. 17). In the following episodes, however, Eva’s attention to 
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properties will be supported not by attending to the transformations that confirm or deny 

the equivalence of two shapes, but by activities informed by a conception of a topological 

property as one that remains invariant under bicontinuous transformations.  

Where I present the SoundTrack and Configure software environments in Chapter 

Four I mentioned that dynamic geometry environments provide opportunities for 

reasoning by continuity that enact Poncelet’s Principle of Continuity. This principle 

guarantees that properties of shapes remain invariant through dragging. Accordingly, Eva 

will be asked to identify those attributes of shape that do not change upon dragging. In 

more formal terms, she will be asked to identify properties that remain invariant under 

bicontinuous transformations. 

In this segment of Episode 8, I present Eva with several of Configure’s built-in 

shapes and we have a conversation about “what doesn’t change” as I drag components of 

the shapes around and apply tools to them (which have the equivalent effect of dragging, 

like “adding a corner” and “changing a segment to an arc”).  

1   Interviewer: I’m going to drag this [arch] around. I can stretch and bend things.  

2      Can you tell me what doesn’t change as I move this [the segment that  

3      composes the arch] around? 

4   Eva: The line doesn’t change.  

5   Interviewer: I can change its length, right? 

6   Eva: You just can’t change that it’s a line. 

7   Interviewer: I can change it with this [“segment to arc”] button.  I can bend it and 

8      change its length. So can you tell me something about it that doesn’t change? 

9   Eva: Oh, the dots. You can’t move the way they’re shaped. 

10  Interviewer: That’s true. Good. I’m looking for things like that.  
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My inference that Eva’s use of “line” in line 6 refers to the segment that composes the 

arch was incorrect given that she also uses “line” in the following two excerpts to refer to 

the bending branches of the spiral and the curved-then-straight arcs that compose the 

“S”.32  

11  Interviewer: Let’s look at this one [the spiral]. OK, I can change these [branches’]  

12     lengths, I can change how much they bend. 

13  Eva: But they’re always lines and you can’t break the lines.  

14  Interviewer: Alright, they’re always lines and I can’t break ‘em. 

15  Eva: Yeah, you can’t break ‘em off. 

16  Interviewer: They’ll always be attached right there <at the center>? 

17  Eva: Yeah. 

18  Interviewer: Great. That’s the thing I’m looking for. <then> I can make ‘em  

19     straight, I can bend, I can turn this into the T like we talked about earlier, but  

20     they’ll always be attached at the middle.  

21  Eva: Mm hmm. 

22  Interviewer: How many are attached at the middle? 

23  Eva: 3. They’ll always be 3. 

24  Interviewer: What stays the same about this one [the “S”]? 

25  Eva: There’s always 2 lines. <The “S” is composed of two arcs.> 

26  Interviewer: I can even add another one. 

27  Eva: They’re always curved! 

28  Interviewer: I can make ‘em straight. 

29  Eva: OK. 

30  Interviewer: You said there’s two, but I can always add another one, right? <I  

31     “add a corner” so that the “S” is now composed of 3 arcs. Then I drag it  

32     around.> So what’s always the same about this? 
                                                 
32 Coincidentally, the common conception of a “curve” is any path, whether straight or curved. 
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33  Eva: They’re all lines! 

34  Interviewer: What’s the same about this [“figure 8”]?  

35  Eva: There’s always two circles?  

36  Interviewer: There’s always two circles, alright. 

37  Eva: Unless you erase it, which is not allowed.  

 
Every shape has some attributes that remain invariant and some that do not. Thus, 

given the right/wrong quality of the questions, I felt that the activity would be most 

productive if I moved closer to participant than observer. For example, it was Eva who 

observed that the arcs that compose the “S” are “always curved.” It was I who, in 

response, adjusted their curvature to make them straight so as not to leave Eva with the 

possible impression that curvature is invariant. At one point, in fact, I moved closer to 

teacher than participant by pointing out where the branches of the spiral are attached 

(lines 16, 20, 22) and asking Eva, “How many are attached…?” (line 22).  

Not every line of geometrical exploration could be explored. Each episode saw 

several opportunities go uninvestigated. For instance, it is not true that the simple closed 

curves that compose the “figure 8” must always be circles. Curvilinearity is not a 

topological property. Still, the excerpt does reveal Eva’s attention to the invariance of the 

arch’s dots (an unfortunate consequence of the software’s design), the “unbreakable” 

quality of the arcs of the spiral, the “line”-d quality of the “S”, and the “two”-ness of the 

“figure 8.” Significantly, each of these has a conceptual parallel in the topological 

property of connectedness. 

As a sort of follow up assessment, I gave Eva a collection of shapes on a sorting 

worksheet. These were shapes I had also given to Amanda, who described them as shapes 
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“made of stems.” To Eva, they’re “made of lines.” The worksheet as it appeared at the 

conclusion of the activity is shown in Figure 45. 

 

Figure 45. Eva’s final sortings of shapes “made of lines” (Episode 8) 

Interviewer: Put the ones in the same box that can be turned into each other. 

Eva: <thinking out loud> I could turn – 

Interviewer: How would you do those two [the topologically distinct spiral and X]? 

Eva begins to describe how she would use the software to accomplish the 

 transformation. 

Interviewer: Alright, let’s do it [on the computer]. 

