
 

 

 

 

 

 

 

 

 

Copyright 

by 

Babafemi Anthony Ogunyomi 

2015 

 

 



The Dissertation Committee for Babafemi Anthony Ogunyomi Certifies that this is 

the approved version of the following dissertation: 

 

 

Simple Mechanistic Modeling of Recovery from Unconventional Oil 

Reservoirs 

 

 

 

 

 

Committee: 

 

Larry W. Lake, Supervisor 

Kamy Sepehrnoori 

Sanjay Srinivasan 

Christopher J. Jablonowski 

James E. Bickel 



Simple Mechanistic Modeling of Recovery from Unconventional Oil 

Reservoirs 

 

 

by 

 

Babafemi Anthony Ogunyomi, B.S; M.S.E 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

May 2015 



Dedication 

 

I dedicate this work to;  

my parents, Mr. Olatokunbo S. and Mrs. Olufunke A. Ogunyomi, my wife, Oyinkansola 

and my daughter Oluwadarasimi and my siblings, Yemi, Tomi and Jide 

 



 v 

Acknowledgements 

I thank God for his faithfulness he has thoroughly overwhelmed me with many 

undeserved graces and favor. My sincere gratitude and appreciation goes to Dr. Lake for 

his unflinching support and encouragement during the course of this work. I want to 

thank him for giving me the opportunity to work with and learn from him. I also want to 

thank him for being patient and understanding and for funding my research. I would also 

like to thank Dr. Jablonowski, he was very influential in my decision to pursue a 

doctorate degree. Thank you very much for all your help and encouragement. I would 

also like to thank Dr. Sepehrnoori, Dr. Srinivasan and Dr. Bickel for serving on my 

committee. I greatly appreciate the support and help I received from Shah Kabir. 

The work reported in this dissertation was funded by the Center for Petroleum 

Asset Risk Management (CPARM) whose sponsors include Chevron, Caesar Systems 

(PetroVR), Weatherford, Drilling Info, Hess, BP and Kuwait National Oil Corporation. I 

want to thank you all; without your support this work would have not have been possible. 

I especially want to thank Hess Corporation for providing field data to test the models 

developed in this work. And to the wonderful people I worked with at Caesar Systems, 

Victor Koosh, Ken Blott, Torben Riis and Jim Thom, thank you for your support. 

It has been a great privilege and experience attending such a prestigious program 

and along the way I have meet a lot of wonderful people who have contributed to my 

success. I would like to thank Cheryl Kruzie, Frankie Hart, Heather Felauer, Esther 

Barrientes, Roger Terzain and John Cassibry for all their help. I would also like to thank 

all the good friends I made during the course of this work. 

Finally, I would like to thank my dad for the words of wisdom he shared with me, 

my siblings Yemi, Tomi and Jide thank you for all your prayers. I would also like to 



 vi 

thank my beautiful and lovely wife, Oyinkansola, thank you for everything you have 

been to me and for the gift of being a father. To my beautiful daughter, Oluwadarasimi, I 

love you and there is no pressure whatsoever. I also would like to thank my father and 

mother in law for their help and support. 



 vii 

Simple Mechanistic Modeling of Recovery from Unconventional Oil 

Reservoirs 

 

Babafemi Anthony Ogunyomi, Ph.D. 

The University of Texas at Austin, 2015 

 

Supervisor:  Larry W. Lake 

 

Decline curve analysis is the most widely used method of performance 

forecasting in the petroleum industry. However, when these techniques are applied to 

production data from unconventional reservoirs they yield model parameters that result in 

infinite (nonphysical) values of reserves. Because these methods were empirically 

derived the model parameters are not functions of reservoir/well properties. Therefore 

detailed numerical flow simulation is usually required to obtain accurate rate and 

expected ultimate recovery (EUR) forecast. But this approach is time consuming and the 

inputs in to the simulator are highly uncertain. This renders it impractical for use in 

integrated asset models or field development optimization studies. The main objective of 

this study is to develop new and “simple” models to mitigate some of these limitations. 

To achieve this object field production data from an unconventional oil reservoir 

was carefully analyzed to identify flow regimes and understand the overall decline 

behavior. Using the result from this analysis we use design of experiment (DoE), 

numerical reservoir simulation and multivariate regression analysis to develop a 

workflow to correlate empirical model parameters and reservoir/well properties. Another 

result from this analysis showed that there are at least two time scales in the production 

data (existing empirical and analytical model do not account for this fact). Double 
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porosity models that account for the multiple time scales only have complete solutions in 

Laplace space and this make them difficult to use in optimization studies. A new 

approximate analytical solution to the double porosity model was developed and 

validated with synthetic data. It was shown that the model parameters are functions of 

reservoir/well properties. In addition, a new analytical model was developed based on the 

parallel flow conceptual model. 

A new method is also presented to predict the performance of fractured wells with 

complex fracture geometries that combines a fundamental solution to the diffusivity 

equation and line/surface/volume integral to develop solutions for complex fracture 

geometries. We also present new early and late time solutions to the double porosity 

model that provide explicit functions for skin and well/fracture storage, which can be 

used to improve the characterization of fractured horizontal wells from early-time 

production data.
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Chapter 1: Introduction 

This chapter presents a thorough description of the problem this dissertation solves and a 

brief summary of the organization of this dissertation. 

1.1 Problem Description 

According to Exxonmobil’s Energy outlook to 2040, global energy demand will be about 

30 percent higher in 2040 compared to 2010 with an increasing share of the global energy supply 

coming from unconventional sources such as shale formations. The volume of unconventional 

hydrocarbons in the world far outweighs the volume of their conventional counterpart (National 

Petroleum Council NPC, 2007); thus, unconventional reservoirs represent a vast, long-term, 

global source of energy. The NPC defined an unconventional reservoir as a reservoir in which 

hydrocarbons cannot be produced at an economic rate or in economic volumes unless the wells 

in the reservoir are stimulated by a large hydraulic fracture treatment, a horizontal wellbore or by 

using multilateral wellbores or some other technique to expose more of the reservoir to the 

wellbore. Examples of unconventional reservoir include tight sands, coalbed methane, and shale 

gas. 

 The development of unconventional reservoirs in the United States began in the 1820s. 

Many studies have been, and are still being carried out to better understand and predict the 

performance of unconventional wells. In spite of this, the economic development of 

unconventional reservoirs is still very risky. More recently, the development of unconventional 

reservoirs has been driven by the increase in oil and gas prices and technological advancements 

in drilling, completions, production and geosciences. Unconventional reservoirs are typically 

developed with a multitude of horizontal wells that are stimulated using multistage, propped 

hydraulic fractures. The induced fractures have a complex geometry that maximizes the contact 

area between the reservoir and the wellbore. Thus, it is believed that the initial production rates 

from these wells depend on the quality of the hydraulic fracture treatment. Because 
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unconventional reservoirs have a very small permeability (of the order of a nano-darcy) and the 

wells drilled in these reservoirs are typically fractured, the performances of these wells are 

difficult to understand and predict. For instance, it is not possible to differentiate between 

production from the induced hydraulic fractures and the reservoir matrix nor is it possible to 

have a complete knowledge of the fracture geometry and hence predict the flow through these 

fractures. 

Also, hydrocarbons are stored in unconventional reservoirs by three main mechanisms 

1. They can be trapped in the primary porosity of the reservoir (matrix pore spaces)  

2. They can also be trapped in the secondary porosity (open fractures) and  

3. In shale gas reservoir, the gas can also be adsorbed on the organic matter that is present in 

the shales.   

The hydrocarbons trapped within the secondary porosity are produced when the wellbore 

transverses these fractures while the adsorbed gas is produced when the reservoir pressure is 

sufficiently small to cause gas desorption. Several authors (Cipolla et al., 2009 and Moridis et 

al., 2010) have shown that desorbed gas production is not significant at the early stage of 

production from an unconventional reservoir but it becomes more important late in the field life 

contributing between 5-10% of the ultimate gas recovery. 

Reservoir properties cannot be reliably evaluated from traditional pressure transient 

analysis, interference test or material balance techniques because of the typically very long times 

required in unconventional reservoirs to achieve stable flow (because of the extremely low 

permeability). 

According to Lee and Sidle (2010) decline curve analysis is the most widely used method 

of forecasting production from shale gas wells. The empirical decline curve equation presented 

by Arps (1945) has the following general form: 
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In typical applications, equation 1.1 is fitted to production rate-time data to determine parameters 

b and Di. Once the parameters are obtained, the equation is used to forecast the well/reservoir 

performance and also to estimate the ultimate recovery (EUR). In unconventional 

wells/reservoirs, the parameter b is often greater than 1 (b>1; a consequence of the fact that flow 

is dominated by transient effects) which makes the cumulative production estimated from 

equation 1.2 at large time (t→∞) to be greater than is physically possible, that is, 

limt→∞Np(t) → ∞. 
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Several authors (Harrell et al., 2004; Cheng et al., 2008) have suggested ways to overcome this 

problem but the different methods suggested by these authors lack physical basis (Lee and Sidle, 

2010). 

 A general consensuses developing in the reservoir engineering community with regard to 

the modeling of unconventional well performance is centered on two main ideas  

1. A stimulated reservoir volume (SRV) develops around the fractured wellbore and  

2. External to the SRV is an un-stimulated low permeability reservoir volume (reservoir 

matix). 

These two ideas are at the core of most conceptual models. In reality, it is difficult to estimate the 

size of the SRV even from micro-seismic data (if it is available) and the geometry of the 

fractures introduces non uniqueness issues in most of the analytical models; thus, uncertainty is 

inherent in predictions of production from unconventional reservoirs. 

 Because of these difficulties in characterizing and predicting the performance of 

unconventional wells, it is difficult to formulate an “optimal” field development plan for these 

types of reservoirs. McKinney et al. (2002) showed that non-optimal well spacing in 

unconventional gas reservoirs resulted in about fifty percent loss in value. This indicates that it is 

important to identify the optimal well spacing for these reservoirs as early as possible in the 
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project life. A plausible method of arriving at the optimal well spacing is to conduct a detailed 

integrated reservoir study that involves a multi-disciplinary team. A problem with this approach 

it that the information needed to perform this type of study is not readily available and also very 

uncertain at the planning phase of a project. This approach is also time consuming and 

expensive. Using this method to account for uncertainty will increase the cost and time 

exponentially. An emerging modeling approach in field development planning is integrated asset 

modeling (IAM) where all components of the system are modeled independently and then 

coupled dynamically to provide a holistic view of the project. This approach accounts for the 

interactions between subsystems e.g. surface and subsurface variables, such as pressure 

interactions/interference, fluid mixing and flow assurance, facility constraints and identification 

of system bottlenecks and backpressures. Acosta et al. (2005), Saputeli et al. (2008) and Rotondi 

et al. (2008) have reported some of the numerous advantages to integrated asset modeling. 

Ogunyomi et al. (2011 and 2010) and Ettehad et al. (2009) have reported different applications 

of IAM for field development optimization studies. A major advantage of IAM is that it permits 

the evaluation of the impact of different options on the entire system thereby facilitating better 

decision making. However, at the heart of the IAM is the need to have simple models for each 

component of the project that runs very fast. The simple models that currently exist for the 

reservoir component have no physical basis and they do not account for the multiple time scales 

that are believed to exist in the production data from unconventional reservoirs. 

Given that we are yet to fully understand how the various physical processes govern 

production from unconventional reservoirs, we must develop time and cost efficient methods that 

honor the basic physical processes while at the same time accounting for uncertainties in the 

reservoir, facilities and economic parameters. No study as yet been done to present such a 

method and the objective of this work is to address this issue. Thus, the overall objective of this 

study is to develop a simple rate – time model that honors the basic physical process that controls 

flow from these reservoirs and also accounts for the expected multiple time scales observable in 

the production data. 



 5 

1.2 Research Objectives 

The primary objectives of this research are summarized below: 

1. Understand the decline behavior and producing characteristics of oil wells by 

carefully and thoroughly analyzing production data from unconventional reservoirs to 

identify the predominant flow regimes and producing characteristics from these 

reservoirs. 

2. Investigate the existence of any relationship between empirical model parameters and 

reservoir and/or well completion properties. The two empirical models considered in 

this study are the parallel flow and the logistic growth models. 

3. Develop “simple” analytical and physics based models that describe and predict the 

production rate performance of unconventional oil wells/reservoir. 

4. Verify the ability of the models developed to accurately predict the performance of 

unconventional wells/reservoirs with synthetic data and show their utility by applying 

it to field data. 

5. Present new analytical models that can be used to model the performance of fractured 

horizontal wells with complex geometries. 

1.3 Organization of Dissertation 

Chapter one gives a description of the problem this dissertation addresses and states the 

research objectives and presents the organization of this dissertation. 

In chapter two a critical and thorough review of the literature is presented. Chapter three 

gives the details of the result of field data analysis using model and theoretical based analysis 

and the development of functional correlations between the model parameters and the 

reservoir/well properties. 

Chapter four presents a new analytical expression for modeling and forecasting 

production (and EUR) from fractured horizontal wells that exhibit multiple time scales and long 

periods of transient flow. In addition this chapter presents a sensitivity analysis of the new 
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model. In chapter five a new approximate solution to the double porosity model is presented. 

This solution was developed using first principles and was validated with synthetic data and 

shown to have model parameters that are function of the reservoir and/or well properties. 

Example application of the new solution to field data is also shown. New analytical expressions 

for the double porosity model are developed in chapter six but unlike the widely available 

solution, the solution presented is for a conceptual model that has radial/circular fracture 

geometry. A key result in this chapter is the development of new analytical expressions for 

wellbore storage and skin. A sensitivity analysis of the new solution is also presented. Chapter 

seven presents the fundamental solution to the (3D) diffusivity equation and how to combine this 

solution with line and/or surface integrals to develop analytical solutions for fractures with 

complex geometries. Chapter eight summarizes the results presented in this work and gives the 

important conclusion. It also gives some advice on possible future direction for continued 

research using the result presented. 
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Figure 1-1: Conceptual model of a fractured horizontal well with a stimulated reservoir volume and the un-stimulated 

reservoir volume external to the SRV 
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Chapter 2: Review of Relevant Literature 

This chapter provides a critical review of relevant literature to highlight the present gaps 

in knowledge that pertains to modeling and predicting production from unconventional oil 

reservoirs. 

2.1 Traditional and Modern Decline Curve Analysis 

After analyzing production data from conventional oil wells, Arps (1945) presented a 

family of equations that can be used to model the production decline behavior of these wells. 
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Equation 2.1 is the general form of the decline equation and equation 2.2 is the cumulative form, 

where qi Di and b are the model parameters. When equation 2.1 is applied to production data 

from unconventional reservoirs the b parameter is often greater than one and when this occurs 

the ultimate recovery obtained from equation 2.2 is infinite (nonphysical), that is; 
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Fetkovich (1980) presented a method of analyzing production decline using type curves, 

an idea analogous to that used in well testing. He presented different methods of constructing 

type curves for decline curve analysis and demonstrated that decline curve analysis has a strong 

fundamental basis by relating decline curve parameters to reservoir properties. An observation of 

his paper was that a decline exponent, b > 1 is required to match rate-time data for wells 

experiencing transient flow conditions. The data Arps analyzed were from wells drilled in 

conventional reservoirs as a result we can assume they were already in stabilized flow. Therefore 

the Arps’ model(s) are not suitable for use in unconventional reservoirs. Palacio and Blasingame 
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(1993) presented a rigorous method for analyzing gas well performance with decline curve 

analysis via type curves. The curves are based on the use of modified time functions and a new 

algorithm to compute gas in place from production data for variable rate and/or variable 

pressures. 

In a critical review of common methods used to estimate reserves in tight gas reservoirs, 

Cox et al (2002) concluded that the rate-time decline curve analysis should only be used when it 

is certain that flow is boundary dominated because the development of the rate-time decline 

curve method is based on the assumption that a drainage volume has been established by the 

well. Lee and Sidle (2010) also critiqued the volumetric, material balance, analog, decline 

curves, history matching and type curves methods of reserves determination and concluded that 

the understanding of the basic physics underlying the recovery processes is incomplete and that 

the commonly used decline curve models may be inappropriate for use in extremely low 

permeability reservoirs. 

Kabir and Lake (2011) used a discretized form of the capacitance resistive model (CRM) 

to estimate the expected ultimate recovery from unconventional reservoirs. Their method was 

validated using synthetic and field data. In their study 3 blocks of the discretized CRM model 

was usually sufficient to match the historical production data. This probably corroborates the 

theory that hydraulically fractured shale gas wells have, in addition to the fractures created by the 

hydraulic fracturing process, a network of secondary fractures that are induced by the fracturing 

process. The stimulated reservoir volume (SRV) thus comprises the secondary network and the 

induced fractures (thus the first block could represent the network of secondary fractures; the 

second block could represent the main fractures while the third block could represent the 

undamaged volume adjacent to the SRV). 

To overcome the nonphysical reserves estimate problem of the Arps model, Valko (2009) 

introduced the stretched exponential model (SEDM) for which the rate form is as shown in 

equation 2.4 and the cumulative form in equation 2.5: 
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qi, τ and n are the model parameters where 0 1n  . In equation 2.5   is the gamma function. 

According to Johnston (2008), the behavior described by equation 2.4 has been observed in a 

wide variety of physical systems and it can be interpreted as the global relaxation of system that 

contains many independent relaxing species or elements. Mathematically, 
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Ilk et al. (2010) presented the power law model which was also derived after analyzing 

production data from fractured horizontal wells in a shale gas reservoir. They found out that the 

decline rate plotted as a straight line on a log-log plot and with this observation they formulated 

and solved the problem given in equation 2.6 using appropriate boundary conditions 
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The solution they obtained is given as shown below: 
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But they found out that this solution is only valid during transient flow and decided to arbitrarily 

add another term to account for stabilized flow to obtain their final solution which is given by 
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The power law model given in equation 2.7 is identical to the SEDM, but for the arbitrary 

inclusion of a second term in the argument of the exponential term, the two models are 

essentially the same. 
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Duong (2011) also analyzed field production data from unconventional formations and 

observed that a graph of 
 

 p

q t

G t
 verses time plotted as a straight line on a log-log plot. Based on 

this observation he formulated the problem shown in equation 2.9: 
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where ( ) mt at  , a and m are constants. Upon solving the problem defined in equation 2.9 with 

appropriate initial condition, he obtained the rate and cumulative functions as: 
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Clark et al. (2011) introduced the first application of the logistic growth model to forecast 

rate and EUR from unconventional formations. Logistic growth model have long been used in 

studies for predicting market penetration of new products, population growth, organ regeneration 

etc. A property of the logistic growth model that make them applicable to modeling flow from 

unconventional reservoirs is that in the limit to infinite time they have finite values. Tsoularis 

and Wallace (2002) presented the general form of the logistic growth model as: 
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where K is the carrying capacity, it is the maximum value the quantity N can ever get. r, α, β and 

ϒ are positive real parameters. In applying equation 2.12, Clark et al. (2011) after an empirical 

analysis of production data from gas wells made the following changes, 
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All of these models were empirically derived as such they still suffer from the fact that 

the model parameters are not functions of the reservoir/well properties. They were all derived 

from analyzing production data from only gas wells. In addition none of these models accounts 

for the multiple time scales that these wells are expected to exhibit. If using the power law and 

Arps models, the user has to arbitrarily choose when transient flow ends which introduces a lot 

of uncertainty. 

2.2 Reservoir/Fracture Characterization and Double Porosity Models 

Barenblatt and Zheltov (1960) presented the first formulation of the double-porosity 

model and Warren and Root (1962) presented its first application to flow problems in the 

petroleum industry. The problem as formulated by Warren and Root (1962) is given by equations 

2.15 and 2.16:  
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The conceptual model for this problem is shown in Figure 2-1. They assumed that cross flow from 

the matrix into the fracture occurred under pseudo steady state condition (Equation 2.16). This 

assumption is likely not to be appropriate in unconventional reservoirs because of their typically 

very small permeability. They solved the problem for an infinite acting boundary condition and 

obtained the solution given below (s is the Laplace space variable): 
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Where,  
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 is the inter-porosity transfer function, ω is the storativity ratio and 

λ is the inter-porosity flow parameter. A key result of their study was the presence of two time 

scales in the solution. The first time scale being attributed to the fracture while the second time 

scale is attributed to the matrix.  

Since Warren and Root (1962) presented their solution, many authors (de Swaan, 1976; 

Mayerhofer, 2006; Carlson and Mercer, 1989; El-Banbi, 1998; Ozkan et al., 1987) have 

presented different applications of the model. All the analytical solutions presented have all been 

in Laplace space and have had to be numerically transformed to real time space using some form 

of inversion algorithm of which the Stehfest algorithm (Stehfest 1970) is the most popular. 

Da Prat et al. (1982) presented a method of determining the permeability thickness 

product for a naturally fracture reservoir using the double porosity model. In another paper, Da 

Prat et al. (1981) presented type curves for decline curve analysis in double porosity systems. 

The curves were derived from the solution to the mathematical problem given by equations 2.15 

and 2.16 for an infinite and closed outer boundary condition but in radial coordinates. Odeh 

(1965), Mavor and Cinco Ley (1979) also presented solutions for radial, infinite acting and 

closed outer boundary systems with and without skin and storage effects. All of these solutions 

assumed a pseudo steady state fluid transfer from the matrix to the fracture and were solved with 

Laplace transforms method. 

El Banbi (1998) presented the solution for a double porosity reservoir with linear and 

used a transient matrix to fracture flow model. He presented a similar solution for the radial case 

but did not exploit the solution any further. More recently, Bello and Wattenbarger (2008) 

presented the solution to the double porosity model for linear flow in which they were able to 

obtain closed form analytical solutions for certain ranges of time. To do this they broke their 

Laplace space solution in to smaller intervals using special properties of the solution which they 

could invert to real-time space. This piece-wise solution would have to be applied sequentially. 
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Samandarli et al. (2011) presented the application of this solution to history matching and 

forecasting the performance of shale gas wells.  

Song (2014) presented a finite-difference solution to this problem and its application to 

oil production from hydraulically fractured wells. Most of the solutions in the literature have 

assumed the fractures to have a quadrilateral/linear geometry and the few that have considered 

circular/radial fracture geometries did not analyze their solutions further. 

Olanrewaju and Lee (1989) presented an analytical solution for double porosity 

reservoirs that permits modeling peudo steady and unsteady state matrix-fracture flow, for both 

finite and infinite acting reservoirs and it included the effect of gas desorption from the pore 

surfaces of shale matrix, wellbore storage and skin effect. Bumb and McKee (1988) presented an 

approximate analytical solution for single phase gas flow when gas is present both as free gas (in 

the pore volume) and adsorbed gas on the reservoir matrix. Gas desorption was modeled with the 

Langmuir isotherm, the approximate solution was verified with finite difference solution. They 

concluded that the effect of gas desorption cannot be detected from production test but can be 

easily determined from geologic information. Their solution also showed the effect of gas 

desorption as an increased compressibility term that is equivalent to a negative skin factor on the 

well production. 

Ozkan et al. (2010) presented a study that investigated the effect advective and diffusive 

flow on the performance of fractured horizontal wells in unconventional reservoirs. Their result 

showed that while diffusive flow become important later in the life of the well it does not change 

the general characteristics of the flow rate profile and only increases the magnitude of the flow 

rate. These results suggest that a “useful model” can be developed if it is assumed that advective 

flow is the primary physical mechanism of flow while assuming the other mechanisms are 

negligible. 

Miller et al., (2010) presented a work flow to characterize reservoir and hydraulic 

fracture properties for well performance evaluation and also developed a lump parameter model 
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that can be used for stochastic forecasting of shale gas wells. The method is based on the 

assumption that a stimulated reservoir volume (SRV) develops around the fractured well and 

there is a region of un-damaged reservoir far from the well. They also assumed that four flow 

regimes can be observed in shale gas well performance; internal linear transient, internal 

depletion, external linear transient and drainage volume depletion. A weak point of the model 

they presented is that it has non-uniqueness issues and it is a lumped model. 

2.3 Production Data Analysis 

Doublet et al. (1994) presented a method of analyzing and interpreting production data in 

order to estimate reservoir volumes and flow characteristics using type curves matching 

techniques and material balance time function. The method involves plotting production rate 

functions (pressure drop normalized rate function, rate integral function and rate integral 

derivative function) against the material balance time and then matching the plots to the 

Fetkovich/McCray type curve, making sure that the boundary dominated portion of the 

production data falls on the Arps b = 1 region of the type curve. One of the match points is then 

used to compute the desired reservoir properties. The method can be used to obtain reliable 

estimates of the original and movable oil volumes as well as good estimates of permeability and 

skin factor.  

Building on the work of Cox et al. (2002) and Bumb and Mckee (1988), Lewis and 

Hughes (2008) presented a method of analyzing production data from shale gas well accounting 

for adsorbed gas. They presented example applications of the method to a simulated data set as 

well as 2 field cases. But the sheer number of parameters in their model makes the analysis 

method difficult to interpret and corroborate the results obtained. The method did show the 

existence of the flow regimes used to constrain many of the model parameters. Anderson et al. 

(2010) also presented a method of analyzing production data from shale gas wells that 

considered the long term well performance that is typical ignored by other methods. Their 

method accounts for multiple transverse fractures in horizontal wells and also allows the 
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stimulated reservoir volume to reside within an infinite acting reservoir. The paper presented a 

systematic way of using the log-log plot, specialized plot – square root-time plot and flowing 

material balance plot to identify flow regimes, derive reservoir and fracture parameter and also 

estimate reserves. 

2.4 Analytical or Semi Analytical Solutions for Complex Fracture 

Geometries 

Gringarten and Ramey (1973) presented the application of Green’s functions and Source 

function for solving flow problems in petroleum engineering. They summarized the basic 

properties of the Green’s function and the solution for problems with uniform flux sources and 

also showed how the solution reduces to the fundamental point source solution of heat 

conduction problems as presented by Lord Kelvin (1884). They also showed how to extend the 

solution to an infinite conductivity source. The solution used the Newman production method to 

obtain solutions to a wide variety of flow problems. Gringarten et al. (1974a) presented 

analytical solutions for a vertically fractured well by using Green’s function and the Newman’s 

product method. The solutions were for a uniform flux and infinite fracture conductivity case. 

They showed that the solution for the infinite conductivity fracture case can be obtained from the 

uniform flux solution when it is evaluated at the fracture plane with 0.732Dx  . A comparison 

of these solutions with the numerical solution of Russell and Truitt (1964) showed that there 

were errors in some cases of the Russell and Truitt solution. 

Gringarten and Ramey (1974b) presented analytical solutions for a well (producing at a 

constant rate) with a single horizontal fracture of finite thickness at any position within a 

producing interval in an infinitely large reservoir. The solution is a general solution that can be 

used to model plane horizontal fractures, partial penetration of the producing formation and 

limited flow entry throughout a producing interval. The model presented showed that there are 

four possible different flow regimes that can be observed with horizontal fractures. The first flow 

regime due to fracture storage could be absent depending on the fracture size. A major 
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conclusion of this study is that the behavior of horizontally fractured wells differs from that of 

vertical fractured wells for small values of 
Dh  (dimensionless reservoir thickness) therefore it is 

possible to identify horizontal fractures from well-test data. 

Cinco Ley et al. (1978) presented general solutions for the transient pressure behavior of 

a well intersected by a finite-conductivity vertical fracture. These solutions were obtained with 

Green and source functions and the Newman product method, due to the coupling of the fracture 

and matrix equations they obtained a Fredholm integral equation which was solved numerically 

and thus they obtained effectively a semi analytical solution. 

Ramey and Gringarten (1975) presented the result of the application of the high-volume 

vertical fracture solution to steam well data from The Geysers. They presented the log-log type 

curve matching and semi-log graphing of transient pressure data. The solution used was derived 

using a finite difference simulator that was originally developed to study partially penetrating 

well with storage and skin effect. 

Hagoort (2009) presented a solution to the diffusivity equation for pseudo steady state in 

a closed rectangular reservoir which was developed using Fourier finite transform. This solution 

was used to evaluate the productivity index of a vertical, infinite conductivity fracture in a closed 

rectangular reservoir for different fracture lengths, reservoir aspect ratios and fracture 

eccentricity. These PI were then compared to those reported using the equivalent pressure (EP) 

and the average pressure (AP) methods. The result of this comparison showed that the PI’s 

obtained with the EP method were too optimistic while those obtained with the AP method were 

too pessimistic. Both methods gave the correct solution when the fracture was totally 

penetrating. They also presented a comparison of shape factors against the Earlougher shape 

factors. These results showed that the shape factors reported by Earlougher were considerably 

larger than those obtained using the exact solution they presented except when the fracture is 

completely penetrating. 

Medeiros et al. (2010) presented a semi analytical method for computing pressure 

transients in heterogeneous formations with composite, layered and compartmentalized 
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reservoirs. Amini and Valko (2010) introduced the distributed volume sources method of 

predicting production from fractured horizontal wells with non-Darcy flow conditions. Kuchuk 

and Biryukov (2013) investigated the pressure transient behavior of continuously and discretely 

fractured naturally fractured reservoirs using semi-analytical solutions. The basis function used 

in all of these methods is the Green’s function solution. All the fracture geometry considered are 

the linear or quadrilateral types, no consideration was given to fractures with curved or more 

complex geometries. Wu (2014) has shown that hydraulic fractures tend to be curved or have 

complex geometries (see Figure 2-2) yet no analytical/semi-analytical solution has been presented 

for such geometries. Ozkan (1988) presented a point source solution to the diffusivity equation 

for an infinite acting reservoir in Laplace space and used the method of images to produce 

solutions for closed outer boundary reservoirs and he developed a library of solutions for regular 

shaped sources. 

All the methods and tools that have been developed were based on the analysis of 

production data from gas fields. In addition all the analytical solutions available for the double 

porosity models are only available in Laplace space. Most solutions only considered hydraulic 

fractures with linear or quadrilateral geometries and those that considered radial flow in the 

fractures only obtained closed form analytical solutions in Laplace space and did not analyze the 

solutions any further. Beyond numerical solutions, no solutions for complex fracture geometries 

have been published in the literature. This dissertation develops solutions to fill the gaps 

highlighted above. 
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Figure 2-1: Schematic of an actual fractured reservoir and its corresponding idealization 

 

 

 

 

 
Figure 2-2: Predicted fracture geometry after hydraulic fracturing (Source: Kan Wu, 2014) 
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Chapter 3: Correlation Functions for Empirical Model Parameters 

and the Reservoir and Well properties 

Most decline curve methods have two main limitations; the model parameters as a 

rule are not functions of reservoir parameters and in unconventional reservoirs may yield 

unrealistic (non-physical) values of expected ultimate recovery (EUR) because boundary-

dominated flow may not develop in unconventional reservoirs. Over the past few years, 

several empirical models have emerged to address the second limitation, but they are 

challenged by the time to transition from infinite-acting flow period to the boundary-

dominated flow. In the study presented in this chapter, we performed statistical and 

model-based analysis of production data from hydraulically fractured horizontal oil wells 

and present a method to mitigate some of the limitations highlighted above. 

