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This dissertation describes an investigation of nonlinear effects associated with

the interaction of ultrasound with plates. The overriding goal is to assess the

potential for using immersion techniques to measure the nonlinear acoustical pa-

rameters of plates. Three measurement configurations are described, with both

theory and experiment reported. Effects of weak nonlinearity are included in the

theoretical models. In the first configuration, the goal is to characterize the non-

linear elastic response of an isotropic, homogeneous plate. Plate resonances were

used to enhance the nonlinear acoustical response. An experiment was performed

with an aluminum plate in water, but nonlinearity due to wave propagation in

the plate could not be distinguished from the nonlinear effects associated with
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propagation of sound through the surrounding fluid. In the second configuration,

the interaction of ultrasound with bonded plates is considered. In the theoretical

model, nonlinear effects are assumed to occur only at the bond. Particular at-

tention is paid to changes in the reflection and transmission coefficients, as well

as the second harmonic radiated from the plate, as a function of bond stiffness.

Experiments were performed using bonded aluminum and acrylic plates. Mea-

surements are in qualitative agreement with linear theory, but nonlinear effects at

the bond were not observed. In the first two configurations, nonlinearity within

the plate is taken into account, but not diffraction of the ultrasound beams. In

the third configuration, the interaction of a sound beam with a plate at oblique

incidence is examined. Here, beam diffraction is taken into account, but plate

nonlinearity is considered to be negligible. The theoretical model is based on an

angular spectrum method, and accounts for Lamb wave propagation within the

plate. At Lamb excitation angles, nonspecular effects occur in the reflected and

transmitted sound beams. Second harmonic generation is assumed to occur only

in the fluid. Experiments were performed on an aluminum plate in water, and

quantitative agreement is found between theory and measurements.
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Chapter 1

INTRODUCTION

Acoustic waves provide a useful means of interrogating a solid to determine its

material characteristics and structural integrity. Researchers and practitioners

have utilized bulk compressional and shear waves, surface waves, guided waves

in plates, and resonance phenomena to characterize materials. Characterization

using acoustic waves is advantageous because it is nondestructive and can be

performed rapidly. Also, inspection of objects using acoustic waves can often be

performed in the field.

Traditional methods for nondestructive evaluation (NDE) using sound waves

are based on small-signal acoustic propagation. Information about the structure

is obtained by measuring changes in the magnitude and phase (or time delay) of

the received signals. These methods can be used to measure two elastic properties

of an isotropic solid, e.g., the bulk and shear moduli. Variations observed in these

moduli, typically on the order of a few percent, can indicate damage or fatigue

in the material.

Of particular interest in recent years has been the finite-amplitude response

of an insonified object. The nonlinear response of a material can provide insights

into the microstructure of the material. For example, it can be used to exam-

ine precipitates in metals, as well as dislocations.1 Also, the nonlinear elastic

properties of a material have been found to be much more sensitive to fatigue

and damage than their linear counterparts. Structural inhomogeneities such as

dislocations and microcracks can increase the nonlinearity of a solid by orders

of magnitude.2 Linear material parameters, in contrast, are typically relatively

insensitive to the presence of these inhomogeneities. Because of this increased

sensitivity, measurements of nonlinear effects show promise in NDE applications.

Inclusion of nonlinear effects is also important for correctly modeling acoustic

1
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propagation in materials with large parameters of nonlinearity.

The most commonly studied manifestation of acoustic nonlinearity is wave-

form distortion, which is equivalent to the generation of new frequencies. These

new frequencies are usually harmonics of a primary signal, or intermodulation

components created by waves propagating in the object at different frequencies.

The generation of new frequencies is readily measurable, and thus provides a con-

venient means of quantifying the nonlinearity of a material. For these reasons

we shall pay particular attention to the nonlinear generation of new frequencies

in this dissertation.

A variety of experimental configurations have been used to measure the non-

linearity of solids and liquids. Many of these configurations are illustrated in

Fig. 1.1 (taken from the review article by Zheng et al.1). In Figs. 1.1(a) and (b),

the nonlinearity of the solid and liquid, respectively, is determined by measuring

the dependence of the small-signal sound speed on an applied load or pressure

(both designated P ). The finite-amplitude method is employed in Figs. 1.1(c)–

(f). In this method, the nonlinearity is determined by measuring harmonic gen-

eration by acoustic waves propagating through the sample. In Fig. 1.1(g) the

sample is modulated by a low-frequency signal at frequency Ω, usually near a

natural frequency of the sample, and the nonlinearity of the sample is deter-

mined by measuring the intermodulation components frequencies ω ± Ω due to

interaction with a probe wave of frequency ω (typically ω � Ω).

Figures 1.1(h)–(m) illustrate configurations to measure the nonlinearity of

solids and interfaces using surface and shear waves. Some of these methods [i.e.,

Figs. 1.1(j)–(l)] involve a static load applied to the interface between two solids.

A great deal of the work in linear acoustical NDE has focused on plates

and layers. The ubiquity of plates in structures of all types is readily apparent.

Guided acoustic waves can even be used to characterize very thin materials such

as paper.3 Layered materials are also of interest, especially when considering

the increased use of laminates and composites in fields such as the aerospace

industry. However, little work has been done on nonlinear acoustical NDE of

plates. While all the finite-amplitude methods illustrated in Fig. 1.1 rely on
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cumulative nonlinear generation over hundreds of wavelengths for at least one of

the waves, for thin plates the acoustic wavelength is typically on the order of the

plate thickness. In this case one must therefore rely on resonance effects within

the plate to enhance the generation of harmonics over short distances.

The objective of this dissertation is to study the interaction of ultrasound with

plates, focusing on potential for use in NDE applications. Models of interactions

of ultrasound with plates are presented for three basic situations, with the weakly

nonlinear generation of new frequencies taken into account. In the first situation,

the objective is to measure the nonlinearity of an isotropic, homogeneous plate

using a normally-incident plane wave. In the second situation the single plate

is replaced by two plates, joined at a nonlinear planar interface. In the third

situation the interaction of a weakly nonlinear sound beam normally incident

upon a homogeneous, isotropic plate is examined. We evaluate each of the models

by comparison with measurements.

In all three situations the samples are immersed in a fluid bath and irradi-

ated using non-contact transducers. The coupling of a non-contact transducers

with a sample is more consistent than the corresponding coupling of a contact

transducer. Consistent coupling is especially important when measuring finite-

amplitude effects, which depend on the magnitude of the probe wave in the ma-

terial. Also, when considering industrial applications, non-contact methods offer

the advantage of being more easily extended to automated NDE than contact

methods.

In Sec. 1.1.1 we discuss earlier investigations in the field of nonlinear acoustic

NDE. In Sec. 1.1.2 we review earlier work on the interaction of acoustic waves

with plates and layers. Most of this work considered involves small-signal propa-

gation. In Sec. 1.1.3 we review earlier studies of the interaction of sound beams,

which have finite beamwidth and exhibit diffraction, with elastic plates and half-

spaces. In Sec. 1.1.4 we review earlier studies of the nonlinear interaction of

sound beams with homogeneous, isotropic solids. In Sec. 1.2 we present the

scope of this dissertation.
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1.1 Background

Here we review previous work related to that described in the present disserta-

tion. We have used the concepts discussed by many of these authors, and have

extended some of their work. The following discussion is presented to provide

context for our investigation, and to clarify the scope of our contribution.

1.1.1 Nonlinear nondestructive evaluation

Acoustic waves have been used for several decades to measure the nonlinearity

of solids. Early work focused on the measurement of “classical” nonlinearity,

related to the intrinsic structure of the materials on an atomic or molecular

scale.4 This nonlinearity is quantified by the third-order elastic (TOE) constants

of a solid.5 The TOE constants represent the terms at one order higher than

associated with the Lamé constants in the Taylor expansion for the strain energy.

Third-order elastic constants for anisotropic solids such as crystals have also been

studied (see, for example, Ref. 4). In Chap. 2 we consider the effects of classical

nonlinearity associated with the TOE constants for a homogeneous, isotropic

aluminum plate.

Mechanisms for nonlinearity in solids beyond the intrinsic nonlinearity de-

scribed by classical models based on TOE constants have received much atten-

tion in the last decade.2,6,7 These types of nonlinearity are often referred to as

“anomalous” or “structural,” because they are functions of material structure at

a scale much larger than interatomic distances, and tend to produce nonlinear

responses that are orders of magnitude larger than the intrinsic nonlinearity of

a material. At the same time, the linear acoustic parameters of a material are

often less sensitive to the presence of these inclusions. Anomalous nonlinear re-

sponse can occur within the bulk of a solid, or at a boundary between solids. In

the work reported in this dissertation we examine only the anomalous nonlin-

earity at a contact boundary. However, we discuss here some of the work that

is related to anomalous nonlinearity distributed throughout the bulk of a solid

because it illustrates the large magnitude of the nonlinear effects associated with
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such media. This in turn is partial motivation for our own work. Also, although

experiments in Chap. 2 are performed on an isotropic aluminum plate, the the-

ory developed in that chapter is for a general quadratic nonlinearity in the plate,

which includes some features of anomalous nonlinearity.

Over the last decade, researchers have been investigating the potential for us-

ing nonlinear ultrasound to evaluate so-called “microinhomogeneous” media,7,8

that is, media containing inhomogeneities that are small with respect to a wave-

length but large compared to interatomic distances.9 Examples of microinho-

mogeneous media include rocks, fatigued metals,10 and materials containing

microcracks.11,12 Because such microinhomogeneities often serve as nuclei for

fracture,13 understanding the response of these materials to acoustic inspection

can lead to improved techniques for nondestructive testing. Also, the nonlin-

earity in solids with microinhomogeneities can be two to four orders of magni-

tude stronger than nonlinearity in homogeneous solids.8 For example, Korotkov

et al.10 performed experiments on metal samples stressed to different levels of

plastic strain. The authors interrogated the samples using high-amplitude, low-

frequency “pump” waves, along with lower-amplitude, high-frequency “probe”

waves. Nonlinearity was proportional to the magnitudes of the sidebands in the

received probe signal. The authors found that the nonlinearity of the samples

increased by over an order of magnitude as the samples fatigued.

Researchers have examined the nonlinear acoustic response of granular me-

dia.14–18 Examples of granular media include sand and some rocks, so the non-

linear response of this class of material is of particular interest among Earth

scientists. Belyaeva et al.16,17 showed theoretically and experimentally that the

heightened quadratic and cubic nonlinearity of granular media is due to the non-

linear force-displacement relationship at the contact between grains. Nonideal

packing of the grains was found to further enhance nonlinearity.17,18

Nonlinearity in materials with cracks is very important to researchers of non-

linear NDE.11,12,19 For a solid containing even a low concentration of cracks, the

quadratic and cubic parameters of nonlinearity can increase by orders of mag-

nitude, while corresponding changes in the linear elastic parameters are only on
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the order of one percent.12 This phenomenon can be envisioned by considering

the stress-strain relationship for such a material. In compression, the cracks

are closed and the strain in the material is similar to that of a portion of the

material without cracks. However, the strain of the material in tension is much

larger than it would be if there were no cracks. The disparity causes waveform

distortion of a compression wave that propagates in the material. The distortion

may be interpreted as harmonic generation. This nonlinearity can be enhanced

by using a low-frequency, high-amplitude pump wave to open the cracks, while

simultaneously irradiating the sample with a high-frequency probe wave.11

Materials that exhibit hysteresis in their stress-strain relationship are an-

other example of a departure from “classical” nonlinearity. Rocks are one class

of materials that typically display hysteretic nonlinearity.14 McCall and Guyer,20

and later Van den Abeele et al.,21 theoretically studied the nonlinear response of

hysteretic materials to elastic waves. The authors modeled rocks as a random dis-

tribution of small-scale hysteretic elements. One result found was that the cubic

nonlinear response of the hysteretic material is strongly frequency-dependent.

Use of nonlinear ultrasound to evaluate concrete structures has been of in-

terest recently. It has been noted22 that much of the infrastructure made with

concrete in this country is aging, and a reliable way to assess fatigue is badly

needed. Traditional, linear ultrasound testing methods are inadequate because

concrete is a complex material, and measurements of linear material properties

do not always indicate damage reliably. Inspection using nonlinear ultrasound

may be a much more accurate means of determining whether a concrete structure

is damaged.23,24

Next consider contact acoustic nonlinearity (CAN), which arises at the inter-

face between two or more solids. (We address the topic of contact nonlinearity

between two plates in Chap. 3.) Considerable interest in CAN has developed

over the last few decades.25–33 Researchers have observed nonlinear effects such

as second-harmonic generation,27–29 intermodulation distortion,31 and chaos32

due to CAN. The most basic mechanism of contact nonlinearity is discussed

by Richardson,28 who examined a contact boundary between infinite half-spaces
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that supports compression, but not tension. The result is a rectification of the

acoustic wave transmitted through the boundary as the two media “clap” each

other in the presence of wave propagation. Another form of contact nonlinearity

results from the force-displacement relationship for two elastic spheres in con-

tact.34 Nonlinearity of this type is known as Hertzian nonlinearity. The effects

of Hertzian nonlinearity on the propagation of acoustic waves through granular

media has been studied by a number of authors.15–18

Rudenko and Vu30 modeled CAN at a rough interface between two semi-

infinite solids. In their model, the contact boundary is populated by a ran-

dom distribution of springs with the same stiffness but different lengths. As

the compression at the boundary increases, more springs come into contact at

the boundary, resulting in an increased stiffness. The resulting nonlinearity in

the stress-strain relationship results in distortion of a wave reflected from, or

transmitted through, the boundary. Results of this model were found to be in

qualitative agreement with related experimental results.26

The potential for use of nonlinear NDE to examine the quality of adhesive

bonds has been studied, particularly in the last decade.35–37 In 1991 Achenbach

and Parikh35 proposed measuring nonlinearity at adhesive joints to measure bond

quality. They postulated that the nonlinear response of a bond could be used

to extrapolate the point at which the stress-strain curve had zero slope. The in-

terrogation methods included both large-amplitude probe waves propagating in

free plates and small-amplitude probe waves propagating in pre-stressed plates.

Rothenfusser et al.37 examined the second harmonic generated in and through

two thin, polished fused silica plates joined with a bond of varying thickness.

The authors found that the amplitude of the transmitted second harmonic in-

creased as the adhesive thickness was increased, then reached a maximum at

a certain adhesive thickness, and decreased monotonically as the thickness in-

creased further. The explanation the authors gave for the observed behavior was

that the second harmonic was generated in the adhesive bond due to resonant

amplification of the fundamental within this thin layer.
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1.1.2 Interaction of ultrasound with plates and layers

The topic of propagation of acoustic waves in plates and layers is very important

in the field of NDE, and a great deal of research has been done on the sub-

ject. Plates support propagation of guided waves within the plate, which con-

tain a combination of both compressional and shear components. These waves

are known as Lamb waves.38 One recent focus is the use of Lamb waves for

the NDE of composites and laminates.3 These materials are used increasingly

in the aerospace industry, among others, and reliable testing methods need to

be developed because of their unique failure characteristics and critical applica-

tions.3,39–42 A thorough review of investigations of Lamb waves is outside the

scope of this dissertation, and the interested reader is directed to the literature

review by Chimenti.3

In this dissertation we consider the interaction of ultrasound with plates

immersed in water. If the plate is immersed, the acoustic energy is re-radiated

into the fluid. The Lamb wave is then called “leaky.” Merkulov43 determined

analytically the attenuation of a leaky Lamb wave due to radiation of the acoustic

energy into the fluid. Typical attenuation of a Lamb wave on the order of 1 MHz

for a 1 mm thick steel plate in water was found to be on the order of 1 np/cm.

For a sound beam whose width is on the order of a few centimeters, this result

indicates that the acoustic energy leaked into the fluid from the Lamb wave

interferes with the reflected or transmitted sound beam, and thus distorts the

beam pattern.

Very little work has been done on the nonlinear propagation of Lamb waves.

Because Lamb waves are dispersive, harmonic generation is complicated to pre-

dict, and efficient second-harmonic generation occurs only for certain frequencies

and modes.44 In immersed plates, the large attenuation due to leakage hinders

the cumulative generation of harmonics due to nonlinearity in the plate.

Small-signal reflection and transmission of a plane wave from an immersed

plate has also been thoroughly examined. Any consideration of interactions of

a sound beam with a plate involving oblique incidence must include the effects
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of Lamb waves; however, the focus of these investigations is on the pressure

outside of the plate, rather than the guided wave propagating inside the plate.

As mentioned previously, because of the leakage of Lamb wave energy into the

surrounding fluid, the excitation of Lamb waves has a significant impact on the

reflected and transmitted fields. We study this phenomenon in Chap. 4.

One of the first theoretical and experimental studies of transmission of a

sound beam through a plate was performed by Schoch.45 He developed a plane-

wave transmssion coefficent for oblique incidence and discussed the connection of

transmission phenomena for an immersed plate with the Lamb waves that exist

in a free plate. He also modeled transmission of a diffracting sound beam by using

a spatial Fourier decomposition of the sound beam into a continuum of plane-

wave components that propagate in different directions. This is the technique

we use here to account for diffraction in sound beams. In a series of theoretical

papers, Fiorito et al.46–50 examined reflection and transmission characteristics of

fluid layers and plates. Expressions for transmission and reflection coefficients

using a resonance formalism were developed for plane waves at oblique angles

of incidence. The authors expanded the reflection and transmission coefficients

so that transmission maxima (and reflection minima) were represented as poles

and zeros in terms of the expanded transmission and reflection coefficients. For

our models we use exact plane-wave reflection and transmission coefficients rather

than resonance decompositions. We thus have valid solutions for arbitrary angles

of incidence. However, resonance decompositions do provide physical insight.

Guidarelli et al.51,52 performed transmission experiments on immersed elastic

plates. The measured effects of Lamb waves on the received sound were found to

be in good agreement with the theory of Fiorito et al.48 In 1975 Barnard et al.53

performed experiments on transmission through lossy plates. Their theoretical

model made use of plane-wave transmission coefficients derived for lossless plates,

and included losses ad hoc by rendering the sound speeds complex.
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1.1.3 Finite-beamwidth phenomena

In the interaction of sound beams with thick solids and plates, phenomena have

been observed that cannot be explained by conventional specular reflection and

transmission. Near certain angles of incidence the beam patterns of the reflected

and transmitted waves become distorted. The distortions are related to spreading

of the sound beams due to the finite lateral dimension of the beam and are thus

referred to as finite-beamwidth, or bounded-beam, phenomena. We study these

phenomena in Chap. 4.

Along with his studies of the interaction of sound beams with plates,45 Schoch

predicted in 1952 the lateral displacement of a sound beam reflected from a solid

at certain angles of incidence.54 In 1973 Neubauer55 used Schlieren visualization

to study experimentally the reflection of a sound beam from a half-space. In

addition to observing a displacement of the reflected sound beam, he observed

a null in the reflected field when the angle of incidence of the sound beam was

near the Rayleigh angle, which is the angle at which the interface phase velocity

equals the speed of the Rayleigh surface wave. Bertoni and Tamir56 employed an

asymptotic analysis to explain the presence of the null as the interference of the

specularly reflected sound beam with the leaky Rayleigh wave radiated into the

fluid. A complex Laurent expansion, valid only for angles of incidence near the

Rayleigh angle, was used to represent the Rayleigh-angle phenomena in terms of

poles of the reflection coefficient. Ngoc and Mayer57 used a numerical method

rather than an asymptotic analysis to study changes in the reflected sound beam

as the angle of incidence deviated from the Rayleigh angle.

In 1976 Plona et al. examined experimentally the reflection and transmis-

sion of sound beams through plates.58 The authors used Schlieren visualization

to observe nonspecular effects (similar to those observed by Neubauer for thick

solids). These nonspecular phenomena were observed at angles of incidence near

Lamb angles of the plate. In 1986 Rousseau and Gatignol59 used an asymptotic

analysis to study nonspecular effects associated with reflection and transmission

of Gaussian sound beams incident upon a plate. Of particular interest in their
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article is the situation in which multiple Lamb waves are excited simultaneously.

The authors found that if one Lamb wave is antisymmetric and the other is sym-

metric, then the resulting field is the result of superposition of the nonspecular

effects from both Lamb waves. However, if both Lamb waves are symmetric or

antisymmetric, the Lamb waves interact strongly within the plate.