Eva attempts to transform the X into the spiral but quickly realizes that she would 

 need to “subtract” one of its branches to complete the transformation. Then she 

 moves the spiral from its initial group on the sorting worksheet to the group that 

 contains the Y and the T. 

Eva: I could turn it into the Y and then turn the Y into the T. 

 
 Eva’s use of the software to realize the distinction between the X and the spiral 

may suggest that she was operating, at least at one point, from a more visual-holistic 

conception of alikeness. Her sorting of the spiral with the X, however, does suggest a 
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significant conceptual move from earlier attributed-based sorts that depended entirely 

upon curvilinearity. Also, it’s certainly worth noting33 that the distinction between shapes 

made of 3 and 4 “branches” is not readily apparent.  

 

Quick! Sort the letters E and F, T, and X. How many equivalence classes did you get? 

 

Although both Amanda and Eva used the software to identify the distinction 

between nonequivalent shapes “made of stems” (Amanda) or “made of lines” (Eva), 

neither ever verbalized it. With the exception of the spiral, the groups Eva formed are 

topological equivalence classes. When I asked her describe a transformation between X 

and the spiral, she moved to the software for help, but then she no longer needed it to 

realize she “could turn [the spiral] into the Y and then turn the Y into the T.” 

 

Episode 9: Given a class of shapes, identify the property that defines the class. 

 In Episode 2, Eva described a group of shapes “made of lines,” language she used 

throughout the episodes of the experiment. In Episode 8, which was designed primarily to 

support Eva’s attention to the properties that determine the equivalence of shapes, she 

recognized the “unbreakable” quality of the arcs of the spiral, the “line”-d quality of the 

“S”, and the “two”-ness of the “figure 8.” In this final exploratory episode, a sorting 

                                                 
33 It’s also worth noting that Eva is upset that the school makes her eat “that fake American cheese” on 
field trips” and that they make her sing “Five Little Snowmen.” 
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activity is designed to assess Eva’s qualitative property-based reasoning. The sorting 

worksheet as it appeared at the conclusion of the episode is shown in Figure 46. 

 

Figure 46. Eva’s sorting worksheet as it appeared at the conclusion of Episode 9 

 We begin by considering the group of simple closed curves in the upper left 

quadrant of the sorting worksheet. In Episode 2, Eva said the diamond and the triangle 

were “ordinary,” in contrast to shapes that she described as “like nothing I’ve ever seen 

before.” In Episode 7, she said that the kite and the circle, also in this class, were 

“simple,” but that the heart was not. My conjecture then was that “simple” referred to 

convex canonical or “near canonical” shapes.  

Interviewer: At one point you said these are “all really simple.” I’m wondering if 

 you’re still ok– 

Eva: <reading my notes on the sorting sheet> Simple. A– 

Interviewer: Attached.  
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Eva: Attached. What do you mean by -- oh, it has no broken lines. They all have a 

 space in the middle. 

Interviewer: They all have a space in the middle? 

Eva: Yeah. They all have a space.  

Interviewer: What about that [“figure 8”]? Does that have a space in the middle?  

Eva: It has two spaces.  

Interviewer: And what about this [“S”]? 

Eva: It has none space.  

 
Episode 7 marked the first instance where Eva gave a name to a set of shapes. 

Those were shapes “made of lines,” and in Episode 8 she sorted them into equivalence 

classes, which indicated that she was using a qualitative conception of alikeness to 

complete the task. But this characterization of shapes having “a space in the middle” 

marks the first instance where Eva names a class of simple closed shapes. This 

accomplishment came late in the teaching experiment for Amanda, as well. 

One might argue that Eva’s interpretation of “attached” was a simple translation 

given out of context, that is, without consideration of the class to which it was given. But 

this cannot be the case. “Attached” is Eva’s word. She used it in Episode 7 to describe 

“what stays the same” about the triangle, and in Episode 8 to describe “what doesn’t 

change” about the branches of the spiral. While a triangle does “have a space in the 

middle,” a spiral does not. So the interpretation Eva offered must have come from a 

simultaneous consideration of the class of shapes to which it was attached.  

Furthermore, it’s worth considering that Eva’s earlier uses of “ordinary” and 

“simple” were given in the same sense. Then, if it turns out that the word “attached” that 
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labeled the collection on the sorting worksheet prompted the connection and provoked 

Eva’s interpretation – which she states as if it is obvious – this phenomenon would be 

significant in that it points to a qualitative geometric cognitive structure of the sort I’ve 

considered in this and in earlier chapters. 

Coincidentally, the conception of “attached” that Eva gives to the class of simple 

closed shapes on the sorting worksheet (Figure 46) as having “no broken lines” and “a 

space in the middle” is remarkably similar to the formal definitions of conceptually 

similar terms given on one of the most popular websites about mathematics in the field. 

MathWorld (www.mathworld.com) defines a curve as a “one-dimensional continuum” 

(Wolfram Research, 1999-2010b) and a closed curve as one “which completely encloses 

an area” (Wolfram Research, 1999-2010a). 

 Next, we reconsider “open” shapes, that is, those that are equivalent to the 

segment Eva has just described as having no space in the middle. 

Interviewer: Did we ever come up with a word for these kinds of [“U”, “S”, segment; 

 Figure 46] shapes?  

Eva: <NR> 

Interviewer: I don’t remember if we ever came up with a word for those. 

Eva: Lines. 

Interviewer <I label the set “lines”>: Is this [“S”] like a line? 

