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Chapter 1

Introduction

Surfaces embedded in 4–manifolds form a central object of study in

low-dimensional topology. For example, properly embedded surfaces (with

boundary) in B4 relate to knot theory by the study of knot concordance and

slice genus. In another direction, perhaps the best source of potential counter-

examples to the smooth Generalized Poincaré Conjecture in dimension 4 are

the manifolds obtained by the Gluck twist surgery operation on 2–knots (em-

bedded S2’s in S4). Indeed, the general phenomenon of exotic 4–manifolds

(manifolds that are homeomorphic but not diffeomorphic) is amenable to the

tools provided by surgery on surfaces. In fact, as a consequence of Wall’s the-

orem [74] every smooth structure on a simply-connected 4–manifold X can be

obtained by spherical surgery on X#kS
2 × S2 for some k, and by [10], every

pair of simply-connected exotic 4–manifolds can be related by a sequence of

surgeries on embedded tori. Furthermore, the smooth structure is often sen-

sitive to the minimum genus of a surface representing a particular homology

class (see, for example, [48] [62]).

Surfaces in 4–manifolds and surgery on those surfaces provide a unifying

theme for this dissertation. Chapters 2 and 3 focus on the torus surgery
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operation on 4–manifolds, while Chapter 4 relies on information about the

Gluck twist and a type of a surgery on a disk that doubles to a Gluck twist.

In Chapter 2 we study the result of torus surgery on tori embedded in

S4. Key questions include which 4–manifolds can be obtained in this way and

the uniqueness of such descriptions. We show that the possible fundamental

groups these manifolds realize is quite large. We also apply torus surgery and

Gluck twists to construct embeddings of 3–manifolds. While many construc-

tions of embeddings of 3–manifolds into 4–manifolds depend on handlebody

techniques and branched covers of (doubly) slice knots, here we take an alter-

native approach using surgery on surfaces.

In Chapter 3 we study torus surgery in the context of singular fibra-

tions on 4–manifolds. Lefschetz and elliptic fibrations have a long history of

study, first in algebraic geometry and then in symplectic geometry, topology,

and gauge theory. Indeed, performing torus surgeries on regular fibers of the

Lefschetz fibration E(1) on the manifold CP2#9CP2 gave the first counterex-

amples to the 4-dimensional h-cobordism conjecture [19]. The resulting exotic

copies of CP2#9CP2 no longer admit Lefschetz fibrations; performing torus

surgeries introduces multiple fiber singularities to the fibration map.

Inspired by the powerful correspondence between Lefschetz fibrations

and symplectic structures due to Donaldson [20] and Gompf [29], a host of

authors (initiated by the paper [8]) sought to extend these techniques to the

near-symplectic case with what are most commonly known as broken Lefschetz

fibrations (BLFs). In fact, it is now known that every closed 4–manifold admits
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the structure of a BLF (see [6], [9], [24], [52]), which consists of a map to a

surface with only Lefschetz singularities and indefinite fold singularities. It

has been a long standing hope to detect exoticness from the point of view of

BLFs (see relevant work by Perutz [67] [68], and also Williams [75]). A natural

set of manifolds to try to pursue this approach would be the exotic families

E(n)p,q of elliptic surfaces (with multiple fibers of multiplicity p and q).

In Chapter 3 we construct the first explicit BLFs on the manifolds

E(n)p,q by showing how to replace a multiple fiber singularity with a series

of indefinite fold singularities (these singularities are stable and generic). The

construction relies on decomposing a torus surgery into a series of round han-

dle attachments. As an intermediary step we construct generic fibrations in

neighborhoods of exceptional fibers in Seifert fibered spaces. It remains to be

seen if these fibrations will be useful in detecting exoticness of the underlying

manifolds.

Finally, Chapter 4 consists of joint work with Jeffrey Meier [49], where

we study various types of slice disks (with potential relevance to the Slice-

Ribbon Conjecture), and the interplay between knots and 2–knots. In par-

ticular we focus on slice disks that are fibered, that is, whose complements

fiber over S1 (the boundary will be a fibered knot). By interpreting mon-

odromy changes as surgeries on surfaces in the fiber we give several interesting

decomposition theorems for fibered disks and 2–knots.

3



Chapter 2

Surgery on tori in the 4–sphere

2.1 Introduction

1 Given an embedded torus T with trivial normal bundle in a 4–manifold

X, torus surgery on T (also called a log transform) is the process of remov-

ing a neighborhood νT and re-gluing T 2 × D2 by some diffeomorphism φ of

the boundary to form XT = X \ νT ∪φ T 2 ×D2. Torus surgery is the opera-

tion underlying almost all examples of exotic 4–manifolds (see [22] for a nice

overview). While torus surgery is a well-studied operation, most of the work

has focused on tori embedded in elliptic surfaces (or at least in neighborhoods

that admit a special elliptic fibration). Here we restrict to the case where the

tori are embedded in S4.

There are two natural 4-dimensional analogues to Dehn surgery on

knots in S3. The first is the Gluck twist operation [25] on 2–knots, and the

other is torus surgery (it is known that surgery on higher genus surfaces is

a trivial operation since the gluing map will always extend over the tubular

neighborhood of the surface). Now the possible 4–manifolds obtained by a

1The majority of this chapter has previously appeared in the following preprint, which
has been submitted for publication: Kyle Larson. Surgery on tori in the 4-sphere (2015).
Preprint available at http://arxiv.org/abs/1502.06834 .
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Gluck twist in S4 are quite limited; by an application of Freedman’s theorem

[23] the result will always be homeomorphic to S4. Furthermore, by a theorem

of Iwase [42], the result of a Gluck twist can also be obtained by a certain

related torus surgery, and so for these reasons torus surgery seems to be the

appropriate 4-dimensional generalization of Dehn surgery.

However, there is an immediate impediment to proving an analogue of

the powerful Lickorish-Wallace theorem for Dehn surgery: torus surgery always

preserves the Euler characteristic and signature of the 4–manifold. Therefore,

the relevant question is:

Question 2.1.1. Which 4–manifolds with Euler characteristic 2 and signature

0 can be obtained by surgery on a link of tori in S4?

As a preliminary result in this direction we can show that a large class of

groups can be obtained as fundamental groups of such 4–manifolds: we prove

that any finitely presented group with non-negative deficiency appears as the

fundamental group of a 4–manifold obtained by surgery on a link of tori in S4.

While we will see that it is also possible to obtain groups with arbitrarily large

negative deficiency, it is known that not all groups can be obtained in this way.

Now at present a full answer to Question 2.1.1 remains out of reach. However,

a theorem by Baykur and Sunukjian [10] is relevant here. A consequence of

their theorem is that any 4–manifold with Euler characteristic 2 and signature

0 can be obtained by a sequence of torus surgeries starting in S4 (in particular

it may be necessary to have intermediate 4–manifolds). Question 2.1.1 asks
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when is it possible to replace such a sequence with a single simultaneous set

of torus surgeries.

We will consider various spinning constructions to provide nice exam-

ples. We will produce an infinite family of distinct tori that admit non-trivial

surgeries to S4, suggesting the possibility that manifolds obtained by a single

torus surgery in S4 never have a unique such description. We will also see that

cyclic branched covers of spun knots can always be obtained by torus surgery

in S4, and that two spun knots are always related by torus surgery in their

exteriors.

Finally, we examine surgery on the unknotted torus, and use this to

show that the 3–manifolds obtained by p/q Dehn surgery on a knot in S3

always embed in either S1 × S3#S2 × S2 or S1 × S3#S2×̃S2. If we puncture

the 3–manifold then we can eliminate the S1×S3 connect summand. We also

construct embeddings of 3–manifolds into S4 by considering cross sections of

Gluck twists. The statement of our result is simplest if we start with a ribbon

link L in S3. If ML is the 3–manifold obtained by surgery on L with all

the surgery coefficients belonging to the set {1/n}n∈Z, then we have that ML

smoothly embeds in S4. ML will be a homology 3–sphere, and so we see that

this theorem allows us to construct embeddings for a large family of homology

spheres into S4. We finish by giving an alternative proof of a theorem of

Gompf about embedding punctured homology spheres in S4.

6



2.1.1 Organization

In Section 2.2 we give definitions and consider the basic algebraic invari-

ants related to torus surgery. A discussion of several spinning constructions

and their connection to torus surgery takes place in Section 2.3. Our results

regarding fundamental groups appear in Section 2.4 in the context of inter-

preting torus surgeries as round cobordisms. Lastly, Section 2.5 contains our

results about surgery on the unknotted torus and embeddings of 3–manifolds.

2.2 The basics

We will assume that all manifolds and maps are smooth, and that

homology is calculated with integer coefficients unless otherwise noted.

2.2.1 Torus exteriors

A surface knot K is an embedded submanifold in S4 that is diffeo-

morphic to some closed surface. When K is diffeomorphic to S2 it is called

a 2–knot. This chapter is concerned with the case that K is diffeomorphic

to the torus T 2, and we will simply say that K is a torus in S4 (henceforth

we switch to the notation T for a torus in S4). Let ET = S4 \ νT denote the

exterior of T. We can compute the homology of ET by the long exact sequence

of the pair (S4, ET), using the isomorphism Hn(S4, XT) ∼= Hn(νT, ∂νT) from

excision. The result is that Hn(ET) is isomorphic to Z for n = 0 or 1, Z ⊕ Z

for n = 2, and 0 otherwise. The calculation shows that H1(ET) is generated

by the homology class of a meridian of T and generators of H2(ET) are given
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by the rim tori S1×{pt}×∂D2 and {pt}×S1×∂D2 in ∂ET = ∂νT under the

identification νT = S1 × S1 × D2 (and these tori have algebraic intersection

number 0 in ET).

The fundamental groups of torus exteriors in S4 (and for surface knots

in general) have been widely studied. The collection of such groups includes

all 2–knot groups, and hence all classical knot groups (for an overview see

[16]). Among other things, it is known that this collection contains groups

of arbitrarily large negative deficiency [53]. (The deficiency of a finite group

presentation is the number of generators minus the number of relations. The

deficiency of a group is the maximum deficiency of all presentations for the

group.)

2.2.2 Torus surgery

Let T be an embedded torus in S4. We want to think of T as a particular

embedding of S1×S1 into S4, so that we have fixed curves α = S1×{pt} and

β = {pt}×S1 in T ⊂ S4 (whose homology classes provide a preferred basis for

H1(T)). Note that it is possible for there to be infinitely many distinct isotopy

classes of embeddings S1×S1 ↪→ S4 with the same submanifold as their image

[38]. A framing for T is a particular identification of a tubular neighborhood

νT with T 2×D2. Given our fixed embedding, there is a canonical framing for

T, specified by requiring that the pushoffs α×{pt} and β ×{pt} in T 2× ∂D2

are nullhomologous in the exterior ET of T. (Framings are identified with

H1(T 2) ∼= Z⊕ Z, and since the first homology of the exterior is generated by

8



a meridian we can twist the D2 factor along α and β so that the pushoffs are

nullhomologous.)

We now define the operation of interest in this chapter. Torus surgery

on T is the process of removing νT from S4 and re-gluing T 2 × D2 by a

diffeomorphism φ : T 2 × ∂D2 → T 2 × ∂D2, using our canonical framing to

identify ∂νT with T 2× ∂D2. We will momentarily denote the resulting closed

4–manifold by S4
T(φ). Since T 2×D2 admits a handle decomposition relative its

boundary with one 2-handle, two 3-handles, and a 4-handle, we can construct

S4
T(φ) from ET by adding one 2-handle, two 3-handles, and a 4-handle. There

is a unique way to attach 3- and 4-handles for a closed 4-manifold ([51], [61]),

and so S4
T(φ) is determined up to diffeomorphism by the attaching circle of the

2-handle (the framing must be the product framing). The attaching circle will

be the image of the meridian {pt} × ∂D2 under φ, and this is determined up

to isotopy by its homology class [φ({pt} × ∂D2)] = p[m] + a[α] + b[β], where

m is the meridian of T. Therefore, given our fixed embedding of T and the

resulting canonical framing, S4
T(φ) is determined up to diffeomorphism by the

integers p, a, and b (and such a triple of integers can be realized if and only

if they share no common factors). Hence we will denote a torus surgery on T

by S4
T(p, a, b). It turns out that the integer p is particularly important, and

it is called the multiplicity of the surgery. If we think of T 2 × ∂D2 as R3/Z3,

then we can represent our gluing map φ by a matrix in GL(3,Z). Since the

resulting diffeomorphism type only depends on the image of {pt} × ∂D2, we

can choose the gluing map to be any integral matrix (with determinant ±1)
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of the form:

φ =

 ∗ ∗ a
∗ ∗ b
∗ ∗ p


Now there is another common notation to specify a particular torus

surgery. The homology class a[α]+b[β] ∈ H1(T 2) equals qγ for some primitive

element γ ∈ H1(T 2). We call q the auxiliary multiplicity and γ the direction

of the surgery. Then specifying the multiplicity, auxiliary multiplicity, and

direction determines the resulting diffeomorphism type of the surgery. If q = 1

we will say the surgery is integral.

The trivial surgery is S4
T(1, 0, 0), which returns (S4,T). Note that if we

choose different embeddings of the same T (thought of as a submanifold), we

will get the same set of possible torus surgeries but the surgery data could

be different. We will also consider surgery on links of tori (a collection of

multiple disjoint embeddings of tori into S4), and the resulting manifold will

be determined by the surgery data for each individual torus surgery.

2.2.3 Algebraic topology

Next we examine the basic algebraic topology of S4
T(p, a, b). Since we

have already computed the homology of ET, we can compute the homology

of S4
T(p, a, b) using the long exact sequence of the pair (S4

T(p, a, b), ET). For

this calculation it is useful to change our identification νT = T 2 × D2 by a

self-diffeomorphism of T 2 × D2 that is the identity on the second factor but

on the T 2 factor sends the direction γ to [{pt}× S1]. Then we can choose our

10



gluing map φ : T 2 × ∂D2 → T 2 × ∂D2 to be:

φ =

 1 0 0
0 c q
0 d p


for some c and d satisfying cp−dq = 1. Following the calculation we see that for

p 6= 0, Hn(S4
T(p, a, b)) is isomorphic to Zp for n = 1, 2, and vanishes for n = 3.

Furthermore, H1(S4
T(p, a, b)) is generated by the original meridian m in ET and

H2(S4
T(p, a, b)) is generated by the glued-in torus T 2 × {0}. In particular, we

observe that multiplicity 1 surgery produces a homology 4–sphere.

Similar computations show multiplicity 0 surgery results in a 4–manifold

with the homology of S1 × S3#S2 × S2.

There is a simple relationship between the fundamental group of S4
T(p, a, b)

and the fundamental group of the torus exterior ET. We start with a presenta-

tion of π1(ET) and add a single relation corresponding to the attaching circle

of the 2-handle.

2.2.4 Spin structures

Recall that a 4–manifold X is spin if and only if its second Stiefel-

Whitney class w2(X) ∈ H2(X;Z2) vanishes. If X is spin, the set of distinct

spin structures can be identified withH1(X;Z2). For odd multiplicity p, we can

calculate from the integral homology of S4
T(p, a, b) that H2(S4

T(p, a, b);Z2) ∼=

H1(S4
T(p, a, b);Z2) ∼= 0. Hence S4

T(p, a, b) has a unique spin structure for odd

p, regardless of the particular choice for a or b.

11



For even p the situation is more subtle. Here we follow Iwase [42].

Suppose we take a curve on T and push off using our canonical framing to

obtain a curve c in ∂ET such that [c] = 0 in H1(ET;Z2). Let c′ be a pushoff

of c in ∂ET using the product framing of the boundary. Now let D and D′ be

2–chains in ET such that [∂D] = [c] and [∂D′] = [c′] (mod 2), and D and D′

intersect transversely. Then q([c]) = D ·D′ (mod 2) is a well-defined function.

