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Abstract: Implantable cardioverter defibrillators (ICDs) are medical devices proven 

to prevent sudden cardiac death due to ventricular arrhythmias. Their decisions are based 

upon intra-cardiac electrograms (IEGM). This is incomplete information since up to 5% of 

implantable cardioverter defibrillator (ICD) shocks are inappropriate. Receiving a shock is 

associated with increased mortality as well as emotional trauma. In contrast, physicians 

determine whether to shock a patient out of a rapid rhythm by determining if the arrhythmia 

is hemodynamically unstable or stable. An unstable arrhythmia is identified by decreased 

forward stroke volume (SV) and resultant low blood pressure (BP). It would be ideal to 

have beat-by-beat SV available to the ICD to assist in the delivery of therapies. A system 

that utilizes the right ventricular (RV) shocking lead of an ICD to measure the electrical 

admittance in the RV is proposed for measuring continuous SV. For this method to work, 

a signal processing technique to remove noise artifacts related to lead motion and 

respiration must be developed.   
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1. Chapter 1:  Background and Motivation 

1.1. MOTIVATION 

Hemodynamically unstable ventricular arrhythmias are life-threatening cardiac 

events and the immediate precursor to Sudden Cardiac Death (SCD). During tachycardia, 

physicians are taught to decide whether to shock or medically convert the patient to normal 

sinus rhythm based on whether the heart can still maintain adequate forward output 

assessed by BP and SV. This critical information is currently not available to implantable 

cardioverter defibrillators (ICD). The state of the art in arrhythmia detection relies on 

accurately interpreted intracardiac electrograms (IEGM) from the implantable cardioverter 

defibrillator (ICD). However, the algorithms that determine whether to shock are 

inaccurate since up to 5% of ICD shocks are inappropriate [1]. This raises mortality rates, 

and causes psychological depression in patients [2], increasing morbidity. 

The problem of inappropriate shocks can be solved by adding a hemodynamic 

measurement to the already implanted device. I propose to accomplish this goal by utilizing 

existing pacemaker leads as blood volume sensors using the admittance derived stroke 

volume (ADSV) method, a technique developed by our group [4-16]. The ADSV method 

can be applied to single chamber ICDs, dual chamber ICDs, and cardiac resynchronization 

therapy defibrillation (CRT-D) devices [17]. 

1.2. BACKGROUND 

1.2.1. ECG Based Arrhythmia Discrimination Algorithms 

The most commonly used metric to determine the relative danger of an arrhythmia 

is electrocardiogram (ECG). Because all ICDs have electrical access to the leads, they have 

the capability to sense IEGM. The rate and morphology of the IEGM waveforms are the 

most commonly utilized discriminators for classifying arrhythmias. IEGM is a relatively 
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low-power measurement, and can be enabled with little additional instrumentation in the 

ICD generator.  

Due to the frequency of inappropriate shocks, an improvement is needed. The 

reasons for these inappropriate shocks are algorithm and patient dependent, but IEGM 

suffers from being dissociated from hemodynamics. For example, it is possible to have an 

irregular rapid HR, but still have an adequate BP and SV. The addition of a SV 

measurement to the existing IEGM based discriminators provides a targeted solution to 

this problem. 

1.2.2. ICD Therapies and Programming 

ICDs can deliver inappropriate therapies, most often for supraventricular 

tachyarrhythmias, which negatively impacts patient life and increases morbidity and 

mortality [17A]. 

Programming strategies to reduce inappropriate ICD shocks have included 

sophisticated SVT discrimination algorithms [17B, 17C], long detection times with 

delayed therapies [17D, 17E], and use of anti-tachycardia pacing therapy (ATP) [17B, 17F, 

17G]. Despite these advances, inappropriate therapies remain a clinical problem with 

reported false shock rates of 3-5% [17C, 17H, 17I]. 

In clinical settings, physicians evaluate hemodynamic status when deciding 

whether an arrhythmia requires cardioversion. However, ICDs rely solely on the 

intracardiac electrogram (IEGM) to discriminate arrhythmias and determine appropriate 

therapies.  

1.2.3. Bio-impedance Measurements 

Intrathoracic impedance measurements are currently used by companies such as 

Medtronic (Optivol, [18]) and St. Jude Medical (CorVue, [19]) to determine lung wetness.  
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However, their approach of extending the electric field from the ICD generator to the RV 

shocking lead has too many sources of noise, such as the skeletal muscle and lungs, which 

are also included in the resulting electric field. As a result, these approaches are much more 

sensitive to lung tissue wetness than heart volume. 

1.2.4. Intraventricular Admittance Measurements 

The ADSV method has been adapted from traditional bioimpedance measurements 

to more accurately monitor ventricular SV. ADSV offers significant improvements in 

comparison to bioimpedance by removing confounding artifacts that corrupt 

intraventricular bioimpedance measurements. The ADSV method can remove the 

following two artifacts: parallel muscle contributions and time varying respiratory artifacts. 

The conductance derived stroke volume (CDSV) method should also be mentioned. The 

CDSV method is identical to the ADSV method except for the fact that CDSV method 

does not remove parallel muscle contributions to the admittance signal. The calculation is 

performed using the magnitude of admittance |Y|. 

The removal of parallel muscle contributions from the admittance signal is made 

possible using the admittance equation. This equation leverages unique electrical 

properties of blood and muscle. The amount of conductance that is removed from the signal 

is calculated using the phase component of the complex admittance signal. This differs 

from traditional bioimpedance measurements which only utilize magnitude. “Measured 

admittance consists of three components, 𝒀 = 𝐺b + 𝐺m + 𝑗𝜔𝐶m, where 𝐺b is the conductance 

of blood, 𝐺m is the conductance of muscle and 𝜔𝐶m is the susceptance of muscle. Since 

the imaginary component arises solely from the muscle, the conductivity to permittivity 

ratio of muscle can be used to separate blood conductance by the conductance-capacitance 

analogy, 𝐺b = 𝑅𝑒{𝒀} − (𝜎m/𝜖m) Im{𝒀}” [14]. In this dissertation a 𝜎m/𝜖m  ratio of 800,000 
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is used. A diagram of the components that comprise the parallel intraventricular complex 

admittance signal is provided in Figure 1.  

 

 
Figure 1. Parallel Complex Admittance Model 
|Y| indicates magnitude of admittance, θ indicates the phase of admittance, Gblood indicates the 

blood conductance contribution to the real part of admittance signal, Gmuscle indicates the muscle 

conductance contribution to the real part of the admittance signal, ωCmuscle indicates the muscle 

susceptance contribution to the imaginary part of the admittance signal, ωCprobe indicates the 

probe susceptance contribution to the imaginary part of the admittance signal. 

1.2.5. Tripolar Admittance Measurements 

The admittance signal underlying the ADSV and CDSV methods is a tripolar 

admittance configuration using the 3 electrodes of an RV shocking lead (RV Coil, and RV 

Ring, RV Screw). This configuration has been experimentally validated in human patients 

chronically implanted with RV ICD shocking leads [20]. Typical admittance 

measurements are made in a tetrapolar configuration using a conductance catheter in the 

left ventricle (LV) of the heart [5]. The tetrapolar configuration was adapted to a tripolar 

configuration by using the RV shocking coil as both a voltage sensing and current 

stimulation electrode. Generally, it is not acceptable to use a single electrode as both a 

voltage sense and a current stimulation node. However, the large surface area of the RV 

shocking coil makes it the ideal candidate for such a configuration. A model of the RV 

tripolar admittance configuration is provided in Figure 2. 



 5 

 
Figure 2. The RV tripolar admittance measurement configuration.  
Positive current stimulation (I+) and positive voltage sense (V+) are shown on the RV Coil. 

Negative current stimulation (I-) is shown on the RV Screw. Negative voltage sense (V-) is shown 

on the RV Ring.  Electric field lines, shown as dashed lines, are for illustrative purposes only.  

1.3. SPECIFIC AIMS 

Specific Aim 1: Develop signal processing techniques to remove respiration artifact and 

measure relative stroke volume changes accurately under steady state conditions in an 

acute pacing protocol using RV tripolar admittance.  

 

Specific Aim 2: Develop signal processing techniques to differentiate between 

hemodynamically stable and hemodynamically unstable arrhythmias using RV tripolar 

admittance. The result of the signal processing technique will be incorporated into a 

shocking algorithm that could be used within an ICD. This study will be performed in a 

large animal (canine) model with heart failure preparation in an arrhythmia protocol. 
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1.4. OVERVIEW OF CHAPTERS 

Chapter 1 (Background and Motivation) is meant to introduce the topic of the 

dissertation and make clear the specific aims. Chapter 2 (Signal Processing Methods for 

Admittance Signals) introduces the signal processing methods that are used to address 

specific aim 1. These signal processing methods are used throughout the dissertation to 

analyze experimental data. Chapter 3 (Preliminary Right Atrial Pacing Experiment) 

presents an experiment that served to validate the signal processing algorithm from specific 

aim 1. Chapter 4 (Congestive Heart Failure Arrhythmia Study) presents the experimental 

protocol that was used to address specific aim 2. Chapter 5 (Hemodynamic Based ICD 

Discrimination Algorithm) presents the algorithm that addresses specific aim 2. Chapter 6 

(Conclusion and Future Work) concludes the dissertation and suggests areas for future 

research based on the findings herein. 
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2. Chapter 2:  Signal Processing Methods for Admittance Signals 

2.1. DEMODULATION TECHNIQUES 

2.1.1. Analog Demodulation Techniques 

The admittance measurement underlying the ADSV and CDSV methods is 

modulated on a 20 kHz carrier. This frequency was selected because it allows for some 

sensitivity to the capacitive component of the muscle and is not dramatically affected by 

small parasitic capacitances found in the leads. Since the signal is modulated, it is necessary 

to demodulate the analog signal to obtain the baseband admittance signal. A variety of 

analog and mixed signal approaches can be used to demodulate the signal including 

rectified demodulation and synchronous demodulation. 

Rectified demodulation, sometimes referred to as an envelope detector, is by far the 

easiest way to demodulate a signal to its baseband. In this method, the amplitude modulated 

signal is first rectified using either a single diode for half wave rectification or a full-wave 

rectification circuit. The resulting signal can then be low-pass filtered, which results in the 

reconstructed baseband signal. A diagram outlining a diode rectified demodulation circuit 

is provided in Figure 3. 

 

Figure 3. Diode Rectified Demodulation. 
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 While the rectified demodulation circuit is easy to implement, it is only able to 

capture magnitude information in the baseband signal. If both magnitude and phase 

information from the baseband signal are desired more complex demodulation techniques 

must be used.  

Synchronous demodulation is a well-known technique to measure the in-phase and 

out of phase components of a signal. The measurement of admittance at a carrier frequency 

results in a waveform that can be represented by the following equation: 

 

 

where p(t) represents the in-phase signal, and q(t) represents the out of phase signal. These 

are equivalent to the real and imaginary parts of the admittance signal. Synchronous 

demodulation is achieved by multiplying the modulated admittance signal by the in-phase 

and out of phase carrier frequency [21, 22]. The equations that define the demodulation of 

the in-phase signal are provided: 

 

 

The signal components can then be separated using trigonometric identities.  

 

 

After the in-phase signal has been multiplied (mixed) with the in-phase carrier the in-phase 

baseband signal can be extracted using a low pass filter. In practice, the generation of an 

ideal sine wave is difficult and a square wave implementation using D flip-flops may be 

used [23]. The out-of-phase component can be reconstructed using a similar equation and 

corresponding trigonometric identity.  
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2.1.2. Digital Demodulation Techniques 

Digital demodulation can significantly reduce the analog complexity that is 

required to implement synchronous demodulation. In practice, the multiplication (mixer) 

operation performed in analog hardware can be moved into the digital domain. However, 

this is only possible if the modulated signal can be sampled at a sufficiently high sampling 

rate. Since the admittance measurement is modulated at a 20 kHz carrier, it is possible to 

sample the signal and perform the synchronous demodulation operation digitally.  

In fact, in the mixed signal admittance system designed for this study (Cardiovol), 

the 20 kHz stimulation current underlying the admittance measurement is generated by a 

microcontroller that outputs to a 3-bit sine digital to analog converter (SinDAC). The 

microcontroller outputs to the SinDAC at a rate of approximately 160 kHz. Given that the 

microcontroller outputs 8 samples per cycle of the sine wave, the resulting frequency of 

the sine wave is 20 kHz. For every output current sample, the microcontroller also 

measures a corresponding input voltage sample using an on-chip analog to digital converter 

(ADC). Since the Cardiovol system controls both the output of current samples and the 

sampling of voltage samples, the admittance signal can be sampled coherently. The 

conditions for coherent sampling are provided: 

 

 

where fin is frequency of the input signal (20 kHz), fs is the sampling rate (160 kHz), Mcycles 

is the number of cycles in the sampled sine wave, and Nsamples is the number of samples. 

Nsamples must be a power of 2 and Mcycles must be odd or prime. Making Nsamples a power of 

2 ensures that the FFT can be calculated efficiently. Making Mcycles prime ensures that 

every value is in the sampled waveform is in a unique point in the sampled waveform. By 
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sampling unique points in the waveform, quantization noise and deterministic noise 

artifacts can be limited.  

Coherent sampling ensures that the signal power for the frequency of interest (20 

kHz) is contained in a single bin of the Discrete Fourier Transform (DFT). This property 

enables the use of the DFT to demodulate the signal. The DFT is defined as follows: 

 

Input: N time samples  

{an} = {a0,a1,a2,…,aN-1}  

 

Output: a set of N frequency bins 

{Ak} = {A0,A1,A2,…,AN-1} 

 







1N

0n
N

kn

nk WaA
  Where  eW /Nj2

N
  

 k=0,1,2,…,N-1 

where k is a specific DFT bin. To calculate the entire DFT of a time domain signal with N 

samples the time complexity is O(N^2). However, for demodulation, only a single bin, k, 

needs to be calculated to demodulate the baseband information from the 20-kHz carrier. 

The time complexity of a single bin DFT calculation is O(N). The bin k of interest can be 

identified using the following equation: 

fr = fs/N 

fin = fs/M 

fin/fr = k 

by substitution, 

(fs/M)/( fs/N) = k 

by reduction, 

N/M = k 
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where fr is frequency resolution (bin resolution), fin is the input signal’s frequency (20 kHz), 

fs is the sampling rate (160 kHz), N is the number of input samples, M is the number of 

samples of each cycle of the sinusoidal output waveform (8 samples/cycles), and k is the 

DFT bin that contains the demodulated magnitude and phase information. This 

demodulation method was applied by Valvano et al for measuring complex electrical 

admittance and impedance [24].  

2.1.2.1. Single Bin DFT Assembly Implementation 

A fixed-point implementation for calculating a single bin, k, of the DFT was 

implemented in assembly code on the low-power MSP430 microcontroller, providing a 

numerically stable and efficient way to demodulate the admittance signal and produce 

complex admittance measurements [24]. The fixed-point implementation is optimized 

using only add and shift operations, which makes it the ideal candidate for low-power 

implantable applications. 

From reference [24]: “An example of this implementation, fin = 20 kHz, M=8, and 

N=32. The microcontroller writes digital values to the SinDAC at a rate of fs = M* fin = 

160 kHz. With fs equal to 160 kHz, the time between samples is t = 6.25 s. The voltage 

signal is sampled by the ADC at the same fs= 160 kHz rate. A total of N = 32 data points 

are collected with a total sample time = 200 s. Let the sampled inputs be x0, x1, x2, …, 

x31. Since the sampling rate is 160 kHz, the k=4 term represents the desired 20 kHz carrier 

frequency. In other words, X4 represents complex impedance at f = 20 kHz.  For a 32-point 

DFT, the complex constants can be calculated as follows: 

 

Wk = exp(-2ik/32) = cos(2k/32) –i*sin(2k/32) 

 

k = 4 represents f = 20 kHz. To calculate the k=4 term, we only need every fourth Wk term: 
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Re[Z4] =  x0 –x4 +x8 –x12 +x16 –x20 +x24 –x28       

  + √½*( x1 –x3 –x5 +x7 +x9 –x11 –x13 +x15 +x17 –x19 –x21 +x23 +x25 –x27 –x29 +x31) 

 

Im[Z4] =   –x2 +x6 –x10 +x14  –x18 +x22 –x26 +x30 

  + √½*(–x1 –x3 +x5 +x7 –x9 –x11 +x13 +x15 –x17 –x19 +x21 +x23 –x25 –x27 +x29 +x31) 

 

Wk can be approximated in terms as a fixed-point numbers. Notice how close 12/17 

is to the √½ (0.70588 versus 0.70711). Using fixed point saves power. Let Z be the complex 

impedance for the k=4 term. One possible fixed-point implementation is 

ReZ =  (17*(x0 –x4 +x8 –x12 +x16 –x20 +x24 –x28 ) 

+ 12*(x1 –x3 –x5 +x7 +x9 –x11 –x13 +x15 +x17 –x19 –x21 +x23 +x25 –x27 –x29 +x31))/32 

 

ImZ =  (17*( –x2 + x6 –x10 + x14  –x18 + x22 –x26 +x30) 

+ 12*( –x1 –x3 +x5 +x7 –x9 –x11 +x13 +x15 –x17 –x19 +x21 +x23 –x25 –x27 +x29 +x31))/32 

The divide by 32, implemented as a right shift, was added to adjust the amplitude 

of the calculation. Because the device will be calibrated, the “32” in these equations is 

arbitrary. 