Eva: <NR> 

Eva nods to affirm. 

Interviewer: These are all lines? 

Eva: Uh huh. But this one’s [the segment] straight.  
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 Eva gives the name “lines” to the set that contains the equivalent “U”, “S”, and 

segment. Recall that earlier she also used the term to describe the curved branches of the 

spiral. Given the curvature-tolerant property of these shapes, Eva’s “lines” are equivalent 

to the common conception of “curves” that I mentioned above – any path, whether 

straight or curved – and as provided by Wolfram MathWorld: “a one-dimensional 

continuum.” 

 In the following brief excerpt, we reconsider the “swoosh” [first shape of the last 

row of Figure 32]. In Episode 7, Eva distinguished between it and the shapes she 

described as “simple” [those simple closed shapes in the upper left quadrant of Figure 

44]. At the time, I hypothesized that her distinction between it and the heart was a matter 

of concavity.  

Interviewer: The swoosh. Does that have a space inside? 

Eva: Yes. But it’s just not the same. I can’t see why I can’t think it’s the same! It’s 

 just not the same!  

Interviewer: Can you make that [“open” curve, Figure 47] to a swoosh without 

 gluing or breaking? 

Eva: I can’t glue, but I can connect. <She connects the endpoints of the open shape, 

 but does not glue them.> There!  

 

 
Figure 47. Eva is asked whether this shape can be transformed into the “swoosh.” 
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It was Eva’s decision to connect the endpoints of the open shape to begin to form the 

swoosh. So apparently she realizes that the swoosh is “connected” whereas the open 

shape is not. So it needs to be. 

Summarizing Eva 

These were the enacted themes that characterize each of Eva’s episodes. They 

describe the elements of the experiment’s teaching trajectory. 

1. Curvilinearity is salient. 
2. Resemblance to everyday objects and canonical shapes is primary.  
3. Two shapes are alike if one can be transformed into the other. 
4. Given a shape, identify an equivalent one. 
5. Developing equivalence 
6. Developing equivalence (cont.) 
7. Identify the property that defines the class. 
8. What’s equivalent is determined by what doesn’t change – by what remains 

invariant.   
9. Given a class of shapes, identify the property that defines the class. 

 
At the beginning of the teaching experiment, Eva’s primary criterion for 

determining the alikeness of shapes was curvilinearity, and the forms of the 

transformations she would use to justify the attributed-based conception of the alikeness 

of “curvilinear” or “rectilinear” shapes followed from, as opposed to determined, her 

identifications of “most like.” In Episode 2, when new shapes were introduced to try and 

resolve or – dissolve – Eva’s strong curvilinear-based distinctions, she was provoked to 

more strongly consider resemblance in her selections of “most like.”  

Then, in Episode 3, Eva’s assimilation of the rules of the software environment 

supported a developing qualitative conception of alikeness, that is, as determined by the 

rules of the software. For example, her remark that the “sail” looks like a “curved” 
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triangle is suggestive of that development, since neither shape is canonical nor everyday, 

and the “sail” has both curved and straight attributes, whereas the triangle is a polygon. 

These attributes had figured more prominently in Eva’s earlier selections of “most like.” 

Following the first round of activities conducted in the software environment, she 

realized the equivalence of the apparently distinctive circle and triangle, and identified 

the clover as also equivalent.  

Eva spent two episodes operating with a conception of alikeness as 

“transformational,” before eventually naming a class of shapes according to the property 

that determines the equivalence. Her use of “lines” to describe the class of “open” shapes 

was clear enough, but she did not (and perhaps, could not) elaborate on what she meant 

by “simple,” the name she gave to the class of (simple closed) shapes equivalent to a 

circle.  

Because Eva had used transformations so often and in such flexible ways in 

earlier episodes to describe the alikeness of two shapes, the effort was then made to move 

beyond it, or at least beside it, to identify the invariant properties of shapes. These 

activities supported Eva’s identification of the “unbreakable” quality of the arcs of the 

spiral, the “line”-d quality of the “S”, and the “two”-ness of the “figure 8.” Whereas she 

had earlier sorted all shapes “made of lines” into the same group, Eva subsequently 

sorted them into equivalence classes for the first time.  

Ultimately, Eva elaborated on her earlier use of “simple shapes” by describing 

them as those shapes that “have a space in the middle.” Furthermore, she refined that 

property to distinguish between shapes having zero, one, or two holes.  
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CROSS-CASE ANALYSIS 
 

My second research question seeks to determine what forms of qualitative 

geometric ideas are made visible and can be seen to develop as a result of participants’ 

engagement with Configure as structured by the tasks of the teaching experiment. Those 

ideas are presented in each of the presentations of the participant cases above and in the 

summaries that follow them. In this section, I look across both cases for commonalities 

and divergence. The enacted themes that characterize each of Amanda’s and Eva’s 

episodes are listed here. An illustrative side-by-side comparison of these trajectories is 

also presented in Figure 48. The ‘~’ indicates episodes with similar themes; the ‘=’ 

indicates episodes with equivalent themes. A generic trajectory derived from these two 

trajectories, along with a brief description of the goals of each episode, appears in 

Appendix D. 

Amanda’s Trajectory 
 

1. Everything’s alike. 
2. Multiple conceptions of alikeness 
3. Two shapes are alike if one can be transformed into the other 
4. Developing equivalence 
5. Given a shape, identify an equivalent one. 
6. Identify the property that defines the class. 
7. What’s equivalent is determined by what doesn’t change – by what remains invariant. 
8. Given a class of shapes, identify the property that defines the class. 