In fact, q is the Rokhlin quadratic form [69] (see also [60]) for T and so it

satisfies q([c1] + [c2]) = q([c1]) + q([c2]) + [c1] · [c2] (mod 2). Furthermore, if the

kernel of the inclusion map H1(∂ET;Z2) → H1(ET;Z2) is {0, e1, e2, e3}, then

Iwase shows that q(ei) = 1 for exactly one ei (in other words the Arf invariant

is 0 for tori in S4; see also [69]). This motivates the following definition.

Definition 2.2.1. A particular embedding S1×S1 ↪→ S4 will be called a spin

embedding if q([{pt} × S1]) = q([S1 × {pt}]) = 0. We will say the resulting

torus T in S4 is spin embedded.

Note that we can always change our embedding of a torus so that it is

spin embedded. Now we can determine when the result of an even multiplicity

surgery is spin. Iwase [42] worked this out for a special class of tori obtained

by spinning torus knots in S3, and in fact his proof works in this more general

context, which we give here.

Proposition 2.2.2. S4
T(p, a, b) is spin if p is odd. If p is even, assume that T

is spin embedded. Then S4
T(p, a, b) is spin if and only if ab = 0 (mod 2).

12



Proof. We saw above that S4
T(p, a, b) is spin if p is odd, so assume p is even.

The Mayer-Vietoris sequence with Z2 coefficients (we use these coefficients for

the rest of the argument) gives us:

H2(T 2×D2)⊕H2(ET)
Ψ−→ H2(S4

T(p, a, b))
∂−→ H1(∂(T 2×D2))

Φ−→ H1(T 2×D2)⊕H1(ET)

Now the kernel of Φ = {0, [m]} for a meridian m of T. Hence we have an

induced split exact sequence and isomorphism H2(S4
T(p, a, b)) = imΨ⊕〈[Dm+

Dσ]〉 for Dm the class of the meridinal disk in T 2 × D2 and Dσ a 2–chain in

ET bounded by the surgery curve σ = φ({pt} × ∂D2) (whose homology class

p[µ]+a[α]+b[β] is 0 since p is even). Now the Z2 intersection form is trivial on

imΨ and on 〈[Dm +Dσ]〉 we have [Dm +Dσ]2 = q([σ]) = a2q(α) + b2q(β) + ab

(mod 2). If T is spin embedded then this equals ab (mod 2) and so by the Wu

formula we get that w2(S4
T(p, a, b)) = 0 (and hence S4

T(p, a, b) is spin) if and

only if ab = 0 (mod 2).

2.2.5 Special neighborhoods

The fishtail neighborhood F and cusp neighborhood C are compact

4-manifolds that admit elliptic fibrations over the disk with a single fishtail

or cusp singular fiber, respectively. We can describe handle decompositions

for these manifolds as follows (see Figure 2.1). We start with a handle de-

composition for T 2 × D2, and to form F we add another 2-handle attached

along a pushoff of an S1 factor of T 2×{0}, where the framing of the 2-handle

13



Figure 2.1: Here are handle diagrams for the fishtail neighborhood F (left)
and the cusp neighborhood C (right).

will be obtained from the product framing of the boundary by adding a single

left-handed twist. To form C we add one more 2-handle along a pushoff of the

other S1 factor of T 2×{0}, where again the framing will be given by taking the

product framing and adding a single left-handed twist. The attaching circles

for these extra 2–handles are called vanishing cycles.

Performing torus surgery on regular fibers of fishtail and cusp neigh-

borhoods has been an important operation in the theory of 4–manifolds. In

this context we have a fixed framing for the torus fiber coming from the fi-

bration map, and so we have well-defined notions of the multiplicity, auxiliary

multiplicity, and direction of the surgery as before. Here we state two the-

orems that demonstrate nice properties satisfied by torus surgeries in these

neighborhoods. For proofs we refer the reader to [29] for the first theorem and

to [26] for the second.

Theorem 2.2.3. The result of performing torus surgery on a regular fiber of
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a cusp neighborhood C depends only on the multiplicity p of the surgery, up

to diffeomorphism relative to the boundary.

This theorem says that the result of torus surgery in C is independent

of the auxiliary multiplicity or direction of the surgery. We observe that C

does not admit an embedding into S4. For example, by Proposition 2.2.2 we

see that whether the result of performing an even multiplicity surgery on a

torus in S4 is spin depends on the auxiliary multiplicity and the direction. If

such a torus was a regular fiber of a cusp neighborhood there could be no such

dependence. However, there do exist embeddings of fishtail neighborhoods

into S4, and we will apply the following result in Section 2.3.

Theorem 2.2.4. The result of performing a multiplicity 1 surgery on a regular

fiber of a fishtail neighborhood F , with direction given by the vanishing cycle,

is diffeomorphic to F relative to the boundary.

2.3 Spinning constructions

First we introduce a nice family of tori in S4. Let K be a knot in

S3. Remove from S3 a 3–ball disjoint from K, and consider the resulting pair

(B3, K). Then we get a torus TK in S4 by taking K × S1 ⊂ B3 × S1 in the

decomposition B3 × S1 ∪id S
2 × D2 of the 4–sphere (see Figure 2.2). Note

that we get a different torus, denoted T′K , if we glue S2 × D2 to B3 × S1 by

the Gluck twist map ρ : S2 × S1 → S2 × S1. (Recall ρ is defined by sending

(x, θ) to (rotθ(x), θ), where rotθ is rotation of S2 about a fixed axis through
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angle θ.) We will call TK the spun torus of K and T′K the twisted spun torus

of K (Boyle calls T′K a turned torus [13]). We will choose our embedding

S1 × S1 ↪→ TK (resp. T′K) so that α is identified with K × {pt} and β is

identified with {pt} × S1 in K × S1.

For a nontrivial knot K ⊂ S3, the exteriors of TK and T′K will have the

same fundamental group (the knot group for K), but they are neither isotopic

[55] nor have diffeomorphic exteriors [13]. We remark that the special case of

spinning torus knots in S3 (and surgery on the resulting tori) was extensively

studied by Iwase in [42] and [40].

Proposition 2.3.1. Given a knot K ⊂ S3, the twisted spun torus T′K is a

regular fiber of a fishtail neighborhood in S4 with the vanishing cycle given by

a push off of β.

Proof. Isotope K in B3 so that a point x ∈ K lies near the boundary ∂B3.

In particular, arrange so that x × ∂D2 ⊂ ∂νK is tangent to ∂B3 at a point

x0 ∈ ∂B3. Now we obtain T′K in S4 by crossing (B3, K) with S1 and gluing in

S2×D2 by the map ρ. In terms of handles, we glue in S2×D2 by first attaching

a 2-handle h2 along {pt}×S1 on the boundary S2×S1 with framing given by

adding a left-handed twist to the product framing (if we glue by the identity

map instead of ρ we would take the product framing), and then capping off

with a 4-handle. We can choose the attaching circle of h2 to be x0 × S1, and

then it follows directly from the definition that (νK × S1) ∪ h2 = νT′K ∪ h2 is

a fishtail neighborhood. We have attached h2 along a push off of β, and this
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attaching circle is the vanishing cycle.

In contrast to the case of knots admitting non-trivial S3 surgeries (only

the unknot admits such a surgery [31]), we can construct infinitely many tori

in S4 that admit non-trivial S4 surgeries. In particular, as a corollary of the

preceding proposition we see that each twisted spun torus T′K admits infinitely

many non-trivial surgeries to S4.

Corollary 2.3.2. S4
T′K

(1, 0, b) is diffeomorphic to S4.

Proof. This follows directly from Theorem 2.2.4.

The author first observed the existence of these surgeries follows from

a more general result appearing in unpublished work by Gompf [27]. Since

S4 does not admit a unique surgery description, it is natural to ask how

widespread is this phenomenon.

Question 2.3.3. If X is a 4–manifold obtained by surgery on a torus T in S4,

can X be obtained by surgery on an infinite family of distinct tori {Ti} in S4?

The above examples also suggest another question. In contrast with

the classical dimension [31], it is known that there exist inequivalent 2–knots

with the same complement [30]. However, by [25] there can be at most two

2–knots with the same complement. The case for tori in S4 is unknown.

Question 2.3.4. Do there exist (perhaps infinitely many) distinct tori in S4

with the same complement?
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Torus surgery appears to be the right perspective to answer this ques-

tion positively. The goal would be to find non-trivial tori that admit surgeries

to S4 such that the surgery gluing map does not extend over the exterior or the

neighborhood of the torus (this rules out the examples from Corollary 2.3.2).

Next we define the spin of a manifold.

Definition 2.3.5. Let M be a closed n–manifold, and let M◦ denote M with

an open ball removed. Then the spin of M is the closed (n + 1)–manifold

defined by spin(M) = ∂(M◦ ×D2). This is equivalent to taking M◦ × S1 ∪id

S2 ×D2.

The following is an easy observation.

Proposition 2.3.6. Let M be a closed, orientable 3–manifold. Then spin(M)

can be obtained by surgery on a link of tori in S4.

Proof. The Lickorish-Wallace theorem states that M can be obtained by Dehn

surgery on a link L in S3. Remove a 3–ball away from L in S3, so that we

now think of L as sitting in B3. We obtain a link of tori TL in S4 by taking

L × S1 ⊂ B3 × S1 inside spin(S3) = B3 × S1 ∪ S2 × D2 = S4. We can now

perform surgery on TL where we take the gluing maps to be S1 times the Dehn

surgery gluing maps on L that give M . Hence we transform B3×S1∪S2×D2

to M◦ × S1 ∪ S2 ×D2 = spin(M).

Here we recall the process of spinning knots, a construction due to Artin

(see Figure 2.2).
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Figure 2.2: Spinning the knot K ⊂ B3 on the left will result in a torus TK in
S4. Spinning the knotted arc K̂ ⊂ B3 on the right will result in the 2–knot
spin(K) in S4.

Definition 2.3.7. Let K be a knot in S3. If we remove an open ball around a

point of K, we get a knotted arc K̂ ⊂ B3. The spin of K (denoted spin(K)) is

the 2–knot obtained by taking the annulus K̂ ×S1 ⊂ B3×S1 and capping off

with two disks in S2×D2 inside the decomposition S4 = B3×S1 ∪id S
2×D2.

This is a well-studied operation that generalizes to higher-dimensional

knots. The following is a corollary to Proposition 2.3.6.

Corollary 2.3.8. Let K be a knot in S3. The d-fold cyclic branched cover of

spin(K) can be obtained by surgery on a link of tori in S4.

Proof. Let Md(K) denote the d-fold cyclic branched cover of K. If K̃ is the lift

of K in Md(K), let B denote a fibered neighborhood of a point x ∈ K̃. Now if

Md(K)◦ = Md(K) \B, then spin(Md(K)) = Md(K)◦×S1∪S2×D2. Observe

that the d-fold branched covering S2 → S2 (with branch points the two poles)

times the identity on the D2 factor fits together with the induced branched
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covering of Md(K)◦ × S1 to form a branched covering of spin(Md(K)) with

branch locus spin(K). Hence spin(Md(K)) is the d-fold cyclic branched cover

of spin(K), and the result then follows from Proposition 2.3.6.

Next we prove a generalization of a theorem appearing in [49], where

the authors considered the case of spinning fibered knots and gave a proof

relying on interpreting monodromy changes as surgeries.

Theorem 2.3.9. Let K1 and K2 be two knots in S3. Then (S4, spin(K2)) can

be obtained from (S4, spin(K1)) by surgery on a link of tori in the complement

of spin(K1).

Proof. Consider knots K1 and K2 in S3. We can obtain K2 from K1 by

surgery on a link L in the exterior of K1, where each component is unknotted

and with framing ±1, since such surgeries allow one to change overcrossings

to undercrossings and vice versa. If we remove a small ball around a point of

K1 we see L and K̂1 inside B3. Then upon spinning we get spin(K1) and a

link TL of tori in S4. By construction, performing multiplicity ±1 surgeries on

TL (using the Dehn surgery maps times the identity map in the S1 direction)

in the exterior of spin(K1) will return spin(K2).

2.4 Round cobordisms

A useful way to study torus surgeries is by round handles (for a full

development of this perspective see [10]). Recall that an n-dimensional round
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k-handle is a copy of S1×Dk×Dn−1−k attached along S1×∂Dk×Dn−1−k. It

is a basic fact that an n-dimensional round k-handle can be decomposed into

an n dimensional k-handle and an n dimensional (k + 1)-handle. Consider in

particular the case of a 5-dimensional round 2-handle S1 ×D2 ×D2 attached

along S1 × ∂D2 ×D2 to X × I for some 4–manifold X. This defines a round

cobordism between X and X ′, where X ′ can be obtained from X by removing

the attaching region S1× ∂D2×D2 and gluing S1×D2× ∂D2 by the identifi-

cation of their boundary. Observe that this is simply an integral torus surgery

on the torus T = S1× ∂D2×{0}. Furthermore, the converse is also true: any

integral torus surgery corresponds to a cobordism given by a 5-dimensional

round 2-handle (see [10] Lemma 2). The torus, multiplicity, and direction of

the surgery determine how the attaching region S1 × ∂D2 ×D2 of the round

2-handle is embedded.

For our purposes the most important tool will be the Fundamental

Lemma of Round Handles, due to Asimov [7]. The Lemma states that if

we attach a k-handle hk and a k+ 1-handle hk+1 to a manifold independently,

then we can combine hk and hk+1 to form a single round k-handle. This means

that if we form a 5-dimensional cobordism W from X to X ′ by independently

adding a 5-dimensional 2-handle and a 5-dimensional 3-handle to X × I (so

that the attaching sphere of the 3-handle is disjoint from the belt sphere of the

2-handle), then W can be decomposed as X × I plus a 5-dimensional round

2-handle. By our remarks above, we see that X ′ can be obtained from X by

an integral torus surgery.
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We can use this method to construct 4–manifolds that can be obtained

by surgery on a link of tori in S4. The following theorem is proved using a

technique similar to that found in [45], where Kervaire gives a characterization

of the fundamental groups of homology spheres of dimension greater than 4.

Theorem 2.4.1. Any finitely presented group with non-negative deficiency

appears as the fundamental group of a 4–manifold obtained by integral surgery

on a link of tori in S4.

Proof. The important observation is that if we form a 5-dimensional cobordism

by first attaching a 3-handle h3 and then a 2-handle h2, the 2- and 3-handles

will be attached independently (by transversality we can isotope the attaching

sphere of the 2-handle off the belt sphere of the 3-handle and then off the

3-handle completely). Then by the Fundamental Lemma of Round Handles

h3 and h2 can be isotoped to form a single 5-dimensional round 2-handle.

Now let G = 〈g1, g2, . . . , gm|r1, r2, . . . , rn〉 be a finitely presented group

with deficiency m − n ≥ 0. We construct a 4–manifold with fundamental

group G as follows. First attach m 5-dimensional 3-handles to S4 × I along

attaching 2–spheres that form the m-component unlink in S4×{1}. This gives

a cobordism from S4 to #mS
1× S3. Note that π1(#mS

1× S3) ∼= Fm, the free

group on m letters. We can represent each relation ri of G by an embedded

curve ρi in #mS
1×S3, and we can assume these curves are disjoint. Then we

attach n 5-dimensional 2-handles along the ρi. This has the affect of surgering

out a neighborhood of each ρi, which is a copy of S1 × D3, and gluing in
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a copy of D2 × S2. We see that in the resulting 4–manifold each ρi will be

nullhomotopic, and so the new fundamental group will be exactly G. Lastly

we attach m − n more 2-handles along disjoint nullhomotopic curves in the

boundary. This will leave the fundamental group unchanged, but now we have

a cobordism W between S4 and a 4–manifold X formed by first attaching m 3-

handles, and then attaching m 2-handles. By our comments above, we see that

these handles are attached independently, and so W is formed by attaching m

round 2-handles to S4× I (whose attaching regions are disjoint). Therefore X

is obtained by integral surgery on a link of tori in S4, and π1(X) ∼= G.

For groups of negative deficiency we have the following result.

Proposition 2.4.2. One can produce 4–manifolds with fundamental groups

of arbitrarily large negative deficiency by surgery on tori in S4.