An important consequence of the M-to-1 ratio in both the SinDAC and the DFT is 

that the sampling frequency (fs) need not be accurate. If the input/output sampling rate is 

either a little too fast or too slow, the system still works. For example, if the sampling 

frequency moves from 160 kHz to 152 kHz, the only consequence is that now the electrical 

measurements are being made at 19 kHz instead of 20 kHz. Luckily, the change in electrical 

properties of blood and muscle tissue do not significantly vary for frequencies 19 to 21 

kHz. It requires a significant amount of electrical power to create a precise sampling clock. 
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Conversely, this device can derive its timing from a low-power voltage-controlled 

oscillator (VCO).” [24]. Additionally, the sampled waveform need not be windowed 

because the output current waveform and corresponding voltage input samples are 

collected coherently.  

2.1.2.2. Goertzel Filter Implementation 

The Goertzel filter algorithm is a well-known method for calculating a single bin 

of the DFT. It has been used extensively for tone detection [25] and has also been used for 

digital demodulation [26]. The Goertzel filter algorithm can be used as an alternative to the 

single bin DFT assembly implementation. The Goertzel filter is implemented using an 

infinite impulse response (IIR) filter with the following form: 

 

 

The above filter is run for input samples x[0], x[1], …., x[n-1] and terminates when the 

x[n-1] sample is processed. The samples are then passed into a second stage that produces 

the final complex value for the kth bin of the DFT. The second stage is defined as follows: 

 

 

where Cr represents the coefficient for the real part for the kth bin of the DFT and Ci 

represents the coefficient for the imaginary part for the kth bin of the DFT.  The value y[N] 

represents the complex value for the kth bin of the DFT.  

 The Goertzel filter can be realized using fixed point computations like the single 

bin DFT implementation discussed previously. The coefficients Cr, Ci, and ωo can be 
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efficiently implemented using a series of add and shift operations. However, since the 

Goertzel filter is in fact an IIR filter with one of the poles for the filter’s Z transform on the 

unit circle, it is considered a marginally stable filter and is vulnerable to numerical error 

accumulation. Any inaccuracies in the coefficient ωo are scaled to the Nth power, where N 

is the number of samples. This polynomial error scaling requires that the estimate of ωo 

using add and shift be significantly more precise than the estimate used in the single bin 

DFT implementation discussed previously. In practice, it was found that the number of add 

and shift operations required for numerical stability was approximately 13. This implies 

that the Goertzel filter requires approximately 13 times the number of machine operations 

when compared to the single bin DFT implementation if it is implemented on a fixed-point 

processor that does not have a divide unit. While a fixed-point processor that does have a 

divide unit would reduce the computational complexity of the Goertzel filter significantly, 

the numerical stability issues that arise from the feedback properties of the underlying IIR 

filter remain. In practice, the Goertzel filter (as with all IIR filters) should be implemented 

on a processor where a floating-point unit is available.  

2.1.3. Numerical Accuracy and Stability Simulations 

The single bin DFT implementation and the Goertzel filter algorithm were 

simulated to evaluate the accuracy and numerical stability of each algorithm. In the 

simulation, the methods were evaluated for their ability to measure impedance in ohms. 

The Cardiovol instrument is designed to measure electrical impedance and values are 

converted to admittance in mS post processing. The instrument outputs a constant current 

at 20 kHz on two leads and measures the resulting voltage on two other leads. Since the 

instrument is designed to measure impedance, the simulations are presented in terms of 

impedance. The simulation swept impedance measurements with a magnitude from [0-
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100] ohms in increments of 2 ohms. For each impedance magnitude the phase was swept 

from [-90, 90] degrees in increments of 5 degrees. The single bin DFT implementation had 

a percent of full-scale error for the real part of 0.027% ± 0.023% (max = 0.087%) and for 

the imaginary part 0.027% ± 0.023% (max = 0.087%). The errors for the single bin DFT 

implementation were deterministic. For the single bin DFT implementation, the results for 

the real part are provided in Figure 4 and the imaginary part is provided in Figure 5. The 

Goertzel Filter algorithm had a percent of full-scale error for the real part of 0.047% ± 

0.036% (max = 0.2%) and for the imaginary part 0.052% ± 0.042% (max = 0.23%). The 

errors for the Goertzel filter algorithm were not deterministic. For the Goertzel filter 

algorithm, the results for the real part are provided in Figure 6 and the imaginary part are 

provided in Figure 7. 

 

 

Figure 4. Single Bin DFT Real Error Simulation Results 
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Figure 5. Single Bin DFT Imaginary Error Simulation Results 

 

Figure 6. Goertzel Filter Algorithm Real Error Simulation Results 
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Figure 7. Goertzel Filter Algorithm Imaginary Error Simulation Results 

The single bin DFT implementation was found to be the clear winner when 

compared to the Goertzel filter algorithm. It is 13 times more computationally efficient, 

has better numeric stability, and has 2.5 times less maximum full-scale error. 

The accuracy of the single-bin FFT could be improved by increasing the precision 

of the fixed-point math. The size of the frequency bin could be tightened by increasing the 

sampling rate. The sampling rate of 160 kHz and numerical precision of 16-bits were 

chosen to allow for implementation of a battery-powered implant.  

2.2. ADMITTANCE BASED STROKE VOLUME METHODS 

The admittance derived stroke volume (ADSV) and conductance derived stroke 

volume (CDSV) methods are designed to estimate stroke volume (SV) from an 

intraventricular admittance signal in the presence of respiratory artifact. The ADSV 

method uses both the phase and magnitude information from the admittance signal. The 

CDSV method only uses the magnitude information from the admittance signal. Both 

methods go through the same signal processing algorithm. The signal processing algorithm 
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involves both time and frequency domain analysis. The time domain admittance signal is 

first windowed using a Tukey window that is approximately 25 seconds long. Next, the 

signal is transformed into the frequency domain using the discrete Fourier transform 

(DFT). In the frequency domain, either a narrow band or wide band Fourier filter is applied 

to remove non-cardiac signal components. The inverse discrete Fourier transform (IDFT) 

is then applied to transform the signal back into the time domain. Finally, the amplitude of 

the Fourier filtered admittance signal is determined using either a peak detection algorithm 

or a root mean squared (RMS) calculation. Detailed explanations of these signal processing 

blocks are provided in the subsequent sections. A visual representation of signal processing 

chain for the ADSV/CDSV method can be found in Figure 8.  

 
Figure 8. ADSV and CDSV Signal Processing Chain 
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Time domain operations are indicated using rectangles, frequency domain operations are indicated 

using ovals, FFT indicates a fast Fourier Transform operation, NBFF indicates a Narrow Band 

Fourier Filter operation, WBFF indicates a Wide Band Fourier Filter operation, IFFT indicates 

an inverse fast Fourier transform, RMS indicates root mean squared, Peak indicates peak 

detection, and ADSV indicates admittance derived stroke volume. 

 

2.2.1. Fourier Filtering of Admittance Signals 

Fourier analysis is used extensively in science and engineering using the Fourier 

transform. The Fourier transform decomposes a time domain signal into a combination of 

sinusoids that when combined form the original time domain signal. The information 

provided by the Fourier transform is referred to as the frequency domain and provides a set 

of orthogonal information to the time domain. It can be used to isolate signals with specific 

frequency characteristics. The Fourier methods discussed herein are implemented using 

The Fast Fourier Transform (FFT), which is an efficient implementation of the DFT. The 

DFT has a time complexity of O(N^2). The FFT has a time complexity of O(N*log(N)). 

For large data sets, the processing time for the FFT is significantly faster when compared 

to the DFT. The computational efficiency of the FFT is achieved through a divide and 

conquer methodology. In this way, a single DFT operation is broken down into several 

smaller DFT operations whose numerical outputs can be combined systematically to 

recreate the larger parent DFT operation. The FFT leverages reuse of the numerical 

operations of the smaller DFTs that may be recalculated in the standard DFT 

implementation. One of the original and most common FFT algorithms is the Cooley-

Tukey algorithm [27].  

Fourier analysis is particularly useful for removing unwanted noise artifacts from a 

signal of interest. This action is referred to as Fourier filtering. Fourier filtering has been 

used extensively for the processing biological signals that are often distorted by unwanted 
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noise artifacts [28]. Some researchers have applied the technique to impedance/admittance 

spectroscopy [29].  

Using Fourier filtering, the cardiac and respiratory components of an admittance 

signal can be isolated. This is possible because of a frequency separation between the two 

components. The respiratory rate of an adult is typically between 12 - 20 breaths per minute 

(< 0.33 Hz). The heart rate of an adult is typically between 60 - 100 beats per minute (> 

1.0 Hz). During both tachycardia and fibrillation rhythms both heart rate and respiration 

rate can increase, but the frequency separation between the two components is generally 

maintained. In the case of bradyarrhythmias, the method is not as effective as the cardiac 

rate and respiratory rate may converge.  

When using a Fourier filter, it is important to consider the frequency resolution of 

the filter. The frequency resolution is the minimum resolvable frequency distinction that 

can be made by the filter. The frequency resolution is determined by the window size that 

is used for the Fourier filter. The following equations define the relationship between 

frequency resolution (fr) and window size (Tw): 

fr = fs/N 

N=fs*Tw 

by substitution, 

fr = fs /(fs*Tw) 

by reduction, 

fs = 1/Tw 

where fr is frequency resolution (bin resolution) in Hz, fs is the sampling rate in Hz, N is 

the number of samples, and Tw is the amount of time the sampling window covers in 

seconds. For the Fourier filter to have a 0.05 Hz fr, the window size must be 20 seconds 

long.  
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2.2.2. Window Selection 

Before the Fourier transform can be applied, the time domain signal must be 

properly windowed. Window type and size are both important considerations. If the 

window type and size are not selected properly, the Fourier transform will cause undesired 

spectral leakage that results in the frequency components within a bin to spread into 

neighboring bins. Spectral leakage is an important consideration for the ADSV/CDSV 

method since leakage from the respiratory frequencies into the cardiac frequencies prevents 

the removal of respiratory artifacts from the intraventricular admittance signal.  

The reason spectral leakage occurs in this application of the Fourier transform and 

not in the demodulation application discussed above is because the signals are not sampled 

coherently. Without coherent sampling a signal will be sampled without regard for its 

period. Non-coherent sampling results in the sampled signal containing incomplete cycles 

of a waveform. Since, the DFT assumes that the sampled time domain signal is repeated 

infinitely, the partial cycles in the waveform create discontinuities which result in spectral 

leakage . Take for example the input signal provided in Figure 9A; when the signal is 

repeated as shown in Figure 9B a discontinuity can be seen at T=5 seconds. 
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Figure 9A. Time Domain Input Signal (Rectangular Window) 

 

Figure 9B. Repeated Time Domain Input Signal (Rectangular Window) 

 The signals shown in Figures 9A and 9B are windowed using a rectangular window. 

A rectangular window is effectively no window. Typically, a window function acts to 

smooth the time domain signal at the beginning and end of the window. This is achieved 
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using a sequence of coefficients that form a window function, which are multiplied with 

the samples of the time domain input signal. In the case of the rectangular window, the 

window coefficients are all of value 1 and the original time domain samples are unchanged. 

This type of window is acceptable for coherently sampled signals, but for signals that are 

not coherently sampled other window functions must be used to prevent spectral leakage. 

The undesirable effects of the rectangular window have been demonstrated in the time 

domain, but they can also be observed in the frequency domain, as Figure 10 shows.  

 

 

Figure 10. Frequency Domain Input Signal with Rectangular Window 

 This input signal was composed of sinusoids, one at 1.27 Hz and another at 0.41 

Hz. While the frequency domain of the signal provided in Figure 10 does show the presence 

of the intended frequencies, it also shows significant leakage of these frequencies into 

adjacent bins. It can be observed that all bins shown in the range of 0-5 Hz are non-zero. 

This indicates that the discontinuity observed in the time domain of Figure 9B has caused 

high frequency distortion that appears in most bins.  
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 To reduce this undesired spectral leakage, a more effective window can be used. 

The Hann window is one of the most commonly used windows for spectral analysis [30]. 

The equation for the Hann window is as follows: 

Hann Window: 

 

The time domain representation of a standard Hann window is provided in Figure 11. 

 

 

Figure 11. Time Domain of Hann Window 

The Hann window was applied to the input signal forming the signal provided in 

Figure 12. A repeated representation of the windowed signal is provided in Figure 13.  
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Figure 12. Time Domain Input Signal with Hann Window 

 

Figure 13. Repeated Time Domain Input Signal with Hann Window 

 Figure 13 shows that the discontinuity observed with the rectangular window was 

eliminated by the Hann window. The resulting Fourier transform of the signal in Figure 12 

is provided in Figure 14.  
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Figure 14. Frequency Domain Input Signal with Hann Window 

 It can be observed that the signal frequencies of 1.27 Hz and 0.41 Hz are still 

spreading into adjacent bins. However, all the bins after 2 Hz are zero valued. Hence, the 

Hann window was effective at reducing the amount of spectral leakage into the bins that 

correspond with higher frequencies.  

 Generally, the only way to completely remove spectral leakage is to sample a signal 

coherently and use a rectangular window (No Window). However, if a signal cannot be 

sampled coherently, the amount of spectral leakage can be managed using window type 

and window size. The two subsequent sections will provide insight about the selection of 

the windows used for the ADSV/CDSV method.  

2.2.2.1. Window Type Simulations 

When selecting the window type, it important to consider both the amount of 

spectral leakage that the window causes as well as the amount of coherent gain the window 

has. Window functions typically attenuate the power of time domain signals. The amount 
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of attenuation that a window function causes is referred to as the coherent gain of the 

window [30]. 

 In practice, hundreds of window functions exist. The Hann window is perhaps the 

most commonly used window function. The Hann windows spectral leakage characteristics 

are ideal. However, it has a coherent gain of 0.5 and due to the non-stationary nature of 

intraventricular admittance signals it is not the best option for the ADSV/CDSV method. 

By design, the Hann window causes an amplitude bias in the admittance signal at the 

middle of the window. By focusing more heavily on the signal in the middle of the window, 

the amplitude measurement of the ADSV/CDSV method will be biased towards the 

amplitudes observed in the middle of the window. Since the ADSV/CDSV amplitudes are 

constantly changing in the sampled window this behavior is not desired. For this reason, a 

window with a larger and more uniform coherent gain is desired. After a detailed search, 

the Tukey window was identified [31]. The equations representing the Hann window and 

Tukey window are provided below. 

Hann Window: 

 

Tukey Window: 

 

 

A time domain representation of the Hann window was provided previously in 

Figure 11 A time domain representation of the Tukey window with an α coefficient of 0.2 
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(Tukey α= 0.2) is provided in Figure 15.  The coherent gain of the Tukey α = 0.2 window 

is 0.9.  

 

Figure 15. Time Domain of Tukey Window (α = 0.2) 

 The Fourier transform of a time domain window function provides insight into how 

the window will cause spectral leakage. Window functions are applied in the time domain 

using multiplication. The convolution theorem states that convolution in the time domain 

is equivalent multiplication in the frequency domain. The theorem also works the other 

way around.  

 

 

Hence, convolution in the frequency domain by the window function is what causes the 

spectral leakage. The wider the bandwidth of the Fourier transform for the window 

function, the more spectral leakage it will cause. The Fourier transform of the Hann 
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window is provided in Figure 16. The Fourier transform of the Tukey α = 0.2 window is 

provided in Figure 17. 

 

Figure 16. Frequency Domain of Hann Window (25 s) 

 

Figure 17. Frequency Domain of Tukey Window (α = 0.2, 25 s) 
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 The Hann window will result in spectral leakage of approximately 0.1 Hz forwards 

and backwards. The Tukey α = 0.2 window will result in approximately 0.3 Hz forwards 

and backwards. However, for the Tukey α = 0.2 window, the leakage after .05 Hz is 

approximately 10% of the maximum. Additionally, the resting respiratory rate of 0.33 Hz 

and heart rate of 1 Hz discussed previously have a frequency separation of approximately 

0.65 Hz. Therefore, a spectral leakage of 0.3 Hz is tolerable. To summarize, The Tukey α 

= 0.2 window allows for a tolerable amount of spectral leakage with a coherent gain of 0.9. 