1.1.4 Nonlinear interaction of sound beams with homogeneous,

isotropic solids

A number of studies deal with nonlinear interaction of a liquid-borne sound

beam with a homogeneous, isotropic solid. An early study was performed by

Van Buren and Brezeale,60 who investigated theoretically and experimentally

the phase shift associated with the reflection of finite-amplitude waves from a

plate. Plane waves were considered in the model. Multiple reflections from the

plate were considered, but resonance effects were not included in the analysis

(the effects of plate thickness on the reflected field were not considered). Ngoc

et al.61 predicted the reflection of a sound beam from a plate or half-space, with

nonlinearity of the fluid taken into account. They used a nondiffracting model,

however. Saito62 presented an analytic theory of second-harmonic generation

produced by a diffracting Gaussian beam normally incident upon a hard plate

in a fluid. The author confirmed the theoretical predictions experimentally. He

experimentally investigated the diffraction of the finite-amplitude sound beam

from an edge.

Nazarov63 explored theoretically the potential for measuring the nonlinearity

of a layer using a plane wave at normal incidence. The idea was to exploit the

perfect transmission at the pass-band frequencies of a layer so that, when the

fundamental is tuned to a pass band of the layer, the incident plane wave at both

the fundamental and second-harmonic frequencies passes completely through the

layer. Second-harmonic signal is generated by the finite-amplitude pressure field

in the layer at the fundamental frequency and radiated back towards the source.

The nonlinearity of the layer can be determined by measuring this second har-

monic. We examine this idea in detail in Chap. 2.
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Landsberger and Hamilton64 theoretically and experimentally examined the

reflection and transmission of a diffracting sound beam from a thick solid (no

multiple reflections). Second-harmonic generation in the fluid and solid was

included. A Fourier spectrum decomposition was used to express the sound

beam from a plane piston source in terms of plane waves propagating in different

directions. The second harmonic generated by a sound beam transmitted through

a block of acrylic was measured and matched with numerical predictions that

accounted for the cumulative second harmonic generation through both the fluid

and solid. Although the second harmonic generated in the fluid was of the same

order as the second harmonic generated in the solid, the agreement between

the numerical predictions and experimental results was good enough that the

two sources of second harmonic could be distinguished, and the parameter of

nonlinearity of the solid could be estimated.

Our work in Chap. 4 is essentially an extension of the work by Landsberger

and Hamilton, in which we consider plates rather than thick solids. For a plate,

the Lamb angles replace the Rayleigh angle as the angles at which nonspecular

effects are expected to occur. In general more than one Lamb angle exists for

a plate. Also, the Lamb angles depend on the frequency of the incident sound,

whereas the Rayleigh angle does not. This frequency dependence means that the

transmitted and reflected fields at the second harmonic frequency are different

from those at the fundamental frequency. For example, nonspecular effects can

occur in the reflection or transmission of the second harmonic component without

corresponding effects for the fundamental component.

Throughout this dissertation, reflection from and transmission through inter-

faces are described by linear theory. Although there is a contribution to harmonic

generation due to the finite motion of the interface, this is a local effect that is

significant only at distances on the order of one wavelength away from the inter-

face. This local effect has been discussed in detail by Blackstock in relation to

finite motion of plane piston sources.65
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1.2 Scope of this dissertation

This dissertation is both experimental and theoretical in nature. We consider the

interaction of sound waves with layers and plates with thicknesses on the order

of one wavelength in the material. We develop and evaluate models of such

interactions, including effects of nonlinearity. The dissertation is divided into

three main sections. First, we consider the irradiation of an isotropic, nonlinear

layer by plane waves at normal incidence. Next, the case of a plane wave normally

incident upon two linear layers joined at a nonlinear planar interface is examined.

Finally, the reflection and transmission of a diffracting sound beam at oblique

incidence upon a plate is considered. The theoretical models of these interactions

are compared to measurements.

In Chap. 2 we consider the second harmonic and sum frequency generated

in an isotropic, homogeneous layer by normally incident plane waves. We first

review the linear transmission and reflection of a plane wave from a layer. Next,

the second harmonic generated in the plate by a normally incident plane wave,

as considered by Nazarov,63 is reviewed. Sound beams are used to approximate

plane waves in the experiments. Difficulties with experimental implementation

are discussed. Theory is then developed for the sum-frequency signal generated

in the plate by two normally incident plane waves with different frequencies,

incident from opposite sides of the plate. An experiment performed using two

normally incident sound beams is reported, which is compared with theory for

two normally incident plane waves.

In Chap. 3 we develop theory for the interaction of a plane wave at normal

incidence upon two layers joined with a compliant, nonlinear boundary. Wave

propagation in the plates and in the surrounding fluid is assumed to be linear,

and second-harmonic generation is assumed to take place only at the boundary

between the plates, because of the contact nonlinearity there. Measurements of

reflection and transmission of a sound beam from plates joined with an adhesive

bond of varying quality are presented and compared with theory on a qualitative

basis. A pair of bonded aluminum plates and a pair of bonded acrylic plates
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are both used, and results for the fundamental, second, and third harmonic are

presented. An impulse response method is also investigated as an alternative

means to measure the transmission coefficient for the plate.

In Chap. 4 we examine theoretically and experimentally the reflection and

transmission of a diffracting sound beam from a plate. The sound beam is,

in general, incident obliquely upon the plate, and distortion of the reflected

and transmitted sound beams occurs. An angular spectrum method is used

to include diffraction of a beam radiated by a plane piston source. Nonlinear

generation of the second harmonic in the fluid is taken into account. Theoretical

predictions are compared with measurements at the fundamental and second-

harmonic frequencies, over a range of angles of incidence from normal to over

30◦.

The results and conclusions are summarized in Chap. 5. In App. A we discuss

the experimental apparatus used to make the measurements. Appendix B gives

the full solution for the sum-frequency signal radiated from a plate due to two

plane waves, normally incident from opposite sides. In App. C we examine the

interaction of highly distorted (sawtooth) waves with isotropic, homogeneous

plates and two bonded plates.



   

Chapter 2

NONLINEAR RESPONSE OF AN
ISOTROPIC PLATE

In this chapter we investigate the potential for using a resonance method to

measure the nonlinear response of a plate. The idea is to exploit the increase in

efficiency of harmonic generation when the excitation frequency is near a natural

frequency of the sample. In contrast to most implementations of a resonance

technique, which are performed using a contact transducer (see, for example,

Ref. 1), we immerse our sample in a fluid bath and irradiate it with a sound

beam. The advantage of using a sound beam in a fluid bath is that no coupling

gel, which may not provide reliable or repeatable coupling, is required. A fluid

bath may be practical in industrial applications if a method is devised to easily

immerse and then remove the samples.

Previous work discussed in Sec. 1.1.4 motivates this study. Of particular

relevance is the investigation by Nazarov,63 who theoretically explored a method

of exploiting resonance effects in a plate to measure its nonlinearity. Also of

relevance is the investigation by Landsberger and Hamilton,64 who demonstrated

a method for estimating the coefficient of nonlinearity, which is related to the

third-order elastic constants, for a thick isotropic solid immersed in a fluid bath.

In this chapter we develop models that describe the nonlinear generation of

new frequency components in an isotropic, lossless plate due to normally incident

plane waves. We begin by reviewing the analysis of Nazarov and discussing

problems with the experimental implementation of this technique. Then an

alternative configuration is considered, in which two plane waves of different

frequencies are incident upon the plate from opposite sides. The latter model

is compared with measurements we made on an aluminum plate immersed in

water. Aluminum was chosen because the ratio of specific acoustic impedances

16
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of aluminum to water is large enough to cause significant resonance effects, yet

small enough that a steady state is reached fairly quickly in the plate.

We examine plane waves at normal incidence to the plate. One reason for

doing so is to keep the analysis as simple as possible, so that the feasiblility of

measuring the nonlinearity of a plate in an immersion test may be determined

more easily. By considering plane waves at normal incidence, complications

associated with the excitation of shear waves in the plate are avoided. For the

experiments, plane waves are approximated by sound beams.

2.1 Review of theory for reflection and transmission

In order to predict the harmonic generation in a plate due to a normally-incident

plane wave, we first require expressions for the linear response of the plate to the

wave. Here we obtain the linear solution for the reflection and transmission of a

plane wave with angular frequency ω normally incident upon the plate.

The solution for the reflection and transmission of a plane wave incident

on a fluid layer is given elsewhere (see, for example, Sec. 4E of Ref. 66). The

configuration is shown in Fig. 2.1. A plane wave with pressure amplitude Pi

incident upon the plate from x < 0 gives rise to a reflected wave with amplitude

Pr, a transmitted wave with amplitude Pt, and waves in the layer with amplitudes

A and B, propagating in the positive and negative directions, respectively. The

acoustic pressure p is

p =
1

2


Pie

j(ωt−kf x) + Pre
j(ωt+kf x) + c.c. , x < 0 ,

Aej(ωt−ksx) +Bej(ωt+ksx) + c.c. , 0 ≤ x ≤ l ,

Pte
j[ωt−kf (x−l)] + c.c. , x > l ,

(2.1)

where kf,s = ω/cf,s, and cf and cs are the small-signal sound speeds in the

surrounding fluid and the layer, respectively.

The layer in Fig. 2.1 is taken to be an elastic plate. When discussing waves

in solids, it is conventional to write equations in terms of stress σ rather than

pressure. However, we consider plates immersed in liquid, and because we con-

sider only normally incident plane waves, the waves in both the liquid and the
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x=0 x=l

A

B

Pi

Pr

Pt

zf zs zf

Figure 2.1: Interaction with plate of plane wave with amplitude Pi incident from
the left.

solid plate are longitudinal. It is therefore convenient here to use the same wave

variables for both the liquid and the solid. We choose sound pressure rather than

stress, which are related by

σ = −p . (2.2)

Likewise, we also use particle velocity u = ∂ξ/∂t rather than strain ∂ξ/∂x, where

ξ is the particle displacement in the medium.

The particle velocity u is determined by applying to Eqn. (2.1) the linearized

equation of momentum conservation in one dimension,

∂p

∂x
= −ρ0

∂u

∂t
, (2.3)

where ρ0 is the unperturbed density of the medium. Doing so gives

u =
1

2



(
Pie

j(ωt−kf x) − Pre
j(ωt+kf x)

)
/zf + c.c. , x < 0 ,(

Aej(ωt−ksx) −Bej(ωt+ksx)
)
/zs + c.c. , 0 ≤ x ≤ l ,(

Pte
j[ωt−kf (x−l)]

)
/zf + c.c. , x > l ,

(2.4)
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where zf = ρfcf and zs = ρscs are the specific acoustic impedances of the sur-

rounding fluid and the solid plate, respectively, and ρf and ρs are the correspond-

ing unperturbed densities. The expressions for the transmission and reflection

coefficients are determined by imposing continuity of pressure and particle ve-

locity across the interfaces at x = 0 and x = l, and solving the resulting system

of equations for Pr/Pi and Pt/Pi. The transmission coefficient is

W ≡ Pt

Pi

=
1

cos ksl +
j
2

(
zf

zs
+ zs

zf

)
sin ksl

, (2.5)

and the reflection coefficient is

V ≡ Pr

Pi

=
j
(

zs

zf
− zf

zs

)
sin ksl

2 cos ksl + j
(

zf

zs
+ zs

zf

)
sin ksl

. (2.6)

In Fig. 2.2 the transmission and reflection coefficients are plotted as a function

of frequency for an aluminum plate. Parameters for aluminum and water are

given in Table A.1. Perfect transmission is achieved for frequencies at which

λn = 2l/n , (2.7)

where λn is the wavelength in the plate and n is an integer. Pass-band frequencies

fpass
n are thus given by

fpass
n =

ncs
2l

. (2.8)

In Fig. 2.2, fn ≈ 1, 2, 3, . . . MHz. At frequencies f = fpass
n the reflection coeffi-

cient vanishes. However, the reflection minimum is very sharp, and the reflection

coefficient grows rapidly as the frequency deviates from the pass-band frequency.

The transmission coefficient reaches a minimum of approximately −j2zf/zs for

λstop
n = 4l/(2n− 1) , (2.9)

where the superscript “stop” is included to distinguish these wavelengths from

the pass-band wavelengths of Eqn. (2.7). In Fig. 2.2 the transmission minima

are at frequencies f stop
n ≈ 0.5, 1.5, 2.5, . . . MHz. For an aluminum plate in water
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Figure 2.2: Transmission and reflection coefficients for an aluminum plate in
water. Material paramters for the plate are given in Table A.1.

zs/zf ≈ 12, so the minumum value of the transmission coefficient is approxi-

mately 0.17. These transmission minima correspond to reflection maxima,

Vmax =
1 − z2

f/z
2
s

1 + z2
f/z

2
s

, f = f stop
n , (2.10)

which for the aluminum plate in water is 0.986.

Now consider an incident plane wave that is composed of several compo-

nents with frequencies that are harmonics (integer multiples) of the fundamental

frequency. For example, a finite-amplitude plane wave generates harmonic com-

ponents as it propagates. Equation (2.10) indicates that if the fundamental fre-

quency is tuned to a pass-band frequency, harmonics of the signal at pass-band

frequencies are also passed. Thus, in addition to the component of the signal

at the fundamental frequency, all harmonic components are also transmitted

completely through the plate.

2.2 Theory for second-harmonic generation

In this section we explore the possibility of measuring the parameter of nonlin-

earity of a plate by using a time-harmonic excitation from a normally-incident

plane wave, and exploiting resonance in the plate. As mentioned in the preface to
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this chapter, this possibility was first explored by Nazarov.63 Nazarov’s analysis

is reviewed here in our context, and in Sec. 2.3 it is extended to the case of two

plane waves of different frequencies incident from opposite directions.

The scheme considered here is illustrated in Fig. 2.3. A time-harmonic plane

wave p
(1)
f generated by the sound source in the fluid (f) is normally incident

upon a plate. As p
(1)
f propagates through the fluid, it generates a second har-

monic component p
(2)
f . The standing waves in the plate at the fundamental

frequency excited by the incident wave cause the solid (s) to radiate a second

harmonic component p(2)
s back towards the source. In general, both p

(1)
f and p

(2)
f

are reflected from the plate. However, as pointed out in Sec. 2.1, when p
(1)
f is

tuned to a pass-band frequency, the second harmonic generated in the fluid p
(2)
f

is also at a pass-band frequency, and it is transmitted through the plate. Thus,

when p
(1)
f is at a pass-band frequency, only p(2)

s propagates back towards the

source. Moreover, at these pass-band frequencies resonance causes amplification

in the plate. It is reasonable to expect the nonlinear generation of p(2)
s to be

enhanced by the amplification.

Throughout this section, reflection from and transmission through interfaces

are described by linear theory. As discussed in Sec. 1.1.4, contribution to second

harmonic generation by finite motion of the interface is a local effect that is sig-

nificant only at distances on the order of one wavelength away from the interface.

2.2.1 Primary field in the plate

The second harmonic is generated in the plate by the internal wave field at

the fundamental frequency. In Sec. 2.1 equations were developed that describe

the reflection and transmission of a plane wave at normal incidence to a plate.

Solving Eqns. (2.1) and (2.4) for A and B also allows us to solve for the field in

the plate. The amplitudes A and B are

A =

(
1 + zs

zf

)
ejkslPi

2 cos ksl + j(
zf

zs
+ zs

zf
) sin ksl

, (2.11)
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p(1) p(2)

layer

and ff

p(1) p(2)and
ff

p(1) p(2)and
ff

p(1) p(2)and
ff

p(2)
s

p(2)
s

Figure 2.3: Geometry for second-harmonic generation in the plate. Waves p
(1)
f

and p
(2)
f are not reflected at pass band frequencies, and thus only p(2)

s propagates
towards the source.
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B =

(
1 − zs

zf

)
e−jkslPi

2 cos ksl + j(
zf

zs
+ zs

zf
) sin ksl

. (2.12)

The amplitude in the plate, which we denote Ppl, is

Ppl = Ae−jksx +Bejksx = Pi

cos ks(l − x) + j zs

zf
sin ks(l − x)

cos ksl +
j
2

(
zf

zs
+ zs

zf

)
sin ksl

 . (2.13)

The magnitude and phase of Eqn. (2.13) are shown in Fig. 2.4 for an aluminum

plate. The frequency for which λstop
1 = 4l corresponds to the first transmission

minimum in Fig. 2.2. Since the reflection coefficient is approximately unity at

that frequency, there is pressure (stress) doubling at x = 0. The first transmission

maximum is at λpass
1 = 2l. The maximum amplitude Pmax, given by

Pmax =
zs

zf

|Pi| (2.14)

is at x = l/2. For aluminum, Eqn. (2.14) gives a pressure amplification of

approximately 12. At λstop
2 = 4l/3 we have the second transmission minimum.

The maximum pressure amplification in the plate is a factor of 2 at x = 0 and

x = 2/3. The second transmission maximum is at λpass
2 = l, and |Ppl| = Pmax at

x = l/4 and x = 3l/4.

From Eqn. (2.13) and Fig. 2.4 we see that the amplification in the plate is

greatest near pass-band frequencies, for which λpass
n = 2l/n. It is thus reasonable

to expect that the most efficient second harmonic generation occurs at those

frequencies. From Eqn. (2.14) we see that the amplification in the plate at the

pass bands is proportional to zs/zf , so it is reasonable to expect that the second

harmonic generated in the plate will be stronger as the ratio of the impedance

of the plate to the impedance of the fluid increases.∗

∗Because, for a thick solid, increasing zs/zf decreases the amount of wave energy transmit-
ted into the solid, it may be counterintuitive that the amplification factor in the plate increases
as zs/zf increases. However, this amplification occurs only for a sinusoidal incident wave at
steady state. The number of cycles of the incident wave required to reach a steady state, and
to achieve amplification, increases as zs/zf increases.
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Figure 2.4: Wave amplitude in plate due to plane wave incident from x < 0.
Stop bands are at λstop

n = 4l, 4l/3. Pass bands are at λpass
n = 2l, l.
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2.2.2 Second-harmonic radiation from the plate

In this section we model the second-harmonic component generated within the

plate due to finite-amplitude effects there. The nonlinear equation we use to

model finite-amplitude, longitudinal waves in one dimension is (see, for example,

Ref. 67) (
∂2

∂x2
− 1

c2s

∂2

∂t2

)
p = − βs

ρsc4s

∂2p2

∂t2
−

(
∂2

∂x2
+

1

c2s

∂2

∂t2

)
L , (2.15)

where L = 1
2
(ρsu

2 − p2/ρsc
2
s) is a Lagrangian density, u is the particle velocity,

and βs is the coefficient of nonlinearity. For a solid

βs = −
(

3

2
+

A + 3B + C
ρsc2s

)
, (2.16)

where A, B, and C are Landau’s third-order elastic constants, and ρsc
2
s = K+ 4

3
µ,

where K is the bulk modulus and µ is the shear modulus.34 For liquids, the

analogous coefficient βf is usually expressed as

βf = 1 +B/2A , (2.17)

where B/A is referred to as the parameter of nonlinearity.68∗

Equation 2.15 is valid for a lossless fluid. However, as discussed in Sec. 2.1

for this analysis we consider plane waves at normal incidence to the plate, so no

shear waves are excited. Hence the plate may be treated as a fluid layer.

The method of successive approximations is used to solve Eqn. (2.15). We

introduce p = p(1)+p(2) and u = u(1)+u(2), where |p(1)| � |p(2)| and |u(1)| � |u(2)|,
and define amplitudes P (n) and U (n) such that

p(n) =
1

2
P (n)ejnωt + c.c. , n = 1, 2, (2.18)

u(n) =
1

2
U (n)ejnωt + c.c. , n = 1, 2. (2.19)

∗In Eqn. (2.17), A and B are related to the Taylor series expansion of the equation of state
for the fluid, and are not to be confused with the wave amplitudes in the solid A and B used
everywhere else in this chapter.