Eva’s Trajectory 
 

1. Curvilinearity is salient. 
2. Resemblance to everyday objects and canonical shapes is primary. 
3. Two shapes are alike if one can be transformed into the other. 
4. Given a shape, identify an equivalent one. 
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5. Developing equivalence 
6. Developing equivalence (cont.) 
7. Identify the property that defines the class. 
8. What’s equivalent is determined by what doesn’t change – by what remains invariant. 
9. Given a class of shapes, identify the property that defines the class. 

 
Figure 48. A side-by-side comparison of Amanda’s and Eva’s trajectories 

 
I should restate that, in keeping with my participant-centered agenda for the 

exploration of non-metric ideas, with the exception of the pre-test which was the only 

task designed a priori, the design of the tasks that structured each of the episodes was 

informed by what happened in the previous episode or episodes. This consideration of 

participant’s ideas accounts for both the similarities and distinctions between the two 

trajectories. The finding that they are so similar is, I believe, significant, and is not the 
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result of my telling or leading them to a set of mathematically important insights or 

conclusions. In this way, it is similar to the “group stories” that organize Piaget’s entire 

body of work (see especially Gardner, Kornhaber, & Wake, 1996b; Piaget, 1970a). 

Worth noting, structural similarities between the two trajectories may be 

attributed primarily to two objectives. Given the goal of identifying and developing 

participants’ non-metric conceptions, and the fact that this development was seen as 

being developed through participants’ engagement with the software, there had to be 

occasions in which 1) participants would need to become familiar with the software, and 

2) participants would need to be supported in their efforts to “get to reasoning.” To do so 

required that they identify what, for them, are meaningful or task-relevant qualitative 

properties of shapes. When the efforts to move beyond conceptions of equivalence as 

“transformational” were not sufficiently productive, participants were tasked with 

identifying properties through the equivalent exercise of dragging. Still, these “moves” 

could not be accomplished unless 1) participants developed fluency with the software, 

and 2) their qualitative conceptions were identified and, in some sense, seen as useful to 

the participant. That they could also be developed is evidence of the common endpoint 

across the two trajectories. The very fact that this endpoint can be seen as mathematically 

significant lends further support to the sense that the activities these students were 

involved in was, and is, mathematical. It also resonates with NCTM’s (1989) vision of a 

strands-based curriculum for school mathematics. That is, seeing geometry, for example, 

as a strand across the entire mathematics curriculum carries with it an attendant claim that 

young children have the capacity to engage early on in some mathematically authentic 
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form of geometric reasoning. Furthermore, the features, changes, and outcomes of 

participants’ sense-making are of-a-kind with that of mathematicians. Thus, the burden of 

proof would seem to shift to those disinclined to call this activity mathematics or 

mathematical. In the next and final chapter, I discuss the implications of these findings 

and possible directions for future research.  
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Chapter Six: Conclusions and Implications 

RESEARCH QUESTIONS AND CONCLUSIONS 
 

By way of review, the first research questions guiding this investigation was: 

Question 1. Given that early forms of topological, or at least non-metric, geometric 

reasoning have been identified and discussed in the research literature, can a software 

environment be developed in ways that support fundamental topological 

representations and transformations such that learners’ reasoning about topological 

ideas are made visible and are able to further develop in ways that could credibly be 

seen as both mathematical and significant? 

In response to this question and based on the findings from the analyses reported in 

Chapter Five, I draw these conclusions. Given the software’s role in supporting the 

development of participants’ qualitative reasoning from intuitive and informal non-metric 

conceptions of alikeness to qualitative property-based reasoning, the answer to this 

question is, “Yes.” First, the conceptual move from attribute- and resemblance-based 

conceptions of alikeness to qualitative conceptions of equivalence was supported by 

participants’ transformations of shapes into equivalent ones and the development of 

equivalence classes of those shapes. Second, participants’ identifications of properties 

that define equivalence classes could only be achieved once participants had developed 

those classes. Third, further development of qualitative reasoning was supported by 

participants’ identifications of qualitative properties through “reasoning by continuity,” 

or dragging, in a way that is consistent with the relevant and more formal mathematics. 
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 As I mentioned in the conclusion to Chapter Four, the development of the final 

iteration of the software required an iterative process to ensure the integration of the 

mathematics content with a designed that supports the users’ mathematical engagement 

with that content. This final iteration might seem “obvious” or simple, but such an 

assessment misrepresents the time, effort, and commitment to making improvements 

based on ongoing analyses. This finding leaves me suspicious of a priori or domain-

general design principles such as those that inform the design of computer-assisted 

instruction environments.  

  

Also by way of review, I restate my second research question here: 

Question 2. What forms of topological or non-metric geometric ideas are made 

visible and can be seen to develop as a result of young learners’ systemic engagement 

with a computer environment that makes topological representations and 

transformations accessible? 

