
Copyright

by

Ki Jung Yoon

2015



The Dissertation Committee for Ki Jung Yoon
certifies that this is the approved version of the following dissertation:

Unraveling the dynamics and structure of grid cells

as a spatial map in the brain

Committee:

Ila Fiete, Supervisor

Sriram Vishwanath, Co-Supervisor

Alan Bovik

Peter Stone

Jonathan Pillow



Unraveling the dynamics and structure of grid cells

as a spatial map in the brain

by

Ki Jung Yoon, B.S.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2015



Dedicated to my family

Jisun, Taehee, Hwaram

&

to my parents



Acknowledgments

This thesis would not have been possible without the support of a huge

number of people. I am grateful for all the guidance I have received during

the past five years by my advisors, Drs. Ila Fiete and Sriram Vishwanath.

Ila’s insight, focus, and remarkable clarity of thought helped me mature in

ways I could have the confidence to develop into the researcher I am today.

I am very lucky to have Sriram as my ECE advisor, and am grateful for his

openness that allowed me to explore and focus on new directions. To the rest

of my commitee: Drs. Jonathan Pillow, Alan Bovik, and Peter Stone, thank

you for the time you devoted to my thesis, the advice, and direction you gave

me whenever I needed it. I would also like to thank Dr. Haris Vikalo for his

role as an advisor of CommNetS, which provided me with valuable comments

on my research.

I am fortunate to have had several fantastic collaborators: many thanks

go to Sam Lewallen, Amina Kinkhabwala, Cristina Domnisoru, and Yi Gu

for exciting and warmhearted conversations and for introducing me to many

interesting questions on the navigation in virtual reality. I won’t forget the

many light moments we shared over meals at Princeton and Austin. I thank

David Tank, Caswell Barry, and Neil Burgess: lots of discussions and the

opportunity to get access to unique grid cell data made my research influential

v



from the beginning.

I wish to thank John Widloski, Yongseok Yoo, Daniel Robles-Llana,

Michael Buice, Sameet Sreenivasan, Birgit Kriener, Rishi Chaudhuri, and In-

gmar Kanitscheider for all the help and great discussions in the Fiete lab.

Thanks to Il Memming Park for his mentorship. And my fellow students in

ECE and CLM – the list would go on much longer, but a special thanks to

Duehee Lee, Juhun Lee, Mijung Park, Larkkwon Choi, Yujin Kim, Kwangwoo

Ko, and Chungsub Kim for being there when the going got tough.

And lastly, I would not have even started on this path without unwaver-

ing support, love, and encouragement of my parents and family. I am deeply

grateful to Jisun who has selflessly and lovingly given her all to adorable boys,

Taehee & Hwaram.

vi



Unraveling the dynamics and structure of grid cells

as a spatial map in the brain

Publication No.

Ki Jung Yoon, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Ila Fiete
Co-Supervisor: Sriram Vishwanath

Grid cells, defined by their strikingly periodic spatial responses in open

fields, have spurred widespread theoretical interest, and numerous models have

been proposed to explain how grids are formed, how they are differentiated

from the others, and how they might use idiothetic (self motion) informa-

tion to path integrate. This dissertation leverages unique grid cell data to-

gether with computational and mathematical approaches to unravel grid cell

dynamics and structure during navigation in general. First, we analyze several

extensive datasets of grid cells recorded in 2-dimensional (2D) environments

under a number of experimental manipulations, and show that the multi-

dimensional network activity of grid cells is embedded into a two-dimensional

continuous attractor manifold. Second, we analyze grid cell responses on linear

1-dimensional (1D) tracks to extract an underlying 2D grid structure. Com-

bining Fourier analytical methods and numerical refinements, we show that
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the system remains in the same dynamical regime during navigation in 2D

and 1D environments. Finally, we introduce a state-space point process filter

to track the temporal evolution of spatial tuning curves and examine the error

accumulation of grid cell system. We show that we can accurately infer the

drift of the internal estimate of positions subsumed in the grid cell system as

a path integrator.
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Chapter 1

Introduction

When we stand in a room, we can tell where we are by visual stimuli,

but if we close our eyes we would still have an awareness of our location in

the room. For example, most people probably experience in an unfamiliar

hotel room that they have to get up and go to the bathroom in the middle

of the night during complete darkness, and that depends on one’s ability to

keep track of one’s location independent of any other sensory stimuli. This is

a function called path integration or dead reckoning – an integrative process

that requires computing ongoing location estimates through the integration of

self-motion cues. Long before neuroscientists began investigating the cortex to

understand the function, Darwin hypothesized over a century ago that humans

and animals may have some parts of the brain specialized for this function that

does not solely depend on the external world [24]:

With regard to the question of the means by which

animals find their way home from a long distance,...

Yet no one will suppose that they possessed

any special sense which is quite absent in us.

We must bear in mind that neither a compass,

nor the north star, nor any other such sign,

suffices to guide a man to a particular spot,...
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unless the deviations are allowed for,

or a sort of "dead reckoning" is kept.

All men are able to do this

in a greater or less degree,...

though probably in an unconscious manner.

(Darwin, 1873)

The study of the neural basis for spatial navigation and representation

started more recently by discovering potential neural correlates of path inte-

gration from the hippocampus [73] and the entorhinal cortex [41], located at

the top of the cortical hierarchy and farthest from the primary sensory cortices.

The findings opened a new era of experimental and computational studies of

a spatial map and more broadly the high-level cortical functions in the brain

because the firing of cells were generally known to become dissociated from

any experimentally defined stimulus features as we go away from the low-level

sensory cortices [37, 26]. Contrary to the widely-accepted theory, the discovery

was an obvious exception to the apparent decoupling from the external world.

Many cells in this part of the brain emitted action potentials only when the

animal was in a specific set of locations in its local environment. The preferred

locations differed from cell to cell, such that as a population, a sequence of

locations (or movement trajectory) was coded by a sequence of firings of a

unique cell population in the environment. Because of these unique activity

combinations, people believed that the cells would effectively serve as a map

of the animal’s position.
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1.1 Neural basis of spatial representation in the brain

The study of the neural basis of space began in 1971 by O’Keefe and

Dostrovsky [73] with investigating activity from single neurons in the hip-

pocampal subregion (CA1) of freely moving rats. Many of their cells with

location-dependent firing were named “place cells” because the cell fired at a

high rate when the rat was in the cell’s “place field” while the firing activity

decreased and remained low as the animal left the field until the next time

the animal came to the same field. Their successive study also discovered that

most hippocampal cells had place fields and that the exact firing locations

of one cell differed from the other [71]. The fact that each location in the

environment was associated with a unique combination of active place cells

suggested that the place cells of the hippocampus manifested the cognitive

map of Tolman [70], who proposed that behavior was guided by a map-like

neural representation of stimulus relationships in the environment, rather than

by chains of stimulus-response associations [92]. The strong relationship be-

tween neural activity and an external property – the animal’s location – was

unique among all the recordings that had been made in high-level cortices by

that time.

The discovery of place cells was followed by three decades of studies

uncovering that place cells may have functions that extend beyond a specific

role in the mapping of the physical space. This idea was supported by the

report that different maps could be activated by small environmental changes

[67, 59, 97, 57, 58], implying that if the brain has a universal map for distances
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and orientations that are independent of what the environment looks like, then

such a map should not be located in the hippocampus but elsewhere, possibly

the entorhinal cortex that is upstream of the hippocampus.

Pursuing the question, Moser group discovered another type of cells in

the medial entorhinal cortex in 2005 [41]. Individual cells had discrete firing

fields, like place cells in the hippocampus, but each cell had multiple fields, and

the fields collectively formed a hexagonal array, with the equilateral triangles

as a unit spanning the entirety of the animal’s environment. Because of their

grid-like periodic firing pattern of these cells, they were named “grid cells”.

The grid structure was similar for all grid cells, but the spacing of the fields,

the orientation of the grids, and the x-y coordinate of the grid vertices varied.

Grid cells were initially observed in rats and mice, and more recently they have

been reported also in bats [100], monkeys [52], and humans [49], suggesting

that they are present widely across all the mammals.

A notable property of the grid cells was the persistence of the firing

pattern even in darkness and in the presence of changes in the animal’s speed

and direction [41]. Moreover, when two grid cells were recorded at the same

time, the relationship between their grid fields tended to be preserved from

one environment to the next [33, 102]. If the grid fields of two simultaneously

recorded cells were out of phase in one task, they would generally be in the next

too. The stability of this relationship was quite different from the behavior

of place cells in the hippocampus, which were known to have the capacity

to switch between completely uncorrelated firing patterns (global remapping).
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The coherent responses of simultaneously recorded grid cells suggested that

the grid cells may provide a universal metric for space in the brain.

Further recordings revealed that grid cells are organized into a small

number of discrete modules along the dorsal-ventral axis of the entorhinal

cortex [87]. Different grid maps varied on a number of parameters, including

the spacing and the orientation of the grid axes. At the dorsal end, most

grid cells had tightly packed grid fields and the grid spacing expanded in

a discrete manner – not continuously – as we moved away from the dorsal

border toward the ventral part. The most significant finding was the fact that

different modules could respond independently to the geometric changes of the

environment [87].

One of the explanations for such an organization of the brain’s space

map is grounded on the way the output of the entorhinal cortex is used down-

stream in the hippocampus. The hippocampus is known to be critical for

certain types of memory, often referred to as episodic memory. The general

statement to understand the episodic memory is “What did you do at a certain

time in a certain place?” [93]. Spatial memory is a fundamental subset of this

memory and thus the hippocampus needs to find a way of constructing, main-

taining, differentiating, and retrieving lots of internal maps in the brain for

processing thousands of episodic memories every day. This is where multiple

grid modules could contribute to be helpful. If two modules respond indepen-

dently to a change in the environment, their coactivity will vary. The change

in coactivity will trigger a new subset of hippocampal neurons, which in turn
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with a small number of grid modules the entorhinal cortex can be linked to a

huge amount of hippocampal activity patterns – putative memories. An anal-

ogy can be made with a clock storing 43,200 codes (12hrs× 60mins× 60secs)

with only 3 hands. Input from a few independent grid modules may enable

the hippocampus to generate a large number of distinct representations linked

to specific places and experiences.

1.2 Theoretical perspectives on grid cells

The universality of grid cell responses across environments in terms of

the persistently periodic firing pattern regardless of the color, shape, location,

or size of the enclosure suggests that they encode relative displacements rather

than absolute location, and thus grid cells may be the neural loci of path

integration.

The grid cell code has been analyzed theoretically and found to be a

highly efficient code for encoding large displacements at a high spatial resolu-

tion [32, 29, 85, 94]. This is an essential characteristic for velocity-to-position

integrators, because a coarse representation of displacement would accrue er-

rors during path integration that would severely constrain the practicality of

the computation. Disparate computational models of the possible mechanisms

underlying the observed response of grid cells also rely on the conversion of ve-

locity inputs into location signals [64, 32, 21, 38, 44, 20, 10, 43, 18, 95]. That

is, devising mechanisms that might underlie the instantaneous responses of

grid cells usually involves assigning grid cells the function of path integration.
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What are the main ingredients for path integration? It requires com-

puting ongoing location estimates through the integration of self-motion cues,

where short-term memory is essential because data sources (current location

estimates) should not disappear before consequent decisions or actions are

taken. The neural substrate for short-term memory is believed to be a stable

pattern of persistent neural activity, and such persistent activity is thought to

possess an underlying continuous attractor structure [8, 103, 83, 18]: the in-

stantaneous value of a continuous variable is represented by setting the system

to a point on a continuous manifold of stable fixed points, and the stability

of the fixed points generates a far longer time constant for memory than cel-

lular time-constants. This property enables the system to track continuous

time-varying stimuli such as the direction of heading during navigation, the

location of the eye, or the orientation of a visual stimulus. This is the rea-

son continuous attractor dynamics have been widely hypothesized to underlie

the system of neural substrates (grid cells, place cells, head-direction cells) for

spatial navigation.

1.3 Chapter overview

Chapter 2: What are the implications of grid cells being generated

by the attractor network model? One of the major criticisms that are

often raised against continuous attractor models of grid cells and against other

attractor network models in many different brain areas is that they do not eas-

ily generate testable predictions. This work published in Nature Neuroscience
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(2013) has taken this challenge head-on. The main predicted signature of an

attractor mechanism in the neural context is that the responses of cells, when

plotted against an external represented variable, may change substantially, but

pairwise relationships between cells should remain stable. It is a feature that

arises naturally in the attractor model because the mapping from the attractor

states to the external variable might vary due to changing associations between

the network and the external world (for example, rotation of the mapping in-

duced by rotation of the world or more elaborate changes involving stretching

or squeezing of tuning curves), but the cell-cell relationships are determined

by fixed recurrent connectivity in the network.

Based on this theory, we analyzed several extensive datasets of grid cells

(from Moser group & Burgess group), and showed that the spatial phase rela-

tionship between pairs of grid cells persists over time and across environmental

manipulations, despite substantial changes in the sensory input. The finding

that cell-cell relationships are better preserved across environments than re-

sponses of single cells suggests that the multi-dimensional network activity of

grid cells is embedded into a two-dimensional (2D) manifold. Pursuing fur-

ther the question of whether the 2D manifold is attractive (stable), we found

evidence that external perturbations, in the form of velocity inputs, drive the

grid-cell system away from the 2D manifold. Moreover, the off manifold (per-

turbed) components of the network state were shown to relax back to the 2D

manifold on a time scale similar to or faster than the few second time scale on

which the perturbing input changed. Our population analysis showing that
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each grid-cell network is localized to a 2D manifold and that the manifold

is attractive constitutes specific and direct evidence in support of continuous

attractor network models of grid-cell activity.

Chapter 3: Does grid cell system remain in the same dynamical

and computational regime during 2D and 1D navigation? Grid cells

are defined by their striking, periodic spatial firing patterns in 2D enclosures.

However, their responses in 1D environments (linear/circular track, T-/radial-

/hairpin maze) appear to be considerably more irregular and complex. To

date, many studies record grid cell responses in 1D (to study spatial tuning

over large distances; to generate imaging records in virtual environments; etc.),

but there is no systematic study or understanding of the relationship between

the 1D and 2D response of grid cells. The key question is whether grid cells in

1D really continue to operate like grid cells in 2D, or whether they transition

into a distinct computational and dynamical regime.

This work under review in Neuron (2015) presents an analytical and

numerical study of the same grid cells, recorded first in 2D environments then

on 1D linear virtual tracks. We consider the hypothesis that 1D grid cell re-

sponses are generated by slicing an underlying periodic 2D lattice. We first

establish analytically that slices through regular lattices must have very spe-

cific structures in their Fourier spectra, and proceed to demonstrate that the

data exhibit these structures. We show that lattice slices generate excellent fits

to the 1D responses. Next, we further show that group properties of simulta-
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neously recorded cells in the 2D response are predicted by parallel slice fits to

the 1D responses, and therefore the system remains in the same fundamental

dynamical and computational regime during navigation along stereotyped 1D

routes as during free foraging in open arenas.

Chapter 4: How to infer integrative properties of grid cell system?

To understand the network dynamics and fully investigate the predictions of a

theoretical model for grid cell system, it is essential to look into fine temporal

dynamics at the resolution of the same order of magnitude as the neural spik-

ing. Grid cells are thought to perform path integration, an idea that dominates

the current thinking about the functional role of the medial entorhinal cortex.

The additive nature of continuous integration of self-motion cues results in an

accumulation of error because an error in the current position estimate will be

propagated to all the following estimates without any correction mechanism.

In such models, a natural question is whether there exists any evidence of error

accumulation [42]. Experimentally recorded grid cell data, however, appear

relatively stable over a few tens of minutes of recording session, implying that

either there is no accumulation of error, there is an ongoing error-correction

mechanism, or there is an accumulation of error that cannot easily be seen by

the naked eye – the current histogram-based approach – but be captured in

the microscopic scale.

To study fine temporal dynamics and examine the error accumulation

(and possibly correction) of grid cells, we apply a linear state-space model
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observed through a point process [28] for characterizing the temporal evolution

of spatial firing patterns, or spatial tuning curves. The point process adaptive

filtering framework aims not only to estimate the system parameters at the

same temporal resolution of the spiking (∼ 1-10 msec), but also to infer how

diffusive the grid cell system would be. Here we show that the mismatch

between the actual and the internal estimate of an animal’s positions over

time can be well kept track of by this modeling framework given simulated

data from a continuous attractor network model of grid cells. We find that the

model allows us to accurately infer to what extent the spatial tuning of grid

cells undergoes diffusion over time.
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Chapter 2

Specific evidence of low-dimensional

continuous attractor dynamics in grid cells

We examined simultaneously recorded spikes from multiple rat grid

cells, to explain mechanisms underlying their activity. Among grid cells with

similar spatial periods, the population activity was confined to lie close to a

two-dimensional (2D) manifold: grid cells differed only along two dimensions

of their responses and otherwise were nearly identical. Relationships between

cell pairs were conserved despite extensive deformations of single-neuron re-

sponses. Results from novel environments suggest such structure is not inher-

ited from hippocampal or external sensory inputs. Across conditions, cell-cell

relationships are better conserved than responses of single cells. Finally, the

system is continually subject to perturbations that, were the 2D manifold not

attractive, would drive the system to inhabit a different region of state space

than observed. These findings have strong implications for theories of grid-cell

activity and substantiate the general hypothesis that the brain computes using

low-dimensional continuous attractors.
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2.1 Introduction

A set of N uncoupled spiking neurons, each with dynamic range Q,

supply a vast representational space (volume ∼ QN), (Figure 2.1a, top).

However, the representation has poor resistance to noise: each state is inde-

pendent and if changed to another, there is no restoring dynamics to correct

the state. Even in the absence of noise, the states persist only for the time-

constant of single neurons.

Coupling between neurons generally disallows many states, shrinking

the representational space (Figure 2.1a, top and bottom). An advantage of

coupling is that it can, in special cases, produce stable fixed points (attractors)

of the network dynamics that allow the network to hold a state after inputs

are removed, for far longer than the single-neuron time-constant. Moreover,

if noise is present in the system, it may perturb the system off the attractor,

but the perturbations are transient and automatically corrected as the system

rapidly flows back toward the attractor (Figure 2.1a, top). Discrete or point

attractors, as in Hopfield networks, may be used to represent discrete items

[48]. In many cases, the brain must represent continuous variables. In these

cases, the value of the variable could be represented as a point on a continuous

manifold of stable fixed points, of the same dimensionality D as the variable

[8, 83, 103, 84]. This manifold is called a low-dimensional continuous attractor,

if its dimensionality is much smaller than the number of neurons in the network

(D � N). In these ways, attractors enable robust representation and memory,

albeit at the cost of diminished representational space.
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Figure 2.1: (a) Top (state space): The state of N independent neurons, each de-
scribed by a firing rate ri in [0, rmax], may lie anywhere in an N -dimensional cube
of side length rmax (shown for N = 3 neurons). Appropriate coupling between the
neurons can shrink the allowed states to a low-dimensional attractor (dark blue).
All other states are transient, rapidly decaying back to the attractor, and are thus
rarely seen. States very close to the attractor (light blue), through transient, may
be observed if perturbations frequently drive the system into those states. Bottom:
An example network of N neurons (small circles) with 1-d continuous attractor dy-
namics. Local excitatory and global inhibitory connections (not shown) between all
neurons stabilize population states that are local activity bumps (e.g. blue bump A
or B; gray: transient/unstable activity profiles). An activity bump is a single point
on the continuous attractor (top) of all possible translations of the bump. If points
on the attractor are identified with values of some circular variable, then all neural
tuning curves for that variable will be identical, except for a phase shift (translation).
(b) Column one: Recorded spikes (red dots) of two simultaneously recorded cells as
a function of space (rat trajectory: gray lines). Column two: Autocorrelograms of
the smoothed spatial response (peaks identified by black asterisks). Column three:
A template lattice (red circles) is fit to all the peaks of the autocorrelogram. Param-
eters of the template (see c, inset) include the two primary axis lengths (λ1, λ2) and
two angles (θ, ψ). Column four: Crosscorrelogram between the two cells (top), and
the corresponding template fit (bottom). (c) Box plot of the ratio of each lattice
parameter across 223 cell pairs (e.g., θ(cell i)/θ(cell j) where i > j) (median ratio:
center line in box; interquartile ranges: box; lowest and highest values within 1.5×
of interquartile range: outer horizontal lines; 95% confidence interval based on 223
randomly chosen pairs not recorded simultaneously: dotted outer horizontal lines).
(d) The distribution of relative phases (black circles) between all cell pairs, plotted
within a canonical unit cell of the grid lattice. (e) Discharge maps (as in b) of the
same cell pair, recorded again after an interval of > 60 minutes. (f) Box plot of
parameter ratios (as in c) from this later trial, for the subset of cell pairs from c
that were also recorded in this trial (N = 84 cell pairs).
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Low-dimensional continuous attractor dynamics have been widely hy-

pothesized to underlie the stable tuning curves of population codes [8, 56],

motor control [83, 22], neural integration [83, 103, 9, 80, 91, 1, 32, 17, 38, 18],

and parametric working memory [79, 65]. The predicted signatures of low-

dimensional continuous attractors in the neural context are systematic differ-

ences in neural responses along the attractor manifold (e.g. preferred angles

that vary along a continuum for a 1-d ring attractor, Figure 2.1a, bottom)

but conformity and stability otherwise (e.g. tuning curves generated by pulling

a rigid activity bump across the 1-d ring attractor). Critically, the mapping

of states on the attractor to specific values of the represented variable may

vary based on changing associations between the network and the external

world (e.g. rotation of the network states relative to the world), but rela-

tionships between cells (e.g., whether they are in phase or counter-phase or

quadrature-phase in their relative activity patterns), must remain absolutely

stable [83, 103, 32, 18].