  

26

Although the squares of p(1) and u(1) contain dc terms as well as terms at

2ω, only terms describing second-harmonic signals are of interest. Substitut-

ing Eqns. (2.18) and (2.19) into Eqn. (2.15) gives, at second order,(
d2

dx2
+ 4k2

s

)
P (2) =

2k2
sβs

ρsc2s
(P (1))2 − 1

4

(
d2

dx2
− 4k2

s

)(
ρs(U

(1))2 − (P (1))2

ρsc2s

)
. (2.20)

Using Eqns. (2.1) and (2.4) along with Eqns. (2.18) and (2.19), we express (P (1))2

and (U (1))2 as [recall Eqn. (2.1)]

(P (1))2 = A2e−j2ksx +B2ej2ksx + 2AB , (2.21)

(U (1))2 =
1

z2
s

(
A2e−j2ksx +B2ej2ksx − 2AB

)
. (2.22)

The first and second terms in both Eqns. (2.21) and (2.22) represent waves

propagating in the positive and negative directions, respectively. The third terms

represent a pulsation of the plate, with no spatial dependence.

Substituting Eqns. (2.21) and (2.22) into Eqn. (2.20) gives(
d2

dx2
+ 4k2

s

)
P (2) =

2k2
sβs

ρsc2s

[
A2e−j2ksx +B2ej2ksx + 2AB

(
1 − 1

βs

)]
. (2.23)

Equation (2.23) has the same form as the equation of motion of a forced simple

harmonic oscillator (with x in place of t). The solution for P (2) is

P (2) = (H1 + S1x) e−j2ksx + (H2 + S2x) ej2ksx + S3 , 0 ≤ x ≤ l , (2.24)

where H1 and H2 are amplitudes in the homogeneous solution and

S1x = j2ksx
βsA

2

4ρsc2s
, S2x = −j2ksx

βsB
2

4ρsc2s
, S3 =

AB

ρsc2s
(βs − 1) , (2.25)

are amplitudes in the particular solution. In addition, waves are radiated from

the plate to the left and right with pressure amplitudes P 2ω
left and P 2ω

right. The total

expression for P (2) is

P (2) =


P 2ω

lefte
j2kf x , x < 0 ,

(H1 + S1x) e−j2ksx + (H2 + S2x) ej2ksx + S3 , 0 ≤ x ≤ l ,

P 2ω
righte

j2kf (x−l) , x > l .

(2.26)
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The second-order particle velocity in the plate, U (2), is determined by applying

the linearized momentum equation, Eqn. (2.3), to Eqn. (2.26).∗ Doing so yields

U (2) =


−P 2ω

lefte
j2kf x/zf , x < 0 ,[

(H1 + S1x) e−j2ksx − (H2 + S2x) ej2ksx
]
/zs , 0 ≤ x ≤ l ,

P 2ω
righte

j2kf (x−l)/zf , x > l .

(2.27)

Pressure and particle velocity are matched across interfaces at x = 0 and

x = l. The four resulting equations are solved for H1, H2, P
2ω
left, and P 2ω

right. The

expressions for P 2ω
left and P 2ω

right, the only ones needed for the field outside the

plate, are

P 2ω
left =

(
zf

zs
−1

)
S1le

−j2ksl −
(
1+

zf

zs

)
S2le

j2ksl+
(
j

zf

zs
sin 2ksl+cos 2ksl−1

)
S3

2 cos 2ksl + j
(

zf

zs
+ zs

zf

)
sin 2ksl

, (2.28)

P 2ω
right =

(
1 +

zf

zs

)
S1l +

(
1 − zf

zs

)
S2l +

(
j

zf

zs
sin 2ksl + cos 2ksl − 1

)
S3

2 cos 2ksl + j
(

zf

zs
+ zs

zf

)
sin 2ksl

. (2.29)

We are particularly interested in the second harmonic generated near the

pass-band frequencies. At the first pass-band frequency, for which λ1 = 2l,

Eqns. (2.28) and (2.29) reduce to

P 2ω
left = −j πβsP

2
i

8ρsc2s

(
zs

zf

− zf

zs

)
, (2.30)

P 2ω
right = j

πβsP
2
i

8ρsc2s

(
3
zs

zf

+
zf

zs

)
. (2.31)

Note also that the term
(
j

zf

zs
sin 2ksl + cos 2ksl − 1

)
S3 in Eqns. (2.28) and (2.29)

vanishes at pass-band frequencies. This suggests that the second harmonic gen-

erated by the spatially independent vibration of the plate [the third terms in

Eqns. (2.21) and (2.22)] does not contribute significantly to the radiated second

harmonic near frequencies of interest to us.

∗Small-signal acoustic relations may be applied to second-order quantities, because the
resulting errors are at third order or higher.
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Equation (2.28) is plotted as a function of frequency in Fig. 2.5 for an alu-

minum plate in water. Parameters for aluminum and water are given in Ta-

ble A.1. The most significant second harmonic radiation occurs at the pass-band

frequencies at approximately 1, 2, 3, . . . MHz, for which λpass
n = nl/2. The magni-

tude of the second harmonic generated in the plate near the pass bands increases

with frequency because S1 and S2 in Eqn. (2.28) are proportional to ks. For the

frequencies of interest (low MHz), the second harmonic generated is on the order

of ∼ 10−9P 2
i Pa (where Pi is in Pa). For a source pressure on the order of 1 MPa

this corresponds to a radiated second harmonic on the order of ∼ 1 kPa.
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Figure 2.5: Predicted second harmonic radiated to the left from plate vs. source
frequency. Maxima correspond to pass-band frequencies in the plate.

In Fig. 2.6 we compare an approximate expression for the radiation of second

harmonic to the right with the full expression, Eqn. (2.29). The approximate

expression is given by setting S3 = 0 in Eqn. (2.29). Doing so is equivalent to

ignoring the spatially invariant terms in Eqns. (2.21) and (2.22). The difference

in magnitudes between the full and approximate expressions is almost imper-

ceptible, except near the frequencies of minimum transmission (stop bands), 1.5

and 2.5 MHz. The phases are compared near the first pass band (indicated
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Figure 2.6: Comparison of magnitude and phase between exact (- - -) and ap-
proximate (—–) expressions for the second harmonic radiated into the fluid to
the left. Phases are compared near the first pass-band frequency, indicated by
the arrow.

by the arrow). The comparison of the phases also shows very good agreement

near the pass-band frequency, but there are significant differences between the

solutions away from the pass-band frequency. The same is true for comparisons

near higher pass-band frequencies. However, because second harmonic gener-

ation occurs mostly near the pass-band frequencies, and we do not expect to

perform measurements away from there, it is a reasonable approximation for

practical purposes to set S3 = 0. Although this approximation does not simplify

Eqns. (2.29) and (2.28) significantly, an analogous approximation of the expres-

sions for the sum-frequency radiation which is developed in Sec. 2.3, simplifies

the expressions there considerably.

2.2.3 Experiment

An experiment corresponding to the theory developed in Secs. 2.1 and 2.2 was

attempted. A sound beam generated by a plane, circular, piston transducer irra-

diated an aluminum plate at normal incidence. A PVDF membrane hydrophone

was placed between the source and the plate. (Properties of the sources, hy-
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drophone, and plate are given in App. A.) The frequency of the incident sound

beam was chosen to correspond to either fpass
1 near 1 MHz or fpass

2 near 2 MHz.

Substantial difficulties were encountered. While diffraction effects are not

taken into account in the analysis, a real sound beam generated by a plane

piston source of radius a has a directivity given by (see, for example, Sec. 13B

of Ref. 66)

D(θ) =
2J1(ka sin θ)

ka sin θ
, (2.32)

where θ is the angular deviation from the beam axis. In the farfield of a 1-

MHz, 1-in.-diameter source in water, for example, the pressure drops by 3 dB

approximately 2 degrees from the axis. The transmission and reflection coeffi-

cients for a plate depend on the angle of incidence as well as the frequency, so

the reflection coefficient for components of the sound beam at the fundamental

and second harmonic frequencies that are not perfectly normal to the plate is

in general not zero, even at pass-band frequencies. The reflected signals at the

second harmonic are very difficult (if not impossible) to distinguish from the

second harmonic radiated from the plate.

Figure 2.7 illustrates the problem. Although diffraction is discussed in detail

in Chap. 5, for purposes of discussion here we show the angular spectrum asso-

ciated with a 1-MHz, 1-in.-diameter plane piston source. (Directivity, which is

proportional to angular spectrum at large distances from the source,69 is shown.)

This angular spectrum is the distribution of pressure in the sound beam with

propagation angle. The magnitude of the plane-wave reflection coefficient, |V |,
for an aluminum plate in water at the first pass band, f1 = 1.04 MHz (dashed

line), is superimposed on the angular spectrum. As the angle of incidence devi-

ates from normal, the reflection coefficient rapidly increases from zero. However,

the sound beam contains significant energy that propagates within a few degrees

from normal incidence. For this reason, even if the sound beam is tuned to a

pass band and is normally incident upon the plate, significant reflection of the

sound beam at the fundamental and second-harmonic frequencies can occur.
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Figure 2.7: Angular spectrum |D(θ)| (—) for a 1 in. plane piston source compared
with magnitude of the reflection coefficient |V (θ)| (- -) at the pass-band frequency
f1 = 1.04 MHz.

For a real sound beam, Fig. 2.7 shows that some wave reflection is unavoid-

able, even at pass-band frequencies. In Sec. 2.3 we propose an alternative exper-

imental arrangement to measure the nonlinearity of a plate. In this arrangement

the plate is irradiated from both sides by sound beams with different primary

frequencies. We measure the sum-frequency component, rather than the second

harmonic, at the receiver. While second harmonic is generated by the incident

and reflected primary field in the fluid as well as in the plate, the sum-frequency

component that is measured by the receiver is generated only in the plate and

by the interaction of the primary sound beams in the fluid between the plate

and the receiver. (Sum-frequency components can be generated elsewhere, but

those interactions either are precluded by use of tone bursts or do not propagate

to the hydrophone). Moreover, by positioning the receiver close to the plate we

can minimize the sum-frequency component generated in the fluid.

2.3 Theory for sum-frequency generation

Here we consider an alternative configuration to measure βs for an immersed

plate. We irradiate the plate with two plane waves, each with a different fre-
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quency, and measure the sum-frequency pressure at the receiver. This is done

to make it easier to distinguish the signal generated by nonlinear interaction of

the waves in the plate from signals generated by nonlinear interaction of waves

in the fluid.

Figure 2.8 illustrates the configuration. Two plane waves with frequencies f1

and f2 are incident upon the plate from opposite sides. The amplitudes of the

incident plane waves are designated P1i for the wave from the left, as in Sec. 2.1,

and P2i for the wave from the right. The wave incident from the left gives rise to

waves in the plate with amplitudes A1 and B1, and the wave incident from the

right gives rise to waves in the plate with amplitudes A2 and B2. The interaction

of the four waves in the plate generates signals at 2f1, 2f2, f+ = f1 + f2, and

f− = f1 − f2, which are radiated into the fluid. In the following analysis we

consider the waves radiated into the fluid at the sum frequency f+ to the left

and right with amplitudes P+
left and P+

right, respectively.

The method used to solve for P+
left and P+

right is essentially the same as that

used to solve for P 2ω
left and P 2ω

right in Sec. 2.2. First the sum-frequency signal

generated due to nonlinear wave interaction in the plate is determined. Then

the amplitudes P+
left and P+

right are determined by equating pressure and particle

velocity across the fluid/plate boundaries.

2.3.1 Primary wave field in the plate

The total first-order pressure is p(1) = p1 + p2, where

p1 =
1

2


P1ie

j(ω1t−kf1x) + Pre
j(ω1t+kf1x) + c.c. , x < 0 ,

A1e
j(ω1t−k1x) +B1e

j(ω1t+k1x) + c.c. , 0 ≤ x ≤ l ,

P1te
j[ω1t−kf1(x−l)] + c.c. , x > l ,

(2.33)

p2 =
1

2


P2te

j(ω2t+kf2x) + c.c. , x < 0 ,

A2e
j(ω2t−k2x) +B2e

j(ω2t+k2x) + c.c. , 0 ≤ x ≤ l ,

P2ie
j[ω2t−kf2(x−l)] + P2re

j[ω2t+kf
2 (x−l)] + c.c. , x > l ,

(2.34)

where k1,2 = ω1,2/cs and kf1,f2 = ω1,2/cf . Equation (2.34) has the same form as

Eqn. (2.1). The pressure p2 is illustrated in Fig. 2.9. The amplitudes A2 and B2
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Figure 2.8: Geometry for analyzing sum-frequency generation. Incident plane
waves with amplitudes P1i and P2i give rise to A1, B1, A2, and B2, which interact
in the plate and radiate waves with amplitude P+

left and P+
right into the fluid.
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Figure 2.9: Irradiation of plate of thickness l by plane wave of amplitude P2i

from right.
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are

A2

P2i

=
1 − zs

zf

2 cos k2l + j(
zf

zs
+ zs

zf
) sin k2l

, (2.35)

B2

P2i

=
1 + zs

zf

2 cos k2l + j(
zf

zs
+ zs

zf
) sin k2l

. (2.36)

The wave amplitude in the plate due to P2i is

Ppl2 = A2e
−jk2x +B2e

jk2x . (2.37)

Substituting Eqns. (2.35) and (2.36) into Eqn. (2.37) yields

Ppl2

P2i

=
cos k2x+ j zs

zf
sin k2x

cos k2l +
j
2

(
zf

zs
+ zs

zf

)
sin k2l

. (2.38)

According to Eqn. (2.38), the amplitude in the plate due to a plane wave incident

from the right is the mirror-image of the amplitude in the plate due to a plane

wave incident from the left (shown in Fig. 2.4).

2.3.2 Sum-frequency signal radiated from plate

The first-order pressure and particle velocity in the plate are expressed as the

sum of four plane waves in the plate,

p(1) =
1

2

(
A1e

j(ω1t−k1x) +B1e
j(ω1t+k1x)

+A2e
j(ω2t−k2x) +B2e

j(ω2t+k2x)
)

+ c.c. , (2.39)

u(1) =
1

2zs

(
A1e

j(ω1t−k1x) −B1e
j(ω1t+k1x)

+A2e
j(ω2t−k2x) −B2e

j(ω2t+k2x)
)

+ c.c. , (2.40)

where the amplitudes A1, B1, A2, and B2 are the same as those determined in

Secs. 2.2.1 and 2.3.1. We use the one-dimensional second-order wave equation,

Eqn. (2.15), in the quasilinear approximation to predict the pressure generated

at the sum frequency. Because only terms that are time-harmonic with angular
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frequency ω+ = ω1 + ω2 are considered, we assume pressures and velocities of

the form

(p(1))2 =
1

4
(P (1))2ejω+t + c.c. , p+ =

1

2
P+ejω+t + c.c. , (2.41)

(u(1))2 =
1

4
(U (1))2ejω+t + c.c. , u+ =

1

2
U+ejω+t + c.c. , (2.42)

where k+ = ω+/cs. Equations (2.41) and (2.42) are substituted into Eqn. (2.15)

to give(
d2

dx2
+ k2

+

)
P+ =

βsk
2
+

2ρsc2s
(P (1))2 − 1

4

(
d2

dx2
− k2

+

)(
ρs(U

(1))2 − (P (1))2

ρsc2s

)
. (2.43)

Squaring Eqns. (2.39) and (2.40) and retaining only sum-frequency terms gives

(P (1))2 = 2
(
A1A2e

−jk+x +A1B2e
−jk−x +B1A2e

jk−x +B1B2e
jk+x

)
, (2.44)

(U (1))2 =
2

z2
s

(
A1A2e

−jk+x−A1B2e
−jk−x−B1A2e

jk−x+B1B2e
jk+x

)
, (2.45)

where k− = (ω1 − ω2)/cs. We solve the second-order inhomogeneous ordinary

differential equation of the form(
d2

dx2
+ k2

+

)
P+ =

βsk
2
+

ρsc2s

(
A1A2e

−jk+x +B1B2e
jk+x

)
+

(βs − 1)k2
+ − k2

−
ρsc2s

(
A1B2e

−jk−x − A2B1e
jk−x

)
. (2.46)

The solution is

P+(0 < x < l) = (Dx+ C1) e
−jk+x + (Ex+ C2) e

jk+x + Fe−jk−x + Gejk−x , (2.47)

where

D =
jβsk

2
+A1A2

2k+ρsc2s
, E =

−jβsk
2
+B1B2

2k+ρsc2s
,

F =
(βs − 1)k2

+ − k2
−

(k2
+ − k2

−)ρsc2s
A1B2 , G =

(βs − 1)k2
+ − k2

−
(k2

+ − k2
−)ρsc2s

A2B1 , (2.48)
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and C1 and C1 are the two homogeneous solutions of Eqn. (2.46). The amplitudes

of the waves radiated into the fluid are

P+ =

P+
lefte

jkf+ x < 0 ,

P+
righte

−jkf+(x−l) x > l ,
(2.49)

where kf+ = ω+/cf . Particle velocity is determined by applying the momentum

equation to Eqns. (2.47) and (2.49). The expressions for P+
left and P+

right, given

in App. B, are obtained by equating pressure and velocity across interfaces at

x = 0 and x = l.

2.3.3 Approximate expression for sum-frequency radiation

The expressions for the sum-frequency signals radiated into the fluid are sim-

plified considerably when only inhomogeneous terms with spatial dependence

e±jk+x are included. If f1 and f2 are the same, the factor e±jk−x is unity, so

terms with this spatial dependence are identified as analogues to the third terms

in the numerators of Eqns. (2.28) and (2.29), which are the spatially-independent

terms in the monofrequency analysis. Because the effect of the analagous terms

is small at frequencies of interest in the monofrequency section (recall Fig. 2.6),

it is possible that the effects of terms with spatial dependence e±jk−x in the bifre-

quency configuration are also small. Here we develop the expressions for P+
left and

P+
right, including only terms with spatial dependence e±jk+x. In App. B, the re-

sulting simplified expressions are compared with the full expressions. Differences

between the solutions are within a few percent at all frequencies considered.

The equation that describes the weakly nonlinear generation of sum-frequency

sound in a plate, with only forcing terms with spatial dependence e±jk+x taken

into account, is(
d2

dx2
+ k2

+

)
P (2) =

βsk
2
+

ρsc2s

(
A1A2e

−jk+x +B1B2e
jk+x

)
. (2.50)

We solve Eqn. (2.50) in the same manner as in Sec. 2.3.2 to obtain

P+(0 < x < l) = (Dx+ C1) e
−jk+x + (Ex+ C2) e

jk+x , (2.51)
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where D and E are defined in Eqn. (2.48). Pressure amplitudes in the fluid

are given in Eqn. (2.49). The particle velocity in the plate and in the fluid

is determined by applying Eqn. (2.3) to Eqns. (2.51) and (2.49), respectively.

Equating pressures and particle velocities across boundaries at x = 0 and x = l

and solving the resulting equations for P+
left and P+

right gives the expressions for

the sum-frequency signals radiated into the fluid:

P+
left = −jβsk+l

2ρsc2s

A1A2(1 − zf

zs
)e−jk+l +B1B2(1 +

zf

zs
)ejk+l

cos k+l +
j
2
(

zf

zs
+ zs

zf
) sin k+l

, (2.52)

P+
right =

jβsk+l

2ρsc2s

A1A2(1 +
zf

zs
) −B1B2(1 − zf

zs
)

cos k+l +
j
2
(

zf

zs
+ zs

zf
) sin k+l

. (2.53)

The function |P+
right| is plotted in Fig. 2.10 for the case of an aluminum plate

in water. Properties for the plate are given in Table A.1. The point at which

f1 and f2 are at the pass bands is indicated by an arrow. The peak value of

P+
right does not occur at the pass-band frequencies where the amplitudes in the

plate are at a maximum. Rather, the maximum values of P+
right occur slightly

away from the pass bands. Figure 2.11 shows |P+
right| as a function of f1 with f2

slightly below the pass band at 2.05 MHz (left), at the pass band at 2.075 MHz

(center), and slightly above the pass band at 2.10 MHz (right). Arrows indicate

the pass band at 1.04 MHz for f1. It is shown in Fig. 2.11 that there are two

resonances over the range of frequencies considered, one at which f1 is slightly

above the pass band and f2 is slightly below the pass band, and the other at

which f1 is slightly below the pass band and f2 is slightly above the pass band.

The maximum sum-frequency radiation over the displayed range of frequencies

is approximately |P+
right/P1iP2i| = 2.5 × 10−9 Pa−1 (P1i, P2i having units of Pa).

For example, for magnitudes of P1i and P2i around 200 kPa, |P+
right| is on the

order of 50 Pa.
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Figure 2.11: Radiation from plate: (a) f2 = 2.05 MHz, slightly below the pass
band; (b) f2 at the pass band, 2.075 MHz; (c) f2 = 2.10 MHz, slightly above the
pass band. Arrows indicate the pass band for f1, 1.04 MHz.