A response to this question is provided in a summary of the participants’ experiences 

throughout the teaching experiment. As early as the very first episode of the teaching 

experiment, both Amanda and Eva used the language of “morphing” in their very first 

episodes. For example, Amanda described how one shape could be transformed into 

another by untwisting, bending, or pushing. Similarly, Eva described transformations 

involving cutting, squooshing, bending, unfolding, unwrapping, pushing, curving, and 

straightening. And not only did they make the same sorts of attributed-based distinctions 

between shapes that Lehrer and colleagues (1998) identified in the performances of 
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participants in their own study, Amanda and Eva also assimilated qualitative, or non-

metric, conceptions of equivalence as they progressed through the episodes of the 

experiment. By their final episode, their qualitative conceptions of equivalence were 

developed to the extent that they were able to identify properties of equivalence classes of 

shapes and using a class-defining property to either identify or draw new shapes that 

rightfully belonged to a given class. Amanda’s property-based distinctions were evident 

in the names she assigned to the classes of “cherries,” shapes with “lines in the middle,” 

“worms” (although initially mine), and “blocks.” Eva made property-based distinctions, 

as well, specifically in her identification of the “unbreakable” quality of the arcs of the 

spiral, the “line”-d quality of the “S”, the “two”-ness of the “figure 8,” and the “space in 

the middle”-ness of shapes equivalent to a circle. These are not generalizations. Rather 

they are structural in character, since they are organized in terms of properties that are 

meaningful in relation to possible transformations. These properties, then, are 

mathematically significant, which suggests that participants are, in fact, doing 

mathematics. It is not quite the mathematics with which university professors might 

engage, but the “family resemblance” (Wittgenstein, 1958, p. 32) is sufficient to warrant 

the label of “real” mathematics. Thus, it is indeed the case that software environments 

can and should be built that support this kind of authentic mathematical activity. 
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IMPLICATIONS FOR CURRICULUM DESIGN 
 

Any subject can be taught effectively in some intellectually honest form to any child at 
any stage of development. (Bruner, 1963, p. 33) 

 
Young children’s experiences in geometry throughout elementary school are 

entirely Euclidean with a particular emphasis on naming shapes. As this study has 

revealed, children also have non-metric ideas. Through their engagement in authentic 

mathematical activities, these conceptions have been seen to develop in significant ways. 

This finding should be beneficial to students whose non-metric ideas have typically gone 

ignored, to teachers who wish to engage and extend their students’ geometric ideas, to the 

community of mathematics educators whose research has only nominally investigated 

them, and to curriculum developers who wish to develop materials to support their 

development. 

 
For most people, nothing is more natural than that the most advanced ideas in 

mathematics should be inaccessible to children. (Papert, 1980, p. 161) 
 
 

By considering a domain of mathematics typically thought of as advanced and 

then investigating how the youngest children think about it, the domain can rightly be 

thought of as a vehicle for telling a possibly greater and more significant story, one that is 

not exclusively about geometry. This lends credence to the claim that not only children 

but everyone possesses powerful understandings of mathematical ideas and they can 

develop those understandings well in advance of their traditional placement in the 

standard university curriculum sequence. They might come to discover academic 
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strengths and interests not known to them otherwise. They might even identify with the 

mathematics and see it as a deeply engaging and important form of human activity. 

 

IMPLICATIONS FOR RESEARCH 
 

Lehrer and colleagues (Lehrer, Jenkins, et al., 1998) reported in the results of their 

“most like” tasks using the triads (Figure 22) they had developed in collaboration with 

Clements and Battista that children’s “reasoning varied from triad to triad and within 

triads” (p.140). In essence, these varying criteria for determining “which two are most 

like” were developed and applied haphazardly. As such, they are not reversible 

operations (Piaget, 1970b, p. 15). 

According to Piaget’s characterization of operationalized thought (Piaget, 1970b), 

the fundamental elements of cognitive structures are reversible operations. These 

operations typify an understanding of the structure. They give the structure its 

characteristic wholeness. In the case of qualitative geometry, as I mentioned earlier in my 

discussion of cognitive structures in Chapter Two, one form of reversibility looks like 

applying a qualitative transformation to a figure (without altering its qualitative 

properties), and then transforming it back. To illustrate this point with the general case, 

an equivalence class of shapes may be developed from the constructions of mental 

representations of shapes that are generated via the active sense of perception of possible 

transformations of that shape. Particularly, the equivalence class containing C and all the 

possible qualitative transformations of C – including V, S, and L – is defined by any 



 207 

element of the class and the kinds of transformations that are allowed. Taken together, the 

shape and the allowable transformations give the shape the property that defines the class. 

That’s because a property is exactly an attribute of shape that remains invariant under 

transformation. Here, it is the non-metric quality of the geometry that determines the 

properties that define equivalence classes, and the equivalence class containing C, in 

particular, contains all simple open curves. 

Just as participants in the study by Lehrer and colleagues (Lehrer, Jenkins, et al., 

1998) had done, in the early episodes of the teaching experiment in which the pretest was 

administered, the reasoning of participants in this study varied within and across triads. 

As such, their ir-reversible nature does not implicate a cognitive structure. That is, there 

seems to be no geometric conceptual framework that structures their activity. Nothing 

about the nature of the task – i.e., the problems, the tools, and the environment  – 

problematizes their assessments of most like. Any thing goes. There’s nothing more to 

say about the differences between Amanda and Eva’s selections of “most like” in a given 

triad other than to simply say, “They’re different.” Thus, even though it wasn’t their 

intent to do so, the only conclusions Lehrer and colleagues could draw about the criteria 

their participants used to distinguish between shapes were about their form and their 

frequency. There could be nothing to make sense of, since sense making would require 

some sort of cognitive structure with which to guide or direct the sense making.  