In other words, the responses of cells – when plotted against the exter-

nal represented quantity – may change substantially, but pairwise relationships

between cells should not. Despite these predictions, and beautiful empirical

results [91, 1, 78, 2], definitive validation of the low-dimensional continuous

attractor hypothesis has been somewhat elusive: In most cases, partly because

of the difficulty of inducing sufficient change or perturbation in the neural re-

sponses and partly because quantitative analyses on simultaneously recorded

neural pairs have not been conducted, it has been unclear whether the dynam-
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ics are truly low-dimensional, what the dimension is, or where the dynamics

originates [91, 78, 2].

Mammalian grid cells [41], each of which fires at the vertices of a regu-

lar spatial grid as the animal moves through its environment, are hypothesized

[32, 17, 38, 18, 41, 72, 64, 21] to compute ongoing location estimates through

integration of self-motion cues, based on the theoretical argument that their

responses constitute a relatively context-independent code for spatial displace-

ments. Across different familiar environments, the firing field locations in a

grid cell change only through global phase shifts and rotations [41, 33], in con-

trast with place cells, which change in more elaborate ways, by gains or losses

and shifts in subsets of their place fields [67, 77, 12, 61, 99]. The notable reg-

ularity and stability of a grid cell’s response hints that the population might

be well-described by relatively few parameters, a signature of an underlying

low-dimensional dynamical system.

On the other hand, spatially periodic firing in grid cells is neither nec-

essary nor sufficient for inferring low-dimensional population dynamics: It is

theoretically possible for the population dynamics to be low-dimensional and

periodic without spatially regular firing in individual cells, because of poor ve-

locity integration [18]. Conversely, if the N cells in a single population have

periodic spatial responses, but each displays independent shifts (relative to the

other cells) of its spatial phase across environments, the dimensionality of the

population response would be high, or ∼ N . Finally, experiments that involve

resizing of a familiar environment, or exploration in novel environments, reveal
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that grid cell spatial responses stretch along one or both dimensions [7, 6, 87],

a malleable response that is possibly consistent with higher-dimensional dy-

namics.

Here we examine spikes from simultaneously recorded grid cell pairs,

in experiments where the single-cell responses undergo significant change, and

where external inputs do not provide reliable spatial cues, to rigorously deter-

mine across conditions the dimensionality of the population response for each

grid cell network or module (diiscrete networks or modules, consisting of local

groups of cells with a common grid period and orientation, were predicted to

exist through modeling [32, 18, 64, 29] and experimentally validated [7, 87]),

and thus probe for evidence of low-dimensional continuous attractor dynamics

in the brain. We relate the empirical findings to dynamical models of grid cells,

to generate constraints on the mechanisms that underlie grid cell response.

2.2 Results

We examine several datasets of grid cell recordings in their entirety.

The results reported below include all simultaneously recorded cell pairs from

these datasets, in which both cells of the pair share a common spatial period

and meet a modified gridness score that includes cells with regular triangular

grids, even if the triangles are not equilateral (see Online Methods).
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2.2.1 Identical spatial responses up to 2-d translation

We examine spikes from neurons recorded simultaneously from the same

or nearby tetrodes. The activity peaks of a sample pair (Figure 2.1b) are

arranged in the spatially periodic firing patterns characteristic of grid cells.

Our definition of the spatial responses of grid cells, here and in the rest of this

work, is the set of locations of the firing peaks. Six parameters are sufficient

to characterize any periodic tiling in 2-d, regardless of the shape of the tiles

[4]. Thus, the spatial response of an individual cell in a particular environ-

ment is well-described by four parameters for the angles and lengths of two

primary lattice vectors (Figure 2.1c, inset), with two additional parameters

that specify the 2-d spatial phase of the lattice, relative to some reference

phase or location.

We find that cell pairs from the same or nearby tetrodes have extremely

similar values for the first four parameters (Figure 2.1c, N = 223 cell pairs:

24 from [41]; 97 from [81]; 12 from [7]; 90 from [6]). This is the case even though

the cells have very different spatial phases (Figure 2.1d), i.e., even when the

cells are active in complementary parts of the environment. The relative phase

between cell pairs, defined as the difference in their spatial phases, appears to

be uniformly distributed (N = 223 cell pairs) over the unit cell of the lattice

(Figure 2.1d; consistent with similar result from [41]).
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2.2.2 Cell-cell relationships more stable than single cells

We next examine the stability over time of each cell’s response and of

cell-cell response relationships. Without any detailed analysis, the fact that

a clear grid pattern is visible in the responses of individual neurons over a

20-minute recording session means that the individual spatial phases remain

essentially constant over the session; if the phase shifted over time, the cell

would fire at these different phases, and the grid response would be washed

out. It follows directly that the relative phase between cells of the same spatial

period and orientation will also be constant over that interval.

In this analysis, we probe the grid cell responses over longer time inter-

vals: cells are recorded in an environment, then following an interval in which

the animal is tested under varying conditions and environments, the cells are

recorded again in the original environment (Figure 2.1e). The elapsed time

between recordings in the original environment is > 60 minutes. We find that

cells that shared essentially identical values of the first four grid parameters in

the first measurement (Figure 2.1b,c) continue to share essentially identical

parameter values in the subsequent measurement in the original environment

(Figure 2.1f, N = 84 cell pairs from [7, 6]).

Moreover, the relative phases between cell pairs remain essentially con-

stant over this interval (Figure 2.2a, N = 84 cell pairs), consistent with

continuous attractor dynamics that stabilizes cell-cell relationships. However,

this stability of relative phase between cells may be attributable to the stabil-

ity of the phases of individual cells across visits to the original environment.
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Figure 2.2: (a) Top: The difference across time (trials separated by > 60 mins)
in the relative phase between cell pairs is clustered near zero (black x’s, see
Online Methods). Red circle: uncertainty in estimating relative phase differ-
ences (see Online Methods for error analysis). Bottom: Normalized histogram
of the magnitudes of these relative phase differences (gray), with the null dis-
tribution (red), in which phase differences are not significantly different from
zero and drawn independently from a Gaussian with standard deviation equal
to the uncertainty in phase estimation. The null distribution of magnitudes
is Rayleigh. Black: best-fit Rayleigh distribution to the data. (b) Difference
across time (i.e., trials) of the phase of single cells (top), and the normalized
histogram of magnitudes (bottom). Black, red defined similarly as in a. The
data in a are not significantly different from the null hypothesis, while those
in b are (a: P = 0.58� 0.05, b: P � 10−4 under the F-test for whether the
data and the null distribution come from a distribution of the same variance).
Finally, P < 0.001 under the F-test for whether the data in a, b (bottom)
come from a distribution of the same variance.
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To differentiate between the two possibilities, we therefore compared the sta-

bility in the spatial phase of single cells with the stability of relative phase

between cells. We find that, notably, the relative phase between cells is more

tightly preserved than the phase of each cell (Figure 2.2b), strongly suggest-

ing a low-dimensional internal dynamics that yokes together the responses of

different cells in the network, rather than spatially informative external cues.

2.2.3 Cell-cell relationships stable despite grid distortions

Next, we test pairwise relationships between grid cells that undergo a

non-uniform rescaling of their individual grid responses when a familiar en-

closure is suddenly resized [7] (Figure 2.3a,b). This rescaling constitutes a

major change in the responses and grid parameters of individual cells (Figure

2.3c). But despite rescaling, the ratios of the first four grid parameters be-

tween cell pairs remain fixed very close to 1, indicating that these parameters

change in tandem across the population (Figure 2.3d). This result holds for

all cell pairs (Figure 2.3e, 7 cell pairs from [7]).

The relative phases between cells remain constant (Figure 2.3f) de-

spite the changes in grid cell responses, and the constancy of relative phases

is independent of whether the cells have similar or very different phases rel-

ative to each other. Thus we see that relative phase is strongly conserved

even when the responses of single cells – influenced by changing external cues

– have changed significantly, again strongly suggesting a 2-d state space and

simultaneously suggesting that internal dynamics rather than external cues
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are responsible for the low-dimensional response.

2.2.4 Constancy of cell-cell relationships without place-cell stabil-
ity

The preceding results are consistent with a population response that

is confined to a 2-d manifold: Given the spatial response of one cell, the re-

sponses of the others are always predictable, differing from the single cell only

by a fixed 2-d phase shift, which remains invariant across conditions. However,

it remains possible that, rather than arising from attractor dynamics gener-

ated within the grid cell network, the low-dimensional response of grid cells

is externally imposed: by sensory cues from the familiar room, that somehow

are flexible enough to permit rescaling of individual responses yet rigidly force

fixed relative phases; or more plausibly, by inputs from the hippocampus.

In an attempt to address these possibilities, we analyze grid cell re-

sponses from animals’ first exposures to novel environments. Grid cells are

recorded first in a familiar environment, then in a novel environment, then

again in several subsequent sessions in the novel environment as it becomes

gradually more familiar [6]. In the first exposure to a novel environment, the

spatial periods of grid cells expand suddenly, and the responses become less

regular (Figure 2.4a-c, 24 cell pairs from [6]). As the novel environment

becomes more familiar, significant changes occur: the responses become more

grid-like (Figure 2.4b), and the grid periods contract steadily (Figure 2.4c).

Indeed, the four parameters of the grid response all change in the novel en-
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Figure 2.3: (a) Firing fields of two simultaneously recorded cells in a familiar
environment (trials 1, 5) and resized versions of the familiar environments
(trials 2, 3, and 4). (b) Spatial crosscorrelograms for the cell pair (top) and
the best-fit template lattices (bottom). Asterisks denote local peaks in the
crosscorrelogram. (c) Each grid parameter for cell 1 (top) or cell 2 (bottom)
normalized by the value from trial 1. The parameters are substantially rescaled
across trials 2-4. Error bars indicate ±1 s.d. (Online Methods). (d) The ratio,
between cells 1 and 2, of each grid parameter, for each trial. The ratios are
statistically very close to one, despite the significant rescaling in each cell, seen
in c. Error bars indicate ±1 s.d. (Online Methods). (e) Top: Histogram of
all grid parameters for the 11 cells in the resizing experiments from trials 2,3,4
normalized to the corresponding value from trial 1. Bottom: Histogram of
the ratios of all grid parameter values between cells 1 and 2 for all 7 cell pairs
from trials 1-4. This distribution is strongly peaked at 1 and different from the
distribution at top. The Kolmogorov-Smirnov test for whether the two data
samples come from the same distribution produces P < 0.001. The F-test for
whether the two data samples come from a distribution of the same variance
produces P < 0.001. (f) The relative phases for the 7 cell pairs span the
unit cell (each black symbol represents a different cell pair; each marker for a
given symbol represents a different trial). Gray x’s: relative phase differences,
computed across all cell pairs and trials. Red circle: uncertainty in the relative
phase difference magnitude (Online Methods). The relative phase differences
are not significantly different from zero (P ≈ 0.6 � 0.05 for the same null
hypothesis as in Figure 2.2).
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vironment then relax back over days to values seen in familiar environments

(Figure 2.4d), while the environmental sensory input remains unchanged.

This suggests that the response of grid cells and their relationships are not

determined, and by extension, not stabilized, by the environmental sensory

input during this contraction period.

With this in mind, we next examine the relationships of grid parameters

between cells. We find that the ratios of each grid parameter between cell pairs

remain close to unity in the novel environment, as in familiar environments,

starting with the very first exposure in the novel environment (Figure 2.4e),

and continuing throughout the period of contraction of the grid period. Again,

crucially, we find that the relative phase between cells remains essentially

unchanged between the familiar environment and the very first exposure to

a novel environment (Figure 2.5, 24 cell pairs from [6]), despite the large

changes in the grid responses of neurons, and thus in their absolute phases.

The relative phase between cells continues to remain fixed as the grid response

shrinks over repeated exposures to the novel environment (Figure 2.5).

Because the animal in a novel space has not yet learned to associate

external sensory cues with location [66, 86], and because external cues remain

fixed while the grid responses shrink over several days, it follows that the re-

lationship between grid cells and the external world is less stable than is the

relationship between grids cells. It is therefore unlikely that external sensory

cues are stabilizing cell-cell relationships across novel and familiar environ-

ments.
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Figure 2.4: (a) Firing fields of pairs of simultaneously recorded cells in a
familiar environment (black squares) and novel ones (gray squares) across
five consecutive trials on one day, and the corresponding crosscorrelograms
and best-fit template lattices. Note that on different days, the recordings in-
volve different cells from the same tetrodes in the same area in the animal
(Supplementary Figure 2.4 for all cell pairs). (b) Development of average
modified gridness in novel environments (gray) across seven days. The grid
score gradually approaches that measured in familiar environments (black) (24
cell pairs, from [6]; means ± s.e.m.). (c) Change, across trials and days in the
novel environment (gray), of the average grid period. Average grid period is
the mean of the first two grid parameters across all cells in a trial (means ±
s.e.m. 24 cell pairs total: 1, 6, 10, 3, 1, and 3 on days 1, 3, 4, 5, 6, and 7,
respectively; no cells in day 2 passed the gridness criterion). The grid period
significantly rescales in a novel environment, compared to when measured in
the familiar environment (black), then gradually relaxes to its original value
over seven days. (d) Grid parameters of one typical cell pair from each day
(all cell pairs shown in Supplementary Figure 2.4), normalized by the cor-
responding parameter values from the first trial (familiar environment) of the
day. Clusters of four narrow bars represent the four parameters, in the same
ordering and color scheme as in Figure 2.1 and 2.3. Error bars indicate ±1
s.d. (Online Methods). (e) Grid parameter ratios for the two cells, across
trials and days. Almost all these ratios are statistically indistinguishable from
1 (for all cell pairs, see Supplementary Figure 2.4 and 2.5). Error bars
indicate ±1 s.d. (Online Methods).
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Figure 2.5: (a) The relative phases of the cell pairs (each distinct symbol
represents a pair), across different trials and days (N = 24 cell pairs from [6],
across all 7 days). Gray x’s: the relative phase difference for every trial and all
pairs. Red circle: uncertainty in the magnitude of relative phase differences
(Online Methods). (b) The relative phase differences are not significantly
different from zero for the same null hypothesis as in Figure 2.2 (P = 0.38�
0.05 under the F-test for whether the data and the null distribution come from
a distribution of the same variance).
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In contrast to grid cell responses in the novel environment, simultane-

ously recorded place cells underwent complete remapping [6] – defined as the

loss of some of their firing fields and gain of others, with little preservation of

spatial correlations between place cell firing fields. Like grid cells, place cell

firing fields also expanded, then shrank, but to a much lesser extent than the

grids, and for a shorter time. The remapped responses were not immediately

stable, taking hours to stabilize [6] (see also [67, 30, 98, 50] for similar results

on place cell remapping). Thus, hippocampal representations, and by exten-

sion, place cell-grid cell relationships, are in flux while cell-cell relationships

between grid cells remain stable, suggesting that hippocampal input is not

stabilizing relative phases between grid cells in the transition from familiar

to novel environments, and within the novel environment. Taken together,

these findings suggest that the hippocampus cannot be generating and feeding

forward the 2-d stable responses observed in grid cells.

The above result is not inconsistent with the finding that hippocampal

inputs seem required for grid cell activity [11]. A reduction of excitatory

drive from the hippocampus and diminished activation of grid cells can, if the

recurrent connections between grid cells are dominantly inhibitory [75, 23],

result in a failure of the recurrent connections to induce population patterning

and low-dimensional dynamics, as in the models of [18, 11]. Hippocampal

inputs might also correct path integration errors by selecting the appropriate

population state for a given location from a set of stable population patterns

[21, 96, 85], thus enabling accurately patterned spatial grid cell responses over
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a trajectory [18]. In either of these cases, the 2-dimensionality of the grid

cell population response is intrinsic to the entorhinal cortex, but abolishing

hippocampal drive may abolish spatial patterning.

We may conclude, first, that the grid cell population response is re-

stricted to the same 2-d manifold at the first exposure to novel environments

as in familiar environments, and second, that this restriction to the 2-d mani-

fold cannot easily be ascribed to external sensory cues or hippocampal inputs,

because relative phases and parameter ratios are stable even when these inputs

are not.

2.2.5 Smoothness (continuity) of 2-d manifold

We next more closely examined the 2-d manifold of stable grid parame-

ters and relative phases, to determine whether it exhibits a granular or “lumpy”

structure, in which cell-cell stability is dependent on cell-cell similarity. A sce-

nario in which cells with similar spatial phases conserved their relationships

with each other more strongly, would be consistent with distinct subnetworks

of cells with similar spatial response patterns stabilizing each other and not

others with more dissimilar responses. Thus, we reexamined the results from

familiar, rescaled, and novel environments, plotting parameter ratios as a func-

tion of relative phase between cell pairs. Parameter ratios were consistently

close to one, independent of the distance in phase between cells (Figure 2.6a).

Importantly, the stability in cell-cell relationships across rescaled and novel en-

closure trials, as measured by stability of parameter ratios (Figure 2.6b) and
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Figure 2.6: (a) Parameters between cell pairs (223 cell pairs from Figure
2.1c,d) in the same network are very similar (as reported in Figure 2.1), and
moreover, the degree of similarity does not vary with the difference in spatial
phase (i.e. magnitude of relative phase) between cells. (Parameter similarity
is defined as the square-root of the squared deviation of parameter ratios from
1, averaged over all parameters per pair.) Each dot represents one trial from
one cell pair. Black: linear regression; ρ: Spearman’s rank correlation; r:
Pearson’s product-moment correlation. (b) The stability of parameter ratios
between cell pairs across rescaling trials (red dots, 7 pairs from Figure 2.3f)
and novel enclosure trials (blue dots, 24 pairs from Figure 2.4 and 2.5) is
independent of the pair’s relative phase. (c) The stability of relative phase
(mean of magnitude of relative phase differences) across rescaling and novel
enclosure trials is independent of relative phase between cells in a pair (same
dataset and color-coding as in b).
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stability of relative phases (Figure 2.6c), did not vary with relative phase

magnitude between cell pairs. Therefore, up to experimental resolution, the

2-d manifold of states is continuous.

2.2.6 Stability (attractiveness) of the 2-d manifold of states

We have established that the grid cell population response is localized

to the neighborhood of a 2-d manifold, over extended periods of time and

across varying external conditions that induce significant changes in the grid

cell responses. Further, this localization is very likely due to internal recurrent

dynamics, not a low-dimensional external input. What can we say about the

dynamical stability of the 2-d manifold?

Real-world dynamical systems are localized to their stable or attractive

states. They are seldom (with vanishing probability) found at or near unstable

fixed points, precisely because such points are unstable and the smallest per-

turbation will drive the system away. Conversely, the dimensionality of state

space occupied by the system is indicative of the dimensionality of the attrac-

tive states of the system. If a low-dimensional manifold is stable but is part

of a higher-dimensional manifold of stable fixed points (Figure 2.7a), then

high-dimensional noise, however small, will cause the system to random-walk

through the larger manifold [19]. The system will consequently be found to

inhabit any of the states across all dimensions of the stable higher-dimensional

manifold. Grid cells are likely subject to high-dimensional internal noise: For

example, stochastic vesicle release in synapses [89] causes independent pertur-
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bations in every postsynaptic neuron (noise dimension ∼ N , where N is the

number of neurons). An analysis of spiking variability as a source of noise

in grid cells is given in the SI (Supplementary Figure 2.3). The fact that

grid cells nevertheless primarily occupy the neighborhood of a 2-d manifold

of states, in which cell-cell relationships are tightly conserved, suggests that

the 2-d manifold is attractive (Figure 2.7b) and that locally, the attractive

manifold has a dimension neither greater than nor smaller than 2.

Besides the deduction, above, that the grid cell system is subject to

perturbations off the attractor through internal stochastic dynamics, we find

evidence that external perturbations, in the form of velocity inputs, drive the

grid cell system away from the 2-d manifold. To see this, we select all the spikes

emitted by a cell during parts of the trajectory when the animal is headed

‘northward’ (north ±45 deg), to form a North spatial activity map. We then

compute the relative phase between a cell pair only for the North maps of each.

The difference between this relative phase and the relative phase computed

over the full trajectory is the perturbation off the attractor that northward

motion induces in the state. All grid cells in our analysis have negligible

directional tuning (Supplementary Figure 2.2), thus changes in relative

phase cannot be attributed to a direct velocity modulation. We do the same

for the South, East, and West conditions. The resulting directional shifts in

relative phase are statistically significant, compared to controls computed from

similarly sized trajectory fragments unsorted by heading direction (Figure

2.7c,d: data from the same cells in Figure 2.1c,d). The shifts in relative phase
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Figure 2.7: (a-b) Schematic energy landscape (left) and occupation probabil-
ity (right) plots of a dynamical system. The independent variables on the plots
depicting energy (left) and probability density (right) as heights are the firing
rates of the neurons in the network. If the energy landscape has a flat plateau
(a, left) of dimension D > 2, in which the 2-d manifold is embedded (depicted
as a line), the system will likely be found off the 2-d manifold because there
is no specific restoring drive back to it. (a, right). When there is a 2-d valley
in energy (b, left), the system state will be localized to the 2-d manifold (b,
right) even in the presence of noise. (c) Inset: animal trajectory from one
trial color-coded (green, blue, red, yellow) by the instantaneous movement di-
rection (North, South, East, West quadrants, respectively). Main plot, green
vector: the difference in relative phase between cell pairs, computed as the rel-
ative phase obtained from spikes obtained only during Northward trajectory
fragments minus the relative phase obtained from all spikes in the trajectory,
averaged across all cell pairs (223 pairs). Gray vectors: Samples from the
null hypothesis of randomly segmenting the full trajectory into four sets of
fragments of the same average lengths as the directional fragments, without
directional specificity. Black circle: one standard deviation of the null hy-
pothesis distribution (Online Methods). p-values for the directional shifts in
relative phase under null hypothesis: North (P = 0.0004), West (P = 0.0444),
South (P = 0.0003), East (P = 0.0201). (d) Opposing shifts in relative phase
from opposing trajectory directions: North-South (∗∗∗∗P < 10−4), West-East
(∗ ∗ P = 0.0014) (Online Methods). (e-h) Green: Directional shifts induced
in relative phase decay as the spike selection windows spanning Northward
trajectory fragments are shifted in time, 1 second at a time, away from the
centers of those directional segments, to include spikes emitted just before
or after Northward movements. Black solid line: Radius of black circle from
c. Gray dotted curve: Best-fit Laplace distribution with zero mean. Inset:
Autocorrelation of movement direction in trajectories.
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between cells are consistent with the respective heading directions (Figure

2.7c), suggesting that these shifts are indeed due to directional velocity input

to the system. Thus, ongoing movements push the network away from the

attractor by causing small deformations of the population pattern, in the form

of a slight stretching of the population pattern along the direction of motion.