The production data were carefully analyzed to identify the flow regimes and 

understand the overall decline behavior.  Following this step, we performed model-based 

analysis using the parallel-flow model (sum of exponential terms), and the logistic-

growth model (Clark et al., 2011). After the model-based analysis, the model parameters 

were analyzed statistically and cross plotted against available reservoir and well 

completion parameters. Based on the conclusion from the cross-plots and statistical 

analysis, we used design of experiments (DoE) and numerical-reservoir simulations to 

develop functions that relate the model parameters and reservoir/well completion 

properties. 

3.1 Method 

The data used for this study comes from a liquid-rich shale play in North 

America. This dataset contains data from 80 wells, with varying well lengths and 

completion properties. These wells have also been on production for varying amounts of 
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time, ranging from 50 – 1500 days. Water production from these wells was relatively low 

with average water cut between 0.1 and 0.3. This data are reported on a daily basis and 

therefore constitute high-frequency information. 

The work flow used for this study is summarized as follow: 

1. Analyze oil rate and well head pressure data to identify the predominant flow regime 

and signatures from this data set. 

2. Perform model-based data analysis by fitting oil rate to empirical models to estimate 

the model parameters. 

3. Analyze and crossplot the model parameters obtained in step 2 against available 

reservoir and well completion properties. This step enabled investigation of the 

existence of any relationship between the empirical model parameters and the 

reservoir and well completion properties. 

4. Because the previous steps did not reveal any significant relationship; a workflow 

was developed that uses design of experiment (DoE) and numerical reservoir flow 

simulations to develop relationships between the model parameters and the reservoir 

and well completion properties. 

3.1.1 Theoretical Basis for Flow Regime Identification 

Wattenbarger et al. (1998) presented an application of the solution to the one 

dimensional diffusivity (linear coordinates) equation for a closed rectangular boundary to 

facilitate the analysis of production data in tight gas wells. The solution shows that for the 

constant pressure inner boundary condition, a log-log plot of rate versus time plots as a 

straight line with a slope of one half at early times and as an exponential decline at late 

times. This solution is given by the following expression: 
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where, 
Dq is the dimensionless production rate and 

Dt  is the dimensionless time. 

For the constant rate inner boundary condition, a log-log plot of wellbore pressure 

versus time also plots as a straight line with a slope of one half and transitions to another 

straight line with unit slope. The solution for this case is given as 
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where 
wDp  is the dimensionless pressure at the wellbore. 

Plots of these solutions (equations 3.1 and 3.2) are in Figure 3-1. The 

characteristics of these solutions have been observed in production data from many 

hydraulically fractured horizontal wells in unconventional formations. Patzek et al. 

(2013) analyzed production data from 8,294 stimulated horizontal wells in North 

America and observed that the flow rate from these wells obeyed a simple scaling theory 

where the flow rate is proportional to the inverse of the square root of time. A behavior 

that can be modeled with equation 3.1. 

Cinco-Ley and Samaniego (1981), Kuchuk and Biryukov (2013) and Bello et al. 

(2008) have shown that a quarter slope on a log-log plot of rate versus time (constant 

pressure inner boundary condition) can be interpreted as the simultaneous linear flow of 

fluid in the fracture and reservoir matrix. Equation 3.1 does not capture the quarter slope 

because it is for the case where there is flow from the reservoir matrix in the fracture 

face. On this basis we analyzed the data set. 

The data set had both production rates and tubinghead pressures. We use the 

tubinghead pressures as a proxy for the bottomhole well flowing pressure by assuming 
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that there is a constant pressure difference between the tubinghead pressure and the 

bottomhole pressure because of the pressure head of fluids in the wellbore. Figure 3-2 

shows a typical dashboard from the flow regime identification exercise. 

From the log-log plots of rate versus time and tubinghead pressure versus time for 

all the wells in the data set we make the following observations: 

1. The rate-time plots showed slopes of one-half, one, one-and-a-half and exponential 

decline in no particular order. But in general the wells exhibit a power law behavior 

with the one-half slope being the predominant slope observed. 

2. The plot of the tubinghead pressures versus time show the existence of at least two 

time scales in most of the wells. We make this conclusion because we observe a one 

half slope followed by an exponential curve and this is followed by a constant 

tubinghead pressure. The exponential curve defines the fracture boundary and the 

constant tubinghead pressure indicates flow from the reservoir matrix. 

3.1.2 Model Based Analysis 

This section presents the results of the model based analysis. We considered two 

empirical models in this analysis, the logistic-growth model and the parallel-flow model 

(sum of exponential terms). These models were fitted to rate and cumulative production 

data to obtain the model parameters, which were statistically analyzed. We then 

investigated the existence of any relationship between the model parameters and the 

reservoir and well completion properties by cross-plotting them against available well 

completion and reservoir properties. 

Parallel Flow Model: 

The parallel-flow model or sum of exponential model is based on the conception 

that when a horizontal well is hydraulically fractured, the reservoir rock is broken into or 
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subdivided into discrete blocks, each of which makes independent flow contribution to 

surrounding the fractures. Flow from each piece of block is assumed to decline 

exponentially, which is consistent with boundary-dominated flow. A model that accounts 

for both transient flow and boundary dominated flow is present in Chapter 4. The 

mathematical expression for rate is then given by 
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where, 

 Tq t = production rate from the fractured horizontal well 

ikq = initial production rate from the reservoir matrix element k 

k = time constant for reservoir matrix k, defined mathematically as p tv c

J
,  

vp is the matrix pore volume, ct is the total matrix compressibility and J is the 

productivity index of the matrix, with units b/d/psi. This definition of the time constant is 

identical to that used in the capacitance resistance model (CRM) (Sayapour et al. (2008); 

Nguyen et al., 2010; Cao et al. 2014). 

For the parallel flow model the model parameter estimation was done by 

minimizing the problem defined below 
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where, 
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In formulating the model fitting problem, equation 3.4, we have normalized the 

model and data with the maximum value of production rate and then included the 

constraint that the coefficient of the exponential terms must be fractions that sum to 1. 

The objective of this formulation is so that we need not specify the number of 

exponential terms in the model beforehand, that is, 
eN can be set to large number and the 

optimization process would return a value for 
eN that will give the best fit to the data. The 

number of terms required is obtained as the number of fractional coefficients (
kf ) of the 

exponential terms that are not equal to zero. The model was fitted to data by finding 

values of 
kf  and 

k that minimize equation 3.4. Song (2014) while using an 11 cell finite 

difference model to analyze field production data revealed that a minimum of two to 

three cells were adequate in modeling production data. 

Logistic Growth Model: 

Logistic growth models are often used to model growth (population, market 

penetration of new products and technologies), see Tsoularis and Wallace (2001). Clark 

et al. (2011) presented the first application of the logistic growth model for predicting 

performance of unconventional reservoirs. The logistic growth model presented by Clark 

et al. (2011) is given as 
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where, 

N = carrying capacity, bbls  

a = constant, time
n
 

n = hyperbolic exponent, unitless 
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t = time. 

An expression for the production rate, q, is obtained by differentiating equation 

3.5 with respect to time, 
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Clark et al. (2011) described the carrying capacity in equations 3.5 and 3.6 as the 

estimated ultimate recovery for a well without an economic constraint and it acts as an 

upper limit on the cumulative production. The logistic growth model would not account 

for multiple scales observed in the production data. Note that in equation 3.5  pN t N  

as t  . For the logistic growth model we applied equations 3.5 and 3.6 to the data set 

by finding the values of the model parameters ( N , n and a ) that minimized the squared 

difference between the model predictions and field production rate data, that is 
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3.1.3 Results of Model-Based Analyses 

3.1.3.1 Example Application of Parallel-Flow Model 

In estimating the model parameters with the parallel flow model, Ne (the number 

of exponential terms) was initially set equal to four. An example application of the model 

to a well (UT-ID4) in the data set is in Figure 3-3. As shown in Figure 3-3 the parallel 

flow model gives a good fit to the production data (rate and cumulative), Figure 3-3b 

shows that the coefficient of determination is large at a value of 0.94. Figure 3-3d is a 

plot of the error versus time; error is defined as the squared difference between the model 

predictions and data. The error is larger at early time because there is more scatter in the 
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data compared to late time. A summary of the model parameters obtained for this case is 

in Table 3-1. 

This well only needs two exponential terms in the parallel flow model to obtain a 

good fit between the model and data. The fact that 
2f  and 

3f  turned out to be zero is most 

likely because of the initial condition. The estimated EUR for this well is 51.77 10 STB. 

3.1.3.2 Example Application of Logistic Growth Model 

Figure 3-4 presents an example application of the logistic growth model to the 

same well (UT-ID4) in the data set. From this figure the coefficient of determination is 

also large with a value of 0.83 (not as large as the 0.94 obtained with the parallel flow 

model).  Again, there is more error at early time because there is more scatter in the data 

at early time. The model parameters obtained for this example are summarized in Table 

3-2. The carrying capacity obtained for this well is 1.1x10
5
 STB; therefore, the EUR from 

this well based on the logistic growth model is 1.1x10
5
 STB. 

3.1.4 Results of Statistical Analysis of Model Parameters 

3.1.4.1 Analysis of Parallel-Flow Model Parameters 

After applying the parallel flow model to all the 87 wells in the data set it was 

observed that 58 wells required only three exponential terms, 28 wells required only 2 

exponential terms and only 1 well required four exponential terms. The resulting 

distribution of the fitting parameters is in Figure 3-5. Figure 3-5a, 3-5c, and 3-5e all 

present the distribution of initial production rates for each term in the parallel flow model 

that was not equal to zero. From these figures we conclude that all of the distributions are 

log-normally distributed, therefore initial production rates with values close to the mean 

value are more frequent than initial production rates with large value. The lognormal 

distribution also suggests that some extremely high values of initial production rates are 
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also possible although infrequent. Figure 3-5b, Figure 3-5d and Figure 3-5f are the 

corresponding distributions of time constants. The distributions of the time constants also 

appear to follow a log normal distribution. The values of the time constants in Figure 

3-5d and Figure 3-5f appear to have the same order of magnitude with mean values of 

4.7x10
4
 and 4.1x10

4
 days, respectively. The values of time constants in Figure 3-5d and 

8-5f appear to be a factor of 10 greater than the values in Figure 3-5b, the mean value of 

the time constants in Figure 3-5b is 381. This observation suggests that the time constants 

in Figure 3-5d and 8-5f are from the same distribution and the time constants in Figure 

3-5b are from another distribution.  

Physically, the time constants can be interpreted as a measure of how fast the 

fluids in a reservoir would drain; small values indicate that the fluids would drain very 

fast and large values imply that it would take longer for the fluids to drain from the 

reservoir (Ogunyomi et al., 2014). Based on this definition of the time constant we can 

state that there are at least two time scales in the data set, one time scale accounts for the 

high transmissibility, low storativity fractures (
1 ) and the second time scale accounts for 

the low transmissibility, high storativity reservoir matrix (
2 and

3 ). Table 3-3 presents 

the statistical summary of the model parameters for the parallel flow model. The range of 

each of the parameters in this table is quite large; this indicates that there is a great degree 

of variability in the well performance in the data set. 

3.1.4.2 Analysis of Logistic Growth Model Parameters 

Figure 3-6: presents the distributions (PDF and CDF) of the model parameters 

obtained for the logistic growth model. A general observation from this figure is that they 

also all appear to be log normally distributed. 
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Table 3-4 presents the statistical summary of the logistic growth model 

parameters for wells in the dataset. The mean value of the carrying capacity is 51.3 10  stb 

with a standard deviation of 46.9 10 stb. It has a range of 54.1 10 stb. The hyperbolic 

constant and the constant a  have mean values of 0.62 and 5897, respectively. The range 

of n and a are 2.13 and 54.8 10  respectively. This outcome can also be interpreted as the 

result of high degree of variability in well performance. 

3.2 Correlation between Model Parameters and the Reservoir and 

Well Completion Properties 

We investigate the existence of relationships between the model derived 

parameters and the reservoir and well completion properties with the two methods. For 

the first method, we investigated the existence of a linear relationship between variables 

by computing the correlation coefficient. Navidi (2008) defined the correlation 

coefficient (  ) as a measure of the degree of linear relationship between two variables, 

and it varies between +1 and -1. A value of +1 implies a strong positive linear 

relationship, a value of -1 means a strong negative linear relationship and a value of zero 

implies that there is no linear relationship between the two variables. 

With the second method, nonlinear relationships were investigated by making 

cross-plots of the model parameters (including its transforms) and the reservoir and well 

completion properties. These cross-plots are then evaluated for any recognizable 

functional relationship. The reservoir and well completion properties that were 

considered are: 

1. Initial number of fracture stages 

2. Lateral length of horizontal well 

3. Porosity 
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4. Thickness 

5. Initial reservoir pressure 

6. Fluid injected and 

7. Weight of proppant of injected 

3.2.1 Parallel Flow Model 

The computed correlation coefficients for the parallel flow model and the 

reservoir and well completion properties are summarized in Table 3-5 in which we have 

highlighted values of 0.2  . From this table we notice that the initial production rates 

show some level of correlation with most of the reservoir and well completion properties. 

The time constants on the other hand do not show the same level of correlation. The 

result of the statistical analysis of model parameters revealed that there are at least two 

time scales in the producing characteristic of the wells; therefore, in this section we use 

two terms of the PFM which yields the rate time function shown below; 
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where 
1i

q and 
2i

q are the initial production rate one and initial production rate two 

respectively. 1  and 2  are the time constant one and time constant two respectively. 

Initial Number of Fracture Stages: The cross plots in Figure 3-7 show the cross 

plot of PFM parameters and the initial number of fracture stages. Figure 3-7a is the cross 

plot of initial production rate one and the initial number of fracture stages. Figure 3-7b is 

the cross plot of time constant one and initial number of fracture stages. Figure 3-7c is 

plot for the initial production rate two and the initial number of fracture stages and Figure 

3-7d shows the time constant two plotted against the initial number of fracture stages. 

Although there is some scatter in all the plots shown in Figure 3-7 we can make the 
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following general comments; the initial production rates (one and two) increase as the 

initial number of fracture stages increases. The increase in the initial production rates was 

steep initially until the initial number of fracture stage is about 10 – 15 after which it 

became less steep. The time constants do not show any significant trend on the plots. 

Physically, this observation suggests that increasing the number of initial fracture stages 

beyond 15 will not significantly increase the performance of the well. 

Lateral Length (lw): The cross plots shown in Figure 3-8 are identical to those in 

Figure 3-7 except that the x-axis is now the lateral well length. From this figure no 

discernable relationship can be inferred between the model parameters and the lateral 

well length. 

Porosity: The cross plots shown in Figure 3-9 are identical to those in Figure 3-7 

except that the x-axis has been replaced by the reservoir porosity. No discernable 

relationship in observed in the plots presented in Figure 3-9. 

Thickness: The cross plots shown in Figure 3-10 are identical to those in Figure 

3-7 except that the x-axis has been replaced by the reservoir thickness. No discernable 

relationship in observed in the plots presented in Figure 3-10. 

Initial reservoir pressure: The cross plots shown in Figure 3-11 are identical to 

those in Figure 3-7 except that the x-axis has been replaced by the initial reservoir 

pressure. No discernable relationship in observed in the plots presented in Figure 3-11. 

Fracture Fluid Injected: The cross plots shown in Figure 3-12 are identical to 

those in Figure 3-7 except that the x-axis has been replaced by the volume of fracture 

fluid injected. The initial production rates (one and two) increases as the volume of 

fracture fluid injected increases. The increase in the initial production rates was very 
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steep initially until the injected fluid volume is about 2.5x10
41

 after which it became less 

steep. This observation suggests that increasing the volume of injected fluid beyond 

2.5x10
4
 will not significantly increase the performance of the well. The time constants 

show a negative exponential relationship with the volume of fluid injected. 

Weight of Proppant Injected: The cross plots shown in Figure 3-13 are identical to 

those in Figure 3-7 except that the x-axis has been replaced by the weight of proppant 

injected. The initial production rates (one and two) increases as the volume of fracture 

fluid injected increases. The increase in the initial production rates was very steep until 

the weight of proppant injected is about 10
6
 after which it became less steep. This 

observation suggests that increasing the weight of proppant injected beyond 10
6
 will not 

significantly increase the performance of the well. The time constants show a negative 

exponential relationship with the volume of fluid injected.  

3.2.2 Logistic Growth Model (LGM) 

Table 3-6 presents the computed correlation coefficients between the model 

parameters and the reservoir and well completion properties. In this table we have 

highligted 0.2  . Based on these criteria, the carrying capacity possibly has a linear 

relationship with well spacing, porosity, the average injection pressure, total fluid 

injected and the weight of proppant injected. The fact that the carrying capacity correlates 

with well spacing and porosity suggests that there is a relationship between the carrying 

capacity and the drainage volume of the well. The hyperbolic constant, n , and the 

constant, a , do not have any linear relationship with the reservoir and well completion 

properties.  

                                                 
1 The unit for the volume of fluid injected was not included in the data set. 
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Nonlinear relationships were investigated by making cross plots of model 

parameters and the reservoir and well completion properties. The results are summarized 

below: 

Initial Number of Fracture Stage: The cross plots in Figure 3-14 show the cross 

plot of logistic growth model parameters and the initial number of fracture stages. From 

this figure the carrying capacity and hyperbolic exponent have no nonlinear relationship 

with the initial number of fracture stages. Constant a on the other hand has a power law 

relationship with the initial number of fracture stages. 

Lateral Length (lw): The cross plots in Figure 3-15 show the cross plot of LGM 

parameters and the lateral well length. It can be concluded from this figure that the 

carrying capacity and hyperbolic exponent do not have any systematic nonlinear 

relationship with the lateral well length. Constant a has a logarithmic relationship with 

the lateral well length. 

Porosity: Refereeing to Figure 3-16. The carrying capacity appears to have a 

linear relationship with the reservoir porosity. While the hyperbolic exponent and 

constant a do not show any relationship with the reservoir porosity. 

Thickness: From Figure 3-17 it is observed that there is no relationship between 

the LGM parameters and the reservoir thickness. 

Initial reservoir pressure: There are no relationships between the LGM 

parameters and initial reservoir pressure; refer to Figure 3-18. 

Fracture Fluid Injected: From Figure 3-19a and Figure 3-19b we infer that the 

carrying capacity and hyperbolic exponent do not have any discernable relationship with 

the volume of fracture fluid injected. Figure 3-19c suggests that constant a has a power 

law relationship with the volume of fluid injected.  
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Weight of Proppant Injected: Figure 3-20 suggests that there is no relationship 

between the LGM parameters and the weight of proppants injected. 

3.3 Development of Mathematical Relationships between Empirical 

Model Parameters and Reservoir and Well Completion Properties 

The results of the statistical analysis of the model parameters in the previous 

sections show that the model parameters correlate to some degree with the reservoir and 

well completion properties. In this section we use design of experiment (DoE), numerical 

reservoir simulation and response surface modeling (RSM) to develop functional 

relationships between the model parameters and the reservoir and well completion 

properties. More details on the theory of DoE and RSM can be found in Box et al. (2005) 

and Myers and Montgomery (2002). 

We developed the functional relationship by: 

1. Generating data from numerical reservoir simulation, where we built the numerical 

simulation models based on the result of a fractional factorial design experiment. We 

used a 9 22VI

 fractional factorial design, which resulted in 256 numerical reservoir 

simulation runs. The reservoir and well properties used for this experiment are in 

Table 3-7. The size of the reservoir used is 10100 ft by 5575 ft and it was divided 

into a 101 × 25 grid blocks. The fracture were refined into an 11 × 5 × 1 grids and 

geomechanics effect was ignored. Figure 3-21 is a schematic representation of the 

process described above and Figure 3-22 is one of the numerical simulation models 

used for data generation. 

2. After generating the synthetic data, we estimated the parameters for the empirical 

models (logistic growth and parallel flow model) by fitting them to data using the 
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method described earlier. Rate and cumulative production data was used in the 

fitting exercise. 

3. Identify the reservoir and well completion properties that have the strongest effects 

on each parameter in the empirical models. We identified the strongest effects by 

performing regression analysis on each parameter in the empirical model and all the 

variables in Table 3-7. Using the t-statistic from the regression analysis, we 

eliminate those variables whose coefficient is most likely equal to zero based on 

their P-values from testing the null hypothesis. More details on hypothesis testing 

can be found in Jensen et al. (200) and Navidi (2008). The P value is the probability 

that the coefficient of a variable is equal to zero. The larger the P values the more 

likely the coefficient is equal to zero and the smaller it is, the less likely the 

coefficient is equal to zero. A P-value of 10
-4

 was chosen as cut off (the cut off P-

value was arbitrarily chosen and has no physical or mathematical basis), if the P-

value is greater than 10
-4

, the coefficient of that variable is not significantly different 

from zero and we can eliminate such variables from further analysis. Table 3-8 

provides a summary of the result of this step; the solid dots indicate that the 

reservoir/well property that has a strong effect on the value of the corresponding 

model parameter. For example fracture half-length has a strong effect on the value of 

the carrying capacity for the logistic growth model while it does not have a strong 

effect on the remaining parameters. 

4. From step 3, we have a list of variables that have the strongest effect on each model 

parameter. We then perform a full factorial design of experiment with the variables 

in this list for each model parameter after which we build the numerical reservoir 

model to generate data with the result (unimportant properties were kept unperturbed 

at their expected values). The design table for the carrying capacity, N, is presented 
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in Table 3-9 this design is for a 32  full factorial experiment with 8 numerical 

simulation models. Because the constant a  has all its main effect variables in 

common with the hyperbolic constant, we use the same design table for their 

experiment. Table 3-10 is the design table for n and a , the experiment design was 

for a 42 full factorial design with 16 numerical simulation models. We also combined 

the design table for the parallel flow model parameters because they have many of 

the main effects variables in common. The design for the parallel flow model 

parameters was a 72 full factorial design with 128 numerical simulation models; the 

design table is presented in Table 3-11. 

5. Repeat step 2 to obtain the model parameters that would be used to develop the 

response surface function. 

6. Using regression analysis we develop a functional relationship between each of the 

model parameters and the reservoir and well completion properties. The developed 

relationship is then validated with synthetic examples. 

The results obtained for step 6 are presented in the next subsection: 

3.3.1 Correlations for Logistic Growth Model Parameters 

3.3.1.1 Carrying Capacity, N 

 
0.17

2 4 3, , 5.74 2.63 10 2.1 10 1.1 10        w f w fN h L x h L x .  (3.26) 

Equation 3.9 is the response surface function for carrying capacity that shows the 

relationship between the carrying capacity and the reservoir thickness ( h ), well length (

wL ) and the fracture half length ( fx ). Different transformations of the carrying capacity 

were evaluated; we chose the transformation that gave the largest coefficient of variation 

when the model predictions are cross plotted against actual values. This transformation 

has a coefficient of variation of 0.95. Figure 3-23a shows a cross plot of the predicted 
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values of carrying capacity using equation 3.9 and the actual values. Figure 3-23b are the 

residuals plotted on a normal probability graph, because it plots as a straight line on this 

graph, the residuals are normally distributed. Figure 3-24a and 8-10b are response 

surfaces constructed with equation 3.9 and they show how the carrying capacity varies 

for varying values of the independent variables. Figure 3-24a is the plot when fracture 

half-length is at its smallest value and Figure 3-24b is when fracture half-length is at its 

largest value. 

3.3.1.2 Hyperbolic Exponent, n 

  1 4 5 6, , 6.6 10 8.2 10 2.03 10 8.8 10          f m w f m wn k k L k k L , (3.27) 

Equation 3.10 is the developed relationship between the hyperbolic exponent and 

the reservoir and well properties. A linear relationship has the highest coefficient of 

variation of 0.95 when compared to the other transformations evaluated. We evaluated a 

linear, quadratic, power and logarithmic transforms. Figure 3-25 shows a comparison of 

the values of the hyperbolic exponent predicted by equation 3.10 and the actual values. 

3.3.1.3  Constant, a 

 
-0.26

-1 -4 -6, 1.5 10 2.9 10 - 5.5 10    f m f ma k k k k .    (3.28) 

Equation 3.11 is the relationship developed for the constant a . This relationship 

had the highest coefficient of variation of 0.81 from the transforms evaluated. A 

comparison of the values of, constant a, computed from equation 3.11 and actual values 

of constant a is shown in Figure 3-26. 
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3.3.2 Correlations for Parallel Flow Model Parameters 

3.3.2.1 Initial Production Rate One, 
1iq  

2 3 4 4

1

3 4 5 7

2 8 6 8

ln( ) 6.4 10 6.7 10 4.0 1.8 10 5.4 10

2.1 10 3.9 1.1 10 7.4 10 3.6 10

2.3 10 4.7 10 5.4 10 2.1 10

i f m i wf

w f f w

m w i wf w f w

q k k p p

h L k h k L

k L p p hL k hL



   

   

   

        

        

       

. (3.29) 

Equation 3.12 is the response surface function for initial production rate one, 
1iq . 

It shows a relationship between the initial production rate one and the reservoir thickness 

( h ), fracture permeability ( fk ), matrix permeability ( mk ), porosity ( ), well length (WL

), initial reservoir pressure ( ip ) and the bottomhole flowing pressure ( wfp ). Different 

transformations of the initial production rate one were evaluated and the transformation 

that gave the highest value of coefficient of variation is the natural log transform. This 

transformation has a coefficient of variation of 0.98. A comparison of the actual and the 

values on time constant computed with equation 3.12 is shown in Figure 3-27. 

3.3.2.2 Time Constant One, 
1  (Largest Time Constant) 

1.12 2 5 4 2

1

6

6.9 10 3.8 4.2 10 16.1 1.3 10 1.5 10

5.9 10 4.5

f m w

m w

τ k k h L

k hL





         

  
. (3.30) 

Equation 3.13 is the response surface function for time constant one, τ1. A power 

transformation gave the highest value of coefficient of variation when the model 

predictions are cross plotted against actual values. This transformation has a coefficient 

of variation of 0.73. The actual values and predicted values from equation 3.13 are cross 

plotted as shown in Figure 3-28. 

3.3.2.3 Initial Production Rate Two, 
2iq  

3 4 4

2

2 5 1

ln( ) 1.7 2.0 10 1.7 10 2.4 10 2.1 10

1.6 10 6.4 6.1 10 5.9 10

i f m i wf

w f m

q k k p p

h L k k

  

  

         

      
. (3.31) 
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Equation 3.14 is the response surface function for initial production rate two, qi2. 

It shows a relationship between the initial production rate two and the reservoir thickness 

(h), fracture permeability ( fk ), matrix permeability ( mk ), porosity ( ), well length (WL), 

initial reservoir pressure ( ip ) and the bottomhole flowing pressure ( wfp ). The log 

transformation gave the highest coefficient of variation of 0.99. Figure 3-29 presents a 

cross plot of the predictions made with equation 3.14 and the actual values. 

3.3.2.4 Time Constant Two, 
2  

0.67 2 1 3

2

3 2 4

7.6 10 9.7 10 7.4 10 2.3

4.3 10 2.3 10 18.4 6.5 10

f m

w f m m w w

τ k k h

L k k k L hL



 

      

      
.   (3.32) 

Equation 3.15 is the response surface function for time constant two, 
2 . A power 

transformation gave the highest value of coefficient of variation when the model 

predictions are cross plotted against actual values. This transformation has a coefficient 

of variation of 0.82. The actual values and predicted values from equation 3.15 are cross 

plotted as shown in Figure 3-30. 

3.4 Summary and Conclusions 

Both models used in this study can predict the EUR; for the logistic growth model 

the carrying capacity is a parameter in the fitting, and for the parallel flow model the 

function converges to a finite value when extrapolated to infinity. Because both methods 

require numerical fitting of model parameters, neither offers a clear advantage over the 

other. The logistic model does not have physically meaningful parameters (except for the 

carrying capacity) and does not fit the data quite as well as does the parallel model, 

although both result in good fits. The parallel model has more parameters, four for the 

two compartment model- as opposed to three for the logistic model. Therefore, the latter 
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approach is less likely to result in non-unique solutions. The logistic model does not have 

the multiple scales that are such a prevalent feature of the data. 

The model-based analysis with the parallel flow model clearly indicates the 

existence of multiple time scales in the production profiles of these wells. The parallel 

flow model is based on the concept that the reservoir contains multiple independently 

declining reservoir elements (compartments) that have different and unique time 

constants (declining characteristics). Therefore, when two or more reservoir 

compartments are present, this will be reflected in the number of terms in the parallel 

flow model. The observed time scales also highlight the importance of high-frequency 

data and integrating all available information in analyzing production data. Most analysis 

techniques ignore the early-time production data (which we included in the analysis) 

because of wellbore effects (wellbore storage or skin and frac fluid flow-back) and noise, 

thereby missing the first time scale and only analyzing data that is dominated by 

production from the second time scale. While it is possible that these phenomena affect 

early-time production only, it does not eliminate the possibility of analyzing early time 

data to estimate the dimensions of the reservoir element/compartment (this could be the 

fracture or fracture network) that accounts for early time flow. Ogunyomi et al. (2014) 

presented a rate-time relation capable of modeling flow from a double porosity model 

that typically exhibits two time scales. The model they presented is also valid for early 

and late time flow (transient and boundary dominated flow).   

Analysis of the model parameters for the logistic growth and parallel flow models 

showed that they have some correlation with the reservoir and well completion 

properties. For example, the carrying capacity in the logistic growth model correlated 

with the well spacing, total fluid injected and the mass of sand injected. In an ideal 

situation these properties can be used to define the drainage volume of a well. It therefore 
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seems reasonable, as suggested by Clark et al. (2011), to use the carrying capacity as a 

constraint on the recoverable reserves from a well. 

We have presented the results of a detailed statistical and model-based analysis of 

production data from an unconventional oil reservoir. We also analyzed this production 

data to identify different flow regimes and the flow signatures using linear-flow theory. 

Based on the results of these analyses the following conclusions are pertinent: 

1. Primary production performance from wells in unconventional reservoirs should be 

expected to be highly variable. The production signatures show varying slopes on a 

diagnostic log-log plot that ranges from one-half to one-and-a-half. By far the most 

frequent slope observed on the diagnostic plot was the one-half slope. This 

observation corroborates the notion that 1D linear flow is adequate in modeling 

recovery from these reservoirs. 

2. The analysis showed that at least two terms of the parallel flow model are needed to 

adequately model production from these reservoirs. A statistical analysis of the time 

constants confirms that there are two distributions of time constants. Therefore, we 

can conclude that there are at least two time scales in the production history from 

these wells. An important corollary of this observation is that any forecasting effort 

that does not account for the multiple time scales will result in conservative EUR. 

3. Based on the general observation that the parameters from the empirical models 

correlated with the reservoir and well completion properties in the data set, we 

developed functions that relate the model parameters to reservoir and well properties 

by using design of experiment and numerical reservoir simulations. If the reservoir 

and well properties are known, these relations can be used to compute the model 

parameters, which can then be used in the models to forecast production. These 
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functions are only valid within the range that was used to develop them and any 

application should put this fact in consideration before use.