Proof. Start with the family Km of 2–knots constructed in [53]. Levine showed

that the knot group of Km has deficiency 1−m. Then we can produce a family

of tori Tm by adding a trivial tube to each Km in a small 4–ball neighborhood

of a point in Km (see Figure 2.3). This doesn’t change the fundamental group

of the exterior, and the T 3 boundary of ETm will have two S1 factors that are

nullhomotopic in the exterior (the third S1 factor is the meridinal direction).

We can then perform a multiplicity 0 torus surgery on Tm with surgery di-

rection either of the nullhomotopic S1 factors of the boundary. The result of

this surgery will have the same fundamental group as the exterior since the
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Figure 2.3: Adding a trivial tube to a 2–knot. Here we see a a slice B3×{1/2}
of a 4–ball neighborhood B3 × I of a point on a 2–knot. The disk bounded
by the equator is a small patch of the 2–knot, and we add a small tube to
increase the genus of the surface. Notice that each of the S1 factors bounds a
disk in the exterior.

attaching curve of the 2-handle is already nullhomotopic in the exterior, and

so we get groups with arbitrarily large negative deficiency.

However, it is not possible to achieve all finitely presented groups.

Hausmann and Weinberger [35] constructed a finitely presented group that

cannot be realized as the fundamental group of a 4–manifold with Euler char-

acteristic 2. Therefore it seems difficult to give a complete characterization of

the possible fundamental groups of 4–manifolds obtained by torus surgery in

S4.

We can use round handles to give another description of 4–manifolds

obtained by torus surgery in S4. Here spherical surgery means replacing an

embedded copy of S2 ×D2 with S1 ×D3.
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Proposition 2.4.3. Let X be a 4–manifold obtained by integral surgery on

a single torus in S4. Then X can also be obtained by a spherical surgery on

an embedded S2 in S2 × S2 or S2 ×̃ S2.

Recall that S2×̃S2 is the twisted S2 bundle over S2, and is diffeomorphic

to CP2#CP2.

Proof. We saw above that X can be obtained by attaching a 5-dimensional

round 2-handle R to S4 × I. Furthermore, R can be decomposed into a 2-

handle h2 and 3-handle h3. A 5-dimensional 2-handle is a copy of D2 × D3

attached along ∂D2 × D3. Up to isotopy there is a unique circle in S4, and

there are two surgeries on this circle corresponding to a Z2 choice of framing.

The resulting 4–manifolds are S2×S2 and S2×̃S2. Hence h2 gives a cobordism

from S4 to M , where M is one of the S2 bundles over S2. We complete our

cobordism to X by attaching the 3-handle h3 to M . A 5-dimensional 3-handle

is a copy of D3 ×D2 attached along ∂D3 ×D2. Observing how the boundary

changes, we see that X is obtained by spherical surgery on ∂D3 × {0} in M ,

and so the result follows.

Remark 2.4.4. Using similar techniques it is not hard to show that if X is

the result of surgery on a link of tori, then X can be obtained by a set of

spherical surgeries in #kS
2 × S2 or #kS

2 ×̃ S2 for some k. For non-integral

surgeries we use the fact pointed out in [10] that the result of a non-integral

surgery can be obtained as a set of integral surgeries.
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2.5 The unknotted torus and embedding 3–manifolds

The unknotted torus is the unique torus in S4 that bounds a solid torus

S1 × D2. In [60], Montesinos analyzed which gluing diffeomorphisms extend

over the exterior of the unknotted torus (this exterior is the so-called standard

twin). He used this to prove the following theorem; here instead we give a

short proof using Cerf’s theorem.

Theorem 2.5.1. [60] Let T be the unknotted torus in S4. Then the result of

any multiplicity 1 surgery on T is diffeomorphic to S4.

Proof. Fix a particular multiplicity 1 surgery on T, and let q and γ be the

corresponding auxiliary multiplicity and direction of the surgery. Since T is

unknotted, we can isotope it so it lies embedded in the standard S3 equator

of S4. Then a neighborhood of T in S4 is T × I0 × I1, where T × I0 is a

neighborhood of T in S3 and I1 = [0, 1] is the interval induced from a collar

neighborhood of S3 in S4. We perform the surgery as follows. We can remove

T×I0×I1 and re-glue by any diffeomorphism of the boundary with multiplicity

1, auxiliary multiplicity q, and direction γ. Therefore we can choose the gluing

map to be the identity map on T×∂I0×I1∪T×I0×{1} and on T×I0×{0} to

be the map that twists T in the γ direction q times. Finally, we observe that

this surgery is equivalent to cutting S4 along S3 × {0} and re-gluing by the

diffeomorphism of S3 given by twisting T in the γ direction q times. By Cerf’s

theorem this diffeomorphism extends over B4 and so we get back S4.
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Now we will use Montesinos’ work to show that the result of multiplicity

0 surgery on the unknotted torus is also quite restrictive, although as we saw

in Proposition 2.2.2 we should obtain both spin and non-spin manifolds. This

proposition was proved by Pao [65] (at least in the topological category) in

the context of torus actions on 4–manifolds. Iwase also gives a proof in [41];

in fact, Iwase gives a similar classification for surgery on the unknotted torus

for any multiplicity.

Theorem 2.5.2. The result of multiplicity 0 surgery on the unknotted torus T

is either S1×S3#S2×S2 or S1×S3#S2×̃S2. Indeed, S4
T(0, a, b) is diffeomorphic

to S1 × S3#S2 × S2 if ab is even, and S1 × S3#S2 ×̃ S2 if ab is odd.

Here we choose our embedding of T by realizing the unknotted torus as

the spin of the unknot U ⊂ S3, so that the first S1 factor α is identified with

a longitude of U and the other S1 factor β is identified with the S1 direction

of the spin.

Proof. Montesinos [60] showed that gluing maps of the form

ψ =

 c d ∗
e f ∗
0 0 1


(where c+d+e+f is an even number) extend over the exterior of the unknotted

torus and hence don’t affect the resulting diffeomorphism type. We will show

that any choice of a and b (necessarily relatively prime) can be obtained by

starting with a gluing map that has direction γ = [α] or γ = [α]+ [β] and then
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post-composing with a gluing map of the form ψ above. Then by Montesinos’

result we see that ψ extends over the exterior and so the two possible resulting

diffeomorphism types are S4
T(0, 1, 0) and S4

T(0, 1, 1). In the following lemma

we will show that these manifolds are diffeomorphic to S1 × S3#S2 × S2 and

S1 × S3#S2 ×̃ S2, respectively.

Suppose the direction of the surgery is γ = a[α] + b[β] ∈ H2(T). Then

we can choose the gluing map to be

φ =

 0 m a
0 n b
1 0 0


for some integers m and n satisfying mb − na = 1. Post-composing with a

map ψ as above has the effect of changing the direction

(
a
b

)
by multiplying

by the even matrix

(
c d
e f

)
(we will say a matrix is even if the sum of its

entries is even). In light of this it is sufficient to show that for any relatively

prime pair

(
a
b

)
there is an even matrix A such that if ab is an odd number

then we have

(
a
b

)
= A

(
1
1

)
and if ab is an even number then

(
a
b

)
= A

(
1
0

)
.

First assume that ab an odd number. Then a + b is an even number. There

exists some matrix in GL(2,Z) such that

(
a
b

)
=

(
c d
e f

)(
1
1

)
=

(
c+ d
e+ f

)
.

Since a+ b = (c+ d) + (e+ f) is even, we see that this matrix is even.

Now assume that ab is an even number. Then a+ b is an odd number.

Now we can write

(
a
b

)
=

(
a −d
b c

)(
1
0

)
for some integers c and d that are

solutions to the equation ax+ by = 1. Given one such pair of solutions (c, d),

it is known that all other solutions are of the form (c + kb, d − ka) for some
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Figure 2.4: Multiplicity 0 surgery on the unknotted torus.

integer k. In particular, this implies that it is always possible to choose a

pair of solutions with opposite parity (since a and b necessarily have opposite

parity), and so we can choose the above matrix to be even.

To complete the proof we need to show that S4
T(0, 1, 0) is diffeomorphic

to S1 × S3#S2 × S2 and S4
T(0, 1, 1) is diffeomorphic to S1 × S3#S2×̃S2. We

will do in the following lemma.

Lemma 2.5.3. For the unknotted torus T ⊂ S4, we have S4
T(0, 1, 0) is diffeo-

morphic to S1×S3#S2×S2 and S4
T(0, 1, 1) is diffeomorphic to S1×S3#S2×̃S2.

Proof. We prove this using a handlebody description of torus surgery (see [5]
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or [29] Chapter 8 for a thorough explanation of this perspective). On the left

hand of Figure 2.4 we see the unknotted torus embedded in S4. The Borromean

rings consisting of two 1-handles in dotted circle notation and one 0 framed

2-handle give a handle decomposition of νT (here we clearly see the boundary

is T 3), and the rest of the handles give the embedding into S4. The top row of

Figure 2.4 corresponds to doing multiplicity 0 surgery with direction [α]. We

cut out νT, and re-glue by the diffeomorphism of T 3 that cyclically permutes

the three S1 factors, giving the middle top picture. A handle cancellation

results in S1 × S3#S2 × S2, proving the first part of the lemma.

The bottom row of Figure 2.4 corresponds to multiplicity 0 surgery with

direction [α] + [β]. Here we cut out νT and re-glue by the diffeomorphism of

T 3 that first cyclically permutes the three S1 factors and then applies φ, where

φ is the map that cuts along T 2×{pt} ⊂ T 2×∂D2 and re-glues by a map that

puts a full rotation in the direction of the first S1 factor and is the identity on

the second factor (this is analogous to a Dehn twist). Observe that φ sends

any curve intersecting T 2 × {pt} to a curve that also wraps around the first

S1 factor, and adds a twist to the framing. The result is the bottom middle

picture, and handle slides and a cancellation show that this is diffeomorphic

to S1 × S3#S2×̃S2.
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2.5.1 Embeddings

We can now use Theorem 2.5.2 to prove a theorem about embedding

3–manifolds obtained by surgery on a knot in S3.

Theorem 2.5.4. Let K be a knot in S3 and let S3
p/q(K) denote p/q Dehn

surgery on K. Then S3
p/q(K) smoothly embeds in S1 × S3#S2 × S2 if pq is

even, and embeds in S1 × S3#S2×̃S2 if pq is odd.

Proof. ConsiderK as sitting in the standard S3 equator of S4. Then ∂νK ⊂ S3

gives an unknotted torus T when we include S3 ↪→ S4. We do multiplicity 0

surgery on T as follows. We will choose our embedding of T so that the first

S1 factor is the meridian of K and the second S1 factor is the longitude of K.

The collar neighborhood of ∂νK in S3 and the collar neighborhood of S3 in

S4 provide a framing for T. We will choose our surgery direction γ to be the

homology class of p times the meridian and q times the longitude. We claim

that S3
p/q(K) embeds in S4

T(0, p, q), which by Theorem 2.5.2 is diffeomorphic

to S1 × S3#S2 × S2 if pq is even, and S1 × S3#S2×̃S2 if pq is odd.

Our goal is to see the Dehn surgery concurrently with the torus surgery.

To obtain S4
T(0, p, q) we remove our chosen neighborhood of T and glue back

S1 × S1 ×D2 by a gluing map of the form

φ =

 0 m p
0 n q
1 0 0


(for suitable m and n). Hence we are gluing in a solid torus {pt}×S1×D2 to

each S1 × S1 × {pt} ⊂ S1 × S1 × ∂D2, where the boundary of the meridinal
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disk gets mapped to p times the first factor and q times the second factor.

Since the boundary of the knot exterior ∂EK ⊂ ∂ET is exactly one of these

tori, we see that we are gluing a solid torus to the knot exterior in a manner

that gives p/q Dehn surgery on K .

Observe from the proof that the meridian of T intersects EK ⊂ S4 in

a single point. Hence this curve intersects S3
p/q(K) in a single point after the

torus surgery, and this curve generates the fundamental group of the resulting

4–manifold. It follows that surgery on this curve (replacing S1 × D3 with

D2 × S2) will kill the S1 × S3 connect summand of the resulting 4–manifold.

This surgery will puncture S3
p/q(K), and so we get the following corollary.

Corollary 2.5.5. If S3
p/q(K)◦ denotes the 3–manifold obtained by puncturing

S3
p/q(K), then S3

p/q(K)◦ smoothly embeds in S2×S2 if pq is even, and embeds

in S2×̃S2 if pq is odd.

See [21] for a similar statement when K is the unknot (and so the

3–manifolds are lens spaces). Note that any 3–manifold obtained by integral

surgery on a knot always embeds in S2 × S2 or S2×̃S2 (just double the 4–

dimensional 2-handlebody). An interesting thing about the above construction

is that it does not distinguish between integral and non-integral Dehn surgery.

Next we look at embeddings of 3–manifolds into S4. Recall that a

link is slice if the components bound disjoint slice disks in B4, and a link is
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ribbon if the components bound disjoint ribbon disks in B4 (see Chapter 4 for

definitions of slice disks and ribbon disks).

Theorem 2.5.6. Let L be a ribbon link in S3. If ML is the 3–manifold

obtained by surgery on L with all the surgery coefficients belonging to the set

{1/n}n∈Z, then ML smoothly embeds in S4. If L is only slice, then we get

an embedding into a homotopy 4–sphere. However, if we restrict the surgery

coefficients to the set {1/(2n)}n∈Z, then again we get an embedding into the

standard S4.

Budney and Burton [14] observed that if L is slice and the coefficients

are ±1, then ML embeds in a homotopy 4–sphere by blowing down the result-

ing 2–spheres in the 2-handlebody formed by attaching 2-handles to L with

the corresponding framings. We obtain this generalization by proceeding in a

different direction; we consider cross sections of Gluck twists on the 2–knots

obtained by doubling the ribbon or slice disks.

Proof. First we consider the case where K is a slice knot in S3. Let DK be the

slice disk in B4, and let SK be the 2–knot in S4 obtained by doubling the pair

(B4,DK). We will do surgery on SK and see Dehn surgery on K as a cross

section. Identify a neighborhood of SK with S2 ×D2 such that equator ×D2

is identified with a tubular neighborhood of K in S3 ⊂ S4 (and the induced

framing is the zero framing). We will cut out S2×D2 and re-glue by the map

ρ : S2×∂D2 → S2×∂D2 defined by sending (x, θ) to (rotθ(x), θ), where rotθ is

the map that rotates S2 through an angle θ about a fixed axis (we choose this
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to send the equator to itself). Now the result of this surgery is by definition

the Gluck twist on SK in S4, and hence returns a homotopy 4–sphere. In fact

this is true for all odd powers of ρ. However, if we instead re-glue by an even

power ρ2n of ρ, then since ρ2 is isotopic to the identity map [25] the result of

the surgery will be the standard S4. Furthermore, if DK is a ribbon disk, then

SK is a ribbon 2–knot and re-gluing by any power ρn will return the standard

S4 (see, for example, [29]).

Now we examine what happens to a neighborhood of K. For a point

x in K (thinking of K as the equator of SK), consider the effect of ρn on the

boundary of the meridinal disk x × D2. As θ varies the curve (x, θ) on the

boundary will map to a curve that wraps once around the meridinal direction

and n times around the longitudinal direction of K×∂D2. This is exactly Dehn

surgery on K with surgery coefficient 1/n, and so we get an embedding into

the 4–manifold obtained by the corresponding surgery on SK . We can extend

this to surgery on a slice link by performing surgery on each of the 2–knots

obtained by doubling the multiple slice disks. Finally, we finish by applying

the comments in the previous paragraph about the result of the various 2–knot

surgeries.

As mentioned in the introduction, we note that the above theorem

provides many embeddings of homology 3–spheres into S4.

Proposition 2.5.7. If ML is a 3–manifold obtained by surgery on a slice link
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Figure 2.5: Reverse slam dunk move.

L with all the surgery coefficients belonging to the set {1/n}n∈Z, then ML is

a homology 3–sphere.