    

39

2.4 Experiment

2.4.1 Experimental arrangement

An experiment corresponding to the theory presented in Sec. 2.3.2 was performed.

It was pointed out in Sec. 2.2.3 that, if a sound beam is used, there are differences

between plane-wave theory and measurement due to diffraction effects. With that

in mind, the focus of the experiment was to determine whether the arrangement

discussed in Sec. 2.3.2 is feasible. One aspect that needed to be determined was

the minimum distance the hydrophone could be placed from the plate. Although

the hydrophone is approximately impedance matched to the water, there is some

mismatch and, as a result, some reflection of an incident sound beam (|W | ≈
0.95 at 2 MHz75). If the hydrophone is placed too close to the plate, multiple

reflections occur between the hydrophone and the plate. Another aspect that

needed to be determined was the maximum amplitude that could be chosen

for the primary sound beams before overloading the receiving apparatus. This

imposed a limit on the attainable signal-to-noise ratio.

As shown in Fig. 2.12, two sources are placed on opposite sides of the plate.

A PVDF membrane hydrophone is placed between one of the sources and the

plate to measure the sound radiated from the plate. The membrane hydrophone

is positioned at a distance dh from the plate.

There are two contributions to sum-frequency pressure measured at the hy-

drophone. One is the sum-frequency pressure radiated from the plate, with

amplitude P+
s . The other is the sum-frequency pressure with amplitude P+

f gen-

erated in the fluid by the interaction of the sound beams propagating together

from the plate to the receiver. This is illustrated in Fig. 2.13. It is straightfor-

ward, though, to predict the sum-frequency pressure generated in the fluid if the

amplitudes of the sound beams at the primary frequencies are measured. It is also

straightforward to measure the amplitudes of the sound beams at the primary

frequencies at the same point at which the amplitude of the sum-frequency signal

is measured. For this reason we develop an equation in which the sum-frequency
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Figure 2.12: Experimental arrangement for two-beam experiment.
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signal generated in the plate is expressed as a deviation from the sum-frequency

signal that would be generated from two plane waves propagating together.

P+
f

P+
s

P+h = P+
s + P+

f

Figure 2.13: The sum-frequency pressure measured at the hydrophone, P+h, is
composed of P+

f plus P+
s .

We denote the pressures received at the hydrophone as P1h, P2h, and P+h,

at frequencies f1, f2, and f+, respectively. We wish to develop an equation that

predicts the behavior of P+h with respect to the product P1hP2h, accounting for

sum-frequency generation in the plate and in the fluid. First we must relate P1h

and P2h to the waves incident upon the plate with amplitudes of the incident

waves P1i and P2i. Using Eqn. (2.5) for the linear transmission through the plate,

we obtain

P1h

P1i

=
1

cos k1l +
j
2

(
zf

zs
+ zs

zf

)
sin k1l

, (2.54)

and using Eqn. (2.6) for the linear reflection from the plate, we have

P2h

P2i

=
j
(

zs

zf
− zf

zs

)
sin k2l

2 cos k2l + j
(

zf

zs
+ zs

zf

)
sin k2l

, (2.55)

where k1,2 = ω1,2/cs.

In the quasilinear approximation, the amplitude of the sum-frequency pres-

sure generated by plane waves with amplitudes P1h and P2h in the distance dh

from the plate to the hydrophone is70

P+
f = j

βfω+dhP1hP2h

2ρfc3f
e−jk+x . (2.56)
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From Eqns. (2.53)–(2.56), the predicted amplitude P+h = P+
f + P+

s of the sum-

frequency pressure at the hydrophone, normalized by |P+
f |, is

2ρfc
3
f

βfω+dh

(
P+h

P1hP2h

)
= j +

(
βs

βf

)(
ρfc

3
f

ρsc3s

)(
l

dh

) (
zf

zs
− 1

) (
zs

zf
+ 1

)
(

zs

zf
− zf

zs

)
sin k2l

×
cos k1l + j zs

zf
sin k1l

cos (k1 + k2) l +
j
2

(
zf

zs
+ zs

zf

)
sin (k1 + k2) l

. (2.57)

Equation (2.57) shows that if βf and the linear material parameters are known,

we can determine βs by measuring P+h, P1h, and P2h.

Several features of Eqn. (2.57) merit discussion. Complex pressure ampli-

tudes (i.e., magnitude and relative phase) P1h, P2h, and P+ are measured simul-

taneously at the receiver, which is convenient for purposes of an experiment.

Moreover, the right-hand side of Eqn. (2.57) does not depend on the magnitudes

of the incident waves P1i and P2i. However, it is strongly dependent, in both

magnitude and phase, on k1 and k2. Another feature is that the second term

on the right-hand side of Eqn. (2.57) is proportional to ρfc
3
f/ρsc

3
s. This implies

that increasing the ratios of sound speed and density between the plate and

the surrounding fluid, while increasing the resonant amplification in the plate,

will decrease the ratio of the sum-frequency signal generated in the plate to the

sum-frequency signal generated in the fluid.

The two sources used in the experiment were both circular plane piston trans-

ducers. The source at f1 had a radius of 1.91 cm and resonance frequency of

1 MHz, with an effective source pressure of 254 kPa, and the source at f2 had a

radius of 1.26 cm and a resonance frequency of 2.25 MHz with a source pressure

of 108 kPa. The source at f1 was placed 250 mm from the plate, and the source

at f2 was placed 257 mm from the plate. The small difference in distances is an

adjustment so that the steady-state portion of the tone bursts from each source

arrived at the hydrophone at the same time. The nominal distance of 250 mm

is approximately z0/3, where z0 = ka2/2 is the Rayleigh distance. This distance

from the sources to the plate was chosen to avoid nearfield oscillations. The hy-



   

43

drophone was placed at dh = 25 mm from the plate, on the side with the source

of frequency f2.

The plate used was of aluminum, with the material parameters given in Ta-

ble A.1. The height and width of the plate were sufficient that any reflections

from plate edges did not arrive in time to interfere with the primary pulse. A

stand, shown in Fig. 2.14, was built to hold the plate upright. The apparatus

was aligned such that the sound beams were parallel to each other and normal

to the plate to within approximately 0.1◦.

Figure 2.14: Photograph of the stand built to hold plates upright in the water.

2.4.2 Results and discussion

The results of this experiment are shown in Fig. 2.15. In Fig. 2.15(a) the mag-

nitude of the quantity Φ, which is defined as

Φ ≡ 2ρfc
3
f

βfω+dh

(
P+h

P1hP2h

)
, (2.58)
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Figure 2.15: Comparison of experimental results of two-beam experiment (—–)
with theory (- - -) with an aluminum plate in water.
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is compared with the theoretical prediction. The theory underestimates the mea-

surement. The discrepancy between theory and measurement is equivalent to a

deviation in P+h of about 2 dB from plane-wave theory. In Fig. 2.15(b) we ignore

the discrepancy between the magnitudes of the prediction and theory, and only

compare the slopes. There is some qualitative agreement between the slopes for

f2
>∼ 2.12 MHz. For f2

<∼ 2.12 MHz the measured slope deviates significantly from

the theory. This is close to a critical frequency at which a Lamb wave is excited

in the plate, so rapid variations of the acoustic field in the plate were probably

occurring as the frequency was varied. The noise present in the measurement

indicates that the magnitude of changes in Φ due to the nonlinearity of the plate

are at the same level as the noise floor of the experimental apparatus.

In Fig. 2.15(c) the measurement of the phase of Φ is compared with the

theory. Although there is a discrepancy between the phases, there is qualitative

agreement beween the phase changes in the theory and in the measurements at

frequencies >∼ 2.1 MHz. Even so, changes in the phase from f2 = 2.1 to 2.16 MHz

are very small, on the order of 2◦, approaching the limitations in resolution of

the apparatus.

Although the sum-frequency signal generated in the plate is very weak, we

felt that it may be possible to detect it with some accuracy given the capability

the apparatus has for making high-resolution measurements. However, Fig. 2.15

shows significant differences between theory and experiment. Moreover, changes

in the magnitude and phase of Φ over the bandwidth of the source are very small.

While differences between theory and measurement can potentially be resolved

by including diffraction effects in the model, we felt there was little value in doing

so because changes in the received signal needed to estimate βs are too small to

be measured accurately.

In Sec. 2.3.2 we proposed a bifrequency technique to determine βs for an

immersed plate. A plane-wave model was developed to predict the sum-frequency

signal radiated from the plate. An experiment was performed to determine the

feasibility of the technique is reported in Sec. 2.4. The apparatus was configured

in the most favorable manner we could conceive for measuring the nonlinearity
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of the plate. Even so, changes in Φ that are attributable to the nonlinearity of

the plate are too small to provide an accurate estimate of βs.



    

Chapter 3

NONLINEAR RESPONSE OF BONDED
PLATES

As discussed in Chap. 1, nondestructive evaluation methods that exploit contact

nonlinear phenomena show promise for the detection of cracks and disbonds, be-

cause the detection of contact nonlinearity can be a strong indicator of damage or

defects in a sample. While material parameters related to linear acoustic propa-

gation change on the order of a few percent when defects such as microcracks are

present,3 nonlinear effects associated with defects can increase by orders of mag-

nitude.6 Of particular relevance to the work in this chapter is the nonlinearity

associated with a contact boundary between solids. A number of experimenters

have reported the nonlinear transmission and reflection of acoustic waves at a

contact interface.1

In this chapter we consider the interaction of a plane wave with two homo-

geneous, elastic, isotropic plates that meet at a planar nonlinear interface. The

interface is modeled as a nonlinear spring. It is hoped that, in an experiment, the

contact boundary between the plates will be the source of anomalous nonlinearity.

We therefore assume in our analysis that the generation of a second harmonic

takes place only at the boundary between the two plates, and not within the

plates themselves. There are two aspects of our investigation that distinguish

it from previous work. First, we consider plate-like samples in which resonant

behavior is anticipated, in contrast to earlier studies of contact nonlinearity at

interfaces (with the exception of the study by Rothenfusser et al.,37 discussed

in Sec. 1.1.1) that consider the contact between solid half-spaces. Moreover, we

perform our experiment using sound beams generated by immersion transducers,

rather than using contact transducers coupled directly to the samples.
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3.1 Linear Theory

In this section we develop expressions for the linear transmisison and reflection

of a plane wave normally incident upon two plates connected by a compliant

interface. Such an interface may be a model for two solids with rough surfaces

pressed together (see, for example, Ref. 30), or for two bonded solids (see, for

example, Ref. 71). Because the incident plane wave is normal to the interface,

no shear waves are generated in the plate. (The same is approximately true for

directional sound beams.) The excitation is time-harmonic, and a steady state

is assumed in our analysis.

3.1.1 General linear reflection and transmission

The configuration we consider is illustrated in Fig. 3.1. A plane wave of pressure

amplitude Pi and angular frequency ω is incident normally upon two isotropic

plates. A plane wave with pressure amplitude Pr is reflected back towards the

source, and another with amplitude Pt is transmitted out from the far side of

the plates. The standing waves in the interior are represented by plane waves

of amplitude A1 and B1 propagating forward and backward, respectively, in the

first plate, and A2 and B2 propagating forward and backward in the second plate.

(In Chap. 2, the subscripts 1 and 2 indicated which source generated the wave.

In this chapter, the subscripts denote a wave in the first or second plate.) The

total thickness of the two plates is l, the first plate has thickness d, and the

second plate has thickness h = l − d.

We express the acoustic pressure p in the four regions as

p =
1

2



Pie
j(ωt−kf x) + Pre

j(ωt+kf x) + c.c. , x < 0 ,

A1e
j(ωt−ks1x) +B1e

j(ωt+ks1x) + c.c. , 0 ≤ x ≤ d ,

A2e
j[ωt−ks2(x−d)] +B2e

j[ωt+ks2(x−d)] + c.c. , d ≤ x ≤ l ,

Pte
j[ωt−kf (x−l)] + c.c. , x > l ,

(3.1)

where ki = ω/ci, cf is the sound speed in the fluid, and cs1,s2 is the longitudinal

wave speed in plate 1 or 2. Because we assume that wave propagation is only in
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h

planar interface
plate 1 plate 2

Figure 3.1: System of plane waves for two immersed plates with a planar inter-
face, and incident wave arriving from the left.
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the x direction, we define u to be the x component of the particle velocity vector,

and there is no particle velocity in the y or z direction. We determine u using

Eqn. (3.1) and the linearized momentum equation in one dimension, Eqn. (2.3).

As in Chap. 2, equations for fluids are used for the plate because the motion is

entirely one-dimensional. The result is

u =
1

2



gf

(
Pie

j(ωt−kf x) − Pre
j(ωt+kf x)

)
+ c.c. , x < 0 ,

gs1

(
A1e

j(ωt−ks1x) −B1e
j(ωt+ks1x)

)
+ c.c. , 0 ≤ x ≤ d ,

gs2

(
A2e

j[ωt−ks2(x−d)] −B2e
j[ωt+ks2(x−d)]

)
+ c.c. , d ≤ x ≤ l ,

gfPte
j[ωt−kf (x−l)] + c.c. , x > l ,

(3.2)

where we define the conductances gj as

gj =
1

zj

=
1

ρjcj
. (3.3)

The index notation is the same, with j = f, s1, s2 corresponding to fluid, plate

1, and plate 2, respectively.

We determine boundary conditions at x = d using a spring model, illustrated

in Fig. 3.2.30 Here,

ξd± ≡ ξ(d± δ/2, t) , δ → 0 , (3.4)

where ξ is particle displacement, and the gap of width δ is populated by linear

springs of infinitesimal lengths and stiffness per unit area κ. (In Sec. 3.2 we

consider springs with quadratic nonlinearity.) At x = d the pressure (stress) is

equal across the interface (because the springs are massless elements), so we set

[with d± defined in Eqn. (3.4)]

pd− = pd+ . (3.5)

The condition for the springs at the interface (Hooke’s Law) is

p|x=d = κ(ξd− − ξd+) . (3.6)
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x=d

δ/2

ξd - ξd +

p pd - d +

Figure 3.2: Compliant planar interface at x = d.

Taking the time derivative of Eqn. (3.6) to give the boundary condition in terms

of pressure and particle velocity yields

∂p

∂t

∣∣∣∣∣
x=d

= κ(ud− − ud+) . (3.7)

Because all waves are time-harmonic with angular frequency ω, Eqns. (3.1) and

(3.2) and the boundary conditions at x = d give

A1e
−jks1d +B1e

jks1d = A2 +B2 , (3.8)

and

jωC
(
A1e

−jks1d +B1e
jks1d

)
= gs1

(
A1e

−jks1d −B1e
jks1d

)
− gs2 (A2 −B2) , (3.9)

where we define the compliance C ≡ 1/κ.

In addition to the boundary conditions given by Eqns. (3.5) and (3.7), bound-

ary conditions at x = 0 and l are

p0− = p0+ , (3.10)

u0− = u0+ , (3.11)

pl− = pl+ , (3.12)

ul− = ul+ , (3.13)
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where the notation follows Eqn. (3.4), and x± ≡ x± δ/2. From these six bound-

ary conditions, the amplitudes Pr and Pt may be expressed in terms of A1, B1, A2,

and B2. The latter four amplitudes are related by the matrix system

1+ gs1

gf
1− gs1

gf
0 0

(1− gs1

jωC
)e−jks1d (1+ gs1

jωC
)ejks1d gs2

jωC
− gs2

jωC

e−jks1d ejks1d −1 −1

0 0 (1− gs2

gf
)e−jks2h (1+ gs2

gf
)ejks2h





A1

B1

A2

B2

=



2Pi

0

0

0

 .

(3.14)

The reflection coefficient

V ≡ Pr/Pi (3.15)

is thus determined to be

V =
1

gfgs1gs2∆

{[
jωC(gs1gs2 − g2

f ) + gf (g
2
s1 − g2

s2)
]
j cos(ks1d+ ks2h)

+
[
jωCgf (gs2 − gs1) + (g2

f − gs1gs2)(gs1 + gs2)
]
sin(ks1d+ ks2h)

+
[
jωC(g2

f + gs1gs2) + gf (g
2
s2 − g2

s1)
]
j cos(ks1d− ks2h)

+
[
jωCgf (gs1 + gs2) + (gs2 − gs1)(g

2
f + gs1gs2)

]
sin(ks1d− ks2h)

}
, (3.16)

and the transmission coefficient

W ≡ Pt/Pi (3.17)

is determined to be

W = −4j

∆
, (3.18)

where

∆ =
1

gfgs1gs2

{
−

[
jωC(g2

f + gs1gs2) + gf (gs1 + gs2)
2
]
j cos(ks1d+ ks2h)

+
[
jωCgf + (g2

f + gs1gs2)
]
(gs1 + gs2) sin(ks1d+ ks2h)

+
[
jωC(g2

f − gs1gs2) + gf (gs1 − gs2)
2
]
j cos(ks1d− ks2h)

+
[
jωCgf + (g2

f − gs1gs2)
]
(gs2 − gs1) sin(ks1d− ks2h)

}
. (3.19)

We investigate the properties of Eqns. (3.16) and (3.18) in the following sections.



   

53

3.1.2 Natural frequencies of joined plates

It is helpful for developing an intuitive feel for the system response to examine

the eigenvalues of the matrix on the left side of Eqn. (3.14). Its eigenvalues cor-

respond to the natural frequencies of the joined plates. Taking the determinant

of the matrix on the left side of Eqn. (3.14) and setting it equal to zero gives[
1 +

gs1gs2

g2
f

+
(gs1 + gs2)

2

jωCgf

]
cos(ks1d+ ks2h)

+ j

[
gs1 + gs2

gf

+

(
1 +

gs1gs2

g2
f

)
gs1 + gs2

jωC

]
sin(ks1d+ ks2h)

−
[
1 − gs1gs2

g2
f

+
(gs1 − gs2)

2

jωCgf

]
cos(ks1d− ks2h)

− j

[
gs1 − gs2

gf

+

(
1 − gs1gs2

g2
f

)
gs1 − gs2

jωC

]
sin(ks1d− ks2h) = 0 . (3.20)

For plates in vacuum, gf → ∞ and Eqn. (3.20) reduces to

sin ks1d sin ks2h− gs1

ωC
cos ks1d sin ks2h− gs2

ωC
sin ks1d cos ks2h = 0 . (3.21)

Now consider plates of the same material and thickness, gs1 = gs2, ks1 = ks2,

and d = h, such that Eqn. (3.21) reduces to

sin ks1d = 0,
2gs1

ωC
cos ks1d . (3.22)

The first set of roots (ks1d = nπ, corresponding to sin ks1d = 0) correspond

to natural frequencies for which the pressure is zero at x = d. As a result, the

springs are not deformed and these resonances are independent of C. The second

set of roots correspond to natural frequencies for which the pressure is large at

x = d, and thus they depend strongly on C. Here we examine this set of roots

further.

It is convenient to rewrite Eqn. (3.22) for the second set of roots as

cot ks1d =
1

S
ks1d , (3.23)
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where

S =
κl

ρs1c2s1
=

κl

K + 4
3
µ

(3.24)

is the stiffness of the junction relative to that of the material, with l = 2d the total

thickness, and K and µ the bulk and shear moduli for the material, respectively.

We plot the right- and left-hand sides of Eqn. (3.23) in Fig. 3.3. Param-

eters are chosen for two 1/16 in. aluminum plates joined with a bond with

κ = 1014 Pa/m (S = 2.86) and κ = 1015 Pa/m (S = 28.6). Intersections

between the curves, indicated by dots, correspond to natural frequencies of the

plates. Squares indicate eigenvalues ks1d = nπ. As the boundary becomes more

compliant, the odd (first, third, fifth, etc.) natural frequencies (dots) decrease

while the even (second, fourth, sixth, etc.) natural frequencies (squares) do not

change. An explanation for this behavior is that, as the plates decouple, the

resonance behavior of the system changes from that of a single plate of thickness

2d to that of two plates of thickness d.

0
-4

-2

0

2

4 2.86S =

cot k  ds1

k  ds1
2π 3ππ

k  ds1

S
28.6S =

Figure 3.3: Eigenvalues for 1/16 in. aluminum plates in vacuum, κ = 1014 Pa/m
(S = 2.86) and κ = 1015 Pa/m (S = 28.6).