 In contrast, the non-metric environment of Configure structured participants’ 

selections of “most like.” Like the arithmetic problem types that are central to CGI 

(Carpenter, et al., 1999), there are right and wrong answers. The “Join – Result 
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Unknown” problem, “Torin had 5 snails. Odin gave Torin 6 more snails. Now how many 

snails does Torin have?”, has a single correct answer. These problems have a specific 

goal, an “agreed upon endpoint” (Stroup, Ares, Hurford, & Lesh, 2007). And these 

endpoints are justified by well-understood, shared standards of sense-making (and also by 

fundamental theorems of arithmetic). Otherwise it wouldn’t be possible to provide 

teachers with the strategies children are likely to use to solve them. Similarly, the non-

metric quality that structures participants’ activity in Configure generates a well-defined 

conception of alikeness that is inherent to the space and is likely taken as shared by 

anyone who plays in the space. And this conception of alikeness, or qualitative 

equivalence, determines the properties that define the alikeness. So when Eva and 

Amanda use this conception of alikeness to determine which shapes are alike, and then 

develop equivalence class of these shapes, there’s something to talk about. For example, 

it makes sense to talk about Amanda’s developing conception of qualitative equivalence 

as evidenced by her selections of “most like.” And it makes sense to analyze Eva’s 

identification of a shape that she says is equivalent to a given shape. These sorts of 

analyses were not possible in the results of Lehrer and colleagues’ (Lehrer, Jenkins, et al., 

1998) investigation. In fact, these sorts of analyses might not be so rich in a Euclidean 

environment, since Euclidean equivalence classes contain only congruent figures. Shapes 

that are most like a given shape in such an environment are those that are exactly alike.  

 CGI (Carpenter, et al., 1999) is designed “to help teachers develop an 

understanding of their own students’ mathematical thinking, its development, and how 

their students’ thinking could form the basis for the development of more advanced 
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mathematical ideas” (Fennema, et al., 1996, p. 404). The findings of this study can be 

similarly helpful to teachers. But instead of providing them with particular problem types 

and the strategies their students are likely to use to solve them, or even particular non-

metric properties and the equivalence classes children are likely to generate, this study 

provides teachers with a sense of the course of development of their students’ geometric 

reasoning (where geometric reasoning is conceived as the application of geometric 

properties and relationships in problem solving). Whereas axioms of non-metric 

geometry framed the activities in this study, the development of geometric reasoning can 

equivalently occur in the context of other geometries, even the existing Euclidean space 

of elementary school geometry. The non-metric properties that Amanda and Eva 

identified are significant not so much in their form, but in the function they serve. That is, 

they are evidence of the development of their geometric reasoning.  
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POSSIBILITIES FOR FUTURE RESEARCH 
 

This study is an initial foray into the development of qualitative geometry and the 

identification and characterization of young children’s conceptions of it. Future directions 

that I might like to take this research include: 

• Replicates of this teaching experiment to develop “superseding models” (Steffe & 

Thompson, 2000) of children’s thinking in the domain of qualitative geometry. 

Simply stated, a superseding model performs better than a preceding one.  

• Further characterization of the structure of qualitative geometry (Piaget, 1970b), 

(where structure refers to patterns of reasoning that learners come to enact). 

• Further development of the software to better align with the fundamental 

properties of qualitative geometry and to better support young children’s 

engagement with it (Barab & Squire, 2004; Brown, 1992; Collins, Joseph, & 

Bielaczyc, 2004; Kafai, 1999). 

• The development of a hypothesized trajectory for the learning of qualitative 

geometry (Clements & Sarama, 2004; Cobb & Steffe, 1983). 

• The development of new tools and activities to support learners’ engagement with 

– and teachers’ understanding of – the content of qualitative geometry 

(Scardamalia & Bereiter, 1991; Schwartz, 1995; Stroup, Ares, & Hurford, 2005; 

Vygotsky, 1978). 

• A reconceptualization of traditional approaches to Euclidean geometry in 

elementary schools in light of this study’s findings (Lehrer, Jenkins, et al., 1998). 
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• A progressive alignment of this research with other results of a similar kind, such 

as Stroup’s qualitative calculus (2002), Papert’s recursive structures (1980), and 

Schwartz’s function-based algebra (Schwartz & Yerushalmy, 1992a). 

I see this research agenda as significant for several reasons. First and perhaps foremost in 

terms of learners and their school experiences, this research and the trajectories it makes 

possible lie beyond the dominant model of geometry curriculum, a model that has been 

principally about identifying and matching names to canonical shapes and has historically 

ignored children’s intuitive conceptions and offered them few or no opportunities to 

develop their geometric knowledge throughout elementary school. Second, qualitative 

geometry is a re/conception of topology that characterizes young children’s conceptions 

of shape and privileges those ideas over the content of the canon of formal mathematics. 

Third, learners are provided with new opportunities to engage with the mathematics in 

ways that connect with the rich informal mathematical knowledge they bring with them 

to school. And fourth, the developers of standards and curricula are given the information 

they need to better align the curriculum to children’s developing geometric thinking, and 

teachers, given the knowledge about how children’s geometric ideas develop, are 

afforded new opportunities to engage and extend their students’ thinking. 
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Appendix A: Pretest “triads” 

(appears in the text as Figure 29) 

 
Triads are named according to the rows (A to G) in which they appear. 



 213 

Appendix B: Pretest Follow-up Shapes 

(appears in the text as Figure 31) 
 

 
From top to bottom: H1 to H6. 