For this simulation, a waveform was generated with 2 sinusoids at distinct 

frequencies. The first frequency (1.01 Hz) was representative of a cardiac admittance signal 

(foc). The second frequency (0.33 Hz) was representative of a respiratory admittance signal 

(for). The amplitude of foc (amplitudec) was configured to 1. The amplitude of for 

(amplituder) was configured to 0.5. The analysis time of the window Tw was configured to 

25 seconds. The Hann windowed time domain signal is provided in Figure 18 and the 

Tukey α = 0.2 windowed time domain signal is provided in Figure 19. The Hann windowed 

frequency domain signal is provided in Figure 20 and the Tukey α = 0.2 windowed 

frequency domain signal is provided in Figure 21. 
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Figure 18. Time Domain Hann Windowed Input Signal  

 

Figure 19. Time Domain Tukey α = 0.2 Windowed Input Signal 
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Figure 20. Frequency Domain Hann Windowed Input Signal (25 s) 

 

Figure 21. Frequency Domain Tukey α = 0.2 Windowed Input Signal (25 s) 

2.2.2.2. Window Size Simulations 

The amount of spectral leakage induced by a window is inversely proportional to 

the window size. Therefore, if the windows analyzed in the previous section were 
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reproduced for Tw=5 seconds instead of Tw=25 seconds it is expected that the bandwidth 

of the window in the frequency domain will increase by a factor 5. The frequency domain 

for the Hann window at Tw=5 is provided in Figure 22 and the frequency domain for the 

Tukey α = 0.2 window at Tw=5  is provided in Figure 23.  

 

Figure 22. Frequency Domain of Hann Window (5 s) 

 

Figure 23. Frequency Domain of Tukey α = 0.2 Window (5 s) 
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As expected, the bandwidths of the windows increased inversely proportional to 

window size. Based on this, the Tukey α = 0.2 window should not be used for analysis 

windows less than 15 seconds. For analysis windows less than 15 seconds the α parameter 

may be adjusted or a different window should be utilized.  

2.2.3. Fourier Filtering Bin Selection 

After the time domain signal is properly windowed, the signal is transformed into 

the frequency domain using the FFT. Fourier filtering is performed by altering the values 

of specific bins in the Fourier transformed data.  Frequency bins that contain respiratory 

and noise artifacts are set to zero. Two methods were used for identifying which bins should 

be set to zero: wide band and narrow band. Both methods set bins that correspond to non-

cardiac frequencies to zero. The relationship between bin number and frequency is defined 

as follows: 

fr = 1/Tw 

Kn =fn/fr 

Kn(mirror) =(N-1) - (Kn-1) 

by reduction, 

Kn(mirror) = N-Kn 

where fr is the frequency resolution (bin resolution), Tw is the amount of time in the 

sampling window, Kn is bin within the Fourier transform that contains the noise artifact, fn 

is the frequency containing the noise, N is the number of samples, and Kn(mirror) is the 

mirrored bin in the Fourier transform containing the noise artifact. 

When identifying Kn and Kn(mirror) it is important to understand the mirrored 

symmetry of the DFT. For an odd number of samples (N) the DFT bins (K) are defined as 

follows: 
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General Solution: 

K=0 ; The DC bin with no corresponding mirrored bin 

K=1 through K=(N-1)/2; frequency bins with corresponding mirrored bins 

K=(N+1)/2 through K=(N-1); frequency bins with corresponding mirrored bins 

 

Example: N = 5 samples: 

K = 0; The DC bin with no corresponding mirrored bin 

K=1 through K=2; K=1 mirrors to K=4 & K=2 mirrors to K=3 

K=3 through K=4; K=3 mirrors to K=2 & K=4 mirrors to K=1 

 

For an even number of samples (N) the DFT bins (K) are defined as follows: 

General Solution: 

K=0 ; The DC bin with no corresponding mirrored bin 

K=1 through K=(N/2)-1; frequency bins with corresponding mirrored bins 

K=N/2; The fs/2 bin with no corresponding mirrored bin 

K=(N/2)+1 through K=(N-1); frequency bins with corresponding mirrored bins 

 

Example: N = 6 samples: 

K = 0; The DC bin with no corresponding mirrored bin 

K=1 through K=2; K=1 mirrors to K=5 & K=2 mirrors to K=4 

K=3; The fs/2 bin with no corresponding mirrored bin 

K=4 through K=5; K=4 mirrors to K=2 & K=5 mirrors to K=1 
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2.2.3.1. Cardiac Harmonic Narrow Band Fourier Filter 

The cardiac harmonic Narrow Band Fourier Filter (NBFF) is designed to preserve 

the fundamental cardiac component and N cardiac harmonic components. The filter acts as 

a composite filter that is the summation of N High Q bandpass filters, where the center 

frequency for each filter is placed at the fundamental cardiac frequency and its N 

harmonics. The filter is implemented in the frequency domain by selecting specific 

frequency bins within the DFT that should be preserved. 

 To identify the bins that should be preserved, the fundamental cardiac bin is first 

identified. This is done using the max function, which returns the index of the DFT bin 

with the highest value. This is referred to as index fundamental (If). Next, the N harmonics 

of If are calculated (I2, I3, …, IN). Typically, the first 5 harmonics are sufficient to capture 

a majority of the cardiac signal power. The indexes (If, I2, I3, …, IN) correspond to the 

centers of the pass band for the N High Q bandpass filters. The bandwidth for each filter 

can be configured. Typically, a bandwidth (fbw) of 0.5 Hz effectively preserves the cardiac 

signal power.  

This filtering method is effective for intraventricular admittance signals collected 

during stable heart rate conditions. If the heart rate becomes variable (HRV), the cardiac 

signal power will no longer be contained in a narrow bandwidth, and the filters will no 

longer preserve a majority of the cardiac signal power. To account for HRV fbw may be 

increased. An example admittance signal with stable heart rate conditions collected during 

atrial pacing at 120 beats per minute (BPM) is provided in Figure 24. 
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Figure 24. Time Domain Atrial Pacing Signal (120 BPM) 

In the time domain admittance signal provided in Figure 24, both cardiac and 

respiratory components of the admittance signal can be identified. The frequency domain 

representation of this signal is provided in Figure 25. 
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Figure 25. Frequency Domain Atrial Pacing Signal (120 BPM) 

 In Figure 25, the frequency domain representation of the signal shows the 

fundamental cardiac signal and 4 of its harmonics. The green bars around each of the 

cardiac signal components represent fbw. The fundamental cardiac frequency is centered at 

2 Hz, corresponding to a heart rate of 120 BPM. The large signal component bellow 1 Hz 

is a combination respiratory artifact and spectral leakage from the DC bin. It is important 

to note that Figure 25 does not show the mirrored bins that also need to be maintained to 

ensure symmetry within the DFT. If the corresponding mirrored bins are not preserved the 

inverse Fourier transform used later will not correctly reconstruct the time domain signal.  
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2.2.3.2. Cardiac Wide Band Fourier Filter 

The cardiac Wide Band Fourier Filter (WBFF) is simply a bandpass filter that is 

designed to remove respiratory frequencies and preserve cardiac frequencies. This filter is 

useful when the heart rate is variable. During arrhythmias, heart rate can be variable making 

the WBFF a better choice when compared to the NBFF. The defining characteristics of a 

traditional bandpass filter are provided in Figure 26. 

 

 

Figure 26. Bandpass Filter Characteristics 

Traditional bandpass filters can be implemented as either a finite impulse response 

(FIR) of infinite impulse response (IIR) filter. The Fourier filter method has several 

benefits when compared to FIR and IIR filter implementations.  One of the most important 

benefits of the Fourier filter is that it can be used to create very quick transitions between 

the pass band (Fpass) and the stop band (Fstop). To removing respiratory admittance signals 

(0.33 Hz) from cardiac admittance signals (1 Hz), this property is required. An example 

admittance signal collected during atrial fibrillation is provided in Figure 28. 
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Figure 28. Time Domain Atrial Fibrillation Signal 

In the atrial fibrillation signal provided in Figure 28 a variable heart rate can be 

observed in the presence of a significant respiratory component. The frequency domain of 

the atrial fibrillation signal is provided in Figure 29. 

 

Figure 29. Frequency Domain Atrial Fibrillation Signal 
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From the frequency domain signal provided in Figure 29, it can be observed that 

the cardiac signal component is composed of a wide band of frequencies. The NBFF 

described in the previous section would not be effective at preserving the cardiac 

components of this signal. However, the WBFF which was configured to pass cardiac 

frequencies between 1 Hz and 10 Hz and preserves a majority of the cardiac signal power 

while removing respiratory artifacts. It is important to note that Figure 29 does not show 

the mirrored bins that also need to be preserved to ensure symmetry within the DFT. If the 

corresponding mirrored bins are not properly preserved, the inverse Fourier transform used 

later will not correctly reconstruct the time domain signal. 

2.2.4. Inverse Discrete Fourier Transform (IDFT) 

After the admittance signal is filtered in the Fourier domain, it is helpful to 

transform the signal back into the time domain for further analysis. The inverse discrete 

Fourier transform (IDFT) is applied to transform the signal back to the time domain. The 

definition of the IDFT is provided bellow: 

 

Where xn (0<n<N-1) represent the N time domain samples, Xk (0<k<N-1) represent the N 

complex bins of the DFT. Like the DFT, the IDFT can be calculated efficiently using a 

divide and conquer method. Efficient implementations of the IDFT are referred to as 

inverse fast Fourier transforms (IFFT).   

2.2.4.1. Stroke Volume Estimation  

Admittance measurements have units of Siemens (S) and for intraventricular 

measurements are typically presented in milliSiemens (mS). Intraventricular admittance 

measurements are a surrogate for blood volume [9]. To estimate SV, the amplitude of the 
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intraventricular admittance signal must be calculated. Typically, this is done by subtracting 

an end-diastolic admittance measurement from a corresponding end-systolic admittance 

measurement. In general, RV tripolar admittance measurements are correlated with blood 

volume i.e., larger admittance values correspond to larger volumes. Therefore, the highest 

admittance measurement corresponds to end-diastole and the lowest admittance 

measurement corresponds to end-systole. An example of an unfiltered admittance signal is 

provided in Figure 30. 

Figure 30. Admittance Signal End-diastole & End-Systole 

In the admittance signal provided in Figure 30, it can be observed that the amplitude 

of the admittance signal changes through the respiratory cycle. The NBFF can be applied 

in the frequency domain to reduce the amount of respiratory artifact in the signal. After the 

NBFF is applied in the frequency domain the signal is transformed back into the time 

domain using the IFFT.  The resulting time domain signal is provided in Figure 31. 
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Figure 31. IFFT of Fourier Filtered Admittance Signal 

 While most of the respiratory artifact has been removed, Figure 31 shows that some 

respiratory artifact remains in the admittance signal even after the Fourier filter has been 

applied. The remaining respiratory artifact was not removed by the NBFF because this 

respiratory artifact is modulated on the cardiac admittance signal. The frequency of the 

modulated respiratory artifact is defined below: 

for-MOD = foc ± for 

The respiratory rate (for) can be as low as 0.1 Hz meaning the modulated respiratory artifact 

(for-MOD) may end up very close to the frequency of the cardiac signal frequency (foc). 

Assuming a HR of 120 BPM and a respiratory rate of 6 breaths per minutes, the for-MOD 

artifact would be at 2 ± 0.1 Hz. The modulated artifact cannot be filtered due to spectral 

leakage and heart rate variability. To minimize the effect that the respiratory modulation 

has on the SV amplitude calculation, the amplitude of the admittance signal is calculated 
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over several respiratory cycles. Assuming a respiration rate of 12 breaths per minute, a 25 

second analysis window will contain approximately 5 respiration cycles.  

 Traditionally, the amplitude of the admittance signal is calculated by subtracting an 

end-systolic admittance measurement from an end–diastolic admittance measurement. 

This calculation is generally done for a single cardiac cycle. Due the significant amplitude 

variability in the admittance signal, taking an amplitude measurement for a single cardiac 

cycle is an inaccurate method for measuring admittance stroke volume. To perform this 

operation over 25 seconds (50 cardiac cycles at 120 BPM), a peak detection algorithm was 

used to identify all the end-diastolic and end-systolic admittance measurements in the 25 

second window. The end-systolic measurements were subtracted from the end-diastolic 

measurements. The resulting amplitude measurements were then averaged over the entire 

25 second window.  

The amplitude can also be calculated using root mean squared (RMS) approach. 

RMS is much simpler to implement when compared to peak detection and yields 

comparable results. Additionally, RMS uses every data point in the sampling window in 

the amplitude calculation. The peak detection algorithm calculates amplitude using only 2 

data points for each cardiac cycle and as a result may be more susceptible to inaccuracies 

in the presence of noise artifacts.  

2.2.4.2. End-diastolic and End-systolic Calculation  

The NBFF and WBFF remove the DC component of the admittance signal. For SV 

calculations the DC component is not needed. However, for end-diastolic and end-systolic 

admittance calculations the DC component of the admittance signal is needed. The DC 

component of the admittance signal can be added back in the time domain. The DC bin 

value in the frequency domain must be divided by N to obtain the DC signal amplitude in 
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the time domain. This operation follows from Parceval’s theorem, which states that signal 

energy in the frequency domain and time domain must be equivalent: 

 

 Additionally, the coherent gain caused by the window function must be reversed. 

The complete operation to calculate the DC signal amplitude is as follows: 

DCAmplitude = (K0/N)/(Wg) 

where DCAmplitude is the DC signal amplitude in the time domain, K0 is the DC bin of the 

Fourier transform, N is the number of samples, and Wg is the coherent gain of the window 

function.  

 The DCAmplitude can be used to calculate the end-diastolic and end-systolic 

admittance values in the time domain. If the peak detection algorithm is used to measure 

ADSV/CDSV, the DCAmplitude should be added back to the time domain signal before the 

peak detection algorithm is run. This will ensure that end-diastolic and end-systolic values 

returned by the peak detection algorithm include the DC signal component.  

If the RMS calculation is used to determine ADSV/CDSV, the DCAmplitude should 

not be added back to the time domain signal before the calculation. After the RMS 

calculation is performed without the DCAmplitude, the following equations can be applied to 

obtain end-diastolic and end-systolic admittance measurements: 

End-Diastolic = DCAmplitude + (Arms/Wg* √2) 

End-Systolic = DCAmplitude - (Arms/Wg* √2) 

where Arms is the RMS value of the Fourier filtered admittance signal.  

 The multiplication by √2 is used to convert from RMS measurement to a Peak 

measurement. This conversion from RMS to Peak is only applicable to single frequency 

sinusoids; however, it is a fair estimate in this case since a majority of the signal energy is 
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captured in the fundamental frequency. Additionally, this estimate of end-diastolic and 

end-systolic admittance assumes that the wave form is balanced around the DC signal 

component. The end-diastolic and end-systolic measurements do not necessarily need to 

be the same distance away from the DC signal component.  

2.2.4.3. Heart Rate Calculation 

The heart rate can be calculated directly from the Fourier transform of the 

admittance signal. In fact, If, the index of the fundamental cardiac signal can be used to 

directly calculate the heart rate in BPM: 

HR (BPM) = (If*fr)*60 

where If is the bin of the Fourier transform that contains the fundamental cardiac signal 

component, and fr is the frequency resolution in Hz. 

2.3. DISCUSSION 

2.3.1. Window Size Limitations 

A too-short sampling window results in an inadequate number of respiratory cycles 

to properly isolate the cardiac and respiratory components of the admittance signal. 

However, it should also be noted that a too-large window is also not acceptable. For an 

ICD arrhythmia discrimination algorithm, the system must be able to provide a 

hemodynamic classification in a clinically relevant amount of time. It is acceptable to delay 

ICD therapies for 100-150 beats [17D, 17E]. At a rate of 250 BPM, 100 beats correspond 

to approximately 24 seconds. Therefore, a 25 second processing window may be 

acceptable. A multi-time scale analysis window may be considered to provide 

classification in a shorter amount of time. For example, very large changes in 

ADSV/CDSV could be detected using a shorter processing window (10 seconds) that 

would not remove respiratory artifacts as effectively. Smaller changes in ADSV/CDSV 
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could be detected using the standard 25 second processing window to more accurately 

remove respiratory artifacts.  

2.3.2. Low-power Computation Considerations 

The amplitude of the admittance signal can be calculated in the Fourier domain 

without transforming the signal back into the time domain using the IFFT. This calculation 

can be performed by adding the bins of the Fourier transform and calculating the magnitude 

as shown below: 

𝑋𝑡𝑜𝑡𝑎𝑙 =
1

𝑁
∑(Xk

𝑁−1

𝑘=0

)^2 ∑ Xk

𝑁−1

𝑘=0

 

where Xtotal is complex and of the form Z = X + jY 

 

𝑋𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =   √𝑋2 + 𝑌2 

 

where Xk are the K bins of the DFT, and N is the number of bins in the DFT. This 

calculation produces an equivalent result to the RMS time domain calculation. By 

performing this operation in the frequency domain the IFFT operation can be eliminated. 