Now we consider a different limit. If the two plates are of different materi-

als and have different thicknesses, but they are in vacuum and the compliance
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C → 0, then Eqn. (3.21) reduces to

gs2 tan ks1d+ gs1 tan ks2h = 0 . (3.25)

Equation (3.25) agrees with the result given by Graff72 for the frequency response

of compressional waves in two joined, thin rods (illustrated in Fig. 3.4). Graff’s

x d h

cs1ρs1 , cs2ρs2 ,

Figure 3.4: Two joined rods with different materials and lengths.

analysis was performed in terms of stress and displacement, whereas Eqn. (3.25)

was determined using an analysis performed in terms of pressure and particle

velocity.

3.1.3 Reflection and transmission coefficients for plates with equal

thicknesses and impedances

In Sec. 3.1.2, we determined the natural frequencies of two bonded plates in

vacuum and examined the behavior of the system under special conditions, for

which Eqn. (3.20) for the natural frequencies was simplified. In this section we

examine the behavior of the reflection and transmission coefficients for plates in a

fluid, also under special conditions in which Eqns. (3.16) and (3.18) are simplified.

This is done because Eqns. (3.16) and (3.18) do not lend themselves easily to

physical interpretation. We consider the special case in which the two plates are

made of the same material, and have the same thickness. The symmetry results

in simplified equations for which the effect of the compliant boundary on the

transmission and reflection of the plates is made more clear.
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We set ρs1 = ρs2, cs1 = cs2, and d = h = l/2. As a consequence, gs1 = gs2

and ks1 = ks2. Equations (3.16) and (3.18) then reduce to

W =
1

∆
, (3.26)

and

V =
1

∆

{
jωC

4gs1

[(
gf

gs1

− gs1

gf

)
cos ks1l −

(
gf

gs1

+
gs1

gf

)]
+
j

2

(
gf

gs1

− gs1

gf

)
sin ks1l

}
, (3.27)

where

∆ =
jωC

2gs1

[
1

2

(
gf

gs1

+
gs1

gf

)
cos ks1l + j sin ks1l +

1

2

(
gs1

gf

− gf

gs1

)]

+ cos ks1l +
j

2

(
gf

gs1

+
gs1

gf

)
sin ks1l . (3.28)

From Eqn. (3.28) we see that for ωC/2gs1 � 1 the reflection and transmission

coefficients are nearly the same as those for a single plate of thickness l [recall

Eqn. (2.5)]. For ωC/2gs1 ∼ 1, however, the effects of the compliant interface at

x = l/2 comes into play.

We may compare Eqns. (3.26) and (3.27) with some expected limiting be-

havior. As the interface at x = d becomes infinitely stiff, the two plates are

rigidly connected and we expect to recover the expressions for the reflection

and transmission coefficients for a single plate of thickness l. Setting C = 0 in

Eqns. (3.26)–(3.28) gives

W =
1

cos ks1l +
j
2

(
gf

gs1
+ gs1

gf

)
sin ks1l

, (3.29)

V =

j
2

(
gf

gs1
− gs1

gf

)
sin ks1l

cos ks1l +
j
2

(
gf

gs1
+ gs1

gf

)
sin ks1l

, (3.30)

which are equivalent to Eqns. (2.5) and (2.6). For C → ∞ we have W → 0

because the interface between the plates becomes a free boundary. The reflection

coefficient approaches

V =
jgf sin ks1d− gs1 cos ks1d

jgf sin ks1d+ gs1 cos ks1d
, κ = 0 . (3.31)
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Equation (3.31) is the same as the plane-wave reflection coefficient for a wave

normally incident upon a plate of thickness d = l/2 in front of a stress-free half

space. (This result may be verified easily by following the analysis in Sec. 2.1,

but setting p = 0 at x = l/2.) The magnitude of the reflection coefficient in

Eqn. (3.31) is always unity, as we would expect: since W = 0, all incident energy

is reflected back towards the source.

3.1.4 Theoretical predictions of transmission and reflection

The magnitude of the transmission coefficient |W | for two aluminum plates, d =

h = 1/16 in., and κ = 1014 Pa/m, is shown in Fig. 3.5. The material properties for

aluminum are given in Sec. 2.1. The transmission coefficient is plotted over a wide

range of frequencies to show how the characteristics of the transmission change as

frequency increases. At frequencies for which ωC/2gs1 ∼ 1 (f ∼ 2 MHz), shifting

of the pass-band frequencies occurs. This effect corresponds to the shifting of

natural frequencies described in Sec. 3.1.2. As the excitation frequency increases

so that ωC/2gs1 � 1 (f � 2 MHz), the interface approaches a free boundary

and transmission decreases, even at the pass bands.

The magnitude of the transmission coefficient |W |, and the corresponding

reflection coefficient |V |, are shown in Fig. 3.6 for two aluminum plates with

equal thicknesses, d = h = 1/16 in. Plots are shown for different stiffnesses at

the boundary between the plates. For κ = 1016 Pa/m (top row), ωC/2gs1 ≈ 0.005

at f = 1 MHz. At all frequencies shown, |W | and |V | are indistinguishable from

those of a single 1/8 in. aluminum plate. As κ decreases, the system changes

from responding as one 1/8 in. plate to responding as two 1/16 in. plates. Pass

bands characteristic of a 1/8 in. plate gradually shift in frequency towards the

pass bands for a 1/16 in. plate, as shown in the plots for which κ = 1015 Pa/m

(second row) and κ = 1014 Pa/m (third row). This process first affects pass

bands at high frequencies. As the pass bands merge, transmission at the stop

bands between merging pass bands increases. An example of this can be seen

at f ≈ 6.3 MHz in the plot for which κ = 1015 Pa/m (second row). Conversely,

the magnitude of the transmission of stop bands between diverging pass bands
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decreases. For κ = 1013 Pa/m (bottom row), ωC/2gs1 ≈ 5 at f = 1 MHz and

the transmission coefficient approaches zero as frequency increases.

2 6 10 14 18
0

0.2

0.4

0.6

0.8

1.0
 κ =10

14
Pa/m

W

f (MHz)

0 4 8 12 16 20

Figure 3.5: Magnitude of linear transmission coefficient for two bonded 1/16
in. aluminum plates with κ = 1014 Pa/m.

The pressure and particle velocity in the plates may be determined if A1, B1,

A2, and B2 are known, according to Eqns. (3.1) and (3.2). Examination of the

pressure (negative stress) and particle velocity in the plates provides insight to

the resonant behavior of the system. Pressure and particle velocity fields in two

1/16 in. aluminum plates are shown in Sec. 3.1.5.

The magnitude of the transmission coefficient given by Eqn. (3.18) and the re-

flection coefficient predicted by Eqn. (3.16) are plotted in Fig. 3.7 for two bonded

aluminum plates with ratio 1:3 (left to right) in length, d = 1/32 in. and h = 3/32

in. As κ decreases, most of the transmission maxima diminish. However, the

pass bands that are characteristic of a 1/32 in. plate remain until ωC/2gs1 be-

comes very large and the interface approaches a free boundary. There is some

shifting of the frequencies of the pass bands, but not as much as in the case of

two plates of the same thickness (recall Fig. 3.6). Although the system does not

exhibit the symmetry seen in Fig. 3.6, the onset of effects due to the compliant

interface still occurs for ωC/2gs1 ∼ 1. Reversing the plates so that d = 3/32

in. and h = 1/32 in. (thicker plate on the left) does not affect |W | and |V |.
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Figure 3.6: Magnitude of linear transmission and reflection coefficients for two
bonded 1/16 in. aluminum plates.
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Transmission |W | for the case of two bonded 1/16 in. plates, one aluminum

and the other steel, and the corresponding reflection |V | through the plates

predicted by Eqn. (3.16), are plotted in Fig. 3.8. (The aluminum plate is closer

to the source.) Material constants for steel are given in Table A.1. For κ → ∞,

odd transmission maxima have a magnitude of approximately 0.6, while even

maxima have a magnitude of 1.0. Pass bands are at nearly the same frequencies

as those for two aluminum plates, but this is not surprising because the sound

speed in steel is approximately equal to the sound speed in aluminum and, from

Eqn. (2.10), pass band frequencies are proportional to the speed of sound in a

plate.

Shifting of the smaller transmission maxima is evident as κ decreases from

1016 to 1015 Pa/m. Because the two plates are different materials, we replace

ωC/2gs1 with ωC/(gs1 + gs2) as the parameter that indicates the strength of

the effects of the compliant interface on transmission and reflection. For steel

and aluminum, ωC/2(gs1 + gs2) ≈ 0.5 for f = 7 MHz and κ = 1015 Pa/m.

Correspondingly, the effects of the compliant interface are detectable as a shifting

of the pass band. For example, the pass-band frequency shift near f = 7 MHz

for κ = 1015 Pa/m in Fig. 3.8 is significantly larger than the corresponding shift

near f = 7 MHz seen in Fig. 3.6 at κ = 1015 Pa/m. Reversing the order of the

plates does not affect |W | and |V |.
Magnitudes of transmission and reflection coefficients for two bonded 1/16

in. plates in water, one aluminum and the other acrylic, are shown in Fig. 3.9.

Material properties for acrylic are given in Table A.1. There is more structure

in Fig. 3.9 than in the previous figures because there are more resonances in the

acrylic plate than in the metal plates. The sound speed in acrylic is lower than

the sound speed in aluminum or steel, so the wavelength is shorter in acrylic, and

thus the resonances are more closely spaced in frequency. Moreover, resonances

corresponding to the acrylic plate are weaker than resonances corresponding to

the aluminum plate. Resonances are visible that correspond to the individual

1/16 in. acrylic and aluminum plates, and as the bond stiffness decreases, res-

onances that correspond to the aluminum plate dominate. This is particularly
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Figure 3.8: Magnitude of linear transmission and reflection coefficients for two
bonded 1/16 in. plates of aluminum and steel. Aluminum plate is closer to the
source. Material constants are given in Table A.1.
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noticeable for κ = 1013 Pa/m (bottom row). Reversing the order of the plates

does not affect |W | and |V |.
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Figure 3.9: Magnitude of linear transmission and reflection coefficients for
bonded 1/16 in. plates of aluminum and acrylic. Aluminum plate is closer to
the source. Material constants are given in Table A.1.

Predictions for transmission and reflection through two bonded 2.36 mm

acrylic plates are shown in Fig. 3.10. The characteristics of pass-band frequency

shifting and reduction of transmission maxima at high frequencies are similar to

Fig. 3.6. However, as discussed in Fig. 3.9, the pass bands are much weaker and

more closely spaced in frequency for acrylic than for aluminum. Because acrylic

has a lower specific acoustic impedance than aluminum or steel, reflection and

transmission effects approach the limit of behaving like a single plate of thick-

ness l at smaller values of κ. For example, for f = 8 MHz and κ = 1015 Pa/m

one obtains ωC/2gs1 ≈ 0.08, so the effect of the interface between the plates

is small. The corresponding value of ωC/2gs1 for aluminum for f = 8 MHz
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and κ = 1015 Pa/m is ≈ 0.4, so the effect of the compliant interface on the

transmission and reflection is more pronounced.
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Figure 3.10: Magnitude of linear transmission and reflection coefficients for two
bonded 2.36 mm acrylic plates. Material parameters for acrylic are given in
Table A.1.

3.1.5 Field structure in bonded plates

In this section we consider the pressure (negative stress) and particle velocity in

two 1/16 in. bonded aluminum plates which are immersed in water and insonified

by a plane wave with amplitude Pi incident from the left. Examination of these

quantities in the plate provides a better understanding of resonant behavior for

the plates, and of stresses and strains at the bond. This perspective is relevant,

for example, in experiments performed to determine when a bond is near failure.
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Pressure and velocity amplitudes are determined by solving Eqn. (3.14) for A1,

B1, A2, and B2, and substituting these expressions into Eqns. (3.1) and (3.2).

The (normalized) pressure in the first plate is

P1

Pi

=
2

gfgs1gs2∆

{
−

[
jωCg2

f + gf (g
2
s2 + gs1gs2)

]
j cos(ks1γ + ks2h)

+
[
jωCgfgs2 + g2

f (gs1 + gs2)
]
sin(ks1γ + ks2h)

+
[
jωCg2

f + gf (g
2
s2 − gs1gs2)

]
j cos(ks1γ − ks2h)

+
[
jωCgfgs2 + g2

f (gs2 − gs1)
]
sin(ks1γ − ks2h)

}
, (3.32)

where γ = d−x, and ∆ is given by Eqn. (3.19). The pressure in the second plate

is

P2

Pi

=
−4j

∆

(
j
gf

gs2

sin ks2ζ + cos ks2ζ

)
, (3.33)

where ζ = l − x. The (normalized) particle velocity in the first plate is

U1

gs1Pi

=
2

gs1gs2∆

{
− [jωCgs2 + gf (gs1 + gs2)] j cos(ks1γ + ks2h)

+ [jωCgf + gs2(gs1 + gs2)] sin(ks1γ + ks2h)

− [jωCgs2 + gf (gs2 − gs1)] j cos(ks1γ − ks2h)

− [jωCgf + gs2(gs2 − gs1)] sin(ks1γ − ks2h)
}
, (3.34)

and the particle velocity in the second plate is

U2

gs2Pi

=
−j
∆

(
gf

gs2

cos ks2ζ + j sin ks2ζ

)
. (3.35)

We first examine the pressure amplitude at the compliant interface for vary-

ing stiffness and frequency. Pressure at the interface (x = d), normalized by

the magnitude of the incident pressure, is shown in Fig. 3.11. The displace-

ment discontinuity at x = d is related to the pressure by the first-order relation

p(d, t)/κ = ξd− − ξd+, Eqn. (3.6). Comparison of Fig. 3.11 with Fig. 3.6 shows

that pressure at x = d is a maximum at odd pass bands, and a minimum at even

pass bands. Shifting of frequencies of pressure maxima occur as the stiffness at
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the interface decreases, corresponding to the resonance frequency shifts shown

in Fig. 3.6. For κ = 1015 Pa/m and κ = 1014 Pa/m, we observe a decrease in

pressure maxima as frequency is increased.
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Figure 3.11: Normalized magnitudes of pressure amplitude at x = d in two
bonded 1/16 in. aluminum plates.

The magnitudes of the pressure and particle velocity amplitudes in two 1/16

in. aluminum plates are shown in Fig. 3.12. The magnitude of the pressure am-

plitude in the plate, |Ppl|, is normalized by the magnitude of the incident pressure

amplitude, |Pi|. Also, the magnitude of the particle velocity amplitude in the

plate, |Upl|, is normalized by |gs1Pi|. As the stiffness κ of the contact boundary

decreases, the particle velocity discontinuity across the boundary increases. This

particle velocity discontinuity is accompanied by a discontinuity in ∂p/∂x across

the boundary, as dictated by the first-order momentum relation, Eqn. (2.3). The

wave reflected from the contact boundary changes the pressure and particle ve-

locity fields in the first layer, which in turn alters the resonance characteristics
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of the system.
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Figure 3.12: Normalized magnitudes of pressure and particle velocity amplitudes
in two bonded 1/16 in. aluminum plates, f = 1 MHz.

Pressure and particle velocity in the plates are shown for five frequencies in

Fig. 3.13. The stiffness of the bond is κ = 1014 Pa/m. As shown in Fig. 3.6,

transmission maxima occur near f = 0.75, 2.0, and 2.4 MHz, and transmission

is small for f = 1.3 MHz. As shown in Fig. 3.11, the magnitude of P (d) is near

a minimum at f = 1.7 MHz. At transmission maxima, pressure and velocity are

nearly symmetric about the interface at x = d. In contrast, when transmission

is small the pressure and velocity are asymmetric about the interface. At f =

2 MHz the magnitude of the pressure is small at x = d, so the displacement
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discontinuity across the interface is small and the pressure in the plate is almost

the same as the pressure in a plate of thickness 2d with no compliant boundary

(as seen in Fig. 2.4 for λ2 = l, where λ2 is the wavelength at the second pass

band).

A few notable characteristics of pressure and velocity in the bonded plates are

shown in this section. First, the bond is only excited significantly at every other

transmission maximum (corresponding to λn = 4d/n, n = 1, 3, 5, . . ., for κ →
∞). Moreover, as the bond stiffness decreases, the displacement (and particle

velocity) discontinuity across the bond increases, but the maximum pressure

that can be applied to the bond decreases. This occurs because, as the bond

stiffness decreases, the interface approahes a free boundary and the incident

wave is partially reflected. This partial reflection in turn affects the resonant

behavior of the plates.

3.2 Nonlinear Theory

In this section we determine the expressions for the second harmonic radiated

into the fluid due to the presence of a planar nonlinear interface at x = d. In

Chap. 2, second harmonic was generated cumulatively within a homogeneous

plate. In this section, all the second harmonic is assumed to be produced at

the nonlinear spring interface. In our analysis we first determine the pressure

amplitude of the second harmonic at the planar nonlinear interface. Then we

determine the amplitude of the second harmonic radiated into the fluid.

3.2.1 Planar nonlinear interface

We model the planar nonlinear interface as a homogeneous distribution of non-

linear springs at x = d, described to second order by30

p(d) = κ[ξ(d−) − ξ(d+)] +
µ

2
[ξ(d−) − ξ(d+)]2 , (3.36)

where ξ(d−) and ξ(d+) are particle displacements on either side of the interface,

κ is a linear spring constant, and µ is a parameter of nonlinearity for the spring.
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In their investigation, Rudenko and Vu30 used this equation to describe a planar

contact interface populated by infinitesimal springs with a random distribution

of spring lengths. By averaging over this population of springs, the authors

obtained an equation in the form of Eqn. (3.36). In general, Eqn. (3.36) models

any interface that behaves like a spring with quadratic nonlinearity, such as the

bonded interface explored by Achenbach, et al.35 (Note that classical models of

nonlinearity in springs focus on cubic, rather than quadratic, nonlinearity to

account for the hardening behavior associated with a single spring. However,

the ensemble average over many springs of different lengths yields quadratic

nonlinearity at leading order.)

To first order, we may substitute Eqn. (3.6) into the second term on the

right-hand side of Eqn. (3.36) and still be correct to second order. With this

substitution made, by differentiating Eqn. (3.36) with respect to time we recast

Eqn. (3.36) into the form

∂p

∂t

∣∣∣∣∣
x=d

= κ[u(d−) − u(d+)] +
µ

2κ2

∂p2

∂t

∣∣∣∣∣
x=d

. (3.37)

It is easier in our analysis to work with Eqn. (3.37) than Eqn. (3.36), because

Eqn. (3.37) is written in terms of pressure and particle velocity.

3.2.2 General expression for second harmonic radiated into the fluid

As in Chap. 2, we begin our analysis of the second harmonic generated at the

interface between the plates by applying the method of successive approximations

to the expressions for pressure and particle velocity. We expand the acoustic

pressure p and particle velocity u as first-order quantities plus small second-order

perturbations,

p = p(1) + p(2) , u = u(1) + u(2) , (3.38)

where |p(2)| � |p(1)| and |u(2)| � |u(1)|. We apply Eqn. (3.38) to Eqn. (3.37) to

obtain

∂p(1)

∂t

∣∣∣∣∣
x=d

− κ[u(1)(d−) − u(1)(d+)] = 0, (3.39)
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∂p(2)

∂t

∣∣∣∣∣
x=d

− κ[u(2)(d−) − u(2)(d+)] =
µ

2κ2

∂(p(1))2

∂t

∣∣∣∣∣
x=d

. (3.40)

Equation (3.40) is equivalent to Eqn. (3.7), and all first-order phenomena asso-

ciated with this term are described in Sec. 3.1. In Eqn. (3.40), the right-hand

side represents a driving term related to p(1), which generates the second-order

pressure p(2) at x = d.

It is convenient to work with pressure amplitudes, assuming first-order pres-

sures have frequency ω and second-order pressures have frequency 2ω. All pres-

sure amplitudes corresponding to frequency 2ω have the subscript s, denoting

that it is a second-harmonic amplitude. We define the first-order pressure am-

plitude at x = d, P (d), as

p(d, t) =
P (d)

2
ejωt + c.c. , (3.41)

where

P (d) = A1e
−jks1d +B1e

jks1d = A2 +B2 , (3.42)

and A2 and B2 are the first-order pressure amplitudes in the second plate [see

Eqn. (3.1)]. The amplitudesA2 andB2 may be determined by solving Eqn. (3.14).