Proof. First we realize ML as integral surgery on a link by performing the

reverse slam dunk move as in Figure 2.5 (see [29] Section 5.3) on each com-

ponent of L. Since any two components in a slice link have 0 linking number,

the corresponding linking matrix for this new surgery diagram will be block

diagonal, where each component Ki of L (with surgery coefficient 1/ni) corre-

sponds to a block on the diagonal of the form

(
−ni 1

1 0

)
. It then follows that

the determinant of the linking matrix is ±1, and so the resulting 3–manifold

ML will be an integral homology 3–sphere (again see [29] Section 5.3).

Finally, by looking at multiplicity 1 surgeries on the unknotted torus

it is possible to give an alternate proof of an unpublished theorem of Gompf

([27]) about embedding punctured homology spheres in S4. First we give a

modification of the spinning constructions in Section 2.3 to show that the

unknotted torus can be constructed in a particularly interesting way.
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Figure 2.6: K̂ ∪a in B3. K̂ is the knotted arc with endpoints at the poles and
a is the arc on the boundary S2.

Given a knot K in S3, let K̂ be the corresponding knotted arc in B3

with endpoints at the poles, as in Definition 2.3.7. Let a be an arc in S2 = ∂B3

connecting the poles, so that K̂ ∪a is a knot in B3 (see Figure 2.6). Now if we

glue (B3, K̂)×S1 to (S2, a)×D2 by the identity map then we get the spun torus

TK , but instead we want to glue these two pieces by the Gluck twist map ρ (we

appropriately smooth the torus in either case). Denote the resulting torus by

UK , so that we have (S4,UK) = (B3, K̂)× S1 ∪ρ (S2, a)×D2. One can think

of this as taking K̂ ∪ a in B3 and as we go around the S1 direction wrapping

a once around the boundary S2.

Lemma 2.5.8. UK is the unknotted torus, for any knot K.

Proof. This follows from Zeeman’s twist spinning theorem [77]. Zeeman showed

that if we form a 2–knot by taking the annulus K̂ × S1 ⊂ B3 × S1 and cap-

ping off with two disks (at the poles) in S2 × D2 inside the decomposition
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S4 = B3 × S1 ∪ρ S2 × D2, then the resulting 2–knot (called the 1-twist spin

of K) is in fact the unknotted 2–knot. We then obtain UK by attaching the

handle a×D2 ⊂ S2×D2 to the 1-twist spin of K in B3×S1∪ρS2×D2. Finally,

a theorem of Boyle ([12], Corollary 5) states that a torus formed by attaching

a handle to the unknotted 2–knot is itself unknotted, giving the result.

Theorem 2.5.9 (Gompf, [27]). If M = S3
1/n(K) is a homology sphere that is

surgery on a knot, then if we puncture M it smoothly embeds in S4. In fact,

M◦ appears as the fiber of a fibered 2–knot in S4.

Proof. Consider the torus UK ⊂ B3×S1∪ρS2×D2 constructed above. Isotope

UK so that it lies in the interior of B3 × S1. Then in each B3 × {pt} we see

a copy of K = K̂ ∪ a, where the arc a wraps once around K̂ as we go around

the S1 direction. We then perform a torus surgery on UK by performing 1/n

Dehn surgery on K in each B3 × {pt}. However, we must check that this is

well-defined; that is, we must verify that the isotopy of K (wrapping a around

K̂) behaves well with respect to the Dehn surgery gluing map. Dehn surgery

is determined by the image of a meridian under the gluing map. Denote this

curve by γ. Since the isotopy of K wrapping a around K̂ preserves γ (up

to isotopy), we get a well-defined torus surgery. Therefore we are performing

a multiplicity 1 surgery on UK , which is unknotted by Lemma 2.5.8, and so

by Theorem 2.5.1 the manifold obtained by this surgery is diffeomorphic to

S4. In conclusion, we performed a torus surgery in B3 × S1 ∪ρ S2 ×D2 that

returned S4, such that in each B3×{pt} we see 1/n surgery on K. The result
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then follows, where S2 × {0} ⊂ S2 ×D2 is our fibered 2–knot (see Chapter 4

for the definition of fibered knots).
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Chapter 3

Generic fibrations around multiple fibers

3.1 Introduction

1 In this chapter we change our perspective and consider the rela-

tionship between torus surgery and various types of singular fibrations on

4–manifolds. These fibrations have proved to be powerful tools in the study of

smooth 4-manifolds. The classical theories of Lefschetz and elliptic fibrations

are a rich source of interesting examples and provide connections to algebraic

geometry, symplectic geometry, and gauge theory. More recently it has been

shown that every smooth closed 4-manifold admits a broken Lefschetz fibra-

tion (see, for example, Akbulut and Karakurt [6], Baykur [9] , Gay and Kirby

[24], and Lekili [52]), or alternatively a purely wrinkled fibration (which are

also called indefinite Morse 2-functions). On the other hand, we have seen

that torus surgery (often called a log transform in this context) is perhaps

the most important surgical tool for 4-manifolds. In this chapter we integrate

these two perspectives by studying the result of torus surgery on a regular

fiber of a map to a surface. In particular, we construct nice fibrations in a

neighborhood of the glued in torus that agree with the original fibration on

1The material in this chapter has previously been published in: Kyle Larson. Generic
fibrations around multiple fibers. New York J. Math., 20:1161–1173, 2014.
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the boundary. The existence of such fibrations follows from a more general

result of Gay and Kirby [24], but here we produce the first explicit examples.

Our work also fits nicely into the context of Baykur and Sunukjian [10], where

the authors discuss when broken Lefschetz fibrations on different manifolds

can be related by torus surgery and homotopy modifications of the fibration.

Our construction illustrates this for some specific examples.

3.2 Torus surgery on a fiber

Here we give a definition of torus surgery convenient to this context. Let

X be a smooth 4-manifold and Σ a smooth surface, with f : X → Σ some type

of fibration map (e.g. an elliptic fibration or broken Lefschetz fibration, but

in general we just require f to be proper and smooth). If T ⊂ X is a regular

fiber diffeomorphic to a torus, then we can identify a tubular neighborhood

νT with T 2 × D2 and a neighborhood of f(T ) with D2 such that f |T 2×D2

is projection onto the second factor. Let φ : νT → T 2 × D2 be such an

identification. Torus surgery on T is the operation of cutting out νT and

gluing in T 2×D2 by φ−1 ◦ψ, where ψ is a self-diffeomorphism of ∂(T 2×D2).

Let XT be the resulting manifold X \ νT ∪φ−1◦ψ T
2 × D2. Since gluing in

T 2 ×D2 amounts to attaching a 2-handle, two 3-handles, and a 4-handle, the

diffeomorphism type of XT is determined by the attaching sphere of the 2-

handle: φ−1 ◦ ψ({pt} × ∂D2) (the framing is canonical). The isotopy class of

this curve is then determined by the homology class γ = ψ∗[{pt} × ∂D2] ∈

H1(T 2)⊕Z, where the Z factor is generated by m = [{pt}×∂D2]. Now γ must
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be a primitive element, so γ = qα + pm for relatively prime integers p and q

and α a primitive element of H1(T 2). Hence, given our identification φ, XT is

determined up to diffeomorphism by the data p, q, and α, which are called the

multiplicity, the auxiliary multiplicity, and the direction. We say the surgery

is integral if q = ±1.

Now fixing a specific torus surgery determined by p, q, and α, we may

change our identification φ so that the direction α corresponds to the second

S1 factor of T 2×D2 = S1×S1×D2. To be precise, we compose φ with a map

g × id : T 2 ×D2 → T 2 ×D2, where g is some self-diffeomorphism of T 2 that

sends a curve representing α to {pt} × S1. We abuse notation by renaming

this new identification φ. In doing this we have not changed the surgery, but

we have changed how we look at a neighborhood of T in order to make things

more convenient for what follows.

We are interested in which surgeries on T allow the fibration f |X\νT to

be extended over XT . By our above remarks, up to diffeomorphism we can

choose our gluing map ψ to be (thinking of ∂(T 2 ×D2) as R3/Z3):

ψ =

 1 0 0
0 (qk + 1)/p q
0 k p


where k is an integer satisfying qk+1 ≡ 0 mod p (if p = 0, set the center entry

to 0). If we instead think of T 2×D2 as {(ξ1, ξ2, z) ⊂ C3 | ξi ∈ S1 ⊂ C, z ∈ D2 ⊂

C}, then we can write ψ multiplicatively as ψ(ξ1, ξ2, z) = (ξ1, ξ
(qk+1)/p
2 ·zq, ξk2 ·zp)

(see Harer, Kas, Kirby [34] for more information). Now we can see that if p 6= 0
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the fibration extends over the glued in T 2 ×D2 by defining f̂ : XT → Σ by

f̂(x) =

{
f(x) if x ∈ X \ νT
ξk2 · zp if x = (ξ1, ξ2, z) ∈ T 2 ×D2

One can check that the fibration on T 2 ×D2 is exactly S1 times the fibration

around a (p,−k) exceptional fiber in a Seifert fibered space. Hence the central

fiber T = T 2×{0} is p-times covered by nearby fibers and the homology class

of a nearby fiber [F ] = p · [T ]. Furthermore, if p > 1 then one can compute in

local coordinates that df̂ vanishes on T and is a submersion everywhere else

in T 2 ×D2 (if p = 1 the fibration extends over T 2 ×D2 with no singularity).

For p > 1 we say that T is a multiple fiber singularity of f̂ . Since df̂ vanishes

on a 2-dimensional subspace, f̂ cannot be a generic map to a surface (near T ).

The purpose of this chapter is to construct indefinite generic fibrations

on T 2 ×D2 that agree with f̂ on ∂(T 2 ×D2).

3.3 Constructing generic fibrations

Our strategy will be to construct generic fibrations using round handles.

An (n+1)-dimensional round k-handle is S1×hnk , where hnk is an n-dimensional

k-handle, and it is attached along S1 times the attaching region of hnk (see

Baykur [11], Baykur and Sunukjian [10] for more information about round

handles). If we are attaching a round handle to a manifold whose boundary

fibers over S1, so that a single hnk is attached to each fiber, then we can

extend the boundary fibration over the round k-handle by taking the Morse

level sets of each hnk (and adjusting the fibration in a collar neighborhood of
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the boundary). However, this fibration will have a fold singularity, which by

definition is a singular set that locally looks like R times a Morse singularity.

More precisely, there exist local coordinates (t, x1, · · · , xn) around each critical

point such that the fibration map is given by (t, x1, · · · , xn) 7→ (t, x2
1±· · ·±x2

n)

in these coordinates. Importantly for our purposes, fold singularities of maps

to surfaces are a generic type of singularity. The fold singularity is called

indefinite if the Morse singularity in the above coordinates is indefinite (i.e.

the Morse critical point does not have index equal to 0 or n).

Remark 3.3.1. In what follows we will abuse terminology and call a fibration

generic if its singularities consist of only indefinite fold singularities. It is a

fact from singularity theory that such fibrations do belong to the set of generic

(and stable) maps, but these fibrations are actually a very special subset of

all generic maps. Indeed, maps from a 4-manifold to a surface with only these

singularities are a subset of both broken Lefschetz fibrations (which can also

contain Lefschetz singularities) and purely wrinkled fibrations (which can also

contain indefinite cusp singularities).

First we do our construction for a neighborhood of an exceptional fiber

in a Seifert fibered space. Recall that the neighborhood of a (p, q) exceptional

fiber can be formed by taking a solid cylinder and identifying the two ends

with a 2πq/p twist. In fact, we start with the simplest possible case: the

neighborhood of a (2,1) exceptional fiber. Let N be a tubular neighborhood

of a (2,1) exceptional fiber. Then N is diffeomorphic to a solid cylinder with
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Figure 3.1: A neighborhood of a (2,1) exceptional fiber. On the left the ends of
the solid cylinder are identified by a 180 degree twist, whereas on the right the
ends are identified by the identity map. The green arc becomes the exceptional
fiber under the identification, and the red arcs become a single fiber on the
boundary.

ends identified with a 180 degree twist (see Figure 3.1). The exceptional fiber

is the circle formed by identifying the two ends of the central arc. A regular

fiber of N consists of two arcs opposite each other and equidistant from the

central arc, which form a single circle after the identification of the ends of

the cylinder. We can also view N as a solid cylinder with ends identified by

the identity map, but now regular fibers twist around the central fiber (see

the second picture of Figure 3.1). Let f : N → D2 be the fibration map (note

that f is not simply the projection of the solid cylinder; we have to compose

with the 2 to 1 branched covering map of the disk).

Lemma 3.3.2. N admits a generic fibration f̂ : N → D2 such that f̂
∣∣∣
∂N

=

f |∂N , with one indefinite fold singular locus. The image of the critical set is

an embedded circle in D2, and the preimage of a point in the interior of this
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Figure 3.2: The fibering on ∂N . The top edges are identified with the bottom
edges with a 1/2 unit shift to the right. The red arcs form a single fiber (note
that the gray middle arc is not part of the fibration), and we see the result
of the isotopy of the fibration on ∂N in the second picture. The diagonal
strips form the attaching region for the 3-dimensional round 1-handle, and
the two horizontal sections of the red fiber are the attaching regions for the
2-dimensional 1-handle.

circle is two disjoint circles.

Proof. Our strategy will be to delete intN , and then fill it back in (relative to

the boundary) with one round 1-handle and two trivially fibered solid tori in

such a way as to extend the fibration on ∂N . Recall a 3-dimensional round 1-

handle is a copy of S1×D1×D1 attached along an embedding of S1×∂D1×D1.

We can think of this as adding a circle’s worth of 2-dimensional 1-handles. In

our case we attach a single 2-dimensional 1-handle to each S1 fiber of ∂N .

Now there are two ways to attach a 2-dimensional 1-handle to S1, resulting in

either one or two components (depending on whether the 1-handle preserves or

reverses orientation). We will attach the round 1-handle so that the resulting

fibers have two components. Before we attach the round 1-handle we modify
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Figure 3.3: Extending the fibration across R. The top and bottom of the
cylinders are identified by the identity map, and we see R as the rectangular
prism with top and bottom identified. In each picture the red arcs form a
single fiber. The first picture shows the fibration on ∂N (after the isotopy),
and in the following pictures the fiber get pushed across the 2-dimensional
1-handle (while the arcs on the boundary of the cylinder actually live in a
collar ∂N × I). In the first two pictures the fiber is a single circle wrapping
twice around the cylinder. The third picture is the singular level, where the
fiber consists of the wedge of two circles. The last picture shows a fiber past
the singular level, and the fiber consists of two disjoint circles. Here we see
that after extending the fibration across R we get two “chambers” with torus
boundaries, each fibered by (1,1) curves.
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the fibration on ∂N by an isotopy.

If we restrict our attention to the fibration on ∂N , thought of as the

boundary of the cylinder with top and bottom identified with a 180 degree

twist, then we can cut the cylinder open and think of ∂N as a square with left

and right edges identified by the identity map and the top edge identified to

the bottom edge by a 1/2 unit shift to the right (see Figure 3.2). We see the

fibers of ∂N as a pair of vertical arcs separated by 1/2 units in the horizontal

direction. Our modification of the fibration on ∂N involves isotoping the fibers

(in a collar ∂N × I) so that each fiber is horizontal along the two diagonal

strips in the second picture of Figure 3.2. The diagonal strips will form the

attaching region of the round 1-handle, and the two horizontal sections of each

fiber will be the attaching region of the 2-dimensional 1-handle to each fiber.

Now we can extend the fibration on ∂N across the round 1-handle

(which we will denote by R) as follows (see Figure 3.3): ∂N consists of a circle’s

worth of S1 fibers, and attaching R has the effect of attaching a 2-dimensional

1-handle to each fiber. We extend the fibration over each of these 1-handles by

taking the level sets corresponding to the natural Morse function on 1-handle

∪ (fiber ×I), where the I factor comes from a collar neighborhood ∂N × I.