Finally, we examine the dynamics of perturbation by sliding the spike-

selection windows in time relative to the centers of e.g. the Northward trajec-

tory fragments (see Online Methods). We see that the shift in relative phase

decays as the window is slid by a few seconds, and the decay time-constant is

very similar to the autocorrelation time for directional motion in the animal

trajectories. Thus, the off-manifold (perturbed) components of the network

state relax back to the 2-d manifold on a time-scale similar to or faster than

the few-second time-scale on which the perturbing input changes. The quick

return of the system back to the 2-d manifold of states after perturbation

from the external velocity input is direct evidence that the 2-d manifold is

attractive.

2.3 Discussion

We have shown that, over short times and in familiar enclosures, the

spatial responses of individual grid cells are well-characterized by a low-dimensional

set of six parameters, with essentially the only difference between cells in the

same network given by a 2-dimensional phase representing a rigid transla-

tion of the same basic response pattern. Over time and across environmental
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manipulations, the responses of individual grid cells change, and thus the pa-

rameters that describe their responses vary. Therefore, the responses of an

individual grid cell are not described by a single set of six parameters.

Crucially, however, the dimensionality of the population response re-

mains invariant. The responses of different grid cells are yoked tightly together:

Over time or with experimental manipulation, when the spatial response pat-

terns of the individual neurons change significantly – not only through rigid ro-

tations but anisotropic and isotropic deformations of the grid pattern through

stretching – the grid parameter ratios and relative phases between simultane-

ously recorded neurons in each network or module remain essentially constant

(Cells with distinct grid periods – i.e., cells from different networks – could

never share a stable spatial phase relationship even if all single-neuron grid

parameters were perfectly stable, because the relative spatial phase between

two perfectly periodic patterns of different frequency will necessarily precess

relative to each other across cycles). In familiar enclosures, where stability

may be attributed to external cues, we show that the cell-cell relationships are

more stable than single-neuron responses, which argues against the external

cue hypothesis. Cell-cell relationships persist with the same fidelity immedi-

ately upon entering novel environments, even though landmark cues suddenly

change and remain unassociated with specific locations, while place cell re-

sponses continue to change, arguing strongly for stabilizing constraints within

the grid cell system.

Thus, population activity is confined to the immediate vicinity of a 2-d
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manifold, across time and across conditions in different environments. Con-

finement of the system to a 2-d manifold despite stochastic internal dynamics

and external velocity-driven perturbations off the manifold suggest that the

2-d manifold of states is an attractor.

2.3.1 Relationship to past work and implications for models.

A glimpse that the responses of different grid cells are yoked together

was afforded by the data of [33] (not included in our present analysis): the spa-

tial phases of∼ 5−9 simultaneously recorded grid cells shifted when the animal

was moved from one environment to another, and the shifts appeared to be of

a similar magnitude and direction across cells. However, both environments

were familiar, so that hippocampal representations were stable (albeit differ-

ent), and external cues could be used to provide locational information. Thus,

without a comparative analysis of variability of phase within and between cells

in a single environment, or an experiment involving destabilized hippocampal

representations and external cues, the qualitatively different possibility of feed-

forward stabilization by hippocampal inputs or external cues could not have

been ruled out.

Intracellular recordings in head-fixed animals navigating through vir-

tual environments [27, 82] show that grid cell membrane potentials exhibit a

substantial DC depolarization at the firing field locations. This is consistent

with excitatory (or disinhibitory) network drive that depolarizes neurons for

the duration of a field. However, given that the intracellular recordings can-
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not distinguish between feedforward and feedback network inputs, and do not

examine the structure and dimensionality of population activity, they do not

provide specific evidence for continuous attractor models.

We have shown through population analysis that each grid cell network

is localized to a 2-d manifold and that the manifold is attractive, which consti-

tutes specific and direct evidence in support of continuous attractor network

models of grid cell activity [32, 17, 38, 18, 64].

To be consistent with our findings, models of populations of grid cells

need to include recurrent interactions that constrain the system to lie on a 2-d

continuous attractor. The translation-invariant recurrent connectivity pat-

terns of [8, 103, 32, 38, 18, 64] are examples of such an interaction. Within

the constraint of 2-d continuous attractor dynamics, however, models of grid

cell networks may be quite different: Some consist of a single recurrent net-

work with a 2-d attractor, in which the grid cells integrate velocity inputs

[32, 38, 18]. In others, the 2-d dynamics of grid cells arises from the feed-

forward summation of inputs, from two 1-d ring attractors, each of which

integrates one component of animal velocity [95]. In future work, it will be

interesting to distinguish experimentally between such alternatives.

To conclude, our analysis contributes strong new evidence (see also

[91, 1, 2]) supporting the idea that the brain uses low-dimensional continuous

attractor dynamics in its integration and memory functions.
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2.4 Methods

2.4.1 Binning and rate maps

Cell-sorted spikes of putative grid cells from foraging rats were assigned

to (1cm × 1cm) spatial bins derived from position samples taken at 50 Hz. The

number of spikes assigned to each bin was divided by the animal’s total dwell

time in that bin, to remove the effects of inhomogeneous spatial exploration

on estimating the probability of spiking at each location. This defines the rate

map. Smoothed rate maps were generated by convolving the rate maps with

a two-dimensional Gaussian kernel (σ = 4 bins).

2.4.2 Autocorrelations and crosscorrelations

To characterize the spatial response patterns of grid cells, we com-

puted spatial autocorrelations from the smoothed rate maps of individual

cells. To compare pairs of cells, we computed spatial crosscorrelations from

the smoothed rate maps of simultaneously recorded cell pairs. If the smoothed

rate maps are R1 and R2, both spatial correlations are generated as follows:

γ(u, v) =

∑
x,y∈Γ

[
R1(x, y)−R1,Γ

] [
R2(x− u, y − v)−R2,Γ

]√∑
x,y∈Γ

[
R1(x, y)−R1,Γ

]2∑
x,y∈Γ

[
R2(x− u, y − v)−R2,Γ

]2
where γ(u, v) is the correlation coefficient at the bin (u, v), Γ is region of spatial

overlap between R1 and R2, and Ri,Γ is the mean of Ri(x, y) within the region

Γ. For autocorrelations, R1 replaces R2.
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2.4.3 Modified gridness score

The standard gridness score [81, 55] penalizes any regular grid pat-

tern if it is not of an equilateral triangular pattern (Supplementary Figure

2.1a,b). A novel scoring procedure was proposed [13], with the aim of assign-

ing high scores despite elliptical distortions in a hexagonal grid. However, it

was limited by the fact that either the major or minor axis of the circumscribed

ellipse was always assumed to pass through one of six nearest peaks. We used

a modified gridness score that more generally allows both isotropic (equilat-

eral triangle) and anisotropic (squeezed or stretched) grids to get a high score.

For maximal sample size, and to test in principle the dimensionality of the

grid cell response, it is important to include cells with anisotropic triangular

grids: it is critical to determine whether deformed grid responses still lie on a

low-dimensional manifold.

The modified gridness score is defined on the autocorrelogram of a cell.

We first apply a transform on the correlogram that maps the central lattice

cell (given by the six peaks nearest the center) into a regular hexagon (Sup-

plementary Figure 2.1c Left). This transform is determined by mapping

the ellipse that circumscribes the central cell into a circle via a combined ro-

tation, rescaling, and rotation transformation. If the number of nearest peaks

(defined as the six or fewer peaks whose distance from the origin is less than 2

times the shortest distance from the origin to a neighboring peak) is less than

or equal to four, the transformation is not applied.

Given the transformed autocorrelogram, we define an annular region
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with inner radius Ri and outer radius Ro. We rotate the autocorrelation map

in steps of 6◦ and compute the Pearson correlation between the rotated map

and the original map with each confined to the annular region. The gridness

for a given annular region is defined by the minimum difference between crests

and troughs in rotated correlations:

Gridness(Ri, Ro) = min {ρi,o(60◦), ρi,o(120◦)} −max {ρi,o(30◦), ρi,o(90◦), ρi,o(150◦)}

where ρi,o(φ) is the correlation value when one map is rotated by angle φ

relative to another over the annular region defined by Ri, Ro.

We do this for various values of Ri and Ro, letting Ri change from 0.5r

to r and Ro change from Ri + 1cm to 1.5r (or to the maximum allowed value

based on the autocorrelogram), each independently and in steps of 1cm. r is

the mean distance to the nearest six peaks from the center in the transformed

autocorrelogram. The modified gridness of the cell is then defined as the

maximum gridness score over these various annular regions.

Our results are not qualitatively changed if we use the former gridness

scoring technique [13]; they also do not qualitatively change if we use our

technique with a higher threshold (=0.5).

2.4.4 Cell selection

In this paper, we analyzed data sets from four different sources [41, 81,

7, 6] (data [41, 81] available at http://www.ntnu.no/cbm/gridcell). A modi-

fied gridness score was computed for each grid cell, and cells with a gridness
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score less than zero were rejected (Supplementary Figure 2.2). (When we

restricted our cell sample based on the gridness score more commonly used

in the past, the sample become smaller but the qualitative results remained

unchanged. Indeed, because the error in grid parameter estimation drops for

more clean grid responses, the cell-cell relationships and ratios become slightly

tighter.)

For pairwise analyses, we used all possible cell pairs that were simul-

taneously recorded in the same individual animal and shared a common grid

period whose maximum difference between cells was smaller than 30% in the

familiar enclosure (provided both members were above threshold on the modi-

fied gridness score). Cells above threshold that had no simultaneously recorded

cells to pair with that also met the threshold for cell-cell comparisons, were

also rejected from further analysis. Data from 223 cell pairs are shown in

Figure 2.1c,d, from numerous experiments (24 from [41]; 97 from [81]; 12

from [7]; 90 from [6]). Data from 84 cell pairs (75 cells) are shown in Fig-

ure 1f and 2a,b, from both resizing [7] and novel enclosure experiments [6],

recorded in both trials 1 and 5. Data from the same cells in Figure 2.1c are

shown in Figure 2.7c-h. Note that all grid cells from all datasets that met

our gridness criterion happened to have extremely weak directional sensitivity

(Watson U2 score < 10, by the scoring method of [81, 13]; Supplementary

Figure 2.2). In Figures 2.3-5, cell pairs that have lower gridness than the

fixed threshold in both familiar enclosures or in more than two intermediate

trials were discarded, which results in 7 cell pairs in Figure 2.3 and 24 cell
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pairs in Figure 4 and 5.

2.4.5 Template matching algorithm to estimate grid parameters

We identified local maxima in the autocorrelogram and noted the co-

ordinates and heights of the peaks. The local maxima whose heights were

lower than 1% of the height of the global maximum were not considered as

“local peaks”. We then generated a 2-dimensional template lattice. Any 2-

dimensional periodic lattice centered at the origin is fully specified by the

magnitudes (λ1, λ2) and orientations (ψ1, ψ2) = (ψ, θ−ψ) of two basis vectors

(Figure 2.1c). The angles are measured from the x axis. The template lat-

tice is generated by populating the explored spatial environment by vertices

whose locations are determined by the basis vectors and their translations.

The lattice parameters are determined by finding values that minimize a cost

function that quantifies the fit between the template and the data. The cost

function is given by the sum of the squared distances from every data peak

to the nearest vertex in the template lattice, weighted by the autocorrelation

amplitude at that data peak:

C =
n∑
i=1

wi‖pi − vi‖2

where pi is the (x, y) location of the data peak, vi is the vector for the point

in the lattice nearest to the ith data peak, wi is the correlation coefficient at

pi, and n is the total number of peaks in the autocorrelogram.

The central peak of a crosscorrelogram is typically not at the origin, but
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shifted by some displacement vector ~d from the origin. Thus, 2 additional pa-

rameters ~d = (dx, dy) were estimated simultaneously with (λ1, λ2) and (ψ1, ψ2)

by minimizing the same cost function in order to find the best-fit template

lattice of the crosscorrelogram.

2.4.6 Relative phase, relative phase difference, and phase magni-
tude

Let ~φα represent the phase of cell α, where the component φαi is the

phase along the ith lattice basis vector. The relative phase between cells α

and β is then

~δαβ ≡ (~φα − ~φβ) mod 1

where “mod 1” is understood to apply to each component. The relative phase

between a pair of cells is closely related to the shift ~d in the peak of their spatial

crosscorrelogram. If the two cells have precisely the same lattice parameters,

then ~d will equal the relative shift of the two cells’ grid patterns. The oblique

projection of ~d onto the two primary lattice vectors ~e1 and ~e2 produces the

components (dproj1 , dproj2 ). When the components are normalized by λ1 and λ2,

respectively, and considered modulo 1, we get the relative phase:

(δαβ1 , δαβ2 ) = (φα1 − φ
β
1 , φ

α
2 − φ

β
2 ) mod 1

= (dproj1 /λ1, d
proj
2 /λ2) mod 1

If the relative phase between the same two cells is measured in two

different conditions (such as in distinct trials), we can define the relative phase
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difference as the difference in ~δαβ between the two conditions. We will denote

this as ∆C(~δαβ), where C labels the condition. Relative phase differences

are equivalent modulo 1 and representing them on the unit lattice cell with

components in the interval [0, 1) has the consequence that values close to zero

will appear in the four corners of the unit cell (Supplementary Figure

2.6a-b). To avoid this and map values close to zero together, we remap the

unit lattice cell to the equivalent unit cell with components in the interval

[−0.5, 0.5). Thus, the relative phase difference at distinct times t1, t2 is given

by:

∆t(~δ
αβ) = f

[
(~δαβt1 − ~δ

αβ
t2 ) mod 1

]

f(~x) =


(x1 − 1, x2 − 1) if x1 ≥ 0.5 and x2 ≥ 0.5
(x1 − 1, x2) if x1 ≥ 0.5 and x2 < 0.5
(x1, x2 − 1) if x1 < 0.5 and x2 ≥ 0.5
(x1, x2) if x1 < 0.5 and x2 < 0.5

where ~δαβt1 = (δαβ1 , δαβ2 )t1 and ~δαβt2 = (δαβ1 , δαβ2 )t2 are relative phases between cells

α, β at time t1 and t2. The function f(~x) maps (x1, x2) within the interval [0, 1)

into [−0.5, 0.5) by subtracting 0.5 from each component, if that component is

greater than or equal to 0.5 (Supplementary Figure 2.6c).

For relative phase, we take the relative phase magnitude to be of the

form ||~δαβ||2 = (δαβ1 )2 + (δαβ2 )2 + δαβ1 δαβ2 and similarly for relative phase differ-

ence magnitudes.
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2.4.7 Error analysis

The error bar (ε) in Figures 2.3c,d and 2.4d,e for the ratio of two

uncertain quantities λ1/λ2 is given by the standard method of error propa-

gation given a covariance matrix Σ for the uncertainties in λ1 and λ2. Σ is

estimated via bootstrap resampling: given an original spike (discharge) map of

M total spike locations, we create 100 new spike maps of M total spikes each,

by picking spike locations from the original map one at a time, at random,

and with replacement, from the original map. Next, we use these spike maps

to generate rate maps using the same procedure as for the original, with the

original trajectory data (i.e. with a normalization given by the same visitation

frequency as the original spike map) and estimate grid parameters from the

spatial autocorrelogram with the template matching algorithm. This proce-

dure generates 100 samples of the grid parameters, from which we compute

the covariance matrix as an estimate for Σ. The error for the ratio λ1
λ2

is given

by:

λ1

λ2

± ε =
λ1

λ2

± λ1

λ2

√
Σ11

λ2
1

+
Σ22

λ2
2

− 2
Σ12

λ1λ2

The radius (r) of the red circles in Figures 2.2a,b, 2.3f, and 2.5,

signifies the measurement error of the differences across trials, in phase per

cell (Figure 2.2b) or in relative phase per cell pair (Figure 2.2a, 2.3f, and

2.5). This measurement error is estimated by applying the same bootstrapping

technique to every cell (pair), computing now the (relative) phase difference

as defined above for each bootstrap sample, and then subtracting the mean of
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sampled (relative) phase differences for each cell (pair). The error in (relative)

phase difference across (pairs of) cells is given by collapsing all the bootstrap

samples of zero-mean (relative) phase differences and fitting a 2d Gaussian

with a multiple of the identity matrix as a covariance to those samples (by

expectation-maximization algorithm). The radius in the Figures is the square

root of the estimated covariance.

2.4.8 Analysis of velocity-driven perturbation

Define cardinal direction labels as North (45◦ ∼ 135◦), West (135◦ ∼

225◦), South (225◦ ∼ 315◦), or East (315◦ ∼ 45◦). Each time point t in the

animal’s trajectory is labeled by the animal’s velocity at that time (given by

the vector difference quotient between the position at t + ∆t and t). Spikes

that occur at time t are labeled by the trajectory direction label at that time.

This produces four sets of trajectories and for each cell, four corresponding

sets of spike maps, labeled by North, South, East, and West. For each di-

rection, we generate rate maps and relative phases (as we did earlier for

the full trajectory and full spike maps). For each cell pair, we thus obtain

four “direction-labeled relative phases”, given by ~δαβdir = (~φαdir − ~φβdir) where

dir ∈ {North, South, East,West} and α, β refer to the cells. We denote

the relative phase for the full spike maps, obtained earlier, as (~δαβfull). The

“direction-labeled relative phase differences” for each cell pair are defined as

the differences between the direction-labeled relative phase and the full relative

phase (i.e. ∆dir(~δ
αβ) = ~δαβdir−~δ

αβ
full). The mean value of the direction-labeled rel-

45



ative phase difference, with the average taken over all simultaneously recorded

cell pairs, is shown in Figure 2.7c. It is written as 〈∆dir(~δ
αβ)〉αβ.

To assess whether the shifts in relative phase as a function of motion

direction are meaningful, we create a null hypothesis distribution by segment-

ing the full trajectory into continuous pieces of a length consistent with the

lengths of the continuous pieces generated in the direction-labeled trajectory

segmentation described above (the fragment length was set equal to the cor-

relation time of the animal’s heading direction; a representative value of the

heading direction correlation time across experiments is approximately 0.65

sec, and we chose 1.6 seconds to provide a window of at least two time con-

stants). However, the segmentation did not correlate with movement along a

specific direction. The segments resulting from this process were divided, ran-

domly, into 4 sets of equal size. Consider one such set of directionally mixed

or random segments, and label it “R”, in contrast to the (North, South, East,

West) labels of the directional trajectory segments. The relative phase dif-

ference for this one set of directionally mixed trajectory segments is denoted

∆R(~δαβ) = ~δαβR − ~δ
αβ
full. Averaging this relative phase difference for one set of

trajectory segments, across all simultaneously recorded cell pairs, gives one

sample of 〈∆R(~δαβ)〉αβ, which can be seen as one gray vector in Figure 2.7c.

Repeating this procedure 400 times produce the 400 different gray vectors

in Figure 2.7c. The lengths of these vectors represent the expected magni-

tude of deviation from the full phase simply due to subsampling errors from

subdividing the full trajectory into 4 sets, independent of directional effects.
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Thus, these vectors provide the null hypothesis for no directional motion ef-

fects on relative phase. We approximate the sampled distribution of vectors

〈∆R(~δαβ)〉αβ by a symmetric 2-d Gaussian with standard deviation σ2. Us-

ing this distribution, the p-value of the mean direction-labeled relative phase

differences, l = 〈∆dir(~δ
αβ)〉αβ, is given by:

p =

∫ ∞
l2

exp(− r2

2σ2
)dr

In Figure 2.7d, we test the opponency of shifts in relative phase, for

opposite movement directions, by computing the magnitude of the difference

between opposing mean labeled relative phase differences, ‖〈∆North(~δ
αβ)〉αβ −

〈∆South(~δ
αβ)〉αβ‖ and ‖〈∆West(~δ

αβ)〉αβ − 〈∆East(~δ
αβ)〉αβ‖. The magnitude of

opponency expected under the null hypothesis is given by the expected magni-

tude of the differences between the gray bars of Figure 2.7c, i.e., by averaging

‖〈∆R(~δαβ)〉iαβ−〈∆R(~δαβ)〉jαβ‖, where i and j index values of 〈∆R(~δαβ)〉αβ from

the 400 sample shown in Figure 2.7c. This gives the height of the “ran-

dom” bar in Figure 2.7d. The fraction of samples with ‖〈∆R(~δαβ)〉iαβ −

〈∆R(~δαβ)〉jαβ‖ that is larger in size than ‖〈∆North(~δ
αβ)〉αβ − 〈∆South(~δ

αβ)〉αβ‖,

gives the p-value that the direction-labeled relative phase differences can be

accounted for by the null hypothesis.