Substituting the resulting expressions A2 and B2 into Eqn. (3.42) gives

P (d) =
4Pi

∆

(
gf

gs2

sin ks2h− j cos ks2h

)
, (3.43)

where ∆ is expressed in Eqn. (3.19). Substituting Eqn. (3.41) into Eqn. (3.40)

yields

∂p(2)

∂t
= κ[u(2)(d−) − u(2)(d+)] +

jωµP 2(d)

4κ2
e(j2ωt) + c.c. , (3.44)

where P (d) is the first-order pressure amplitude at x = d. [Although the square

of Eqn. (3.41) also contains d.c. terms, in our analysis we consider only terms

that contribute to the generation of second harmonic.]

Figure 3.14 shows the pressure amplitudes and directions of the plane waves

with frequency 2ω in, and radiated from, the plates. We wish to determine the
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amplitudes of the pressure at the second harmonic radiated into the fluid in either

direction, P 2ω
left and P 2ω

right. We express the second-order pressure field shown in

Fig. 3.14 as

p(2) =
1

2



P 2ω
lefte

j2(ωt+kf x) + c.c. , x < 0 ,

A2ω
1 ej2(ωt−ks1x) +B2ω

1 ej2(ωt+ks1x) + c.c. , 0 ≤ x ≤ d ,

A2ω
2 ej2[ωt−ks2(x−d)] +B2ω

2 ej2[ωt+ks2(x−d)] + c.c. , d ≤ x ≤ l ,

P 2ω
righte

j2[ωt−kf (x−l)] + c.c. , x > l ,

(3.45)

where the superscript 2ω denotes a wave amplitude of a second-harmonic compo-

nent. The corresponding particle velocity, determined by applying the linearized

one-dimensional momentum equation to Eqn. (3.45), is

u(2) =
1

2



−gfP
2ω
lefte

j2(ωt+kf x) + c.c. , x < 0 ,

gs1

(
A2ω

1 ej2(ωt−ks1x) −B2ω
1 ej2(ωt+ks1x)

)
+ c.c. , 0 ≤ x ≤ d ,

g2

(
A2ω

2 ej2[ωt−ks2(x−d)] −B2ω
2 ej2[ωt+ks2(x−d)]

)
+ c.c. , d ≤ x ≤ l ,

gfP
2ω
righte

j2[ωt−kf (x−l)] + c.c. , x > l .
(3.46)

By equating pressure and particle velocity in Eqns. (3.45) and (3.46) across

boundaries at x = 0 and x = l, we have four equations for P 2ω
left, P

2ω
right, A

2ω
1,2, and

B2ω
1,2. Boundary conditions at x = d provide us with two additional equations,

A2ω
1 e−j2ks1d +B2ω

1 ej2ks1d = A2ω
2 +B2ω

2 , (3.47)

j4ωC(A2ω
2 +B2ω

2 ) = 2gs1(A
2ω
1 e−j2ks1d −B2ω

1 ej2ks1d)

− 2gs2(A
2ω
2 −B2ω

2 ) + jωµC3P 2(d) . (3.48)

These six equations reduce to the following form after elimination of P 2ω
left and

P 2ω
right:

1+ gs1

gf
1− gs1

gf
0 0

e−jks1d ejks1d −1 −1

−gs1

gf
e−jks1d gs1

gf
ejks1d 2jωC+gs2

gf

2jωC−gs2

gf

0 0 (1− gs2

gf
)e−jks2h (1+ gs2

gf
)ejks2h





A2ω
1

B2ω
1

A2ω
2

B2ω
2

 =



0

0

P 2ω
spring

0

 ,

(3.49)
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with which we determine A2ω
1 , B2ω

1 , A2ω
2 , and B2ω

2 . In Eqn. (3.49) we define

P 2ω
spring ≡ jωµC3P 2

i

2gf

. (3.50)

The amplitudes P 2ω
left and P 2ω

right may be expressed in terms of A2ω
1 , B2ω

1 , A2ω
2 , and

B2ω
2 by using Eqn. (3.45), and setting pressures equal across interfaces at x = 0

and x = l. The expressions for P 2ω
left and P 2ω

right are

P 2ω
left =

−2jP 2ω
spring

∆2ω

(
cos 2ks2h+ j

gf

gs2

sin 2ks2h

)
, (3.51)

and

P 2ω
right =

−2jP 2ω
spring

∆2ω

(
cos 2ks1d+ j

gf

gs1

sin 2ks1d

)
, (3.52)

where

∆2ω =
1

gfgs1gs2

{[
2jωCgf + (g2

f + gs1gs2)
]
(gs1 + gs2) sin(2ks1d+ 2ks2h)

−
[
2jωC(g2

f + gs1gs2) + gf (gs1 + gs2)
2
]
j cos(2ks1d+ 2ks2h)

+
[
2jωCgf + (g2

f − gs1gs2)
]
(gs2 − gs1) sin(2ks1d− 2ks2h)

+
[
2jωC(g2

f − gs1gs2) + gf (gs1 − gs2)
2
]
j cos(2ks1d− 2ks2h)

}
. (3.53)

3.2.3 Simplified expression for equal plate thicknesses and

impedances

As in Sec. 3.1.3, we seek simplified expressions for P 2ω
left and P 2ω

right in the case where

the two plates are of the same material and thickness. We again set ρs1 = ρs2,

cs1 = cs2, and d = h = l/2, so ks1 = ks2 and gs1 = gs2. Equations (3.43), (3.52),

and (3.53) reduce to

P (d) =
Pi

∆

(
cos ks1d+ j

gf

gs1

sin ks1d

)
, (3.54)

and

P 2ω
right = ωµ

C3P 2(d)

gf∆2ω

(
cos 2ks1d+ j

gf

gs1

sin 2ks1d

)
, (3.55)
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where

∆2ω =
−4jωC

gs1

[
j

2

(
gf

gs1

+
gs1

gf

)
cos 4ks1d− sin 4ks1d+

j

2

(
gs1

gf

− gf

gs1

)]

− 4j cos 4ks1d+ 2

(
gf

gs1

+
gs1

gf

)
sin 4ks1d . (3.56)

The function ∆ in Eqn. (3.54) is the expression given by Eqn. (3.28) because it

corresponds to the pressure at the fundamental frequency. On the other hand,

∆2ω in Eqns. (3.55) and (3.56) corresponds to the second harmonic. Because the

two plates are of the same material and thickness, P 2ω
left = P 2ω

right for this case.

3.2.4 Theoretical predictions for radiated second harmonic

Figure 3.15 shows the predicted second harmonic radiation from two bonded

1/16 in. aluminum plates as a function of source frequency f . The plates are

immersed in water. From Eqn. (3.55) we choose to normalize the second-order

pressure amplitudes P 2ω
left and P 2ω

right by Pnorm, which we define as

Pnorm ≡ ωµP 2
i

κ3gf

. (3.57)

Although only P 2ω
left is shown, the radiation to the left (negative direction) is the

same as the radiation to the right (positive direction). The system is an effective

radiator of second harmonic only over narrow frequency bands corresponding to

every other pass band at the fundamental. The reason that second harmonic

generation is strong only at every other pass band is because there is a pressure

node at x = l/2 for pass-band frequencies where λpass
n = 2l/n where n is an even

integer, and a pressure maximum for pass-band frequencies where λpass
n = 2l/n

where n is an odd integer, as shown in Fig. 2.4. [The pressure amplitude P (d) is

shown in Fig. 3.12.] Equation (3.55) shows that the second harmonic generated

is proportional to P 2(d), where in this instance d = l/2, so there will be relatively

little second harmonic generation if |P (d)| is small.

For κ → 1014 Pa/m the normalized radiation begins to decrease, starting

at higher frequencies. This behavior occurs because, for small values of κ, the
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interface approaches a free surface, at which the pressure must vanish. According

to Eqn. (3.55), as the first-order pressure at the interface vanishes, so does the

radiated pressure at the second harmonic. The frequencies at which second

harmonic is strongly radiated shift as κ decreases, corresponding to the shifting

of transmission maxima in Fig. 3.6. However, the magnitude of the radiated

second harmonic drops as the pass bands merge together.
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Figure 3.15: Theory for radiated second harmonic from two bonded 1/16 in. alu-
minum plates as a function of the fundamental frequency f . Radiation is the
same to the left and to the right.

Figure 3.16 shows the radiation of second harmonic to the left and right, given

by Eqns. (3.51) and (3.52), for two aluminum plates with different thicknesses,

d = 1/32 in. and h = 3/32 in. The 1/32 in. thick plate is closer to the source.

Although the defect is located one quarter of the way through the plate, the
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Figure 3.16: Second harmonic radiated to the left and to the right for bonded
aluminum plates, d = 1/32 in. and h = 3/32 in. as a function of the fundamental
frequency f .
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frequencies at which the second harmonic is radiated (1, 3, 5, and 7 MHz) are

the same as in Fig. 3.15. The second harmonic radiation is stronger for large in-

terface stiffnesses than for the case in which d = h = 1/16 in. shown in Fig. 3.15.

In contrast to Fig. 3.15, there is also some harmonic radiated at 2 and 6 MHz.

However, no second harmonic is radiated at 4 MHz, because the first-order pres-

sure at x = 1/32 in. for the resonance near f = 4 MHz is zero. As κ decreases,

the radiation at higher frequencies diminishes. Comparison between plots on the

left and right in Fig. 3.16 reveals that the radiation in the negative and positive

directions is nearly identical for κ = 1016 Pa/m, but differs substantially as κ

decreases. For κ = 1014 Pa/m the radiation in the positive direction is stronger,

but for κ = 1013 Pa/m the radiation in the negative direction is stronger.

In Fig. 3.17 the plates are reversed, so d = 3/32 in. and h = 1/32 in. (thicker

plate now on the left). In contrast to the linear reflection and transmission co-

efficients, whose magnitudes are unchanged when the plates are reversed, the

radiated second harmonic depends on the relative positions of the plates. Dif-

ferences between Figs. 3.16 and 3.17 are most prominent for κ = 1013 Pa/m

and κ = 1014 Pa/m, for which the harmonic radiated is much stronger when the

1/32 in. plate is closer to the source than the 3/32 in. plate.

The reason why the second harmonic radiated from the plate depends on the

orientation of the plates, while the linear reflection and transmission coefficients

are unchanged, is as follows. The second harmonic radiated from the plate

depends on the pressure at x = d. While the linear reflection and transmission

coefficients are unchanged when the orientation of the plates is reversed, the

pressure and particle velocity field in the plates themselves is affected by the

reversal. Hence p(d), and thus the radiated second harmonic, also depends on

the orientation of the plates.

Figure 3.18 shows results for a 1/16 in. aluminum plate in contact with a 1/16

in. steel plate. The aluminum plate faces the source. For κ = 1016 Pa/m, strong

second harmonic generation to the left and right occurs near 1, 3, 5, . . . MHz,

which corresponds to the small (|W | ≈ 0.6) pass bands in Fig. 3.8. For κ =

1015 Pa/m the radiation becomes irregular, and below κ = 1015 Pa/m it drops
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Figure 3.17: Second harmonic radiated to the left and to the right for bonded
aluminum plates, for d = 3/32 in. and h = 1/32 in., as a function of the funda-
mental frequency f .
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Figure 3.18: Second harmonic radiated to the left and to the right from two
bonded plates, one of aluminum and the other of steel, as a function of the
fundamental frequency f . Both plates are 1/16 in. thick, and the aluminum
plate is closer to the source.

The reverse situation, in which the steel plate is closer to the source, is shown

in Fig. 3.19. The second harmonic radiated from the plate is much smaller when

the steel plate faces the source than when the aluminum plate faces the source.

Figure 3.20 shows the second harmonic radiated from a 1/16 in. aluminum

plate in contact with a 1/16 in. acrylic plate. The aluminum plate is closer to

the source. The strongest second harmonic radiation to the left occurs at 2 and

4 MHz, which correspond to resonances in the aluminum plate. Radiation to the

right is more irregular than radiation to the left, although the strongest radiation
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Figure 3.19: Second harmonic radiated to the left and right from bonded 1/16
in. steel and aluminum plates as a function of the fundamental frequency f . The
steel plate is closer to the source.
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still occurs near 2 and 4 MHz. The reverse situation, in which the acrylic plate

is closer to the source, is shown in Fig. 3.21. Radiation is stronger both to the

left and right than in Fig. 3.20. Although frequencies of strong radiation are not

evenly spaced, there are many more than in Fig. 3.20. This corresponds to the

resonances of a 1/16 in. acrylic plate.
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Figure 3.20: Second harmonic radiated to the left and to the right from two
bonded plates, one of aluminum and the the other of acrylic, as a function of
the fundamental frequency f . Both plates are 1/16 in. thick, and the aluminum
plate is closer to the source.

Figure 3.22 shows the predicted second harmonic radiated from two 2.36 mm

acrylic plates. Although P 2ω
left is shown, the radiation is the same propagating

in the negative and positive directions. Because the quality factor of resonance

phenomena in acrylic plates is lower than in aluminum plates (compare Fig. 3.10

with Fig. 3.6), the magnitude of the second harmonic is much lower than for
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Figure 3.21: Second harmonic radiated to the left and right from bonded 1/16
in. acrylic and aluminum plates as a function of the fundamental frequency f .
The acrylic plate is closer to the source.
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aluminum, and it is radiated over much broader frequency bands. Also for this

reason, there are no sharp peaks in the magnitude of the radiated second har-

monic, as there are for aluminum (Fig. 3.15). However, radiation maxima still

occur at every other pass-band frequency.
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Figure 3.22: Second harmonic radiated from two bonded 2.36 mm acrylic plates
as a function of the fundamental frequency f . Radiation is the same to the left
and to the right.

3.3 Experimental Results

In this section we present the results of reflection and transmission experiments

that correspond to the theory developed in Secs. 3.1 and 3.2. Plates of acrylic and

aluminum were used. Epoxy was used to bond the plates together, and the bond

was prepared so that its quality varied predictably from one side of the plate
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to the other. The impedance ratio between acrylic and water is approximately

2 so, as evidenced by Fig. 3.10, we do not expect strong resonances. However,

acrylic is transparent, and the bond can be observed directly. (Glass has a

larger impedance than acrylic, but because it is brittle it is impractical to use

when preparing a sample with a broken bond.) The impedance ratio between

aluminum and water is approximately 12, and therefore the resonance effects are

pronounced.

Although the theory presented in the previous two sections is for plane waves,

in our experiments we used sound beams, which exhibit diffraction. As discussed

in Chap. 4, the diffracting sound beams can be represented as a continuum of

plane waves propagating in different directions. The experimental conditions

therefore do not correspond to a plane wave incident upon a plate at normal

incidence, but rather a continuum of plane waves that are incident upon a plate

at different angles of incidence. One consequence of this interpretation is that one

can easily identify Lamb modes excited in the plate. Another consequence is that

resonances in the transmission and reflection coefficients, which are sensitive to

angle of incidence, are weaker than predicted by the theory in Secs. 3.1 and 3.2.

Another effect of diffraction in a real sound beam is that the pressure ampli-

tude along the beam axis changes as a function of distance from the source. An

example is shown in Fig. 3.23. Axial distance x is normalized by the Rayleigh

distance x0 = ka2/2. For this example, the source is a 1 in. diameter plane

piston (radius a = 0.5 in.) with an effective source pressure p0 and frequency

2 MHz. However, the normalized axial pressure is not significantly different for

x/x0
>∼ 1/3 for different source frequencies and source radii, as long as a/λ � 1.

Rapid spatial variations occur in the nearfield of the sound beam (x/x0
<∼ 1/3).

The advantage of taking measurements using this part of the sound beam is

that the cumulative generation of harmonics in the fluid is not significant. The

disadvantage is that the rapid oscillations make it more difficult to accurately

compare measurements made at these distances with theory. For (x/x0
>∼ 1/3)

changes in the sound beam are not as rapid. However, the harmonics generated

in the sound beam are stronger.
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Figure 3.23: Pressure on the axis of a sound beam generated by a 1 in. diameter,
2 MHz plane piston.

3.3.1 Experimental arrangement

The configuration for the reflection experiments is shown in Fig. 3.24. A sound

beam is normally incident upon the sample, with the membrane hydrophone

positioned between the source and the sample. The distance between the source

and the hydrophone is xs. The distance between the plate and hydrophone is xr.

The samples are prepared as follows: two plates are joined using a commonly

available, quick-setting epoxy. After letting the bond set for approximately 15

minutes, the plates are pulled apart on one side and then pressed back together.

The result is illustrated in Fig. 3.25. On one side of the plate the bond is good,

and on the other side the bond is broken. In the middle of the plate the bond is

weakened. By translating the source and receiver from one side of the plate to the

other, portions of the sample with different bond qualities can be investigated.

3.3.2 Two bonded acrylic plates

Figure 3.26 shows measurements of the reflection from two acrylic plates, with

xs = 4 cm and xr = 1.5 cm. The source is a 1 in. diameter, 1 MHz piezoelectric

plane piston transducer. Received pressures in the graphs are normalized by the

source pressure, p0 = 230 kPa. Magnitudes of the pressure amplitudes at the

fundamental, second, and third harmonic frequencies are displayed. Pressure is
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Figure 3.24: Geometry for the reflection experiment.

Aluminum
Plate

Good Bond

Weak Bond

Poor Bond

Figure 3.25: Two plates joined with bond of varying quality.
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shown on linear (left column) and logarithmic (right column) scales in order to

see the structure of both the fundamental and the higher harmonics in detail.

Each plate is 2.36 mm thick. The total propagation distance x = 2xr + xs =

7 cm is much smaller than the Rayleigh distance for the source used (x/x0 ≈
0.2 at 1 MHz). As a result, these measurements are subject to rapid nearfield

diffraction effects (as illustrated in Fig 3.23). Figure 3.26(a) and (b) (top row)

shows measurements over an area where the plates are joined with a strong

bond. In Fig. 3.26(c) and (d) (middle row) the insonified part of the plates is

weakly bonded. The reflection maximum near 900 kHz is stronger, and reflection

minima are less pronounced, than in the portion of the plates with a good bond.

Some shifting of the resonance frequency is apparent at 650 kHz and 1.25 MHz.

Minima and maxima in the measured second and third harmonic occur because

the reflected second harmonic can be phase shifted with respect to the second

harmonic generated in the reflected primary beam, resulting in interference in

the second harmonic at the receiver.

In Fig. 3.26(e) and (f) (bottom row) the plates are nearly split. The first

three harmonics are shown. Reflection of the sound beam from the plates is

stronger in this region than in the strongly or weakly bonded regions. Because

the path of the sound beam is short, harmonic generation in the fluid is kept to a

minimum. If the generation of second or third harmonics at the interface x = d

is strong, we expect to measure anomalously large harmonic amplitudes in the

vicinity of every other pass-band frequency. We do not observe such behavior in

either the second or third harmonic.

Reflection measurements for the case in which xs = 4 cm and xr = 15 cm

are shown in Fig. 3.27. The total propagation distance 2xr + xs = 34 cm is

approximately equal to the Rayleigh distance at 1 MHz, so the spatial variation

is much less rapid than in the measurements for xr = 1.5 cm (Fig. 3.23). How-

ever, because the propagation distance is larger there is much more cumulative

harmonic generation in the fluid, which further obscures any second or third

harmonics generated by contact nonlinearity.



 

90

600 800 1000 1200 1400
(kHz)

(a)

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

0.5 (b)

0

0.2

0.4

0.6
(c)

p
p
0

p
p
0

p
p
0

f 

bond type

good 
bond

weak
bond

virtually 
no bond

n=1

n=2

n=3
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Transmission experiments were also performed on the acrylic plates. The ex-

perimental configuration for the transmission experiments is shown in Fig. 3.28.

The distance between the source and the plate is xi, and the distance between

the plate and the hydrophone is xt. Transmission through the acrylic plates

is shown in Fig. 3.29. The source-plate separation xi is 15 cm, and the plate-

hydrophone separation xt is 1.5 cm. The source pressure is p0 = 230 kPa. The

distance between the source and plate is large enough that nearfield oscillations

do not interfere with the measurements. Moreover, because the source-to-plate

distance is much larger than the plate-to-hydrophone distance, almost all the

harmonics generated in the fluid are generated before the wave strikes the plate.

In Fig. 3.29(a) the bond between the plates is good. The insonified part of the

bond is weak in Fig. 3.29(b), and in Fig. 3.29(c) the plates are nearly separated.