So before the critical level the fibers will be circles, the critical level will be

the wedge of two circles, and after the critical level the fibers will be a disjoint

union of two circles. Therefore, adding the round 1-handle R introduces a fold

singularity C (S1× the Morse critical point of the 2-dimensional 1-handle), and

f̂ maps C to an embedded circle. The boundary ∂(∂N ∪R) is two disjoint tori
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(here we are only considering the “interior” part of the boundary, the exterior

of course consists of another torus). Furthermore, as we can see in Figure 3.3,

each of these tori are fibered with multiplicity 1 (i.e. fibered by (1,1) curves).

So we see that adding the round 1-handle reduces the multiplicity from 2 to 1

at the expense of increasing the number of components of a fiber from 1 to 2.

Now we can fill in these two tori with two trivially fibered solid tori (the (1,1)

fibration on the boundary extends over the solid torus without singularities).

Topologically we are just gluing back in the two solid tori of N \ (∂N ∪ R),

but in such a way as to extend the fibration. This completes our construction

of a generic fibration on N .

It is quite easy to extend our construction to the case of a (p, 1) excep-

tional fiber:

Proposition 3.3.3. If N is a tubular neighborhood of a (p,1) exceptional

fiber and f : N → D2 is the fibration map, then N admits a generic fibration

f̂ : N → D2 constructed with p − 1 round handles such that f̂
∣∣∣
∂N

= f |∂N .

The image of the critical set is p − 1 concentrically embedded circles in D2,

and the preimage of a point in the interior of these circles is p disjoint circles.

Proof. We proceed as before, by starting with the fibration on ∂N , and at-

taching a 3-dimensional round 1-handle along the two strips as in Figure 3.4

(after isotoping the fibration in a collar ∂N × I so that fibers are horizontal

across the diagonal strips). We extend the fibration across the round handle
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Figure 3.4: Attaching a 3-dimensional round 1-handle to ∂N . The diagonal
strips form the attaching region for the first round 1-handle. Here we draw
the case for a (5,1) exceptional fiber, but the picture obviously generalizes to
a (p, 1) exceptional fiber.

as before, and the resulting interior boundary is again two tori, but this time

one has multiplicity 1 and the other has multiplicity p− 1. The torus fibered

with multiplicity 1 can be filled with a trivially fibered solid torus, and we re-

peat this procedure inductively with the torus fibered with multiplicity p− 1.

The result is that we consecutively attach p − 1 round 1-handles (each one

increasing the number of components of a fiber by 1) and glue in p−1 trivially

fibered solid tori. This gives the required generic fibration on N .

One can construct generic fibrations in a neighborhood of a (p, q) excep-

tional fiber in a similar manner, but the author has not worked out a general

algorithm.

We now proceed to the construction of generic fibrations around a torus

multiple fiber. Here we describe the process for singular fibrations resulting
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from integral surgeries (which will suffice for our applications), but again, one

could apply these techniques to non-integral surgeries as well.

Theorem 3.3.4. The fibration around a multiple fiber singularity resulting

from an integral torus surgery of multiplicity p can be replaced with a generic

fibration (extending the fibration on the boundary) composed of (p−1) round

1-handles and (p−1) round 2-handles. The image of the indefinite fold critical

set is 2 ·(p−1) concentrically embedded circles and the preimage of an interior

point consists of p disjoint tori.

Proof. As before, we will start with the multiplicity 2 case and then generalize

to multiplicity p. Let M be the neighborhood of the multiple fiber singularity.

By our remarks in Section 3.2, M is fiber-preserving diffeomorphic to S1×N ,

where N is the fibered neighborhood of a (2,1) exceptional fiber. Let us assume

that the fibration on ∂M = S1× ∂N has been modified by isotopy so that the

fibration is S1 times the modified fibration on ∂N . We will use our generic

fibration on N to construct a generic fibration on M , however, the fibration

is not just S1 times the generic fibration on N . In that case the singular set

would be S1 ×C, where C is the singular circle of the generic fibration on N ,

and 2-dimensional singular sets do not occur generically. In what follows it

will be helpful to refer to Figure 3.3 and think of M = S1 × N as a “movie”

where time is the S1 direction.

The generic fibration onN was constructed using a 3-dimensional round

1-handle R, which we thought of as a circle’s worth of 2-dimensional 1-handles.
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We use this family of 2-dimensional 1-handles to construct a 4-dimensional

round 1-handle R4
1 and a 4-dimensional round 2-handle R4

2 as follows: Let θ

parametrize the S1 factor of R = S1 × D1 × D1 (hence θ parametrizes the

family of 2-dimensional 1-handles) and let x and t be coordinates on the two

D1 factors. Define two subsets I1, I2 ⊂ S1 by I1 = {(cos θ, sin θ) ∈ R2 | θ ∈

[−π/4, π/4]} and I2 = S1 \ I1. Let g : R ↪→ N denote the embedding map

from our previous construction (note this is not simply the attaching map, but

in fact embeds the entire round handle into N), and let R4
1 = S1×I1×D1×D1

where ϕ parametrizes the S1 factor.

Embed R4
1 into M by the map G1 : S1 × I1 × D1 × D1 ↪→ S1 × N ,

G1(ϕ, θ, x, t) = (ϕ + θ, g(ϕ, x, t)) (It is important to note that g now takes

ϕ as input instead of θ). We can think of attaching R4
1 to ∂M = S1 × ∂N

by G1|S1×I1×∂D1×D1 . For a fixed value of ϕ, say ϕ0, g|{ϕ0}×∂D1×D1 maps to

a single circle fiber c of ∂N , and so G1|{ϕ0}×I1×∂D1×D1 is an attaching map

for a 3-dimensional 1-handle to the torus fiber S1 × c ⊂ S1 × ∂N = ∂M .

Indeed we see that G1|{ϕ0}×I1×D1×D1 embeds a 3-dimensional 1-handle into

M by embedding the 2-dimensional 1-handle “slices” {θ} × D1 × D1 into

{ϕ0 + θ} ×N ⊂M for θ ∈ I1 (see Figure 3.5). Letting ϕ range over S1 shows

that attaching R4
1 amounts to adding a 3-dimensional 1-handle to each torus

fiber of S1 × ∂N , so that the genus of the fibers increases by one. However,

this is done in a way such that if we look at the result of attaching R4
1 in a

single frame of our “movie,” (∂M ∪R4
1) ∩ ({pt} ×N), we see a 3-dimensional

1-handle attached to ∂N , but which is composed of 2-dimensional 1-handle
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“slices,” each slice belonging to a different G1|{ϕ}×I1×D1×D1 . The result is that

the fold singular set of R4
1 intersects a frame of our movie, {pt}×N , in a single

point, corresponding to the Morse singularity of the 3-dimensional 1-handle

G1|{pt}×I1×D1×D1 (which occurs at θ = 0 ∈ I1).

We embed the 4-dimensional round 2-handle R4
2 = S1 × I2 ×D1 ×D1

into M similarly, by the map G2(ϕ, θ, x, t) = (ϕ + θ, g(ϕ, x, t)) (indeed this is

the same map, except θ now takes values in I2). We can think of attaching

R4
2 to ∂(∂M ∪R4

1) by G2|S1×∂(I2×D1)×D1 , and one can check that this amounts

to attaching a 3-dimensional 2-handle G2|{ϕ}×I2×D1×D1 to each genus 2 fiber

of ∂(∂M ∪ R4
1). Now G2|{ϕ}×I2×D1×D1 is actually a separating 3-dimensional

2-handle, and we can see this by looking at Figure 3.5 (here we again consider

a fixed ϕ = ϕ0). As θ varies over I2 we add more 2-dimensional 1-handle

slices to the picture whose attaching regions fill out the remainder of the two

annuli. We see that this amounts to attaching a 3-dimensional 2-handle to the

genus 2 fiber whose attaching circle runs twice over the 1-handle. From the

picture we see that this is a separating 2-handle that results in two disjoint

torus components.

Another way to see this is by considering the resulting fibration on

the boundary: if we look at a frame of our movie after attaching R4
1 and R4

2,

(∂M∪R4
1∪R4

2)∩({pt}×N), we see ({pt}×∂N)∪R, but the 2-dimensional slices

of R in this frame belong to different slices of R4
1 and R4

2. The point is that

topologically ∂M∪R4
1∪R4

2 gives a decomposition of S1×(∂N∪R), but in such

a way that the natural fibrations on the boundaries agree. That is, the fibers of

52



∂(∂M∪R4
1∪R4

2) are exactly S1 times the fibers of ∂(∂N∪R). This means that

after attaching R4
1 and R4

2 the fibers consist of two disjoint tori. Furthermore,

we observe that since the fibration on N was completed by adding two trivially

fibered solid tori to ∂(∂N ∪ R), our fibration on M is completed by adding

two trivially fibered T 2 ×D2’s to ∂M ∪ R4
1 ∪ R4

2 = S1 × (∂N ∪ R) (again we

have reduced the multiplicity from 2 to 1).

To go from the multiplicity 2 case to the general case of multiplicity

p, we repeat the above construction inductively using the generic fibration

around a (p, 1) exceptional fiber. The result will be a generic fibration with

p− 1 pairs of 4-dimensional round 1- and 2-handles added in succession. Each

round 1-handle raises the genus by one on a single component of a fiber, and

then the following round 2-handle splits the genus 2 component into two tori.

Therefore the preimage of a point in the interior of the round singular images

will be the disjoint union of p tori.

Now that we have constructed one such generic fibration around a mul-

tiple fiber singularity, it is easy to produce others using the homotopy moves

of Baykur [9], Lekili [52], and Williams [75].

3.4 An application

We conclude this chapter by applying our construction to give explicit

broken Lefschetz fibrations (BLFs) on an important family of 4-manifolds: the
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Figure 3.5: Here we change our perspective and consider the contribution of
R4

1 to a single torus fiber S1 × c ⊂ S1 × ∂N (the arrow in the picture shows
the S1 direction). The red circle on the torus is a single {pt} × c, and adding
R4

1 corresponds to attaching a 2-dimensional 1-handle to the circle in a single
frame {pt}×∂N . As θ ∈ I1 varies we add an interval’s worth of 2-dimensional
1-handles that fill out a 3-dimensional 1-handle attached to our torus fiber.

elliptic surfaces. Our construction may be helpful for studying exotic behavior

from the point of view of BLFs.

An elliptic surface is a 4-manifold that admits a (possibly singular) fi-

bration over a surface such that a regular fiber is diffeomorphic to a torus,

and with the extra condition that the fibration is locally holomorphic. Up

to diffeomorphism we can assume that an elliptic surface is equipped with a

fibration map with only Lefschetz singularities and multiple fiber singularities

coming from torus surgery (see, for example, Gompf and Stipsicz [29]). Hence

we can use our construction to replace the fibration around a multiple fiber

with a fibration with only indefinite fold singularities. The resulting fibration

is by definition a BLF (since the only other singularities are Lefschetz sin-
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gularities). Of particular interest are the families of simply-connected exotic

elliptic surfaces E(n)p,q. The notation means that torus surgery is performed

on two separate regular fibers of E(n), one with multiplicity p and the other

with multiplicity q for relatively prime p and q. These regular fibers will lie

in a cusp neighborhood, and so up to diffeomorphism the surgeries are de-

termined by their multiplicity. Hence we can apply our construction using

integral multiplicity p and multiplicity q surgery.

Lastly, we consider the special case of the Dolgachev surface E(1)2,3.

Example 3.4.1. We construct a BLF on E(1)2,3 by replacing the torus mul-

tiple fiber of multiplicity 2 with a generic fibration with two fold singularities

coming from a round 1-handle and a round 2-handle. The torus multiple fiber

of multiplicity 3 is replaced with a generic fibration with 4 fold singularities

coming from two successive pairs of round 1- and 2-handles. In Figure 3.6 we

draw the critical image on the base S2 for the BLF on E(1)2,3 resulting from

our construction.
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Figure 3.6: The critical image on the base S2 for a BLF on E(1)2,3. The blue
x’s are the images of the 12 Lefschetz critical points, and the red circles are
the images of the fold singularities.
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Chapter 4

Fibered ribbon disks

4.1 Introduction

1 In this chapter we leave behind torus surgery and consider questions

about fibered knots and disks. A knot K is fibered if its complement fibers

over the circle (with the fibration well-behaved near K). Fibered knots have a

long and rich history of study (for both classical knots and higher-dimensional

knots). In the classical case, a theorem of Stallings ([71], see also [64]) states

that a knot is fibered if and only if its group has a finitely generated com-

mutator subgroup. Stallings [72] also gave a method to produce new fibered

knots from old ones by twisting along a fiber, and Harer [33] showed that this

twisting operation and a type of plumbing is sufficient to generate all fibered

knots in S3.

Another special class of knots are slice knots. A knot K in S3 is slice if

it bounds a smoothly embedded disk in B4 (and more generally an n–knot in

Sn+2 is slice if it bounds a disk in Bn+3). If K bounds an immersed disk in S3

1This chapter consists of joint work with Jeffrey Meier, the majority of which pre-
viously appeared in: Kyle Larson and Jeffrey Meier. Fibered ribbon disks. 2014.
Accepted to Journal of Knot Theory and Its Ramifications. Preprint available at
http://arxiv.org/abs/1410.4854 .
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with only ribbon singularities we say K is a ribbon knot. Every ribbon knot is

slice, and the famous Slice-Ribbon Conjecture states that every slice knot in

S3 is ribbon. Historically there have been few potential counterexamples due

to the difficulty of producing knots that are slice but not obviously ribbon.

For recent progress in this direction see [28] and [1]. In this chapter we study

slice disks in B4 whose complements fiber over the circle. The fiber will be a

3–manifold with surface boundary, and the boundary of the slice disk will be

a fibered knot in S3.

A potentially intermediate class of knots between slice and ribbon are

homotopy-ribbon knots, which by definition bound slice disks whose comple-

ments admit a handle decomposition without handles of index three or higher.

Classical work by Casson-Gordon [17] and Cochran [18] shows that for fibered

1–knots and 2–knots this condition can be characterized in terms of certain

properties of the fiber. Furthermore, Casson and Gordon show that a fibered

homotopy-ribbon 1–knot K bounds a fibered homotopy-ribbon disk in a ho-

motopy 4–ball. Doubling the disk gives a fibered homotopy-ribbon 2–knot in

a homotopy 4–sphere. To understand this relationship better we were moti-

vated to study the intermediary case of fibered homotopy-ribbon disks. Our

first result is a characterization of such disks in terms of their fiber.

Theorem 4.1.1. Let D be a fibered slice disk in B4 with fiber H. Then D is

homotopy-ribbon if and only if H ∼= Hg, the solid genus g handlebody.

Next we consider how to produce new fibered disks from old ones, and so

prove an analogue of the Stallings twist theorem [72]. The proof continues the
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broader idea of interpreting certain changes to the monodromy of a mapping

torus as surgeries on the total space. The particular surgeries we use for

fibered disks double to Gluck twists, so we see the phenomenon of an infinite

order operation (twisting along a disk) collapse upon doubling to an order

two operation (twisting along a sphere). As a result, we can show that many

different fibered disks double to the same fibered 2–knot.

Theorem 4.1.2. Let D0 ⊂ B4 be a fibered disk with fiber H, and let E ⊂

H be an essential, properly embedded disk that is unknotted in B4. Then,

changing the monodromy by twisting m times along E gives a new fibered

disk Dm ⊂ B4. Furthermore,

1. the collection {Dm}m∈Z of disks obtained from twisting contains in-

finitely many pairwise inequivalent elements, and

2. the collection {DDm}m∈Z of 2–knots in S4 obtained by doubling contains

at most two pairwise inequivalent elements.

Additionally, if the fiberH is a handlebody, then the disk exteriors {B4 \ νDm}m∈Z

are all homotopy equivalent.

If we start with a fibered ribbon disk D0 for a ribbon knot ∂D0, we

can twist m times along an unknotted disk E in the fiber to obtain Dm, which

will be a homotopy-ribbon disk for ∂Dm, by Theorem 4.1.1. However, it’s not

obvious that Dm must be ribbon. Therefore, we see that the above procedure
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could, in principle, be used to produce potential counterexamples to the Slice-

Ribbon Conjecture.