 43 

Table 3-1: Summary of model fitting parameters obtained for the parallel flow model applied to a well in the 

dataset 

qoiT  

(STB/D) 
f1 f2 

f

3 
f4 ∑fi 

qi1 

(STB/D) 

qi2 

(STB/D) 

qi3 

(STB/D) 

qi4 

(STB/D) 

τ1 

(days) 

τ2 

(days) 

τ3 

(days) 

τ4 

(days) 

557 0.3 0 0 0.7 1 151 0 0 407 1020 - - 59 

 

 
Table 3-2: Summary of logistic growth model parameters obtained for a well in the dataset 

N (STB) n a(days
n
) 

112631 0.54 52 

 

 
Table 3-3: Statistical summary of model fitting parameters for the parallel flow model (86 wells) 

 
qi1 (STB/D) qi2 (STB/D) qi3 (STB/D) τ1 (Days) τ2 (Days) τ3(Days) 

    
 

  
Mean 398 182 62 381 2.7 10

4
 2.1 10

4
 

Median 289 119 20 57 448 222 

Standard Deviation 391 201 116 2570 1.6 10
5
 1.1 10

5
 

Kurtosis 5 5 21 86 45 39 

Skewness 2 2 4 9 7 6 

Range 2 10
3
 1 10

3
 7 10

2
 2 10

4
 1 10

6
 7 10

5
 

Minimum 14 0 0 0 0 0 

Maximum 2 10
3
 1 10

3
 7 10

2
 2 10

4
 1 10

6
 7 10

5
 

 
Table 3-4: Statistical summary of model fitting parameters for the logistic growth model (86 wells) 

 
N (STB) n a 

Mean 133135.35 0.62 5897.30 

Median 111940.75 0.58 75.96 

Standard 

Deviation 
69011.60 0.23 52876.12 

Kurtosis 3.12 63.29 84.00 

Skewness 1.32 7.47 9.16 

Range 408248.15 2.13 484738.60 

Minimum 20000.00 0.46 4.52 

Maximum 428248.15 2.59 484743.12 
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Table 3-5: Summary of the computed correlation coefficient between the model parameters and the reservoir 

and model completion properties for the parallel flow model. The shaded cells indicate 0.2  . 

 

qi1 

(STB/D) 

qi2 

(STB/D) 

qi3 

(STB/D) 

τ1 

(Days) 

τ2 

(Days) 

τ3 

(Days) 

Number of stages 0.47 0.43 0.31 -0.07 -0.10 -0.06 

Lateral length (ft) -0.19 -0.21 -0.30 -0.13 0.15 0.03 

Spacing (acres) 0.32 0.35 0.22 -0.34 0.10 0.09 

Initial water saturation (fraction) -0.35 -0.54 -0.30 0.18 -0.18 -0.02 

Porosity (fraction) 0.28 0.21 0.27 -0.09 -0.12 0.22 

True vertical thickness, TVT (ft) -0.40 -0.59 -0.40 0.29 -0.03 -0.11 

Net to gross (fraction) 0.15 0.21 0.29 -0.14 -0.18 0.32 

Overpressure (psi) 0.18 0.33 0.19 -0.02 0.07 -0.12 

Pressure (psi) 0.18 0.33 0.19 -0.02 0.07 -0.12 

Depth (ft) 0.15 0.30 0.17 -0.05 0.14 -0.14 

Average injection pressure (psig) 0.35 0.36 0.16 -0.21 0.09 0.02 

Total fluid injected 0.46 0.44 0.30 -0.37 0.08 0.12 

Sand (lbs) 0.48 0.40 0.36 0.02 -0.12 -0.06 

 

 

Table 3-6: Summary of the computed correlation coefficient between the model parameters and the reservoir 

and model completion properties for the logistic growth model. 

 

N 

(STB) 
n a 

Number of stages 0.14 0.02 -0.02 

Lateral length (ft) 0.00 -0.13 -0.09 

Spacing (acres) 0.25 0.02 0.04 

Initial water Saturation (fraction) -0.11 -0.09 -0.01 

Porosity (fraction) 0.46 -0.12 -0.05 

True vertical thickness, TVT (ft) -0.05 -0.09 0.02 

Net to gross (fraction) 0.19 0.02 0.01 

Overpressure (psi) -0.04 0.10 0.00 

Pressure (psi) -0.04 0.10 0.00 

Depth (ft) -0.03 0.10 0.02 

Average injection pressure (psig) 0.23 -0.02 0.09 

Total fluid injected 0.39 -0.02 -0.02 

Sand injected (lbs) 0.26 0.02 0.01 
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Table 3-7: Reservoir and well completion properties used in the fractional factorial design of experiments used 

to build the numerical simulation model. 

Property Max (+) Min (-) 

Fracture half length, x
f
 (ft) 1000 150 

Fracture permeability, k
f
 (md) 150 15 

Initial oil saturation, S
oi
 (fraction) 0.70 0.48 

Initial reservoir pressure, P
i
 (psi) 7700 5500 

Wellbore pressure, P
wf

 (psi) 2000 50 

Matrix permeability, k
m

 (md) 5x10
3
 5x10

-4
 

Number of fracture cluster per stage 5 1 

Number of fracture stages 5 3 

Porosity, φ (fraction) 0.08 0.04 

Reservoir thickness, h (ft) 100 30 

Well length, L (ft) 3600 900 

Fracture width, w (ft) 0.2 0.05 

Fracture spacing, (ft) 100 400 

Viscosity, μ (cp) 2 1 

Compressibility, c
t
 (psi

-1

) 1x10-5 1x10 -6 

 

Table 3-8: Summary of reservoir and well properties that have the strongest effect on the model parameters 

Property 

Parallel flow model 
Logistic growth 

model 

qi1 

(STB/D) 

qi2 

(STB/D) 

τ1 

(Day) 

τ2 

(Day) 

N 

(STB) 
n a 

Fracture half length, xf (ft)     
●   

Fracture permeability, kf (md) ● ● 
 

●  ●  

Initial oil saturation, Soi (fraction) 
    

   

Initial reservoir pressure, Pi (psi) ● ● 
 

●    

Flow well pressure, Pwf (psi) 
 

● 
  

 ●  

Matrix permeability, km (md) ● ● 
  

 ● ● 

Number of fracture cluster per 

stage     
   

Number of fracture stages 
    

   

Porosity, φ (fraction) 
 

● 
  

   

Thickness, h (ft) ● ● 
  

●   

Well length, L (ft) ● ● ● ● ● ● ● 

Width, w (ft) 
    

   

Fracture spacing, (ft) 
    

   

Viscosity, μ (cp) 
    

   

Compressibility, ct (psi
-1

) 
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Table 3-9: Design table for variables with the main effect on the carrying capacity, N. 

Run number Thickness Well length Fracture half length N (STB) 

1 + - + 497338 

2 + - - 453284 

3 - + + 319600 

4 - - + 177726 

5 - - - 82599.3 

6 + + + 956178 

7 + + - 434510 

8 - + - 117092 

 
Table 3-10: Design table for variables with the main effect on the hyperbolic constant, n, and the constant a. 

Run number 
Fracture  

permeability 

Matrix  

permeability 
Well pressure Well length n a 

1 - - - + 0.67 1104.20 

2 + + - - 0.63 569.14 

3 + + + + 0.69 1052.55 

4 + - + - 0.57 741.38 

5 - - - - 0.63 838.84 

6 - + - - 0.77 2995.93 

7 - + + + 0.79 3236.21 

8 - - + + 0.67 1371.62 

9 + - - + 0.57 516.44 

10 - - + - 0.70 1729.04 

11 + + - + 0.69 1558.57 

12 + + + - 0.62 815.20 

13 + - - - 0.56 562.49 

14 - + + - 0.77 2192.00 

15 - + - + 0.79 3830.52 

16 + - + + 0.57 502.11 
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Table 3-11: Design table for variables with the main effect on the parallel flow model parameters 

Run 

number 

Fracture 

permeability 

Matrix 

permeability 

Initial res. 

pressure 

Wellbore 

pressure 
Thickness Porosity 

Well 

length 
qi1 (stb/d) 

Di1 

(Days) 

qi2 

(stb/d) 

Di2 

(Days) 

1 - - - - - - - 3.18 1.31E-03 1.70 4.70E-05 

2 - + - - - - - 3.77 8.84E-04 3.81 4.96E-05 

3 + - - - - - - 9.99 2.24E-03 2.23 6.04E-05 

4 + + - - - - - 12.49 9.61E-04 5.93 7.16E-05 

5 - - - - + - - 5.52 9.25E-04 4.80 3.83E-05 

6 - + - - + - - 5.33 6.70E-04 9.63 3.66E-05 

7 + - - - + - - 25.07 1.82E-03 7.04 5.55E-05 

8 + + - - + - - 27.17 7.10E-04 17.60 6.17E-05 

9 - - - + - - - 1.89 1.21E-03 1.05 4.59E-05 

10 - + - + - - - 2.30 8.60E-04 2.37 4.92E-05 

11 + - - + - - - 5.92 2.07E-03 1.35 5.89E-05 

12 + + - + - - - 7.50 9.06E-04 3.67 7.26E-05 

13 - - - + + - - 3.32 8.72E-04 2.98 3.74E-05 

14 - + - + + - - 3.20 6.34E-04 5.96 3.56E-05 

15 + - - + + - - 14.63 1.64E-03 4.30 5.50E-05 

16 + + - + + - - 16.51 7.04E-04 11.19 6.34E-05 

17 - - - - - + - 12.00 1.66E-02 3.00 8.81E-05 

18 - + - - - + - 4.78 1.40E-03 4.90 4.72E-05 

19 + - - - - + - 11.19 1.61E-03 2.82 5.62E-05 

20 + + - - - + - 15.36 1.57E-03 9.82 8.24E-05 

21 - - - - + + - 5.41 7.09E-04 5.67 3.35E-05 

22 - + - - + + - 5.40 9.35E-04 11.45 3.20E-05 

23 + - - - + + - 25.89 1.21E-03 8.74 5.09E-05 

24 + + - - + + - 27.14 1.10E-03 28.18 6.96E-05 

25 - - - + - + - 1.96 9.22E-04 1.28 4.15E-05 

26 - + - + - + - 2.80 1.30E-03 3.03 4.62E-05 

27 + - - + - + - 6.52 1.45E-03 1.70 5.47E-05 

28 + + - + - + - 8.78 1.40E-03 6.08 8.19E-05 

29 - - - + + + - 3.27 6.74E-04 3.51 3.27E-05 

30 - + - + + + - 3.26 9.26E-04 7.10 3.15E-05 

31 + - - + + + - 15.58 1.11E-03 5.30 4.91E-05 

32 + + - + + + - 15.97 1.00E-03 17.43 6.78E-05 

33 - - + - - - - 4.96 1.38E-03 2.58 4.75E-05 

34 - + + - - - - 6.05 1.02E-03 5.87 5.20E-05 

35 + - + - - - - 15.59 2.34E-03 3.35 6.09E-05 

36 + + + - - - - 19.48 1.05E-03 9.26 7.66E-05 

37 - - + - + - - 8.57 9.64E-04 7.26 3.86E-05 
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Table 3-11 (continued) 

38 - + + - + - - 8.13 6.77E-04 14.52 3.68E-05 

39 + - + - + - - 38.31 1.86E-03 10.66 5.72E-05 

40 + + + - + - - 41.45 7.94E-04 28.05 6.75E-05 

41 - - + + - - - 3.60 1.30E-03 1.92 4.66E-05 

42 - + + + - - - 4.28 9.20E-04 4.35 5.03E-05 

43 + - + + - - - 11.38 2.22E-03 2.48 6.00E-05 

44 + + + + - - - 14.26 1.02E-03 7.01 7.74E-05 

45 - - + + + - - 6.18 9.03E-04 5.41 3.76E-05 

46 - + + + + - - 5.92 6.87E-04 10.94 3.67E-05 

47 + - + + + - - 28.27 1.77E-03 7.91 5.60E-05 

48 + + + + + - - 30.03 7.34E-04 20.76 6.54E-05 

49 - - + - - + - 5.20 1.08E-03 3.17 4.40E-05 

50 - + + - - + - 7.91 1.61E-03 7.45 4.81E-05 

51 + - + - - + - 17.20 1.65E-03 4.25 5.73E-05 

52 + + + - - + - 24.52 1.75E-03 15.06 8.47E-05 

53 - - + - + + - 8.30 7.41E-04 8.60 3.42E-05 

54 - + + - + + - 8.52 9.99E-04 17.31 3.24E-05 

55 + - + - + + - 40.73 1.26E-03 13.19 5.16E-05 

56 + + + - + + - 42.65 1.21E-03 42.96 7.05E-05 

57 - - + + - + - 3.78 1.03E-03 2.37 4.34E-05 

58 - + + + - + - 5.55 1.47E-03 5.55 4.69E-05 

59 + - + + - + - 12.55 1.56E-03 3.15 5.66E-05 

60 + + + + - + - 17.72 1.67E-03 11.31 8.40E-05 

61 - - + + + + - 6.05 7.14E-04 6.45 3.39E-05 

62 - + + + + + - 6.19 9.87E-04 12.93 3.18E-05 

63 + - + + + + - 29.93 1.22E-03 9.91 5.19E-05 

64 + + + + + + - 30.58 1.13E-03 32.09 6.89E-05 

65 - - - - - - + 4.13 1.52E-03 1.76 4.68E-05 

66 - + - - - - + 5.46 1.36E-03 4.42 3.09E-05 

67 + - - - - - + 11.43 2.48E-03 2.23 5.79E-05 

68 + + - - - - + 15.49 1.54E-03 7.31 4.54E-05 

69 - - - - + - + 13.79 1.52E-03 5.90 4.68E-05 

70 - + - - + - + 18.25 1.36E-03 14.77 3.09E-05 

71 + - - - + - + 38.18 2.48E-03 7.47 5.80E-05 

72 + + - - + - + 51.66 1.54E-03 24.43 4.53E-05 

73 - - - + - - + 2.43 1.41E-03 1.09 4.61E-05 

74 - + - + - - + 3.16 1.24E-03 2.72 2.99E-05 

75 + - - + - - + 6.67 2.26E-03 1.34 5.59E-05 
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Table 3-11 (continued) 

76 + + - + - - + 8.68 1.32E-03 4.45 4.30E-05 

77 - - - + + - + 8.11 1.40E-03 3.64 4.60E-05 

78 - + - + + - + 10.90 1.30E-03 9.16 3.03E-05 

79 + - - + + - + 22.26 2.25E-03 4.49 5.59E-05 

80 + + - + + - + 28.99 1.31E-03 14.90 4.29E-05 

81 - - - - - + + 4.56 1.27E-03 2.23 4.71E-05 

82 - + - - - + + 7.61 1.72E-03 5.28 3.29E-05 

83 + - - - - + + 12.94 1.84E-03 2.92 5.94E-05 

84 + + - - - + + 19.71 1.70E-03 9.50 4.94E-05 

85 - - - - + + + 15.24 1.26E-03 7.46 4.71E-05 

86 - + - - + + + 25.40 1.72E-03 17.65 3.29E-05 

87 + - - - + + + 43.22 1.84E-03 9.77 5.95E-05 

88 + + - - + + + 65.52 1.68E-03 31.71 4.92E-05 

89 - - - + - + + 2.69 1.18E-03 1.38 4.62E-05 

90 - + - + - + + 4.32 1.54E-03 3.25 3.18E-05 

91 + - - + - + + 7.36 1.59E-03 1.72 5.55E-05 

92 + + - + - + + 10.99 1.45E-03 5.81 4.74E-05 

93 - - - + + + + 9.00 1.17E-03 4.60 4.62E-05 

94 - + - + + + + 14.38 1.53E-03 10.88 3.17E-05 

95 + - - + + + + 25.32 1.65E-03 5.82 5.67E-05 

96 + + - + + + + 36.69 1.44E-03 19.44 4.74E-05 

97 - - + - - - + 6.76 2.00E-03 2.95 6.34E-05 

98 - + + - - - + 10.39 2.19E-03 7.11 4.09E-05 

99 + - + - - - + 18.94 3.13E-03 3.77 7.95E-05 

100 + + + - - - + 26.63 2.22E-03 12.27 6.30E-05 

101 - - + - + - + 22.56 2.00E-03 9.84 6.33E-05 

102 - + + - + - + 34.56 2.18E-03 23.75 4.09E-05 

103 + - + - + - + 64.12 3.22E-03 12.74 8.16E-05 

104 + + + - + - + 91.48 2.35E-03 41.49 6.50E-05 

105 - - + + - - + 4.71 1.54E-03 2.00 4.74E-05 

106 - + + + - - + 6.17 1.37E-03 4.98 3.10E-05 

107 + - + + - - + 12.80 2.41E-03 2.48 5.74E-05 

108 + + + + - - + 17.53 1.54E-03 8.26 4.55E-05 

109 - - + + + - + 15.73 1.54E-03 6.70 4.74E-05 

110 - + + + + - + 20.56 1.36E-03 16.65 3.09E-05 

111 + - + + + - + 43.60 2.48E-03 8.36 5.85E-05 

112 + + + + + - + 58.39 1.53E-03 27.59 4.54E-05 

113 - - + - - + + 7.33 1.52E-03 3.57 5.54E-05 

 



 50 

Table 3-11 (continued) 

114 - + + - - + + 13.03 2.10E-03 8.08 3.53E-05 

115 + - + - - + + 21.70 2.46E-03 5.17 8.81E-05 

116 + + + - - + + 35.23 2.57E-03 15.93 6.71E-05 

117 - - + - + + + 24.44 1.52E-03 11.92 5.52E-05 

118 - + + - + + + 43.37 2.08E-03 26.99 3.52E-05 

119 + - + - + + + 72.40 2.46E-03 17.26 8.81E-05 

120 + + + - + + + 117.50 2.56E-03 53.15 6.70E-05 

121 - - + + - + + 5.11 1.26E-03 2.53 4.75E-05 

122 - + + + - + + 8.64 1.74E-03 5.95 3.28E-05 

123 + - + + - + + 14.60 1.79E-03 3.24 5.90E-05 

124 + + + + - + + 22.27 1.69E-03 10.75 4.95E-05 

125 - - + + + + + 17.08 1.26E-03 8.47 4.76E-05 

126 - + + + + + + 28.73 1.72E-03 19.87 3.27E-05 

127 + - + + + + + 48.70 1.79E-03 10.82 5.88E-05 

128 + + + + + + + 71.97 1.59E-03 35.56 4.83E-05 
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Figure 3-1: A log-log plot of the solutions to the diffusivity equation in one-dimension for a no-flow outer boundary 

condition. The dashed line represents the constant rate inner boundary condition and the solid line represents the 

constant pressure inner boundary condition 

 

 
  

(a) (b) 
Figure 3-2: Diagnostic figures for a well in the data set. Figure 3-2a. presents the log-log plot of oil rate versus time and 

the log-log plot of the tubinghead pressure versus time. Figure 3-2b. shows a cross plot of the oil rate versus tubinghead 

pressure 
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(a) (b) 

  

(c) (d) 

Figure 3-3: Example application of the parallel flow model. Figure 3-3a. is the normalized rate - time plot for the data and 

model history match and Figure 3-3:c. is the normalized rate - cumulative plot for the data and model history match. 

Figure 3-3b shows the cross plot of the normalized rate data and the normalized model rate prediction. Figure 3-3d. 

shows a plot of the error in normalized rate prediction (qD-Data – qD-Model) versus time 
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(a) (b) 

  

(c) (d) 
Figure 3-4: Example application of the logistic growth model. Figure 3-4a. presents the rate - time plot for the data and 

model history match and Figure 3-4c. presents the rate - cumulative plot for the data and model history match. Figure 

3-4b shows the cross plot of the normalized rate data and the normalized model rate prediction. Figure 3-4d. shows a plot 

of the error in rate prediction (qData – qModel) versus time. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 3-5: Probability density function (PDF) and cumulative distribution function (CDF) obtained for the parallel flow 

model applied to the data set 
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(a) 

 

(b) 

 

(c) 

Figure 3-6: Probability density function (PDF) and cumulative distribution function (CDF) obtained for the logistic 

growth model applied to the data set. Fig. 6a show PDF and CDF for the carrying capacity, Fig. 6b shows the PDF and 

CDF for the hyperbolic exponent and Fig. 6c show the PDF and CDF for the constant a. 
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(a) (b) 

  

(c) (d) 

Figure 3-7: Cross plot of Parallel Flow Model parameters and the initial number of fracture stages
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(a) (b) 

  

(c) (d) 

Figure 3-8: Cross plot of Parallel Flow Model parameters and the lateral length of the horizontal well
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(a) (b) 

  

(c) (d) 

Figure 3-9: Cross plot of Parallel Flow Model parameters and reservoir porosity
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(a) (b) 

  

(c) (d) 

Figure 3-10: Cross plot of Parallel Flow Model parameters and reservoir thickness
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(a) (b) 

  

(c) (d) 

Figure 3-11: Cross plot of Parallel Flow Model parameters and the initial reservoir pressure
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(a) (b) 

  

(c) (d) 

Figure 3-12: Cross plot of Parallel Flow Model parameters and the volume of fracturing fluid injected
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(a) (b) 

  
(c) (d) 

Figure 3-13: Cross plot of Parallel Flow Model parameters and the weight of proppant injected 
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(a) 

 
(b) 

 

(c) 

Figure 3-14: Cross plot of Logistic Growth Model parameters and the initial number of fracture stages
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(a) 

 
(b) 

 

(c) 

Figure 3-15: Cross plot of Logistic Growth Model parameters and lateral length of the horizontal well
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(a) 

 
(b) 

 

(c) 

Figure 3-16: Cross plot of Logistic Growth Model parameters and the reservoir porosity
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(a) 

 
(b) 

 

(c) 

Figure 3-17: Cross plot of Logistic Growth Model parameters and reservoir thickness
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(a) 

 
(b) 

 

(c) 

Figure 3-18: Cross plot of Logistic Growth Model parameters and initial reservoir pressure
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(a) 

 
(b) 

 

(c) 

Figure 3-19: Cross plot of Logistic Growth Model parameters and the volume of injected fracture fluid
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(a) 

 
(b) 

 

(c) 

Figure 3-20: Cross plot of Logistic Growth Model parameters and weight of proppant injected 
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Figure 3-21: Schematic diagram of the process used in developing the mathematical relationship between the model 

parameter and the reservoir and well completion properties 

 

 
Figure 3-22: Pressure distribution in one of the numerical simulation models. Showing the number of fracture stages and 

the number of hydraulic fracture clusters 
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(a) (b) 
Figure 3-23: Validation of developed relationship for carrying capacity. Fig. 9a shows a cross plot of the predicted values 

carrying capacity versus the actual values of the carrying capacity. Fig. 9b is a diagnostic plot that shows that the 

residuals of the regression are normally distributed 

 

 
 

(a) (b) 

Figure 3-24: Response surfaces for carrying capacity, N 
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Figure 3-25: Comparison of the predicted versus actual values of the hyperbolic exponent, n 

 

 

 
Figure 3-26: Comparison of the predicted versus actual values of the constant, a 
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Figure 3-27: Comparison of the predicted versus actual values for initial production rate one, qi1 

 

 

 
Figure 3-28: Comparison of the predicted versus actual values for time constant one, τ1 
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Figure 3-29: Comparison of the predicted versus actual values for initial production rate two, qi2 

 

 

 
Figure 3-30: Comparison of the predicted versus actual values for time constant two, τ2 
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Chapter 4: A Conceptual Model for Parallel Flow in Unconventional 

Reservoirs 

In the previous chapter, it was observed that production data from unconventional 

reservoirs exhibit multiple time scales where the early time scales are characterized by a 

much larger rate as compared to subsequent time scales. It was also observed that pure 

statistical analysis of the data may not reveal insights into the interaction of reservoir and 

well properties with the production characteristics. Existing analytical models do not all 

for the modeling of the multiple time scales and often times only focus on the transient 

flow regime during the first or second time scale. It is therefore necessary to explore and 

formulate a new conceptual model for the mathematical modeling of flow from 

unconventional reservoirs. We validated the analytical solution obtained from the 

conceptual model with synthetic data and also performed a sensitivity study to understand 

how the model parameters affect production forecasts from the model. In addition we 

demonstrate its utility in forecasting production in unconventional reservoirs. 

4.1 Conceptual Model Development 

When a horizontal well is hydraulically fractured it is believed that a main 

transverse fracture (perpendicular to the wellbore) is produced. In addition to this main 

fracture, micro-seismic surveys have shown that a network of secondary fractures is also 

produced as a result of the hydraulic fracturing. Figure 4-1 shows two hydraulically 

fractured horizontal wells and the micro-seismic events recorded during the fracturing 

process. If a cross-section is drawn across any of these horizontal wellbore, it can be 

assumed that the schematic diagram shown in Figure 4-2 would be obtained. 

From this cross-section it is conceivable that we have flow from both the small 

permeability reservoir matrix and the secondary network of fractures. This is in contrast 
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to the general assumption that the reservoir matrix does not directly communicate with 

the wellbore (Miller et al., 2010 and Chapter 5 of this dissertation). In developing the new 

conceptual model we make the following simplifying assumptions: 

a) The permeability in the main transverse fracture is significantly greater than the 

permeability of the network of secondary fractures. Therefore, the main 

hydraulic fracture can be treated as a pseudo wellbore because its pressure would 

almost instantaneously be equal to that of the wellbore. 

b) There is direct flow of fluids from the reservoir matrix into the pseudo wellbore 

and flow from the matrix to the fracture network is negligible. 

c) There is direct flow of fluids from the secondary fracture network into the pseudo 

wellbore 

From these assumptions it is possible to idealize this production system as a reservoir 

with 2 layers where one layer represents the fracture network and the second layer 

represents the matrix. Figure 4-3 presents a schematic diagram of this idealized 

conceptual model. In the subsequent section we present the mathematical model for this 

conceptual model and its solution. 

4.1.1 Analytical Parallel Flow Model without Cross Flow 

When there is no cross flow between the layers, the partial differential equation 

(PDE) governing flow from each layer can be solved independently and the production 

rate added together to obtain the total production rate from the system. Wattenberger et 

al. (1998) and Patzek et al. (2012) have shown that flow from low permeability reservoirs 

can be modeled by using the one dimensional (Cartesian coordinates) form of the 

diffusivity equation. Therefore, the following development uses the 1-D linear diffusivity 

equation. 
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Constant pressure inner boundary condition: The 1-D partial differential equation (PDE) 

that governs flow from the matrix into the pseudo-wellbore (constant pressure at the 

fracture face) for each layer is given below: 
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are the pressure and diffusivity coefficient in layer j, 

respectively. The subscript j represents the layer number and equation 4.3 represents 

the no-flow boundary at the external boundary and equation 4.4 is the constant 

pressure inner boundary condition at the fracture face. If we define the following 
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obtain the dimensionless form of equations 4.1 through to 4.4 as: 
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(1, ) 1
j jD Dp t  .         (4.8) 

By using Laplace transform method (Kreyszig E., 2006), the solution to this set of 

equations was obtained as: 
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A detailed derivation of equation 4.9 is available in appendix A. We derive the 

production rate in layer j from equation 4.9 by taking its derivative with respect to Djx  

and evaluating its value at 1Djx  ; 
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It is shown in appendix A that equation 4.10 can be simplified by using the Riemann 

integral (Taylor, 1946) to eliminate the semi-infinite sum. After this simplification we 

obtain the production rate from layer j as show below: 
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Equation 4.11 represents the complete solution; it is valid during both the early and late 

time flow periods. The first term in equation 4.11 is the late time (pseudo steady state) 

solution and the second term is the early time (transient) solution. If we define
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, we can write equation 4.11 in dimensional form (field units) as 

shown below: 
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 Because we have assumed that there is no interaction between the matrix and 

fracture network the total production rate at the fracture face (pseudo wellbore) is 

determined by summing the individual layer production rate over the total number of 

layers. The total production rate at the fracture face is therefore, 
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In equation 4.13, LN  is the total number of layers in the idealized conceptual model, fi is 

the contribution of layer i to the total flow, ωi is the fractional storativity of layer i to the 

total storativity of the entire system (fractional storativity ratio), λi is the ratio of the 

permeability of layer i to layer 1. The mathematical definitions of these variables are 

given below: 
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For a two layer system, 2LN  , equation 4.13 can be written as shown below: 
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In dimensional form equation 4.14 becomes; 
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We can re-write equation 4.13 as: 
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Equation 4.17 is the complete solution for the idealized parallel flow model with no cross 

flow. The cumulative production is obtained by integrating equation 4.17 with respect to 

time 
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In the limit as t tends to infinity (that is lim
t

) equation 4.18 simplifies to 
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Equation 4.19 provides a means of estimating reserves. 

4.1.2 Validation of Parallel Flow Model without Cross Flow 

 The parallel flow model developed in the previous section was validated using a 

simple numerical model developed with CMG-GEM. The simulation model has a 21x1x1 

grid with dimension 10x150x50. The grid in the z-direction was locally refined into 13 

grids or layers. The first grid block in the x-direction is used to model the hydraulic 

fracture and was assigned a very large permeability of 100 md. Similarly the first 3 layers 

(grid blocks) in the z-direction is used to model the idealized fracture network layer, the 

permeability in this layer was set equal to 5 md. The fourth layer in the z-direction was 

designated a no flow boundary to prevent cross flow between the fracture network layer 

and the matrix layer. The permeability in this layer was set equal to zero md (0 md). The 

remaining layers (layers 5 to 13) were used to model the idealized matrix layer and were 
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assigned a permeability of 0.05 md. Other important properties in the simulation model 

are summarized in Table 4-1. 

 To validate the analytical model, the numerical simulation model was used to 

generate a production history of over 20 years. After the production history from the 

simulation model was obtained, the analytical model parameters were computed using the 

simulator input data. Refer to Table 4-2 for a summary of these parameters. A production 

history is then obtained from the analytical model that is then compared with simulator 

production history. In Table 4-2, index 1 represents the fracture network layer while 

index 2 represents the matrix layer. A comparison of the production history from the 

analytical parallel flow and numerical simulation model is in Figure 4-5. From Figure 4-5 

the production histories from the analytical parallel flow model and numerical simulation 

model are identical; therefore the analytical parallel flow model is validated. 

4.2 Effect of Model Parameters on Production Forecast Using the 

Parallel Flow Model without Cross Flow 

In this section we perform a sensitivity analysis on the parallel flow model to 

understand how the model parameters affect production forecasts made with the model. 

The sensitivity analysis would be performed using equation 4.20 with 2LN   
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4.2.1 Effect of Transient Terms 

The effect of the transient terms on the production forecast is determined by 

comparing the forecast without the transient terms with the forecast with the transient 

terms.  The input used for this analysis is summarized in Table 4-3 below. 