2.4.9 Analysis of relaxation from the perturbation

We tracked the mean shifts in relative phase for each cardinal direction

as a function of time to examine the dynamics of perturbation off the attractor.
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First, we used the Northward direction-labeled trajectory fragments to define

a corresponding set of time-windows to select spikes for analyzing relative

phase along that movement direction. Next, we slid the same set of time

windows forward, so that instead of being centered in time at the Northward

fragments, they were centered 1 second after the center (in time) of each

Northward fragment, and so on, in steps of 1 second. We did the same in the

opposite direction, sliding the windows back. For each position of the windows,

we computed the relative phase for spikes obtained from those windows, and

subtracted from it relative phase obtained from the full trajectory. For each

time-shift, we averaged the result across all 223 cell pairs in our dataset.

2.4.10 Analysis of stochastic dynamics

To investigate the variance of spiking in grid cells, we compute the

interspike interval (ISI) distribution using firing times {τi} that are rescaled

from the original firing times {ti} via τi =
∫ ti

0
λ(t)dt, where λ(t) is the time

varying firing rate of the cell. λ(t) was approximated by sliding a rectangular

window function along the spike train. The coefficient of variation (CV) in

Supplementary Figure 2.3, Left was derived from the rescaled ISI with

∆t = 0.5 seconds. The CV as a function of window size for 4 representative

cells is shown in Supplementary Figure 2.3, Right.
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Figure S2.1: Standard and modified (our method) gridness scores for
anisotropic (non-equilateral) triangular grid cell responses. (a) Left:
A sample autocorrelogram is characterized by a non-equilateral triangular lat-
tice. The nearest six local peaks (black asterisks) are circumscribed by the
best-fit (black) ellipse. Middle: An annulus containing the nearest six local
peaks (Ri = 0.5r, Ro = 1.5r; r is the average distance from the center to the six
nearest peaks). Right: The Pearson correlation between the indicated annulus
and the same annulus rotated by an angle in the interval [0, π] as a function
of angle. Gridness score is marked above the curve. (b) Left: the autocorrelo-
gram (as in a). Middle: a choice of annulus with Ri fixed at 0.5r and where Ro

is increased from r + 1(cm) in steps of 1(cm). R∗o is chosen as the value that
produces the maximum gridness score (= 0.01). Right: As above. (c) Left:
The transformed autocorrelogram with the six nearest peaks circumscribed by
a circle. Middle: The annulus that resulted in the maximum gridness score
(=1.51) over the set of annuli with Ri ∈ [0.5r, r] and Ro ∈ [r+ 1, 1.5r]. Right:
As above.
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Figure S2.2-1: Frequency distribution of modified gridness/U2 scores
for the entire sample of MEC cells from the datasets analyzed in
this paper. (a) Cells from Figs. 1, 2, and 7; (b) cells from Figure
2.3, and (c) cells from Figs. 4 and 5. The red line indicates our gridness
threshold, which is equal to zero. Insets show spatial autocorrelograms of
cells that represent non-grid cells (peak of the distribution on the left of the
threshold), cells whose gridness score is close to the threshold, and cells above
threshold (with a gridness score around 1.0). (d) The combined distribution
of gridness scores for all previous samples. Note: Many cells in a were recorded
from deep layers (III, V, VI) of MEC, and had grid scores lower than threshold.

Figure S2.2-2: Histogram of head-directional tuning for all cells in Supple-
mentary Figure 2.2-1a that obtained higher grid score than the threshold.
Directional tuning is expressed by Watson’s U2 score.
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Figure S2.3: Mean-corrected coefficient of variation (CV) analysis to
assess the stochasticity of grid cell spike trains. Left column: The
time-varying firing rates of some example grid cells (N=4; inset), generated
by sliding a window over each cell’s spike train. The window is a boxcar (i.e.,
zero everwhere except for the interval [t, t + ∆t), where it is one; ∆t is the
window length and t is slid from t = 0 to T − ∆t, where T is the length of
the recording). Shown is the firing rate computed with ∆t = 0.5 sec. Right
column: Coefficient of variation (CV) for the interspike intervals, with spike
times rescaled according to a windowed firing rate (as in Left), as a function
of window size (see Online Methods). Inset: magnified representation of CV
for windows lengths of 0 to 5 seconds. Note that the CV exceeds 1 for all cells
for windows of length 600 ms and greater, and is considerable in size (exceeds
0.5) even for windows of length 300 ms. (ref 1: Softky, W. R. & Koch, C. The
highly irregular firing of cortical cells in inconsistent with temporal integration
of random EPSPs. J. Neurosci. 13, 334350 (1993). ref 2: Shadlen, M. N. &
Newsome, W. T. Noise, neural codes and cortical organization. Curr. Opin.
Neurobiol. 4, 569-579 (1994)).

51



trial 2 trial 3 trial 4 trial 5

trial 2 trial 3 trial 4 trial 5

trial 2 trial 3 trial 4 trial 5

trial 1

Rescaling (cell 1)Rescaling (cell 2)

1
.0

2
.0

1
.0

2
.0

1
.0

2
.0

Ratio

D
a

y
 1

(1
 c

e
ll p

a
ir)

D
a

y
 3

(6
 c

e
ll p

a
irs

)

D
a

y
 4

(1
0

 c
e

ll p
a

irs
)

D
a

y
 5

(3
 c

e
ll p

a
irs

)

D
a

y
 6

(1
 c

e
ll p

a
ir)

D
a

y
 7

(3
 c

e
ll p

a
irs

)

Figure S2.4: A summary of all cell pairs in novel environments, an-
alyzed as in Figure 2.4c-e. Color scheme as in Figs. 3c and 4d,e. Grid
parameters for sets of cells (top: cell 1; middle: cell 2) normalized to the cor-
responding value on the first trial of the day (familiar environment), and ratio
between the corresponding cells (aligned vertically) of each grid parameter for
each trial (bottom) across all 24 cell pairs. Each day shows a set of parameters
for cells recorded that day, similar to those in Figure 2.3c,d (e.g. day 3 has
6 cell pairs and six groups of parameters; the recorded cells on different days
are different, but from the same area of one animal). A few trials are omitted
due to the low gridness score of the cell’s response. Note that “cell 1” and
“cell 2” are not specific cells, i.e. each row does not represent the same cell
across days; however, each column does represent the same cell pair.
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Figure S2.5: Stable grid parameter ratios even when grids are
rescaled. (a) Histogram (normalized) of grid parameter rescalings (i.e., grid
parameter ratios for each parameter and each cell, taken across time/trials)
for all cells in Figure 2.3f (gray), with a normalized histogram of error mag-
nitudes for each measurement (red). Parameter rescalings are plotted by sub-
tracting one, and taking the absolute value, to compare against error mag-
nitudes. Solid lines: best-fit exponential distributions (α · eαx). The width
1/αdata of the parameter rescaling distribution is significantly larger than the
width 1/αnull of the error distribution (αdata < αnull;P � 10−4, F-test for
equality of variances of two samples). (b) Grid parameter ratios across time
for all cell pairs (i.e., the ratio taken across time/trials of the ratio between
cells of each parameter and each cell pair) from Figure 2.3f : here, the width
of the two distributions is not significantly different: αdata is not significantly
different from αnull (P = 0.57 � 0.05, F-test for equality of variances of two
samples), showing that the grid parameter ratios between neighboring cell
pairs remain significantly close to one.
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Figure S2.6: Periodicity of the phase variable and how phase is com-
puted. Exemplar spatial phases adjacent to zero in (a) regular hexagonal
unit cell, (b) rhomboidal unit cell mapped from a through mod 1, and (c)
rhomboidal unit cell ranging from -0.5 to 0.5 by remapping phases in b to the
origin. Each distinct symbol and color represents an identical spatial phase
across transformed unit cells. Note that phases distant from the origin ap-
proximately by one grid period (circles and triangles) in a are mapped into
the neighborhood of origin in c.
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Chapter 3

Grid cell responses in 1D environments

assessed as slices through a 2D lattice

Grid cells, defined by their striking periodic spatial responses in open

2D arenas, appear to respond differently on 1D tracks: The multiple response

fields are not periodically arranged, peak amplitudes vary across fields, and

the mean spacing between fields is larger than in 2D environments. We ask

whether such 1D responses are consistent with the system’s 2D dynamics,

or whether they indicate that the system is in a different dynamical state.

Combining analytical and numerical methods, we show that individual 1D re-

sponses are consistent with a linear slice through an internal 2D triangular

lattice. Further, the 1D responses of comodular cells are well-described by

parallel slices, and the offsets in the starting points of the 1D slices can pre-

dict the measured 2D relative spatial phase between the cells. These results

show that the network remains in fundamentally the same dynamical regime,

suggesting a common computation during both types of navigation behavior.
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3.1 Introduction

Over the course of navigation in real environments, animals traverse

open fields and run along paths defined by natural trails and boundaries such as

underground burrow systems, streams, and rock faces. If grid cells demarcate

spatial coordinates in 2D open fields, as seems possible, it is important to learn

whether they perform a similar function during navigation along stereotyped

1D paths.

Arena experiments in the lab mimic open field exploration, while 1D

track experiments approximate runs along trails. In arenas, individual grid

cells of the mammalian entorhinal cortex exhibit spatially periodic tuning,

in the form of increased firing at every vertex of a virtual triangular lattice

overlaid on the floor of the enclosure [41] (Figure 3.1A-B). As a population,

cells from nearby tetrodes have practically identical spatial firing patterns, or

spatial tuning curves, up to a global phase shift (Figure 3.1C). The shift in

phase of the spatial response between cell pairs, also known as the relative

phase, remains stable across time and environmental conditions [33, 102].

Many grid cells also exhibit spatially specific responses when recorded

on 1D tracks of various shapes [25, 101, 69, 39, 60]. On linear 1D tracks, the

spatial tuning curves of grid cells consist of multiple firing fields with appar-

ently unequal spacing, Figure 3.1D-E. The mean spacing between these firing

fields is typically several times larger than in the same cell’s 2D response. At

present, there is little understanding of the detailed structure of these 1D re-

sponses. In particular, it is unclear whether there is a relationship between the
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characteristic properties of 2D grid cell recordings – their hexagonal pattern-

ing, their similar tuning up to rigid shifts within a module – and the observed

1D responses. One wonders whether the cells are continuing to perform the

same underlying computation when the animals navigate in environments of

dimension different from two [51, 101, 69, 62, 45, 39, 35]. Here we seek to

address this question and elucidate whether, and to what extent, the 1D grid

response reflects an underlying pattern similar to that found in 2D.

In this paper, we consider the hypothesis that grid cell responses on

linear 1D tracks are generated by slicing linearly through an underlying 2D

triangular lattice [27, 51]. We begin by considering what this slice hypothe-

sis predicts for the Fourier transform and power spectrum of the 1D spatial

responses of cells. We present analytical methods and numerical refinements

for extracting the parameters of the hypothetical slice of an underlying 2D

grid given the power spectrum of the recorded 1D response, and show that

the resulting slices can result in excellent fits to the 1D spatial responses. We

show that groups of cells putatively from the same module [87] and recorded

simultaneously in 1D have substantially similar power spectra, despite the

apparent dissimilarity of their spatial responses, and are well-fit by parallel

slices through a triangular lattice. The predicted 2D phase offsets between

cells, based purely on the 1D responses, closely match the recorded 2D phase

offsets for these cells. Finally, while the spatial tuning of the 1D response

can gradually reshape over the course of an experiment, this remapping can

be interpreted as a drift in the slice parameters, and slice drift appears to
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occur in tandem across cells from the same putative network, preserving cell-

cell relationships. We conclude that the data strongly support the hypothesis

that 1D responses can be generated by slicing through a regular underlying

2D triangular lattice. Moreover, the group properties of cells from the same

module in 1D environments are entirely consistent with the low-dimensional

group properties of the same cells during 2D exploration, indicating that the

system remains in the same dynamical regime during navigation in 2D and 1D

environments.

3.2 Results

3.2.1 The Fourier power spectral density reveals underlying peri-
odic structure

We find that the 1D tuning curves of simultaneously recorded grid cells

– here recorded on 1D virtual tracks [27] – while not periodic and not nec-

essarily related to each other by simple shifts (Figures 3.1A-F), nevertheless

exhibit a shared “fingerprint” that hints of an underlying periodic structure.

To see this, first consider the 2D responses of these cells, in which this finger-

print — the power spectral density (PSD) of the spatial response — is easy to

understand and interpret (Figure 3.1G). The periodic 2D response of a grid

cell generates six discrete peaks forming a hexagon around the origin in the

PSD (these peaks form part of a triangular lattice in frequency space that is

“dual” to the spatial triangular lattice, see Figure S3.1). The loss of phase in-

formation that results when squaring the Fourier spectrum to obtain the PSD
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means that neighboring cells, which share common grid response parameters

up to phase offsets [102], will exhibit the same spectra – all the spectral peak

locations are matched (Figure 3.1G). Intriguingly, the PSDs of the 1D spatial

responses of grid cells putatively from the same module also appear similar

(Figure 3.1H). We next explore this phenomenon and its possible implications

for how 1D grid cell responses are generated.

The PSD of a generic linear slice through an idealized 2D triangular

lattice has exactly three dominant peaks of equal height (Figures 3.2A-2C). As

the angle of the slice varies, the locations of these three peaks shift (Figures

3.2A-2C). These peak locations are independent of the origin (or spatial phase)

of the linear slice for generic slices, thus parallel 1D lattice slices have nearly

identical PSDs (Figures 3.2D-2F). Non-generic slices are those parallel to one

of the primary lattice vectors (Figure 3.2B) or at the half-lattice angle of 30◦;

in these cases the PSD is predicted to exhibit only one or two major peaks,

respectively (Figure 3.2C). In short, linear slices through a 2D lattice should

exhibit 1, 2, or (most commonly) 3 peaks in their PSDs. We will quantify the

degree to which the mass of a PSD is concentrated in 3 or fewer peaks by a

three-peakiness score (Experimental Procedures).

This frequency-space characterization provides a concise description of

the particular heights, spacing, and ordering of firing fields in a lattice slice,

and of the constrained peak structure of the corresponding PSD. To illustrate

the specific nature of these constraints, we compare lattice slices to two sets

of statistically matched random controls: Given a 1D response, we generate
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corresponding gap-randomized controls by randomly shuffling the order of the

firing fields then assigning the fields new positions chosen randomly from a uni-

form distribution (Figure S3.2 and Experimental Procedures). We generate

gap-shuffled controls by simply shuffling the gaps between fields (Figure S3.2

and Experimental Procedures). Examples of these two random controls and

their PSDs can be seen in Figure 3.2B (reddish-gray and bluish-gray, respec-

tively), with PSDs in Figure 3.2C. The tuning curves for both random controls

can look very similar to slices, but generically their PSDs differ: they have vari-

able numbers of PSD peaks, and usually more than three (Figures 3.2C and

S3.3; three-peakiness score p3=0.63 for the gap-randomized and p3=0.69 for

the gap-shuffled controls, compared to p3 = 1 for the lattice slices, Experi-

mental Procedures). We will return to these controls to statistically test our

conclusions throughout this work.

It is useful to note that the 1D PSD of a 1D slice through a 2D lattice

is equivalent to a 1D slice taken at the same angle starting at the origin of the

2D PSD of the 2D lattice (Figures 3.2G-2H and Experimental Procedures).

This equivalence allows us to predict the PSD of a 1D slice at any angle by

simply projecting the three closest-to-the-origin spectral peaks from the 2D

PSD onto a line running through the origin at the desired angle (Figures

3.2G-2H). Conversely, given the locations of two major PSD peaks from the

1D response, we can solve analytically for the angle of the slice (Figure S3.4

and Experimental Procedures). The slice angle obtained in this way is exact

if the 1D slice extends to infinity.
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Using similar techniques (Figure S3.4 and Experimental Procedures),

we can infer the scale factor of a cell, which is the ratio of the inferred 2D lattice

period underlying the 1D response to the recorded period in 2D enclosures.

From the Fourier transform of the 1D response, we can furthermore deduce

the starting point or 2D spatial phase of the slice (Figure 3.2D) (Experimental

Procedures). By taking the difference of the inferred 2D spatial phases for a

pair of cells, we can predict their 2D relative phase. We can alternatively, and

more directly, estimate the 2D relative phase for a cell pair through the Fourier

transform of the cross-correlation of their 1D spatial responses (Experimental

Procedures). These four parameters, slice angle (θ), scale factor (α), and 2D

phase (~φ), fully describe a semi-infinite linear slice that starts at the given

phase within a unit cell in the canonical 2D grid and continues out to infinity

at the given angle (like the schematic slices in Figure 3.2D). Once the scale

factor has been determined, the length of the slice through the 2D grid is fully

determined by the scale factor and the length of the track run by the animal.

Finite size effects induce uncertainty in the inferred slice parameters

(Figures S5-S6), as does noise in the neural response (Figures S5 and S7). In

the presence of such uncertainty, supplementing the analytical estimates with

numerical optimization can result in improved parameter estimates (Figures

S5-S8 and Experimental Procedures).

In summary, the mathematical duality between the spatial response

domain and the Fourier spectral domain for slices through regular lattices

allows us to determine, up to estimation uncertainty, whether the 1D spatial
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responses are consistent with an underlying 2D lattice and if so, to infer the

parameters of the slice relative to the lattice.

3.2.2 The distribution of gaps in a 1D response reveals underlying
periodic structure

A second signature of lattice slices, complementary to the 1D PSD, is

the distribution of the gaps between 1D firing fields. A linear slice through a

2D lattice cuts across several bumps, with a distinct sequence of gaps (spacing

between bumps) depending on its angle (Figure 3.3A-B). The smallest gap

occurs when the slice hits adjacent bumps in the 2D lattice; a larger gap

occurs when the slice misses a 2D bump and hits the next-nearest bump,

and so on. Thus, the set of possible gaps is restricted to the set of distances

between a reference bump and all other bumps in the 2D lattice that can be

reached by a straight line that does not cross any other bumps. By contrast,

the gaps in gap-randomized controls (Figure 3.3C) can be of arbitrary size;

thus, the distribution of gaps is unimodal and smooth (Figure 3.3D, bottom),

rather than multimodal with a few discrete peaks as predicted for slices (Figure

3.3D, top). (The gap-shuffled controls preserve the full gap distribution of the

original data by construction.)

Up to an overall scale factor to account for the lattice period, the gaps

in lattice slices are entirely specified by the geometry of the 2D lattice: the

relative lengths of lines connecting different vertices in the lattice. Thus, the

ratios between gaps will exhibit relationships characteristic of an underlying
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triangular lattice: 1/
√

7 ≈ 0.38; 1/
√

3 ≈ 0.58;
√

3/7 ≈ 0.65; and so on (Figure

3.3E), and will be the same across modules with different spatial tuning periods

and orientations, and different slice angles, so long as the underlying grid

geometry is the same.

The distribution of gaps collected by pooling across 100 slices of an

idealized triangular lattice with varying angle and starting position (phase) is

shown in Figure 3.3E (bottom; the lattice period is a = 20 cm). The gaps

(Figure 3.3D, top) from the two slices of Figures 3.3A-3B are simply samples

from this gap distribution (Figure 3.3E), and a particular slice may sample

only a subset of possible gaps from the lattice. To take an extreme example, a

slice along one of the primary lattice vectors samples only the nearest-neighbor

bump distances in the 2D lattice, thus the gap distribution consists of a single

peak; Figure S3.9).

It is possible to extract gaps on a trial-by-trial basis from neural record-

ings then pool the gap samples across trials. Even if the 1D firing field locations

drift from trial to trial (Figure S3.10), the gaps in every trial will be drawn

from the same small set governed by the 2D lattice geometry, assuming that all

trials are linear (but possibly changing) slices through that lattice. Moreover,

because gap ratios are independent of grid orientation, grid period and scale

factor, it should be possible to pool gap ratios across modules. By contrast,

PSDs depend on slice angle and cannot be similarly pooled. On the other

hand, the gap analysis focuses on adjacent bumps, while the PSD contains

information about relationships between all bumps, not just adjacent ones.
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Thus, gap analysis and PSDs provide complementary measures of a slice.

3.2.3 Grid cell responses on 1D virtual tracks are well-fit by linear
slices through a triangular lattice

We applied the methods described above to the 1D virtual track re-

sponses of 25 neurons identified as well-isolated grid cells with stable 1D spa-

tial responses from the experimental dataset (see Experimental Procedures).

Examples of the 1D response are shown in Figure 3.4A (three cells from dif-

ferent experiments), with 30-trial firing rate averages in Figure 3.4B (black

curves). The PSDs of the spatial tuning curves in Figure 3.4B (Figure 3.4C,

black) exhibit three major peaks (p3 = 0.95, 0.99, and 0.66, respectively), as

expected for lattice slices.

Our Fourier-based slice analysis method (Experimental Procedures) re-

turned slice parameters (inset values, Figures 3.4B) that produced the best fit

(in the sense of Pearson’s correlation coefficient) to the measured 1D spatial

tuning curve. For each neuron, the slice angle was confined (without loss of

generality) to the interval [0◦, 30◦], the phase could fall anywhere within a pre-

defined unit cell of the lattice, and the scale factor could take values between

1 and 8 (Experimental Procedures).

The 1D tuning curves predicted by the slice hypothesis (Figure 3.4B,

green) provide excellent matches to the recorded 1D spatial tuning curves

(average correlation value of 0.92 and average p-value of 0.04 for these three

cells). The best-slice PSDs, shown superimposed on the data PSDs (Figure
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3.4C, green), are also very close to the data PSDs. The gap histogram obtained

from pooling gaps between adjacent bursts across individual trials (Figure

3.4D; see Experimental Procedures) displays a small set of distinct peaks.