In the previous theorem we saw that it was possible for a fibered 2–

knot to be obtained as the double of infinitely many different fibered disks

(in a fiber-preserving way). In the next theorem we show that this is always

the case for fibered homotopy-ribbon 2–knots, with the caveat that we cannot

guarantee that the disks lie in B4.

Theorem 4.1.3. Let S be a non-trivial fibered homotopy-ribbon 2–knot in S4.

Then (S4, S) can be expressed as the double of infinitely many pairs (Wm, Dm),

where Dm is a fibered homotopy-ribbon disk in a contractible manifold Wm.

Furthermore, infinitely many of the Wm are pairwise non-diffeomorphic.

Given a 2–knot S ⊂ S4, we call a 1–knot K a symmetric equator of S if

S is the double of a disk along K (in some contractible 4–manifold). We have

the following immediate corollary to Theorem 4.1.3.

Corollary 4.1.4. Any non-trivial, fibered homotopy-ribbon 2–knot has in-

finitely many distinct fibered symmetric equators.

The techniques in this chapter can be illustrated by considering the

classical construction of spinning a fibered 1–knot. Spins of fibered knots

provide examples to which Theorems 4.1.2 and 4.1.3 can be applied in a very

nice way. For example, the collection of 2–knots produced by Theorem 4.1.2

contains only one isotopy class if D0 is a half-spun disk (see Section 4.6).
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4.1.1 Organization

In Section 4.2, we set up basic notation and conventions and introduce

the main objects of study. In Section 4.3, we describe how the work of [17]

allows us to pass from fibered homotopy-ribbon 1–knots to 2–disk-knots, and

then 2–knots upon doubling. We prove Theorem 4.1.1 using the characteriza-

tion of fibered homotopy-ribbon 2–knots in [18].

A main theme of the chapter is to interpret changes to the monodromy

of fibrations as surgeries on the total space, as has classically been done with

the Stallings twist. In Section 4.4, we explore this theme in depth, and prove

some lemmas required for our main results. In Section 4.5, we prove and

discuss Theorems 4.1.2 and 4.1.3, and raise a number of interesting questions.

To illustrate the techniques and results found throughout the chapter, we

conclude with a discussion of spinning fibered 1–knots in Section 4.6.

4.2 Preliminaries and notation

All manifolds will be assumed to be oriented and smooth, and all maps

will be smooth. The boundary of a manifold X will be denoted ∂X. If X is

closed, we will denote by X◦ the manifold obtained by puncturing X (that is,

removing the interior of a closed ball from X). The double of X is the manifold

DX = X ∪∂X (−X), where the gluing is done by the identity map. Note that

we also have DX ∼= ∂(X × I). Similarly, the spin of a closed manifold X is

S(X) = ∂(X◦ × D2). We will denote the closed tubular neighborhood of an

embedded submanifold N of X by νN .
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An n–knot K is an embedded copy of Sn in Sn+2. We say that K

is unknotted if it bounds an embedded Dn+1 in Sn+2. The exterior of K

is EK = Sn+2 \ νK. An n–disk-knot D is a proper embedding of the pair

(Dn, ∂Dn) into (Dn+2, ∂Dn+2) (we will sometimes refer to these as just disks).

Observe that ∂D is an (n− 1)–knot in ∂Dn+2 = Sn+1. We say D is unknotted

if there is an isotopy fixing ∂D that takes D to an embedded disk in ∂Dn+2

(in particular, this implies that ∂D is unknotted as well). Knots occurring as

boundaries of disk-knots are called slice knots, and the disk the knot bounds

is a called a slice disk. Embedded knots and disk-knots are considered up to

the equivalence of pairwise diffeomorphism.

Throughout, we will let Σg denote the genus g surface, Hg = \gS
1×D2

denote the genus g handlebody, and Mg denote #gS
1 × S2.

Let Y be a compact and connected n–manifold with (possibly empty)

connected boundary ∂Y , and let φ : Y → Y be a diffeomorphism. The

mapping torus Y ×φ S1 of Y is the (n + 1)–manifold formed from Y × I by

identifying y×{1} with φ(y)×{0} for all y ∈ Y . We see that a mapping torus is

a fiber bundle over S1 with fiber Y . The map φ is called the monodromy of the

mapping torus. If ∂Y is non-empty, then ∂(Y ×φ S1) is a mapping torus with

fiber ∂Y and monodromy the restriction φ|∂Y . We are especially interested in

the case where the exterior of a knot or disk admits such a fibration, so we

highlight the following definition.

Definition 4.2.1. We say an n–knot K is fibered if EK has the structure

of a mapping torus with the additional condition that the boundary of the
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mapping torus is identified with ∂(νK) = K×∂D2 such that the fibration map

is projection onto the second factor. An n–disk-knot D is fibered if Dn \ νD

has the structure of a mapping torus (again, trivial on ∂(νD)). In this case,

we see that ∂D is a fibered knot.

Remark 4.2.2. While a fibered n–knot will have a punctured (n+1)–manifold

as a fiber, we can fill in the punctures with a copy of S1 × Dn+1 to get a

mapping torus without boundary. This closed mapping torus can be obtained

by surgering the n–knot rather than removing it. Therefore, in what follows

it may be convenient to switch between these two set-ups.

More generally we will say that a disk or sphere embedded in an ar-

bitrary manifold is fibered if its complement admits the above structure. For

example, in this chapter we will consider fibered knots in homology 3–spheres

and fibered disk-knots in contractible 4–manifolds. The above set-up general-

izes easily to these settings.

Example 4.2.3. Let K be a fibered knot in S3, so EK admits the structure

of a mapping torus Σ◦g ×ϕ S1. The boundary of Σ◦g is a longitude of K, so

performing 0–surgery on K glues in a disk to each longitude, resulting in a

closed surface bundle S3
0(K) = Σg ×ϕ̂ S1. The monodromy ϕ̂ is obtained by

extending ϕ across the capped off surface Σg. The simplest example is when

K is the unknot, in which case the fibers are disks, and 0–surgery results in

S2 × S1.
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For an arbitrary fibered knot K ⊂ S3, performing (1/n)–surgery on K

results in a homology 3–sphere S3
1/n(K). Let K ′ be the core of the glued-in

solid torus, also called the dual knot of the surgery. Since K ′ is the core of the

surgery torus, we see that EK′ = EK , and so K ′ is a fibered knot in S3
1/n(K).

Note that the boundary compatibility condition is still satisfied because K ′

and K share the same longitudes in their shared exterior.

We conclude this section by examining a concept that will be cen-

tral throughout the chapter: the relationship between fibered disk-knots and

fibered 2–knots. Let H be a compact 3–manifold with ∂H ∼= Σg. Let φ :

H → H be a diffeomorphism, and consider the mapping torus X0 = H ×φ S1.

We can isotope φ so that it fixes a small disk D2 ⊂ ∂H. This gives us an

embedded solid torus D2 × S1 in ∂X0, and a fixed fibering of ∂D2 × S1 by a

preferred longitude λ = {pt} × S1. See Figure 4.1(a).

Consider the 4–manifoldX = X0∪fh obtained by attaching 4–dimensional

2–handle h along D2×S1. We say that h has framing k if the framing is related

to the one induced by the product structure on the D2 × S1 by taking k full

right-handed twists (for negative k take left-handed twists). Observe that the

cocore D of h is a fibered disk in X, since removing a neighborhood of D is

equivalent to removing h, and results in the fibered manifold X0.

If we double D we get a 2–knot S = DD ⊂ DX, and notice that S is a

fibered 2–knot in DX with fiber M = DH. The monodromy Φ : M → M is

the double of the monodromy φ : H → H, so ES = DX \ νS ∼= M◦ ×Φ S
1.
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Lemma 4.2.4. The pair (DX, S) depends only on the parity of k, and the

two possible pairs are related by a Gluck twist on S.

Proof. The pair (DX, S) is obtained from ES by gluing in S2×D2. Gluing in a

copy of S2×D2 to a 4–manifold with S2×S1 boundary amounts to attaching a

2–handle and a 4–handle, since S2×D2 admits a handle decomposition relative

to its boundary with one 2–handle and one 4–handle. We can choose the 2–

handle to be h from the previous paragraph; in other words, we can isotope

the attaching region of the 2–handle to lie in one hemisphere of S2×S1. There

is a unique way to attach the 4–handle. Gluck [25] showed that up to isotopy

there is a unique, non-trivial way to glue in S2 ×D2. This corresponds to the

unique element ρ in the mapping class group of S2 × S1 that doesn’t extend

over S2 ×D2. Choosing framing k corresponds to gluing by the map ρk, and

since ρ2 is isotopic to the identity, the result follows. Lastly, we point out that

the manifolds coming from even or odd framings are related by a Gluck twist.

(See Section 4.4 for more details.)

In this chapter we are interested in disk-knots with fiber Hg = \gS
1×D2

and 2–knots with fiber Mg = (#gS
1 × S2)◦, which are clearly related by

doubling in the way we have just discussed.

Let D ⊂ B4 be a fibered disk-knot with fiber Hg and monodromy φ, so

B4 \ ν(D) ∼= Hg ×φ S1. Note that ∂(B4, D) = (S3, K) is a fibered slice knot

with fiber Σ◦g and monodromy ϕ, where ϕ = φ|(∂Hg)◦ , as in Example 4.2.3 and
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(a) (b)

Figure 4.1: A schematic (a) for a handlebody bundle, and (b) an immersed
ribbon disk in S3. In (a), φ has been isotoped to preserve D, which we think
of as a slice disk for the fibered knot K, whose fiber is F . The boundary of
the handlebody bundle is the surface bundle S3

0(K), which has F̂ = F ∪K D
as fibers. A Stallings curve c is shown as the boundary of a disk E in H.

Figure 4.1(a). Doubling (B4, D) results in a fibered 2–knot S ⊂ S4 with fiber

M◦
g .

The rest of the chapter is devoted to the analysis of these objects.

4.3 Homotopy-ribbon knots and disks

Following [18], we will say that an n–knot K ⊂ Sn+2 is homotopy-ribbon

if it bounds a slice disk D ⊂ Dn+3 with the property that Dn+3 \ νD admits

a handle decomposition with only 0–, 1–, and 2–handles, in which case D is

called a homotopy-ribbon disk for K2. The knot K is called ribbon if it bounds

an immersed disk in Sn+2 with only ribbon singularities. (See [43] for details.)

These singularities can be removed by pushing the disk into Dn+3, giving a

2Although a more common definition for homotopy-ribbon is what we call weakly
homotopy-ribbon, we use the definition given by Cochran in [18] since it makes our state-
ments simpler.
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ribbon disk for K. See Figure 4.1(b) for an example.

We call a slice knot K ⊂ Sn+2 weakly homotopy-ribbon if there is a

surjection

π1(Sn+2 \K) � π1(Dn+3 \D).

We have the following inclusions among n-knots:

ribbon ⊆ homotopy-ribbon ⊆ weakly homotopy-ribbon ⊆ slice

The Slice-Ribbon Conjecture postulates that every slice knot in S3 is

ribbon. In fact, in the classical case, it is not known whether any of the

converse inclusions hold or not. On the other hand, it is known that every

2–knot is slice [44], while some 2–knots are not ribbon [76]. We now state the

theorems of Cochran and Casson-Gordon that motivate the present work.

Theorem 4.3.1 (Cochran, [18]). Let K ⊂ S4 be a fibered 2–knot with fiber

M◦. Then K is homotopy-ribbon if and only if M ∼= #gS
1 × S2.

Theorem 4.3.2 (Casson-Gordon, [17]). Let K ⊂ S3 be a fibered 1–knot with

monodromy ϕ : Σ◦g → Σ◦g.

1. If K bounds a homotopy-ribbon disk D ⊂ B4, then the closed mon-

odromy ϕ̂ : Σg → Σg extends over a handlebody to φ : Hg → Hg.

2. If the closed monodromy ϕ̂ extends over a handlebody to φ : Hg → Hg,

then there is a homotopy-ribbon-disk D′ for K in a homotopy 4–ball B

such that B \ ν(D′) ∼= Hg ×φ S1.

67



We remark that the original theorem stated by Casson-Gordon is slightly

more general, and uses the property we call “weakly homotopy-ribbon”. How-

ever, the theorem can be strengthened to conclude homotopy-ribbon, since

every mapping torus of Hg can be built with only 0–, 1–, and 2–handles (see

Lemma 4.3.3).

We see there is a strong correspondence between fibered homotopy-

ribbon knots and conditions on the fiber. Here, we expand the picture to

include fibered 2–disk-knots.

Theorem 4.1.1. Let D be a fibered disk-knot in B4 with fiber H. Then D

is homotopy-ribbon if and only if H ∼= Hg for some g.

Proof. Suppose that D is a fibered homotopy-ribbon disk-knot. Let S ⊂ S4

be the 2–knot obtained by doubling D. Then S is a fibered homotopy-ribbon

2–knot with fiber M = H ∪F H, where F = ∂H. To see this, consider the

product (B4 × I,D × I) of (B4, D). The 3–ball D × I is a slice disk in B5

for S = DD = ∂(D × I). In fact, it is a homotopy-ribbon disk; the exterior

of D × I is obtained by crossing the exterior of D with I, and this preserves

the indices of the handle decompositions. By Theorem 4.3.1, this means that

M ∼= Mh = #hS
1 × S2 for some h.

Now, suppose that the genus of F = ∂H is g. Since F is a closed,

separating surface in M , it can be compressed g times (by the Loop Theorem

[66]). Since M = H ∪F H is a double, these compressions can be done one by
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one and symmetrically to both sides. It follows that H = Hg#(#h−g
2
S1×S2).

However, we claim that there is a surjection π1(F ) � π1(H). This implies

that h = g, as desired.

To see where this surjection comes from, consider the infinite cyclic

cover W̃ of W = B4 \ ν(D). We have that W̃ ∼= H × R and ∂W̃ ∼= F × R.

Furthermore, we have the following identifications of the commutator sub-

groups:

π1(H) ∼= π1(W̃ ) ∼= [π1(W ), π1(W )]

and

π1(F ) ∼= π1(∂W̃ ) ∼= [π1(Y ), π1(Y )],

where Y = ∂W ∼= S3
0(∂D) is given by 0–Dehn surgery on the knot ∂D ⊂ S3.

By assumption, π1(S3 \ ∂D) � π1(W ) (here we use the weaker defini-

tion of homotopy-ribbon, which follows from the stronger), which implies that

π1(S3
0(∂D)) � π1(W ) (since the class of the longitude includes to the triv-

ial element). This gives a surjection between the corresponding commutator

subgroups. It follows that π1(F ) � π1(H), as desired.

Conversely, suppose that D is a fibered disk-knot with handlebody

fiber. Since Hg admits a handle decomposition with only 0– and 1–handles,

by Lemma 4.3.3 below, the exterior of D in B4 can be built using only 0–, 1–,

and 2–handles. This, by definition, implies that D is homotopy-ribbon.

69



The following lemma is well known (see, for example, [61], or for more

exposition and examples [5]).

Lemma 4.3.3. Let X = Y ×φ S1 be a mapping torus with fiber an n–

dimensional manifold Y and monodromy φ : Y → Y . Then a handle de-

compostion of Y induces a handle decomposition of X, with each k-handle of

Y inducing a k-handle and a (k + 1)-handle for X.

Proof. Recall that X is formed by taking the product Y × I and identifying

y × {1} with φ(y) × {0} for all y ∈ Y (where I = [0, 1]). Fix a handle

decomposition of Y , and let hk be a k-handle for Y . Then hk is a copy of

Dk × Dn−k attached along ∂Dk × Dn−k. Let S denote the attaching sphere

and C the core of hk. Now hk induces a k-handle Hk and a (k + 1)-handle

Hk+1 for X as follows. We let Hk = hk × [0, 1/2] = Dk × (Dn−k × [0, 1/2]),

attached along ∂Dk × (Dn−k × [0, 1/2]). We form Hk+1 from hk × [1/2, 1] by

associating the extra interval with the Dk factor of hk. That is, we define

Hk+1 = (Dk × [1/2, 1])×Dn−k, attached along ∂(Dk × [1/2, 1])×Dn−k. The

attaching sphere for Hk+1 will be the union of S × [1/2, 1] and C × ∂[1/2, 1].