We specified 2 cases for this analysis,  

1. Case one: with transient (early time solution) terms and pseudo (late time 

solution) steady state terms, 

2. Case two: This is identical to case one but without the transient terms. 

Each of these cases use the inputs summarized in Table 4-3. The result of this 

analysis is presented in Figure 4-6 as a log-log plot of rate versus time. The solid line in 

Figure 4-6 is case two while the dashed line represents case one. The dashed line starts 

with a slope of half which is followed by a pseudo steady state flow (exponential decline) 

after which another half slope is observed and a final exponential decline is observed. 

The solid line on the other hand exhibits two sequential exponential declines. There are 

two time scales on this plot and they are about two orders of magnitude different at the 

start of each time scale. Therefore, omitting the transient terms in the model will result in 

a significant error in the production forecast. 

4.2.2 Effect of Pseudo Steady Terms 

Using the same procedure as in section 4.2 we investigate the effect of the pseudo 

steady state terms on the production forecast.  The input used for this analysis is identical 

to those summarized in Table 4-3. 

 The two cases specified for this analysis are:  

1. Case one: with transient (early time solution) terms and pseudo (late time solution) 

steady state terms 
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2. Case two: This is identical to case one but without the pseudo steady state terms. Both 

case one and case two use the inputs summarized in Table 4-3. 

The result of this analysis is presented in Figure 4-7 as a log-log plot of rate 

versus time. The solid line in Figure 4-7 is case one while the dashed line represents 

case two. At early time both cases have the same production forecast that scales with 

a half slope and at a dimensionless time of about 10
-3

 the production rate from case 

two begins to deviate from the production forecast made by case one. Therefore 

omitting the exponential terms would introduce some error in the late time forecast. 

4.2.3 Effect of Storativity Ratio, ω 

To investigate the effect of storativity ratio on model forecast we defined three 

cases that have identical inputs. We only change the storativity ratio in each case and then 

generate the production forecast and compare them on a log-log plot of rate versus time. 

The three cases specified for this analysis and their respective inputs are in Table 

4-4. The result of this analysis is presented in Figure 4-8. As defined the storativity ratios 

(
 

 

2

2

1

L

t i
i N

t j
j

c L

c L










) for all the layers must add up to 1 and it is a measure of the storage 

capacity of each layer.  From Figure 4-8 we observe that as the storativity ratio of layer 1 

increases, the longer the duration of production from layer 1 (observed increasing hump 

at early time). For really small values of the storativity ratio the function behaves as a 

single porosity system and as the storativity ratio increases it becomes obvious that the 

system is a double porosity system. At late time all the curves collapse on the same curve.  

Therefore we can conclude that the storativity ratio will have a significant impact on 

early time production forecast. 
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4.2.4 Effect of Permeability Ratio, λ 

We investigate the effect of the permeability ratio by defining three cases as 

shown in Table 4-5. In the three cases considered all the other parameters are fixed at the 

values shown in Table 4-5 while the permeability ratio is different for all the three cases. 

In case one, λ is set equal to 2.5x10
-3

, in case two λ is set equal to 2.5x10
-2

 and λ is set 

equal to 2.5x10
-1

 in case three. 

A comparison of the rate forecast from the three cases in presented in Figure 4-9. 

At early time there is no significant difference between the three curves but at late time 

the difference between the three curves is more pronounced. Recall the definition of 

permeability ratio is given as 
1

j

j

k

k
  , therefore 1

1

1

1
k

k
    for all the three cases as a 

result the curves are identical at early time. At late time the permeability ratio is different 

therefore there is significant difference in the model performance. The smaller the value 

of λ2, the longer the production duration this is because the small values of λ correspond 

to small values of diffusivity constant. Physically this means that the production rate 

would exhibit transient flow characteristics for a longer period as observed in Figure 4-9. 

Therefore the permeability ratio has the greatest impact on the late time performance. 

4.3 Application to Field Data 

An application of the parallel flow model to field data is presented in this section. 

The production data used for this example is showed in Figure 4-10. Figure 4-10a shows 

the log-log plot of production rate versus time and the tubinghead pressure versus time. 

In order to apply the model to the data, we find the values of ωi, λi and fi that minimize 

the sum of the squared error difference between the model predictions and data for the 

rate and cumulative production, that is, 
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j
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

    .    (4.21) 

The result of the application is presented in Figure 4-10b and c. Figure 4-10b 

contains three curves, the original rate data (red markers), the history matched data (black 

markers) and the model forecast (blue markers). It can be observed from this figure that 

the model predictions provide a good match to the data. The model parameters that gave 

this fit shown in Figure 4-10 summarized in Table 4-6. The forecast was done until a 

production rate of 0.16 stb/d and this is equivalent to a cumulative production of 0.23 

MMSTB. The cumulative – time plot for this example is shown in Figure 4-10c. 

4.4 Summary and Conclusions 

This chapter presented a new simple analytical model for predicting production 

from fractured horizontal wells in unconventional reservoirs that exhibit linear flow. The 

model presented is based on an idealized conceptual model that assumes after hydraulic 

fracturing a well a main fracture and a network of fractures are created. Therefore the 

reservoir contains 3 different continuum based on permeability. With the main fracture 

having a permeability, much greater than the fracture network which in turn has a 

permeability that is much greater than that of the reservoir matrix. Because of this 

assumption we regard the main fracture as a pseudo wellbore, and in addition, we treat 

the fracture network and reservoir matrix as reservoir layers that independent contribute 

to flow from the well. 

With the conceptual model we proceed to develop the mathematical model from 

which the analytical model was derived. We also presented the result of a sensitivity 

study on the model. The sensitivity study showed that when the transient terms in the 

solution are neglected a significant amount of error is introduced in the model forecast. 
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When the pseudo steady state terms are ignored some error is also introduced into any 

forecast made with the model however the error introduced is not as large as that 

introduced when the transient terms are ignored. The sensitivity study also showed that 

the storativity ratio would only have a significant effect on the production forecast at 

early time. The permeability ratio was found to only affect late time flow, at its resultant 

effect is to prolong transient flow from the reservoir matrix compartment as its value 

decreases. We also showed that the model can reliably trend the observed producing 

characteristics of hydraulically fractured horizontal wells (within engineering limit) and 

presented an example application to field data. 
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Table 4-1: Summary of data input to numerical simulation model used to validate parallel flow 

model 

Simulator Input 

 

Fracture network  

layer 

Reservoir matrix  

layer 

Permeability, k (md) 5 0.05 

Fracture half length, xf (ft) 75 75 

Porosity, φ 0.3 0.3 

Viscosity, μ (cp) 2 2 

Total compressibility, ct (psi
-1

) 2.86×10
-5

 2.86×10
-5

 

Reservoir length, L (ft) 210 210 

Bottom hole pressure, Pwf (psi) 50 50 

Initial reservoir pressure, Pi (psi) 5300 5300 

Thickness, h (ft) 11.54 34.62 

Formation volume factor, Bo (rb/stb) 1.25 1.25 

Table 4-2: Summary of computed model parameters for the validation of the parallel flow model 

without cross flow 

Computed 

model parameters 
Values 

qi1 (stb/d) 244 

𝒒̅𝒊𝟏(stb/d
0.5

) 336 

τ1 (Days) 10 

qi2 (stb/d) 7 

𝒒̅𝒊𝟐(stb/d
0.5

) 101 

τ2 (Days) 970 
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Table 4-3: Summary of model input parameters for sensitivity analysis of transient terms on 

production forecast 

Model  

parameters 
Values 

f1 (Fraction) 0.99 

λ1 (Fraction) 1.00 

ω1 (Fraction) 0.20 

f2 (Fraction) 0.01 

λ2 (Fraction) 2.50E-03 

ω2 (Fraction) 0.80 

Table 4-4: Summarized model input parameters used to investigate the effect of storativity ratio on 

model forecast 

Model  

parameters 
Case 1 Case 2 Case 3 

f1 (Fraction) 0.99 0.99 0.99 

λ1 (Fraction) 1.00 1 1.00 

ω1 (Fraction) 1.0×10
-5

 1.0×10
-3

 1.0×10
-1

 

f2 (Fraction) 0.01 0.01 0.01 

λ2 (Fraction) 2.5×10
-2

 2.5×10
-2

 2.5×10
-2

 

ω2 (Fraction) 1.00 0.999 0.90 

Table 4-5: Summarized model input parameters used to investigate the effect of permeability ratio 

on model forecast 

Model  

parameters 
Case 1 Case 2 Case 3 

f1 (Fraction) 0.99 0.99 0.99 

λ1 (Fraction) 1.00 1.00 1.00 

ω1 (Fraction) 0.20 0.20 0.20 

f2 (Fraction) 0.01 0.01 0.01 

λ2 (Fraction) 2.5×10
-3

 2.5×10
-2

 2.5×10
-1

 

ω2 (Fraction) 0.80 0.80 0.8 
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Table 4-6: Summary of model parameters for example 1 

Fit  

parameters 

Values 

qi1 (stb/d) 135 

𝒒̅𝒊𝟏(stb/d
0.5

) 2302 

τ1 (Days) 1,480.16 

qi2 (stb/d) 504 

𝒒̅𝒊𝟐(stb/d
0.5

) 1632 

τ2 (Days) 53.37 
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Figure 4-1: Micro-seismic survey data showing two horizontal wells and the recorded micro-seismic events from 

hydraulically fracturing the wells. Source: Bello (2009) 

 

 
Figure 4-2: Schematic of a cross-section drawn across a horizontal wellbore showing the main hyraulic fracture and the 

network of fractures 
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Figure 4-3: Idealized conceptual model of a fractured horizontal well in an unconventional reservoir with no crossflow 

between the matrix and fracture network layer 

 

 
Figure 4-4: CMG-GEM numerical simulation model used to validate the parallel flow model without cross flow 

 

 

 

Ps
eu

d
o

 F
ra

ct
u

re
 w

el
lb

o
re

 

Fracture network 
layer

Matrix 
layer

q
m

 

q
f

q
T
 = q

fn
+

 
q

m 
 

md 



 93 

 

Figure 4-5: Comparison of the production history from the analytical parallel flow model without cross flow and the 

numerical simulation model 

 

 
Figure 4-6: Effect of omitting transient terms on the production forecast 
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Figure 4-7: Effect of omitting pseudo steady state terms on the production forecast 

 

 
Figure 4-8: Effect of storativity ratio on the production forecast 
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Figure 4-9: Effect of permeability ratio on the production forecast 
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(a) 

 

(b) 

  

(c) 
Figure 4-10: Application of parallel flow model to field data, (a). is the production rate plotted on a log-log scale. (b). 

represents the history match result and the forecast of production rate. (c). represents the history match of the cumulative 

production and reserves forecast 
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Chapter 5: Approximate Analytical Solution to the Double Porosity 

Model 

Production data from most fractured-horizontal wells in gas and liquid-rich 

unconventional reservoirs plot as straight lines with a one half slope on a log-log plot of 

rate versus time. This production signature (half slope) is identical to that expected from 

a one-dimensional linear flow from reservoir matrix to the fracture face when production 

occurs at constant bottom-hole pressure. In addition, micro-seismic data obtained around 

these fractured wells suggest that an area of enhanced permeability is developed around 

the horizontal well, outside this region is an undisturbed part of the reservoir with low 

permeability.  Based on these observations geoscientists have, in general, adopted the 

conceptual double-porosity model in modeling production from fractured horizontal 

wells in unconventional reservoirs. The analytical solution to this mathematical model 

exists in Laplace space but it cannot be inverted back to real-time space without using 

numerical inversion. In this chapter a new approximate analytical solution to the double-

porosity model in real-time space is presented. In addition, example applications of this 

model are presented using synthetic and field data. 

5.1 Model Development 

Figure 5-1 is a schematic diagram of a hydraulically fractured horizontal well 

where the single fracture is perpendicular to the wellbore. Between successive fractures 

are low permeability reservoir matrixes. The dashed blue lines represent the no-flow 

boundaries created by the interference of flow from the matrix into the fracture face. The 

development presented assumes that the fracture face is at a constant pressure equal to the 

bottom hole well pressure. In addition we make the following assumptions: 
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1.  Flow is single phase and slightly compressible, 

2.  Flow occurs in the reservoir isothermally, 

3.  The reservoir is isotropic and homogeneous in each compartment, 

4.  There is no direct communication between the matrix and wellbore, 

5.  There is a large contrast in permeability between the fracture and matrix 

compartments, 

6.  Secondary effects such as stress dependent permeability (porosity) and desorption 

are neglected. 

The system of equations that describes this conceptual model is presented as 

follows; for the low permeability reservoir matrix the governing partial differential 

equation, initial condition and boundary conditions are summarized below: 
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Equation 5.1 is the 3D diffusivity equation for the reservoir matrix and equation 5.2 is the 

initial condition. Equation 5.3 means that there is a no-flow boundary at the external 

boundary of the reservoir matrix. Equation 5.4 states that flow from the matrix into the 

fracture face ( wfx x ) is equal to the out flow from the fracture face. Equation 5.5 states 

that there is a no-flow boundary at the external boundary of the reservoir matrix in the y 

direction and equation 5.6 states that there is no interaction between the matrix and the 

wellbore, that is, there is no cross flow from the matrix into the wellbore. Equations 5.7 

and 5.8 are no flow boundary conditions and they model the fact that the reservoir is 

sealed at the top and bottom boundaries. 

 For the fracture, the governing partial differential equation is presented below: 

 2 2 2
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Equation 5.9 is the 3D diffusivity equation for the fracture. Equation 5.10 is the initial 

condition and equation 5.11 is the no-flow boundary at the fracture tip. Equation 5.12 

states that at the wellbore, the fracture pressure is equal to the wellbore pressure. 
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Equation 5.13 states that there is a no flow boundary at the center line of the fracture and 

equation 5.14 is identical to equation 5.4 and they have the same physical meaning. 

Equations 5.15 and 5.16 are no flow boundary conditions at the top and bottom of the 

reservoir, they represent the fact that the reservoir is sealed at the top and bottom 

boundaries. Equations 5.1 and 5.9 form a coupled system of partial differential equations 

(PDEs) because of the continuity condition defined by the boundary condition specified 

by equation 5.4 and 5.14.  

We are interested in developing a rate–time function for forecasting production 

rate from a system described by these set of equations. To achieve this goal we eliminate 

the spatial dependences in these sets of equations by integrating equations 5.1 and 5.9 

over the spatial x, y and z domains, respectively. Integrating equation 5.1 with respect to 

x , y and z with x  varying from 
wfx  to  

ex , y  from 
wfy  to  

ey  and  z  from 
0z  to  

ez , we 

obtain 
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Equation 5.17 can be re-written as 
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           (5.18) 

In equation 5.18 we have used the fact that time, t, is independent of the spatial 

coordinates to move the time derivative outside of the spatial integral. Defining the 

average pressure in the reservoir matrix as the volume weighted average, the right side of 

equation 5.18 becomes 
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where, the average pressure is given as 
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z y x

m z y x z y x
z y x

m bm m mz y x

z y x z y x

z y x

p dxdydz

p t p dxdydz dxdydz p t v p t

dxdydz

. 

           (5.20) 

Using the boundary conditions defined by equations 5.3 – 5.8 in equation 5.19 and 

multiplying both sides by mk


, equation 5.19 simplifies to 

 
 

0





 

 
e e

m

wf wf

z y

mm m
t bm

z y x

d p tk p
dydz c v

x dt
.     (5.21) 

Defining the effective matrix pore volume as 
m mp m bv v and noting that from Darcy’s 

law,  
0



 
 

 
 

 
e e

wf wf

z y

m m
m

z y x

k p
q t dydz

x
. Therefore, we can rewrite equation 5.21 as shown 

below: 

 
 

  
m

m

p t m
m

d p t
v c q t

dt
.       (5.22) 

In equation 5.22, 
mp  is the average pressure in the reservoir matrix and 

mq  is the net flow 

rate from the reservoir matrix. This equation is a macroscopic equation and the 

parameters are therefore representative average values that describe the properties of 

matrix compartment. Equation 5.22 is identical to the equation used in the development 

of the capacitance resistance model (Sayarpour, 2008; Nguyen, 2012 and Cao, 2014). 
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 The next step in the model development is to also integrate the fracture equation 

over the spatial x, y and z domains. Therefore, 

 

 

0 0

2 2 2

2 2 2

0 0

wf wfe e e e

wf wf

x xz y z y
tf f f f f

fz y z y

cp p p p
dxdydz dxdydz

z y x k t

    
   

     
      ,  (5.23) 
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     

wf wfe e e e

f

wf wfe e wf wf

x xy z z y
t bf f f f f f f f

fy z z yz z y y x

c v d p tp p p p p p
dxdy dxdz dydz

z z y y x x k dt
. 

           (5.24) 

We have made use of the average pressure in the fracture in equation 5.24. The average 

pressure used is the volume weighted pressure defined for the fracture as shown below: 

     0

0

0

 
   
  

  
  

  

e e e

e e e

wf wf

fe e e

wf wf

wf wf

z y x

f z y x
z y x

bf f fz y x

z y x

z y x

p dxdydz

p t dxdydz p t v p t

dxdydz

.   (5.25) 

Multiplying equation 5.24 by 
fk


 and applying the boundary conditions from equations 

5.11, 5.13, 5.15 and 5.16; equation 5.24 simplifies to 

 
 

0 00


 

    
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   

   
wfe e e

f

wfwf wf

xz z y

f f f f f

t bf

z z yy x

d p tk p k p
dxdz dydz c v

y x dt
.  (5.26) 

Noting that  
0 0



 
 

 
 

 
wfe

wf

xz

f f

f

z y

k p
q t dxdz

y
and 

f fp f bv v , equation 5.26 can be written 

as shown below: 

   
 
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 
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 
e e

f

wf wf

z y

f f f

f p t
f

z y x

d p tk p
q t dydz v c

x dt
.    (5.27) 
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From the boundary condition given by equation 5.14, 

wfwf

f f m m

xx

k p k p

x x 

 


 
, 

substituting this into equation 5.27, it becomes  

   
 
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e e

f
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.    (5.28) 

Noting that  
0



 
 

 
 

 
e e

wf wf

z y

m m
m

z y x

k p
q t dydz

x
, then equation 5.28 is rewritten as: 

 
 

     
f

f

p t f m
f

d p t
v c q t q t

dt
      (5.29) 

In equations 5.29,  f
p t  is the average fracture pressure,  fq t is the net flow rate 

out of the fracture compartment and  mq t  is the net matrix flow in to the fracture 

compartment from the matrix. We have thus transformed the system of PDEs in to a 

system of ordinary differential equations (ODEs). One advantage of transforming the 

system of PDEs into a system of ODEs is that the problem is now easier to solve because 

it is now a system of ordinary differential equations which can be solve by eigenvalue 

decomposition. Another advantage is that it eliminates the need to know the specific 

location and geometry/dimensions of the fracture(s). Nobakht et al. (2013) and Ambrose 

et al. (2011) presented a method of forecasting production from a multi-fractured 

horizontal well that considered planar hydraulic fractures of different lengths. The new 

model is in terms of the average pressure in a fracture of any arbitrary shape or geometry 

(planar or otherwise). Figure 5-2 is a simplified representation of the new problem, which 

is a schematic representation of the reservoir as a two-compartment system in series flow. 

The first compartment can be thought of as the aggregated volume of all the 

fractures in the reservoir. It is the only compartment that is directly connected to the 
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wellbore. The average pressure in compartment one is  f
p t  and the flow rate from this 

compartment into the wellbore is  fq t . The second compartment is the aggregated 

volume of the reservoir matrix. The average pressure in the second compartment is  m
p t . 

The matrix compartment does not communicate directly with the wellbore; it only has a 

cross flow term,  mq t , into the fracture compartment. 

The next step in the solution is to eliminate the average pressures in equations 5.22 

and 5.29 by using a relationship between the average reservoir pressure and flow rate. 

This step is achieved by using an analytical solution to the one dimensional linear flow 

problem (Wattenbarger et al., 1998, Bello et al., 2009 and Patzek et al. 2014) with 

constant pressure at the fracture face; from which the average reservoir pressure, as 

shown in appendix A, is given by: 

   

 

 

2

2

2

2 1
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22
1
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2 1
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  



t

n k
t

c L

wf i wf

n

e
p t p p p

n
.     (5.30) 

It is also shown in appendix A that the dimensionless flow rate from such a system is 

given by: 

 

2 2

2

(2 1)
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4
2




 





  t
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L

D

n

c
q et .        (5.31) 

From equation 5.31 we note that  

2 2

2

(2 1)

4
2








 t

n t

c L

Dn eq t , n  is an index used to represent an 

independent solution and it is usually called the normal mode, therefore,  Dnq t  is the 

dimensionless flow rate associated with an independent solution. If we define the 

productivity index as 
 

2

4

i

i wf

q
J

p p





. Then after substituting the expression for  Dnq t  

and J  into equation 5.30 we obtain: 
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 
 
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 Dni
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q tq
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.       (5.32) 

We can therefore write equation 5.32 for the fracture and matrix compartments as: 

 
 
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2

1 2 1
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where, 
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Dfq t e : is the dimensionless production rate for the nth normal mode for 

the fracture compartment 
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Dmq t e : is the dimensionless production rate for the nth normal mode for 

the matrix compartment 

( )
i

f f

f i wf

f

k A
q p p

x
 


: is the initial production rate from the fracture’s nth normal mode 

( )
i

m m

m i wf

k A
q p p

L
 


: is the initial production rate from the matrix’s nth normal mode 

 

2

4

fi

f

i wf

q
J

p p





: is the fracture productivity index 

 

2

4






m
x

m f

q
T

p p
: is the transmissibility between the fracture and matrix 

In writing equation 5.34 for the matrix compartment, we have assumed that a constant 

wfp solution is valid even when it is changing. This assumption is a good approximation 

when there is a large contrast in permeability between the two adjacent compartments 

because the high permeability of the fracture compartment ensures a quick pressure 

equilibration with the wellbore pressure in the fracture compartment and, hence, the 

pressure at the interface between the two compartments is approximately constant.  

 

 Differentiating equation 5.33 with respect to time we obtain: 
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If in equation 5.31 we define  D Dq t  as  
 

D

i

q t
q t

q
, then, we can write the flow rate as:  
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Substituting equations 5.35 and 5.36 into equation 5.29 and simplifying results in 
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For the matrix compartment, we differentiate equation 5.34 with respect to time, t , to 

obtain: 
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Substituting equations 5.38 and 5.36 into equation 5.22 results in 
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Using equation 5.35, we substitute for 
 fd p t

dt
 in equation 5.39 to obtain: 
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Substituting equation 5.37 in equation 5.40 and simplifying we obtain: 
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           (5.41) 

If we define: 

 p t f

f

f

v c

J
  : as the fracture time constant 

 p t m
m

x

v c

T
  : as the matrix time constant 

Then we can re-write equations 5.37 and 5.41 as: 
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Equations 5.42 and 5.43 can be thought of as the decomposition of equations 5.22 and 

5.29 where flow is predominantly linear. Multiplying both sides of equations 5.42 and 

5.43 by 
2(2 1)n  we obtain: 

  
     2 2

1 1 1

1 1
(2 1) (2 1)

 

  

  

      
n

n n

fi f

fi f mi m

n n nf f

d q q t
n q q t n q q t

dt
, (5.44) 

  
     2 2

1 1 1

1
(2 1) (2 1)

  

  

  

 
     

  
  

n

n n

mi m x x
fi f mi m

n n nf f m f f

d q q t T T
n q q t n q q t

dt J J
. (5.45) 

The index n in equations 5.44 and 5.45 is the normal mode index, as a result, we can 

solve the system of ODEs represented by equations 5.44 and 5.45 for each mode and then 

sum these solutions to obtain the complete solution. We re-write this system of ODEs in 
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matrix form as shown below for the nth mode and then solve it with eigenvalue-

decomposition, Kreyszig (2006). 

 
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where the initial conditions to solve the system represented by equation 5.46 are: 

( 0)f fiq t q  ,         (5.47) 

( 0) 0mq t   .         (5.48) 

Equation 5.47 simply states that at time, t = 0, the production rate from the fracture 

volume is equal to a finite value fiq . While equation 5.48 states that at time, t = 0, the 

production rate from the matrix volume is equal to zero, 0mq  . This is because at time 

zero, the pressure everywhere in the formation is equal to the initial reservoir pressure as 

a result there is no pressure gradient for flow from the matrix in to the fracture because 

the pressure at the interface between the fracture and matrix is still at the initial reservoir 

pressure. 

 Next we solve the system defined by equation 5.46 by the eigenvalue-

decomposition method. The system in matrix – vector notation is 

n n n

.

q = A q .         (5.49) 

where 
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q , 
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Re-writing nA as 
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The eigenvectors corresponding to 1n
  and 2n

  are found to be given respectively as: 
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Therefore, 

2 21 1
( ) 4( ) ( ) 4( )

2 2
1 1

1 1

a d a d ad cb a d a d ad cb
p c c

 
                          
 

 

           (5.50) 

where  

21
( ) 4( )

2
a d a d ad cb

c
       

 
, 

21
( ) 4( )

2
a d a d ad cb

c
       

 
. 

The solution to equation 5.46 is therefore; 

 
1

2

1

2
1 1





    
   
   

n

n

n

n

t

n
t

c e
q t

c e
,       (5.51) 

  1 2

1 2

   n n

n n n

t t

fq t c e c e ,       (5.52) 

  1 2

1 2

 
 n n

n n n

t t

mq t c e c e .        (5.53) 

Using the initial condition we derive the constants 1n
c and 2n

c  as: 

2
n n

n

fi miq q
c



 





, 

1
n n

n

mi fiq q
c



 





. 
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Substituting these constants into equations 5.52 and 5.53 we obtain the following 

expressions for 
nf

q and 
nmq . 

  2 1 1 2      
   

      
    

n n n n

n

fi t t t tmi
f

q q
q t e e e e ,   (5.54) 

  2 1 1 2    
   

      
    

n n n n

n

fi t t t tmi
m

q q
q t e e e e .    (5.55) 

If we set 0miq   as defined by the initial condition of the problem, equations 5.54 and 

5.55 simplify to 

  2 1  
 

  
 

n n

n

fi t t

f

q
q t e e ,       (5.56) 

  2 1 

 
  
 

n n

n

fi t t

m

q
q t e e .       (5.57) 

As a result the complete solution to the problem is given as: 

  2 1

1 1 1

  

   

  

  

  
 

  n n

n

t t

f f fi fi

n n n

q t q q e q e ,    (5.58) 

 
2 1

1 1 1

 

   

  

  

  
 

  
n n

n

t t

m m fi fi

n n n

e e
q t q q q .     (5.59) 

We now eliminate the infinite sum in equation 5.58 by converting the summation to an 

indefinite integral. 

 
2 2 2 2

2 1 2 1(2 1) (2 1) (2 1) (2 1)

2

      

       


   



 
     

    


n t n t n t n t

f fi fi fi fi

n

q t q e q e q e q e n

           (5.60) 

Equation 5.60 is equation 5.58 written with index n = 1 expanded out of the summation 

and recalling that 
2

1 1(2 1)
n

n    and 
2

2 2(2 1)
n

n   . Now let 
2(2 1)z n t   then 

22

dz
dn

t
 . Upon substituting these expressions into equation 5.60 we obtain: 
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 
21

2 2 2
2 1 2

2

(2 1) (2 1)

23

lim
2



  



   

        

 



 
    

     

z z

n t n t z

f fi fi fi fi
z

t

dz
q t q e q e q e q e

t

           (5.61) 

Simplifying equation 5.61 we obtain: 

 
21

2 2 2
2 1 2

2

(2 1) (2 1)

2 3

lim
2



  



   

       

 



  
     

        

z z

fin t n t z

f fi fi
z

t

q
q t q e q e e e dz

t

           (5.62) 

Evaluating the integral yields 

 
2 2

2 1

2

(2 1) (2 1)

1

22 1

2
3

lim ( ) ( )
22

2

 



 

   

    
 

     



 



 
 

 
  
   

       
  

n t n t

f fi fi

z

fi

z

t

q t q e q e

q
erf erf

t

,  (5.63) 

 

   
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2 1(2 1) (2 1)

2 1

2 1

lim ( ) (3 ) lim ( ) (3 )
4 4

  

   

   
 

    

 

 

 
 

   
 

n t n t

f fi fi

fi fi

z z

q t q e q e

q q
erf z erf t erf z erf t

t t

. 

           (5.64) 

Taking the limit as z  , lim ( ) 1
z

erf z


 , equation 5.64 therefore simplifies to 

 
2 2

2 1(2 1) (2 1)

2 1

2 1

(3 ) (3 )
4 4

  

   

   
 

    

 
 

 

   
  

n t n t

f fi fi

fi fi

q t q e q e

q q
erfc t erfc t

t t

.   (5.65) 

In arriving at equation 5.65 we have evaluated the limit z   in equation 5.64 and used 

the identity ( ) 1 ( )erfc x erf x  . Equation 5.65 is the approximate analytical solution to 
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the double porosity model. The negative sign under the square root in equation 5.65 is 

necessary because the values of 1  and 2  are always negative. The model parameters 

are defined as: 

2 2

1 2

2 21 1 1 1 1

2

x x x x

f m f f f m f f f m f f f

T T T T

J J J J


        

 
   

                     

,  (5.66)  

2 2

2 2

2 21 1 1 1 1

2

x x x x

f m f f f m f f f m f f f

T T T T

J J J J


        

 
   

                     

,  (5.67) 

2 2

2

2 21 1 1 1

2

f f x x x x

x f m f f f m f f m f f f f

J T T T T

T J J J J




        

 
   

                     

, (5.68) 

2 2

2

2 21 1 1 1

2

f f x x x x

x f m f f f m f f m f f f f

J T T T T

T J J J J




        

 
   

                     

. (5.69) 

We verify that  and  are always negative by constructing their response 

surfaces, where we use f  and m  as independent variables and x

f

T

J
 as a single 

parameter. Figure 5-3 and Figure 5-5 are the response surfaces of equation 5.66 with the 

parameter x

f

T

J
 equal to 10

2
 and 10

-2
, respectively. And Figure 5-4 and Figure 5-6 are the 

response surfaces of equation 5.67 with the parameter x

f

T

J
 equal to 10

2
 and 10

-2
, 

respectively. It can be verified from these figures that the equivalent time constants are 

always negative for realistic values of the fracture and matrix time constants and the 

lumped parameter, x

f

T

J
. These equations show the mathematical relationship between the 

eigenvalues and the fracture, matrix time constants, the transmissibility coefficient 

between the fracture and the matrix compartment and the ratio of their permeability. 

1 2
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Physically, 
1 and 

2  are the time constants of an equivalent parallel flow model that will 

yield the same results as the original problem when appropriately weighted with the 

eigenvectors. One can regard equations 5.66 through to 5.69 as expressions for scaling 

parameters that can be used to transform a two compartment series flow model into a two 

compartment parallel-flow model without cross flow, Ogunyomi (2014). An extension of 

the model development to 3 compartments (triple porosity system) is available in 

appendix E. 