Moreover, most gaps and gap ratios (inset numerical values, Figure 3.4D) are

strikingly similar to (within a few percent of) the values predicted for a regular

triangular lattice (Figure 3.3E). By contrast, the predicted gap distribution

for gap-randomized controls is a smooth, broad unimodal distribution (Figure

3.3D, bottom).

We augment our virtual track recordings with data obtained by Brun

and colleagues on a long linear 1D track ([15], data shared by the Moser

laboratory through www.ntnu.edu/kavli/research/grid-cell-data and personal

exchange). The track is punctuated by discrete visuospatial landmarks like

doorways, and the spatial response statistics of a majority of cells change

visibly roughly halfway into the track and persist to the track’s end in most of

the data. For this reason, we analyze responses on the first half of the linear

track (Figure 3.4E).

Applying the same analysis as in Figures 3.4B-D to two cells from

[15] yields striking agreement between their track responses and the linear

slice hypothesis (average slice correlation value of 0.89, and average p-value of

5×10−4 for the cell pair; the p-values, computed from the correlation coefficient

and the number of above-threshold firing fields, are even more significant than

for our virtual track data because of the greater track length and consequently

larger number of fields), Figure 3.4F (green).
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The longer track is also an opportunity to perform cross-validated pre-

diction of 1D spatial tuning in grid cells: even after truncation of half the

track, the remaining ≈ 8 meters is nevertheless roughly twice as long as the

virtual tracks. When we fit the spatial response from the first four meters

of the long track to a lattice slice, that slice provided a very good prediction

of spatial tuning on the withheld four meters (Figure 3.4F, cyan). When the

analytical slice prediction on the withheld data was good, then numerical local

optimization of that solution from the first four meters of track produced even

better prediction, indicating that the optimization step yields more accurate

descriptions of the underlying slice.

3.2.4 Statistical analysis of slice hypothesis across virtual track
data

As we have seen, the 1D responses of some grid cells are extremely

well-fit by the slice hypothesis: the average fit correlation coefficients of the

cells in Figure 3.4A are high (〈ρ〉 = 0.92), the PSDs are largely concentrated

in three peaks (〈p3〉 = 0.87), and the gap distribution has peaks close to the

predicted values for slices of triangular lattices.

To what extent is it generally true that the 1D responses of grid cells

in our dataset can be well-described by slices? To answer this question, we

focus closely on dataset-wide statistical analyses of cells recorded on the vir-

tual track, because there we possess 2D recordings, from which we can extract

ground-truth information on whether the cells are grid cells, on their 2D peri-
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ods, and their co-modularity.

We generate the best-fit slice for each cell in the dataset (e.g., Figure

3.5A, top row, green; fit in black), together with large samples of corresponding

gap-randomized and gap-shuffled controls (one sample of each shown in Figure

3.5A, middle row, reddish-gray and bluish-gray, respectively) and their best-fit

slices (green). We can now compare metrics of the cell against the metrics of

its two random controls, Figure 3.5A (bottom row). Typically, the correlation

coefficients between the data and a slice are well to the right of those for the

two matched control distributions; the same is true for the three-peakiness

scores (Figure 3.5A, bottom row). We standardize the correlation score and

PSD three-peakiness score of each cell (by subtracting the mean and dividing

by the standard deviation of the distributions of these scores from matched

controls, illustrated in Figure 3.5A, bottom row), so that the standardized

scores reflect how many standard deviations away the data lies from the control

distributions. Standardization allows us to collapse together results across

all grid cells in the dataset. The resulting quality-of-fit distributions for the

dataset are significantly to the right of both matched controls (Figure 3.5B;

testing to see whether the data are drawn from a distribution with zero mean,

as in the control distributions, yields p = 3 × 10−4; t = 4.28; df = 24 and

2 × 10−4; t = 4.49; df = 24, respectively, on a one-sample t-test), as are the

three-peakiness scores (Figure 3.5C; p = 1 × 10−3; t = 3.65; df = 24 and

8 × 10−4; t = 3.85; df = 24 respectively; one-sample t-test). (Note that the

controls are extremely conservative (not overly random), in that they preserve
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many higher-order statistics of the data; this is particularly true for non-generic

slice angles where the distribution of gaps is very narrow and thus the random

controls closely resemble the original slice (see Figure S3.3); nevertheless, the

slice hypothesis fits the data significantly better than it does the controls.)

Finally, the histogram of gaps, normalized by the inferred period (scale

factor times 2D grid period) for each cell and pooled across all cells in the

dataset, yields a distribution with a small set of distinct peaks (Figure 3.5D).

The peaks in the gap distribution lie very close to the predicted values for an

underlying regular triangular lattice (see Figure 3.3E). The slight, systematic

leftward shift in all the peaks relative to the prediction can be attributed to

the fact that each firing field has a finite width, and so the measured spacing

from field to field will be reduced by an amount proportional to the field width.

Lacking access to 2D data for cells recorded on 1D real tracks [15], we

instead identified putative grid cells from the 1D responses alone by applying a

modified version of criteria used in [27] (Experimental Procedures). An anal-

ysis of all the cells that passed these criteria (40 out of 97 cells, or 41 percent)

yields excellent agreement with results reported here: The 1D responses of pu-

tative grid cells are well-fit by the slice hypothesis (the average fit-quality on

these responses is 0.72, close to the mean for the virtual track data in Figure

3.6) and are better-fit by it than are the statistically matched controls (Figure

S3.11A-C); they exhibit a gap distribution consistent with slicing through a

regular triangular lattice (Figure S3.11D); and the slice parameters tend to

cluster into groups, indicating the presence of comodular cells with similar
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slice parameters (Figure S3.11E).

3.2.5 Cell-cell relationships: pairs from the same putative module
are well-fit by parallel slices

We next examine relationships in the 1D slice parameters of comodular

cells, defined as simultaneously recorded cells deemed to be from the same

module based on the similarity of their 2D responses. If the 1D responses

of different cells from a module were generated by the coherent displacement

(driven by animal motion) of an underlying 2D population pattern, we would

expect their 1D tuning to correspond to parallel slices of the 2D population

pattern with the same scale factor. As a consequence, their PSDs should also

look similar (prediction in Figures 3.2D-F). Indeed, the scale factors, slice

angles, and PSDs of comodular cells can be very similar, as we can see for an

example cell pair on the virtual linear track and another pair on a long linear

track (Figure 3.6A-D).

However, the best-fit slice parameters obtained individually for each

cell in the dataset are not always very similar for comodular cells (Figure

3.6E, left). One reason for this discrepancy is the existence of a degeneracy in

the solution for the best-fit slice of each cell. Because of response variability

and the finite length of the track, there are sometimes two or three specific,

discrete good slice solutions for a cell (see Experimental Procedures). These

solutions are not near each other in parameter space because the relationship

between fit quality and slice parameters is non-convex – they tend to take the
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form of well-separated, similarly deep local optima in the solution landscape

and correspond to a large step in slice angle and scale factor. Thus, there

is an inherent uncertainty in estimating the best slice parameters and even

intrinsically parallel slices may not generate similar parameter estimates if we

choose different minima for each. In summary, there can be a many-to-one

mapping from slice parameters to fit quality, and we may in some cases be

picking the “wrong” slice for some cells when comparing across cell pairs.

The question therefore is whether there exist parallel slice solutions

for comodular cells that also yield good fits. We refit cells with the same

fitting procedure as above, but after a preliminary step that enforces con-

sistency in which PSD peaks are selected across comodular cells to predict

their slice parameters (Experimental Procedures and Figure S3.12). Not too

surprisingly, the slice parameters for comodular cells are now well-clustered

(Figure 3.6E, right). However, imposing constraints on a fit will generally

worsen the quality of the fit, especially if the constraints are not consistent

with structure in the data; in our case, we are forcing consistency across sets

of cells instead of finding the globally best-fit solution for each cell as before,

thus our fits are guaranteed to be worse. Indeed, there is a change in the

mean of the quality-of-fit distribution when cell fits are individually optimized

(Figure 3.6F, gray histogram) versus when they are fit consistently (Figure

3.6F, white histogram). Notably, however, the drop in quality of fit is only

slight (the difference in means between the individually optimized and con-

strained fit-quality distributions is not significant, p = 0.2; t=1.30; df=48;
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paired t-test) and imposing consistency still produces slice fits that are much

better than in the controls (p = 2 × 10−3; t = 3.72; df = 24 for average

fit quality after imposing consistency versus matched gap-randomized controls

and p = 1× 10−3; t = 3.68; df = 24 versus gap-shuffled controls; one-sample

t-test). We conclude that the constraint is consistent with the underlying

structure of the data: that is, comodular cells in 2D are well-described by par-

allel grid slices through a common 2D grid. We will see below that a parallel

slice description further leads to accurate prediction from the 1D track data

of the 2D spatial tuning phase relationships between comodular cells.

Finally, the angle selected by the grid networks for generating a 1D

response is well-distributed relative to the underlying 2D lattice: there does

not appear to be a preferred slice angle for generating 1D responses (Figure

3.6G).

3.2.6 Cell-cell relationships: 2D relative phases are predicted by
1D slice fits

If the 2D response of grid cells is generated by rigidly translating an

underlying population activity pattern according to animal movements, then

the phase offset in the 2D spatial tuning of a pair of comodular cells (called

their relative phase) should equal their phase offset with respect to the un-

derlying population pattern. If the 1D response is generated in the same way

(but as a special case where the rigid translations occur along a straight line),

the same should be true, and the 2D phase offset between a pair of predicted
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1D slices should equal the measured 2D relative phase. A stringent test of the

slice hypothesis, then, is to ask whether a predicted 2D relative phase from

fitting slices to the 1D tuning curves of grid cells on tracks agrees with the 2D

relative phase measured in box environments.

The predicted 2D relative phase from the slice analysis is the offset in

the starting points of the two slices within a unit cell of the unit lattice (Figure

3.7A, inset; there is 12-fold degeneracy in the relative phase prediction intrinsic

to the symmetry of the lattice, see Figure S3.13 and Experimental Procedures

for how we obtain a unique solution and also apply similar procedures to

generate fair controls). We generate 2D relative phase predictions from 1D

track responses for all pairs of comodular cells (Experimental Procedures)

and test them against the measured 2D relative phases obtained from 2D

trajectories in boxes. We find very good agreement between the 2D relative

phases predicted from the 1D slice analysis (under the consistency-imposed

slice fits described above) and those measured in 2D (Figure 3.7B, left), up to

the estimation uncertainty inherent to the prediction due to spiking variability

(estimated by bootstrap sampling of spikes, Experimental Procedures): in

other words, the predicted and measured 2D phases are not distinguishably

different from one another (N = 25 total comodular pairs from the 3 comodular

pairs, 2 comodular quadruples, and 1 comodular quintuple in the dataset).

The errors in predicted relative phase (predictions generated pairwise)

are significantly smaller than if guessed at random (p = 10−5; χ = 4.62; df =

24 from a chi-square test; the errors in the random predictions are themselves
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not large because each random pair is also given the benefit of a 12-fold degen-

eracy in solutions, as noted above; see Figure S3.13 and Experimental Proce-

dures). If the relative phase predictions for cells from a comodular K-tuple are

generated by selecting a common solution domain out of the 12-fold degenerate

domains across all (K choose 2) pairs (rather than allowing a different choice

for each pair as above), the 2D relative phase prediction error barely increases;

importantly, the random predictions become worse because they are subject to

the same constraint (see Figure S3.13 and Experimental Procedures), leading

to a greater separation between the predicted relative phase errors and errors

from random guessing (p = 6 × 10−9; χ = 2.26; df = 24 from a chi-square

test).

The 1D slice analysis prediction of the phase offset between cells yields

substantially more information about the 2D relative phase vector from 1D

track data than can be obtained from the Pearson cross-correlation of the

1D responses (Figure 3.7C). The latter is a scalar measure that provides no

information about 2D relative phase beyond its magnitude. (On the other

hand, if the goal is to predict only the magnitude of 2D relative phase from

the 1D data, Pearson cross-correlation and slice analysis yield comparable

results, Figure S3.14).
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3.2.7 Grid expansion from 2D real environments to 1D real and
virtual environments

The spatial tuning period of grid cells expands ≈ 4-fold in going from

2D real open fields to 1D virtual tracks (Figure 3.6E). What factors contribute

to this expansion? One factor is the move from real to virtual environments:

the same cell, recorded first in 2D real open fields then in 2D virtual reality,

undergoes a ≈ 2.5-fold expansion in its spatial tuning period [3]. Nevertheless,

nearly 40% of the expansion remains unexplained by this factor. We hypoth-

esize that even within real environments, the move from 2D to 1D induces

a change in period. This possibility was already noted in [15], but the 1D

period estimation methods used, it was also observed, might overestimate the

1D period because of the propensity of grid cells to entirely “miss” fields, or

fail to fire in a field. Thus, it remained unclear if there is an expansion in

going from 2D to 1D.

The slice hypothesis is not sensitive to missed fields: the PSD method

and especially the gap distribution reveal the underlying grid period even with

missed fields: missed fields will reduce the height of gap distribution at the

peak corresponding to the smallest gap, but so long as that peak is present, it

provides a good estimate of period. Moreover, inferring 2D parameters from

1D tracks using the slice hypothesis provides more information than gained

by 1D correlation analyses. Using the slice method, therefore, it is possible

to more closely answer the question of 2D to 1D grid expansion. We estimate

the 2D spatial tuning periods of cells based on their dorsoventral locations [15]
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(Figure S3.15A) and compare these to the inferred 2D lattice periods under-

lying 1D track runs (Figure S3.15B). The 2D lattice period during navigation

on real 1D tracks expands by a factor of ≈ 2 (Figure S3.15C) relative to that

for familiar 2D enclosures. These two factors, from real to virtual and 2D to

1D, together explain the overall expansion (scale factor) we find between 2D

real and 1D virtual environments. Later, we will discuss the implications of

these expansions and other findings for grid cell mechanism.

3.2.8 Shifting 1D responses may be consistent with drifting slices

Occasionally, we observed systematic shifts across trials in the 1D spa-

tial tuning of cells, Figure 3.8A. Averaging over trials in such cases yields

a spatial tuning curve with broader firing bumps, extra bumps, and lower a

signal-to-noise ratio; indeed, this pair of cells was responsible for some of the

worse relative phase predictions and slice fits in previous figures.

The single trial responses during drift, however, do not appear to dif-

fer statistically from trials in which there is little drift. While it is difficult

in general to perform statistical tests and the PSD analysis to extract slice

parameters on rapidly drifting responses, on cells with moderate drift (Fig-

ure 3.8A) we may average small sets of adjacent trials and perform a more

temporally resolved analysis. Our aim is to determine whether the drifting

response can still be described by the slice hypothesis locally in time, so that

each small group of trials is well-described as a slice, but more separated trials

are described by slices with different parameters.
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We first generate a gap histogram, Figure 3.8B, which we know should

be invariant to changes in slice angle and phase, if the response is generated

from a 2D lattice with invariant scale. Notice that the distribution has a few

distinct peaks. The locations of the peaks (Figure 3.8B, green), scaled by

the location of the third peak, closely coincide with the predicted ratios for a

triangular lattice.

The PSDs of the two cells over small block of trials (5-trial averages),

Figure 3.8C, are quite similar, even though the PSD of each cell changes con-

siderably over trials. This indicates that the slice parameters of both cells are

similar to each other locally in time, even as the slice parameters change over

time. These PSDs tend to have more than three large peaks, an indication

that, if the slice hypothesis is true, the slice has already drifted over the course

of the 5-trial average (the PSD over a sum of drifting slices is the sum of the

PSDs of those different slices).

Finally, we directly fit slices to 5-trial moving window average firing

rates (with a 1-trial shift between windows) of the two cells, Figure 3.8D.

We find that the best-fit slice solutions have a constant angle and scale-factor

across trials (Figure 3.8D, rows 1-2). The main change across trials is in the 2D

phases of the slices (Figure 3.8D, rows 3-4). Note that the quality of fit does not

vary substantially over trials despite the drift in firing patterns (Figure 3.8E,

dark red and blue), and remains reasonably high despite the smaller SNR in

the 5-trial averaged firing rates (the SNR in the spatial responses from 30-trial

averages over non-drifting responses is substantially higher), suggesting that

76



the slice hypothesis is equally valid locally in time in this set of drifting trials

as it is for cells that exhibit little drift. By way of control, slices 5 degrees

and 10 degrees away from the optimal slice produce much poorer fit quality

(Figure 3.8E, pale curves).

For visualization, we plot the moving slices directly on the underlying

2D lattice (Figure 3.8F). Note that the drift in slice parameters is largely co-

herent for both cells (the slices drift roughly in parallel with each other, Figure

3.8D). The predicted relative phase from the 1D responses, generated in this

time-resolved way from slice fits, remains unchanged across trials up to the un-

certainty inherent in the noisy spiking responses (Figure 3.8G, different black

triangles for the moving 5-trial window averages; red circle is the bootstrap

estimation uncertainty from spikes), and all these estimates are close to the

recorded relative phase from 2D environments (Figure 3.8G, black circle).

While the drift in slice parameters across trials for this pair is mostly

confined to the slice phase, in other experiments the drift can be in angle or

some combination of slice parameters (data not shown).

3.3 Discussion

3.3.1 Summary of findings

We characterized the responses of grid cells on 1D tracks based on the

analytical properties of the Fourier transform of linear slices through regular

lattices. In previous work, it was noted that spatially periodic 2D responses

should consist of only a few Fourier components, and in particular a triangu-
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lar lattice should consist of three Fourier components corresponding to plane

waves at 60◦ angles [53]. We established that despite their irregular and aperi-

odic appearance, 1D slices through idealized 2D lattices will have a 1D Fourier

power spectrum with no more than three peaks, and the responses will exhibit

a characteristic gap distribution with gap ratios determined by the 2D lattice

geometry. We further showed how to use the (real and imaginary) compo-

nents of the Fourier components to analytically infer the parameters of the

slice. Our theory is intimately related to that of quasicrystals [90] and the

X-ray crystallography of lattices. Indeed, the 1D grid cell response, under the

hypothesis that it originates from slicing a regular 2D lattice, is a quasicrystal.

Applying these theoretical methods and results to 1D grid cell responses

produces excellent fits and cross-validated predictions of spatial tuning. Cells

from the same module are well-fit by parallel slices through the same regular

lattice, and moreover, it is possible to predict the 2D relative phase of cells

from slice fits to their 1D track recordings. These successes strongly support

the possibility that grid cell responses on 1D linear tracks are generated by

linearly translating a population-level internal 2D triangular lattice.

The ability to generate accurate slice fits means that cells recorded in

various experiments on linear 1D tracks [15, 46, 27, 40] can be more readily

and accurately characterized as grid cells or not. The fact that we can generate

such fits from a few runs down a linear track means it is possible to rapidly

infer cell-cell relationships like comodularity and 2D relative phase between

grid cells from short experiments. In principle, responses on longer tracks
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provide more constraints on the parameters of a slice fit; at the same time,

however, there may be a greater tendency toward remapping partway along

longer tracks. There are instances from our analysis of data from [15] consistent

with remapping-free linear slice responses along 8 m of a longer track. 1D

tracks free of distinguishing spatial landmarks along this length could inhibit

landmark-anchored remapping and allow for parameter estimation from < 40s

of data (10 runs down an 8 meter track at a running speed of 0.2 m/s).

Finally, our methods can be used to characterize the structural char-

acteristics of grid cell responses in three spatial dimensions [45, 34], by con-

structing 1D and 2D slices of the acquired 3D data and analyzing the resulting

projections.

3.3.2 Mechanism: Implications for recurrent dynamics during 1D
navigation

The observed responses of individual grid cells when animals run on

virtual and real 1D tracks are consistent with sampling an underlying 2D

lattice response along the confined 1D path of the animal, albeit with a global

expansion of the grid period by a factor of ≈ 4 on virtual tracks and ≈ 2

real tracks. Moreover, the cell-cell relationships (2D relative phase) observed

between comodular cells in 2D are preserved in their 1D responses. Finally,

cells deemed to be comodular in 2D share the same slice angle and scale factor

in their 1D responses, consistent with the picture of an internal 2D population

lattice response whose phase is shifted in tandem with animal velocity as the
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animal runs, regardless of whether it is running in nonlinear arcs through a

2D environment or in straight lines on a 1D track.

The source of a non-unity scale-factor in the spatial tuning of individual

cells could in principle be caused by a global expansion of the population

pattern or, as predicted in [18] under the continuous attractor hypothesis for

grid cell generation, by a change in the gain with which one unit of animal

velocity shifts the phase of the underlying population pattern: a decrease in

gain would result in an expansion of the spatial tuning period, without a

change in the period of the population pattern [18].

In a previous study [102], it was shown that changes in the spatial

tuning of grid cells in rescaled 2D environments were inconsistent with the

first possibility: a change in the population pattern would predict a change

in the relative phases of spatial tuning between cells, which were strictly pre-

served. Similarly here, the preservation of cell-cell relationships rules out the

possibility that grid period expansion is due to a change in the period of the

underlying, recurrently-driven population pattern reflected in the responses

of grid cells. Instead, we conclude that the recurrent dynamics underlying

the neural responses must be preserved, with period expansion coming from

a change in the efficacy with which actual animal motion drives changes in

the population pattern phase. This change in efficacy could arise because of

a reduced perception of speed in 1D and virtual environments or a reduced

ability of the speed signal to shift the population phase [102].

Both these possibilities involve changes in the feedforward input to
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the grid cell system in 2D and 1D, rather than a change in the recurrent

dynamics of the system. In this sense, the grid cell system appears to remain

in fundamentally the same dynamical and computational regime during 2D

and 1D navigation.