The calculation must also include mirrored bins. 

 Additionally, it is not necessary to calculate the entire DFT. In fact, for the WBFF 

only the bins between 1 Hz and 10 Hz need to be calculated since all other bins in the 

Fourier transform will be set to zero. A similar optimization can be made for the NBFF. 

Since the mirrored bins for the DFT are simply the complex conjugates of the positive bins 

(for real valued time domain inputs), those bins can simply be calculated by changing the 

sign of the imaginary component of the positive bins. Assuming an admittance sampling 

rate of 250 Hz (fs), an analysis time of 25 seconds (Tw), a minimum cardiac frequency of 
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1 Hz (fcmin), and a maximum cardiac frequency of 10 Hz (fcmax), the number of DFT bins 

that need to be calculated are as follows: 

fr = 1/ Tw = 1/25 = .04 

Kmin = fcmin/fr =1/.04 = 25 

Kmax = fcmax/fr = 10/.04 = 250 

Ktotal = Kmax - Kmin + 1 = 226 (bins) 

Ntotal = fs * Tw = 250 * 25 = 6,250 (Samples) 

Ctotal = Ntotal * Ktotal = 6,250 * 226 = 1,412,500 (Calculations) 

OPtotal = Ctotal * OPcnt = 1,412,500 * 10 = 14,125,000 (Operations) 

where fr is the frequency resolution in Hz, Kmin is the minimum cardiac frequency bin, 

Kmax is the maximum cardiac frequency bin, Ktotal is the total number of DFT bins that need 

to be calculated, Ntotal is the total number of samples for each bin calculation, Ctotal is the 

total number of calculations required for all of the bin calculations, OPcnt is the number of 

machine operations per calculation, and OPtotal is the total number of machine operations 

to calculate all of the bins required for the ADSV/CDSV method. 

 To run at low power, the microcontrollers in many pacemakers run with bus speeds 

as slow as 1 MHz for an embedded processor running at 1 MHz, this would consume over 

14 seconds of computation time. To reduce the computation time, several optimizations 

were considered 

Since the maximum cardiac frequency of interest is 10 Hz, the admittance signal 

could be sampled at 250 Hz and low pass filtered to the Nyquist rate of 20 Hz, and then 

down sampled by 10, making the effective sampling rate 25 Hz. Additionally, the divide 

and conquer methodology of the FFT could be applied to further reduce the effect of the 

number of samples to log(N): 
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Ntotal = fs * Tw = 25 * 25 = 625 (Samples) 

Ctotal = log(Ntotal) * Ktotal = ~10 * 226 = 2,260 (Calculations) 

OPtotal = Ctotal * OPcnt = 2,260 * 10 = 22,600 (Operations) 

The divide and conquer methodology of the FFT can only be applied when the 

entire DFT is being calculated and to optimize a partial bin calculation further investigation 

is required. 

 An alternative approach to the DFT would be to use finite impulse response (FIR) 

filter banks. FIR filters have a time complexity of O(N) and are well suited for embedded 

applications. A simple bandpass FIR filter can be designed using two low pass filters 

(LPF). The first LPF could be designed to pass frequencies between 0 Hz and 10 Hz 

(respiration + cardiac). The second LPF could be designed to pass frequencies between 0 

Hz and 1 Hz (respiration). Subtraction of the second LPF from the first LPF would yield a 

bandpass filter which passes frequencies between 1 Hz and 10 Hz (cardiac). It is critically 

important that the second LPF has a sharp transition from the pass-band to the stop-band 

or else the resulting bandpass filter will not properly remove the respiratory component 

from the admittance signal. This FIR filter bank implementation also requires further 

investigation.  

The use of customized FIR filter banks as an alternative to the FFT is sometimes 

referred to as a wavelet transform. Each “filter bank” in the wavelet transform can be 

thought of as an independent wavelet “bin”. Rather than having a signal composed of sines 

and cosines (FFT bins) a signal can be represented as a combination of the coefficients 

from the distinct filters that compose the wavelet transform. The filters of the wavelet 

transform can be customized to the specific application. The creation of a set of customized 

filters for the NBFF and WBFF and the grouping the filters into a wavelet transform should 

be considered as a potential method to optimize the ADSV/CDSV algorithm. 
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2.3.3. Energy Consumption Considerations 

The ADSV/CDSV measurement cannot be performed without increasing the power 

consumption of ICDs. However, if used appropriately the amount of energy consumed by 

the system negligible. The analog power consumption of the ADSV/CDSV measurement 

is around 2 mA in the lowest power configuration. With a 200 Hz sampling rate, the analog 

measurement can be performed at a 20% duty cycle. Hence, the continuous power 

consumption with a 200 Hz sampling rate is approximately 400 µA. In the arrhythmia 

discrimination algorithm presented in Chapter 5, it is only necessary for the measurement 

to be made after the ICD has detected an arrhythmia event. Assuming the ADSV/CDSV 

measurement is made for 20 seconds after the detection of an arrhythmia event, 

approximately 2.2 µAh of battery life would be consumed by ADSV/CDSV during a single 

arrhythmia event. ICD’s generally have around 1000 mAh of battery capacity. Assuming 

0.1% (1 mAh) of the power budget could be allocated for ADSV/CDSV measurements, 

approximately 450 arrhythmia episodes could be monitored by ADSV/CDSV. 
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3. Chapter 3:  Preliminary Right Atrial Pacing Experiment 

3.1. MOTIVATION 

The purpose of the right atrial pacing experiment was to validate that the Cardiovol 

admittance measurement can track changes in SV. An acute pacing protocol was used to 

cause changes in SV. The changes were tracked with 2D-TTE (trans-thoracic echo 

ultrasound) and RV tripolar admittance. This study was designed and carried out by the 

Chief Scientific Officer of Admittance Technologies, John Porterfield PhD. I attended the 

experiments, assisted in data collection, and analyzed the data set.  

3.2. METHODS 

In an acute study, N=5 canine subjects were implanted with an RV ICD shocking 

lead and an RA pacing lead. The pacing protocol was carried out by pacing the RA lead 

using an external pacemaker. In each part of the protocol, 10 seconds of 2D-TEE and RV 

tripolar admittance measurements (end-systolic volume (ESV), end-diastolic volume 

(EDV), and SV) were recorded.  

The 2D-TTE SV measurements were calculated using Simpson’s method, which is 

used to approximate the end-diastolic and end-systolic chamber volumes from a 2-

dimensional image of the LV chamber [34]. The end-diastolic and end-systolic chamber 

volumes can then be subtracted to measure SV.  

RV tripolar admittance measurements were analyzed using the NBFF described in 

Chapter 2. Since only 10 seconds of data were collected during each protocol part, the data 

was windowed with a Tukey window (α = 0.5) to limit the amount of spectral leakage that 

occurs with a reduced window size. The RV tripolar admittance measurements were then 

calibrated from mS to mL using 2D-TTE measurements collected as baseline. 
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3.2.1. Protocol Overview 

First, baseline measurements were taken without pacing. The pacing protocol 

consists of 6 parts listed chronologically as follows:  

1) paced-baseline (PBL) paced at a rate slightly above baseline 

2) paced-baseline+40 (PBL+40), paced at 40 BPM higher than step 1 

3) paced-baseline (PBL), paced at same rate as step 1 

4) paced-baseline+40 (PBL+40), paced at 40 BPM higher than step 1 

5) paced-baseline (PBL), paced at same rate as step 1 

6) paced-baseline+40 (PBL+40), paced at 40 BPM higher than step 1. 

3.3. RESULTS 

In the acute atrial pacing protocol, it was expected that the stroke volume would 

fall from PBL to PBL+40. Physiology anticipates that a fall in stroke volume will be 

observed with an increased atrial pacing rate due to a drop in end-diastolic volume. The 

drop in end-diastolic volume occurs because of a decrease in ventricular filling time. 

For each of the 5 canine subjects, the admittance and 2D-TTE results were analyzed 

for repeatability and conformation of the hypothesis: SV will fall with increased atrial 

pacing rate.  Results are presented for 2D-TTE, admittance derived stroke volume (ADSV 

𝜎m/𝜖m = 800,000), and conductance derived stroke volume (CDSV). CDSV is calculated 

using the same signal processing methods as the ADSV analysis technique. However, the 

CDSV method does not use the admittance equation, which leverages the phase 

information from the admittance signal to remove muscle contributions from the 

admittance signal. The CDSV results are provided to evaluate whether the admittance 

equation provides any tangible benefits to the RV tripolar configuration on canine subjects. 
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3.3.1. 2D-TTE Echo Results 

The 2D-TTE EDV, ESV, and SV measurements were calculated using Simpson’s 

method. The 2D-TTE measurements were highly variable and provided little to no insight 

about the true physiologic function of the subjects. 2D-TTE Echo SV results are provided 

in Figure 32.  

 

Figure 32. Acute 2D-TTE Echo SV Results 

 In Figure 32, the 2D-TTE Echo SV results for 5 canine subjects are presented. For 

each subject, PBL SV values and PBL+40 SV values are an average of the 3 measurements 

collected. Error bars are provided with ± 1 standard deviation of error. From the graph, no 

significant determination about physiologic function can be made from the 2D-TTE data.  

 2D-TTE EDV and ESV measurements were also not very useful for determining 

physiologic function. The 2D-TTE EDV and ESV results are provided in Figure 33. 
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Figure 33. Acute 2D-TTE Echo EDV & ESV Results 

In Figure 33 the 2D-TTE Echo EDV & ESV results for 5 canine subjects are 

presented. For each subject, PBL EDV/ESV values and PBL+40 EDV/ESV values are an 

average of the 3 measurements collected. Error bars are provided with ± 1 standard 

deviation of error. From the graph no significant determination about physiologic function 

can be made from the 2D-TTE data.  

 

3.3.2. Admittance Derived Stroke Volume (ADSV) Results 

The ADSV results were much more repeatable when compared to the 2D-TTE 

measurements. In fact, the ADSV measurements followed the hypothesis of the 

experiment: SV will fall with increased atrial pacing rate. The ADSV results for the 5 

canine subjects are provided in Figure 34.  
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Figure 34. Acute ADSV Results 

 In Figure 34 the ADSV results for 5 canine subjects are presented. For each subject, 

PBL SV values and PBL+40 SV values are an average of the 3 measurements collected. 

Error bars are provided with ± 1 standard deviation of error. From the graph most subjects 

displayed a significant drop in SV with increased right atrial pacing rate.  

 The ADSV method was also used to measure EDV and ESV. The ADSV EDV/ESV 

results are provided in Figure 35. 
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Figure 35. Acute ADSV EDV & ESV Results 

In Figure 35 all 5 subjects exhibit a drop in EDV from PBL to PBL+40. This result 

is consistent with the expected physiologic response to increase right atrial pacing: EDV 

will fall with increased right atrial pacing rate due a decrease in ventricular filling time.  

3.3.3. Conductance Derived Stroke Volume (CDSV) Results 

The conductance derived stroke volume method is processed using the same signal 

processing methods as ADSV. However, the admittance equation, which removes the 

muscle contribution from the admittance signal, is not used. The CDSV SV measurements 

are provided in Figure 36 and the CDSV EDV & ESV results are provided in Figure 37. 
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Figure 36. Acute CDSV SV Results 

 

 

Figure 37. Acute CDSV EDV & ESV Results 

The CDSV results provided in Figure 36 and Figure 37 are comparable to the 

ADSV results provided in Figure 34 and Figure 35. The data appears to show that the 
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admittance equation does not significantly improve the results of intraventricular 

admittance measurements captured using the RV tripolar configuration in canine subjects.  

3.3.4. Statistical Analysis 

The 3 SV measurements (ADSV, CDSV, and 2D-TTE Echo) were evaluated 

against the hypothesis using a paired T-Test. Since, the ground truth for the study was not 

found to be accurate, T-Test hypothesis testing was the best option for statistical evaluation. 

A paired T-Test was selected because the evaluation was performed on paired data 

collected for each subject individually. ADSV and CDSV rejected the null hypothesis (p < 

0.05) in all 5 of the subjects. The echo results accepted the null hypothesis (p > 0.05) did 

not show significance for any subject; further supporting the need for an improved ground 

truth in subsequent studies. The p-values of the paired T-Tests for each of the subjects are 

provided in Table 1. 

Table 1. ADSV, CDSV, and 2D-TTE SV Paired T-Test p-values 

Subject ADSV (Paired T-Test) CDSV (Paired T-Test) ECHO (Paired T-Test) 

Canine 1 0.0024 0.0005 0.6349 

Canine 2 0.0200 0.0131 0.9113 

Canine 3 0.0065 0.0142 0.0985 

Canine 4 0.0062 0.0037 0.3555 

Canine 5 0.0278 0.0147 0.1181 

Average 0.0126 0.0092 0.4236 

Std. Dev. 0.0108 0.0066 0.3486 

It is assumed that the null hypothesis should have been rejected in all 5 of the canine 

subjects. However, without an adequate ground truth indicator this assumption cannot be 

confirmed. The results from Table 1 show that CDSV had the highest statistical 

performance. However, overall the statistical results for CDSV were only marginally better 

than those of ADSV. 
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3.4. DISCUSSION 

The acute right atrial pacing experiment lacked an adequate ground truth and did 

not record an adequate amount of data during each part of the protocol.  

2D-TTE data analyzed using Simpson’s method is not an effective way to measure 

LV SV in canine subjects. After collaboration with 2D-TTE canine imaging specialist, 

Sonya Gordon DVM, 2D-TTE left ventricular outflow tract (LVOT) aortic velocity time 

integral (VTI) was identified as a more effective measure of LV SV. Unlike Simpson’s 

method for estimating ventricular SV from 2D-TTE images, LVOT VTI measures the 

instantaneous velocity of blood moving through the aortic outflow tract rather than 

calculating volumes from end-diastolic and end-systolic 2D-TTE chamber images. To 

make the measurement, the cross-sectional area of the aorta is first measured with a 

standard 2D-TTE image. Pulsed wave Doppler is then used throughout the experiment to 

measure the instantaneous velocity of blood flowing through the aortic outflow tract. The 

blood velocity is then multiplied by the cross-sectional area of the aorta to obtain a flow 

estimate. SV is then calculated by integrating the flow over a single cardiac cycle.  

In addition to LVOT VTI, a second ground truth for arterial pressure should be 

added to better monitor cardiac hemodynamics. An arterial pressure catheter is a reliable 

way to measure instantaneous arterial pressure. The arterial pressure signal can be used to 

track important hemodynamic markers such as pulse pressure (PP) and mean arterial 

pressure (MAP). PP is a peak to peak measurement of an arterial pressure signal. MAP is 

the mean value of an arterial pressure signal.  

 The amount of data recorded during each part of the protocol (10s) was insufficient 

to properly assess the effects of respiration on the admittance signal. A 10 second recording 

is only long enough to capture approximately 2 respiratory cycles. The Fourier filtering 

methods presented in Chapter 2 can be used effectively with 10 seconds of data provided 
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the correct windowing function is used. However, it would be ideal to have a larger data 

window. A 30 second recording allows for the flexibility to analyze admittance signals 

with a range of window sizes (10 s -25 s).  
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4. Chapter 4:  Congestive Heart Failure Arrhythmia Study 

4.1. SUMMARY 

Methods and Results: N=8 canine subjects were implanted with a pacemaker lead 

in the right atrium (RA) and an ICD shocking lead in the right ventricle (RV). Congestive 

heart failure (CHF) was induced by rapid RV pacing for 3 ± 1 weeks and monitored by 

weekly 2-dimensional transthoracic echocardiography (2D-TTE). After the induction of 

CHF, an arrhythmia protocol was performed. For each subject, atrial tachycardia (AT), 

atrial fibrillation (AF), ventricular tachycardia (VT), and ventricular fibrillation (VF) were 

induced. During each arrhythmia, the following measurements were recorded: arterial 

pressure, 2D-TTE left ventricular outflow tract (LVOT) velocity time integral (VTI), RA 

IEGM, RV IEGM, and ADSV/CDSV. Arterial pulse pressure (PP) and LVOT VTI were 

used to assess changes in SV during the arrhythmias. IEGM was recorded to evaluate 

commercial ICD arrhythmia discrimination algorithms using an arrhythmia playback 

system post hoc.  

4.2. METHODS 

4.2.1. Study Overview 

The study was designed to evaluate the ADSV/CDSV method in a large animal 

CHF model during atrial and ventricular arrhythmias. The study was performed using N=8 

canine subjects. Subjects were first implanted with a RA pacing lead and a RV ICD 

shocking lead. The leads were given 4 ± 1 weeks to scar-in. After the scar-in period, 

subjects were implanted with a single chamber pacemaker that interfaced to the RV lead. 