Note that C × {1} is identified with φ(C)× {0} in X.

We think of this process as first constructing a handle decomposition

for Y × [0, 1/2] by taking the handle decomposition for Y and crossing each

handle with [0, 1/2] (increasing the dimension of the handles but preserving

the indices). Then we complete the handle decomposition for X by adding

the second set of handles (where both the dimension and index of the handles
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of Y are increased by one). For example, if the monodromy φ is the identity

map (so that X = Y × S1), then for a given handle hk of Y we think of Hk+1

as gluing hk × {1/2} to hk × {0} and so completing the mapping torus.

In Theorem 4.1.1 it is worth noting that the restriction to homotopy-

ribbon disk-knots is important, since any fibered slice knot can bound infinitely

many different fibered slice disks in the 4–ball, none of which are homotopy-

ribbon. To see this, take any fibered slice disk D in the 4–ball with boundary

some fibered slice knot and form the fiber-preserving connected sum D#S for

any fibered 2–knot S. For example, if we take any fibered 2–knot S ⊂ S4 and

remove a small 4–ball centered on a point in S, then the result is a slice disk

D for the unknot whose fibers are the same as those of S.

Example 4.3.4. Many infinite families of handlebody bundles whose total

space is the complement of a ribbon disk in B4 were produced by Aitchison-

Silver using construction by isotopy. Their main result states that the bound-

aries of these fibered ribbon disks are doubly slice, fibered ribbon knots that,

collectively, realize all possible Alexander polynomials for such knots. See [3]

for complete details.

The result of Casson-Gordon (Theorem 4.3.2) allows us to start with

a fibered homotopy-ribbon 1–knot and construct a fibered homotopy-ribbon

disk in a homotopy 4–ball B. This is accomplished by extending the (closed)

monodromy to Hg and adding a 2–handle to the resulting mapping torus.
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Next, we can double the resulting fibered disk to get a fibered homotopy-

ribbon 2–knot in the homotopy 4–sphere DB. However, it is not known in

general whether B and DB must be standard. This suggests the following

question.

Question 4.3.5. Does a fibered homotopy-ribbon knot always extend to a

fibered homotopy-ribbon disk in B4? Specifically, must B be diffeomorphic to

B4?

It is also not clear if the resulting fibered disk and 2–knot depend only

on the original 1–knot, or if they also depend on the choice of monodromy

extension. We remark that Long has given an example of a surface monodromy

that extends over distinct handlebodies [56].

4.4 Changing monodromies by surgery

Let K ⊂ S3 be a fibered knot with fiber Σ◦g and monodromy ϕ. An

essential curve c on a fiber F∗ is called a Stallings curve if c bounds a disk

Dc in S3 (called a Stallings disk), and the framing on c induced by F∗ is zero.

Given such a curve, we can cut open EK along F∗ and re-glue using the surface

diffeomorphism τc : F∗ → F∗, which is given by a Dehn twist along c ⊂ F∗.

This operation, called a Stallings twist along c, produces a new fibered knot

K ′ ⊂ S3 with fiber Σ◦g and monodromy φ′ = φ ◦ τ±1
c [72].

The Stallings twist is a classical operation and provides the first in-

stance of a more general theme: interpreting a change to the monodromy of
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(a) (b) (c)

Figure 4.2: An example of Stallings twisting on a fibered ribbon knot along a
curve c (shown in (a)) that extends to a disk in the handlebody. In (b), we see
a push-off c+ of c (after isotoping the knot), and (c) shows the fibered ribbon
knots obtained by twisting n times along c. (The box represents n full-twists.)

a fiber bundle as a surgery on the total space. If K ′ is obtained from K by a

Stallings twist, then the resulting mapping torus EK′ is related to the original

by ±1 Dehn surgery on c in EK . The following lemma allows us to conclude

that Stallings twists can be used to create infinite families of distinct knots.

Lemma 4.4.1. Suppose that K ′ is obtained from K by twisting m times about

a Stallings curve c for K, and assume that g(K) ≥ 2. Then K ′ is distinct from

K provided |m| = 1 or |m| > 9g − 3.

Proof. If K ′ = K, then the corresponding monodromies are conjugate [15]:

ϕ ◦ τmc = σ−1ϕσ.

This implies that τmc is a commutator. Corollary 2.6 of [47] states that a single

Dehn twist is never a commutator, which yields the result when |m| = 1, and

Corollary 2.4 of [46] states that τmc cannot be a commutator when |m| >

9g − 3.
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There are other instances where interpreting a change to the mon-

odromy as a surgery has proved useful. Gompf [26] used this approach to

study Cappell-Shaneson 4–spheres, which are constructed from mapping tori

of T 3. There, the corresponding operations are changing the monodromy by

twisting along a torus and performing torus surgery. Nash [63] pursued this

idea further in his thesis.

In what follows, we will interpret changing the monodromy of a han-

dlebody bundle by twisting along a disk as a 2–handle surgery, and changing

the monodromy of a #gS
1 × S2 bundle by twisting along a sphere as a Gluck

twist. We first give some precise definitions of the diffeomorphisms by which

we will change the monodromies.

Definition 4.4.2. Let ωθ : D2 → D2 and Ωθ : S2 → S2 be the maps given

by clockwise rotation of D2 and S2 (about some fixed axis) through the angle

θ. Let H be a compact 3–manifold with boundary and let M be a compact

3–manifold.

Given a properly embedded disk E ⊂ H, we can identify a neighbor-

hood of E with D2 × I and define a map τE : H → H to be the identity map

away from D2 × I, and τD(z, t) = (ω2πt(z), t) on D2 × I.

Similarly, given an embedded 2–sphere S in M , we can identify a neigh-

borhood of S with S2 × I and define a map τS : M → M to be the identity

map away from S2 × I, and τS(x, t) = (Ω2πt(x), t) on S2 × I.

We will call these maps twisting along the disk D and twisting along
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the sphere S, respectively. Observe that we can iterate these operations to

twist m times along a disk or sphere, for any m ∈ Z, where m < 0 should be

interpreted as counterclockwise rotation.

Remark 4.4.3. The restriction τD|∂H : ∂H → ∂H is a right-handed Dehn

twist τc along the curve c = ∂D2. If we double the operation of twisting

along a disk we get twisting along a sphere. That is, the double of the map

τD : H → H is the map τS : M →M where S is the double of D in M = DH.

Later, we will mostly be interested in the case when H = Hg and

M = Mg, but we will continue to work in generality for the time being.

Next, we introduce two types of surgery and examine how they relate to the

diffeomorphisms defined above.

4.4.1 The Gluck twist

Definition 4.4.4. Given an embedded 2–sphere S in a 4–manifold X with

trivial normal bundle, we can identify a neighborhood of S with S2×D2. We

produce a new 4–manifold XS by removing S2×D2 and re-gluing it using the

map ρ : S2 × S1 → S2 × S1 defined by ρ(x, θ) = (Ωθ(x), θ). The manifold XS

is said to be the result of performing a Gluck twist on S.

Gluck [25] defined the preceding operation and showed that, up to

isotopy, ρ is the only non-trivial way to glue in an S2×D2 to a manifold with

S2 × S1 boundary. Furthermore, he showed that ρ2 is isotopic to the identity
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map, so ρ has order two in the mapping class group. Therefore, performing two

consecutive Gluck twists on a sphere gives you back the original 4–manifold.

Recall that gluing in a copy of S2 ×D2 to a 4–manifold with S2 × S1

boundary amounts to attaching a 2–handle h and a 4–handle. The attaching

circle for h will be {pt} × S1, and the framing will be zero (corresponding to

the product framing) if we glue by the identity map, or ±1 if we glue by the

Gluck twist map ρ. There is a unique way to attach the 4–handle in either

case. Furthermore, since ρ2 is trivial, we see that the framing only matters

mod 2.

Remark 4.4.5. Note that ρ is isotopic to a map taking Ω2πt on half of the

circle (identifying half the circle with I) and the identity map on the other

half. Therefore we can substitute such a map in the gluing process without

changing the result.

Performing a Gluck twist on a 2–knot S ⊂ S4 produces a homotopy

4–sphere XS, and it is not known, in general, when XS is diffeomorphic to S4.

For certain types of 2–knots, however, it is known that a Gluck twist not only

returns S4, but also preserves the equivalence class of the 2–knot. The easiest

case is for the unknotted 2–sphere, which we record here for later use.

Lemma 4.4.6. Let U be the unknotted 2–sphere in S4. Performing a Gluck

twist on U gives back (S4,U).

Proof. It is a basic fact that S4 \ νU = B3 × S1. If XU is the result of per-

forming a Gluck twist on U, then XU = B3 × S1 ∪ρ S2 ×D2. Since ρ clearly
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extends over B3 × S1, we see that XU = B3 × S1 ∪ρ S2 ×D2 is diffeomorphic

to B3 × S1 ∪id S2 ×D2 ∼= S4, and the diffeomorphism is the identity map on

S2×D2 (and so preserves U). We think of this diffeomorphism as “untwisting”

along B3 × S1.

Remark 4.4.7. In fact, this can be generalized to any 2–knot S that bounds

(#gS
1 × S2)◦. See Chapter 13 of [43] for details. It follows, for example, that

if S ⊂ S4 is a homotopy-ribbon 2–knot, then XS
∼= S4, and the Gluck twist

preserves the homotopy-ribbon 2–knot.

Our main observation here is that changing the monodromy of a 4–

dimensional mapping torus by twisting along a sphere contained in a fiber

corresponds to performing a Gluck twist on the total space.

Proposition 4.4.8. Let M be a compact 3–manifold, and consider the map-

ping torus X = M ×Φ S
1. Let S be an embedded 2–sphere in a fiber M∗. Let

X ′ = M ×φ◦τS S1 be the mapping torus formed by cutting X along M∗ and

re-gluing with the diffeomorphism τS : M∗ → M∗. Then X ′ is obtained from

X by performing a Gluck twist on S. Furthermore, applying τS twice gives

X ′′ = M ×φ◦τ2S S
1, which is diffeomorphic to X.

Proof. Identify a neighborhood of S in M∗ with S × I. Since the mapping

torus is locally a product M∗ × I0, we can identify a neighborhood of S in

X with S × I × I0. Performing a Gluck twist on S corresponds to deleting

S × I × I0 and re-gluing it by ρ along S × ∂(I × I0). By Remark 4.4.5, we
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can isotope ρ so that it is the identity map except on S × I × {1}, where we

take Ω2πt. The result is clearly diffeomorphic to cutting along the fiber M

and re-gluing by τS, so we get the first claim. The second claim follows from

the first claim and the fact that performing a Gluck twist twice on a sphere

preserves the original diffeomorphism type.

4.4.2 2–handle surgery

Next, we introduce an operation on 4–manifolds with boundary that

will be instrumental in proving our main results.

Definition 4.4.9. Suppose a 4–manifold X can be decomposed as X = X0∪f

h, with a 2–handle h attached to some 4–manifold with boundary X0 with

framing f . We say X ′ is obtained from X by 2–handle surgery on h with slope

m if X ′ = X0 ∪f ′ h is formed by removing h and re-attaching it with the same

attaching circle but with framing f ′, where f ′ is obtained from f by adding m

right-hand twists.

In other words, 2–handle surgery is the process of cutting out and re-

gluing a B4 along S1 ×D2. We make the following simple observations.

Lemma 4.4.10. Suppose X ′ is obtained from X by 2–handle surgery. Then

π1(X ′) ∼= π1(X) and H∗(X) ∼= H∗(X
′).

Note that it is possible to change the intersection form of X via 2–

handle surgery.
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Proof. We get a handle decomposition for X by taking a handle decomposition

for X0 and adding h. A handle decomposition for a 4–manifold allows one

to read off a presentation of the fundamental group: each 1–handle gives

a generator, and the attaching circle for each 2–handle provides a relation.

Now the framings for the 2–handles do not affect the relations, so removing

h removes a relation and re–attaching h (with any framing) adds the same

relation back. Thus, π1(X ′) ∼= π1(X). Similarly, the homology groups can be

computed in a simple way from a handle decomposition, and one can check

that they don’t depend on the framings of the 2–handles.

The next lemma gives a condition for when a 2–handle surgery preserves

the diffeomorphism type of the 4–manifold. Recall that a properly embedded

disk D in a 4–manifold X is said to be unknotted if it is isotopic rel ∂ into the

boundary of X.

Lemma 4.4.11. Suppose X contains a 2–handle h whose cocore is unknotted

in X. Then any 2–handle surgery on h will preserve the diffeomorphism type

of X.

Proof. Removing h is equivalent to removing a neighborhood of the cocore D.

If D is unknotted, then this can be thought of as adding a 1–handle to X. We

form X ′ by attaching a 2–handle along the former attaching circle, which will

intersect the belt sphere of the 1–handle geometrically once. Therefore, these

two handles will cancel (regardless of framing). It follows that we have not

changed X, so X ′ is diffeomorphic to X. In other words, D being unknotted is
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equivalent to the existence of a 1–handle that h cancels, and the cancellation

does not depend on the framing of h.

Next, we consider how the boundary of a 4–manifold changes when

doing 2–handle surgery. Recall that for X = X0∪h, ∂X is obtained from ∂X0

by performing integral surgery on the attaching circle K of h, with the surgery

coefficient given by the framing. The belt sphere of h in ∂X is then the dual

knot K ′ of K. If X ′ is the result of the 2–handle surgery, then ∂X ′ is obtained

from ∂X by doing surgery on K ′, which can be seen as the composition of two

surgeries: first do the ‘dual surgery’ from ∂X back to ∂X0, then do another

surgery (corresponding to the new framing of h) from ∂X0 to ∂X ′. Note that

the surgery from ∂X to ∂X ′ won’t be integral, in general.

Example 4.4.12. Suppose that X = B4, and X0 is the exterior of a slice disk

for a knot K ⊂ S3 = ∂B4. Then, ∂X0 is the 3–manifold obtained by 0–surgery

on K. We see that X is obtained from X0 by attaching a 0–framed 2–handle

h along K ′ ⊂ ∂X0, where K ′ is the dual knot to K. Now, X ′ is formed by

2–handle surgery on h with slope m if h is attached with framing m instead

of framing 0, so ∂X ′ is m–Dehn surgery on K ′ in ∂X0. From this viewpoint,

we see that ∂X ′ is obtained by doing (−1/m)–Dehn surgery on K in S3.

Now we show that changing the monodromy of a 4–dimensional map-

ping torus with boundary by twisting along a disk that is properly embedded

in a fiber corresponds to performing a 2–handle surgery on the total space.
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Proposition 4.4.13. Let H be a compact 3–manifold with boundary, and

consider the mapping torus X = H ×φ S1. Let D be a disk that is properly

embedded in a fiber H∗. Let X ′ = H ×Φ◦τD S
1 be the mapping torus obtained

by cutting X along H∗ and re-gluing with the diffeomorphism τD : H∗ → H∗.

Then, X ′ can be obtained from X by performing a 2–handle surgery on a

handle h in X where the cocore of h is D.

Proof. Similarly to Proposition 4.4.8, we identify a neighborhood of D in H∗

with D × I and a neighborhood of D in X as N = D × I × I0. Then N is

diffeomorphic to B4, and N ∩ (X \N) = D× ∂(I × I0) is a solid torus. Thus,

we can view N as a 2–handle attached to X \N with cocore D × {0} × {0}.

Cutting out N and re-gluing it is then a 2–handle surgery. We choose the

gluing map to be the identity map except on D× I ×{1}, where we take ω2πt.