3.3.3 Potential exceptions to the slice hypothesis and future work

There are limits to the ability of single linear lattice slices to describe

the 1D responses of grid cells. First, as already noted, when animals run on

long linear tracks with stable visual features, the 1D response characteristics

(from [15]) can sometimes change partway down the track: a frequently firing

cell may become more sparse, the field spacings may go from more apparently

periodic to less, and so on. Similarly, in 1D tracks with hairpin turns that

alternate with linear segments, the grid cell responses across all segments run

in one direction are nearly identical to each other [25], while those run in the

opposite direction are different and closely resemble each other. These kinds of

effects might be explained within an expanded version of the slice hypothesis,

according to which 1D track responses are piecewise compositions of different

linear slice segments. Thus, a response remapping partway down a track would

correspond to a resetting of the slice parameters from that point onward. This

is a topic for future empirical and theoretical tests.

A closely related observation is that grid cells can exhibit different

spatial tuning in the forward and return running directions on physical tracks

[15], just as observed in place cells [63, 36]. This is the case even when the
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spatial tuning in one run direction is consistent with the slice hypothesis (our

analysis). An interesting question for future research is whether spatial tuning

on the return journey is also well-fit by a slice, and how the two slices are

related. If the slice hypothesis is a good description also of the return response,

a shift in the slice parameters for different run directions or different run

contexts [60] could explain the direction- and context- specificity of place cell

tuning in similar experiments.

Second, spatial tuning curves obtained by averaging together blocks of

trials tend to not be well-fit by slices if there is a rapid drift in the spatial re-

sponses across trials. In such cases, it is possible that the single trial responses

are generated by slicing a lattice, but the slice parameters shift rapidly across

trials. Data limitations arising from the length and duration of an individual

trial in the existing data means that further experiments and analysis will be

required to properly resolve this question as well as to better characterize what

drives the shift in slice parameters.

Third, to understand how animals use 2D coordinate frames when nav-

igating along 1D trails, it will be interesting to learn about the selection of

slice angles: supplied with two constrained linear paths in a 2D arena starting

the same point but diverging at an angular separation angle δ, are the slice

angles chosen by the animal along those paths consistent with δ? The ability

of animals to solve starburst mazes [74] suggests that animals can learn the

geometrical relationships between paths, and a slice analysis of grid cells along

the 1D arms may provide glimpses into the mechanisms underlying this ability.
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Fourth, a broader question related to 1D navigation is whether re-

sponses along nonlinear 1D tracks resemble corresponding nonlinear slices of

the 2D lattice. Mechanistically, if grid cell activity is generated by a velocity

input that shifts an underlying 2D population pattern around in tandem with

animal motion [18], we would expect the answer to be affirmative. Indeed,

experiments on annular tracks [101, 69] suggest that the responses of grid cells

on a circular 1D track is consistent with a circular slice through a 2D lattice,

and that the remapping of these responses may be the result of a shift in the

phase or orientation of the circular slice through the 2D lattice [68]. Analyti-

cal Fourier parameter extraction becomes substantially more complicated for

circular 1D tracks, but there are ways in which it can be generalized (Yoon,

Newman, Fiete, unpublished observations).

3.4 Methods

3.4.1 Binning and rate maps

Cell-sorted spikes from foraging mice were assigned to 1 cm × 1 cm

spatial bins (2D open field) or 1 cm spatial bins (1D linear track). Positions

were derived from samples taken at 30 Hz. The number of spikes assigned

to a bin was divided by the rat’s total dwell time in that bin, to remove the

effects of inhomogeneous spatial exploration on estimating the probability of

spiking at each location. This defined the rate map. Smoothed rate maps

were generated by convolving the binned rate maps with a 2D or 1D Gaussian

kernel, respectively (σ = 4 bins).
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3.4.2 Cell selection

We analyzed units from [27], which were recorded in both 2D open

fields and on virtual 1D linear tracks. Our starting sample consisted of 126

units (137 recorded, with 126 of these passing an interspike interval criterion

that no more than 0.25% of spikes in each unit were emitted with interspike

intervals (ISIs) shorter than 1 ms [27]).

We applied the intersection of three criteria on spatial tuning to select

units individually, then excluded duplicate units by a separate criterion based

on similarity of tuning. These methods are described below. The result was 25

grid units (6 singles, 3 pairs, 2 quadruples, and 1 quintuple) from the starting

sample of 126.

Our selection procedure follows: We first computed three scores that

reflect spatial response properties individually for each unit: 1) A standard

gridness score [55] on the 2D spatial tuning, to determine whether the unit

has sufficiently grid cell-like tuning. 2) A score on the overall stability of

the response in 1D (see Trial selection, below) computed on the most-stable

30-trial block out of the variable number of trials recorded for each unit, to

remove units that do not display a stable spatial response in 1D because we

could not average trials to obtain a 1D spatial tuning curve. 3) The entropy

of the 1D spatial tuning curves (with the spatial tuning curve obtained from

averaging the most-stable 30 trials for each cell). High entropy units have high

background firing, little spatial modulation, large drifts, or generally high noise

in their responses. This entropy score also helps to catch units with variable
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or drifting trial-to-trial responses that are not caught by the stability measure

in (2) above.

Units with 2D gridness < 0.34 [27], 1D stability < 0.1, and 1D entropy

> 8.7 were rejected, reducing the sample size from 126 to 26 units (Individually,

69 units fail the 2D gridness score, 39 fail the stability score and 64 fail the

entropy score). Units had two kinds of stability problems in 1D: one was a slow,

systematic drift of firing field locations across trials; the other was strongly

fluctuating spike counts and other less-systematic effects from trial to trial.

Both led to less-sharp 1D tuning curves with lower signal-to-noise ratio. The

stability and entropy thresholds quoted here were set to eliminate excess drift

and variability based on empirical observation of the 1D track spike rasters.

Finally, to avoid overcounting one cell as two units, we eliminated one

unit out of each simultaneously recorded pair if they exhibited both very sim-

ilar spatial tuning and a large amount of mutual spike contamination (Cell

pairs with very similar tuning but small or no spike contamination are legit-

imate independent samples and should both be included – grid cells within

a population are expected to have a spectrum of relative phases, including a

relative phase of zero). For a cell pair with relative phase magnitude smaller

than 10% of the maximal possible relative phase separation, and a contam-

ination score (defined below) greater than 0.1, we kept only one cell of the

pair (the one with the higher gridness). This process identified a single pair of

units from the set of 26 (suggesting one double-counted cell), and led to the

final dataset of 25 units.

85



3.4.3 Entropy

Entropy is given by the standard definition:

Entropy = −
∑
i

P (xi) logP (xi)

where P (xi) is the firing rate in the ith spatial bin along the linear track,

normalized by the area of the full firing rate curve (firing rate per bin, summed

over all bins).

3.4.4 Comodularity

Cells were defined as comodular if they were recorded simultaneously

from the same animal and if the spatial periods (mean spacing of firing fields)

of their recorded 2D responses differed by less than 10% (relative to the larger

of the two estimated periods) and the 2D grid orientations differed by less

than 10 degrees.

3.4.5 Spike cross-contamination for cell pairs

Following [47], we fit the pair of clusters Ci and Cj comprised of the

waveforms of all spikes from two simultaneously recorded units i, j by a sum of

(two) Gaussians. With this fit, we derive a contamination score as the average

probability that a spike from Ci would come from Cj’s distribution:

contamination(C1, C2) :=
1

N1

∑
v∈C1

P (C = C2 | V = v)
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3.4.6 Additional cells from real 1D tracks

We additionally studied the 1d real-track responses of cells from [15].

As stated in the main manuscript, for left-to right traversals we used only the

left (first) half of the track, and for right-to-left traversals, we used the right

(first) half of the track. When we refer to track length L in the analysis below,

we refer to these first half-tracks. The responses of a cell on the two different

direction traversals were treated as two independent spatial responses. We

possess no ground-truth data on which responses in [15] come from grid cells.

Thus, we must identify responses as coming from putative grid cells based on

characteristics of the spatial response. We do so as follows:

The selection criteria for identifying putative grid cells from [15] are

adapted from Domnisoru et al. 2013, with adjustments to simplify the criteria

slightly and take into account the very different track length. The modified

criteria are as follows: A 1D response cannot be a putative grid cell response

if (a) the number of transitions Ntrans between an in-field and and out-of-field

period for a track of length L is smaller than L/(5〈w〉), where 〈w〉 is the mean

firing field width for that 1D response. (In-field and out-of-field periods are

defined below.) (b) The widest field of the response has width greater than

5〈w〉. (c) Same as in [27], which is that 30% or fewer of the bins are assigned to

either in-field or out-of-field periods. (d) the mean firing rate in-field divided

by the mean firing rate out-of-field is smaller than 2.

The definitions of in-field and out-of-field periods are very similar to

[27], but the numerical thresholds are changed and some of the steps are sim-
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plified: out-of-field periods are defined as intervals of ≥ 8cm for which the

firing rate was lower than the 20th percentile of the bootstrapped shuffle dis-

tribution for that bin (i.e., 1 − Pvalue ≤ 0.2). Firing fields are intervals of

duration ≥ 12cm with firing rate higher than the 80th percentile of the boot-

strapped shuffle distribution for that bin (i.e., 1 − Pvalue ≥ 0.8). There is no

change in criteria for defining firing fields if they occurred at the ends of the

track. Bins with intermediate firing rates remained unassigned. Steps omitted

from [27] criteria for simplicity: we did not extend candidate firing fields by

an adjacent bin on each side if their firing rates exceeded the 70th percentile

of the bootstrapped shuffle distribution for that bin; we did not examine and

discard fields based on whether they received spike contributions from only

≤ 20% of all trials.

If the response of a cell in either traversal direction survived the selec-

tion process above, the cell was classified as a putative grid cell. We were left

with 51 putative grid cells with 65 passing spatial responses, out of the full

dataset of 97 total cells with 194 spatial responses. We applied slice fits to all

65 passing responses, provided they had ≥ 3 fields on the length-L half-track

(this condition is necessary for generating meaningful slice fits: two 1D fields

are mathematically not enough of a constraint to specify a slice or infer the

underlying grid cell period, by any method). This leaves 40 putative grid cells

and 53 responses; the excluded cells here tend to be from the most ventral end

of the dorsolateral MEC.
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3.4.7 Trial selection

Different cells were recorded for different numbers of trials, and some

cells showed substantial drift in their spatial tuning across trials. To equalize

the number of trials used per cell and obtain the most stable block of tri-

als for each cell so that we could obtain reasonable trial-averaged rates, we

adopted the following trial-selection procedure for Figures 3.1-8: Given a to-

tal of N > 30 trials, we computed a stability score, defined as the average

of the pairwise Pearson’s correlation coefficient across all pairs of single-trial

rate responses (obtained by smoothing the single-trial spiking responses, as

described in Binning and rate maps above) within the consecutive 30-trial

block [i, i + 29]. We repeated this process for different starting positions i in

steps of 1 trial, starting from i = 1 up to i = N − 29. From this analysis, we

selected the 30-trial block with the largest stability score; for comodular cells,

we selected a common 30-trial block with the largest stability score averaged

across cells.

3.4.8 Fourier spectral analysis for inferring 2D lattice slice param-
eters from a 1D response: theory

Consider a firing rate r of unit height that varies as a function of the

2D variable x = (x1, x2), in the shape of an equilateral triangular lattice with

period λ. This response can be written as the sum of three 2D sine waves along

the directions {b1,b2,b3}, where b1 = 1
λ
(0, 2/

√
3),b2 = 1

λ
(1,−1/

√
3),b3 =
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1
λ
(1, 1/

√
3) (Figure S3.1). Thus,

r(x) =
1

3

3∑
i=1

cos
(
2π bi x

T
)

(3.1)

where the superscript T on a vector refers to the vector transpose, and xyT is

the dot product between vectors x,y.

Next, consider a semi-infinite line x`(t) parametrized by t in the 2D

coordinate space above, with origin at c = λ(φ1, φ2) and angle θ relative to

the x-axis. It is given by

x`(t) = (cos(θ), sin(θ)) t+ c (3.2)

≡ u(θ) t+ c (3.3)

where we have defined the vector u(θ) = (cos(θ), sin(θ)).

The modulation of firing rate r along this line is given by restricting

r(x) to the coordinates x`(t). Thus, along the line, the rate varies as:

r(x`(t)) =
1

3

3∑
i=1

cos
(
2π bi x`(t)

T
)

(3.4)

=
1

3

3∑
i=1

cos
(
2π bi u(θ)T t+ 2π bi c

T
)

(3.5)

=
1

3

3∑
i=1

cos (2πfi(λ, θ)t+ 2πδi(c)) (3.6)

where fi(λ, θ) ≡ bi(λ) u(θ)T and δi(c) ≡ bi(λ) cT are all scalar quantities (we

have made the dependence of the bi’s on λ explicit here because λ is a slice

parameter we would like to infer from the following analysis, as is θ).
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From Equation 3.6, it is clear that the Fourier transform of r(x`(t)) will

have spectral peaks at the frequencies f1(λ, θ), f2(λ, θ), f3(λ, θ) and phases

2πδ1(c), 2πδ2(c), 2πδ3(c) (Figures S4 A-D).

Given the Fourier transform of r(x`(t)) (more specifically, given the

six scalars {fi|i = 1, 2, 3} and {δi|i = 1, 2, 3}), our goal is to extract four

quantities: the period and angle parameters (λ, θ) of the slice as well as the

vector origin of the slice, recast as a phase with respect to a unit vector of the

lattice, given by the vector φ ≡ c/λ.

For any equilateral triangular lattice (characterized by the three vectors

b1,b2,b3 specified above) it is easy to see that b1 + b2 − b3 = 0. As a result,

f1+f2−f3 = (b1+b2−b3) u(θ)T = 0 (Figure S3.4-F). Thus, only two of the fi’s

provide independent information and a pair of fi’s is sufficient to analytically

obtain λ, θ. The corresponding two δi’s are sufficient to analytically determine

the slice origin vector c. This procedure will produce a reasonable solution if

a recorded rate is indeed a slice.

Note that the scale factor (α) referred to in the main manuscript is

defined as λ (the inferred period of the lattice that underlies the 1D response),

divided by the measured period of the cell’s response in 2D (λ2D). Thus,

α = λ/λ2D. The inferred 2D phase from the 1D slice analysis in the main

manuscript is φ = c/λ; we write it in terms of the oblique projection onto the

two primary lattice vectors [102].
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3.4.9 Direct inference of 2D relative phase from a pair of 1D re-
sponses

The relative 2D phase between two linear slices is simply the difference

in the estimates of the 2D phases of each of the two slices (∆φ ≡ φ1 − φ2,

where φ1,φ2 are the 2D phases of each linear slice).

However, it is also possible to directly infer the relative 2D phase from

the two 1D responses, using the cross-correlation theorem:

F [(g ? h)(t)] = G(f)H(f) (3.7)

where ? denotes the correlation and G,H are the Fourier transforms of g, h,

respectively. The Fourier transform of the cross-correlation of the two signals

g, h (the left hand side of Equation 7) will have phase 2πδi(cg − ch) (as in

Equation 6) ascribed to the conjugated H(f), which can be directly recast as

a 2D relative phase, ∆φ = (cg − ch)/λ.

3.4.10 Fourier spectral analysis for inferring 2D lattice slice param-
eters from a 1D response: practice

For each cell recorded in 1D (or each random control response), we first

compute the PSD of its response, identify the two highest peaks in its PSD,

and label the peak locations (i.e. the spatial frequencies at which the peaks

occur) as q1 and q2 with q1 < q2. Given (q1, q2), there is a choice in whether

(q1, q2) should be identified with (f1, f2), or (f1, f3), or (f2, f3) in the analytical

definitions above. We consider the three possible solutions, in addition to the

two solutions corresponding to the special cases of a 0 or 30 degree slice (for
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which there are only two spectral peaks, see Figure 3.2). From this set of

5 discrete slice solutions, we pick the one with the best correlation with the

recorded 1D response of the cell. The 2D period, obtained from 2D recordings

for each cell, was was set to the average of lengths of two primary lattice

vectors.

Note that different assignments of the two highest peaks to the fi’s

(three of the five candidate solutions described above) can correspond to dif-

ferent local minima in the solution space; sometimes, these different local

minima can provide roughly similar (in terms of correlation coefficient) slice

fits to the measured 1D response. We explore this issue further in Figure 3.6

of the main manuscript.

We numerically refined the analytical solution by searching locally for

values of the four slice parameters (θ, α,φ) that optimized the fit between

the recorded 1D rate response and rate values predicted by the slice. The

fit is quantified by Pearson’s correlation coefficient (ρ). The slice parame-

ters were initiated to the analytical solution (θ∗, α∗, ~φ∗) then locally relaxed

via a standard gradient ascent algorithm under the following constraints:

max(0◦, θ∗ − 3◦) ≤ θ ≤ min(30◦, θ∗ + 3◦), α∗ − 0.5 ≤ α ≤ α∗ + 0.5, and

[0, 0] ≤ ~φ ≤ [1, 1].
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3.4.11 Imposing consistency in the slice fits across comodular grid
cells

For a K-tuple of comodular cells, we imposed consistency in slice fits

across the K cells as follows: First, compute the product of all K PSDs ob-

tained from the spatial tuning curves of each cell. Select the spatial frequencies

corresponding to the two highest peaks from the PSD product; call these q1

and q2. For each cell, we now pick the two peaks from their individual PSDs

that lie closest to q1, q2. The rest of the procedure for finding the best slice for

each cell is as described above. This procedure corresponds to selecting the

same local minimum in the solution landscape across all cells in the K-tuple.

When reporting relative phases between a pair of cells (or doing a K-

tuple analysis forK comodular cells), the 2D period was set from 2D recordings

to the average value along the two lattice vectors, and averaged across cells in

the pair (or the K-tuple).

3.4.12 Measure for “three-peakiness” in PSD

To quantify to what extent a given PSD has a three-peaked structure

as predicted for lattice slices (Figures 3.2C and 3.2F), we define a “three-

peakiness score” (p3) : It is computed as the sum of the areas under the three

largest peaks in the PSD, divided by the total area of the PSD, followed by a

normalization that equalizes the score across different lattice slices. Normal-

ization involves dividing the result by the same score for the best-fit linear

slice (the normalization process leads to a score of p3 = 1 for all ideal lattice
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slices; in general, p3 is high for a curve with three or fewer major peaks and

little area under the rest of the curve).

3.4.13 Gap analysis

For all recorded cells, we collected gap statistics as follows: Per trial,

we identified bursts of spikes (described next). A gap is the distance between

the centers of mass of adjacent (consecutive) bursts. We compile a histogram

of all such bursts across each trial and across all 30 selected trials (see above

for Trial selection) for each cell.

To define a burst, we slide a small time-window of width w across a

spike train. The window contains a burst if at least nspk spikes occur in that

window. We used nspk = 3 and w = 0.1s. To avoid segmenting a burst

artifactually into two, when building the gap histogram we ignored inter-burst

distances smaller than the 2D grid period (as can happen when a single long

burst within one field is punctuated by a chance pause of duration > wburst).

For any 1D responses that contain no spiking records (this includes the

random controls, which are rates), we define gaps based on rates. We compute

the inter-peak distances between all adjacent firing rate peaks of height > 25%

of the maximum firing rate (Figure 3.3C).

3.4.14 Generating matched random control data

Consider a cell with spatial tuning curve r(x), measured over the range

x ∈ [0, xmax]. We generate two kinds of matched controls for this cell: gap-
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randomized and gap-shuffled. For both types of control, we first process the

data as follows.

For each spatial tuning curve, identify the locations of all peaks and

troughs. Significant peaks are those whose heights exceed 25% of the maximal

firing rate in the tuning curve. Label the locations of these peaks {pi} (with

i = 1, · · · , Q and p1 < · · · < pQ). We seek to identify firing fields, which may

include more than one significant peak if the peaks are very closely spaced.

Label a set of consecutive significant peaks as belonging to the same field if

they are closer to each other than half the estimated field width for the cell

(field width w is defined as the distance from the origin to the first trough in

the autocorrelogram of r(x)). In other words, K consecutive peaks indexed

i, i+ 1, · · · , i+K − 1 belong to a single field if pj+1 − pj ≤ w/2 for each

j = i, · · · , i + K − 2. (For a well-isolated peak separated by > w/2 from the

rest, K = 1.) We now define a field interval as the spatial interval encompass-

ing these K peaks, with the interval boundaries given by the closest troughs

immediately flanking to the left and to the right the set of K peaks. Starting

from the first significant peak in the spatial response, we identify field intervals

as described above, and denote the αth field interval as [xαs , x
α
e ], where xαs , x

α
e

are the start and end coordinates marked by the two troughs surrounding the

field. The intervals [xαe , x
α+1
s ] between field intervals (and also the interval

[0, x1
s]), if non-empty, are designated non-field intervals.

Suppose the cumulative length of all L field intervals put together covers

M bins, while the cumulative length of the full track covers N = xmax/∆x
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bins, where ∆x is the width of each spatial bin (∆x = 1cm; xmax and ∆x have

dimensions of centimeters, while L,M, and N are dimensionless). Then the

cumulative length of non-field intervals covers N −M bins.

To generate gap-randomized controls, we take the following steps: first

generate a set of N−M+L empty slots. Randomly and without replacement,

assign each of the indices {1, · · · , L} to one empty slot. The slot with the

index α now represents (contains) the firing rate segment r([xαs , x
α
e ]) (which

may, and typically does, consist of multiple spatial bins). In the remaining

N −M empty slots, insert the N −M spatial bins of non-field responses (we

preserved the order of the non-field bins; this detail is unimportant because

non-field responses are of low amplitude and randomizing or not randomizing

bin ordering does not lead to quantitatively big effects). The result of this

procedure is to exactly preserve the structure of each field, while randomizing

the ordering of the fields and the lengths of the gaps between fields.