CHF was induced by rapid ventricular pacing at 220 beats per minute (BPM) for 3 ± 1 
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weeks and monitored by weekly 2D-TTE. After sufficient levels of CHF were observed an 

arrhythmia protocol was performed. For each subject, atrial tachycardia (AT), atrial 

fibrillation (AF), ventricular tachycardia (VT), fast ventricular tachycardia (FVT), and 

ventricular fibrillation (VF) were induced or simulated. During each arrhythmia, the 

following measurements were recorded: arterial pressure, 2D-TTE left ventricular outflow 

tract (LVOT) velocity time integral (VTI), RA intracardiac electrogram (IEGM), RV 

IEGM, and intraventricular admittance (ADSV/CDSV). Arterial pressure and LVOT VTI 

were used to assess changes in stroke volume (SV). IEGM was recorded to evaluate 

commercial ICD arrhythmia discrimination algorithms using an arrhythmia playback 

system post hoc. The ADSV/CDSV method was evaluated against SV calculated from 

LVOT VTI (LVOT VTI SV) and arterial pulse pressure (PP). CDSV was found to 

outperform ADSV. CDSV was then evaluated for its ability to determine the hemodynamic 

stability of subjects during the induced arrhythmias. 

4.2.2. Species Selection & HF Model 

Most patients implanted with an ICD as a prevention for sudden cardiac death have 

heart failure with reduced ejection fraction (HFrEF) with a left ventricular ejection fraction 

(LVEF) < 35% [32]. There are several large animal HF models. For this study, a dilated 

cardiomyopathy (DCM) model was sought. DCM is defined by cardiac remodeling 

wherein dilation and wall thinning of the LV are observed in addition to a reduction in 

LVEF. Chronic rapid ventricular pacing is a well-studied model for inducing DCM [33] 

and has been used successfully in a canine model. The canine subjects used in the study 

were mongrel adult females with an age of 2.5 ± 0.9 years and a weight of 24.2 ± 3.8 kg. 

The characteristics for the subjects used in this study are provided in Table 2. 
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Table 2. Subject Characteristics 

Subject Age (Years) Weight (kg) 

Canine 1 1.80 18.60 

Canine 2 2.00 28.12 

Canine 3 1.80 27.67 

Canine 4 4.50 27.67 

Canine 5 1.80 26.76 

Canine 6 2.60 20.86 

Canine 7 2.70 20.40 

Canine 8 2.60 23.59 

Average 2.48 24.21 

Std. Dev. 0.85 3.84 

4.2.3. 2D-TTE Echo Views 

All 2D-TTE measurements were acquired using a Philips iE33 ultrasound machine 

with a medium frequency transducer (Philips S5-1). To track the progression of CHF, 

weekly exams were performed with animals fully awake and standing with pacemakers 

programmed temporarily off. The weekly US exam protocol included short axis, long axis, 

and apical views that were analyzed to determine LV internal diameter (LVID), LV wall 

thickness, and fractional shortening (FS). All reported values for individual subjects are 

the mean of at least 3 measurements. 

To measure LV SV during all surgical procedures, a pulsed wave Doppler 

measurement of the left ventricular outflow tract (LVOT) velocity time integral (VTI) was 

taken from an apical five-chamber view. This view was acquired with the animal lying left-

side-down on the surgical table.  

Transducer position, angle, and orientation plane for all 2D-TTE views were 

executed as per recommended canine echocardiography procedures [34]. 
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4.2.4. Study Protocols 

The study protocol included the following 3 surgical procedures: lead implant, 

pacemaker implant, and CHF arrhythmia protocol. The first two surgeries were sterile 

recovery procedures. Between surgeries 1 and 2, the leads were given 4 ± 1 weeks to scar-

in. Between surgeries 2 and 3, subjects were induced into CHF by rapid right ventricular 

pacing.  

All experiments were approved by the Institute for Animal Care and Use 

Committee at the University of Texas Health Science Center at San Antonio. The following 

preparation was performed for all surgical procedures. A percutaneous catheter was placed 

in a peripheral vein (cephalic) for anesthesia induction and fluid administration. Anesthesia 

was induced with 2-6 mg/kg Propofol IV (given to effect) followed by placement of an 

appropriately sized endotracheal tube. Anesthesia was then maintained on 1-4% Isoflurane 

in 100% Oxygen at 1-3 liters/min. The animal was placed on top of a warming pad on a 

surgical table followed by placement of temperature, heart rate, respiratory rate, EtCO2 

(spell this one out the first time it is used) and ECG monitors. Lactated Ringer’s solution 

(LRS) fluids were infused through the cephalic catheter at 10ml/kg/hr for the first hour 

then decreased to 3-5ml/kg/hr for the continuation of the surgery. A urinary catheter was 

placed to ensure the animal could relieve itself. A percutaneous pressure catheter was 

introduced into the left femoral artery and advanced into the descending aorta under 

fluoroscopy. A pacing catheter was introduced into the right femoral vein and advanced 

into the RA under fluoroscopy. 

In the lead implant surgery canines were outfitted with a St. Jude Medical (SJM) 

active fixation bipolar RA pacing lead (Model 2088TC) and a SJM single coil RV ICD 

shocking lead (Model 7122). Leads were introduced into the heart through sheaths in the 

right jugular vein and placed into the heart under fluoroscopic guidance. At the time of 
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implant, an abridged RA pacing protocol was executed to confirm that ADSV/CDSV was 

sensitive to changes in SV.  

After the lead implant surgery, leads were given 4 ± 1 weeks to scar-in. During the 

scar-in period, fibrotic tissue forms around the leads which reduces lead motion and results 

in an improved ADSV/CDSV measurement.  

In the pacemaker implant surgery, a SJM single chamber pacemaker was placed in 

a subcutaneous pocket on the right side of the neck and attached to the IS-1 bifurcation of 

the RV lead. During the pacemaker implant procedure, an RV pacing protocol was 

executed to further validate the accuracy of ADSV/CDSV in healthy canine subjects with 

scarred-in leads.  

After the pacemaker implant surgery, CHF was induced by rapid RV pacing. 

Subjects were monitored by weekly 2D-TTE during CHF induction. The LV dilation 

endpoint was defined as an increase from baseline for LV internal diameter (LVID) of 

approximately 30% [35]. The LV cardiac function endpoint was defined as a decrease from 

baseline for LV fractional shortening (FS) of 60% of baseline [36]. To acclimate the 

subjects, rapid RV pacing was started at a rate of 150 BPM for 2 days, then increased to 

170 BPM for 5 days, and finally increased to 220 BPM and sustained. All 2D-TTE 

measurements were acquired with the animal awake and standing with pacemakers 

programmed off for the duration of the exam. The CHF endpoints for each subject are 

provided in Table 3. 
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Table 3. CHF Endpoints Table 

  LVID FS LV Wall Thickness 

Subject 

PRE 

HF 

(cm) 

POST 

HF 

(cm) 

Change 

(%) 

PRE 

HF 

(%) 

POST 

HF 

(%) 

Change 

(%) 

PRE 

HF 

(cm) 

POST 

HF 

(cm) 

Change 

(%) 

Canine 1 3.76 4.26 13.30 46.37 17.77 -61.68 1.03 0.69 -33.01 

Canine 2 3.60 5.13 42.50 40.00 13.47 -66.33 0.98 0.92 -6.12 

Canine 3 4.31 5.53 28.31 31.00 18.27 -41.06 0.93 0.88 -5.38 

Canine 4 4.46 5.05 13.23 39.70 10.73 -72.97 1.05 1.00 -4.76 

Canine 5 3.70 4.22 14.05 30.20 17.57 -41.82 0.90 0.92 2.22 

Canine 6 3.37 4.18 24.04 47.40 16.23 -65.76 1.06 0.77 -27.36 

Canine 7 3.54 4.45 25.71 33.10 11.37 -65.65 1.00 0.79 -21.00 

Canine 8 4.15 4.57 10.12 31.83 10.64 -66.57 0.93 0.75 -19.35 

Average 3.86 4.67 21.41 37.45 14.51 -60.23 0.99 0.84 -14.35 

Std. Dev. 0.40 0.50 10.90 6.92 3.32 12.00 0.06 0.11 12.54 

In the CHF arrhythmia protocol, AT, AF, VT, FVT, and VF were induced or 

simulated. Baseline measurements were collected for arterial pressure, 2D-TTE LVOT 

VTI, ADSV/CDSV, and IEGM. These measurements were also collected during each 

arrhythmia. 

A pacing catheter was placed in the RA to simulate atrial arrhythmias. AT was 

simulated by rapidly pacing the RA. Inter-subject variations in atrioventricular (AV) node 

block prevented the same pacing rate from being used across all subjects. For each subject, 

the maximal RA pacing rate with 1:1 conduction was used. This resulted in a rate of 167 ± 

33 BPM across subjects. AF was simulated by pacing the RA with a semi-randomized 

pulse train comprised of the following 5 simultaneous pulse trains: 80 BPM, 125 BPM, 

160 BPM, 95 BPM, and 170 BPM. The simultaneous pulse trains cause randomized 

intermittent RA conduction and randomized intermittent AV node conduction. The result 

is a variable RV contraction rate near the rate identified during AT with rapid and 
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randomized RA contractions. IEGM and arterial pressure signals collected during the 

simulation were consistent with signals observed during natural and sustained AF.  

After the completion of the atrial arrhythmia simulations, the pacing catheter was 

advanced into the RV under fluoroscopic guidance and baseline measurements were 

recollected. VT was simulated by rapidly pacing the RV at 200 BPM. FVT was simulated 

by rapidly pacing the RV at 250 BPM. Lastly, VF was induced using the SJM ICD DC 

Fibber™ function. The DC Fibber™ function stimulates the heart with a long duration DC 

pulse.  

4.2.4.1. Lead Implant Protocol 

See Appendix A. for complete Lead Implant protocol. 

4.2.4.2. Pacemaker Implant Protocol 

See Appendix B. for complete Pacemaker Implant protocol. 

4.2.4.3. Overdrive Pacing Protocol 

See Appendix C. for complete Overdrive Pacing protocol. 

4.2.4.4. CHF Arrhythmia Protocol 

See Appendix D. for complete CHF Arrhythmia protocol. 

4.2.5. Data Analysis and Assumptions 

ADSV/CDSV data was correlated with both LVOT VTI SV and PP to evaluate SV 

accuracy, and was compared with MAP to assess performance in classifying hemodynamic 

stability. 

The results from the ADSV/CDSV method are then calibrated into mL, which is 

performed using a single point calibration to a baseline LVOT VTI SV measurement.  
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LVOT VTI SV and PP were used to assess the accuracy of the ADSV/CDSV 

method. LVOT VTI SV serves as a direct measure of LV SV. Despite the nonlinear 

relationship between SV and arterial PP, arterial PP can be used to assess general trends in 

SV [37]. For this study, LVOT VTI SV was the primary measurement for which the 

ADSV/CDSV method was evaluated against. PP was used as an additional point of 

comparison to detect irregularities in LVOT VTI SV measurements. 

4.3. RESULTS 

4.3.1. ADSV, CDSV,  PP, and LVOT VTI SV 

The ADSV and CDSV results were evaluated against LVOT VTI SV and arterial 

PP for each subject. CDSV, on average, had a strong positive correlation between LVOT 

VTI SV (R2 = 0.73 ± 0.21) and arterial PP (R2= 0.84 ± 0.15). ADSV, on average, had a 

lower positive correlation between LVOT VTI SV (R2= 0.62 ± 0.19) and arterial PP (R2 = 

0.71 ± 0.19) when compared to CDSV. The CDSV correlation results for individual 

subjects are provided in Table 4. The ADSV correlation results for individual subjects are 

provided in Table 5. 
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Table 4. CDSV Statics for Individual Subjects 

Subject LVOT VTI SV (R2
) Arterial PP (R2

) 

Canine 1 0.90 0.95 

Canine 2 0.76 0.92 

Canine 3 0.91 0.92 

Canine 4 0.38 0.67 

Canine 5 0.61 0.58 

Canine 6 0.50 0.77 

Canine 7 0.91 1.00 

Canine 8 0.87 0.94 

Average 0.73 0.84 

Std. Dev. 0.21 0.15 

 

Table 5. ADSV Statics for Individual Subjects 

Subject LVOT VTI SV (R2
) Arterial PP (R2

) 

Canine 1 0.78 0.84 

Canine 2 0.79 0.91 

Canine 3 0.52 0.45 

Canine 4 0.28 0.54 

Canine 5 0.55 0.66 

Canine 6 0.56 0.76 

Canine 7 0.88 0.96 

Canine 8 0.60 0.53 

Average 0.62 0.71 

Std. Dev. 0.19 0.19 

 

The lower correlation values obtained using the ADSV method were the results of 

large offsets between ADSV and LVOT VTI SV/PP collected during the VT and FVT 

arrhythmia simulations. In the Acute Atrial Pacing study presented in Chapter 3, CDSV 

marginally out performed ADSV. In the CHF arrhythmia study CDSV dramatically 
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outperformed ADSV.  This difference may be due the addition of a pacing catheter in the 

RV of the heart, which was used to simulate ventricular arrhythmias. The pacing catheter 

influences the electric field induced by the RV shocking lead. Additionally, it can alter the 

motion of the RV shocking lead, which can influence the admittance measurement. It is 

equally probable that the rapid turbulent motion induced in the ventricle during the VT and 

FVT simulations causes a motion artifact in the admittance phase measurement. Regardless 

of these possible explanations, CDSV was found to outperform ADSV. For this reason, all 

further results will be presented in regard to CDSV. ADSV will not be used for arrhythmia 

discrimination.  

The complete CDSV, PP, and LVOT VTI results for canines 1-8 are provided in 

Figures 38-45, respectively. For all of the subjects the results for BL, AT, AF, VT, FVT, 

and VF are provided. BL indicates baseline, AT indicates atrial tachycardia, AF indicates 

atrial fibrillation, VT indicates ventricular tachycardia, FVT indicates fast ventricular 

tachycardia, and VF indicates ventricular fibrillation. VTI SV indicates stroke volume 

calculated from left ventricular outflow tract velocity time integral. PP indicates pulse 

pressure. CDSV indicates conductance derived stroke volume. BPM indicates heart rate in 

beats per minute calculated from the PP signal. PP results are associated with the y-axis on 

the right. CDSV and VTI SV results are associated with the y-axis on the left. 
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Figure 38. Canine #1 CHF Arrhythmia CDSV, PP, and LVOT VTI Results 

 

Figure 39. Canine #2 CHF Arrhythmia CDSV, PP, and LVOT VTI Results 
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Figure 40. Canine #3 CHF Arrhythmia CDSV, PP, and LVOT VTI Results 

 

Figure 41. Canine #4 CHF Arrhythmia CDSV, PP, and LVOT VTI Results 
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Figure 42. Canine #5 CHF Arrhythmia CDSV, PP, and LVOT VTI Results 

 

Figure 43. Canine #6 CHF Arrhythmia CDSV, PP, and LVOT VTI Results 
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Figure 44. Canine #7 CHF Arrhythmia CDSV, PP, and LVOT VTI Results 

 

Figure 45. Canine #8 CHF Arrhythmia CDSV, PP, and LVOT VTI Results 

 In order to evaluate trends in the data across subjects, each subject’s data was 

normalized to a percentage of baseline. The normalization was necessary because of inter-

subject variations in baseline measurements for CDSV, LVOT VTI, and PP. CDSV, LVOT 
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VTI, and PP are presented in separate figure. In each figure, the data for N=8 canine 

subjects during BL, AT, AF, VT, FVT, and VF is provided. BL indicates baseline, AT 

indicates atrial tachycardia, AF indicates atrial fibrillation, VT indicates ventricular 

tachycardia, FVT indicates fast ventricular tachycardia, VF indicates ventricular 

fibrillation, and LVOT VTI SV indicates stroke volume calculated from left ventricular 

outflow tract velocity time integral. Each subject is presented as a separate line in the graph. 

The data is expressed as percent change from baseline. The LVOT VTI SV results are 

provided in Figure 46, the PP results are provided in Figure 47, and the CDSV results are 

provided in Figure 48. 