As the bond weakens, the resonance at the pass-band frequency becomes more

pronounced. The ratio between the harmonics and the fundamental does not in-

crease significantly from Fig. 3.29(a) to Fig. 3.29(c), and nowhere is the harmonic

level as strong a function of frequency as predicted by the theory in Sec. 3.2 (see

Fig. 3.22). Any harmonic generation at the adhesive bond is obscured by the

harmonics generated in the primary beam. In Fig. 3.29(c) the second harmonic

at 850 kHz is only about 6 dB below the fundamental, which may be the result

of contact nonlinearity. However, because the measured field is erratic at all fre-

quencies, we cannot be confident that the harmonic generation is from contact

nonlinearity rather than nonlinearity of the fluid.

3.3.3 Two bonded aluminum plates

Transmission through two bonded 1/16 in. thick aluminum plates is shown

in Fig. 3.30. Material constants for aluminum are given in Table A.1. Be-

cause the aluminum plates are opaque, the bond quality could not be moni-

tored visually. Source-plate separation xi was 150 mm and the source pres-

sure was p0 = 230 kPa. Because there is a much larger impedance ratio for

aluminum/water than acrylic/water, a few more cycles are required to reach a

steady state. (This is because the quality factor is higher for resonances in the
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Figure 3.28: Geometry for the transmission experiments.

aluminum plates than it is for acrylic plates.) For this reason, we increase xt to

2 cm.

Predictions are shown on the left side of Fig. 3.30 for the transmission of the

fundamental, second, third, and fourth harmonic. We assume that all harmonic

generation takes place in the fluid, and that the transmission is completely linear.

Furthermore, the harmonics are assumed to interact with the plate independently

of one another. Magnitudes of the harmonics generated in the primary beam are

estimated using simple plane-wave theory.70

Figure 3.30(a) shows the transmission through one aluminum plate that is

3.048 mm (approximately 1/8 in.) thick. Pass bands are at regular frequency

intervals. Harmonics propagate through the plate as if they were small-signal

plane waves at their respective frequencies. The pass-band for the fundamental

and the corresponding pass-band at the third harmonic have a notch correspond-

ing to the excitement of a Lamb wave in the plate. This is not taken into account

using our plane-wave theory because Lamb waves are excited by waves incident
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obliquely upon the plate. A diffracting sound beam can excite Lamb waves

even when it is normally incident upon a plate because, as mentioned earlier, it

consists of plane-wave components propagating in off-axis directions.

In Fig. 3.30(b) is shown the transmission through two 1/16 in. aluminum

plates with a good bond. There is qualitative agreement of experiment with

linear theory for a spring constant κ = 3 × 1014 Pa/m. Some shifting of the

resonance near 1 MHz is seen. Above 1 MHz transmission of the second harmonic

is stronger than in Figure 3.30(a), which corresponds to the resonance shifting

down in frequency at 2.7 MHz (1.35 MHz for the fundamental). The third

harmonic is shifted down to 2.7 MHz, as well. The fourth harmonic, near 4.4

MHz, is stronger than the third harmonic, which agrees with the prediction.

Figure 3.30(c) shows measurements of transmission through the plates with

a weak bond. Transmission of the fundamental is decreased by 20 dB, and the

pass band is further shifted down in frequency. The second harmonic near 2.2

MHz is stronger than the fundamental near 1.1 MHz. The measured maximum

of the third harmonic near 2.4 MHz is in agreement with the prediction. Also,

the fourth harmonic near 4 MHz is stronger than the third harmonic near 3 MHz.

Transmission measurements were also made using a focused source. The fo-

cused source allows us to insonify the plate at a higher sound pressure than would

be possible with a plane piston, with the hope of enhancing contact acoustic

nonlinearity. The source we used had a focal length of 16.2 cm, a source ra-

dius of 1.8 cm, and a resonance frequency of 2.2 MHz. The source pressure was

p0 = 72 kPa.

The gain of the transducer (sound pressure at the focus relative to that at

the source) equals ka2/2d, where k = ω/c; at the resonance frequency, the gain

is 9.3. At the focus, the gain is proportional to the frequency. As shown in

Fig. 3.31, the increasing gain as a function of frequency approximately offsets

the decreasing source response at high frequencies. Thus, a wide frequency band

can be investigated even if the source radiates efficiently over only a narrow range

of frequencies.



  

96

2 2.4 2.8 3.2
100

101

102

103

(kPa)

 (MHz)

P

f 

n=3

n=2

n=1

n=4

Figure 3.31: Measurement of sound pressure at first four harmonics from focused
source, for which source-hydrophone separation is 150 mm, and p0 = 36 kPa.
Integer n indicates harmonic number.

A disadvantage of using a focused source is that the angular spectrum of

the radiated field is much wider than the corresponding spectrum for the plane

piston. Figure 3.32 shows a comparison between angular spectra D(θ) for a 1

MHz, 1.27 cm radius plane piston with a 2.2 MHz, 18 mm radius focused piston

with a focal distance of 162 mm. Because the angular spectrum of the focused

source is wider than the angular spectrum of the plane piston source, we expect

the excitation of Lamb waves to have a stronger impact on the transmitted

pressure for the focused source. Also, resonances for a plane wave at normal

incidence will have less of an effect on the transmitted pressure.

Results of the transmission experiment using the focused source are shown

in Fig. 3.33. In Fig. 3.33(a) the transmission is through one 1/8 in. aluminum

plate. The pass-band frequencies are spaced at regular intervals over the fre-

quency band from 1.9 to 3.2 MHz. Figure 3.33(b) shows the transmisison through

two 1/16 in. plates in a region where the bond is good. Every other pass band

is missing, and the pass bands that remain are broadened. Near 2.8 MHz the

third harmonic is higher in magnitude than the second harmonic. In Fig. 3.33(c)

is shown the transmission through a region with a weak bond. The magnitude
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Figure 3.32: Comparison of directivity |D(θ)| for 1 MHz plane piston with a =
1.27 cm (—) with directivity for 2.2 MHz, focused piston with a = 18 mm and
focal distance d = 162 mm (- -).

of the fundamental is greatly attenuated compared with Fig. 3.33(a) and (b).

The harmonics are increased in magnitude with respect to the fundamental, es-

pecially in the case of the fourth harmonic, which is higher in amplitude than

the third harmonic over much of the frequency band investigated. The magni-

tude of the transmitted sound pressure at the fundamental and second harmonic

decreases by an order of magnitude from 2 to 3.2 MHz. At 3.1 MHz the third

harmonic is stronger than the fundamental, which may be attributable to contact

nonlinearity.

3.3.4 Attempts to enhance contact nonlinearity

In addition to measurements made with bonded plates, we wished to examine

the behavior of an interface at which two plates are pressed together. A device,

shown in Fig. 3.34, was built to press the plates together. The device was made

of stainless steel so it could be immersed in water without rusting. Care was

taken to make sure the slot through which the sound beam passes was wide
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enough that the sound field was not disturbed. Although the plates were pressed

together with the maximum force we could attain, the transmission through the

plates was approximately zero.

stainless
steel

Aluminum 
plates 

Figure 3.34: Stainless steel device to push plates together.

A simple estimate of the particle displacement in the plates sheds light on

our problem. In order for transmission to occur between the plates, a significant

portion of the plates must be in contact at a distance scale on the order of the

particle displacement. For a progressive plane, time-harmonic wave, |p| = |ρcu| =

|ρcωξ|. Assuming an acoustic pressure magnitude of 1 MPa, for aluminum at

1 MHz the magnitude of the particle displacement is ∼ 10 nm. We were unable to

achieve such intimate contact. Some experimenters26,32 optically polished their

samples to make the contact between the plates as intimate as possible. However,

this technique is impractical for a large sample. Another potential solution is

to place the sample in a machine to exert a large load.29 This technique is

impractical for our experiment because we are interested in resonance phenomena

in plates, and a loading frame would disturb the acoustic field in a plate.

We attempted to enhance contact nonlinearity by introducing particles that

are known to have a nonlinear stress-strain relationship to the interface. As il-

lustrated in Fig. 3.35, small glass spheres, from 0.1 mm to approximately 1 mm
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in diameter, were sprinkled liberally between the plates. As mentioned earlier,

spheres in contact exhibit Hertzian nonlinearity.34 However, when the interface

was sealed so that it was watertight, the transmission of the sound beam was

very small in magnitude. We were unable to achieve an intimate enough contact

between the plates and the spheres to achieve significant transmisison. When

water was allowed to enter the space with the spheres, a reasonable transmis-

sion was attained, and it appeared that we saw anomalous harmonic generation.

However, upon closer inspection we found that the peak was due to a (linear)

resonance of the water column at the second harmonic frequency. The second

harmonic generated in the fluid was at the resonance frequency of the water

column, and so its transmission through the plates was large.

Aluminum plate

glass

Figure 3.35: Glass spheres at interface to enhance contact nonlinearity.

3.4 Determination of transmission coefficient using a
broadband pulse excitation

Measurements reported in Sec. 3.3 indicate that linear effects dominate the re-

sponse of our bonded samples. Rather than using a sinusoidal excitation, we can
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excite the sample with a broadband pulse to quickly obtain the linear response

of the sample over a large range of frequencies. The primary advantage of this

method over a swept-frequency method is that it may be performed very rapidly.

If the response of the plate to an incident sound wave is linear, the transmitted

pressure pt(t), given an incident pressure pi(t), is given by

pt(t) =
∫
w(t− t′)pi(t

′)dt′ . (3.58)

Here, w(t) is the impulse response; i.e., the transmitted signal for an incident

impulse. Applying a Fourier transform to both sides of Eqn. (3.58) gives

P̂t(ω) = W (ω)P̂i(ω) , (3.59)

where W (ω), which is the Fourier transform of w(t), is the frequency-dependent

reflection or transmission coefficient, e.g., Eqn. (3.26), and P̂i(ω) and P̂t(ω) are

the Fourier transforms of pi and pt, respectively. In the next section, we obtain

W (ω) from measurements of P̂t(ω) and P̂i(ω).

3.4.1 Experimental results

An immersion transducer with a focal length d = 162 mm, radius a = 18 mm, and

resonance frequency of 2.2 MHz was used to perform the experiment. The signal

from the function generator was one cycle of a square wave having a fundamental

frequency of 10 MHz. The focused source was chosen because the increase in

gain with frequency approximately offsets the transducer’s high-frequency rolloff

characteristics. For this reason, at the focus the effective bandwidth far exceeds

the resonance bandwidth of the transducer.

Figure 3.36 shows the measured waveforms of the incident wave pi(t) in a

free field (top), the frequency spectrum of the incident wave |P̂i(ω)| (middle),

and the wave pt(t) transmitted through an aluminum plate (bottom). (Units

are volts; an advantage of this technique is that source and receiver calibrations

are unneccessary.) Material constants for the plate are given in Table A.1. The

excitation pi(t) is measured along the beam axis using the PVDF membrane
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hydrophone at 170 mm from the source. The response pt(t) is measured along

the beam axis at xi = 150 mm and xt = 20 mm. The plot of |P̂i(t)| (middle)

indicates that the frequency response of the plate can be measured using the

incident waveform (top) from approximately 1 to 9 MHz. In Fig. 3.37 we present

results for the transmission of an impulse through a plate. In Fig. 3.37(a),

measurements for transmission through a single 1/8 in. plate (solid line) are in

good agreement with theory (dashed line) up to approximately 5 MHz. For this

plot, |Pt| is the magnitude of the Fourier transform of the response waveform pt(t)

shown in Fig. 3.36. The theoretical model used includes effects of diffraction, and

will be discussed in Chap. 4. Parameters used for the plate for the theory are

given in Table A.1.

Some qualitative features predicted in Sec. 3.1.4 can be seen in the measure-

ments in Fig. 3.37. For a single 1/8 in. plate, pass-bands are regularly spaced

in frequency. Pass bands near 1, 3, 5.. MHz are different than what is predicted

by one-dimensional theory, because of diffraction effects and the excitation of

guided modes in the plate. For two 1/16 in. plates joined with a good bond, two

differences from the transmission through a single plate are evident. First, some

pass-band frequency shifting is observed. In particular, the pass band at 3 MHz

is shifted downward in frequency. Also, the transmission at 3, 5, 7.. MHz is

reduced significantly. The transmission through two 1/16 in. plates joined with

a weak bond shows that significant transmission only occurs at 2, 4, 6.. MHz,

and the overall transmission is reduced more at higher frequencies. Also, the

first pass band is lowered in frequency from near 1 MHz to near 0.7 MHz.

3.5 Discussion

Attempts to observe contact nonlinearity were unsuccessful. Any harmonic gen-

eration at the contact boundary was masked by harmonic generation in the fluid.

Even when the source was placed close to the plates, all observed harmonic gener-

ation could be attributed to the cumulative harmonic growth in the surrounding

fluid rather than contact nonlinearity at the interface. In addition, placing the



 

104

-40

-30

-20

-10

0

-40

-30

-20

-10

0

-40

-20

0

f (MHz)

0 2 4 6 8 10

(dB)W

(dB)W

(dB)W

experiment

theory single plate

good bond

weak bond

1 3 5 7 9

0 2 4 6 8 101 3 5 7 9

0 2 4 6 8 101 3 5 7 9

Figure 3.37: Magnitude of transmission coefficient |W | using the impulse re-
sponse method. Theory (- -) is compared with measurement (—) for transmis-
sion through a 1/8 in. aluminum plate (top). Measured transmission is shown
through two 1/16 in. aluminum plates joined with a strong epoxy bond (middle),
and two 1/16 in. aluminum plates joined with a weak epoxy bond (bottom).



   

105

source close to the plates makes accurate comparison of measurements with the-

ory difficult because of spatially rapid nearfield diffraction effects.

The introduction of a spring-like boundary changed the linear, frequency-

dependent transmission and reflection coefficients in the plates. As the spring

softened, the first effect was a shifting of certain pass-band frequencies. If the in-

cident sound beam contains a significant harmonic content, the shifting of these

pass-band frequencies can result in a disproportionate transmission of the higher

harmonics, giving the illusion that contact nonlinearity is indeed occurring. This

effect, combined with the cumulative generation of harmonics in the sound beam

as it propagates in the fluid, makes it difficult to identify the anomalous gener-

ation of harmonics at the nonlinear interface. It is possible, however, that the

linear resonance frequency shifting may be exploited to measure the spring con-

stant at a bonded interface. As shown in Sec. 3.4, an impulse response method

may be an effective and rapid method to evaluate the bond quality of adhered

plates.

We expected the generation of higher harmonics due to contact nonlinearity

to be strongly frequency dependent. However, in practice, we contended with

linear frequency filtering effects, which at certain frequencies could dispropor-

tionately pass the harmonics present in the incident sound beam with respect to

the fundamental. It is important to recognize that these effects may occur, be-

cause a näıve interpretation of results may lead an experimenter to attribute this

strong transmission or reflection of harmonics to contact nonlinear mechanisms,

where in fact such mechanisms may not exist.

Although the measurement of contact nonlinearity has been reported in the

literature, most experiments performed had important differences with our exper-

iment. Most other experiments used contact transducers to excite shear waves,

which were reflected from the contact boundary. Also, the solids used in other

experiments to measure contact nonlinearity were typically thick, so that they

could be pressed together without disturbing the acoutic field in the samples.

The experiment closest to ours that we could find in the literature was performed

by Rothenfusser et al.,37 discussed in the introduction to this chapter. In this
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paper, the authors reported the generation of second harmonic in an adhesive

layer with varying thickness between two thin plates. However, in contrast to

our work, the authors apparently used contact transducers, which would reduce

the second harmonic generated in the primary beam before interaction with the

sample. Also, there are aspects of this paper that raise some questions. First,

the magnitude of the second harmonic generated in a control experiment with

no sample is not reported. Also, resonance effects are considered in the adhesive

bond, but not in the bonded plates themselves. Because the plates are 1 mm

thick pieces of fused silica, and the frequency of the excitation is 2 MHz, reso-

nance effects are expected at both the fundamental and second harmonic. An

adhesive bond with a variation of thickness on the order of 10% of the thickness

of the plates could potentially have a strong effect on the resonance properties of

the sample. It is possible that the second harmonic reported by Rothenfusser et

al. was generated outside of the sample, and the sample with varying thickness

acted as a filter, rather than a source, of second harmonic.



  

Chapter 4

IRRADIATION OF A PLATE BY A
FINITE-AMPLITUDE SOUND BEAM AT
OBLIQUE INCIDENCE

In Chaps. 2 and 3 we investigated the interaction of plane waves with plates at

normal incidence. The analysis was kept as simple as possible in order to explore

more easily the feasibility of using the techniques proposed there in a practical

arrangement for materials characterization and nondestructive testing. In the

cases we considered, we found that the nonlinear effects that occur within the

plates are small compared with the nonlinear effects that occur in the surrounding

fluid.

In this chapter we extend our investigation to include diffracting sound beams

at oblique angles of incidence. At certain angles of incidence, the sound beam

excites Lamb waves that propagate within a plate along the plane of the plate.

As discussed in Sec. 1.1.2, if a plate is surrounded by a fluid, the energy in the

Lamb wave radiates (or “leaks”) into the fluid as it propagates. For a sound beam

incident upon a plate, the leaky wave interferes with the specularly reflected and

transmitted fields, causing nonspecular effects. The observation of nonspecular

phenomena can be used for nondestructive evaluation. By measuring the angles

at which nonspecular effects occur, indicating that Lamb waves are excited in

the plate, one can determine the linear elastic constants of the sample.

If the sound beam used for the NDE is nonlinear, nonspecular phenomena

must be included in order to model the nonlinear effects correctly. Also, the

second harmonic generated by a sound beam has lower sidelobes and a smaller

beamwidth than the fundamental, so use of the second harmonic to measure

angles at which nonspecular effects occur may offer some advantages over the

use of the fundamental. In addition, use of the second harmonic can potentially

107



    

108

increase the effective bandwidth of a source. The tradeoff is the added complexity

of calculating the reflected or transmitted second harmonic field.

In this chapter we investigate the behavior of a diffracting sound beam that

is obliquely incident upon a homogeneous, isotropic, elastic plate, including non-

specular effects. The objective of the work is to develop a model of the interaction

involving both the fundamental and second harmonic, and to compare it quanti-

tatively with measurement. Second harmonic generated in the fluid is taken into

account, but it is assumed that no second harmonic is generated in the plate.

We make this assumption based upon the results of Chap. 2, which indicated

that harmonic generation in the fluid is much larger than harmonic generation

in a homogeneous aluminum plate. The theory presented here follows closely the

article by Landsberger and Hamilton for a thick solid.64

4.1 Linear theory

In this section we present theory describing the interaction of a linear, diffract-

ing sound beam at angular frequency ω with an isotropic, elastic plate. The

configuration is shown in Fig. 4.1. The sound beam is obliquely incident upon

a plate at angle θ0. The distance from the plate to the source is di, and the

distance from the plate to the hydrophone is dr. The coordinate system is set

up such that x and y are in planes parallel to the interfaces. The y coordinate,

not shown in Fig. 4.1, points out of the page in accordance with the right-hand

convention. Figure 4.2 shows the configuration for the transmission experiments.

Coordinates are defined as in the reflection geometry, except that we define dt,

rather than dr, to be the distance beween the plate and the hydrophone.

4.1.1 The spatial Fourier transform

We account for diffraction by using an angular spectrum method to represent

the sound field. A two-dimensional Fourier transform is applied to the spatial

pressure distribution in a plane parallel to the plane of the plate. The resulting
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angular spectrum describes the distribution of the pressure field in that plane

with respect to propagation direction.

Besides being a standard technique, the two-dimensional Fourier decomposi-

tion approach has three primary advantages for our work: first, by not restricting

ourselves to axisymmetric pressure fields we may consider sound beams at oblique

angles of incidence to the plate. Also, it is convenient to represent the pressure

field in terms of plane wave components propagating in different directions when

dealing with the angle-dependent plane-wave transmission and reflection coef-

ficients of a plate. The third advantage is that the Fourier integrals may be

computed efficiently using a standard Fast Fourier transform algorithm.

When modeling a diffracting sound beam, it is common to employ a parabolic

approximation, in which it is assumed that changes in the sound beam in the

transverse direction occur much more rapidly than changes along the propagation

direction. The parabolic approximation is valid only where small interaction

angles are involved. The Fourier spectrum method used here does not employ

a parabolic approximation. By avoiding the restrictions imposed by making the

parabolic approximation, we can model sound beams propagating at all angles

with respect to the plate normal. This becomes important when modeling sound

beams at large angles of incidence upon the plate.