This is clearly diffeomorphic to cutting along the fiber and re-gluing by τD to

obtain X ′.

4.5 Main results

Now we can apply the techniques from the previous section to prove our

main results. Here we give slightly more detailed statements of the theorems

described in the introduction.

Theorem 4.1.2. Let D0 ⊂ B4 be a fibered disk-knot with fiber H and mon-

odromy φ, and let E ⊂ H be an essential, properly embedded disk that is

unknotted in B4. Then, the result of twisting m times along E is a new
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fibered disk-knot Dm ⊂ B4 with monodromy φm = φ ◦ τmE . Furthermore,

1. Km = ∂Dm is a fibered knot in S3 with monodromy ϕm = ϕ0◦τmc , where

c = ∂E is a Stallings curve;

2. the collection {Dm}m∈Z contains infinitely many pairwise inequivalent

fibered disk-knots, where D0 = D; and

3. the collection {DDm}m∈Z of fibered 2–knots obtained by doubling con-

tains at most two pairwise inequivalent elements.

If in addition the fiberH is the handlebodyHg, then the family of disk exteriors

{B4 \ νDm}m∈Z will all be homotopy equivalent.

Note that we say a properly embedded disk E ⊂ H is essential if ∂D

doesn’t bound a disk in ∂H.

Proof. Changing the monodromy by twisting along E is equivalent to per-

forming a 2–handle surgery, by Proposition 4.4.13, where the cocore of the

2–handle is E. Since E is unknotted, Lemma 4.4.11 states that the diffeomor-

phism type of the total space doesn’t change, and so the result is a fibered

disk-knot in B4. In fact there is a small subtlety: we are using the fact that

performing the 2–handle surgery in the disk exterior Hg×φ S1 and then filling

back in the the disk D is equivalent to performing the 2–handle surgery in

Hg ×φ S1 ∪ νD = B4. However, the order of these operations is insignificant,

because E ∩ νD = ∅.
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Because E is unknotted, it can be isotoped to a disk E ′ lying in S3 =

∂B4 such that c = ∂E ′ lies on a fiber surface F0 for K0 = ∂D0. Furthermore,

the framing on c induced by F is zero, since c bounds a disk in Hg. Therefore,

E ′ is a Stallings disk for K0 = ∂D0. Since twisting along a disk restricts to a

Dehn twist on the boundary, we see that we are changing the monodromy of

the boundary surface bundle by τmE |∂H = τmc . This settles part (1).

Part (2) follows from the fact that infinitely many of the boundary

knots ∂Dm are distinct. For example, the collection {Kk(9g−2)}k∈Z contains

pairwise distinct knots, by Lemma 4.4.1 (here we use the fact that there are

no fibered genus 1 knots that are slice, and so the genus is at least 2).

Part (3) follows from Remark 4.4.3 and Proposition 4.4.8.

Finally, if H = Hg, then we will show that Zm = Hg ×φ◦τmE S1 is

a K(G, 1), where G ∼= π1(Zm) is independent of m, by Lemma 4.4.10. By

the long exact sequence of a fibration, and since the base space S1 satisfies

πn(S1) = 0 for n > 1, we see that πn(Zm) ∼= πn(Hg) = 0 for all n > 1. Thus,

the Zm are homotopy equivalent for all m.

Remark 4.5.1. In many cases, it may be that DDm = DDn for all m,n ∈ Z.

For example, when we consider spinning fibered 1–knots below, we will see

examples where the resulting collection of 2–knots contains a unique isotopy

class.

In regards to the last statement of the theorem we note that Gordon

and Sumners [32] gave examples of disks whose exteriors have the homotopy
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type of a circle and double to give the unknotted 2–sphere.

Now given a fibered 2–knot S ⊂ S4 with fiber #gS
1×S2 (i.e. a fibered

homotopy-ribbon 2–knot by Cochran), we consider the ways in which it can

be decomposed as the double of a fibered disk in a contractible 4–manifold.

We have already seen in Theorem 4.1.2 that it is possible for a 2–knot to be

the double of infinitely many distinct disk-knots in B4, but this is a somewhat

special situation. We next prove a sort of converse result, which is more general

but comes with the trade-off that we can no longer guarantee that the fibered

disks lie in B4. Again, here we give a more detailed statement than in the

introduction.

Theorem 4.1.3. Let S be a non-trivial fibered 2–knot in S4 with fiber (#gS
1×

S2)◦. Then (S4, S) can be expressed as the double of infinitely many pairs

(Wm, Dm), where

1. Wm is a contractible 4–manifold;

2. Dm is a fibered homotopy-ribbon disk-knot in Wm;

3. the boundaries Ym = ∂Wm are all related by Dehn filling on a common

3–manifold; and

4. infinitely many of the Ym (and, therefore, the corresponding Wm) are

non-diffeomorphic.

We remark that the theorem holds in a slightly more general setting.
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One could consider S to be in a homotopy 4–sphere, for example, yet draw the

same conclusions.

To prove Theorem 4.1.3, we must first record a fact about self-diffeomorphisms

of Mg = #gS
1 × S2.

Proposition 4.5.2. Let Φ : Mg →Mg be an orientation-preserving diffeomor-

phism. Then Φ can be isotoped so that it preserves the standard Heegaard

splitting of Mg. Furthermore, Φ is isotopic to the double of a diffeomorphism

φ : Hg → Hg.

Proof. Montesinos [61] gives representatives for generators of the mapping

class group M(Mg), and, upon inspection, we see that each of the orientation-

preserving representatives satisfy the above properties. The result follows,

since any orientation-preserving diffeomorphism of Mg is isotopic to a compo-

sition of Montesinos’ representatives.

Remark 4.5.3. Given such a Φ, the description of Φ as the double of a

handlebody diffeomorphism φ is not unique. Indeed we can alter φ by twisting

twice along any disk and the doubled map Φ will be unaffected (up to isotopy),

by Proposition 4.4.8.

Given a fibered 2–knot S ⊂ S4 with fiber M◦
g and monodromy Φ, we can

apply Proposition 4.5.2 to obtain a (non-unique) handlebody bundle Hg×φS1
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which doubles to the exterior of S, ES = M◦
g ×Φ S

1. More precisely, we double

the handlebody bundle, except along a disk D0 that is fixed by φ.

Recall from our comments on the Gluck twist that S4 is recovered from

ES by attaching a 0–framed 2–handle h and a 4–handle. The attaching circle

of h is {pt} × S1, and it can be isotoped to lie on the boundary of the sub-

bundle Hg ×φ S1 (in fact, we can choose the attaching region to be D0 × S1).

Let W0 = (Hg ×φ S1) ∪ h and observe that S4 = DW0. This is most easily

seen by noticing that the complement ES is completed to S4 by gluing in a

S2 × D2, where we think of the cocore D of h as the southern hemisphere

and the doubled copy of D as the northern hemisphere. Then the proof of

Theorem 4.1.3 will be completed by proving the following claim.

Claim 4.5.4. Let Wm be the manifold obtained by performing 2–handle

surgery on h with slope m, and let Dm be the cocore of the re-glued h.

Then, DWm = S4, and DDm = S. Furthermore, the Wm are contractible

4–manifolds, and infinitely many of the Wm are distinct.

Proof. The fact that DWm = S4 and DDm = S follows from Lemma 4.2.4 and

Remark 4.4.7: the pairs (DWm,DDm) are related by Gluck twists on DDm,

and Gluck twists on 2–knots bounding M◦
g preserve both the 4–manifold and

the 2–knot. Next, notice that π1(Hg ×φ S1) ∼= π1(M◦
g ×Φ S

1), since Φ∗ and φ∗

are identical as automorphisms of the free group on g generators. It follows

that the HNN extensions presenting these groups will be identical. Since

π1(Mg ×Φ S
1 ∪ h) ∼= 1, it follows that π1(Hg ×φ S1 ∪ h) ∼= 1.
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One can calculate that Wm has trivial homology, and it then follows

from Whitehead’s theorem that Wm is contractible. (The inclusion of a point

into Wm is a homology equivalence; hence, a homotopy equivalence.)

The boundaries Ym = ∂Wm are all related by Dehn filling on a common

3–manifold Y , as discussed in Example 4.4.12. More precisely, we have that

Ym = Y (−1/m).

First suppose that Y is Seifert fibered and that the induced slope of the

fibering of the boundary is a/b. If a 6= 0, then the (−1/m)–filling introduces a

new exceptional fiber of multiplicity ∆(a/b,−1/m) = am− b, and the spaces

are thusly distinguished. If a = 0, then 0–filling is reducible [70]; however, this

manifold is also a nontrivial closed surface bundle, a contradiction.

If Y is hyperbolic, then we have vol(Y (−1/m)) < vol(Y ) for all m and,

by [73],

lim
m→∞

vol(Y (−1/m)) = vol(Y ).

It follows that there is an infinite sequence {mi}i∈N such that vol(Ym1) <

vol(Ym2) < vol(Ym3) < · · · . Therefore, infinitely many of the Ym are distinct.

If Y is toroidal, then we can cut Y along all essential tori, and repeat the

above argument on the atoroidal piece containing ∂Y .

Question 4.5.5. Is it possible that Ym′ ∼= Ym for some m′ 6= m? This would

be an example of a cosmetic surgery on a fibered homotopy-ribbon knot in a

Z–homology 3–sphere.
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Quite a few choices were made in the preceding construction, and this

raises a number of questions. An obvious one is whether we can always arrange

for one of the Wm to be the standard 4–ball. We can phrase the question as

follows.

Question 4.5.6. Is every fibered homotopy-ribbon 2–knot in S4 the double

of a fibered homotopy-ribbon disk-knot in B4?

A result of Levine [54] states that the double of any disk-knot is doubly

slice, so to answer the above question negatively, it would suffice to find a

fibered homotopy-ribbon 2–knot in S4 that is not doubly slice. If we generalize

to arbitrary fibers then we can observe that not all fibered 2–knots are doubles

of fibered disks. This follows simply because there exist 2–knots that are

fibered by 3–manifolds that are themselves not doubles (see [77]).

We introduce the term halving to describe the process of going from a

fibered homotopy-ribbon 2–knot S ⊂ S4 to one of the cross-sectional fibered

homotopy-ribbon 1–knots produced by Theorem 4.1.3. This raises the question

of which 1–knots can result from this process for a given 2–knot.

Definition 4.5.7. Given a 2–knot S ⊂ S4, we call 1–knot K a symmetric

equator of S if K can be obtained from S by halving. In other words, S is the

double along K of a disk in a contractible 4–manifold (hence K lives in some

homology 3–sphere).

From this point of view, we have the following corollary to Theorem

4.1.3.
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Corollary 4.1.4. Any nontrivial, fibered homotopy-ribbon 2–knot has in-

finitely many distinct fibered symmetric equators.

4.6 Spinning fibered 1-knots

Here we give a method to produce many examples of fibered ribbon

disks and fibered ribbon 2–knots. Recall that the spin of a manifold X is

given by S(X) = ∂(X◦×D2). Equivalently, we can view the spin as a double,

S(K) ∼= D(X◦ × I), as follows.

D(X◦ × I) = ∂(X◦ × I × I) ∼= ∂(X◦ ×D2)

Notice that S(Sn) ∼= Sn+1, so the the spin of a knot (S3, K) is a 2–knot

(S4, S(K)), called the spin of K. Also, if we let (B3, K◦) = (S3, K)◦ be the

punctured pair, then (B3, K◦)× I = (B4, DK), where DK is a ribbon disk for

K#(−K), which we sometimes call the half-spin of K. The justification of

this terminology is that D(B4, DK) ∼= (S4, S(K)).

Now, if (S3, K) is a fibered knot, then K#(−K) is a fibered ribbon

knot, (B4, DK) is a fibered ribbon disk for K#(−K), and (S4, S(K)) is a

fibered ribbon 2–knot. Suppose that K has monodromy ϕ : Σ◦g → Σ◦g. Then,

(B4, DK) ∼= (S3, K)◦ × I is clearly fibered with fibers H2g
∼= Σ◦g × I and mon-

odromy φ = ϕ× id. It is clear that the fibration restricts to the boundary to

give a fibration of (S3, K#(−K)), where the fibers are Σ◦g\(−Σ◦g) and the mon-

odromy is ϕ\(−ϕ). Finally, if we view (S4, S(K)) as the double of (B4, DK),

then we see that the former is fibered with fiber M2g = #2gS
1 × S2 (since
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(a) (b)

Figure 4.3: The right handed trefoil, shown (a) as an embedded arc in B3.
(A portion of the boundary 2–sphere is shown in green.) Lying on a Seifert
surface for K◦, we see two arcs, a1 and a2, which are boundary parallel in
B3. If we form the spin of the the picture in (a), we get the spun trefoil
knot, together with two spheres S1 and S2 corresponding to the spins of the
arcs a1 and a2. In (b), we see an equatorial cross section of the spun trefoil.
Alternatively, (b) shows the boundary of the half-spun trefoil. The curves c1

and c2 are Stallings curves for the square knot, and bound disks in the genus
two handlebody, thought of as a fiber of the half-spun trefoil.

M2g = DH2g) and monodromy Φ = Dφ. This spinning construction provides

a nice set of examples to apply the techniques and results from the previous

sections.

The trivial pair (S4, S2) admits a natural fibration by 3–balls. One

way to visualize the spin S(K) is to view K as a knotted arc K◦ ⊂ B3, and to

identify this 3–ball with a fiber of (S4, S2). Then, S(K) is the trace of K◦ as

the 3–ball sweeps out all of S4 via this fibration. See Figure 4.3(a), or Chapter

2 for more information.

Let K be a fibered knot, and let F be a fiber of K◦ ⊂ B3. Let a be
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an unknotted arc on F , with endpoints in ∂B3, as in Figure 4.3(a). Then

Da = a × I ⊂ (B3 \ νK) × I is an unknotted disk in a fiber H2g of DK . We

can apply Theorem 4.1.2 to obtain new fibered disks DJm in B4 by twisting m

times along Da. The disks DJm will be homotopy-ribbon disks for knots Jm

obtained from K#(−K) by doing m Stallings twists along c = ∂Da (see also

Figure 4.2).

Choosing different arcs for a provides a wealth of examples. Some of

these families of fibered ribbon knots have been studied elsewhere [4, 3, 39, 72],

often with the goal of finding infinitely many distinct fibered ribbon knots with,

say, the same Alexander module.

When we double this picture to get (S4, S(K)), we get an unknotted

sphere Sa = DDa inside a fiber M ∼= M2g of S(K). We see that Sa is the spin of

a, and twisting along Sa gives a new fibered ribbon 2–knot S(K)′ in S4, which

is the double of the disk-knot DJm , for all odd m (Theorem 4.1.2). However,

in this special setting, we see that twisting on Sa preserves the 2–knot S(K).

Proposition 4.6.1. S(K)′ = S(K)

Proof. Since a is unknotted it bounds a semi-disk in B3 (that is, a together

with an arc on the boundary bound a disk). Perturb the disk so that it

intersects K◦ transversely in k points. Spinning this semi-disk gives a ball Ba

bounded by Sa, showing that Sa is, in fact, unknotted in S4. Furthermore,

we see that Ba intersects S(K) in k circles, which come from spinning the k

intersection points. The circles form a k component unlink since they are the
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spins of isolated points. By an isotopy of S(K) taking place in a collar Ba× I,

we can assume the circles all lie concentrically in a plane in Ba.

Now, S(K)′ is formed by changing the monodromy by twisting along

Sa, and, by Proposition 4.4.8, this is equivalent to performing a Gluck twist on

Sa. By the proof of Lemma 4.4.6, we see that the diffeomorphism taking S4
Sa

(the result of performing a Gluck twist on Sa) back to S4 is “untwisting” along

the complement of Sa. This can be thought of as cutting S1×B3 = S4 \ νSa at

Ba and re-gluing by a 2π twist about an axis, which we can choose to be per-

pendicular to the plane in Ba containing the concentric circles. Therefore the

twist in fact preserves the circles, and hence sends S(K)′ onto S(K), proving

the claim.
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