 

 

Figure 46. Baseline Normalized CHF Arrhythmia LVOT VTI Results 
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Figure 47. Baseline Normalized CHF Arrhythmia LVOT VTI Results 

 

Figure 48. Baseline Normalized CHF Arrhythmia LVOT VTI Results 

 The CDSV data for canine #4 contained two outliers during VT and FVT. This 

behavior is reflected in the low R2 values for canine #4 provided in Table 4. After review 

of the experimental records, it was identified that the subject’s dobutamine drip was 
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changed from 12 mL/hr to 7 mL/hr 10 minutes before the VT and FVT arrhythmias were 

collected. The regular use of dobutamine in the CHF arrhythmia experiment started with 

canine #4. Prior to canine #4’s experiment the mortality rate for subjects was >30 % during 

the CHF arrhythmia experiment. It was identified that the reduced cardiac function 

resulting from the DCM CHF model in combination with sedation was causing cardiogenic 

shock. The use of dobutamine for subjects with a systolic blood pressure <70 mmHg was 

added to the protocol immediately preceding the experiment for Canine #4. At that time, 

titration of the dobutamine drip was not fully developed. Going forward, the use of 

dobutamine was better controlled and there were no additional unintended mortalities or 

outlier datasets. It should be noted that canine #4 was hemodynamically stable during VT 

and FVT and exhibited an increase in MAP. Hence, the outliers in the CDSV measurement 

did not result in the hemodynamic misclassifications that will be presented in the following 

chapter.  

The aggregate results for the subjects were analyzed as a percentage of baseline. 

The aggregate results were then calculated by averaging the percentage of baseline 

measurements for all 8 subjects. In the aggregate results, CDSV had a strong positive 

correlation with LVOT VTI SV (R2 = 0.95) and arterial PP (R2 = 0.96). The aggregate 

results are provided in Figure 49. Error bars are provided for ± 1 standard deviation. 
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Figure 49. Aggregate CHF Arrhythmia CDSV, LVOT VTI Results 

4.3.2. CDSV and MAP 

Since MAP is used to directly determine hemodynamic stability, the CDSV results 

were also evaluated against MAP for each subject. CDSV, on average, had a strong positive 

correlation between MAP (R2 = 0.74 ± 0.13). The CDSV correlation results for individual 

subjects are provided in Table 6.  

Table 6. CDSV & MAP Statics for Individual Subjects 

Subject MAP (R2) 

Canine 1 0.86 

Canine 2 0.77 

Canine 3 0.90 

Canine 4 0.80 

Canine 5 0.71 

Canine 6 0.74 

Canine 7 0.49 

Canine 8 0.64 

Average 0.74 

Std. Dev. 0.13 
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The complete CDSV and MAP results for canines 1-8 are provided in Figures 50-

57, respectively. For all of the subjects the results for BL, AT, AF, VT, FVT, and VF are 

provided. BL indicates baseline, AT indicates atrial tachycardia, AF indicates atrial 

fibrillation, VT indicates ventricular tachycardia, FVT indicates fast ventricular 

tachycardia, and VF indicates ventricular fibrillation. MAP indicates mean arterial 

pressure. CDSV indicates conductance derived stroke volume. BPM indicates heart rate in 

beats per minute calculated from the arterial pressure signal. MAP results are associated 

with the y-axis on the right. CDSV results are associated with the y-axis on the left. 

 

Figure 50. Canine #1 CHF Arrhythmia CDSV and MAP Results 



 80 

 

Figure 51. Canine #2 CHF Arrhythmia CDSV and MAP Results 

 

Figure 52. Canine #3 CHF Arrhythmia CDSV and MAP Results 
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Figure 53. Canine #4 CHF Arrhythmia CDSV and MAP Results 

 

Figure 54. Canine #5 CHF Arrhythmia CDSV and MAP Results 
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Figure 55. Canine #6 CHF Arrhythmia CDSV and MAP Results 

 

Figure 56. Canine #7 CHF Arrhythmia CDSV and MAP Results 
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Figure 57. Canine #8 CHF Arrhythmia CDSV and MAP Results 

Simularly to the previous section, each subjects MAP data was normalized as a 

percentage of baseline. The normalization was necessary because of inter-subject 

variations in baseline MAP measurements. The baseline normalized MAP data for all 8 

subjects is provided in Figure 58.  

  



 84 

 

 

Figure 58. Baseline Normalized CHF Arrhythmia MAP Results 

The aggregate results were then calculated by averaging the percentage of baseline 

measurements for all 8 subjects. In the aggregate results, CDSV had a strong positive 

correlation with MAP (R2 = 0.83). The aggregate results are provided in Figure 59. Error 

bars are provided for ± 1 standard deviation. 
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Figure 59. Aggregate CHF Arrhythmia CDSV and MAP Results 

 The ADSV/CDSV results were evaluated against LVOT VTI SV and 

arterial PP for each subject. CDSV, on average, had a strong positive correlation between 

LVOT VTI SV (R2 = 0.73 ± 0.21) and arterial PP (R2 = 0.84 ± 0.14).  ADSV, on average, 

had a strong positive correlation between LVOT VTI SV (R2 = 0.62 ± 0.19) and arterial PP 

(R2 = 0.71 ± 0.19). Since CDSV significantly outperformed ADSV when compared to the 

SV ground truths of LVOT VTI SV and PP, all subsequent analysis is only reported for the 

CDSV results. CDSV was then evaluated for its ability to determine the hemodynamic 

stability of subjects during arrhythmias. The ground truth for hemodynamic stability was 

determined using MAP. In a set of N=40 arrhythmias, CDSV correctly classified the 

hemodynamic state for N=33 of the 40 arrhythmias. The hemodynamic classification 

information from CDSV was then used to improve the arrhythmia diagnoses of commercial 

ICD arrhythmia discrimination algorithms. For the St. Jude Medical ICD, N=12 of 40 
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arrhythmia classifications were improved by the CDSV hemodynamic classification 

information. For the Medtronic ICD, N=13 of 40 arrhythmia classifications were improved 

by the CDSV hemodynamic classification information.  

In conclusion, CDSV was found to have significantly higher correlation with 

LVOT VTI SV and PP when compared to the ADSV method. The CDSV method strongly 

correlates with LVOT VTI SV and arterial PP in CHF canine subjects. The method 

provides a means to directly determine hemodynamic stability during atrial and ventricular 

arrhythmias. CDSV can be utilized as an additional ICD discriminator that withholds 

therapies based on hemodynamic stability. The CDSV discriminator can be used to reduce 

the number of inappropriate therapies during AF. Additionally, the discriminator can be 

used to establish distinct therapy zones for hemodynamically unstable VTs and 

hemodynamically stable VTs. In the stable VT zone, ICD shocks can be withheld in favor 

of less aggressive therapies such as anti-tachycardia pacing that decrease morbidity and 

mortality in patients. The addition of the CDSV hemodynamic discriminator has the 

potential to significantly improve the configuration and delivery of ICD therapies.   
 

4.4. DISCUSSION 

4.4.1. Motion Artifact  

Intraventricular admittance measurements track changes in blood volume when an 

ideal electrode configuration is used. However, the tripolar RV lead configuration has the 

potential to track both blood volume and lead motion due to the non-uniform spatial 

sensitivity of the induced electric field [14]. To confirm that the RV lead configuration is 

primarily sensitive to blood volume and not lead motion, a post-mortem experiment was 

performed on N=6 canine subjects, whereby subjects were physically oscillated in a 
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sequence of rates and forces (slow soft, slow fast, hard slow, hard fast). The CDSV signal 

generated by the post-mortem motion experiment was 19.00 % ± 8.00 % of baseline. 

Considering the CDSV fibrillation threshold is 40 % of baseline, the motion contribution 

to the CDSV signal is tolerable. 

4.4.2. Tricuspid Valve Regurgitation 

Tricuspid valve regurgitation (TR) is a source of error in the ADSV/CDSV method. 

The ADSV/CDSV measurement is made in the RV of the heart and during normal cardiac 

function RV SV and LV SV are equivalent. In patients that exhibit TR, RV SV and LV SV 

are not necessarily equivalent. The improper function of the tricuspid valve allows blood 

to flow backwards during systole resulting in a loss of forward RV stroke volume. 

However, ADSV/CDSV detects both the forward and reverse stroke volume and increases 

in the presence of TR.  

In this study, two sources of TR were identified. The first source is caused by 

fibrosis of the tricuspid valve, which results from chronic lead implantation [39]. Fibrotic 

tissue and tricuspid valve thickening were observed at necropsy for several of the subjects. 

The second source was a result of the DCM CHF model [40] with a loss of leaflet 

coaptation. 

To quantify the degree of TR in subjects 2D-TTE was used. TR was semi-

quantitatively measured using the proximal isovelocity surface area (PISA) method [41]. 

N=3 CHF arrhythmia subjects were evaluated for TR. 2 subjects exhibited a PISA radius 

from 0.6 cm - 0.9 cm which is consistent with moderate levels of TR. 1 subject had a PISA 

radius > 0.9 cm which indicates a severe level of TR. In the patient with severe levels of 
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TR, CDSV was found to overestimate LVOT VTI SV.  Even in the presence of TR CDSV 

was able to track the hemodynamic parameters of PP and LVOT VTI SV.   
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5. Chapter 5:  Hemodynamic Based ICD Discrimination Algorithm 

5.1. MOTIVATION 

In general, commercial ICD arrhythmia discrimination algorithms are largely rate 

based. While ICDs do contain several discriminators that are used to determine if the 

arrhythmia originates in the atrium or the ventricle, once the arrhythmia has been identified 

to originate in the ventricle the ICD shocking algorithms operate in a rate-based manner. 

Rate-based ICD shocking algorithms are most effective when tailored to the specific 

arrhythmias of a patient. While low rate VTs are not always hemodynamically unstable, 

the generalization cannot be applied to all patients. The same is true for hemodynamically 

stable high rate VTs. ICDs do enable physicians with the ability to configure rate thresholds 

for patients, but the correct settings can be hard to configure optimally on an individual 

basis and can only be fully utilized when the arrhythmia rate is known. However, many of 

these arrhythmias are hemodynamically stable, and if they could be treated with 

antitachycardia pacing (ATP)rather than defibrillation, there would be improved patient 

outcomes [20]. 

No matter how an ICD is configured, one can expect there to be misclassifications. 

The same statement can be made about CDSV hemodynamic classifications. It is 

reasonable to expect an algorithm that combines ICD IEGM classifications with CDSV 

hemodynamic classifications to perform better than either can do alone.   

5.2. METHODS 

5.2.1. ICD IEGM Playback 

A benchtop system was built to “play back” IEGMs recorded during arrhythmias 

onto commercial ICDs (St. Jude CD2357-40C and Medtronic D264DRM). Three detection 

zones were programmed at 170-200 BPM for ventricular tachycardia monitoring, 200-240 
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BPM for ventricular tachycardia therapy, and >240 BPM for ventricular fibrillation 

therapy. Programmed rate settings were selected in consultation with three 

electrophysiologists and comply with recommended settings reported in clinical trials 

[17E][17H][42]. All available atrial discriminators were turned on per nominal settings and 

morphology templates were acquired using baseline IEGM recordings. Each thirty second 

recording was allowed to cycle for at least three minutes, or until the first therapy was 

delivered. 

5.2.2. Hemodynamic Stability Assessment 

The CDSV measurements for each subject during AT, AF, VT, FVT, and VF were 

classified as hemodynamically stable, hemodynamically unstable, or ventricular 

fibrillation. The ground truth for classification was based on MAP. Typically, a MAP <60 

mmHg is used to define hemodynamic instability. For these subjects, baseline MAP was 

considerably low (66 ± 10 mmHg), so hemodynamic instability was defined as MAP <55 

mmHg.  

The CDSV classification problem was setup as a diagnostic test with 3 outcomes 

(hemodynamically stable, hemodynamically unstable, and ventricular fibrillation). 

Ventricular fibrillation is an important subclass of the hemodynamically unstable class due 

to its lethality. For this reason, it was included as a separate class of the diagnostic test. The 

optimal classification thresholds for the CDSV measurement were found using a receiver 

operator curve (ROC) [38]. The optimal CDSV thresholds for the 3 classifications were 

selected from the ROC by choosing the optimal point that contained no incorrectly 

withheld therapies (false negatives). This behavior is an important safety consideration as 

it ensures that the discrimination algorithm will be less likely to inappropriately withhold 

a therapy based on CDSV hemodynamic information. 
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5.3. RESULTS 

5.3.1. Commercial ICD Discrimination Results 

The Medtronic ICD correctly classified N=29 of 40 arrhythmias and the St. Jude 

ICD correctly classified N=31 of 40 arrhythmias. The St. Jude Medical playback results 

are provided in Table 7 and the Medtronic playback results are provided in Table 8. AF in 

Canine #4 was likely incorrectly classified because the rate was 240 BPM on average. Both 

misclassifications of AT by the Medtronic ICD were also due to high rates of 207 BPM 

(Canine #4) and 214 BPM (Canine #6), which were much higher on average compared to 

the AT rates induced in other subjects and were both above the VT threshold (200 BPM). 

Both devices also incorrectly classified all FVTs as VF. All FVTs were induced at a rate 

of 250 BPM, which exceeded the VF threshold (240 BPM). It should be noted that the 

medical community does not normally consider FVTs classified as VF a misclassification. 

ICDs are designed to classify all ventricular arrhythmias with rates above the fibrillation 

threshold (240 BPM) as VF.  

5.3.1.1. St. Jude Medical ICD 

Table 7. St. Jude Medical Therapy Performance  

ST JUDE 

Subject AT AF VT FVT VF 

Canine 1 None SVT VT VF VF 

Canine 2 None None VT VF VF 

Canine 3 SVT SVT VT VF VF 

Canine 4 SVT VF VT VF VF 

Canine 5 SVT None VT VF VF 

Canine 6 SVT SVT VT VF VF 

Canine 7 SVT None VT VF VF 

Canine 8 None None VT VF VF 
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Misclassifications are highlighted in red. 

5.3.1.2. Medtronic ICD 

Table 8. Medtronic ICD Arrhythmia Discrimination Results 

MEDTRONIC 

Subject AT AF VT FVT VF 

Canine 1 None SVT-AF VT VF VF 

Canine 2 None None VT VF VF 

Canine 3 VT-Monitor AT/AF VT VF VF 

Canine 4 VT VF VT VF VF 

Canine 5 VT-Monitor AT/AF VT VF VF 

Canine 6 VT AT/AF VT VF VF 

Canine 7 VT-Monitor AT/AF VT VF VF 

Canine 8 None AT/AF VT VF VF 

Misclassifications are highlighted in red. 

 

5.3.2. CDSV Hemodynamic Classification Performance 

To accommodate hemodynamic classification using CDSV, the patients baseline 

MAP (MAPBL) and baseline CDSV (CDSV BL) measurements were utilized. These 

baseline measurements were used to determine the CDSV classification thresholds on a 

patient by patient basis. A patient who has a 60-mmHg MAPBL would have an CDSV 

unstable classification threshold of 55/60 = 91.6%. A patient who has a 90-mmHg MAPBL 

would have an CDSV unstable classification threshold of 55/90 = 61.1%. The general 

solution for the unstable classification threshold of a patient is (CDSV / CDSVBL) < 

55/MAPBL. A separate CDSV VF classification threshold was defined as (CDSV/CDSVBL) 

< 25/MAPBL. The motivation behind this methodology is to account for the fact that a 
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patient with a more stable baseline blood pressure should be able to tolerate a larger drop 

in CDSV before being classified as hemodynamically unstable. In practice, the patients 

MAPBL could be measured at the time of implant and the unstable MAP threshold of 55 

mmHg could be adjusted by the physician based on patient characteristics such as health 

or high blood pressure. Using the above definitions, the CDSV measurements were able to 

correctly classify the hemodynamic state for N=33 of 40 arrhythmias and the results are 

provided in Table 9. Misclassifications were observed during AT, VT, and FVT. None of 

the misclassification resulted in an inappropriately withheld therapy (false negative). These 

misclassifications were likely the result of inter-subject variations in the relationship 

between MAP and SV. Since the ground truth for hemodynamic stability was based on 

MAP and not LVOT VTI SV the classification performance relies on an inherent 

correlation between SV and MAP.  

Table 9. CDSV Hemodynamic Classification Results 

  AT AF VT FVT VF 

Subject CDSV MAP CDSV MAP CDSV MAP CDSV MAP CDSV MAP 

Canine 1 S S S S U S U U VF U 

Canine 2 U U U U U U U U VF U 

Canine 3 S S S S S S U U VF U 

Canine 4 U S S S S S S S VF U 

Canine 5 S S S S U U U U VF U 

Canine 6 S S S S U S U U VF U 

Canine 7 U S S S U S S S VF U 

Canine 8 S S S S U S VF S VF U 

Misclassifications are highlighted in red. 
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5.3.3. Combined Discrimination Algorithm 

No matter how an ICD is configured, one can expect there to be misclassifications. 

The same statement can be made about CDSV hemodynamic classifications. It is 

reasonable to expect an algorithm that combines ICD IEGM classifications with CDSV 

hemodynamic classifications to perform better than either can do alone.  Here is an example 

of how the two can be combined. 