5.2 Model Validation 

5.2.1. Validation with Numerical Reservoir Simulation 

The approximate analytical solution to the double porosity model, represented by 

equation 5.65, is validated with a synthetic case. The synthetic case was developed with 

CMG – GEM. The model used in the synthetic case was designed to have two adjoining 

reservoir compartments in which the compartment containing the producing well has a 

higher permeability when compared with the second compartment. The compartment 

with the high permeability can be thought of as the aggregated collection of the fracture 

volume while the second compartment is used to represent the reservoir matrix and hence 

it has a lower permeability. The volume of the fracture compartment is equal to 25 

percent of the volume of the matrix compartment. All other properties are identical for 

the two compartments. The other inputs for the synthetic model are summarized in Table 

5-1. Figure 5-7 is the numerical simulation model used in the validation case and it shows 

the permeability field. 

To validate the approximate analytical model, the production rate obtained from 

running the synthetic case is shown to be identical to the production rate obtained from 

the approximate analytical solution. Figure 5-8 presents a comparison of the production 
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rate obtained from the synthetic case and the approximate analytical solution. The graph 

in red represents the production rate from the analytical solution while the graph in blue 

is the production rate from the synthetic case. 

The production history in Figure 5-8 exhibits two time scales, the first time scale 

initially starts as a straight line with a slope of half which is indicative of transient linear 

flow in one dimension and this is followed by an exponential decline that is indicative of 

boundary dominated flow from the first compartment. After the boundary dominated 

flow from the first compartment has dissipated the transient flow from the second 

compartment starts and it has the expected straight line with half slope signature. This 

transient flow regime is then followed by a boundary dominated flow regime from the 

second compartment. From this figure, both graphs, from the simulator and the analytical 

solution, overlay each other; therefore, validating the analytical solution. A summary of 

the fitting parameters for the analytical solution are presented in Table 5-2 below. 

5.2.2. Validation with Laplace Space Analytical Solution 

In this section we present a comparison of the analytical solution derived in the 

previous section with the actual solution to the double porosity model (in Laplace space). 

The equivalent solution to a double porosity model using Laplace transforms, Bello et al. 

(2008) is given as 

cosh ( )
( , )

cosh ( )

D

fD D

sf s y
p y s

s sf s

 
 
 
 

,       (5.70) 

where; 

(1 ) 3(1 )
( ) tanh

3

s
f s

s

  




  
   

 
: Inter-porosity transfer function 
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p p





: Dimensionless pressure 

2(( ) ( ) )

f

D

t f t m f

k t
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c c x  



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e
D

wf e

x x
x

x x





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e
D

f e

y y
y

y y





: Dimensionless distance in the y - direction 

2

12
fm

f

xk

k L


 
  

 
: Inter-porosity transfer parameter 

 

   
t f

t tf m

c

c c




 



: Storativity ratio 

The solution given by equation 5.70 is the constant pressure solution, that is, it assumes 

an instantaneous constant pressure at the fracture face. The details of its derivation can be 

found in Bello et al. (2008) and also in appendix A for convenience. A problem with 

using this solution is that it cannot be inverted back in to the real time space to obtain a 

closed form analytical solution hence a numerical inversion algorithm is employed to 

compute pressures and rate from this solution. From this solution we obtain the 

production rate at the fracture face by taking its derivative and evaluating its value at the 

fracture face ( 1Dy  ), that is, 

1D

fD

D y

dp

dy


 

( )
( 1, ) tanh ( )D D

f s
q y s sf s

s
  
 

.      (5.71) 

Bello et al. (2008) also provided a detailed sensitivity analysis on equation 5.71 to 

understand how the model parameters affect its production characteristics. We 

summarize the result of this sensitivity analysis below: Figure 5-9 presents a plot of the 
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dimensionless rate versus the dimensionless time where the inter-porosity transfer and the 

storativity ratio have been varied. The red colored lines on the plot correspond to a 

storativity ratio of 10
-1

 and the inter-porosity transfer parameter varying from 10
-3

 to 10
-9

, 

the blue colored lines correspond to a storativity ratio of 10
-3

 and the inter-porosity 

transfer parameter varying from 10
-3

 to 10
-9

 while the green colored lines correspond to a 

storativity ratio of 10
-6

 and the inter-porosity transfer parameter varying from 10
-3

 to 10
-9

. 

The physical meaning of the general characteristic observed on this plot can be explained 

as follows; at the start of production, flow is predominantly linear with a slope of half and 

represents transient flow from the fracture, this is followed by an exponential decline 

period when the effects of the fracture boundary is felt and becomes dominant. After the 

effect of the fracture boundary, another linear flow period starts (also characterized by a 

half slope) and this is believed to be the transient flow from the reservoir matrix. After 

this transient flow period another exponential decline period is observed and this is 

believed to correspond to the matrix boundary effect. 

 We now compare the production rate from the approximate analytical solution 

(equation 5.65) to the production rate from the actual analytical solution (equation 5.71). 

For our approximate analytical solution to be useful, it should reasonably reproduce the 

observed characteristics in Figure 5-9. The result of the comparison is presented in Figure 

5-10. In Figure 5-10 we present three cases of history matching of production rate from 

the actual solution and the approximate solution. Case one shows the match for ω = 10
-3

 

and λ = 10
-5

, case two shows the match for ω = 10
-1

 and λ = 10
-5

 and case three shows the 

match for ω = 10
-1

 and λ = 10
-9

. From Figure 5-10 it obvious that the production rate 

predicted by the approximate analytical solution provides a good match to the production 

rate predicted by the actual solution, hence the approximate analytical solution can be 

used to reliably forecast production from fractured horizontal wells. 
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5.3 Analysis of Model Parameters 

5.3.1. Physical Meaning of the Model Parameters: 

The time constants in the approximate analytical solution are identical in 

definition 
p tv c

J
   to that defined in the capacitance resistance model (CRM), as a result 

we conclude that τ has a similar physical meaning in our solution as it does in the CRM. 

It is important to note that τ is a function of the storage capacity and the transmissibility 

(permeability) of the compartment, In the CRM, Cao (2014), Nguyen et al. (2012) 

following the work of Seborg et al. (2003) have defined the time constant to mean the 

time it takes for 63.2 percent of an input pulse to be observed as the output. The input 

pulse for our model would be the pressure difference that is responsible for flow while in 

the CRM it is the injection rate. 

5.3.2. Inferring Fracture and Matrix Volume from Model Parameters 

In this section, we investigate the possibility of estimating the size (volume) of the 

fractures induced by the hydraulic fracture and the reservoir matrix from the model 

parameters with the approximate analytical solution. To accomplish this task, we took the 

following steps (the numerical model was built with CMG’s IMEX black oil simulator): 

1. Build a numerical model with two compartments where one compartment has a high 

permeability and the second compartment has a low permeability with a commercial 

reservoir simulator. 

2. Perform a history match of the production rate from the numerical model to the 

approximate analytical solution to obtain the model parameters. 

3. Change the relative volume of each compartment in the numerical simulation model 

while keeping the total pore volume constant and repeat step 2. 
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4. After obtaining the model parameters for a few cases we make a cross plot of each 

model parameter with the volume of each compartment as defined in the numerical 

simulation model. 

The model parameters considered for this analysis are the fracture compartment 

time constant (
f ), the matrix compartment time constant (

m ) and the initial fracture 

production rate (
fiq ). The numerical model used for this analysis is identical to that 

presented in Figure 5-7 and the model used is equation 5.65. The result of this numerical 

experiment is summarized in Table 5-3, which presents a summary of the cases 

considered and the model parameters obtained from the history matching exercise. 

a) Fracture time constant:  

Figure 5-11a presents the crossplot of the fracture time constant and the pore 

volume of the high permeability compartment. Figure 5-11b presents the same for the 

low-permeability compartment. From Figure 5-11a as the pore volume of the high 

permeability compartment increases the fracture time constant increases, indicating a 

positive correlation between them. The coefficient of determination is large, R
2
 = 0.98. 

Recall that the fracture time constant is defined as 
 

fp t
f

f

f

v c

J
  , where 

fpv  is the fracture 

pore volume. This definition of the fracture time constant suggests that we can infer the 

size of the fracture volume from the value of the fracture time constant. In contrast, 

Figure 5-11b suggests that the fracture time constant decreases with increasing pore 

volume of the low-permeability compartment. This figure also has a large coefficient of 

determination, R
2
 = 0.98. This observation is because the fracture volume shares a 

boundary with the matrix volume and this shared boundary was held constant during this 

experiment while the other boundaries changed. 
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b) Matrix time constant:  

Figure 5-12a is the cross plot of the matrix time constant and the pore volume of 

the high permeability compartment, whereas Figure 5-12b represents the same for the 

low permeability compartment. Figure 5-12a suggests that, as the pore volume of the 

high permeability compartment increases, the matrix time constant decreases. This 

relationship indicates a negative correlation between them. The coefficient of 

determination is high, R
2
 = 1.0, suggesting that there is a relationship between the size of 

the fracture volume and the matrix time constant. This transmissibility factor is a function 

of the fracture dimension. From Figure 5-12b, we observe that as the pore volume of the 

low-permeability compartment increases, the matrix time constant increases. This 

observation is expected because in the definition of the matrix time constant, as shown 

above, the matrix time constant is directly related to the matrix pore volume, 
mpv . This 

cross-plot also has a high coefficient of determination.  

c) Initial production rate:  

Figure 5-13a presents a cross plot of the initial production rate and the pore 

volume of the high permeability compartment. Figure 5-13b is the cross plot of the initial 

production rate and the pore volume of the low permeability compartment. From Figure 

5-13a as the pore volume of the high permeability compartment increases the initial 

production rate from the fracture decreases, indicating a negative correlation between 

them. The coefficient of determination is high, R
2
 = 0.84, suggesting that we can infer the 

size of the fracture volume from the initial production rate from the fracture. The 

definition of the initial production rate is given as 
( )

i

i wf f f

f

f

p p k A
q

L


 . In the numerical 

simulation model 
f fA hw  and 

fp f fv A L . In the experiments conducted, when we 

increased the fracture pore volume we increased 
fL  and as this variable is in the 
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denominator of the definition of 
if

q . From this definition there is an inverse relationship 

between the initial production rate and the fracture volume, which explains the 

observation in Figure 5-13a. 

From Figure 5-13b we see that as the pore volume of the low permeability 

(matrix) compartment increases the initial production rate from the fracture increases. 

This observation is consistent with the total pore volume of the reservoir being kept 

constant, which implies that by increasing the fracture pore volume we decrease the 

matrix pore volume, ( )
m T fp f f p pv A L L v v    . Therefore the initial production rate 

should increase as the matrix pore volume is increased. Given the good correlation, we 

can estimate the matrix pore volume from the initial production rate. 

5.4 Application to Field Data 

This section presents example applications of the approximate solution to field 

data and demonstrate how to use it to estimate reserves from hydraulically fractured 

horizontal wells in liquid rich unconventional formations. The model was fitted to 

production rate data from 88 hydraulically fractured horizontal wells. Song (2014) 

presented the application of a finite difference solution to this data set. All the fits 

obtained were within the limits of engineering accuracy. To apply the model to field data 

from a well, we fit the model to available historical production rate data from the well to 

obtain the model parameters by minimizing the squared difference between the model 

estimates and the field production data, that is,  
2

Data modelmin q q by changing ,f m  and 

x

f

T

J
. After obtaining the model parameters, we proceed to forecast future production rates 

and cumulative production until 100,000 days. We present an example application of the 

model to a well in the data set; some more examples are presented in appendix D. 
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Example 1: 

 For this example, the well details are summarized in Table 5-4. This well has been 

on production for 1,136 days. Figure 5-14a presents both the rate and tubinghead pressure 

on a log-log plot. The figure suggests that the production rate is relatively constant until 

about 90 days after which the production rate from the well declined exponential until it 

started declining with a slope of one-half. The tubinghead pressure for this well declined 

with a slope of one half until about 90 days (transient flow) after which it declined with a 

slope of one indicating boundary dominated flow (BDF) until about 100 days when it 

becomes constant. If we assume that production during the first 100 days is from the 

fracture volume and the production after 100 days is from the matrix then we can match 

the model to this data, making sure we match the exponential decline and the half-slope 

portions of the data. Figure 5-14b presents the results of the rate history match and future 

performance. This figure contains three plots, the original production data (red markers), 

the history match (green colored markers) and the forecast (black markers). We 

summarized the model parameters obtained from the history match exercise in Table 5-5. 

The mismatch at the start of the production history is because the well was produced at a 

variable bottomhole pressure during this period while the analytical model presented is 

based on the wellbore pressure being constant. After obtaining the model parameters 

from the history match exercise we use the model to forecast future production rate and 

reserves until 10,000 days. Figure 5-14c presents the performance forecasting results. 

Example 2: 

 The well details for this example are in Table 5-6. This well has been on 

production for 531 days. The production rate from this well is shown in Figure 5-15a on a 

log-log plot. This figure suggests that the production rate is relatively constant until about 

10 days after which the well rate declined exponentially until it started declining with a 
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slope of one-half. The tubinghead pressure for this well started declining with a slope of 

one-half (indicating transient flow) until about 10 days after which it started declining 

with a slope of one (indicating boundary dominated flow). After about 100 days the 

tubinghead pressure was relatively constant. Again if we assume that production during 

the first 100 days is from the fracture volume and the production after 100 days is from 

the matrix then we can match the model to this data making sure we match the 

exponential decline and the half-slope portions of the data. The result of the production 

rate history match is shown in Figure 5-15b and that of future performance in Figure 

5-15c. This figure contains three plots, the original production data (red markers), the 

history match (green colored markers) and the forecast (black markers). From this figure 

we have matched the exponential decline portion of the rate data and we also matched the 

linear decline portion of the rate data. We have summarized the model parameters 

obtained from the history match exercise in Table 5-7. After obtaining the model 

parameters from the history match exercise, the model was used to forecast future 

production rate and cumulative production until 8,000 days. The result of the forecasting 

process is shown in Figure 5-15c. 

 The model parameters obtained from these two examples and others not shown 

here are all functions of the well and reservoir properties. Consequently, the forecasted 

results have high degree of confidence particularly when the fracture boundary is 

observed in the production rate data, which provided an opportunity for defining the 

geometry of the adjoining compartment. 

5.5 Summary and Conclusions 

A generally accepted conceptual model for fractured horizontal wells is that a 

stimulated reservoir volume (SRV) develops around the well and there is a region of un-
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damaged reservoir beyond the SRV (Miller et al. 2010). The SRV is expected to be 

comprised of a complex network of fractures of different geometries ranging from planar, 

curved, slanted etc and of different lengths. However, for ease of solution, existing 

“physics” based models assume that the hydraulic fractures are planar and perpendicular 

to the wellbore. The new solution presented in this work overcomes this limitation of 

existing models because the assumption of planar fractures is not necessary.  

Most empirical models do not account for the second time scale and the end of 

transient linear flow must be determined arbitrarily before switching to a boundary 

dominated flow model. The new solution presented here also eliminates this limitation of 

empirical models. For cases where there is no production data from the second time scale 

the single porosity solution should be used. This solution is shown below: 

 

2

4

3

2
2

 





 
 
  

D

D

t D

D

D

erfc t

q e
t

t .      (5.72) 

In equation 5.72, the first term accounts for boundary dominated flow and the 

second term is the transient solution. The dimensionless time 
Dt  is defined as t


 where τ 

is the time constant of compartment 1 and t is time. We have shown that the model 

parameters derived from the use of the new solution are functions of the reservoir and 

well completion properties. Particularly, the model parameters can be used to estimate the 

drainage volume of a well; this characteristic of the model could have potential 

application in in-fill drilling and well spacing optimization studies. Because the model 

has a closed analytical form, it is especially suited for optimization studies that account 

for uncertainties in reservoir properties and the outcome of well stimulations (hydraulic 

fracturing).
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Table 5-1: Summary of input parameters for the synthetic case as used in CMG - GEM 

Parameter value 

Δx x Δy x Δz (ft) 100 x 50 x 50 

Grid  51 x 11 x 1 

Depth, D (ft)  2000 

Thickness, h (ft)  50 

Compartment 1 

Permeability, k
f
 (md)  70 

Porosity  0.3 

Volume, (ft
3

)  8.25x10
6
 

Compartment 2 

Permeability, k
m

 (md)  10 

Porosity  0.3 

Volume, (ft
3

)  3.3x10
7
 

 

Table 5-2: Summary of model parameters used in the validation case. These parameters provided the best fit 

between the synthetic case and the analytical model 

Parameter Value 

q
fi 

(stb/d) 4695.61 

τ
f 
(day) 56.00 

τ
m 

(day) 6087.00 

T
x
/J

f
 0.03670 

λ
1 

(day
-1

) -0.00016 

λ
2 

(day
-1

) -0.01852 

ϒ (day
-1

) -27.0051 

ρ (day
-1

) 1.0090 

ϒ /( ϒ -ρ) 0.9640 

ρ/( ϒ -ρ) -0.0360 
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Table 5-3: Summary of model parameters obtained from the numerical experiments performed to investigate 

the possibility of inferring fracture and matrix volumes by using the approximate analytical solution 

Case CMG 

Vpf (ft
3
) 

CMG 

Vpm (ft
3
) 

τf 

(days) 

τm 

(days) 

-1/λ1 

(days) 

-1/λ2 

(days) 

qfi 

(stb/d) 

1 8.25E+06 3.30E+07 56 6087 6312.4 54 4695.61 

2 1.65E+07 2.48E+07 176 3998 4247.01 165.68 2695.61 

3 2.48E+07 1.65E+07 267 1900 2462.16 206.04 2080.02 

4 4.13E+06 3.71E+07 15 7455 7639.51 14.64 8195.61 

5 0.00E+00 4.13E+07 - 8634 8855.91 - 7095.61 

 
Table 5-4: Well properties for example one 

Well ID: UT-ID67 

Well length, (ft
3
) 8894 

Spacing (acres) 1280 

Initial pressure, Pi (psi) 6082.87 

Porosity, (fraction) 0.07 

Thickness, h (ft) 53.14 

Initial number of stages 1 

 

Table 5-5: Summary of model parameters for example one 

Parameter Value 

q
fi 

(stb/d) 8.68x10
2
 

τ
f 
(day) 34.00 

τ
m 

(day) 955.00 

T
x
/J

f (ratio) 1.98x10
-1

 

λ
1 

(day
-1

) 
-8.7x10

-4
 

λ
2 

(day
-1

) 
-3.54x10

-2
 

ϒ (Unitless) -4.9 

ρ (Unitless) 1.03 

ϒ /( ϒ -ρ) 

(ratio) 

8.26x10
-1

 

ρ/( ϒ -ρ) (ratio) -1.74x10
-1
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Table 5-6: Well properties for example two 

Well ID: UT-ID265 

Well length, (ft
3
) 9965 

Spacing, (acres) 1280 

Initial pressure, Pi (psi) 7656.69 

Porosity, (fraction) 0.07 

thickness, h (ft) 67.69 

Initial number of stages 10 

 

 
Table 5-7: Summary of model parameters for example two 

Parameter Value 

q
fi 

(stb/d) 4.37x10
2
 

τ
f 
(day) 5.19x10

1
 

τ
m 

(day) 3.93x10
2
 

T
x
/J

f (ratio) 2.67x10
-1

 

λ
1 

(day
-1

) 
-1.96x10

-3
 

λ
2 

(day
-1

) 
-2.50x10

-2
 

ϒ (Unitless) -3.37 

ρ (Unitless) 1.11 

ϒ /( ϒ -ρ) 

(ratio) 

7.51x10
-1

 

ρ/( ϒ -ρ) (ratio) -2.49x10
-1
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Figure 5-1: Schematic diagram of a single fractured horizontal well with a planar fracture 

 

 

 
Figure 5-2: A simplified representation of the double porosity model as a series model with two compartments (tanks) 

where the first compartment represents the volume of the fracture and the second compartment represents the pore 

volume of the reservoir matrix 
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Figure 5-3: Response surface for equivalent time constant 1, λ1, when the parameter 
x

f

T

J
 is equal to 10-2 

 

Figure 5-4: Response surface for equivalent time constant 2, λ2, when the parameter 
x

f

T

J
 is equal to 10-2  
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Figure 5-5: Response surface for equivalent time constant 1, λ1, when the parameter 
x

f

T

J
 is equal to 102 

 

 

Figure 5-6: Response surface for equivalent time constant 2, λ2, when the parameter 
x

f

T

J
 is equal to 102  
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Figure 5-7: Reservoir grid for the synthetic case showing the permeability field. The grid blocks in green are the high 

permeability compartment and the blue grids are the lower permeability compartment 

 

 

Figure 5-8: Comparison of the production rate from the synthetic case and the approximate analytical model 
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Figure 5-9: Effect of storativity ratio and inter-porosity transfer parameter on the production rate from the double 

porosity model 

 

Figure 5-10: Comparison of production rate from the approximate analytical solution to the actual analytical solution 
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(a). (b). 

Figure 5-11: a. Cross plot of fracture time constant and the pore volume of the high permeability compartment in the 

numerical model b. cross plot of fracture time constant and the pore volume of the low permeability compartment in the 

numerical model 

 

  

(a). (b). 

Figure 5-12: a. Cross plot of matrix time constant and the pore volume of the high permeability compartment in the 

numerical model b. cross plot of matrix time constant and the pore volume of the low permeability compartment in the 

numerical model 
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Figure 5-13: a. Cross plot initial production rate and the pore volume of the high permeability compartment in the 

numerical model b. cross plot of initial production rate and the pore volume of the low permeability compartment in the 

numerical model 
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(a) 

 

(b) 

 

(c) 
Figure 5-14: Summary of production profile for example 1, (a). is the production rate plotted on a log-log scale. (b). 

represents the history match result and the forecast of production rate. (c). represents the history match of the cumulative 

production and reserves forecast 
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(a) 

 

(b) 

 

(c) 

Figure 5-15: Summary of production profile for example 1, (a). is the production rate plotted on a log-log scale. (b). 

represents the history match result and the forecast of production rate. (c). represents the history match of the cumulative 

production and reserves forecast 
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Chapter 6: New Analytical Expressions for a Skin and Storage Effect – An 

Insight to Decouple Fracture Half-Length and Square-Root of Permeability 

Most of the models used in well testing and production data analysis of fractured 

horizontal wells (and fractured reservoirs) are based on the assumption that the induced fractures 

have a quadrilateral geometry. From a practical perspective this assumption might not be true, in 

the simplest case if the stress distribution in the reservoir is homogenous and isotropic, then 

fractures induced after hydraulic fracturing should have a circular geometry. The objective of 

this chapter is to present new analytical models for the case where the fracture geometry is 

circular. The solutions presented are for two inner boundary conditions, the constant pressure 

and the constant rate cases with sealed/no-flow outer boundaries. 

6.1  Analytical Model Development 

In reality, if it is assumed that the stress distribution in the formation is isotropic it should 

be expected that the fracture geometry will be circular. If the stress distribution is anisotropic, the 

fracture geometry should be expected to be elliptical in shape. Figure 6-1 presents the conceptual 

model of a fracture in the isotropic case. 

We make the following assumptions in the model development: 

1. Flow is single-phase and slightly compressible, 

2. Flow occurs in the reservoir isothermally, 

3. The reservoir is isotropic and homogeneous in each compartment, 

4. Hydraulic fractures are equidistant from each other, 

5. There is no direct communication between the matrix and wellbore because of  the casing 

and cement used to isolate the well, 

6. Only linear flow exist in the reservoir matrix and only radial flow exists in the fracture, 

7. Secondary effects are negligible such as stress dependent permeability (porosity) and 

desorption, 
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6.1.1  Solution with Constant Pressure Inner Boundary Condition 

For flow in the reservoir matrix, the diffusivity equation, the initial condition and the 

associated boundary conditions, in dimensionless form, are given as shown below: 

 
2

2

1
1

12

mD mD mD
D

D D D D D

p p p
r

r r r z dt



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0
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D z z
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
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   , , , ,mD D Dw D fD D Dw Dp r z t p r z t ,       (6.5) 

 , ,0 0mD D Dwp r z  .         (6.6) 

For flow in the fracture the diffusivity equation, the initial condition and the associated boundary 

conditions, in dimensionless form, are given as: 
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   , , , ,fD D Dw D mD D Dw Dp r z t p r z t ,       (6.11) 
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 , ,0 0fD D Dwp r z  ,         (6.12) 

The dimensionless variables in equations 6.1 through to 6.12 are as defined below: 

i
D

wf i

p p
p

p p





: Dimensionless pressure 

D

w

r
r

r
 : Dimensionless radius 

D

e

z
z

z
 : Dimensionless distance in the z-direction 

    2

f

D

t t wf m

k t
t

c c r  


 
 

: Dimensionless time 

 

   
t f

t tf m

c

c c




 



: Storativity ratio 

2

2
12 m w

f e

k r

k z
  : Transmissibility ratio 

Equation 6.1 is the diffusivity equation in cylindrical coordinates where the z-coordinate is along 

the axis of the horizontal well and the r-coordinate represents the perpendicular distance to the 

well axis. Equation 6.2 is the no flow boundary at the fracture tip and equation 6.3 is the no flow 

boundary at the wellbore due to the casing and cementing of the well. Equation 6.4 is the no flow 

boundary created because of flow from the reservoir matrix into adjacent planar fracture face. 

Equation 6.5 is the continuity condition that specifies that the pressure at the interface between 

the fracture and matrix are equal and equation 6.6 is the initial condition that states that the 

matrix pressure is initially equal to the initial reservoir pressure. mp  is the pressure in the 

reservoir matrix, wr  is the wellbore radius, er  is the external radius of the fracture equivalently 

the fracture half-length, wz  is the distance measured from the place of the origin in the z 

direction that specifies the position of the interface between the fracture and the matrix, 
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physically it can be interpreted as the fracture width. ez  is half the distance between adjacent 

fractures. fk is the fracture permeability. mk  is the matrix permeability, and ip  is the initial 

reservoir pressure. Equation 6.7 is the diffusivity equation for the fracture. Equations 6.8 and 

6.10 are no flow boundaries at the fracture tip and the centerline of the fracture, respectively. 

Equation 6.9 states that the fracture pressure is equal to the wellbore pressure at the wellbore and 

equation 6.11 is the continuity condition that states that the fracture pressure is equal to the 

matrix pressure at the interface between the fracture and the matrix. Equation 6.12 is the initial 

condition that states that initially the fracture pressure is everywhere equal to the initial reservoir 

pressure. 

Because only linear flow occurs in the reservoir matrix and radial flow occurs in the 

fracture, we proceed to integrate equation 6.1 over the radial domain and equation 6.7 over z-

domain to obtain the final set of equations that describe the conceptual model as presented in 

Figure 6-1. The coupled set of partial differential equations is presented below. For the reservoir 

matrix: 
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For the fracture: 
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 , ,0 0D DwfDp r z  .         (6.20) 

The second term in equation 6.17 is a source term that accounts for the cross flow of fluids from 

the reservoir matrix into the fracture. mDp
 
in equations 6.13 through to 6.16 is the area-weighted 

matrix pressure defined as:  
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            (6.21) 

And 
fDp  in equations 6.17 through to 6.20, is the length weighted average fracture pressure 

defined as: 

   
0 0

0 0

0 0

, ,

 

 

 

 
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 

   
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 

D Dw D Dw

D Dw D Dw

D D

D Dw D Dw

D D

D D

z z z z

fD D fD D z z z z

z z

D D fD D D D DfD fDz z z z

z z

D D

z z

p dz p dz

p r t p dz p r t dz

dz dz

.  

            (6.22) 

The solution to the mathematical model defined by equations 6.13 through to 6.20 is obtained by 

using Laplace transforms method (Kreyzsig, 2006; Carslaw and Jaeger, 1959; Churchill, 1958) 

and it is shown below: 

 
       

       

1 1

1 1

( ) ( ) ( ) ( )
,s

( ) ( ) ( ) ( )




 
 

De o D o D De

DfD

De o o De

k r sf s I r sf s k r sf s I r sf s
p r

s k r sf s I sf s k sf s I r sf s
,   (6.23) 
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where, 

(1 ) 12(1 )
( ) tanh (1 )

12
Dw

s
f s z

s

  




  
   

 

.     (6.24) 

fDp  is the dimensionless fracture pressure in Laplace space and ( )f s  is the inter-porosity 

transfer function. In equation 6.23, 1I  is the modified Bessel function of the first kind of order 

one, 1k  is the modified Bessel function of the second kind of order one, oI  is the modified 

Bessel function of the first kind of order zero and ok  is the modified Bessel function of the 

second kind of order zero (Karman and Biot, 1940; Abramowitz and Stegun, 1964). We derive 

the dimensionless rate equation in Laplace space from equation 6.23 by differentiating it with 

respect to Dr  and evaluating the value of the derivative at the wellbore, that is,  

1



D

fD

D

D
r

d p
q s

dr

. The dimensionless rate equation (in Laplace space) is obtained to be: 

 
       

       

1 1 1 1

1 1

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

 
 
 
 

De De

D

De o o De

k r sf s I sf s k sf s I r sf sf s
q s

s k r sf s I sf s k sf s I r sf s
.  (6.25) 

The solution in equation 6.25 is identical to the solution presented by Da Prat (1981) when skin 

and wellbore storage is set equal to zero. The solution presented by Da Prat (1981) assumed a 

pseudo steady state fluid transfer between the matrix and fracture. In this study we used an 

unsteady state fluid transfer function between the fracture and the reservoir matrix. This 

difference in assumption results in a significantly different late time approximate analytical 

solution. El-Banbi (1998) and Bello (2008) also presented the same solution but did not exploit it 

further. The work presented in this work is new because we analyze the solution in equation 6.25 

in a manner that has not been done before now. There is no known analytical form of inversion 

for equation 6.25 into real time space; however we can invert it numerically using any one of the 

standard numerical inversion algorithms such as the Stehfest algorithm (Stehfest, 1970). 
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An approach to obtaining analytical forms of solution in real time space for equation 6.25 

is to obtain approximate forms of the solution for limiting conditions. Then these simple 

approximate forms are inverted to obtain closed form analytical solutions in real time space. The 

limiting solutions are presented next. 

6.1.1.1  Early Time Approximation 

For large values of the argument, the following approximations can be made for the Bessel 

functions (Abramowitz and Stegun, 1964) in equation 6.25 

1( ) ( )
2

s

ok s k s e
s

   ,         (6.26) 

1( ) ( )
2

s

o

e
I s I s

s
  ,         (6.27) 

In Laplace space, early-time corresponds to large values of the Laplace space parameter 𝑠 

Bourgeois (1992). Therefore, lim ( )
s

f s 


 , ideally this is the value of 𝑓(𝑠) to use in the 

approximate solution but we will assume that 𝑓(𝑠) can be used as defined in equation 6.24. 