 214 

Appendix C: Configure’s built-in shapes 

(appears in the text as Figure 32) 
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Appendix D: A Generic Trajectory of Teaching Episodes 

Figure 49 shows a generic trajectory of teaching episodes. This “average” 

trajectory is derived from the trajectories of each of the two participants that participated 

in the teaching experiments that were reported in this paper. Thus, the trajectory 

describes the likely experiences of new participants in a similar teaching experiment. 

 

 

 
The following list gives descriptions of the goals of each of the episodes shown in the 

generic trajectory. Note that episodes may last for more than one meeting. For instance, 

Episode 1 of the generic trajectory describes the theme of the first two episodes that 

occurred in the teaching experiments reported in this paper.  

1. Multiple conceptions of alikeness: The pretest is administered. 

2. Two shapes are alike if one can be transformed into the other: In this episode, 

the software is introduced and used for the first time. The plan is to explore a 

Figure 49. A generic trajectory of teaching episodes 
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conception of alikeness as defined by the rules of the software. This 

exploration is meant to support the goal of having the learner identify the 

properties of equivalent shapes.  

3. Given a shape, identify an equivalent one: In this episode, the plan is for the 

learner to spend more time with the conception of alikeness as 

“transformational,” that is, two shapes are alike if each can be transformed 

into the other. This is accomplished by further exploring the transformations 

the learner has described that can and cannot be performed using the software. 

4. Developing equivalence: The plan for this episode is to make progress toward 

supporting the learner’s attention to properties. The episode is essentially 

about transforming shapes in Configure and then reflecting on the outcomes. 

It is themed “developing equivalence,” because it is this episode in which the 

learner becomes increasingly attentive to the properties of shapes that make 

transformations possible or impossible.   

5. Identify the property that defines the class: The plan for this episode is to 

further develop a conception of alikeness as equivalence in the software 

environment and then attempt to provoke the learner’s attention to prototypes 

of equivalence classes. Identifying a circle as a prototype for closed shapes or 

a segment as a prototype for open ones, for example, can support the learner’s 

identification of the property that defines each class. 

6. Given a class of shapes, identify the property that defines the class: Assuming 

that in the prior episode the learner identified a property that defines an 
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equivalence class, the primary focus of this episode is to continue that effort 

by developing appropriate names for the equivalence classes of shapes that 

have been produced throughout the previous episodes. 

7. What’s equivalent is determined by what’s invariant: Thus far, the dominant 

strategy for provoking the learner’s attention to qualitative properties of shape 

is by looking across shapes identified through transformations as equivalent. 

Instead, since a qualitative property is one that remains invariant through 

Configure’s dragging, bending, and stretching operations, learners can operate 

on shapes in these ways in order to identify those properties. That method 

defines the theme of this episode. 
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Appendix E: Activity for Teachers 

 

Each of the cooperating teachers whose students participated in this study happily 

agreed to give me time to work with those students at least once a week over the course 

of an entire semester. And they asked for nothing in exchange. To demonstrate my 

appreciation for their support, I promised to provide them with free copies of the software 

and a set of activities they could implement in their classes. The software was delivered 

when the data collection period had ended and the activity and an offer to implement it 

was delivered on May 1, 2010. This is that activity. It can also be downloaded from 

www.playwithshapes.com/activity.pdf. 

 

Instructions:  

• The following activity is to be implemented with your students. They will be 

using dynamic geometry software called Configure to complete the tasks. That software 

is free and web-based, and can be found at www.playwithshapes.com. I would suggest 

that students complete the activity in pairs, but a single student working alone could also 

have a wonderful and productive experience. 

• To begin, a “sorting worksheet” should be drawn on a blank sheet of paper by 

dividing the paper into six or eight regions of equal size. Students will be drawing “alike” 

shapes in each of those regions. 
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• The instructions for the activity are present in the flow chart. Basically what the 

students will be doing is determining which shapes are alike according to the ways that 

the software will allow them to transform shapes. This way of thinking about “alikeness” 

is most likely going to be a new way of thinking about alikeness for your students. It is 

similar to the way it’s thought about in an advanced mathematics course called topology. 

Essentially, two shapes are alike if one can be stretched and bent – without tearing or 

breaking – to form the other. This way of thinking about alikeness is why topology is 

informally referred to as “rubber sheet geometry.” Basically, Configure is a tool that 

allows users to stretch and bend, but not break or tear, two-dimensional shapes. As 

students progress through the activity, they will be developing groups of shapes that are 

alike in each region of the sorting worksheet.  
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Figure 50. Activity for Teachers 

 
 

Build a shape or pick one from 
shapes that are built in.

Make a list of the things about 
it that do not change as you 
drag around its hot spots or 

use the transform tools.

Pick another one from the set 
of built-in shapes that you 
think you can turn it into as 

you drag around the hot spots 
of your shape and use the 

transform tools.

What do you see about the 
two shapes that's alike? 

What's different?

Decide whether you can 
actually transform your shape 

into the new shape.

Once you have four or 
five shapes in a group, 
come up with a name 

for the group that 
describes the shapes.

Draw the 
shapes in the 

same group on 
the sorting 
worksheet.

IF SO

Why do you 
think the 

transformation 
wasn't 

possible? 