The primary purpose of the algorithm is to enable physicians with the ability to 

configure different therapies for hemodynamically unstable and hemodynamically stable 

ventricular tachycardias. The algorithm also improves the classification performance 

during atrial fibrillation and atrial tachycardia. The combined algorithm contains 3 therapy 

zones: stable VT, unstable VT, and VF. The zones are identified using a combination of 

the ICD IEGM classifications and the CDSV hemodynamic classifications. A summary of 

these classifications is provided in Table 10 and a block diagram outlining the decision tree 

for the algorithm is provided in Figure 60. 
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Table 10. ICD IEGM, CDSV Hemodynamic, and Combined Classifications 

Classification Name Classification Condition Classification Description 

ICD IEGM Classifications 

AF ICD Atrial Discriminator Atrial Fibrillation 

AT ICD Atrial Discriminator Atrial Tachycardia 

SVT ICD Atrial Discriminator Supraventricular Tachycardia 

VT RV Rate  [200-240] BPM Ventricular Tachycardia 

VF RV Rate >240 BPM Ventricular Fibrillation 

CDSV Hemodynamic Classifications 

STABLE (CDSVU/CDSVBL)≥(55/MAPBL) Hemodynamically Stable 

UNSTABLE (CDSVU/CDSVBL)<(55/MAPBL) Hemodynamically Unstable 

VF (CDSVVF/CDSVBL)<(25/MAPBL) Severe Hemodynamic Instability 

Combined ICD and CDSV Hemodynamic Classifications 

AF ICD Atrial Discriminator Atrial Fibrillation 

AT ICD Atrial Discriminator Atrial Tachycardia 

SVT ICD Atrial Discriminator Supraventricular Tachycardia 

ST-VT CDSV: STABLE, ICD: VT Hemodynamically Stable VT 

U-VT CDSV: UNSTABLE ICD: VT Hemodynamically Unstable VT 

VF CDSV: VF Severe Hemodynamic Instability 
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Figure 60. Combined ICD and CDSV Therapy Algorithm 

 

An improvement to classification performance was defined as any classification 

that would allow for a less aggressive set of therapies to be used. The therapy classifications 

in ascending order of aggressiveness are assumed to be as follows: stable VT, unstable VT, 

and VF. None of the classifications resulted in a worse delivery of therapies when 

compared to the ICD IEGM only algorithms of SJM and Medtronic. For the SJM ICD, the 

combined discrimination algorithm improved the classification performance for N=10 of 

40 arrhythmias. Only one of these improvements was for an AF arrhythmia that was 

incorrectly classified as VF. This was because the dataset for this study was limited and 
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only one such misclassification was observed. However, VT and FVT classifications were 

also improved. 2 VT classification were improved to stable VT. 2 FVT classifications were 

improved from VF to stable VT. 5 FVT classification were improved from VF to unstable 

VT. A complete summary of these results is provided in Table 11. For the Medtronic ICD, 

the combined discrimination algorithm improved the classification performance for N=11 

of 40 arrhythmias. The improvements for the Medtronic ICD were identical to the SJM 

ICD with the addition of one improvement for an AT misclassified as VT. A complete 

summary of these results is provided in Table 12. 

Table 11. Combined SJM and CDSV Therapy Performance 

  AT AF VT FVT VF 

Subject S+C MAP S+C MAP S+C MAP S+C MAP S+C MAP 

Canine 1 None S SVT S U-VT S U-VT U VF U 

Canine 2 None U None U U-VT U U-VT U VF U 

Canine 3 SVT S SVT S ST-VT S U-VT U VF U 

Canine 4 SVT S ST-VT S ST-VT S S-VT S VF U 

Canine 5 SVT S None S U-VT U U-VT U VF U 

Canine 6 SVT S SVT S U-VT S U-VT U VF U 

Canine 7 SVT S None S U-VT S S-VT S VF U 

Canine 8 None S None S U-VT S VF S VF U 

Classifications that were improved using the CDSV hemodynamic information are highlighted in 

green. Classifications that could have been improved by CDSV, but were not properly classified by 

CDSV when compared to hemodynamic ground truth are highlighted in blue. The blue 

classifications result in the same delivery of therapies as an ICD only discriminator algorithm. AT 

indicates atrial tachycardia, AF indicates atrial fibrillation, VT indicates ventricular tachycardia, 

FVT indicates fast ventricular tachycardia, VF indicates ventricular fibrillation, S+C indicates a 

combined SJM CDSV results column, MAP indicates a mean arterial pressure results column, SVT 

indicates supraventricular tachycardia, S indicates a stable MAP, ST-VT indicates a stable 

ventricular tachycardia, and U-VT indicates an unstable ventricular tachycardia.  
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Table 12. Combined Medtronic and CDSV Therapy Performance 

  AT AF VT FVT VF 

Subject M+C MAP M+C MAP M+C MAP M+C MAP M+C MAP 

Canine 1 None S SVT-AF S U-VT S U-VT U VF U 

Canine 2 None U None U U-VT U U-VT U VF U 

Canine 3 VT-M S AT/AF S ST-VT S U-VT U VF U 

Canine 4 U-VT S ST-VT S ST-VT S S-VT S VF U 

Canine 5 VT-M S AT/AF S U-VT U U-VT U VF U 

Canine 6 ST-VT S AT/AF S U-VT S U-VT U VF U 

Canine 7 VT-M S AT/AF S U-VT S S-VT S VF U 

Canine 8 None S AT/AF S U-VT S VF S VF U 

Classifications that were improved using the CDSV hemodynamic information are 

highlighted in green. Classifications that could have been improved by CDSV, but were 

not properly classified by CDSV when compared to hemodynamic ground truth are 

highlighted in blue. The blue classifications result in the same delivery of therapies as an 

ICD only discriminator algorithm. AT indicates atrial tachycardia, AF indicates atrial 

fibrillation, VT indicates ventricular tachycardia, FVT indicates fast ventricular 

tachycardia,  VF indicates ventricular fibrillation, M+C indicates a combined Medtronic 

and CDSV results column, MAP indicates a mean arterial pressure results column, VT-M 

indicates ventricular tachycardia monitoring, AT/AF indicates atrial tachycardia/atrial 

fibrillation, SVT-AF indicates supraventricular tachycardia/atrial fibrillation, S indicates 

a stable MAP, ST-VT indicates an stable ventricular tachycardia, and U-VT indicates an 

unstable ventricular tachycardia. 
 

5.4. DISCUSSION 

With the combined ICD and CDSV discrimination algorithm therapies can be 

configured to be less aggressive as the arrhythmia becomes less life threatening, i.e., it is 

hemodynamically stable. For example, antitachycardia pacing (ATP) can be programmed 

as a first therapy in the stable VT zone before subjecting the patient to an ICD shock. 

Alternatively, the stable VT zone could be configured as a monitor zone. The addition of 

CDSV hemodynamic information would enable additional arrhythmia zones that allow 

physicians to better control the delivery of therapies to patients. Using the combined ICD 

and CDSV discrimination algorithm the following arrhythmia zones can be configured: 
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stable VT, unstable VT, and VF. Therapies for each of the zones could be configured to 

reduce the shock burden to patients. 

5.4.1. ICD Misclassifications 

Both the Medtronic and St. Jude Medical (SJM) ICDs had expected classification 

performance given state of the art in IEGM discriminator capabilities. Atrial arrhythmias 

with rates above the VT and VF thresholds are the most likely arrhythmias to be 

misclassified. The Medtronic ICD misclassified 2 high rate ATs as VT. Both the Medtronic 

and SJM ICD misclassified a high rate AF as VF. The experimental results showed MAP 

remained stable during high rate atrial arrhythmias. In patients, these types of 

misclassifications result in the inappropriate delivery of ICD shocks, specifically in the 

case of AF/VF misclassifications. The resolution of AF/VF misclassifications is an 

important area of improvement in ICD technology. 

5.4.2. CDSV Misclassifications 

CDSV misclassifications were observed in 17.5% of the analyzed arrhythmias. All 

CDSV misclassifications in this dataset resulted in a more aggressive therapy. Hence, the 

misclassifications never resulted in an inappropriately withheld therapy, which is 

considered to be significantly more dangerous than an inappropriately delivered therapy. 

With a 17.5% false classification rate the need for improvement in the CDSV method is 

apparent. However, in the presented combination IEGM and ICD discrimination algorithm, 

the CDSV classifications never resulted in a less effective delivery of therapies and an 

improvement in 32.5% of delivered therapies when compared to IEGM-alone based 

arrhythmia discrimination algorithms. 
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5.4.3. Improved VT Therapies 

The combined ICD and CDSV discrimination algorithm improved the delivery of 

therapies for 75% of the VT and FVT arrhythmias.  In the set of improved therapies, 2 of 

the improvements came from reclassifying VF as stable VT. 5 of the improvements came 

from reclassifying VT as Stable VT. 3 of the improvement came from reclassifying VF as 

unstable VT. The reclassification of VF to stable VT has the potential to significantly 

improve the delivery of therapies. Similarly, reclassifying VT as stable VT has the potential 

to improve the delivery of therapies. However, it is unclear if patients will ever have high 

rate stable VT. The rapid RV pacing induced DCM CHF model reconditioned the cardiac 

physiology of the subjects in this study to an elevated HR. It is possible that the stable high 

rate VTs observed during VT and FVT were the result of the DCM CHF model. 

5.4.4. Improved AF Therapies 

The AF/VF misclassification that occurred was reclassified as a stable arrhythmia 

using the combo ICD and CDSV discrimination algorithm. This is an obvious way that the 

CDSV information can be used to improve ICD arrhythmia discrimination algorithms.  

5.4.5. Inappropriately Withheld Therapies 

In this dataset, the CDSV classification thresholds for Unstable VT and VF were 

optimized to not cause any inappropriately withheld therapies (false negatives). However, 

this dataset was only composed of 8 subjects and in a larger clinical dataset it is possible 

that a threshold that meets these conditions would not be identified. The introduction of 

additional false negatives into ICD arrhythmia discrimination algorithms is something that 

must be studied with a significantly larger data set. It is possible that the misclassification 

of an unstable VT as stable VT is tolerable in a small subset of the patient population. 

However, the misclassification of VF as stable VT is unacceptable and would result in the 
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unintended death of a patient. At this point, this type of misclassification is highly unlikely. 

A larger clinical dataset must be used to better evaluate the likelihood of CDSV 

misclassifications which result in inappropriately withheld therapies.  
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6. Chapter 6:  Conclusion and Future Work 

6.1. FUTURE WORK 

In general, the CHF arrhythmia study successfully evaluated the use of admittance 

hemodynamic measurements to improve ICD arrhythmia discrimination algorithms. 

However, several areas for improvement remain.  

The pacing catheter that was used to simulate atrial and ventricular arrhythmias is 

a potential source of error in the admittance measurement. For the RV tripolar admittance 

vector, the use of the catheter in the atrium is tolerable. However, the use of the pacing 

catheter in the ventricle should be replaced with an epicardial pacing system. In practice, 

an epicardial pacing system can be introduced between the ribs using a specialized delivery 

system. The introduction of the system will cause a loss of negative pressure in the pleural 

space, which may affect respiration and the respiratory component of the admittance signal. 

However, it is believed that this affect will be more desirable when compared to the effect 

of the pacing catheter in the RV.  

The evaluation of tricuspid valve regurgitation (TR) is in important variable to 

monitor during all experiments. The intraventricular admittance measurement is unable to 

differentiate between forward and reverse stroke volume (SV). Since TR directly effects 

reverse SV it is an important experimental variable to quantify.  The chronic implantation 

of leads as well as the DCM CHF model were found to cause significant levels of TR in 

the subjects used for this study. Unfortunately, TR was only evaluated in N=3 of 8 subjects 

since it was not identified as a confounding experimental variable until late in the study. 

Going forward, the evaluation of TR during all experiments should be required.   

This study was originally designed assuming that the induction of sustained natural 

arrhythmias would be possible. The DCM CHF model was supposed to make the canine 

hearts arrhythmogenic. In actuality, the only natural arrhythmias that resulted from the 
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DCM CHF model were the VFs that occurred as a result of cardiogenic shock and caused 

premature mortality during the CHF arrhythmia protocol.  Fortunately, the study was 

preemptively modified for the simulation of AT, AF, VT, and FVT arrhythmias under the 

assumption that the DCM CHF model would not make the hearts arrhythmogenic in the 

intended way. 

All ethical researchers who work with animal subjects endeavor to perform studies 

and collect meaningful data while minimizing discomfort to subjects. In protocols 

performed under sedation, this goal is generally met. In the case of the rapid RV pacing 

induced DCM CHF model, it is difficult to convince one’s self that the subjects live 

comfortably under overdrive pacing at 220 BPM for 4 weeks. For this reason, this part of 

the protocol should always be evaluated with the highest level of scientific scrutiny. In the 

original study, the DCM CHF model was supposed to enable the reliable induction of 

sustained arrhythmias. This was not the case, and the only remaining justification for the 

model is the fact that most patients who have ICDs have some form of CHF. Going 

forward, I would encourage a full scientific review around the justification and use of the 

DCM CHF model.  

Only one subject exhibited a high rate AF that resulted in a VF misclassification. 

In future studies, the induction of this type of arrhythmia should be emphasized. In this 

study, the use of pharmaceuticals was limited in order to reduce the number of variables 

affecting experimental results. Dobutamine was used during the CHF arrhythmia protocol 

to prevent cardiogenic shock. However, no pharmaceuticals were intentionally used to 

induce arrhythmias. The lack of high rate AF in subjects was the result of atrioventricular 

(AV) node block. The AV node acts to protect the ventricle from high rate atrial 

arrhythmias. Atropine is one drug that can be used to reduce the ability of the AV node to 
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prevent rapid atrial arrhythmias from conducting to the ventricle. However, atropine is an 

antagonist of the muscarinic receptors of the parasympathetic nervous system and its ability 

to reduce AV node block beyond the VF conduction threshold (240 BPM) may be limited. 

Alternatively, Isoproterenol acts as an agonist of the beta receptors of the sympathetic 

nervous system and may also be used to prevent heart block. The subject that exhibited 

high rate AF was unintentionally administered a large dose Dobutamine drip at a rate of 12 

mL/hr, which may have aided in the induction of high rate AF. Like Isoproterenol, 

Dobutamine acts in part as a beta-1 agonist of the sympathetic nervous system. The AV 

node contains both M-2 muscarinic receptors and Beta-1 adrenergic receptors. Drugs 

which act as antagonists of M-2 muscarinic receptors or agonists of Beta-1 adrenergic 

receptors should be considered for the purpose of inducing high rate AF.  Unfortunately, 

such drugs will also have a significant effect on cardiac performance and to a greater extent 

the circulatory system. These effects will likely be inconsistent across subjects and 

introduce an additional set of inter-subject variables into the experimental setup.   

In this study, the Cardiovol system that was used was a “multi-vector” admittance 

measurement system. The RV tripolar vector is one of the intraventricular admittance 

measurements that were collected during the experiment. Using the 2 electrodes of the 

atrial pacing lead, 3 electrodes of the ventricular shocking lead, and the 4 electrodes of the 

coronary sinus lead a variety of admittance vectors can be collected using different 

electrode sets. Alternative vectors or combinations of vectors may improve the admittance 

SV measurement. I expect future research from the research group to evaluate the use of 

multi-vector admittance measurements to monitor cardiac hemodynamics.  
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Future studies should continue to evaluate the difference between the ADSV and 

CDSV methods. Previous studies have proven the effectiveness of the admittance method 

[4-16]. However, many of these studies were performed in a murine model using a tetra-

polar conductance catheter. It is possible that the tri-polar admittance configuration, when 

applied to a large animal model, is less effective than previous studies have shown. 

Continued investigation must be used to further evaluate these findings.   

6.2. CONCLUSION 

CDSV was found to have significantly higher correlation with LVOT VTI SV and 

PP when compared to the ADSV method in the CHF arrhythmia study. The CDSV method 

strongly correlates with LVOT VTI SV and arterial PP in CHF canine subjects. The method 

provides a means to directly determine hemodynamic stability during atrial and ventricular 

arrhythmias. CDSV can be utilized as an additional ICD discriminator that withholds 

therapies on the basis of hemodynamic stability. The CDSV discriminator can be used to 

reduce the number of inappropriate therapies during AF. Additionally, the discriminator 

can be used to establish distinct therapy zones for hemodynamically unstable VTs and 

hemodynamically stable VTs. In the stable VT zone, ICD shocks can be withheld in favor 

of less aggressive therapies such as anti-tachycardia pacing that decrease morbidity and 

mortality in patients. The addition of the CDSV hemodynamic discriminator has the 

potential to significantly improve the configuration and delivery of ICD therapies.   
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Appendix A: Complete Lead Implant Protocol 

Lead Implant Procedure 

 

Summary  

Procedure 1 (Lead Implant) – Week 0: 

Aseptic procedure general anesthesia required, 

Baseline Imaging - 2D TTE, 

Implant leads (RA,RV,CS), 

Confirm lead placement with standard methods (pacing/fluoro), 

Abridged RA pacing protocol, 

Reposition leads as necessary, 

Implant leads in subcutaneous pocket right neck 

 

Detailed 

This protocol will be performed on canines placed under general anesthesia and prepared 

for aseptic surgical procedures. 