Substituting equations 6.26 and 6.27 in to equation 6.25 we have; 

 
2 22 2( )

2 22 2

 

 

 

 

 

 

 
 

  
 

 
  

y x
x y

D y x
x y

e e
e e

x yy xf s
q s

s e e
e e

x yy x

,     (6.28) 

where, for simplicity we have defined ( )Dex r sf s  and ( )y sf s  in equation 6.28. After 

simplifying equation 6.28 we obtain; 

 
( ) ( )

( ) ( )

( )
  

  

  
  

y x y x

D y x y x

e ef s
q s

s e e
.        (6.29) 
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According to Becker and Van Orstrand (1909) tanh( )
x x

x x

e e
x

e e









, we can therefore rewrite 

equation 6.29 as shown below: 

 
( )

tanh ( )( 1)  
 DeD

f s
q s sf s r

s
.       (6.30) 

Equation 6.30 is the approximate early-time solution to the problem. It has four 

parameters; the storativity ratio,  ; transmissibility ratio between the matrix and fracture,  ; 

the fracture radius, Der  and the fracture thickness, Dwz . 

6.1.1.2  Late-Time Approximation 

For small values of the argument, the following approximation can be made for the Bessel 

functions (Abramowitz and Stegun, 1964) in equation 6.25: 

( ) ln( )ok s s  ,          (6.31) 

1

1
( )k s

s
 ,           (6.32) 

( ) 1oI s  ,           (6.33) 

1( )
2

s
I s  .           (6.34) 

In Laplace space, late-time corresponds to small values of the Laplace space parameter 𝑠 

Bourgeois (1992). Therefore, 
0

lim ( ) 1 ( 1) Dw
s

f s z


   , again, this is the value of 𝑓(𝑠) to use in 

the approximate late-time solution but we will assume that 𝑓(𝑠) can be used as defined in 

equation 6.24. Substituting the functions defined by equations 6.31 through to 6.34 into equation 

6.25 we obtain; 

 

1 1

2 2( )

1
ln( )
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 
 

 
 
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 

D

y x

x yf s
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xs
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x

.        (6.35) 
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The definition of x and y are the same as presented in the section 6.1.1.1. Introducing the 

definition of x and y in to equation 6.35 and simplifying we obtain; 

 
2

2

( )( 1)

( )
2 1 ln( ( ))

4




 
 

 

De
D

De

f s r
q s

r sf s
sf s

.       (6.36) 

Equation 6.36 is the late-time approximate solution. 

6.1.1.3  Validation of Approximate Solutions 

The approximate solutions were validated by comparing them to the widely published 

and validated solutions for the quadrilateral shaped fractures. The solution for a quadrilateral 

shaped fracture is presented below; complete details can be found in Bello (2008).  

 
( )

tanh ( ) 
 

lin

linlinD

f s
q s sf s

s
,       (6.37) 

where, 
(1 ) 3(1 )

( ) tanh
3lin

s
f s

s

  
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

  
   

 

 , 

2

12
fm

f

xk

k L


 
  

 
 and ω is as defined 

previously. The dimensionless time is defined as 
    2

f

D

t t ff m

k t
t

c c x  


 
 

. Equation 6.37 is 

the complete (transient and pseudo-steady state) solution for the case where the fracture shape is 

a quadrilateral. A validation of this solution with numerical simulation can be found in Bello 

(2008). 

6.1.1.3.1 Validation of Approximate Early-Time Solution 

By comparing the solution in equation 6.37 with the early-time approximate solution 

(equation 6.30) for the radial fracture, these solutions are identical except for the argument of the 

hyperbolic tangent which has the variable Dey  in the quadrilateral case and ( 1)Der   in the radial 

case. Their inter porosity transfer function, ( )f s , is also identical except that the argument under 

the square root sign in the quadratic case has a factor of 3 while the radial case has a factor of 12. 
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At early time (large values of Laplace space parameter, s) the inter porosity transfer 

function for both cases is equal to ω ( lim ( )
s

f s 


 ) and the hyperbolic tangent is equal to one (

lim tanh( ) 1
x

x


 ). If we substitute these limiting expressions in to equations 6.37 and 6.30 we 

obtain: 

 



linDq s

s
,          (6.38) 

 


Dq s
s

.          (6.39) 

Equations 6.38 and 6.39 are the approximate early-time solutions for quadrilateral and radial 

cases respectively. These two equations are identical therefore we can conclude that the 

approximate early-time solution is validated. 

6.1.1.3.2 Validation of Approximate Late-Time Solution 

We validate the late-time solution the same way as the early-time solution was validated. 

The approximate late-time solution for the quadrilateral case is obtained from equation 6.37 by 

using the following approximation of the hyperbolic tangent at small values of the argument,

tanh( )x x . Therefore the late-time approximate solution for the quadrilateral case is given as 

shown below: 

 
(1 ) 3(1 )

( ) tanh
3

  




   
    

   
linlinD

s
q s f s

s
.     (6.40) 

We can write the argument under the square root sign in equation 6.40 as shown in equation 

6.41. Equation 6.41 was obtained by substituting for the definition of the dimensionless 

parameters; 

 

   

2

(1 )
12

3 3

tfm m

f t tm f

cxk

s k L c c s
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 
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  
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.      (6.41) 
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s  in equation 6.41 is the dimensionless Laplace space parameter. Bourgeois (1992) gave the 

relationship between the dimensionless Laplace space parameter and its dimensional form as; 

f

t f

D

s t
s s

t
  ,           (6.42) 

where fs  is the dimensional Laplace variable and 
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substituting for the dimensionless Laplace space variable in equation 6.41 it can be written as 
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. If we assume that the matrix storativity is greater than the 

fracture storativity, that is,    t tm f
c c   and that the fracture storativity is very small, 

  0t f
c   then, we can approximate this expression as

  2
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c L s 
. We can now re-write 

equation 6.40 as shown below: 
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In arriving at equation 6.43 we have used the fact that 
  2

t fm
m

m

c L s
s

k

 
 is only a 

function of the matrix properties and therefore it is the dimensional form the Laplace space 

variable is we solved the original problem for the case where flow is from the reservoir matrix 

into the fracture face that is at constant pressure. Therefore ms  is the dimensionless Laplace 

space variable for 1D matrix flow. If we include the effect of skin, equation 6.43 would become; 

 
tanh

1 tanh[ ]

 
 
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lin

m

mD

m skin m m

s
q s

s s s s
.       (6.44) 

 Using the same reasoning as explained above the inter porosity transfer parameter in the 

radial fracture case becomes;  
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tanh
( )

m

m

m

s
f s

s

 
  .          (6.45) 

In equation 6.45, 
  2

t e fm
m

m

c z s
s

k

 
  , where 

2 2

ez L  . Therefore the dimensionless Laplace 

space parameter in the radial case is the same as that of the quadrilateral case. After substituting 

equation 6.45 into equation 6.36 the late-time approximate solution simplifies to; 

 
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2 1 tanh
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where 
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 
. By comparing equation 6.44 and 6.46 we note that 

skin sking s . sking  can be interpreted as a function that accounts for the skin effect created by 

radial fracture. The definition of 
D

q  (dimensionless production rate) in equation 6.46 is given by 
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
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 then equation 6.46 simplifies to; 
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m
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s
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s g s s
.       (6.47) 

If the skin effect is set equal to zero, that is 0skin sking s   then the late-time approximate radial 

solution is equal to the quadrilateral fracture solution. The approximate late-time radial fracture 

solution is therefore validated. 

6.1.2 Solution with Constant Rate Inner Boundary Condition 

Hurst and van Everdingen (1949) presented a function in Laplace space that gives the 

relationship between the solution to the constant rate inner boundary condition and the constant 

pressure inner boundary condition. This relationship is presented in equation 6.48; 
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 
 2

1
wD

D

p s
s q s

.         (6.48) 

In equation 6.48 
wD

p  is the solution for the constant rate inner boundary condition and 
D

q  is the 

solution for the constant pressure inner boundary condition. We will derive the constant rate 

inner boundary condition solution from equation 6.25 by using this relationship. Substituting 

equation 6.25 in to equation 6.48 we obtain: 
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       
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6.1.2.1 Approximate Early-Time Solution 

Applying the same approximations that were used earlier we obtain the early-time approximate 

solution for the constant rate as shown below: 

 
coth ( )( 1)

( )

 
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D

De

wf

sf s r
p s

s sf s
.        (6.50) 

6.1.2.2 Approximate Late-Time Solution 

The late-time approximation is obtained as shown below: 

 
 2

2 2

ln ( )2

1 ( ) 2 1
 
       

D

De
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De De

sf sr
p s

sr sf s r
.       (6.51) 

These solutions were developed from the solution of the constant pressure solution which 

was validated; therefore, we can infer that these solutions derived for the constant rate boundary 

condition are also valid. 
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6.2 Sensitivity Analysis of Model Parameters for the Constant Pressure 

Solution 

In this section we present the result of sensitivity analysis of the model given by 

equations 6.30 and 6.36. The sensitivity analysis is a one-at-a-time sensitivity study where we 

change a single parameter at a time and leaving the other parameters at their respective values. 

6.2.1 Approximate Early-Time Solution 

This section presents the result of the sensitivity analysis of equation 6.30. 

6.2.1.1 Effect of Storativity Ratio, ω 

The effect of the storativity ratio on the producing characteristics is investigated by 

keeping the value of 1210    , 
510Dwz   and 

310Der   . The storativity ratio   is then varied 

from 0 , 110  , 310   and 1. The result of this sensitivity analysis is shown on a log-log plot of 

 vs D Dq t  in Figure 6-2. 1   is a limiting condition that corresponds to the homogenous case 

(solid red curve in Figure 6-2). It plots as at first as a half slope which is followed by an 

exponential decline. 0   is another limiting case that can be interpreted as the fracture having 

an infinite conductivity, that is, no storage capacity (green curve in Figure 6-2). This curve starts 

with a quarter (1/4) slope and followed by a one half (1/2) slope and finally an exponential 

decline. The curves corresponding to 110   and 310   lie between these two limiting cases 

and exhibit two time scales where the first scale starts with a slope of one half and this is 

followed by an exponential decline. The second time scale starts after the end of the first time 

scale, and it also has starts with a slope of one half which changes into an exponential decline. ω 

decreases as the duration of the first time scale decreases and, at late time, all the cures converge 

to one curve (except the homogeneous case, 1  ). It is also noted that for small values of the 

storativity ratio, the exponential transition period from the fracture flow to matrix flow is absent. 

We can therefore conclude that the storativity ratio only affects early time flow and determines 

the time at which flow from the fracture (first time scale) will end. 
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6.2.1.2 Effect of Fracture Radius, Der  

The effect of the fracture radius was investigated by setting the other model parameters as 

follows: 110   , 1210    and 
510Dwz  . The fracture radius is then assigned the following 

values 10Der   , 210  , 310  and 410 . The result for this analysis is summarized in Figure 6-3. All 

the curves on this figure exhibit two time scales, the first time scale is because production from 

the fracture while second time scale is because flow from the reservoir matrix. At early time all 

the curves converge to a single curve with a slope of one-half. At intermediate time they begin to 

separate when the effect of the fracture boundary is felt. The only difference between all the 

cases is the length of the fracture; as a result, flow at early time is identical for all the cases but 

once the effect of the boundary is felt in the smallest fracture flow starts to decline exponential 

before it transitions to transient flow from the reservoir matrix. The larger the fracture radius the 

longer the transient flow period observed from the fracture. Therefore the dimensionless fracture 

radius affects the end of transient flow from the fracture and also determines the relative 

magnitude of production from the reservoir matrix; larger fracture half lengths should yield 

higher matrix flow as observed from Figure 6-3. It has a strong influence on the early and late 

time flow from the matrix. 

6.2.1.3 Effect of Fracture Width, Dwz  

The other parameters for this analysis are assigned as follows 110   , 1210    and 

310Der  . We then vary the dimensionless fracture thickness as 0Dwz   , 310  , 12.5 10  and 1. 

The result for this analysis is presented in Figure 6-4. Again, all the cases exhibit two time scales 

which is because of flow from the fracture and reservoir matrix respectively. The case with 

1Dwz   does not show the two time scales because it is a limiting case that physically 

corresponds to a homogeneous case. 0Dwz   is another limiting case that means that the fracture 

is a plane source. From Figure 6-4 we can conclude that the fracture width has little or no effect 

on the general producing characteristics. 
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6.2.1.4 Effect of Transmissibility Ratio,   

The effect of the transmissibility ratio was investigated by setting the other model 

parameters as follows: 310   , 
310Der    and 

510Dwz  . The transmissibility ratio is then 

assigned the following values 1210   , 810  , 410  and 1. The result for this analysis is 

summarized in Figure 6-5. Again, all the curves on this figure exhibit two time scales, the first 

time scale is due to production from the fracture while second time scale is due to flow from the 

reservoir matrix. At early time all the curves converge to a single curve with a slope of one-half 

and at intermediate time they begin to separate depending on the value of the transmissibility 

ratio,  . The smallest value of   shows two time scales that is a sequence of one half slope 

followed by an exponential decline, for each time scale. As the value of   increases the 

exponential decline in the first time scale is replaced by a quarter slope. 

6.2.2 Approximate Late Time Solution 

This section presents the result of the sensitivity analysis of equation 6.36. We used the 

same parameters as those used for the early time approximation for the analysis presented below. 

The plots are also log-log plots of dimensionless rate versus dimensionless time. 

6.2.2.1 Effect of Storativity Ratio, ω 

The effect of the storativity ratio on the late time solution is summarized in Figure 6-6. 

The homogeneous limiting case (ω = 1, green curve) started out almost flat after which it 

transitions into a line with a slope of -2. The second limiting case (ω = 0, red curve) also started 

almost flat before becoming a line with a slope of -1/2. This is then followed by an exponential 

decline and it finally changes to a slope of -2. The other two cases in the figure show a similar 

behavior except that they have a somewhat exponential decline before the one-half slope. The 

initially flat part of the curves is the result of the skin effect which is caused by the presence of 

the fracture (refer to section 6.1.1.3.2). As the value of the storativity ratio decreases the skin 

effect decreases. It is also observed that all the curves converge to a single curve at late time. We 
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can therefore conclude that the storativity ratio only affects early time flow, hence, it only 

influences the duration of the skin effect. 

6.2.2.2 Effect of Fracture Radius, Der  

Figure 6-7 presents the results of the sensitivity analysis of the fracture radius on the 

producing characteristics of the approximate late time solution. All the curves in this analysis 

show the same general characteristic. The important points from Figure 6-7 are the fracture 

radius affects the end of the skin effect, the larger the fracture radius the longer the duration of 

the skin effect created by the presence of the fracture. Radius also has a strong effect on the early 

time performance of the matrix (magnitude and duration of transient flow). And the last flow 

period is characterized by a slope -2. 

6.2.2.3 Effect of Fracture Width, Dwz  

Results from the sensitivity analysis of the fracture width are in Figure 6-8. All the curves 

in this figure have the same general characteristics except the homogeneous case ( 1Dwz  , red 

curve). The conclusion from this analysis is that the fracture width has little or no effect on the 

producing characteristics. Same as in 6.2.1.3. 

6.2.2.4 Effect of Transmissibility Ratio,   

Figure 6-9 presents the summary of the effect of the transmissibility factor. All the curves 

on this figure exhibit two time scales. The first time scale is because production of from the 

fracture while second time scale is because of flow from the reservoir matrix. At early time all 

the curves converge to a single flat curve that represents the effect of skin (caused by the 

presence of the fracture) and at intermediate time they begin to separate depending on the value 

of the transmissibility ratio,  . After which they all converge to a single curve with a slope of 

two. 
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6.3 Sensitivity Analysis of Model Parameters for the Constant Rate 

Solution 

In this section we present the result of sensitivity analysis of the constant rate solution. 

The sensitivity analysis performed is a one at a time sensitivity study where we change a single 

parameter at a time and leaving the other parameters at their respective values. 

6.3.1 Approximate Early-Time Solution 

This section presents the result of the sensitivity analysis of equation 6.50. 

6.3.1.1 Effect of Storativity Ratio, ω 

The storativity ratio   is varied from 0 , 310  , 110   and 1. The other parameters were 

assigned as follows λ = 10
-12

, zDe = 10
-5

 and rDe = 10
3
. The result of this sensitivity analysis is 

shown in Figure 6-10, a log-log plot of  vs D Dq t . 1   is a limiting condition that corresponds 

to the homogenous case (solid red curve in Figure 6-10). It plots as at first as a half slope which 

is followed by unit slope, typical of a single porosity solution. In this case the one-half slope line 

indicatives transient flow in the reservoir matrix and the unit slope means the effect of the 

boundary has become dominant in the flow. The other limiting condition is when ω = 0, this 

physically means that the fracture is an infinite conductivity system (with zero storage capacity). 

This condition is represented by the green curve in Figure 6-10. This figure starts with a one 

quarter slope, then a half slope and finally a unit slope. The one quarter slope indicates 

simultaneous transient linear flow in the fracture and reservoir matrix, the one half slope 

indicates transient linear flow in the reservoir matrix and the unit slope indicates boundary 

dominated flow. The other two cases shown in Figure 6-10 (dashed red, ω = 10
-3

 and the blue 

lines, ω = 10
-1

) lie within the two limiting cases. The ω = 10
-3

 case starts with transient linear 

flow in the fracture and then transitions to another one half slope that indicates transient linear 

flow in the reservoir matrix before it shows the boundary dominated unit slope. The case with ω 

= 10
-1

 also starts with a one half slope, fracture transient flow, then it changes to a unit slope, 
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boundary dominated flow from the fracture then it transitions to another unit slope that 

represents boundary dominated flow from the reservoir matrix. 

Based on the results in Figure 6-10 we can conclude that as the value of the storativity 

ratio increases, the behavior of the system gradually approaches that of the homogenous case. 

6.3.1.2 Effect of Fracture Radius, Der  

The effect of the fracture radius was investigated by setting the other model parameters as 

follows: 110   , 1210    and 
510Dwz  . The fracture radius is then assigned the following 

values 10Der   , 210  , 310  and 410 . The result for this analysis is summarized in Figure 6-11. 

All the curves in this figure have an identical shape, they start with a slope of one half (transient 

linear flow in the fracture) and then it changes to a unit slope (boundary dominated flow in the 

fracture) before it transitions in to another unit slope (boundary dominated flow from the 

reservoir matrix. From this figure we can conclude that as the as the fracture radius increases the 

duration of the transient flow from the fracture increases. 

6.3.1.3 Effect of Fracture Width, Dwz  

The dimensionless fracture width was varied as 0Dwz   , 310  , 12.5 10  and 1. The 

other parameters for this analysis were assigned as follows ω = 10
-1

, λ = 10
-12

 and rDe = 10
3
. This 

result for this analysis is shown in Figure 6-12 where it can be observed that the fracture width 

has no significant impact on the solution. 

6.3.1.4 Effect of Transmissibility Ratio,   

The transmissibility ratio is varied as λ = 10
-12

, 10
-8

, 10
-4 

and 1. The other model 

parameters were fixed as follows: ω = 10
-3

,rDe = 10
3
  and zDw = 10

-5
. Figure 6-13 summarizes the 

result of this analysis from which we observe that the transmissibility ratio only affects the time 

that flow transitions from being fracture flow dominated to matrix flow dominated. For really 

small values of the transmissibility ratio, fracture flow is the dominant flow while for larger 

values; the flow is matrix flow dominant. 
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6.3.2 Approximate Late-Time Solution 

This section presents the result of the sensitivity analysis of equation 6.51. We used the 

same parameters as those used for the early time approximation for the analysis presented below. 

The plots are also log-log plots of dimensionless rate versus dimensionless time. 

6.3.2.1 Effect of Storativity Ratio, ω 

The effect of the storativity ratio on the late time solution is summarized in Figure 6-14. 

The homogeneous limiting case (ω = 1, green curve) started out almost flat after which it 

transitions into a line with a slope of one. The second limiting case (ω = 0, red curve) also started 

almost flat then it became a line with a slope of one-half this is then followed by a slope with a 

unit slope. The other two cases lie between the two limiting cases. The almost flat portion of the 

curves is interpreted as the effect of skin created by the presence of the fracture. It is observed 

that as the storativity ratio increases the effect of the fracture skin on the model predictions 

increases. 

6.3.2.2 Effect of Fracture Radius, Der  

Figure 6-15 presents the results of the sensitivity analysis of the fracture radius on the 

producing characteristics of the approximate late time solution. All the curves in this analysis 

show the same general characteristic. They start out with a flat portion and then transition in to a 

unit slope line. The larger the fracture radius the longer the duration of the skin effect created by 

the presence of the fracture. 

6.3.2.3 Effect of Fracture Width, Dwz  

Results from the sensitivity analysis of the fracture width are summarized in Figure 6-16. 

All the curves in this figure have the same general characteristics except the homogeneous case (

1Dwz  , red curve). The conclusion from this analysis is that the fracture width has little or no 

effect on the producing characteristics. 
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6.3.2.4 Effect of Transmissibility Ratio,   

Figure 6-17 presents the summary of the effect of the transmissibility factor on the model 

forecast. The fracture skin effect is also observed in this figure and the transmissibility ratio does 

not appear to have a significant effect on the producing characteristics of the model. 

6.4  New Skin and Storage Equations 

The approximate late time solution to the diffusivity equation when the fracture is 

assumed to be circular and the wellbore is at a constant pressure is given as shown below: 
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            (6.53) 

Upon simplifying equation 6.53 we obtain: 
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            (6.54) 

The solution to the 1D diffusivity equation in linear coordinates with storage and skin is given 

below as: 
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In equation 6.55 CD and S  are the dimensionless wellbore storage and skin factor, respectively. 

Comparing equations 5.54 and 6.55, the following expressions can be defined for the 

dimensionless wellbore storage and skin: 

12

(1 )
D

s
C 

 



,         (6.56) 
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6.5 Summary and Conclusions 

The conceptual model presented in this chapter is new because all existing analytical 

models for fractured reservoirs assume that the fracture geometry is quadrilateral in shape while 

in this study we have assumed a circular geometry. The resulting mathematical model is identical 

to those presented by Da Prat (1981) and El-bambi (1998) but the physical interpretations of the 

model are quite different. A thorough review of the literature also revealed that the analysis of 

the resulting mathematical model in the manner presented in this study has never been done 

before now. 

The resulting mathematical model was solved using the Laplace transform method 

(Kreyszig, 2006) and the solutions were obtained for a constant inner boundary and a constant 

pressure inner boundary condition. The constant inner rate boundary condition solution was 

obtained from the constant pressure inner boundary condition by using the relation provided by 

Hurst and van Everdigen (1944). The two solutions contained a combination of Bessel functions, 

and the combination was such that the final solutions cannot be inverted back into real time 

space to obtain a closed form analytical expression. Real time solutions can be obtained by 

numerically inverting the solutions using a numerical inversion algorithm such as the Stehfest 

algorithm (Stehfest, 1970). 

We derived limiting forms of the solutions for early time and late time by using the 

Taubarien result for Laplace space, Lake (1973) and Bourgeois (1992); and approximate 
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representations of the Bessel functions. All the limiting solutions derived have a striking 

similarity to the corresponding solutions for the linear/quadrilateral fractures. However the 

approximate solutions presented had extra terms that provide new functional expression for skin 

and storage effects. The importance and utility of these expressions are presented in the next 

chapter. Further analysis of the solution also revealed that the late time solutions should be equal 

when the area per unit volume in the radial case is equal to that of the linear/quadrilateral case. 

When this condition is satisfied, the results are identical across the early and late time periods. 

This observation contradicts the results presented by Bello (2009) where it was stated that the 

area per unit volume should be equal for the solutions to be identical. The solution they 

presented only matched during the transient flow period. 

In addition we performed a detailed sensitivity analysis on the approximate 

expressions/models to understand how the model parameters affect the producing characteristics 

obtained from these models. 
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Figure 6-1: Hydraulically fractured horizontal well with a perpendicular fracture that has a circular shape 

 

 
Figure 6-2: Effect of storativity ratio on the producing characteristic of a fractured horizontal well with a radial fracture 

geometry for the constant pressure inner boundary condition 
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Figure 6-3: Effect of fracture radius on the producing characteristic of a fractured horizontal well with a radial fracture 

geometry for the constant pressure inner boundary condition 

 

 
Figure 6-4: Effect of fracture width on the producing characteristics from a fractured horizontal well with a radial 

fracture geometry for the constant pressure inner boundary condition 
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Figure 6-5: Effect of transmissibility ratio on the producing characteristics from a fractured horizontal well with a radial 

fracture geometry for the constant pressure inner boundary condition 

 
Figure 6-6: Effect of storativity ratio on the producing characteristic of the approximate late time solution for a fractured 

horizontal well in which the fracture geometry is radial for the constant pressure inner boundary condition 
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Figure 6-7: Effect of fracture radius on the producing characteristic of the approximate late time solution for a fractured 

horizontal well in which the fracture geometry is radial 

 

 
Figure 6-8: Effect of fracture width on the producing characteristic of the approximate late time solution for a fractured 

horizontal well in which the fracture geometry is radial for the constant pressure inner boundary condition 
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Figure 6-9: Effect of transmissibility ratio on the producing characteristic of the approximate late time solution for a 

fractured horizontal well in which the fracture geometry is radial for the constant pressure inner boundary condition 

 
Figure 6-10: Effect of storativity ratio on the producing characteristic of the approximate early time solution for a 

fractured horizontal well in which the fracture geometry is radial for the constant rate inner boundary condition 
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Figure 6-11: Effect of fracture radius on the producing characteristic of the approximate early time solution for a 

fractured horizontal well in which the fracture geometry is radial with a constant rate inner boundary condition 

 

 
Figure 6-12: Effect of fracture thickness on the producing characteristic of the approximate early time solution for a 

fractured horizontal well in which the fracture geometry is radial with a constant rate inner boundary condition 



 166 

 
Figure 6-13: Effect of transmissibility ratio on the producing characteristic of the approximate early time solution for a 

fractured horizontal well in which the fracture geometry is radial with a constant rate inner boundary condition 

 

 
Figure 6-14: Effect of storativity ratio on the producing characteristic of the approximate late time solution for a 

fractured horizontal well in which the fracture geometry is radial with a constant rate inner boundary condition 
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Figure 6-15: Effect of fracture radius on the producing characteristic of the approximate late time solution for a fractured 

horizontal well in which the fracture geometry is radial with a constant rate inner boundary condition 

 

 
Figure 6-16: Effect of fracture thickness on the producing characteristic of the approximate late time solution for a 

fractured horizontal well in which the fracture geometry is radial with a constant rate inner boundary condition 
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Figure 6-17: Effect of fracture thickness on the producing characteristic of the approximate late time solution for a 

fractured horizontal well in which the fracture geometry is radial with a constant rate inner boundary condition 
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Chapter 7: Modeling the Performance of Complex Hydraulic 

Fractures 

Production data from fractured horizontal wells have been observed to plot as 

straight lines with a slope of negative one and half (-1/2) when plotted on a log-log graph 

of rate vs time. This production signature is identical to that obtained from the analytical 

solution to the linear diffusivity equation in which flow occurs perpendicular to a fracture 

face at constant pressure. Because of this observation, production data from fractured 

horizontal wells are typically modeled with solution to the linear diffusivity equation 

where it is assumed that the fracture is perpendicular to the wellbore. Hurst and van 

Everdingen (1945) showed that at very early time the solution of the radial diffusivity 

equation also plots as a straight line with a slope of -1/2 on a log-log plot of rate vs time. 

This observation raises the question: are there other geometries that can be used to model 

production from fracture horizontal wells? 

In this chapter we present a fundamental solution to the three dimensional 

diffusivity equation and show how to use this solution in conjunction with line, surface 

and volume integral concept to derive an analytical solution to any fracture geometry. 

7.1 Analytical Model Development 

 The conceptual model used in the model development is presented in Figure 7-1. 

The diffusivity equation for this system, the initial condition and the associated boundary 

conditions are given as shown below: 
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( , , , ) 0,  on the boundaryp x y z t  .      (7.3) 

We make the following assumptions in the model development: 

1. Flow is single-phase and slightly compressible, 

2. Flow occurs in the reservoir isothermally. 

In equation 7.1 kx, ky and kz respectively are the principal values of permeability in the x, 

y and z directions. And q
*
 is the flow rate per unit volume of the source. N is the total 

number of point sources in the reservoir, when the reservoir only has one source then N = 

1. δ is the dirac delta function (Kreyszig, 2006). xi, yi and zi are the coordinate locations 

of the point source i. Equation 7.2 is the initial condition that states that at time t = 0, the 

pressure everywhere in the reservoir is equal to the initial reservoir pressure pi and 

equation 7.3 is the boundary condition that states that there is no flow across the reservoir 

boundary. We proceed to solve this equation by the Green’s function method for a point 

source (N = 1) to obtain (the detailed derivation of this solution is available in appendix 

B); the Green’s function is the integrand in equation 7.4. 

The definition of the dimensionless variables in equation 7.4 are given as: 
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Equation 7.4 is the fundamental solution to the 3D diffusivity equation with a point 

source. By combing this solution with the method of line integrals, the solution to any 

fracture geometry can be constructed. Figure 7-2 presents the solution given by equation 

7.4 for a point source located at 
' '0.5, 0.5D Dx y   at a Dt  value of 0.2. The result in 
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Figure 7-2 is for a 2D case where equation 7.4 was integrated over the z-direction to 

obtain equation 7.5. 
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7.2 Validation of the Solution 

The solution and method presented are validated by comparing the solution 

derived from with this method with existing standard analytical solutions. For this 

exercise, the solution to the 1D diffusivity equation in Cartesian coordinate (with 

constant rate inner boundary condition) is used for the validation. Wattenbarger et al. 

(1998) presented the analytical solution for this case as: 
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The equivalent solution is derived from equation 7.4 by integrating it over the yD and zD 

direction, that is,  
1 1

' ' ' ' '

, , ,
0 0

| , ,wD D D D D D D D D D Dp p x y z t x y z dy dz   . After evaluating this 

integral, the solution is obtained as: 
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The plane source is located at 
' 0.5
D

x  , therefore 'cos( ) cos( ) ( 1)
2

n

D

n
n x


     and 

equation 7.7 can be re-written as: 
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Equation 7.8 is the solution for the case where the fracture plane is located at the mid-

section of a square/rectangular geometry while equation 7.6 is for half of the same 

geometry. Equation 7.8 is therefore divided by two to get the equivalent solution and it is 

shown below: 
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  .  (7.9) 

By comparing equation 7.6 and 7.9 it is found that they are identical hence, the 

fundamental solution and method is validated. 

7.3 Example Solutions for Complex Fracture Geometry 

This section presents example application of the solution presented above to the 

derivation of the solution for complex fracture geometries. The geometries considered in 

this section are: Planar fracture with a partial fracture length, planar fracture that 

intersects the wellbore at an angle of 45 degrees and a curved/circular fracture. 

7.3.1 Fully Penetrating Transverse Fracture with a Partial Fracture Length 

The solution for this case is obtained by integrating equation 7.4 with respect to 

'

Dz  from 0 to 1 (this creates a fully penetrating fracture). To obtain a partial fracture 

length, we integrate from 
'

1Dy  .to 
'

2Dy , that is, 
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The pressure distribution given by equation 7.10 at tD = 0.05 with integration limits 

from 
'

1 0.215Dy   to 
'

2 0.785Dy   is shown in Figure 7-3. 