This defines one gap-randomized sample for a given cell. This proce-

dure was used in Figure 3.5A (reddish-gray), to generate 100 random samples

based on the cell in Figure 3.5A (top). For Figures 3.5B-C (reddish-gray), we

generated 100 random samples for each cell in our virtual track dataset; this

pooled dataset was our full random sample.

To generate gap-shuffled controls, we first note the center-of-mass lo-

cation of each field (designate the center-of-mass of the αth field by xαc ; the

spatial bin index of this location in the original response is xc/∆x), then com-

pute the L− 1 gaps gα ≡ xα+1
c − xαc between adjacent pairs of the L identified
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fields (the αth gap length in bins is gα/∆x). Next, we randomly permute

the indices {1, · · · , L} to get a permuted vector of the indices, {c1, · · · , cL}

(thus a random ordering of fields), and also randomly permute the indices

{1, · · ·L − 1} to get another permuted vector {d1, · · · , dL−1} (thus a random

ordering of gaps). We draw at random (uniformly distributed in the interval

[0, N −
∑L−1

α=1 g
α/∆x]) a location to begin the c1th field. We assign the gap

gd1 next by inserting the corresponding number of empty spatial bins after the

first field. At the end of this gap, we place the c2th field, then gap gd2 , and so

on, until all fields and gaps have been assigned. The empty gap bins are now

filled in with non-field data, as in the gap-randomized controls above. The

result of this procedure is to exactly preserve the structure of each field, and

to preserve the set of all gap lengths from the data in each random control

sample; however, a given field is typically adjacent to different gaps across

different random samples.

As described above, in Figure 3.5A (bluish-gray) we generated 100

random samples based on the cell in Figure 3.5A (top). For Figure 3.5B-

C (bluish-gray), we generated 100 random samples for each cell in our virtual

track dataset.
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Figure 3.1: (A) Trajectory (gray) of an animal foraging in a square enclosure,
with spike locations (red dots) for two simultaneously recorded cells (top and
bottom, respectively). (B) Smoothed firing rate maps, with a decomposition
of the triangular grid response into three 2D sinusoidal waves (three colors and
the labels I, II, III). (C) Contour plot of the firing fields of cell 1 (red) overlaid
on the rigidly translated fields of cell 2 (blue): the spatial tuning curves are
simply shifted versions of each other. Black arrow: relative phase. (D-E)
The same cells as in A), recorded on a virtual linear track (D: trajectory and
spikes; E: firing rates). (F) The firing rate profile of cell 1 (red) overlaid on
the rigidly translated fields of cell 2 (blue): the tuning curves are not simply
shifted versions of each other. (G) The Fourier power spectral densities (PSDs)
for the 2D responses of these cells. The peaks represent the three planar
sinusoidal waves that make up the triangular lattice (I-III as in (B); see also
Supplementary Fig 1). Both cells have identical PSDs, indicating their shared
lattice structure up to phase shift. (H) The PSD of the 1D responses, with
the highest three peaks marked by red symbols; the 1D PSDs are very similar
for both cells.
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Figure 3.2: Slices of different orientations through a 2D triangular lattice (A,
black) result in different 1D responses (B, black). (C) The PSDs (dashed
black) also differ, yet have commonalities: They are characterized by three
main peaks (red symbols) (but at two special angles, θ = 0◦ and 30◦, two of
the PSD peaks coalesce into one for a total of two peaks). (B-C), reddish gray
and bluish gray: Two statistically matched random control tuning curves (B)
generated from the 20◦ slice with their PSDs (C). (D) Parallel linear slices
with different starting points or phases (inset: magnification of the starting
points) result in different 1D responses (E), but identical PSDs (F). (G) Left:
A linear slice through a 2D triangular lattice. Right: 2D Fourier transform of
the 2D lattice, overlaid by a slice from the origin at the same angle (black).
(H) Left: 1D response resulting from the linear slice in (G, left). Right: PSD
of the 1D response at left. This 1D PSD is equal to the projection (red arrows
in (G, right)) of the 2D PSD onto the same linear slice (also see Figure S3.4).
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Figure 3.3: (A-B) Two linear slices (black) of different orientations and spa-
tial phases generate different sequences of inter-bump distances or gaps (gaps
delineated by vertical ticks in (A), and gaps of the same length marked by
the same roman letter; only peaks with amplitudes above a threshold are con-
sidered in (B). (C) Matched random 1D control responses (gap-randomized
controls) for the responses in (B). (D) Histogram of gaps for the slices in (B)
(black) and the random controls in (C) (reddish-gray). Line: smoothed ver-
sion of the histogram (gray) and a full gap distribution generated from 100
gap-randomized controls for each of the two slices in (A-B) (reddish-gray). (E)
Top: the gaps have numeric values determined by the specific geometry of the
2D lattice (up to overall scaling by the lattice period), and gap ratios depend
only on lattice geometry. Bottom: a histogram of gaps generated from pooling
across 100 linear slices of the same length as in (B), with random angles and
starting points.
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Figure 3.4: (A) Spike rasters of three cells recorded on a linear virtual track
(right: same cell as in Figure 3.1D (top); center, left: cells recorded from
different animals on different dates [27]). Smoothed trial-averaged rate (B,
black), PSD (C, dashed black), and gap histogram (D, black bars; smoothed
histogram indicated by solid gray line) for the same three cells. Gaps are
computed from adjacent bursts per trial and pooled across trials. Red symbols
in (C) indicate the PSD peaks used to generate the best-fit slice. The rate
prediction from the slice is shown in (B, green), with fit quality (Pearson’s
correlation coefficient between lattice slice prediction and neural tuning curve)
and slice parameters noted at top. PSD of the slice (C, green). Green dashed
line in (D): predicted peaks locations for the gap distribution obtained by
multiplying the ideal predicted gap ratios by the scale factor of the best-fit
slice; green symbols: ideal gap ratios multiplied by the position of the actual
rightmost peak in the gap distribution. (E-H) The same as (A-D), for two
cells from animals running on a long linear track [15]. The cyan curve in (F)
is the slice prediction from fitting only the first 4m of track. The data on the
second 4m of track act as a cross-validated test of the predicted slice.
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Figure 3.5: In all spatial tuning plots, the slice prediction is given in green.
(A) Top: Cell firing rate (black). Middle: A gap-randomized (reddish-gray)
and a gap-shuffled (bluish-gray) control sample of cell response above. Slice
fit quality (ρ) noted above. Bottom left: Quality of slice fit histogram for
500 gap-randomized control samples (reddish-gray), and for 500 gap-shuffled
controls (bluish-gray). Red/blue vertical lines: 95% percentile level of the
random/shuffle control fit score. Black line: slice fit value of the response at
Top. Bottom right: Distribution of three-peakiness scores for the PSDs of ran-
dom/shuffle controls (reddish- and bluish-gray histograms, respectively), com-
pared to the the score for the response at Top (black vertical line). Red/blue
vertical lines: 95% percentile level of the random/shuffle distributions. (B)
Top: Distribution of fit-quality scores for all cells in the dataset (black),
with each cell’s score standardized by the distribution for its matched gap-
randomized controls (as in (A)); the randomized control distribution (reddish-
gray) has zero mean and unit variance because of the standardization pro-
cedure. Bottom: The same as above, but the standardizing distributions are
from gap-shuffled controls (bluish-gray); data in black as above. The difference
in the means of the data and control histograms is highly significant (p-values
noted in text, one-sample t-test). (C) Same as (B), but the distribution quan-
tifies the statistics of three-peakiness scores in the data PSDs compared to
PSDs from both types of control. (D) Aggregate gap distribution (black),
pooled across all cells in the dataset, after the gaps in each cell’s response are
normalized by the estimated 1D lattice period (scale factor). Gray: smoothed
version.
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Figure 3.6: (A) Left: Firing rates of a pair of comodular cells, recorded on
a virtual track (black). Best predicted firing rates from lattice slices, found
separately for each cell (green). The slice angle, θ, and scale factor, α, are
noted above. Right: PSD of the 1D response (black dashed) with the PSD of
the predicted slice (green). (B) The best-fit linear slices for the cell pair from
(A), with the starting points of the slices magnified in the inset. The starting
point of a slice defines the 2D spatial phase of the cell (with respect to the
rhomboidal unit cell, black), as inferred from the 1D response. (C-D) Same
as (A-B), for a pair of putatively comodular cells recorded on a long linear
track, data from [15]. (E) Left: the best-fit slice parameters for all cells in
the dataset, obtained for each cell individually. Cells classified as comodular
are plotted in a common color and single (non-comodular) cells are colored in
gray (12 groups, 25 cells). Crosshair: error bars, ± 1 s.d. (n = 100 bootstrap
samples). Right: same as left, but the PSD peaks selected for the slice fits
are chosen consistently for comodular cells (see Experimental Procedures).
Slice parameters for comodular cells now cluster together. (F) Histogram of
fit-quality between measured 1D tuning and predicted slice fit, when fits are
generated individually (as in (E), left; gray histograms) and when they are
obtained by imposing consistency across comodular cells (as in (E), right;
white histograms). Fit quality does not suffer in a way that is statistically
significant when consistency is imposed (p-values noted in text, paired t-test).
(G) Grid orientation measured in 2D versus slice angle estimated from 1D
responses of the same cells (same color-codes as in (E)).
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Figure 3.7: (A) Top inset: The offset in a pair of parallel slices, within a
rhomboidal unit cell of the unit lattice, equals the predicted relative phase
from the 1D slice analysis. Bottom inset: schematic of how the relative phase
above is plotted as a symbol (blue triangle) within the unit cell. Main: Rela-
tive phases predicted from 1D responses (colored triangles) and actual relative
phases measured from 2D recordings (circles in matched colors). Shown are the
best predictions from across 12 degenerate solutions per pair. Black x’s: differ-
ences between the predicted and measured 2D relative phase values. Red circle:
relative phase estimation uncertainty (expected error) obtained by bootstrap
(Experimental Procedures). (B) Left: Histogram of relative phase prediction
error magnitudes for best pairwise slice fits (gray bars; Rayleigh distribution
fit in black), inherent estimation uncertainty from bootstrap (Rayleigh distri-
bution fit in red), and random prediction error magnitudes (Rayleigh fit in
bluish-gray). Right: The same as left, but best fits constrained so that all
pairs in a K-tuple of comodular cells were constrained a common solution
domain from across the 12 possibilities (rather than a free choice per pair;
Experimental Procedures and Figure S3.13). Left and right: p-values that the
slice prediction errors are from the same distribution as the estimation uncer-
tainty (red), or the same distribution as random (bluish-gray). (C) How much
information (Shannon’s mutual information, abbreviated MI) the correlation
coefficients between cell pairs’ 1D responses convey about their measured 2D
relative phases (abscissa) versus the mutual information between measured 2D
relative phases and the predicted values from slice analysis on the 1D responses
(ordinate). The latter exceeds the former by a factor of 1.7.
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Figure 3.8: (A) Spike rasters for a pair of comodular cells show field drift,
field splitting, and field merging across trials. (B) The gap histogram for the
data in (A), pooled across both cells, contains three peaks. The three peaks
are at the predicted values (green dashed lines; obtained from 200 randomly
oriented and shifted slices through a triangular lattice), given the estimated
slice period. (C) Top: the PSDs of the two cells computed from a 5-trial block
centered on lap 5. Bottom: the same, centered on lap 11. The across-cell PSDs
for a given block of trials is more similar than the PSD of a given cell across
trials. (D) Slice parameter (slice angle, scale factor, and the two components
of phase, respectively) evolution (estimated from 5-trial averages sliding one
trial at a time). The best-fit slices have constant angle and scale factor, but the
phase of the slice is drifting across trials. Since phase is a periodic variable, it
is equivalent to plot it between [-0.5, 0.5] or equivalently, [0,1], as done in some
plots here and in (E). (E) The quality-of-fit for the slice hypothesis (red, blue
cells) over the drifting trials. Light red/light blue: the quality of fit between
the data and slices with orientation 5 (triangle) or 10 (square) degrees from the
best-fit slice. (F) Depiction, on the 2D lattice, of the inferred drifting best-fit
slices from (D). Black, green: best-fit slices from near the beginning and end
of the block of trials, respectively. (G) The estimated relative phase between
cells across inferred slices over time (different black triangles) remains close to
relative phase estimate obtained from averaging together all trials (red dot).
The scatter in different time-resolved relative phase estimates is about equal
to the inherent estimation uncertainty due to finite spike sampling (estimated
by bootstrap), red dashed circle.
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Figure S3.1: Duality of the spatial and Fourier spectral domain char-
acterizations of a hexagonal lattice. (A) A regular triangular lattice of
spatial period λ visually separated by two-dimensional sinusoidal waves of the
period T0 and three different orientations (red, green, and blue). Each line rep-
resents the crest of the waves. (B) Fourier transform of the hexagonal lattice
represented by three spatial frequencies (same color-coded dots) that corre-
spond to the frequency and directionality of three sinusoids in (A). Dashed
circles: negative frequencies naturally come up from complex exponentials.
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Figure S3.2: Procedure for generating random control data. (A) An
ideal linear slice (black) through a 2D lattice. Fields are defined as the bump
whose peak height is greater than a certain threshold (25% of the maximum
firing rate) and in between two troughs: 6 fields color-coded by red, green,
blue, orange, pink, and yellow. gi is the gap (inter-peak distance). (B) Gap-
randomized control by shuffling the order of firing fields and randomly placing
the fields in between background signal (black). New gaps (Ji) does not pre-
serve the original gaps (gi). (C) Gap-shuffled control by shuffling the order of
firing fields and placing them with keeping the original gaps.
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Figure S3.3: Features of the PSD for random control data. (A-B) Same
as in Figures 3.2A-C. (C) Gap-randomized controls (left) of the data in (B)
left and the PSDs (right) of the control data. Three peakiness score (p3) is
shown on the top. (D) Same as in (C) from gap-shuffled controls.
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Figure S3.4: Geometric interpretation of Fourier spectral analysis.
(A) The same triangular lattice as in Figure S3.1-A overlaid by a linear slice
of orientation θ (black line). (B) The triangular lattice is the sum of three
sinusoidal waves (red, blue, and green), and a linear slice through the lattice is
equal to the sum of the linear slices through each sinusoid. The individual slice
results in a periodic profile of the frequency fi∈{1,2,3}. (C) The frequency fi is
geometrically equivalent to the projection of the corresponding spectral peak
of ith sinuosoidal waves in (B) onto a line of the angle θ. (D) Linearity of the
Fourier transform induces that the Fourier transform of a linear slice through
the lattice (A → D) is equal to projecting the three spectral peaks onto a line
of that angle (A → B → C → D). (E) Locations of three spectral peaks (fi)
are represented by the underlying lattice spacing (λ1D) and the slice angle (θ).
(F) The analytical solution for slice parameters. Note that equations in (E)
correspond to an overdetermined system, and the solutions in (F) are based on
the first two spectral peaks. All pairs of significant spectral peaks are exploited
to find the best-fit linear slice (see Experimental Procedures).
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Figure S3.5: Analytical and numerical approaches for fitting a linear
slice. (A) Fourier analytical method (Figure S3.4) is a simple and fast way of
searching for best-fit linear slice of an individual cell. Nevertheless, the analyti-
cal method is limited by finite size effect (Figure S3.6) and neural noise (Figure
S3.7). Thus, additional numerical optimization via a simple gradient descent
rule (blue arrow; Figure S3.5-B) helps improve the quality of fit. Moreover,
the dimensionality of underlying structure in PSD can be reduced by impos-
ing consistency on peak locations of PSDs across population neurons (Figure
S3.12), assuming that simultaneously recorded cells from the same putative
network should share an identical structure (green arrow). (B) A schematic
for how the numerical method can improve/minimize the fit-quality/negative
correlation coefficient (ρ). Θ is the set of slice parameters.
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Figure S3.6: Finite size effect on Fourier analytical method. (A) The
same set of linear slices as in Figure 3.2 but of half-length non-zero spatial
phase. (B) 1D responses resulting from the linear slices. (C) The power spec-
tral density (gray) of the 1D responses overlaid by three prominent peaks (red
symbols). Note that the peaks are interfering with each other, and less sepa-
rated than in Figure 3.2C. (D) Analytically predicted linear slice (green) from
the spectral peak locations in (C). For comparison, the actual 1D response
(black) is superimposed on the prediction, and their correlation coefficient is
shown at the top together with predicted slice parameters. Note that ana-
lytical solutions have some estimation errors, especially for spatial phase ~φ.
(E) Reconstructed responses (green) by analytical method followed by numer-
ical optimization (see Experimental Procedures), which perfectly matches the
actual 1D responses.
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Figure S3.7: The effect of neural variability on Fourier analytical
method. (A) The same set of linear slices as in Figure 3.2 but of a physical
unit and non-zero spatial phase. (B) Noisy version of 1D responses (black) re-
sulting from a Poisson spike train (red dots) sampled from the instantaneous
firing rate (black arrow in (A)) in the unit of spikes/sec. Spatial bin size (1cm)
is used as a time bin (∆t = 1 sec) to sample a spike train (red dots), and its
smoothed firing rate (black) instantiates neural variability. (C) PSDs of the
noisy 1D responses. (D-E) The same predictions as in Figures S6 D-E. Nu-
merical optimization improves the predictability in terms of fit-quality as well
as estimated slice parameters (see Figure S3.8 for statistical significance).
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Figure S3.8: Numerical method enhances the predictability of 1D lin-
ear slice. (A) Histogram of estimation errors on slice orientation (blue: error
by analytical method, red: error by analytical + numerical method) N = 1000
randomly generated linear slices given uniformly sampled slice orientations
(0◦ ≤ θtrue ≤ 30◦), spatial phases ([0, 0] ≤ ~φtrue ≤ [1, 1]), and the rest of
conditions same with Figure S3.7. (B) Distribution of the actual slice orien-
tation with differentiating one that causes larger estimation errors (> 2.5◦;
black) from the other (gray). (C-F) Normalized histogram of estimation er-
rors on slice orientation (C), scale factor (D), spatial phase (E), and quality
of fit (F). The distributions are based on the samples that did not induce
larger estimation errors on slice angle (gray bars in (B)). Numerical method
lowers the estimation error on all slice parameters and improves the fit quality
(C: P= 2 × 10−15, D: P= 6 × 10−7, E: P= 5 × 10−13, two-sample F -test, F:
P= 2× 10−20, two-sample t-test).
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Figure S3.9: Features of the gap distribution for linear slices of dif-
ferent angles. (A) Slices of different orientations through a 2D triangular
lattice as in Figure 3.2A, but four times longer than the slices in Figure 3.2A.
(B) 1D responses resulting from the linear slices. Inter-peak distances are su-
perimposed on the 1D response, color-coded by their magnitude (blue: 20cm,
green: 20

√
3cm, red: 20

√
7cm, and gray: the rest; peak threshold = 0.25).