IF NOT
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Appendix F: Implications for van Hiele Theory 

 
 The focus of this study was not on the evaluation of the van Hiele model (van 

Hiele, 1959, 1986). But given the dominance of the model for describing the progression 

of children’s geometric reasoning, I felt compelled to consider its fit, because my study is 

essentially an investigation of children’s thinking in geometry. Briefly, the levels most 

relevant to this investigation are, on a scale from 0 to 434: 

• Level 0 (Visualization) refers to the stage in which learners recognize figures 
holistically, by their appearance, without any consideration of their properties. “That 
is a circle, because it’s round like a cookie.” 

• Level 1 (Analysis) refers to the stage in which learners identify figures by their 
properties, but these properties are independent. That is, they realize that shapes have 
properties, but they do not see relationships between those properties. “That is a 
square, because it has four equal sides. Because it has four equal sides, it also has four 
equal angles.” 

• Level 2 (Abstraction) refers to the stage in which learners reason using properties of 
shapes and understand connections among properties. “Isosceles triangles have lines 
of symmetry, so their base angles must be congruent.” 

 
 “Unlike Piaget’s model of development, the van Hiele model ties development 

not to the growth of general mental structures, but to [experiences resulting from] 

particular forms of instruction [emphasis added]” (Lehrer, Jenkins, et al., 1998, p. 138). I 

present the clause in that form to stress an assumption of the theory that is too often 

forgotten or ignored. To dismiss the theory as viable in predicting the behaviors of 

participants in my study, I illustrate the differences between the design of the learning 

environment in which my study was carried out and those “particular forms.” 

Furthermore, due to the dominance of van Hiele and its misuse to constrain the geometric 

                                                 
34 The levels have also been presented on a scale from 1 to 5. 
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experiences of students in school, a more robust way to address my research in light of it 

may be required. In a canonical piece by Clements et al. (1999), the authors suggest that 

their finding of contradictions to the predictions of van Hiele “raises the question of 

whether the strictly visual prototype approach to teaching geometric shapes is a necessary 

prerequisite to more flexible categorical thinking or a detriment to the early development 

of such thinking” (p. 204). I have provided their response to the question in Chapter One 

when I make a case for this study, but it deserves to be repeated here: “The strictly visual 

prototype-only approach with limited exemplars should be rejected” (p. 208). Of greater 

concern in light of these findings is that van Hiele theory has, in fact, influenced the 

development of the geometry strand of the Standards published by the National Council 

of Teachers of Mathematics (NCTM), a group of “90,000 people who care about 

mathematics education” (NCTM, 2010).  

 Despite the high level of acceptance and veneration within the field, compelling 

arguments and empirical data call it into question (cf. Clements, Battista, Sarama, 

Swaminathan, & McMillen, 1997). Clements et al. (1999) simply state, “van Hiele theory 

does not adequately describe young children’s conceptions” (p. 194). For example, a 

study by Lehrer and colleagues (1998) – situated in a context where the model should 

make its most viable predictions – offers evidence particularly relevant to this study. 

Their finding that children provide “morphing explanations” (p. 142) of similarity 

contrasts predictions by van Hiele, since children’s distinctions “appear to defy 

description by a single, “visual” level of development.” In addition, they found that 

“children referred to properties of figures or the number of vertices or “corners,” as well 
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as to classes of figures (squares and rectangles).” This varying attention to either visual 

components or properties of shape means “children’s justifications often “jumped” across 

nonadjacent levels of the van Hiele hierarchy” (p. 142). This study produced similar 

findings that counter the model’s predictions. 

During the teaching experiment, Amanda was in first grade and Eva was in 

second. Prior to the study, both children had the kinds of geometric experiences 

characterized as “traditional” in Chapter One. In contrast, their experiences in this study 

could be described as “progressive.” As such, the van Hiele model predicts performances 

that counter the theory. In particular, both Amanda and Eva provided “morphing 

explanations” throughout the experiment. The criteria they used to determine alikeness 

developed from attributed-based and resemblance-based to the qualitative sense 

instantiated in the design of the software. Then these qualitative conceptions were 

organized into schema that they then used to develop qualitative equivalence classes of 

shapes. In terms of van Hiele levels, their activity jumped across Levels 0, 1 and 2 (e.g., 

identifying properties and using them to develop classes) – a level that many students do 

not reach until grades four or five – throughout the 18 weeks of the teaching experiment. 

 Van Hiele theory offers a model with which to predict aspects of children’s 

performances not a set of guidelines or expectations about what they’re able to do. 

Taking the latter perspective naturally results in a self-perpetuating cycle of children 

doing what we expect them to do because that’s all we allow them to do. This might 

account for the reason that throughout elementary school, children spend all their 

“geometric” time naming conventional shapes. The model does a mediocre job in 
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contexts most similar to those “traditional” contexts in which it was developed (indeed, 

its Gagné-esque “skills before thinking” quality as evident in the  “visual before 

reasoning” hierarchy seems deserving of the label), and it does not generalize well given 

how poor are its predictions beyond them. 

Recall that part of the significance of this study is that it advocates for the 

generation of a space beyond those contexts. In tandem with activities such as the tasks 

implemented in this teaching experiment, the software alone provided such a context. 

And in that context participants engaged in rich and authentic mathematical experiences. 

If the van Hiele model is used to constrain children’s geometric experiences to fit with its 

predictions – by informing standards, which inform the design of curricula, which 

influence teachers, we run the risk of cheating students out of these kinds of experiences.  
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