7.3.2 Planar Fracture Inclined to the Wellbore at an angle of 45 Degrees 

The solution for this case is obtained by using equation 7.4 the line integral 

concept. Mathematically the solution is derived by evaluating the following integral 

'
2
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1
' ' ' ' ' ' '

0
( , , , : , , ) ( , , , : , , )
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D

x

D D D D D D D D D D D D D D D D D
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p x y z t x y z p x y z t x y z dz dS    (7.11)  

where 

2
'

'

'
1 D

D

D

dy
dS dx

dx

 
   

 
. To obtain a planar fracture that is inclined at an angle of ϴ 

to the horizontal we must have 
' '

D Dy ax c  . Substituting for dS  and 
'

Dy  in equation 

7.11 and evaluating the integral we obtain: 
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.  (7.12) 

To obtain the solution for a planar fracture inclined at an angle of 45
o
 to the horizontal 

wellbore, we set a = 1 and c = 0 in equation 7.12 and the integration limits are 
' 0.3Dx   

and 
' 0.7Dx  . The pressure distribution at tD = 0.05 for this case is given in Figure 7-4. 

7.3.3 Circular/Curved Fracture 

For a circular/curved fracture, a parametric representation of a circle is applied. 

The parametric relationship used is given by: 

' 'cos( )Dx a r t  ,         (7.13) 

' 'sin( )Dy b r t  .          (7.14) 

'0 2t   . In equation 7.13 and 7.14, a and b, respectively, are the x and y coordinates 

for the center of the circle, r is the radius of the circle and t’ is the parameter. For this 

parametric representation the differential arc length is given as 
2 2

' '

D Ddx dy
dS dt rdt

dt dt

   
     

   
. Upon substituting for 

'

Dx , 
'

Dy  and dS  in equation 7.11 

and evaluating we obtain: 
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The result of evaluating equation 7.15 is shown in Figure 7-5, where the integration limits 

are 
'

1t   and 
'

2 2t  , the center of the circle is located at ( , ) (0.5,0.8)a b  and the 

radius of the circle is 0.36. 

7.3.4 Sinusoidal Fracture 

In order to construct the solution for a sinusoidal fracture the relationship between 

the coordinates of the point source solution is given by; 

' 'sin( )D Dy a b cx  .         (7.16) 

The differential arc length is therefore  
2

' '1 cos( )D DdS bc cx dx   after substituting in to 

equation 7.11 the solution is found to be given by: 
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The pressure distribution obtained with this solution is shown in Figure 7-6. The 

parameters used for this solution are given as follows a = 0.5, b = 0.25 and c = 30.
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Figure 7-1: Schematic representation of a reservoir as a cube with two point sources 

Lx 

Ly 

Lz 
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Figure 7-2: Pressure distribution created by a point source in a reservoir (tD = 0.2) with the source located at xD = 0.5 and yD = 0.5 
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Figure 7-3: Pressure distribution at tD = 0.05 for a fully penetrating fracture with a partial fracture length 
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Figure 7-4: Pressure distribution at tD = 0.05 for a fully penetrating fracture inclined at an angle of 45o to the horizontal wellbore
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Figure 7-5: Pressure distribution at tD = 0.05 for a circular/curved fracture
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Figure 7-6: Pressure distribution at tD = 1x10-4 for a sinusoidal fracture 
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Chapter 8: Summary, Conclusions and Recommendations for Future Work 

This chapter provides a summary of the worked presented in this dissertation and the 

conclusions derived from the results obtained. This chapter also highlights some ideas for future 

work. 

8.1 Summary 

As stated earlier, recent advances in horizontal well drilling and hydraulic fracturing has 

made unconventional reservoirs economic so much so that it is projected much of the future 

energy demand is going to be met by production from unconventional reservoirs. Application of 

existing models for predicting production rate and reserves to unconventional reservoirs show 

that they are not accurate and result in unrealistic values of reserves (infinite values) and a lot of 

uncertainty in forecasts. These limitations of existing models make it difficult to make optimal 

field development planning decisions and can result in significant loss in project value. This 

dissertation developed new and simple analytical models that overcome the limitations of 

existing models in forecasting rate and reserves from unconventional reservoirs. 

In order to achieve the main objective stated above, the following primary objectives 

were defined: 

1. Understand the decline behavior and producing characteristics of oil wells by carefully and 

thoroughly analyzing production data from unconventional reservoirs to identify the 

predominant flow regimes and producing characteristics from these reservoirs. 

2. Investigate the existence of any relationship between empirical model parameters and 

reservoir and/or well completion properties. The two empirical models considered in this 

study are the parallel flow and the logistic growth models. These two models were chosen 

because they have a finite upper limit when time approaches infinity, lim
𝑡→∞

.  

3. Develop “simple” analytical and physics based models that describe and predict the 

production rate performance of unconventional oil wells/reservoir. To this end, an 
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approximate analytical solution, in real time space, to the double porosity model was 

developed. 

4. Verify the ability of the models developed to accurately predict the performance of 

unconventional wells/reservoirs with synthetic data and show their utility by applying it to 

field data. 

5. Present new analytical models that can be used to model the performance of fractured 

horizontal wells with complex geometries. 

8.2 Conclusions 

The result obtained from this study has led to the following conclusions: 

1. A detailed analysis of production data from an unconventional oil reservoir revealed that the 

production performance of these reservoirs are highly variable and that there are multiple 

time scales in the production data. Furthermore, model based analysis, revealed that the 

logistic growth model and parallel flow model fit the production data very well and that the 

parallel flow model accounts for the time scales observed in the data while the logistic 

growth model does not. The result of an analysis of the relationship between empirical model 

parameters and the reservoir/well completion properties was used to develop correlations 

between model parameters and reservoir/well properties. These correlations were developed 

with design of experiment and multivariate non-linear regression. These functions are only 

valid within the range that was used to develop them and any application should put this fact 

in consideration before use. 

2. A new conceptual model for parallel flow in unconventional reservoirs and the associated 

mathematical model was presented and solved. The new model was shown to accurately 

model the decline behavior of fractured horizontal wells in unconventional reservoirs. A 

detailed sensitivity analysis was performed on the model from which it was determined that 

the storativity ratio has the greatest influence on the performance of the first time scale while 

the permeability ratio has the greatest effect on the performance of the second time scale. 
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3. An approximate analytical solution to the double porosity model, in real time space, was 

developed and applied to modeling production from unconventional oil reservoirs. The new 

solution was shown to have model parameters that are functions of the reservoir and well 

completion properties and it also accounts for the multiple time scales observed in field 

production data. It also results in finite values of reserves when time is extrapolated to 

infinity. Therefore, the new model overcomes the limitations of existing empirical models. It 

was also shown that the model parameters can be used to estimate the drainage volume of a 

well; with a potential application for in-fill drilling and well spacing optimization studies. 

The closed analytical form of the solution also makes it suitable for field development 

optimization studies that account for uncertainties in the reservoir/well completion 

properties. 

4. Most solutions used to model production from fractured horizontal wells in unconventional 

formations assume the fractures to have a linear/quadrilateral geometry. New solutions were 

presented for the case where the fracture is assumed to have a circular geometry and bounded 

(no flow) at the external boundary with constant pressure and constant rate inner boundary 

conditions. These solutions were obtained with Laplace transforms method. Using special 

properties of these solutions and the Laplace transform space; approximate late and early-

time solutions were obtained. The early-time solution obtained was identical to that obtained 

for the case when a linear/quadrilateral fracture geometry is assumed while the approximate 

late-time solution lead to the development of new analytical functions for skin and storage. A 

sensitivity analysis also revealed that the late-time solution produces a profile identical to 

that observed in field production data, especially at early time; this part of the data is usually 

ignored by existing models. The new skin and storage models provide a new insight into how 

to decouple the product of fracture half-length and the square-root of permeability.  

5. Lastly, while it has been shown experimentally that hydraulic fractures have very complex 

shapes/geometries, all the solutions that have been presented to model production from these 

wells assume the fractures to have simple planar shapes/geometries. A new method was 
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presented to model production from fractures with complex shapes/geometries. The new 

method was derived by combing a fundamental solution of the diffusivity equation (obtained 

with Green’s functions) with the method of line/surface/volume integrals. The method was 

shown to reproduce existing analytical solutions with simple fracture shapes/geometries and 

then extended to produce solutions for very complex fracture shapes/geometries. 

8.3 Recommendations for future work 

Below is a summary of ideas recommended for future work; 

1. A simple rate-time model was developed for forecasting rate and reserves in 

unconventional oil reservoirs. Because this model is analytical and the parameters are 

functions of the reservoir/well properties and it accounts for the multiple time scales that 

these wells exhibit, it is ideal for use in integrated asset models (IAM) for unconventional 

reservoirs. IAM can be used in field development optimization studies to answer 

questions about the optimum well spacing, optimum number of wells and infill well 

location problems that account for uncertainties in input parameters/properties. 

2. The capacitance resistance model (CRM) can only be applied to fields or wells that have 

attained stabilized flow. Some of the results presented in this work can be extend to the 

development of a CRM for unconventional reservoirs because it is valid for early and late 

time flow and across time scales. 

3. A major problem in reserves forecasting from unconventional reservoirs is that it is 

impossible to decouple the product of fracture half-length and the square root of matrix 

permeability from early time production data only. One of the reasons for this is that 

early time production data is often assumed to be strongly affected by wellbore/fracture 

storage and skin effect. As a result they are not included in the analysis of production 

data. The result presented in chapter six gave explicit functions for storage and skin that 

are functions of the fracture/reservoir/well properties. These functions can be further 
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analyzed for the possibility of decoupling the product of fracture half-length and the 

square root of permeability. 

4. A systematic method should be developed for analyzing flow back fluids (multiphase 

flow of gas, oil and water) to estimate fracture half-length and matrix permeability. 

5. Processed micro-seismic data show that when horizontal wells in unconventional 

reservoirs are fractured, the recorded rock shear/slip events occur as discrete points in the 

reservoir. With this observation it might be possible to treat each point as a source. The 

Green function solution for multiple point sources can then be used to model the 

production behavior from these well/reservoirs. This might eliminate the need to 

explicitly define a fracture half-length when making performance predictions. A study to 

investigate this further might be a worthy endeavor. 

6. There has been much discussion in the reservoir engineering community that the simple 

models (DCA models) that are being developed are unreliable because they don’t 

account for all the mechanisms that are believed to govern flow from unconventional 

reservoirs. Ozkan (2010) and Bumb and McKee (1998) respectively have published 

results that show that these secondary physics (desorption and stress dependence of 

permeability/porosity) do not change the production rate profile. And existing methods in 

well testing cannot decouple the contribution from each secondary flow mechanism. 

Many studies are currently being conducted to understand how the different processes 

affect production but none has attempted to systematically decouple the effects of the 

different secondary phenomenon. A study to develop a systematic method of decoupling 

these effects from production data would be very useful in rate and reserves forecasting 

in unconventional reservoirs. 

7. It has been reported that the recovery factor from unconventional reservoirs is about 

fifteen percent. This number is very small. Several studies have been conducted to 

improve the recovery factor in unconventional oil reservoirs by using the CO2 huff and 

puff process. In unconventional reservoirs hydrocarbons are stored as free and adsorbed 
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hydrocarbons. Existing enhanced oil recovery techniques mainly target the free 

hydrocarbons; new methods should be developed that specifically target the adsorbed 

hydrocarbons. 
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Appendix A: Analytical Solution to the 1-D Linear Flow Problem 

This appendix presents the analytical solution to the 1-D diffusivity equation in linear 

coordinates. The solutions presented are for a constant pressure inner boundary and the constant 

rate inner boundary condition where both solutions have a sealed outer boundary (inner as used 

here refers to the fracture face). 

A.1 Constant Pressure Inner Boundary Condition 

The 1-D partial differential equation (PDE) that controls flow for the conceptual model 

shown in Figure A-1 is given below in dimensionless form: 
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Applying Laplace transforms to equation A.1, its initial condition and associated boundary 

conditions and it becomes an ordinary differential equation (ODE). In these set of equations the 

over-bar is used to represent Laplace space variable and s is the Laplace space parameter. 
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sP

dx
 ,           (A.8) 



 191 

 , 0 0D DP x s   ,          (A.9) 

0

0

D

D

D x

dP

dx


 ,           (A.10) 

 
1

1,DP s
s

 .           (A.11) 

The solution to this ODE is given by: 

 ,     
   D DD DP Asinh x s B sh x sx cos .       (A.12) 

Next the boundary conditions are used to determine the constants (A and B) in this solution. 

Using the no-flow boundary condition; we determine A to be equal to zero. 

 

0

    0



     
   

D

D

D D

D x

dP
A s cosh x s B s sinh x s

dx

s
,     (A.13) 

0A  . From the constant pressure boundary condition, B is determine to be given by: 

 
1

1,D DP s Bcosh x s
s

  
 

,         (A.14) 

1

 
B

scosh s
 

 
 

. Therefore the Laplace space solution to the PDE is obtained to be: 

 

D

D

cosh x s
P

scosh s

 
 
 
 

.          (A.15) 

From a table of inverse Laplace transforms, the real space solution to the PDE is obtained as: 

 
 

 

 
2

2 1

2

1

1 2 14
1

2 1 2
,







  
   
    



  
   

  


D

n
n

D D

t

D

n

D

n
P e cosx t x

n
.     (A.16) 

This is the complete solution to the problem. It is valid during both the early time (transient) 

and late time (pseudo steady state) flow periods. At large values of the argument in the 

exponential term (late time) this solution can be approximated by keeping the first term of the 

solution. For early time flow, more terms of the solution would be required. 
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A.1.1 Derivation of an Approximate Analytical Solution for Production Rate 

Using equation 6.16, the dimensionless production rate at the fracture face ( Dx ) is 

obtained as: 

   

 

 
2

2 1

2

11

2 1
2 1

2




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   
    




   

D

D

n
t

nD
D

nD x

D

ndP
q e sin

dx
t .     (A.17) 

By inspecting equation A.17, it is observed that all the terms of the series are positive.  The 

exponential term has two coefficients 𝑠𝑖𝑛
(2𝑛−1)𝜋

2
 and (−1)𝑛. For odd values of n 𝑠𝑖𝑛

(2𝑛−1)𝜋

2
 is 

+1 (positive 1) and (−1)𝑛 is -1 (negative 1). As a result the product of these two coefficients is 

always negative. When the product of these two coefficients is multiplied by the negative sign 

outside the summation, it is realized that all the terms of this solution are always positive. This 

observation is made clearer in the Table A-1. 

Therefore, the dimensionless production rate can be simplified as shown below in equation 

A.18: 

 

 
2

2 1

2

1

2

  
   
    



 
D

n

D

t

D

n

q et .         (A.18) 

The infinite sum in equation A.18 is eliminated by using the Riemann integral (Abbott, 

2001), which is simply approximating the discrete sum with a continuous integral. If we write 

the first term of equation A.18 and then let 𝑧 =
(2𝑛−1)𝜋√𝑡𝐷

2
 the dimensionless production rate 

(equation A.18) can be re-written as: 

 

2 2
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  
D

D

D
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D
z

D
t

e
q

t
t e d .      (A.19) 

After evaluating the integral in equation A.19, the dimensionless production rate can be 

written as:  
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 

2

4
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2
2

 





 
 
  

D

D

t D

D

D

erfc t

q e
t

t .        (A.20) 

The first term of this solution corresponds to the boundary dominated flow regime while the 

second term accounts for the early time flow regime. 

This approximate solution is validated through numerical simulation. The input to the 

simulation model is presented in Table A-2 below 

Figure A-2 shows a plot of the approximate analytical solution (equation A.20), the 

transient solution, pseudo steady state solution and the solution from numerical simulation. From 

this figure it is observed that the approximate analytical solution provides a good match to the 

numerical solution. It is further observed that this solution covers the early time and late time 

flow periods. The exact solution for the early time and late time boundary conditions are also 

shown on this figure. The approximate analytical solution is therefore validated. 

A.1.2 Derivation of an Approximate Analytical Solution for Average Reservoir 

Pressure 

The average reservoir pressure (volume weighted average) is defined as: 

  



v

v

pdv

p t
dv

.          (A.21) 

For the geometry shown in Figure A-1, 2 f Dv x hx  and 2 f Ddv x hdx . From equation A.16, the 

dimensionless reservoir pressure is,  
 
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Therefore, 
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   (A.22) 
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where Dp   is the dimensionless average reservoir pressure. Performing this integration results in 

 
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            (A.24) 

At the outer boundary, 0Dx   therefore the equation A.24 simplifies to 
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As with the rate equation, the terms of the infinite series are always negative therefore equation 

A.25 can be rewritten as 
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If the first term of the summation is written and we let 
(2 1)

2

Dn t
z


 , 

Ddz t dn  and 
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Evaluating the integral, 
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After evaluating the limits equation A.28 simplifies to  
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Equation A.29 is the average dimensionless pressure in the reservoir for a constant pressure inner 

boundary condition for linear flow in 1D. 

A.2 Constant Rate Inner Boundary Condition 

The solution for the constant rate inner boundary condition can be obtained from the 

constant pressure inner boundary condition by using the identity provided by Hurst and van 

Everdigen (1949). This relation is shown below. It is only valid in Laplace space. 
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1
D

wD

q s
s p s

         (A.30) 

Dq  is the constant pressure solution and 
wD

p  is the constant rate solution. From equation A.15 

the dimensionless production rate in Laplace space is obtained as shown below: 
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Therefore, the constant rate solution at the wellbore is obtained as shown below: 

 
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Equation A.31 can be inverted back to real space by using the convolution property of Laplace 

transforms to obtain 
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Next the infinite sum in equation A.32 is eliminated. Using the same argument as 

explained in Table A-1 equation A.32 can be re-written as 
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The infinite sum is eliminated by approximating it by using a Riemann integral. Let 
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Taking the limit as z tends to infinity, the expression simplifies to 
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This can be further simplified to give the complete approximate solution as 
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Table A-1: Summary of coefficients in the series solution of the dimensionless flow rate for n = 1 to 5 

n (-1)
n
 Sin((2n-1)π/2) (-1)

nSin((2n-1)π/2) -1 (-1)
nSin((2n-1)π/2) 

1 -1 1 -1 1 

2 1 -1 -1 1 

3 -1 1 -1 1 

4 1 -1 -1 1 

5 -1 1 -1 1 

 

 
Table A-2: Numerical reservoir simulation input for the validation of approximate analytical solution to 1D 

flow problem 

Simulator Input Value 

k (md) 25 

xf (ft) 275 

φ 0.3 

μ (cp) 2 

ct (psi
-1

) 2.9E-5 

L (ft) 2500 

Pwf (psi) 1000 

Pi (psi) 5300 

h (ft) 50 
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Figure A-1: Schematic diagram of a horizontal wellbore with planar hydraulic fracture 

 

 
Figure A-2: Validation of approximate analytical solution to the 1D flow problem with numerical simulation 
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Appendix B: Solution to the Three Dimensional (3D) Diffusivity Equation 

The solution to the 3D diffusivity equation with a point source is presented in this 

appendix. The solution presented is a fundamental solution. This solution can be used to obtain 

the solution to any arbitrary fracture shape using a line, surface or volume integral. 

The diffusivity equation in 3D is given below: 

2 2 2

2 2 2

yt z

x x x

kc kp p p p

k t x k y k z

    
  

   
.       (B.1) 

The associated initial and boundary conditions are: 

( , , ,0) ip x y z p ,          (B.2) 

0

0

xx x L

dp dp

dx dx 

  ,         (B.3) 

0
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 

  ,         (B.4) 

0

0

zz z L

dp dp

dz dz 

  .         (B.5) 

Equation B.1 is the diffusivity equation in 3D Cartesian coordinate. Equation B.2 is the 

initial condition that states that at time t = 0, the pressure everywhere in the reservoir is equal to 

the initial reservoir pressure, pi and Equations B.3 – B.5 are the boundary conditions that states 

that there is no flow across the reservoir boundary. We proceed to solve this equation by the 

Green’s function method (Baker and Sutlief, 2003) for a point source; as a result the problem is 

re-formulated as shown below 

       
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,  (B.6) 
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In equation B.6, 
*

iq  is the source strength per unit volume (or area in 2D) of the source and   is 

the Dirac delta function. The 'x , 
'y  and 'z  are the coordinate locations of the source. The initial 

and boundary conditions remain the same as in equations B.2 – B.5. 

In dimensionless form these set of equations become: 

         
2 2 2

* ' ' ' '
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xy xz i D D D D D D D D

D D D D x

p p p p
q x x y y z z t t

t x y z k


     

   
       

   
,  (B.7) 

( , , ,0) 0D D D Dp x y z  ,         (B.8) 

0 1

0

D D

D D

D Dx x

dp dp

dx dx
 

  ,         (B.9) 

0 1

0

D D

D D

D Dy y

dp dp

dy dy
 

  ,         (B.10) 

0 1

0

D D

D D

D Dz z

dp dp

dz dz
 

  .         (B.11) 

The dimensionless variables and parameters are defined as follows: 
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: Transmissibility ratio in the x – y direction 
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2

xz
xz

x z

Lk

k L


 
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 
: Transmissibility ratio in the x – z direction 

To solve the problem the Greens function, G, is introduced and the coefficients of the second and 

third terms on the right hand side of equation B.7 are eliminated by introducing the following 

variables
D xyDy y   and DD xzz z  . These variables transform the problem into: 
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We can write equation B.12 as: 
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G
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
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
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Using separation of variable technique, we define DG TU , substituting into equation B.12 we 

have: 

2 0
D

T
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
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
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Dividing equation B.18 by    , , DD D D
T t U x y z  it is separated as shown below: 

2
21

D

T U

T t U


 
   


.         (B.19) 

From equation B.19, we have: 
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2
2U

U



            (B.20) 

0 1

0

D D
D Dx x

dU dU

dx dx
 

           (B.21) 

1
0

0

D D

xy

D Dy y

dU dU

d y d y


 

          (B.22) 

1
0

0

D D

xz

D Dz z

dU dU

d z d z


 

          (B.23) 

Letting    , DD D
U X x V y z  

'' ''
2 0

X V

X V
   ,  

'' ''
2 2X V

X V
     .         (B.24) 

For the Dx variable: 

''
2X

X
  ,          (B.25) 

' '(0) (1) 0X X  .         (B.26) 

The solution to equation B.25 – B.26 is:  

1 2( ) cos( ) sin( )D x D x DX x A x A x   . 

By using the boundary condition at 0Dx  , we find that 2 0xA  and also using the boundary 

condition at 1Dx   we have sin( ) 0  . Therefore, 

1sin (0) ,  where n = 0,1,2,...n           (B.27) 

The solution to equations B.25 – B.26 is ( ) ( )n D n DX x A cos n x . The total solution is therefore 

given by: 
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 
0 0

( ) ( )D D n D

n n

X x X x A cos n x
 

 

   .       (B.28) 

From equation B.24 

''
2 2 2( )

V

V
       ,         (B.29) 

' '(0) (1) 0V V  .          (B.30) 

Letting  , ( ) ( )D DD D
V y z Y y Z z  we obtain: 

'' ''
2 0

Y Z

Y Z
   , 

'' ''
2 2Y Z

Y Z
 

 
     

 
.         (B.31) 

For the Y variable the equation becomes: 

''
2Y

Y
  ,           (B.32) 

' ' 1
(0) ( ) 0

xy

Y Y


  .         (B.33) 

The solution of equation B.32 – B.33 is; 

1 2( ) cos( ) sin( )y yD D DY y B y B y   . 

From the boundary condition at 0Dy  , we find that 2 0yB   and also using the boundary 

condition at 
1

D

xy

y


  we have sin( ) 0  . Therefore, 

1sin (0) ,  where m = 0,1,2,...
xy

m





  ,      (B.34) 

0 0

( ) ( ) ( )D m xy m DD

m m

Y y B cos m y B cos m y  
 

 

   .     (B.35) 

From equation B.31, we have: 
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 
''

2 2 2Z

Z
       ,         (B.36) 

' ' 1
(0) ( ) 0

xz

Z Z


  .         (B.37) 

The solution to equation B.36 – B.37 is obtained by analogy to the solution of equation B.32 – 

B.33.   

1sin (0) ,  where k = 0,1,2,...
xz

k





  ,      (B.38) 

0 0

( ) ( ) ( )DD k xz k D

k k

Z z C cos k z C cos k z  
 

 

   .      (B.39) 

From equation B.27, B.34 and B.38 it can be shown that 

2 2 2 2 2 2 2 2

xy xzn m k              . 

From equation B.19, 

21

D

T

T t



 


,          (B.40) 

( 0) 0DT t   .          (B.41) 

which is solved to obtain: 

2 2 2 22

( )
xy xz DD

n m k tt

DT t e e
          .        (B.42) 

Therefore the solution to equation B.17 is:  

2 2 2 22 2

0 0 0

1 1 1

( ) ( ) ( )xy D xy DD
m t k tn t

D n D m D k D

n m k

G A A e cos n x B B e cos m y C C e cos k z
      

  
 

  

     
        
     

   ,  (B.43) 

     
22 2

0 0 0

( ) ( ) ( )xy DD xz D
m tn t k t

D n D m D k D

n m k

G A e cos n x B e cos m y C e cos k z
   

  
  

 

  

   .  (B.44) 

Integrating equation B.12 over the entire volume and time domains 

       
1 1 1 1 1 1

2 ' ' ' '

0 0 0 0 0 0 0 0

D Dt t

D
D D D D D D D D D D D D D

D

G
G dt dv x x y y z z t t dt dv

t
   

 
      

 
        ,  (B.45) 
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where D D D Ddv dx dy dz . 

Evaluating the integral in equation B.45 we obtain the condition shown in equation B.46; 

       
1 1 1 1 1 1

' ' ' '

0 0 0 0 0 0 0

Dt

D D D D D D D D D D D DG dv x x y y z z t t dt dv              .  (B.46) 

Substituting for each independent solution of DG  into equation B.46; 

     

       

22 2
1 1 1

0 0 0

1 1 1

' ' ' '

0 0 0 0

( ) ( ) ( )xy DD xz D

D

m tn t k t

n D m D k D D

t

D D D D D D D D D D

A e cos n x B e cos m y C e cos k z dv

x x y y z z t t dt dv

   
  

   

  
  

    

  

   

.   (B.47) 

Multiplying both sides of equation B.47 by 
2 2

cos( ) Dn t

Dn x e   , 

       
2 2

1 1 1

0 0 0

1 1 1

' ' ' '

0 0 0 0

( )c ( ) ( ) ( )

( )
D

D

n D D D m D k D D D

t

n t

D D D D D D D D D D D

A cos n x os n x dx B cos m y C cos k z dy dz

x x y y z z t t cos n x e dt dv


   

     

  
  
   

    

  

   

.  (B.48) 

Noting that, 

1

0

1
  

2( )c ( )

0  

D D D

n n
cos n x os n x dx

n n

 




 
 

  

Therefore, 

     
2 2 '

1 1

0 0

1 1

' ' ' '

0 0 0

( ) ( )
2

( )
D

D

n
m D k D D D

t

n t

D D D D D D D D D D

A
B cos m y C cos k z dy dz

cos n x y y z z t t e dt dy dz


 

    
   

 

  

.  (B.49) 

Repeating the previous steps for Dy  and Dz , 

2 2 2 2 '
' ' '8 ( )c ( )c ( )

xy xz Dn m k t

n m k D D DA B C e cos n x os m y os k z
  

  
   
      (B.50) 

From equation B.50 it can be deduce that: 

 
2 '

'2 ( ) Dn t

n DA cos n x e





 ,         (B.51) 
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 
2 '

'2 ( ) xy Dm t

m DB cos m y e
 




 ,        (B.52) 

 
2 '

'2 ( ) xz Dk t

k DC cos k z e
 




 .        (B.53) 

For the special case where 0n  , equation B.46 becomes: 

     
2 2 2

1 1 1

0

0 00 0 0

1 1

' ' '

0 0 0

( ) ( )

D

xy xz D

D m D k D D D

m k

t
m k t

D D D D D D D D D

A dx B cos m y C cos k z dy dz

e y y z z t t dt dy dz
  

 

  

 

 

  
 

   
   

  

   

  

  

,   (B.54) 

0 1A  . By analogy it is found that 0 1B   and 0 1C  . Upon substituting for the coefficients 

given by equations B.51-B.53, 0 1A  , 0 1B   and 0 1C   into equation B.43 the complete 

solution to equation B.12 – B.16 is found to be given by: 

   

 

 

2 2 '

2 2 '

2 2 '

' ' ' ' '

, , ,

1

'

1

'

1

| , , , 1 2 ( ) ( )

1 2 ( ) ( )

1 2 ( ) ( )



 

 

 

 

 


 




 




 



 
  
 

 
 

 

 
 

 







D D

xy D D

xy D D

n t t

D D D D D D D D D D D

n

m t t

D D

m

k t t

D D

k

G x y z t x y z t e cos n x cos n x

e cos m y cos m y

e cos k z cos k z

.  (B.55) 

Equation B.55 is the instantaneous point source solution to the diffusivity equation with the 

source located at
' ' '( , , )D D DL x y z . Using Green’s identity (Baker and Sutlief, 2003); 

   
'

' ' ' 2 ' '

, , ,

0

| , , .
D

D

t

D
D D D D D D D D D D D D D D D D

D sv

p
p x y z t x y z G p dv p G G p nds dt

t

  
       

   
   .  