(C) Histogram of the gaps from 1D responses in (B). The same color code as
in (B). Note that the inter-peak distances are clustered around the same posi-
tions without regard to the slice orientations, but the frequency of each cluster
depends on the slice angle. Furthermore, the frequency can even change with
a fixed slice orientation depending on the length and the portion of the linear
slice along the orientation. For instance, when the orientation is 20 deg in
(B), 1D response from 350cm to 550cm consists of the red gaps only, while the
response from 160cm to 350cm consists of blue and green gaps.
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Figure S3.10: Features of the gap distribution for parallel linear slices.
(A) Parallel slices of different spatial phases through a 2D triangular lattice as
in Figure 3.2D. Inset: magnified view of the different starting points (spatial
phases) of the parallel linear slices. (B) 1D responses resulting from the linear
slices as in Figure S3.9-B. (C) Histogram of the gaps from 1D responses in
(B). Similar to Figure S3.9-C, gaps are clustered around the same locations
despite different spatial phases.
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Figure S3.11: Analysis of 1D real linear track data. (A) Histogram of
fit-quality between measured 1D tuning and predicted slice fit. (B-C) Same
as in Figures 3.5B-C. p-values noted in each figure, one-sample t-test. (D)
Aggregate gap distribution (black), pooled across all cells in the dataset, after
the gaps in each cell’s response are normalized by the estimated 1D lattice
period. (E) The best-fit slice parameters for all comodular cells in the dataset,
obtained for each cell individually. Cells classified as comodular are plotted in
a common color.
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Figure S3.12: Dimensionality reduction through imposing consistency
on spectral peak identification. (A) Parallel linear slices (of identical ori-
entation) with different spatial phases. (B) Noisy version of 1D responses
resulting from the linear slices and Poisson noise as in Figure S3.7. (C) The
power spectral density of the 1D responses. Spectral peak locations (red sym-
bols) are aligned (blue vertical bar; cluster) as in Figure 3.2F, but the first
PSD (top) has an additional peak location that is missing in the second PSD
(blue dashed vertical bar; no cluster). Presence of extra peaks in one but the
other is due to the stochasticity of neural spike trains. Thus, imposing con-
sistency in identifying spectral peaks from more than one instance is a good
strategy to cope with neural spike variability and to search for best-fit (not
strictly) parallel linear slices consistent with the assumption that the neural
responses are generated by an underlying 2D pattern in the neural population
(if neurons are appropriately rearranged) that shifts with animal motion, as
in continuous attractor models of the grid cell system.
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Figure S3.13: Multiplicity of linear slices and ambiguity of the pre-
dicted 1D relative phase. (A) Three parallel linear slices through a 2D lat-
tice of orientation between 0◦ and 30◦ with spatial phases within a rhomboidal
unit cell generate unique 1D response. The response, however, can be regener-
ated by reflecting the linear slice over the line of 30◦ and/or by rotating the lin-
ear slice through multiples of 60 degree around the origin (black/blue/purple:
a triple of parallel linear slices populated up to 12 identical pairs). Never-
theless, the relative phases (red arrows) between parallel linear slices can be
entirely different. (B) For each cell pair, there are 12 equivalent slice solutions,
with 12 different relative phase values (red circles); these 12 values fall into 12
different domains of a hexagonal unit cell of the lattice (radial sections of the
hexagon, marked by black and gray dashed lines). Allowing a choice of the
best of the 12 solution domains in the pairwise relative phase prediction can
produce a lower predicted total relative phase error than forcing a single com-
mon domain for all three pairwise predictions, because there is more freedom
in the choice of solutions. (C) The same as (B), but for a rhomboid unit cell.
(D) Same as in Figure 3.7A except that the best relative phase estimates for
pairs in each comodular K−tuple in the dataset are not generated pairwise
but by selecting a common solution domain out of the 12-fold degenerate do-
mains for all (K choose 2) cell pairs. Histogram of relative phase prediction
error magnitudes is Figure 3.7B right.
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Figure S3.14: Predictability of relative phase magnitude. (A) Measured
2D relative phase magnitudes (abscissa) versus the magnitude of predicted
values from slice analysis (ordinate). (B) Measured 2D relative phase magni-
tudes versus rescaled correlation coefficients between cell pairs’ 1D responses.
(C) Same as in Figure 3.7C, but based on data in (A-B). The magnitude of
relative phase can be equally predicted by the slice analysis and correlation
measure between cell pairs.
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Figure S3.15: Grid expansion from 2D to 1D real environments. (A)
Inferred grid spacing in 2D environment from the cell’s dorsoventral location
(Figure 1 in Brun et al. 2008) and the extrapolated linear relationship (Figure
2h in Hafting et al. 2005). Five digits are the animal number. (B) Predicted
grid spacings in 1D from the 1D tuning curves (blue circles). A group of circles
at the same DV location corresponds to all cells from the animal. (C) Scale
factor (red circles) estimated from the measurements in (A-B).
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Figure S3.16: Functional independence of grid modules. (A-B) Two grid
cells recorded simultaneously from different tetrodes in 2D open field. Left:
Spike discharge map. Middle: Smoothed rate map. Right: Best-fit template
lattice (red circles) to the autocorrelogram (top) and to the rate map (bottom).
When grid spacing is large and firing fields are mostly cropped, we searched
for the best-fit template lattice directly in rate map, which is the case of the
bottom cell. Blue circle: End point of the first primary lattice vector (length
and angle of the vector are shown on the top). Green circle: End point of the
second lattice vector (length and angle are shown at the right). (C-D) Top:
spike rasters of the same cells. Middle: Smoothed trial-average firing rate.
Bottom: Rate prediction from a linear slice. (E) Both scale factor (top) and
slice angle (bottom) do not change coherently during a complete environmental
transition from 2D to 1D, when a cell pair is from different modules.
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Chapter 4

Dynamic analysis of grid cell encoding

4.1 Introduction

Experience-dependent modification of grid cell responses has been re-

ported in a number of experiments in both rats and mice. Boundary-induced

change in shape or size of the environment can distort grid patterns [7, 88, 54],

and the degree of environmental familiarity [6] or differently registered sensory

cues [41, 16] can also provide notable changes in firing patterns without directly

altering the environment. Such a global remapping may emerge from changing

associations between the network and the external world, and is generally iden-

tified by summing the firing activity of a single neuron over a full trajectory

(∼ 20 min), which is an integrated measure over time of the activity of one

cell. This histogram-based analysis retains the computational efficiency when

we explore average spiking activity during a single entire recording session or

compare two distinct trials, while it restricts studying the underlying dynamics

of neurons in a temporally resolved way; there were a few attempts by parsing

out a full trajectory within a short time window (∼ 1-5 min) [102, 42].

To understand the network dynamics and fully investigate the predic-

tions of a theoretical model for grid cell system, it is essential to look into
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fine temporal dynamics at the resolution of the same order of magnitude as

the neural spiking. To be specific, the maintenance of general periodic struc-

ture in grid cells across different environmental contexts and even in complete

darkness suggest that grid cells may be the neural loci of path integration

[41]. However, additive nature of continuous integration of self-motion cues

results in an accumulation of error because an error in the current position

estimate will be propagated to all the following estimates without any correc-

tion mechanism. In such models, a natural question is whether there exists any

evidence of error accumulation [42]. Experimentally recorded grid cell data,

however, appear relatively stable over a few tens of minutes of recording ses-

sion, implying that either there is no accumulation of error, there is an ongoing

error-correction mechanism, or there is an accumulation of error that cannot

easily be seen by the naked eye – the current histogram-based approach – but

be captured in the microscopic scale.

To study fine temporal dynamics and examine the error accumulation

(and possibly correction) of grid cells, we apply a linear state-space model

observed through a point process [28] for characterizing the temporal evolution

of spatial firing patterns, or spatial tuning curves. The point process adaptive

filtering framework aims not only to estimate the system parameters at the

same temporal resolution of the spiking (∼ 1-10 msec), but also to infer how

diffusive the grid cell system would be. Here we show that the mismatch

between the actual and the internal estimate of an animal’s positions over

time can be well kept track of by this modeling framework given simulated
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data from a continuous attractor network model of grid cells. We find that the

model allows us to accurately infer to what extent the spatial tuning of grid

cells undergoes diffusion over time. Additionally, we pilot the method on grid

cell data recorded in both familiar and novel environments, where in the first

exposure to a novel environment, spatial firing patterns of grid cells expand

in size and reduce in regularity [6]. Environmental novelty may be indicative

of less frequent or less confident corrective inputs to the grid cell network.

Thus, we show how the model can be used to infer and compare the amount

of systematic drift between two environments.

4.2 Methods

4.2.1 State-space point-process model

In the context of attractor-based network model of grid cells, an internal

estimate of an animal’s position st is updated from the past estimate st−1

through integrating the velocity input vt at each time point. The stochastic

nature of neural responses, along with heterogeneous synaptic weights and a

finite number of neurons, introduces sources of error εd that can cause the

diffusion in the positional estimates st [18]:

st = st−1 + vt∆t + εd (4.1)

εd ∼ N(0, σ2
d) (4.2)

where σd determines the amount of noise for diffusion process.

Individual neurons are modulated by the internal estimate of position
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A B

Figure 4.1: (A) Trajectory (black) of an animal foraging in a square enclosure,
with spike locations (red dots) for a grid cell. (B) A schematic of the grid
cell spiking (red dots, yt) over a short time interval while the animal traverses
one of the firing fields (black circle; field width σf ; field width µ0) along a
movement trajectory (black curve; instantaneous position xt). According to
the continuous attractor model, grid cells are not modulated by the actual
position xt but by the internal estimate of the animal’s position st, which
could be away from each other through diffusion process.

st, and for the unobservable or latent stimulus st, grid cell spiking yt is modeled

as an inhomogeneous poisson process:

yt ∼ Poiss[λt∆t] = Poiss[f(st; θ)∆t] (4.3)

where the firing rate is

λt = f(st; θ) (4.4)

= exp

{
α− 1

2σ2
f

(st − µi)T (st − µi)

}
(4.5)

exp(α) is the maximum firing rate, µi is the center of the i-th firing field most

adjacent to st, σf is the field width, and θ = [α µ0 σf ]
T . µi>0 is deterministic

by treating them as the outcome of populating two primary lattice vectors of

grid cells centered on µ0 (Figure 4.1).
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This latent variable model can be useful when there is enough number

of neurons with sufficiently distinct spatial tuning phases to span the entire

space of the latent variable. However, it is only possible to take simultane-

ous recordings from a limited number of grid cells; more importantly, how

many neurons we need to accurately reconstruct st is a unanswered question.

For that reason, we introduce an alternative state-space model that does not

require to directly infer the latent variables st.

4.2.2 Point-process adaptive filter

We reformulate the previous model equations by replacing the latent

stimulus st by the actual position of the animal xt and transferring the source

of stochasticity in st to the set of tuning curve parameters θ (Figure 4.2):

θt = θt−1 + εd (4.6)

εd ∼ N(0, Q) (4.7)

yt ∼ Poiss[λt∆t] = Poiss[f(xt; θt)∆t] (4.8)

where Q is the covariance matrix whose diagonal is the noise variance of each

parameter in θ = [α µ0 σf ]
T , and the firing rate is

λt = f(xt; θt) (4.9)

= exp

{
αt −

1

2(σft )2
(xt − µit)T (xt − µit)

}
(4.10)

This point process adaptive filter model was used in a detailed study

of receptive field plasticity in the hippocampal CA1 or the entorhinal cortex
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A B

Figure 4.2: (A) A model for highlighting that grid cell responses are not
activated by the actual position of an animal xt but by the internal position
estimate st, relative to the center of a firing field µ0. The current spiking yt
(red dots) can be interpreted as the translocated activity (red circles) along
the trajectory of internal position estimates. (B) Alternative model of the
spiking events yt. Grid cell activity is triggered by the firing field that shifts
by the same amount (red arrow) through a random walk.

to track the evolution of these receptive fields on a millisecond timescale [14,

31, 28]. We aim to infer how st diverges from (or converges on) xt over time

by inferring the center of firing fields in a temporally resolved way, from which

we examine whether the system is diffusive or not.

In this model, θt is a time-varying parameter vector to be estimated

at each time point, and the estimates of θt will be based on its posterior

density, conditioned on the set of past observations: p(θt|yt, Ht) where Ht =

[θ1:t−1, x1:t, y1:t−1]. This posterior density evolves with time and with each

observation. Tracking this evolution allows for real-time estimation of the

parameters of λt based on all of the spiking data observed up to the current
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time. The recursive algorithm for updating the posterior mean and variance

is given by [28]:

θt|t−1 = θt−1|t−1 (4.11)

Wt|t−1 = Wt−1|t−1 +Q (4.12)

(Wt|t)
−1 = (Wt|t−1)−1 +

[(
∂ log λ

∂θt

)′
(λ∆t)

(
∂ log λ

∂θt

)
− (yt − λ∆t)

(
∂2 log λ

∂θt∂θ′t

)]
θt|t−1

(4.13)

θt|t = θt|t−1 +Wt|t

[(
∂ log λ

∂θt

)′
(yt − λ∆t)

]
θt|t−1

(4.14)

where θt|t−1 and Wt|t−1 are the mean and variance of the one-step prediction

density, θt|t and Wt|t are the posterior mean and variance, respectively. The

first and second derivative terms in (4.13) and (4.14) are evaluated as:

∂ log λ

∂θ

∣∣∣∣
θt|t−1

=

 1
σ−2
t|t−1(xt − µit|t−1)

σ−3
t|t−1(xt − µit|t−1)T (xt − µit|t−1)


∂2 log λ

∂θ∂θ′

∣∣∣∣
θt|t−1

=

 0 01×2 0
02×1 −σ−2

t|t−1I
2×2 −2σ−3

t|t−1(xt − µit|t−1)

0 −2σ−3
t|t−1(xt − µit|t−1)T −3σ−4

t|t−1(xt − µit|t−1)T (xt − µit|t−1)



4.3 Results

4.3.1 Model fitting in simulations

To examine the performance of our point-process adaptive filter, we fit

the parameters to simulated spike trains from the same model with known

parameters and from the continuous attractor model of grid cells. The first
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simulated cells exhibited a canonical firing pattern of grid cells, with model

parameters selected to reproduce the spatial tuning of grid cells. The second

simulated cells qualitatively mimicked experimental grid cell data through suf-

ficiently strong inhibitory interactions such that the connectivity produced a

regular pattern of neural activity [18]. The stimulus consisted of an experi-

mentally recorded two dimensional position estimates from a rat, binned at a

millisecond resolution. We validated our point-process filter by examining er-

ror in the estimated values of parameters, or comparing the mismatch between

the actual position xt and the decoded estimate st to the change in field cen-

ters over time. With different conditions of model parameters, the parameter

estimates reconstructed the true dynamics of spatial tuning for both simulated

cells. Therefore, the filtering algorithm can reliably fit the generative model to

grid cell spiking data, despite the fact that the model does not have a network

dynamics in the standard mechanistic model of grid cells.

4.3.2 Inferring model parameters from spikes of a descriptive model

We fit our model (4.6-10) to spike trains (∆t = 20 ms) obtained ex-

actly from the same model with the model parameters fixed: grid period

λ = 20cm, maximum firing rate exp(α) = 20Hz, and the field width σf = λ/3

cm (Figure 4.3A). However, the center of firing fields was allowed to vary

over time through a Gaussian random walk by setting µ0
t=0 = [25, 25]cm and

Q = diag[0, 0.05, 0.05, 0] (Figure 4.3B).

We tracked the center of a firing field µ0
t over ∼ 10 min recording session
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Figure 4.3: (A) Example trajectory (black) with simulated grid cell spikes in
red. (B) Grid cell responses after adding a random walk in the center of firing
fields. (C) The two-dimensional random walk of the firing field locations (gray)
embedded in (B). (D-E) The trajectory of the random walk in each coordinate
(gray) and the decoded field locations (blue). (F) Grid score measured in (A)
and (B).

and compared with the estimates by the filtering algorithm. The point-process

adaptive filter correctly predicted the diffusive nature of the firing field loca-

tion simulated in the model (Figure 4.3C-E). To visualize the estimated field

centers alongside the evolution of a simulated random walk, we decomposed

the 2-dimensional coordinates of the field center into two scalars. The notable

tracking even under the rapid evolution in some places was ascribed to the

adaptive learning rate that was proportional to the one-step prediction vari-

131



0 2 4
time step × 104

20

25

30

35

40

0 2 4
time step × 104

18

20

22

24

26

28

30

0 2 4
time step × 104

2

3

4

5

0 2 4
time step × 104

2

3

4

5

10cm
0

50

0 50

A B C

D E

F G

Figure 4.4: (A-E) Same as Figure 4.3 for another random walk in the center of
firing fields. The inference is based on purposely approximated system noise
variances. (F-G) Decoded field width and log of maximum firing rate (blue).

ance (4.13). The point-process filter scaled up its relatively low learning rates

right after the jump, and then scaled them down rapidly to continue to track

correctly the parameter by exploiting the error between the instantaneous fir-

ing rate estimate and the current spiking activity [28].
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Decoding the parameters of a spatial tuning curve requires a covariance

matrix Q a priori for updating the variance of the one-step prediction density

(4.12). We applied exactly the same covariance Q as the one used in generating

simulated spike trains in Figure 4.3A, but we now relaxed the constraint by

setting Q = diag[10−3, 10−2, 10−2, 10−3] to understand the dependence of the

model on the noise variance. The reduced variance of µ0
t made the posterior

mean change less swiftly, although the estimates of the field center were not

qualitatively different from the ground truth (Figure 4.4D-E). The positive

variance of σft and αt constantly fed into (4.12) as opposed to zero produced a

slight fluctuation in their posterior mean, but the field width and the maximum

firing rate were fairly stable over time (Figure 4.4F-G). Nonetheless, a sizeable

discrepancy between the system noise variance and our empirical initial value

of Q could lead to inaccurate estimates (now shown), which is discussed in the

next chapter.

4.3.3 Inferring model parameters from spikes of an attractor net-
work model

We fit the point-process filter model to a population of grid cells sim-

ulated from a continuous attractor network model in response to velocity in-

puts. In this mechanistic model, grid cells are modeled as a network of neurons

with asymmetrically centered inhibitory center-surround synaptic weight pro-

files. These neurons form a two-dimensional neural sheet where a grid activity

pattern emerges in the presence of feedforward excitation. Individual grid

cell responses are then generated when an animal’s velocity is coupled to the
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Figure 4.5: (A) Movement trajectory (black) of an animal (green circle) over
a few seconds superimposed by spike locations (red) of a grid cell. (B) A
snapshot of the population activity, when the network is driven by the animal’s
velocity input. Displacement of the population pattern is recorded by keeping
track of a center of mass (green circle) from neurons within a 11 × 11 patch
(green square). (C) Decoded population trajectory (gray).

movement of population activity pattern [18, 32].

We first performed a population decoding in the neural sheet to re-

construct the trajectory of internal estimates of the animal’s position. An

instantaneous displacement of an activity bump was decoded by computing

the center of mass from the activity states and the absolute locations of 121

neurons within a 11 × 11 patch centered around the activity bump (Figure

4.5). The neural trajectory followed by an appropriate rescaling was com-

pared to the actual movement trajectory of the animal to reconstruct the

random walk subsumed in the velocity-to-position integrator (Figure 4.6A-C).

We next examined the drift in the population state to assess the effect of noise

on integration accuracy. Quantitatively, the mean squared error of the internal
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Figure 4.6: (A) Example spatial response of a grid cell simulated from a con-
tinuous attractor model. (B) Animal’s movement trajectory (black) shown as
x- (top) and y-components (bottom). Decoded trajectory of the population
pattern (gray) is overlaid on the figure. (C) Difference between the animal’s
trajectory and the decoded trajectory (gray). (D) Mean squared error of the
internal position estimate in a short time interval up to ∼ 1 minute.

position estimates in a time interval ∆t was closely proportional to ∆t (Figure

4.6D), which was consistent with the prediction of noisy spiking network [18].

Our adaptive filter model was fit to the ∼ 5 minutes of spike train

recordings from the simulated grid cells. Two simultaneously recorded cells

were randomly selected and their field centers were decoded independently

but with enforcing consistency in the field width and the maximum firing

rate. The latter constraint is consistent with the attractor hypothesis in that

any cells in the same network share essentially identical values of the tuning

curve parameters. Although the model was fit to each cell independently, the

decoded center of the firing fields of two cells was well-matched to each other
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Figure 4.7: (A) Example spatial response of a grid cell simulated from a con-
tinuous attractor model. (B) Animal’s movement trajectory (black) shown as
x- (top) and y-components (bottom). Decoded trajectory of the population
pattern (gray) is overlaid on the figure. (C) Difference between the animal’s
trajectory and the decoded trajectory (gray). (D) Mean squared error of the
internal position estimate in a short time interval up to ∼ 1 minute.

(Figure 4.7). Furthermore, the estimated field center of an individual cell

was not qualitatively different from the drift of the internal position estimate

inferred from the population decoding (Figure 4.7), which was also consistent

with the attractor hypothesis. The results of our analysis confirmed that the

point-process filter model can infer the dynamic changes in spatial tuning

curves of grid cell over time.
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4.4 Conclusions

We have utilized a computationally tractable method for tracking the

temporal evolution of tuning curves from spike train observations. The for-

mulation involved modeling a probabilistic model of neural spiking along with

a state-space model using the Chapman-Kolmogorov equation in a Bayesian

framework to obtain a recursive expression for the posterior distribution of

parameters to be tracked. We have applied this method to determine the dy-

namics underlying grid cell activity in the entorhinal cortex. According to the

predictions of the attractor model, grid cells accumulate error by the nature

of integration and stochastic neural responses. Thus, we should find the evi-

dence of error accumulation over a short time, even under an error correction

mechanism. Our results showed that we can infer the amount and behavior

of the drifting error through the adaptive filtering algorithm. The following

work with this model is to investigate the same problems with experimentally

recorded grid cells. Specifically, the work includes analyzing grid cells recorded

in both familiar and novel environments to examine how differently the error

is accumulated. It aims to understand whether the familiarity of the external

cues plays a role as a source of correction mechanism.

Future direction will be required to establish a solution to the depen-

dence of the model on initial values of the parameter vector. We observed

that the decoding performance can deteriorate when the covariance Q or the

value of parameters at t = 0 is far from the ground-truth. Future work should

aim to determine which model best describes actual neural data by applying
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a classic Bayesian model comparison – to quantify the ratio of the marginal

likelihoods of the data given two models, p(y|M1)/p(y|M2).
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Chapter 5

Conclusions

The computational and mathematical approaches presented in this dis-

sertation aimed to unravel grid cell dynamics during navigation in general.

The grid cell system offered the opportunity to study a cognitively meaningful

neural computation at a mechanistic level. Here we leveraged unique datasets

together with newly developed algorithms to examine integrative properties of

grid cells in three aims.

In Chapter 2, the main implication was that, while grid cells may change

their properties under the remapping such as when physically stretching the

environment or under conditions of novelty, these changes must be made in

tandem, such that the ratio between different grid parameters must remain

stable between pairs of cells, before and after remapping. Our analyses strongly

suggests that the multi-dimensional network activity of grid cells is embedded

into a stable two-dimensional continuous attractor manifold. In addition, we

showed that the animal’s velocity could perturb the state of the network away

from the stable state, in agreement with the important role that the velocity

of the animal plays in most theoretical models of grid cells.

In Chapter 3, the responses of grid cells on 1D tracks were character-
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ized based on the analytical properties of the Fourier transform of linear slices

through regular lattices. We established that despite their irregular and aperi-

odic appearance, 1D slices through idealized 2D lattices will have a canonical

1D Fourier power spectrum, and the responses will exhibit a characteristic

gap distribution with gap ratios determined by the 2D lattice geometry. We

further showed that cells from the same module are well-fit by parallel slices

through the same regular lattice, and moreover, it is possible to predict the 2D

relative phase of cells from slice fits to their 1D track recordings. These suc-

cesses strongly suggest that the network remains in fundamentally the same

dynamical regime.

In Chapter 4, we piloted a state-space point-process model to infer

the drift in a network state of population neurons. The statistical inference

method could reconstruct the random walk subsumed in the grid cell system as

a path-integrator, and the result was consistent with the “square root of time”

rule for the errors of random walk. Finally, the random walks decoded from

two grid cells recorded simultaneously showed coherent changes over time.
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