 

Preparation & Anesthesia (LAR staff): 

1. A percutaneous catheter is placed in peripheral vein (cephalic) for induction and 

fluid administration. 

2. Induction with 2-6 mg/kg Propofol IV (given to effect) followed by placement of 

an appropriately sized endotracheal tube. 

3. Anesthesia is then maintained on 1-4% Isoflurane in 100% Oxygen at 1-3 

liters/min. 

4. Animal is clipped/shaved for the surgical procedure and then moved to surgical 

table. 

5. Animal is placed on top of warmer on surgical table followed by placement of 

temperature, heart rate, respiratory rate, EtCO2 and ECG monitors.  

6. LRS fluids are infused through the cephalic catheter at 10ml/kg/hr for the first hour 

then decreased to 3-5ml/kg/hr for the continuation of the surgery. Preoperative 

analgesics and antibiotics are given.  

7. Place patient on table on RIGHT side down 

8. Take baseline echo measurements 

9. Turn patient on table on LEFT side down 

10. Place urinary catheter to make sure the animal can relieve itself. This is important 

to keep the heart rate low, especially in long studies. 

11. Surgical sites are aseptically prepped with 3 alternating scrubs of betadine and 

alcohol.  

 

Procedure: 

12. Perform jugular cutdown and place tearaway vascular sheaths in the right jugular 

vein. 
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13. Place three pacemaker/ICD leads in the heart by passing them through the sheaths 

under fluoroscopy guidance. This includes a RA lead, a RV lead and a LV lead. 

14. Make CardioVol/ECG measurements in order to confirm lead placement. 

1.1. Abridged RA Pacing procedure (Cardiovol 1.0) 

1.1.1. Establish paced baseline (PBL) generally ~100 BPM. 

1.1.2. Establish max rate w/o AV node block rate generally 140-180 BPM. 

1.1.3. Pace from the RA lead in the follow order pbl, max, pbl, max. 

1.1.3.1. At each rate allow for 30 seconds stable pacing. 

1.1.3.2. Collect 30 seconds of CardioVol/ECG w/ respirator. 

1.1.3.3. Collect VTI/Cardiovol/ECG data w/o respirator (End expiration). 

15. Analyze data. 

16. Reposition leads as necessary. Repeat step 9 until successful lead placement. 

17. Repeat step 9 for Cardiovol 2.0 instrument 

18. Remove tearaway sheaths. 

19. Create a subcutaneous pocket on the right neck and implant the leads. 

20. Discontinue anesthesia and recover the animal. 
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Appendix B: Complete Pacemaker Implant Protocol 

Pacemaker Implant Arrhythmia Procedure 

Summary 

Procedure 2 (Pacemaker Implant) – Week 4: 

Aseptic procedure general anesthesia required, 

Baseline Imaging - 2D TTE, 

Ensite Patch Placement, 

Introduce Arterial Pressure Catheter 

Introduce Pacing catheter, 

Explant leads, 

Attach Cardiovol to leads, 

Attach Ensite to leads 

Place pacing catheter in RA 

Collect baseline, paced baseline, Atach, and Afib data 

Place pacing catheter in RV 

Collect baseline,vp 120 BPM, Vp 170 BPM, vtac 200 BPM, and vtac 250 

BPM 

Implant leads and pacemaker in subcutaneous pocket right neck 

Remove pacing catheter, 

Remove Arterial Pressure Catheter 

Recover patient 

 

Detailed 

This protocol will be performed on canines placed under general anesthesia in a sterile 

preparation. 

 

Preparation & Anesthesia (LAR staff): 

1. A percutaneous catheter is placed in peripheral vein (cephalic) for induction and fluid 

administration.  

2. Induction with 2-6 mg/kg Propofol IV (given to effect) followed by placement of an 

appropriately sized endotracheal tube. 

3. Anesthesia is then maintained on 1-4% Isoflurane in 100% Oxygen at 1-3 liters/min. 

4. Shave animal appropriately for Ensite Patches 

5. Animal is clipped/shaved for the surgical procedure and then moved to surgical table. 

6. Animal is placed on top of warmer on surgical table followed by placement of 

temperature, heart rate, respiratory rate, EtCO2 and ECG monitors.  

7. LRS fluids are infused through the cephalic catheter at 10ml/kg/hr for the first hour 

then decreased to 3-5ml/kg/hr for the continuation of the surgery. Preoperative 

analgesics and antibiotics are given.  

8. Place patient on table on RIGHT side down 

9. Take baseline echo measurements 

10. Turn patient to LEFT side down 
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11. Place urinary catheter to make sure the animal can relieve itself. This is important to 

keep the heart rate low, especially in long studies. 

12. If blood pH < 7.38 or SBP < 70 mmHg start dobutamine drip 

12.1. 2-20 mcg/kg/min IV; titrate to desired effect; not to exceed 40  

12.2. Once stable allow up to 30 minutes before starting protocol 

13. Place Ensite Patches 

 

Procedure: 

14. Verify lead placement using fluoroscopy 

15. Place percutaneous pressure catheter in peripheral artery (femoral or radial). 

16. Place 7F sheath in peripheral vein access (femoral or radial). 

17. Remove pacemaker and explant leads. 

18. Place pacing catheter in RA under fluoroscopy  

19. Cardiovol 1.0 Calibration (Optional) 

19.1. Attach Cardiovol 1.0 to leads, 

19.2. Test Cardiovol 1.0 

19.3. Place pacing catheter 

19.4. Test RA pacing 

19.5. Establish paced baseline (PBL) generally 120 BPM 

19.6. Perform Cardiovol 1.0 vector calibration w/ RA pacing 120 BPM  

20. Replace Cardiovol 1.0 w/ Cardiovol 2.0 

21. Test Cardiovol 2.0 

22. Test for Cardiovol 2.0 pacing interference w/ RA pacing 120 BPM 

23. Reposition as necessary. 

24. Data collection definition 

24.1. At each rate allow for 30 seconds stable pacing. 

24.2. Collect 30 seconds of CardioVol/ECG/Pressure w/ respirator. 

24.3. Collect VTI/Cardiovol/ECG/Pressure data w/o respirator (End expiration). 

24.4. Power off cardiovol 2.0 

24.5. Collect 30 seconds of Ensite and Pressure w/ respirator 

24.6. Collect TR view 2D-TTE (When Requested) 

24.7. This data collection process shall be repeated for all datasets 

25. Perform x3 Simpsons calibration w/ RA pacing 120 BPM 

26. Establish max rate before AV node block (Atach) generally 140-180 BPM 

27. Take baseline 0 data (TR Requested) 

28. Abridged RA Pacing procedure - Atach 

28.1. Pace from the pacing catheter in the follow order pbl, Atach, pbl, Atach (TR 

Requested). 

28.2. Collect data at each rate 

29. Take baseline 1 data 

30. Afib Pacing Procedure 

30.1. Using the stimulator attempt to induce natural Afib pace up to 600 BPM for 

~5 minutes  
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30.2. If natural Afib is not induced use randomized pacing pattern to simulate 

Afib 

30.3. Take 2 sets of Afib data (TR Requested for Second Afib) 

31. Reposition pacing catheter to the RV under fluoroscopy 

32. Test for Cardiovol 2.0 pacing interference w/ RV pacing 120 BPM 

33. Reposition as necessary. 

34. Take baseline 2 data (TR Requested). 

35. Collect V pace 120 BPM data 

35.1. RV pacing 120 BPM  

36. Collect V pace 170 BPM data 

36.1. RV pacing 170 BPM  

37. Collect Vtach 0 data 

37.1. RV pacing 200 BPM (TR Requested) 

38. Collect Vtach 1 data 

38.1. RV pacing 250 BPM (TR Requested) 

39. Collect end baseline (TR Requested) 

40. Disconnect cardiovol and Ensite from leads 

41. Attach pacemaker 

42. Test lead impedances and ECG using the SJM Interrogator 

43. Implant leads and pacemaker in subcutaneous pocket right neck. 

44. Remove pressure catheter. 

45. Remove RV pacing catheter. 

46. Final Image fluoroscopy  

47. Discontinue anesthesia and recover the animal. 
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Appendix C: Complete Overdrive Pacing Protocol 

Overdrive Pacing Protocol 

 

Summary  

Overdrive Pacing Protocol  – Weeks 5-9: 

Baseline Imaging - 2D TTE, 

Pacing rate 150 BPM (2 days) 

Pacing rate 170 BPM (5 days) 

Imaging - 2D TTE 

Pacing rate 220BPM (4 weeks) 

Imaging - 2D TTE 

Imaging - 2D TTE 

Imaging - 2D TTE 

Imaging - 2D TTE 

 

Detailed 

This protocol will be performed using the St. Jude Interrogator. 

 

Detailed Protocol: 

1. Perform 2D TTE Imaging protocol 

1.1. If pacemaker is programmed on, turn pacing off and allow 5-10 minutes for heart 

rate to stabilize 

1.2. Place animal in standing position for the entire imaging protocol 

1.3. Acquire the following views. At least 3 images are taken for each view: 

1.3.1. View: Parasternal Short Axis 

1.3.1.1. Analysis: Left ventricular dimensions, EF, FS 

1.3.2. View: Parasternal Short Axis M-Mode 

1.3.2.1. Analysis: Left ventricular dimensions, EF, FS 

1.3.3. View: Parasternal Long Axis 

1.3.3.1. Analysis: Left ventricular dimensions, EF, FS, LVOT diameter 

1.3.4. View: Apical 4 Chamber 

1.3.4.1. Analysis: EDV, ESV, EF, SV 

1.3.5. View: Apical 4 Chamber LVOT Pulse Wave Doppler 

1.3.5.1. Analysis: LVOT VTI, LVOT SV 

2. Program pacemaker 

2.1. After obtaining echo views, program pacemaker in the VOO setting at the desired 

rate 

2.2. Check 2D TTE EKG trace to verify rate capture 
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Appendix D: Complete CHF Arrhythmia Protocol 

Arrhythmia Procedure 

Summary 

Procedure 3 (Week 10 Arrhythmia Procedure) – Week 10: 

  Stop overdrive pacing 30 minutes before, 

Nonsterile procedure general anesthesia required,        

Baseline Imaging - 2D TTE, 

Ensite Patch Placement, 

Introduce arterial pressure catheter, 

Introduce RV pacing catheter, 

Place ICD subcutaneously upper left thorax 

Remove pacemaker and explant leads 

Attach Switch Box to scarred in leads 

Attach ICD, Cardiovol, to Switch Box, 

Place pacing catheter in RA 

Collect baseline, paced baseline, Atach, and Afib data 

Move pacing catheter to the RV 

                        Collect Vtach, and Vfib data 

                        Euthanize Patient 

Detailed 

This protocol will be performed on canines placed under general anesthesia in a non-sterile 

preparation 

. 

Preparation & Anesthesia (LAR staff): 

1. A percutaneous catheter is placed in peripheral vein (cephalic) for induction and fluid 

administration.  

2. Induction with 2-6 mg/kg Propofol IV (given to effect) followed by placement of an 

appropriately sized endotracheal tube. 

3. Anesthesia is then maintained on 1-4% Isoflurane in 100% Oxygen at 1-3 liters/min. 

4. Animal is clipped/shaved for the surgical procedure and then moved to surgical table. 

5. Animal is placed on top of warmer on surgical table followed by placement of 

temperature, heart rate, respiratory rate, EtCO2 and ECG monitors.  

6. LRS fluids are infused through the cephalic catheter at 10ml/kg/hr for the first hour 

then decreased to 3-5ml/kg/hr for the continuation of the surgery. Preoperative 

analgesics and antibiotics are given.  

7. Place patient on table on RIGHT side down 

8. Take baseline echo measurements 

9. Turn patient to LEFT side down 

10. Place urinary catheter to make sure the animal can relieve itself. This is important to 

keep the heart rate low, especially in long studies. 

11. If blood pH < 7.38 or SBP < 70 mmHg start dobutamine drip 

11.1. 2-20 mcg/kg/min IV; titrate to desired effect; not to exceed 40  
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11.2. Once stable allow up to 30 minutes before starting protocol 

12. Place Ensite Patches. 

 

Procedure: 

13. Verify lead placement using fluoroscopy 

14. Turn patient to RIGHT side down 

15. Place percutaneous pressure catheter in peripheral artery (femoral or radial). 

16. Place 7F sheath in peripheral vein access (femoral or radial). 

17. Place ICD subcutaneously in upper left thorax w/ extra leads outside of body. 

18. Turn patient to LEFT side down. 

19. Remove pacemaker and explant leads. 

20. Attach Switch Box to scarred in leads 

21. Attach ICD to switch box 

21.1. Connect ICD in isolation using switch box 

21.2. Test ICD ECG/Impedances 

22. Attach Ensite to switch box 

23. Cardiovol 1.0 Calibration (Optional) 

23.1. Cardiovol 1.0 to Switch Box, 

23.2. Connect Cardiovol 1.0 in isolation using switch box 

23.3. Test Cardiovol 1.0 

23.4. Place pacing catheter in RA under fluoroscopy  

23.5. Test RA pacing 

23.6. Establish paced baseline (PBL) generally 120 BPM 

23.7. Perform Cardiovol 1.0 vector calibration w/ RA pacing PBL 

24. Replace Cardiovol 1.0 w/ Cardiovol 2.0 

25. Test Cardiovol 2.0 

26. Test for Cardiovol 2.0 pacing interference w/ RA pacing PBL 

27. Reposition as necessary. 

28. Data collection definition 

28.1. At each rate allow for 30 seconds stable pacing. 

28.2. Collect 30 seconds of CardioVol/ECG/Pressure w/ respirator. 

28.3. Collect VTI/Cardiovol/ECG/Pressure data w/o respirator (End expiration). 

28.4. Power off Cardiovol 2.0 

28.5. Collect 30 seconds of Ensite and Pressure w/ respirator 

28.6. Collect TR view 2D-TTE (When Requested) 

28.7. This data collection process shall be repeated for all datasets 

29. Perform x3 Simpsons calibration at Paced Baseline 

30. Establish max rate before AV node block (Atach) generally 140-220 BPM 

31. Take baseline 0 data (TR Requested) 

32. Abridged RA Pacing procedure - Atach 

32.1. Pace from the RA lead in the follow order pbl, Atach, pbl, Atach (TR 

Requested). 

32.2. Collect data at each rate 
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33. Take baseline 1 data 

34. Afib Pacing Procedure 

34.1. Using the stimulator attempt to induce natural Afib pace up to 600 BPM for 

~5 minutes  

34.2. If natural Afib is not induced use randomized pacing pattern to simulate 

Afib 

34.3. Take 2 sets of Afib data (TR Requested for Second Afib) 

35. Reposition pacing catheter to the RV under fluoroscopy 

36. Test for Cardiovol 2.0 pacing interference w/ RV pacing PBL 

37. Reposition as necessary. 

38. Take baseline 2 data (TR Requested) 

39. Collect Ventricular pacing 120 BPM data 

40. Collect Ventricular pacing 170 BPM data 

41. Collect Vtach 0 data 

41.1. RV pacing 200 BPM (TR Requested) 

42. Collect Vtach 1 data 

42.1. RV pacing 250 BPM (TR Requested) 

43. Collect Vfib data 

43.1. Connect ICD in isolation using switch box 

43.2. Disconnect pressure catheter 

43.3. Enable ICD therapies 

43.4. Deliver DC fibber  

43.5. Disable ICD therapies 

43.6. Immediately connect pressure 

43.7. Immediately connect Cardiovol 2.0 in isolation 

43.8. Collect Vfib data 

43.9. Monitor external ECG for Vfib  

43.10. Continue recording for no more than 15 seconds 

43.11. Connect ICD in isolation using switch box 

43.12. Disconnect pressure catheter 

43.13. Administer manual cardioversion therapy 

43.14. Monitor heart rate and recovery from Vfib  

43.15. Emergency VOO pacing 100 BPM  if necessary 

43.16. Prolonged Cardiac Arrest Algorithm (Optional) 

43.16.1. If Vfib sustained shock x2 

43.16.2. CPR 1 minute 

43.16.3. If Vfib sustained shock x3 

43.16.4. Epinephrine 0.5mg-1mg 

43.16.5. CPR 1 minute 

43.16.6. If Vfib shock x3 

43.16.7. CPR 1 minute... 

44. Repeat the previous step two more times 

45. Euthanize Patient. 
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Appendix E: Cardiovol Circuit Diagram  

System Block Diagram: 

 
 

 

Current Source Output and Voltage Sense Input: 
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