            (B.56) 

The integral with respect to time in equation B.56 is used to convert the instantaneous point 

source solution to a continuous point source solution and the integral in 
'

Dv  (where 
' ' ' '

D D D Dv x y z ) 

is the integral over the volume of the source. The integral in s  is the surface integral on the 

reservoir boundary. From equation B.7  
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       2 * ' ' ' '

D( , )D
D i D D D D D D D D D D

D x

p
p q x x y y z z t t q t

t k


   


       


x  and 

0D DG p    on the boundary, hence equation B.56 simplifies to: 

   ' ' ' ' ' ' ' '

, , , , , ,

0

| , , | , , , ( , )
D

D

t

D D D D D D D D D D D D D D D D D D D D D D

v

p x y z t x y z G x y z t x y z t q t dv dt
 

  
  
  x .  (B.57) 

For a constant rate solution ( , ) 1D D Dq x t   and equation B.57 simplifies to: 

   ' ' ' ' ' ' ' '

, , , , , ,

0

| , , | , , ,
D

D

t

D D D D D D D D D D D D D D D D D D D

v

p x y z t x y z G x y z t x y z t dv dt
 

  
  
  ,  (B.58) 

Evaluating the integral with respect to 
'

Dt  from 0 to Dt : 

 

 

 

 

2

2

2

2 2 2

' ' '

, , ,

'

2 2
1

'

2 2
1

'

2 2
1

2

| , ,

1
2

( ) ( )

1
2

( ) ( )

12
( ) ( )

1
4

D

xy D

xz D

xy D

D D D D D D D D

D

n t

D D

n

m t

D D

m xy

k t

D D

k xz

n m t

p x y z t x y z

t

e
cos n x cos n x

n

e

cos m y cos m y
m

e
cos k z cos k z

k

e



 

 

 

 


 
 

 
 



















  
 



 
  

 
  

 
  

 









2 2 2

2 2 2

' '

2 2
1 1

' '

2 2 2
1 1

2 2 2

( ) ( ) ( ) ( )

1
4

( ) ( ) ( ) ( )

1
4

( )

xy xz D

xz D

D D D D

n m xy

m k t

D D D D

k m xy xz

n k t

D

xz

cos m y cos m y cos n x cos n x
n m

e

cos m y cos m y cos k z cos k z
m k

e

cos n y
n k

  

 

   


   
  


 

 

 

  
 

 

 

  
 


  



 
  



 
  







2 2 2 2

' '

1 1

'

2 2 2
2

1 1 1

' '

( ) ( ) ( )

1
8 ( ) ( ) ( )

( ) ( ) ( )

xy xz D

D D D

k n

n m k t

D D D

xy xz
k n m

D D D

cos n y cos k z cos k z

e

cos m y cos m y cos n x
n m k

cos n x cos k z cos k z

  

  

  
 

  

 

 

   
 

  

  

 
 
 
 
 






















  
   
  

 





'

'

D
D

v
dv































.  (B.59) 
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The solution in equation B.59 is a fundamental solution to the diffusivity equation. This 

means that it can be used to construct the solution for any fracture geometry or shape when it is 

combined with line (or surface) integral. It should also be noted that this solution is for a constant 

source, Gringarten and Ramey (1974) and Cinco Ley et al. (1978) have presented methods that 

can be used to derive the solution for constant pressure case from the constant rate solution. 
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Appendix C: Example Application to Field Data 

This Appendix presents the result of example application of the approximate analytical 

solution to the double porosity model. 
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ID-3 

 
(a) 

 
(b) 

 
(c) 

Figure C-1: Summary of production profile for well ID-3, (a). is the production rate plotted on a log-log scale. (b). 

represents the history match result and the forecast of production rate. (c). represents the history match of the cumulative 

production and reserves forecast 
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ID-4 

 
(a) 

 
(b) 

 
(c) 

Figure C-2: Summary of production profile for well ID-4, (a). is the production rate plotted on a log-log scale. (b). 

represents the history match result and the forecast of production rate. (c). represents the history match of the cumulative 

production and reserves forecast 
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ID-82 

 
(a) 

 
(b) 

 
(c) 

Figure C-3: Summary of production profile for well ID-82, (a). is the production rate plotted on a log-log scale. (b). 

represents the history match result and the forecast of production rate. (c). represents the history match of the cumulative 

production and reserves forecast 
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ID-68 

 
(a) 

 
(b) 

 
(c) 

Figure C-4: Summary of production profile for well ID-68, (a). is the production rate plotted on a log-log scale. (b). 

represents the history match result and the forecast of production rate. (c). represents the history match of the cumulative 

production and reserves forecast 
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ID-81 

 
(a) 

 
(b) 

 
(c) 

Figure C-5: Summary of production profile for well ID-81, (a). is the production rate plotted on a log-log scale. (b). 

represents the history match result and the forecast of production rate. (c). represents the history match of the cumulative 

production and reserves forecast 
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ID-70 

 
(a) 

 
(b) 

 
(c) 

Figure C-6: Summary of production profile for well ID-70, (a). is the production rate plotted on a log-log scale. (b). 

represents the history match result and the forecast of production rate. (c). represents the history match of the cumulative 

production and reserves forecast 
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ID-74 

 
(a) 

 
(b) 

 
(c) 

Figure C-7: Summary of production profile for well ID-74, (a). is the production rate plotted on a log-log scale. (b). 

represents the history match result and the forecast of production rate. (c). represents the history match of the cumulative 

production and reserves forecast 
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ID-75 

 
(a) 

 
(b) 

 
(c) 

Figure C-8: Summary of production profile for well ID-75, (a). is the production rate plotted on a log-log scale. (b). 

represents the history match result and the forecast of production rate. (c). represents the history match of the cumulative 

production and reserves forecast 

 

 

 

10

100

1000

10000

1

10

100

1000

1 10 100 1000

T
u

b
in

g
h

ea
d

 p
re

ss
u

re
, 

p
si

 

O
il

 r
a

te
, 
S

T
B

/D
 

Time, days 

Oil production

Tubinghead pressure, psi

0

1

10

100

1,000

10,000

1 10 100 1,000 10,000

O
il

 r
a

te
, 
S

T
B

/D
 

Time, days 

q-Data

q-Model (Forecast)

q-Model (History match)

0

200

400

600

800

0 50,000 100,000 150,000 200,000

O
il

 r
a

te
, 
S

T
B

/D
 

Cumulative production, STB 

Data
Model - forecast
Model - history match



 218 

ID-78 

 
(a) 

 
(b) 

 
(c) 

Figure C-9: Summary of production profile for well ID-78, (a). is the production rate plotted on a log-log scale. (b). 

represents the history match result and the forecast of production rate. (c). represents the history match of the cumulative 

production and reserves forecast 
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ID-79 

 
(a) 

 
(b) 

 
(c) 

Figure C-10: Summary of production profile for well ID-79, (a). is the production rate plotted on a log-log scale. (b). 

represents the history match result and the forecast of production rate. (c). represents the history match of the cumulative 

production and reserves forecast 
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Nomenclature 

1   = Time constant one, day 

2  = Time constant two, day 

iD   = Initial decline rate, day
-1

 

b   = Derivative of inverse of initial decline rate, unitless 

iq   = Initial production rate, STB/D 

pN   = Cumulative production, STB 

Dq   = Dimensionless flow rate, dimensionless 

Dt   = Dimensionless time, dimensionless 

wDp   = Dimensionless wellbore pressure, dimensionless 

Tq   = Production rate from fractured horizontal well, STB/D 

eN   = Number of discrete reservoir elements, unitless 

ki
q   = Initial production rate from reservoir element k, unitless 

k   = Time constant for reservoir element k, day 

N   = Carrying capacity, STB 

a   = Constant a 

n   = Hyperbolic constant, unitless 

M   = Number of data points, unitless 

t   = Time, day 

mf   = Normalized data initial production rate, fraction 

kf   = Normalized model initial production rate, fraction 

fk  = Fracture permeability, md 

mk  = Matrix permeability, md 

wL  = Well length, ft 

ip  = Initial reservoir pressure, psi 

wfp  = Wellbore flowing pressure, psi 
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h  = Reservoir thickness, ft 

φ = Porosity, fraction 

f  = Fracture time constant, day 

m  = Matrix time constant, day 

xT  = Transmissibility factor between fracture and matrix compartment, barrel per day 

 per psi 

( )f s  = Laplace space inter-porosity transfer function, dimensionless 

Dp  = Dimensionless pressure 

Dt  = Dimensionless time 

Dx  = Dimensionless distance in the x-direction 

Dy  = Dimensionless distance in the y-direction 

  = Inter-porosity transfer parameter, dimensionless 

  = Storativity ratio 

mp  = Matrix pressure, psi 

fp  = Fracture pressure, psi 

ip  = Initial reservoir pressure, psi 

wfp  = Bottomhole flowing well pressure, psi 

n  = Index for normal mode 

nf
q  = Production rate for the nth normal mode for the fracture compartment,  dimensionless 

nmq  = Production rate for the nth normal mode for the matrix compartment,  dimensionless 

if
q  = Initial production rate from the fracture’s nth normal mode, dimensionless 

imq  = Initial production rate from the matrix’s nth normal mode, dimensionless 

fJ  = Fracture productivity index, barrel per day per psi 

fp  = Average pressure in fracture compartment, psi 

mp  = Average pressure in matrix compartment, psi 

fk  = Effective fracture permeability, md 

mk  = Effective matrix permeability, md 
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1 2,   = Eigenvalues of the A matrix for the system of ODEs, day
-1

 

  = First element of the eigen-vector corresponding to 1  the other element is 1, 

 dimensionless 

  = First element of the eigen-vector corresponding to 2 the other element is 1, 

 dimensionless 



 223 

References 

Abbott S. 2001. Understanding Analysis. Springer. ISBN: 978-0-387-21506-8 

Abramowitz M. and Stegun I. A. 1964. Handbook of Mathematical Functions With Formulas, 

Graphs and Mathematical Tables. National Bureau of Standards, Applied Mathematics 

Series 55 

Ambrose R.J., Clarkson C.R., Youngblood J.E., Adams R., Nguyen P., Nobakht M. and Biseda 

B. 2011. Life-Cycle Decline Curve Estimation for Tight/Shale Gas Reservoirs. Paper 

SPE 140519 presented at the SPE Hydraulic Fracturing Technology Conference and 

Exhibition, the Woodlands, Texas, USA 24 – 26, January. doi: 

http://dx.doi.org/10.2118/140519-MS 

Amini S. and Valko P. P. 2010. Using Distributed Volumetric Sources to Predict Production 

from Multiple-Fractured Horizontal Wells Under Non-Darcy Flow Conditions. SPE J 15 

(01): 105 – 115. doi:10.2118/120110-PA 

Anderson D. M., Nobakht M., Moghadam S. and Mattar L., 2010. Analysis of Production Data 

from Fractured Shale Gas Wells. Paper SPE 131787 presented at the SPE 

Unconventional Gas Conference, Pittsburgh, Pennyslvania, USA. 23 – 25 February. 

Arps, J.J. 1945. Analysis of Decline Curves. SPE J 01 (160): 228 - 247. 

http://dx.doi.org/10.2118/945228-G. 

Barenblatt, G. I. and Zheltov, Y. P. 1960. Fundamentals Equations of Filtration of Homogeneous 

Liquids in Fissured Rocks. Soviet Physics, Doklady Vol. 5 page 522. 

Becker G. F. and van Orstrand C. E. 1909. Hyperbolic Functions. Smithsonian Institution. 

(http://hdl.handle.net/2027/nyp.33433069105231) 

Bello R. O. and Wattenbarger R. A., 2008. Rate Transient Analysis in Naturally Fractured Shale 

Gas Reservoirs. Paper SPE 114591 presented at the CIPC/SPE Gas Technology 

Symposium 2008 Joint Conference, Calgary, Alberta, Canada, 16 – 19 June. 

Bello, R. O. 2009. Rate Transient Analysis in Shale Gas Reservoirs with Transient Linear 

Behavior. PhD Dissertation, Texas A&M University, College Station, Texas, USA. 

Bourgeois M. 1992. Well Test Interpretation Using Laplace Space Type Curves. Master’s 

Thesis, Stanford University, Stanford, California, USA 

Box G.E., Hunter J.S. and Hunter W. G. 2005. Statistics for Experimenters, John Wiley & Sons. 

ISBN: 0-471-71813-0. 

Bumb A. C. and McKee C. R., 1988. Gas – Well Testing in the Presence of Desorption for 

Coalbed Methane and Devonian Shale. SPE Formation Evaluation, March 1988, Pg 179 

– 185. 

Can B. and Kabir C.S. 2014. Containing Data Noise in Unconventional Reservoir Performance 

Forecasting. Journal of Natural Gas Science and Engineering 18 (2014) 13 – 22. doi: 

10.1016/j.jngse.2014.01.010. 

http://dx.doi.org/10.2118/140519-MS
http://hdl.handle.net/2027/nyp.33433069105231


 224 

Cao F. 2014. Development of a Coupled Two Phase Flow Capacitance Resistance Model, PhD 

Dissertation. The University of Texas at Austin, Austin, Texas. 

Cao F., Luo H. and Lake L. W. 2014. Development of a Fully Coupled Two-Phase Flow Based 

Capacitance-Resistance Model (CRM). Paper SPE 169485-MS presented at the SPE 

Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA 12–16 April. 

http://dx.doi.org/10.2118/169485-MS. 

Carlson E. S. and Mercer J. C. 1991. Devonian Shale Gas Production: Mechanisms and Simple 

Models. J Pet Tech 43 (4): 476–482. http://dx.doi.org/10.2118/19311-PA. 

Carslaw H. S. and Jaeger J. C. 1959. Conduction of Heat in Solids. Oxford University Press. 

ISBN: 0-19-853368-3 

Cheng Y., Lee W.J. and McVay D.A. 2008. Improving Reserves Estimates from Decline-Curve 

Analysis of Tight and Multilayer Gas Wells.  SPE Reservoir Evaluation. & Engineering. 

11 (05): 912 – 920 SPE 108176 – PA. doi: 10.2118/108176-PA. 

Churchill R. V. 1958. Operational Mathematics, 3rd Edition. McGraw-Hill Inc. ISBN: 07-

010870-6 

Cinco H.L., Samaniego F.V. and Dominguez N.A. 1978. Transient Pressure Behavior for a Well 

with a Finite-Conductivity Vertical Fracture. SPE J 18 (04): 253 – 264. SPE 6014-PA. 

doi: 10.2118/6014-PA 

Cipolla C. L., Erdle J. C. and Rubin B.: Reservoir Modeling in Shale Gas Reservoirs, Paper SPE 

125530 presented at the 2009 SPE Eastern Regional Meeting held in Charleston, West 

Virginia, USA 23 – 25 September 2009. 

Clark A. J., Lake L.W. and Patzek T.W. 2011. Production Forecasting with Logistic Growth 

Models. Paper SPE 144790 presented at the SPE Annual Technical Conference and 

Exhibition, Denver, Colorado USA 30 October – 2  November. doi: 10.2118/144790-MS 

Cox S. A., Gilbert J. V., Sutton R. P., and Stoltz R. P., 2002. Reserve Analysis for Tight Gas. 

Paper SPE 78695 presented SPE Eastern Regional Meeting, Lexington, Kentucky, USA, 

23 – 25 October. 

Da Prat G., Cinco-Ley H. and Ramey H. J. 1981. Decline Curve Analysis Using Type Curves for 

Two-Porosity Systems. SPEJ: 354–362; doi: 10.2118/9292-PA  

de Swaan-O., A. 1976. Analytic Solutions for Determining Naturally Fractured Reservoir 

Properties by Well Testing. SPEJ 16 (3): 117–122; Trans., AIME, 261. 

Doublet L. E., Pande P. K., McCollum T. J. and Blasingame T. A., 1994. Decline Curve 

Analysis Using Type Curves – Analysis of Oil Well Production Data Using Material 

Balance Time: Application to Field Cases. Paper SPE 28688 presented at the Petroleum 

Conference and Exhibition of Mexico, Veracruz, Mexico, 10 – 13 October. 

Duong A.N. 2011. Rate – Decline Analysis for Fracture Dominated Shale Reservoirs. SPE 

Reservoir Evaluation & Engineering 14  (03): 277 – 387 SPE 137748-PA. doi: 

10.2118/137748-PA 

El-Banbi A. H. 1998. Analysis of Tight Gas Wells. PhD Dissertation, Texas A&M University, 

College Station, Texas, USA 

http://dx.doi.org/10.2118/108176-PA
http://dx.doi.org/10.2118/6014-PA
http://dx.doi.org/10.2118/144790-MS
http://dx.doi.org/10.2118/137748-PA


 225 

Ettehad, A., Jablonowski, C., and Lake, L. W. 2010. Gas Storage Facility Design Under 

Uncertainty. SPE J 05 (03): 155 - 165. http://dx.doi.org/10.2118/123987-PA 

Fetkovich M .J., 1980. Decline Curve Analysis Using Type Curves. Journal of Petroleum 

Technology, June 1980, Pg 1065 – 1077. 

Fetkovich M.J. 1980 Decline Curve Analysis Using Type Curves. J Pet Technol 32 (6): 1065 – 

1077 SPE 4629-PA. doi: 10.2118/4629-PA 

Gringarten A.C. and Ramey, Jr. H.J. 1973. The Use of Source and Green’s Functions in Solving 

Unsteady Flow Problems in Reservoirs. SPE J 13 (05): 285 – 296. SPE 3818-PA. doi: 

10.2118/3818-PA 

Gringarten A.C. and Ramey, Jr. H.J. 1974. Unsteady-State Pressure Distributions Created by a 

Well with a Single Horizontal Fracture, Partial Penetration or Restricted Entry. SPE 

Journal 14 (04): 413 – 426. SPE 3819-PA. doi: 10.2118/3819-PA 

Gringarten A.C., Ramey, Jr. H.J. and Raghavan R. 1974. Unsteady-State Pressure Distributions 

Created by a Well with a Single Infinite-Conductivity Vertical Fracture. SPE Journal 14 

(04): 347 – 360. SPE 4051-PA. doi: 10.2118/4051-PA 

Hagoort J. 2009. The Productivity of a Well with a Vertical Infinite Conductivity Fracture in a 

Rectangular Closed Reservoir. SPE J 14 (04): 715 – 720. SPE 112975. doi: 

10.2118/112975-PA 

Harrell D.R., Hodgin J.E. and Wagenhofer T. 2004. Oil and Gas Reserves Estimates: Recurring 

Mistakes and Errors. Paper 91069 presented at the SPE Annual Technical Conference 

and Exhibition, Houston, 26 – 29 September. doi: 10.2118/91069-MS. 

Ilk D. 2010. Well Performance Analysis For Low to Ultra Low Permeability Reservoir Systems. 

PhD Dissertation, Texas A&M University, College Station, Texas, USA. 

Ilk D., Rushing J.A., Perego A.D. and Blasingame T.A. 2008. Exponential vs. Hyperbolic 

Decline in Tight Gas Sands – Undestanding the Origin and Implications for Reserve 

Estimates Using Arp’s Decline Curves. Paper SPE 116731 presented at the SPE Annual 

Technical Conference and Exhibition, Denver, Colorado, USA 21 – 24 September. doi: 

10.2118/116731-MS 

Jensen J.L., Corbett P.W.M., Lake L. W. and Goggin D.J. 2000. Statistics for Petroleum 

Engineers and Geoscientists. Elsevier Amsterdam-Boston-London-New York-Oxford-

San Francisco-Singapore-Sydney-Tokyo. ISBN: 0-444-50552-0. 

Johnston D.C. 2006. Stretched Exponential Relaxation Arising from a Continuous Sum of 

Exponential Decays. Physical Review B 74, 184430. doi: 10.1103/PhysRevB.74.184430 

Kabir C.S. and Lake L. W. 2011. A Semianalytical Approach to Estimating EUR in 

Unconventional Reservoirs. Paper SPE 144311 presented at the SPE North American 

Unconventional Gas Conference and Exhibition, Woodlands, Texas, USA, 14 – 16 June 

Kan Wu. 2014. Numerical Modeling of Complex Hydraulic Fracture Development in 

Unconventional Reservoirs, PhD Dissertation. The University of Texas at Austin, Texas. 

Kreyszig E. 2006. Advanced Engineering Mathematics, 9th Edition. John Wiley & Sons, Inc. 

ISBN: 0-471-48885-2 

http://dx.doi.org/10.2118/3818-PA
http://dx.doi.org/10.2118/3818-PA
http://dx.doi.org/10.2118/3818-PA
http://dx.doi.org/10.2118/112975-PA
http://dx.doi.org/10.2118/91069-MS
http://dx.doi.org/10.2118/116731-MS


 226 

Kuchuk F. and Biryukov D. 2013. Pressure Transient Tests and Flow Regimes in Fractured 

Reservoirs. Paper SPE 166296 presented at the SPE Annual Technical Conference and 

Exhibition, New Orleans, Louisiana, USA, 30 September – 2 October 

Kuchuk F. and Biryukov D. 2014. Pressure Transient Behavior of Continuously and Discretely 

Fractured Reservoirs. SPE Reservoir Evaluation and Engineering 17 (01) 82 – 87 SPE 

158096 – PA. doi: 10.2118/158096-PA 

Lee W.J. and Sidle R.E. 2010. Gas Reserves Estimation in Resource Plays, SPE Economics & 

Management (Oct. 2010) 86 - 91 

Lewis A. M. and Hughes R. G., 2008. Production Data Analysis of shale Gas Reservoirs. Paper 

SPE 116688 presented at the SPE Annual Technical Conference and Exhibition, Denver, 

Colorado, USA, 21 – 24 September. 

Mavor M. J. and Cinco H. L. 1979. Pressure Transient Behavior of Naturally Fractured 

Reservoirs. Paper SPE 7977 presented at the 1979 California Regional Meeting of the 

SPE, Ventura, California April 18 – 20. doi:10.2118/7977-MS 

Mayerhofer M.J., Lolon E. P., Youngblood J. E., and Heinze J. R. 2006. Integration of 

Microseismic Fracture Mapping  Results with Numerical Fracture Network 

Production Modeling in the Barnett Shale. Paper SPE 102103 presented at the SPE 

Annual Technical Conference and Exhibition, San Antonio, Texas, 24–27 September. 

http://dx.doi.org/10.2118/102103-MS. 

McKinney P. D., Rushing J. A. and Sanders L. A. 2002 Applied Characterization for 

Maximizing Reserve Growth and Profitability in Tight Gas Sands: A Paradigm Shift in 

Development Strategies for Low Permeability Gas Reservoirs, Paper SPE 75708 

presented at the SPE Gas Technology Symposium, Calgary, Alberta, Canada 30 April – 2 

May. 

Medeiros F. Jr., Ozkan E. and Kazemi H. 2010. A Semianalytical Approach to Model Pressure 

Transients in Heterogeneous Reservoirs. SPE Res Eval & Eng 13 (02): 341 – 358 

Micheal Eugene Taylor. 1946. Measure Theory and Integration. American Mathematical 

Society, Providence, Rhode Island. ISBN-13: 978-0-8218-4180-8 

Miller M. A., Jenkins C. and Rai R., 2010. Applying Innovative Production Modeling 

Techniques to Quantify Fracture Characteristics, Reservoir Properties and Well 

Performance in Shale Gas Reservoirs. SPE Paper 139097 presented the Eastern Regional 

Meeting, Morgantown, West Virginia, USA, 12 – 14 October. 

http://dx.doi.org/10.2118/139097-MS 

Moridis G. J., Blasingame T. A. and Freeman C.M.: Analysis of Mechanisms of Flow in 

Fractured Tight-Gas and Shale Gas Reservoirs, Paper SPE 139250 presented at the SPE 

Latin American and Caribbean Petroleum Engineering Conference held in Lima, Peru, 1 

– 3 December 2010. 

Myers R.H and Montgomery D.C. 2002. Response Surface Methodology: Process and Product 

Optimization Using Design of Experiments, John Wiley & Sons. ISBN: 0-470-17446-3. 

National Petroleum Council (NPC): Topic Paper number 29, Unconventional Gas, 2007 

https://www.onepetro.org/search?q=dc_creator%3A%28%22Biryukov%2C+Denis%22%29
http://dx.doi.org/10.2118/158096-PA
http://dx.doi.org/10.2118/139097-MS


 227 

Navidi W. 2008. Statistics for Engineers and Scientists. McGraw – Hill. ISBN: 978-0-07-

337633-2 

Nguyen, A. P. 2012. Capacitance Resistance Modeling for Primary Recovery, Waterflood, and 

Water/CO2 Flood. PhD Dissertation. The University of Texas at Austin, Austin, Texas, 

USA. 

Nobakht M., Ambrose R., Clarkson C.R., Youngblood J. and Adams R. 2013. Effect of 

Completion Heterogeneity in a Horizontal Well With Multiple Fractures on the Long-

Term Forecast in Shale-Gas Reservoirs. J. Cdn. Pet. Tech. 52 (06): 417 – 425. doi: 

http://dx.doi.org/10.2118/149400-PA 

Odeh, A. S. 1965. Unsteady-State Behavior of Naturally Fractured Reservoirs. SPE J : 60 - 66. 

doi:10.2118/966-PA 

Ogunyomi B. A. 2010. Petroleum Development Optimization under Uncertainty: Integrating 

Multi-Compartment Tank Models in Mixed Integer Non-Linear Programs. Master’s 

Thesis. The University of Texas at Austin, Austin, TX, USA 

Ogunyomi B.A., Kabir. C.S., Patzek T., and Lake L.W. 2014. History Matching and Rate 

Forecasting in Unconventional Oil Producing Reservoirs Using an Approximate 

Analytical Solution to the Double Porosity Model. Paper SPE 171031-MS presented at 

the SPE Eastern Regional Meeting, Charlston, West Virginia, USA. 21 – 23 October 

2014. 

Ogunyomi, B. A., Jablonowski, C. J., and Lake, L. W. 2011. Field Development Optimization 

Under Uncertainty: Screening-Models for Decision Making. Paper SPE 146788 presented 

at the Annual Technical Conference and Exhibition, 30 October – 2 November, Denver, 

Colorado. http://dx.doi.org/10.2118/146788-MS 

Ogunyomi, B. A., Song, S., La, N., Lake, L. W., and Kabir, C. S. 2014. A New Approach to 

Modeling Production Decline in Unconventional Formations. Paper SPE 170899 

presented at the Annual Technical Conference and Exhibition, Amsterdam, The 

Netherlands 27 – 29 October. doi:10.2118/170899-MS 

Olanrewaju J. S. and Lee W. J., 1989. New Pressure – Testing Analysis Model for Dual – 

Porosity Reservoirs. Paper SPE 15634 presented at the SPE Annual Technical 

Conference and Exhibition, New Orleans, USA, 5 – 8 October. 

Ozkan E. 1988. Performance of Horizontal Wells. PhD Dissertation The Univeristy of Tulsa, 

Tulsa, USA 

Ozkan E., Ohaeri U. and Raghavan R. 1987. Unsteady Flow to a Well-Produced at a Constant 

Pressure in a Fractured Reservoir. SPE Form Eval 2 (2): 186–200. 

http://dx.doi.org/10.2118/9902-PA. 

Ozkan E., Raghavan  R. and Apaydin O. G. 2010. Modeling of Fluid Transfer from Shale Matrix 

to Fracture Network. Paper SPE 134830 presented at the SPE Annual Technical 

Conference and Exhibition, Florence, Italy, 19 – 22 September 

Palacio, J. C. and Blasingame, T. A. 1993. Decline-Curve Analysis with Type Curves - Analysis 

of Gas Well Production Data. Paper SPE 25909 presented at SPE Joint Rocky Mountain 

http://dx.doi.org/10.2118/149400-PA
http://dx.doi.org/10.2118/146788-MS


 228 

Regional and Low Permeability Reservoir Symposium, Denver, Colorado USA April 26 

- 28. doi:10.2118/25909-MS 

Patzek T.W., Male F., and Marder M. 2014. Gas Production from Barnett Shale Obeys a Simple 

Scaling Theory. Proceedings of the National Academy of Sciences of the United States of 

America. PNAS December 3, 2013 vol. 110 no. 49 19731-19736 

doi:10.1073/pnas.1313380110. 

Ramey H.J. and Gringarten A.C. 1975. Effect of High Volume Vertical Fractures on Geothermal 

Steam Well Behavior. Proc., Second United Nations Symposium on the Use and 

Development of Geothermal Energy, San Francisco, May 20-29 

Rotondi M., Cominelli A., Di Giorgio C., Rossi R., Vignati E. and Carati B.: The Benefits of 

Integrated Asset Modeling: Lesson Learned from Field Case, paper SPE 113831 

presented at the 2008 SPE Europe/EAGE Annual Conference and Exhibition held in 

Rome, Italy 9 – 12 June 2008. 

Rushing J.A., Perego A. D., Sullivan R.B. and Blasingame T.A. 2007. Estimating Reserves in 

Tight Gas Sands at HP/HT Reservoir Conditions: Use and Misuse of an Arps Decline 

Curve Methodology. Paper SPE 109625 presented at the SPE Annumal Technical 

Conference and Exhibition, Anaheim, California, USA 11 – 14 November. doi: 

10.2118/109625-MS 

Samandarli, O., Al-Ahmadi H., and Wattenbarger R. A. 2011. A New Method for History 

Matching and Forecasting Shale Gas Reservoir Production Performance with a Dual 

Porosity Model. Paper SPE 144335 presented at the SPE North American Gas 

Conference and Exhibition, the Woodlands, Texas, USA, 12 – 16 June. 

http://dx.doi.org/10.2118/144335-MS. 

Saputelli L., Lujan L., Garibaldi L., Smyth J., Ungredda A., Rodriguez J., and Cullick S.: How 

Integrated Field Studies Help Asset Teams Make Optimal Field Development Decisioins, 

paper SPE 110250 presented at the 2008 SPE Western Regional and Pacific Section 

AAPG Joint Meeting held in Bakersfield, California, USA, 31 March – 2 April 2008. 

Sayarpour M., Zuluaga E., Kabir C.S. and Lake L.W. 2007. The Use of Capacitance –Resistive 

Models for Rapid Estimation of Waterflood Performance and Optimization. Paper SPE 

110081 presented at the SPE Annual Technical Conference and Exhibition, Anaheim, 

California, USA 11 – 14 November 2007. doi: 10.2118/110081-MS 

Seborg, D. E., Edgar, T. F., and Mellichamp, D. A. 2003. Process Dynamic and Control, 2nd 

edition. Wiley, John & Sons, Inc., New York. ISBN-13: 9780471000778. 

Song D. H. 2014. Using Simple Models to Describe Oil Production from Unconventional 

Reservoirs. Master’s Thesis, The University of Texas at Austin, Austin, Texas, USA 

Stehfest H. 1970. Numerical Inversion of Laplace Transforms. Communications of the ACM. 13 

(1) 47 – 49. doi: http://dx.doi.org/10.1145/361953.361969 

Tsoularis A. and Wallace J. 2002. Analysis of Logistic Growth Models. Mathematical 

Biosciences 179 (1) 21 – 55. 

http://dx.doi.org/10.2118/109625-MS
http://dx.doi.org/10.2118/110081-MS
http://www.pge.utexas.edu/images/pdfs/theses14/songd.pdf
http://www.pge.utexas.edu/images/pdfs/theses14/songd.pdf
http://dx.doi.org/10.1145/361953.361969


 229 

Valko P. P. 2010. A Better Way to Forecast Production From Unconventional Gas Wells. Paper 

SPE 134231-MS presented at the SPE Annual Technical Conference and Exhibition, 

Florence, Italy 19 – 22 September. doi: 10.2118/134231-MS 

Van Everdingen A. F. and Hurst W. 1949. The Application of the Laplace Transformation to 

Flow Problems in Reservoirs. SPE JPT. 1 (12) 305-324. 

http://dx.doi.org/10.2118/949305-G 

Walsh M. P. and Lake L. W. 2003. A Generalized Approach to Primary Hydrocarbon Recovery. 

Elsevier. ISBN: 978-0-444-50683-2. 

Warren J.E. and Root P.J. 1963. The Behavior of Naturally Fractured Reservoirs. SPE J. 3 (3): 

245–255. http://dx.doi.org/10.2118/426-PA. 

Wattenbarger R. A., El-Banbi A. H, Villegas M.E., and Maggard J. B. 1998. Production Analysis 

of Linear Flow into Fractured Tight Gas Wells. Paper SPE 39931 presented at the 1998 

SPE Rocky Mountain Regional/Low permeability Reservoirs Symposium and Exhibition, 

Denver, Colorado, 5–8 April. http://dx.doi.org/10.2118/39931-MS. 

 

 

 

http://dx.doi.org/10.2118/134231-MS
http://dx.doi.org/10.2118/949305-G
http://dx.doi.org/10.2118/39931-MS