The Fourier transform employed in this chapter converts a spatial distribution

of acoustic pressure to a distribution in wave vector space. The wave vector k

has magnitude |k| = k = ω/c0 and propagation unit vector given by k/k. We

decompose the wave vector into components in the (x, y) plane, given by κ =

(kx, ky), and along the z axis, given by K = kz =
√
k2 − |κ|2. The components

are illustrated in Fig. 4.3. For a plane wave propagating at angle θ with respect

to the z axis, one can see from Fig. 4.3 that sin θ = |κ|/k.
For some spatially-dependent function f(x), where x = (x, y), we define the

following two-dimensional spatial Fourier transform pair:

f̂(κ) = F{f(x)} =
∫
f(x)e−jκ·x dx , (4.1)

f(x) = F−1{f̂(κ)} =
∫
f̂(κ)ejκ·x dκ

(2π)2
. (4.2)
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Figure 4.3: Components of wave vector k.

An alternative to Eqns. (4.1) and (4.2) that is convenient for an axisymmetric

pressure field is the zeroth-order Hankel transform pair

f̂(kr) = F{f(r)} =
∫
f(r)J0(krr) rdr , (4.3)

f(r) = F−1{f̂(kr)} =
∫
f̂(kr)J0(krr) krdkr , (4.4)

where kr is the wavenumber in the r direction.

In our analysis we apply Eqns. (4.1) and (4.2) to an acoustic pressure field

p(x, z, t) that satisfies the linear wave equation(
∇2 − 1

c2
∂2

∂t2

)
p(x, z, t) = 0 . (4.5)

Assuming a monofrequency excitation, we represent p as

p(x, z, t) = 1
2
P (x, z)ejωt + c.c. , (4.6)

where P (x, z) is the pressure amplitude. Substitution of Eqn. (4.6) into Eqn. (4.5)

gives (
∇2 + k2

)
P (x, z) = 0 . (4.7)
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Applying the Fourier transform given in Eqn. (4.1) to Eqn. (4.7) yields(
d2

dz2
+K2

)
P̂ (κ, z) = 0 . (4.8)

For propagation in the positive z direction, the solution to Eqn. (4.8) is

P̂ (κ, z) = P̂ (κ, z0)e
−jK∆z , (4.9)

where ∆z = z − z0. From Eqn. (4.2), the pressure field at z is given by

P (x, z) = F−1{P̂ (κ, z0)e
−jK∆z} . (4.10)

Equation (4.10) shows that the Fourier transform pair provides a convenient

means of modeling the propagation of an acoustic field.73

We wish to use Eqn. (4.10) to model the propagation of a sound beam. The

two-dimensional Fourier transform is applied to the pressure distribution at the

source plane, P (x, 0), over x to determine the source spectrum P̂ (κ, 0). Here x

and y are the coordinates in the plane of the fluid-solid interface. The source

and receiver are aligned at y = 0, and the receiver is placed at positive z with

respect to the source (see Figs. 4.1 and 4.2).

The source spectrum is determined by applying Eqn. (4.1) to the pressure

field in the source plane, P (x, 0):

P̂ (κ, 0) = F {P (x, 0)} . (4.11)

For a circular, plane piston source of radius a, whose axis is normal to the (x, y)-

plane, we use the source condition∗

P (x, 0) =

{
p0, r ≤ a
0, r > a

, (4.12)

where r = (x2+y2)1/2 is the distance in the source plane from the axis. Applying

Eqn. (4.11) to Eqn. (4.12), and using Eqn. (4.3) to evaluate the Fourier transform,

∗The source condition for a true piston is given in terms of particle velocity rather than
pressure; however, for a sound beam we make the plane-wave approximation p0 = ρ0c0u0. This
approximation is valid for distances d ∼ a(ka)1/3 from the source and beyond.
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gives the source spectrum

P̂ (κ, 0) = p0πa
2
2J1

(
a
√
k2

x + k2
y

)
a
√
k2

x + k2
y

= p0πa
2 2J1 (a|κ|)

a|κ| . (4.13)

From Eqn. (4.9) the pressure field at distance z from the source is given by

P (x, z) = F−1
{
P̂ (κ, 0)e−jKz

}
. (4.14)

To our knowledge, there is no corresponding simple analytic expression for

the source spectrum of a focused piston source, which has a source pressure

distribution given approximately by

P (x, 0) =

{
p0 exp (jkr2/2d) , r ≤ a
0, r > a

, (4.15)

where d is the focal distance for the source. In this case, the source spectrum

must be determined numerically.

The angular spectrum for a 1 MHz, 1 in. diameter plane piston source is

shown in Fig. 2.7. Most of the energy is within a few degrees of the beam axis.

Consequently, a sound beam interacting with a plate will be affected by features

in the plane-wave reflection and transmission coefficients over a range of about

±2◦.

4.1.2 Source rotation

We wish to accommodate sound beams incident upon the target with angle θ0,

as shown in Fig. 4.4. To do so we employ an angular spectrum rotation method,

in which the source spectrum, e.g. Eqn. (4.13), is altered to produce the same

source spectrum as an equivalent source rotated by θ0.
64 We begin with the

rotation matrix (
ξ′

ζ ′

)
=

(
cos θ0 − sin θ0

sin θ0 cos θ0

)(
ξ
ζ

)
. (4.16)
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θ0

z kz,

x kx,

z kz,' '
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Figure 4.4: Source rotation.

For a coordinate transformation we set (ξ, ζ) = (x, z), and for a wavenumber

transformation we set (ξ, ζ) = (kx, kz). The rotation is performed about the y

axis, so y = y′ and ky = k′y. Upon substitution of the coordinate transformations

into the Fourier integrals, the rotated source spectrum is

f̂(κ, z = 0) =
|k′z|
|kz|

f̂(κ′, z′ = 0) . (4.17)

4.1.3 Lamb waves in a free plate

We begin the discussion of interaction of a sound beam with a plate by reviewing

briefly the topic of Lamb waves in a free plate. The topic of Lamb waves is

discussed in detail elsewhere,72 and will be reviewed only very briefly here. As

mentioned earlier, a solid plate supports both compressional and shear waves.

The transverse and compressional waves that are excited by an incident plane

wave and propagate in a plate are shown in Fig. 4.5. Although the incident wave

is compressional, a shear wave is excited in the plate by mode conversion.

The equation that predicts the angles and frequencies for which Lamb waves

propagate in a free plate is obtained by applying the following conditions to
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l θt
θl 

θi

Figure 4.5: Angles of waves in a plate of thickness l.

wave equations for the compressional and shear waves in the plate. First, phase

velocities of the components of the waves propagating along the direction of the

plate are set equal to each other. Also, stress is set equal to zero at both faces of

the plate. In principle, there are an infinite number of Lamb modes with different

pressure distributions in the plate as frequency approaches infinity. However, in

practice the first few modes are usually explored.

In Fig. 4.6 are shown the dispersion curves for Lamb waves in an aluminum

plate in vacuum. Symmetric modes, designated with an s, are modes whose vi-

bration is symmetric about the centerline of the plate, and antisymmetric modes,

designated with an a, are modes whose vibration is antisymmetric about the

centerline of the plate. Although the Lamb wave dispersion curve is typically

displayed in terms of phase velocity along the vertical axis, it is more convenient

for our purposes to present it in terms of the angle of the incident plane wave (in

water). The angles θt and θl are related to the angle of incidence θi by Snell’s law.

Strictly speaking, representation of this dispersion curve in terms of incidence

angle is incorrect because the Lamb dispersion relation shown is for a free plate,

and the effect of loading on the plate by the surrounding fluid is not included.

However, this representation is a good approximation as long as ρf � ρs,
43 which

is satisfied for an aluminum plate in water (ρs/ρf ≈ 3). At 1 MHz, Fig. 4.6 shows

that four Lamb modes may be excited, two symmetric and two antisymmetric.
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At 2 MHz seven modes may be excited, although the modes a0 and s0 join to

form what is known as the ‘pseudo-Rayleigh’ mode, whose behavior is similar to

the Rayleigh surface wave.

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

 (MHz)   

θ
(d

eg
)

i

a

s

0

0

a1 a2
a3s1 s2

s3

 f   

Figure 4.6: Lamb wave excitation angles for an aluminum plate in vacuum.
Symmetric (—) and antisymmetric (- -) modes are shown. Properties for the
plate are given in Table A.1.

4.1.4 Reflection and transmission for plane waves

In order to describe the interaction of a sound beam with a plate, we do not

need to use a theory that tracks the propagation of compressional and shear

waves through the plate. Rather, we describe the interactions using angle-

and frequency-dependent complex reflection and transmission coefficients. These

functions describe the complete interaction of a plane wave with a plate, includ-

ing the excitation of Lamb waves. Because we assume that no second harmonic

is generated within the plate, we do not need an expression for the pressure

distribution there.

The reflection and transmission coefficients for a plane wave propagating in a

fluid incident obliquely upon an elastic, isotropic, homogenous plate of thickness l
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are given by Brekhovskikh.74 These coefficients account for the presence of longi-

tudinal and transverse waves in the plate. Although the coefficients were derived

for lossless plates, absorption may be taken into account ad hoc by introducing

complex wave speeds.53 The pressure reflection coefficient is

V = j
M2 −N2 + 1

2M + j (M2 −N2 − 1)
, (4.18)

and the corresponding transmission coefficient is

W =
2N

2M + j (M2 −N2 − 1)
, (4.19)

where

N =
ψl cos2 2θt

ψf sinP
+
ψt sin2 2θt

ψf sinQ
, (4.20)

M =
ψl

ψf

cos2 2θt cotP +
ψt

ψf

sin2 2θt cotQ , (4.21)

P = kll cos θl, Q = ktl cos θt , (4.22)

and

ψf = ρfcf/ cos θi, ψl = ρscl/ cos θl ψt = ρsct/ cos θt . (4.23)

In Eqns. (4.20)–(4.23), ρf and cf are the density and sound speed of the fluid

medium, and θi is the angle of incidence of plane wave; ρs and cl are the density

and compressional sound speed of the plate, and θl is the angle at which the

longitudinal wave propagates in the plate; ct is the transverse sound speed in

the plate, and θt is the angle at which the transverse wave propagates in the

plate. Also, kl = ω/cl is the wave number of the longitudinal wave in the plate

and kt = ω/ct is the wave number of the transverse wave in the plate. The

angles θl and θt are related to θi through Snell’s law, so V and W are determined

completely by the frequency and angle of the incident wave, plus the physical

parameters of the plate and surrounding fluid.
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The transmission and reflection coefficients for a 1 MHz plane wave incident

upon a plate of aluminum with thickness l ≈ 1/8 in. (to be used in our exper-

iments) are shown as a function of angle of incidence in Fig. 4.7. Parameters

for the plate are given in Table A.1. Rapid changes in magnitude and phase

of the transmission and reflection coefficients occur at θi ≈ 0◦, 12◦, 15◦, 27◦, and

31◦. We expect nonspecular phenomena in sound beams reflected from, and

transmitted through, the plate to occur at angles of incidence near these critical

angles. Comparison of Fig. 4.7 with Fig. 4.6 shows that these critical angles

correspond to angles of excitation of Lamb waves. Each transmission maximum

(and corresponding reflection minimum) is labeled according to its associated

Lamb mode.

Figure 4.8 shows the transmission and reflection coefficients for a 2 MHz

plane wave incident upon the aluminum plate. These figures show that second

harmonic generated in a 1 MHz sound beam between the source and the plate will

interact differently with the plate than will the sound beam at the fundamental

frequency. This is not surprising, given the frequency dependence of the Lamb

excitation angles shown in Fig. 4.6. Transmission is increased only slightly at

30◦ due to the presence of the pseudo-Rayleigh mode; however, there is a 360◦

phase change.

4.1.5 Linear reflection and transmission for diffracting sound beams

We calculate the reflected and transmitted fields by incorporating the appropri-

ate function, Eqn. (4.18) or (4.19), into the angular spectrum, and propagate

the resulting component plane waves to the receiver plane. Equations (4.18)

and (4.19) are presented as functions of angle of incidence. In Sec. 4.1.1 we

expressed propagation angle θ for a plane wave in terms of κ, so we may also

express the transmission and reflection coefficients as functions of κ using the

relation sin θ = |κ|/k. The reflected field at a distance z = di + dr of a sound

beam with source spectrum P̂ (κ, 0) is

P (x, z) = F−1
{
V (κ)P̂ (κ, 0)e−jKz

}
, (4.24)
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Figure 4.7: Plane-wave transmission and reflection coefficients for an aluminum
plate at 1 MHz. Parameters for the plate are given in Table A.1.
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and the transmitted field at z = di + dt is

P (x, z) = F−1
{
W (κ)P̂ (κ, 0)e−jKz

}
. (4.25)

A characteristic of linear reflection and transmission is that the fields propagated

to the receiver depend on the total source-receiver distance z, but not on di, dr, or

dt individually. This can be seen from Eqns. (4.24). The physical interpretation

of this result is that the distance between the source and the plate does not affect

the received field, as long as the total path length from the source to the receiver

is constant.

4.2 Nonlinear theory

In this section we reveiw the development by Landsberger and Hamilton64 of

equations describing the pressure field at angular frequency 2ω given the field

at ω. This development assumes weakly nonlinear effects; strong effects such

as shocks are not described by this model. Second harmonic is assumed to be

generated only in the fluid, and interactions with the plate are assumed to occur

independently for the pressure fields at the fundamental and second harmonic.

For a pressure field at z = z0, an expression is given that describes the field at

the second harmonic at any plane z > z0.

4.2.1 Wave interaction in the fluid

We model the wave interaction in the fluid using the lossless second-order wave

equation for the fluid, Eqn. (2.15), generalized for wave motion in three dimen-

sions.64 Because we are modeling directional sound beams, the effects of the

Lagrangian density are small so we set L = 0. We apply the method of succes-

sive approximations to model the pressure at 2ω. Thus we set p = p(1) + p(2),

where |p(1)| � |p(2)|. Here, p(1) is the sound pressure at ω and p(2) is the sound

pressure at 2ω. Doing so gives(
∇2 − 1

c2
∂2

∂t2

)
p(1) = 0 , (4.26)
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(
∇2 − 1

c2
∂2

∂t2

)
p(2) = − β

ρc4
∂2(p(1))2

∂t2
. (4.27)

We express p(1) and p(2) as

p(n)(x, z, t) = 1
2
P (n)(x, z)ejnωt + c.c. , n = 1, 2 . (4.28)

The source condition at a plane z = z0 is

p(x, z0, t) = 1
2

[
P (1)(x, z0)e

jωt + P (2)(x, z0)e
j2ωt

]
+ c.c. . (4.29)

Note that we do not set P (2)(x, z0) = 0 in Eqn. (4.29). This way we may

accommodate second-harmonic generation and propagation from planes other

than the plane of the sound source.

The solution to Eqn. (4.27) for the source condition given in Eqn. (4.29) and

Eqn. (4.14), is

P (1)(x, z) = F−1
{
P̂ (1)(κ, z0)e

−jK1∆z
}

=
∫
P̂ (1)(κ, z0)e

−jk·r dκ

(2π)2
, (4.30)

where

Kn =
√

(nk)2 − |κ|2 , n = 1, 2 , (4.31)

is the projection of k along the z axis; also, k = (kx, ky, kz) = (κ, K1), r =

(x, y,∆z) = (x,∆z), and ∆z = z − z0. The homogeneous solution P
(2)
h satis-

fies the Helmholtz equation (∇2 + 4k2)P
(2)
h = 0, the solution of which is, from

Eqn. (4.14),

P
(2)
h (x, z) = F−1

{
P̂ (2)(κ, z0)e

−jK2∆z
}
. (4.32)

We now find the particular solution P (2)
p . Substituting Eqns. (4.29) and (4.30)

into Eqn. (4.27) yields

(∇2 + 4k2)P (2)
p =

2βk2

ρc2

∫ ∫
e−j(k′+k′′)·rP̂1(κ

′, z0)P̂1(κ
′′, z0)

dκ′dκ′′

(2π)4
. (4.33)



    

123

Applying Eqn. (4.1) to both sides of Eqn. (4.33), and then performing the inte-

grals over x and κ′′, gives(
∂2

∂z2
+K2

2

)
P̂ (2)

p =
2βk2

ρc2

∫
e−j(Ka+Kb)∆zP̂ (1)(κ′, z0)P̂

(1)(κ − κ′, z0)
dκ′

(2π)2
, (4.34)

where

Ka =
√
k2 − |κ′|2 , Kb =

√
k2 − |κ − κ′|2 . (4.35)

The solution of Eqn. (4.34) is

P̂ (2)
p (κ, z) =

∫
Qf (κ,κ

′,∆z)P̂ (1)(κ′, z0)P̂
(1)(κ − κ′, z0)

dκ′

(2π)2
, (4.36)

where

Qf (κ,κ
′,∆z) =

2βk2

ρc2

(
e−j(Ka+Kb)∆z − e−jK2∆z

K2
2 − (Ka +Kb)2

)
. (4.37)

Equation (4.36) satisfies the condition that P (2)p(x, z0) = 0. The pressure at

frequency 2ω is the sum of the homogeneous and particular solutions,

P (2)(x, z) = F−1
{
P̂ (2)(κ, z0)e

−jK2∆z + P̂ (2)
p (κ, z)

}
. (4.38)

4.2.2 Reflection and transmission at second-harmonic frequency

We first consider the reflection of a sound beam from a plate. The condition

at second order at the plane of the source, z = 0, is that P (2)(x, 0) = 0. The

pressure field at the second harmonic at the receiver (z = zr) is64

P (2)
r (x, zr) = F−1{P̂ (2)

r,inc(κ, zr) + P̂
(2)
r,refl(κ, zr)} , (4.39)

where

P̂
(2)
r,inc(κ, zr) = V (κ)P̂ (2)

p (κ, di)e
−jK2dr (4.40)

is the contribution to the second harmonic at zr due to the second harmonic

generated by the sound beam at the fundamental before reflection from the plate.

The quantity P (2)
p (κ, di) is defined in Eqn. (4.36), with z0 = 0 and ∆z = di. Also,

P̂
(2)
r,refl(κ, zr) =

∫
Q(κ,κ′, dr)P̂

(1)
r (κ′, di)P̂

(1)
r (κ − κ′, di)

dκ′

(2π)2
(4.41)
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is the contribution to the second harmonic at zr generated by the sound beam

at the fundamental after reflection from the plate.

It is straightforward to modify Eqns. (4.39)–(4.41) to model transmission

through the plate. To do so we replace V (κ) with W (κ), and dr with dt.

4.2.3 Absorption

Thermoviscous attenuation is accounted for ad hoc. In the fluid, we render the

wave number K = kz complex because the sound beam is propagated in the z

coordinate. Hence we replace K with K̃, where

K̃ = K − jαz . (4.42)

As illustrated in Fig. 4.9, for a plane wave propagating at angle θz propagates

a distance ∆z/ cos θz. Because the propagation operation acts along the z axis,

the effective absorption coefficient is αz, defined as

θ
z

z
cos θ∆

∆
cos θ
α

zα =

Figure 4.9: Absorption coefficient for a plane wave propagating with angle θ from
normal incidence.

αz = α/ cos θz . (4.43)

Values for α at 1 and 2 MHz are given in Table A.1.
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Absorption in the plate may also be taken into account. However, because

aluminum has a fairly low absorption coefficient at the frequencies of interest,

and the plate is thin, the effects of absorption in the plate are small and are

neglected in our model.

4.2.4 Numerical evaluation

Numerical evaluation of the equations that describe the pressure field at the

receiver plane in wave vector space is performed by discretizing the variable

κ = (kx, ky). Continuous integrals are approximated as summations over the

discrete values of kx and ky such that, for the integral of some function F ,

∫ ∫
F (kx, ky)dkxdky →

imax∑
i=imin

jmax∑
j=jmin

F (i∆kx, j∆ky)∆kx∆ky. (4.44)

Transformations from (kx, ky) to (x, y) and vice-versa are accomplished using a

two-dimensional Fast Fourier transform algorithm.

Approximation of the Fourier integrals as discrete sums results in the intro-

duction of two parameters for each variable of integration. These parameters

are the number of summation points and the spacing between points (∆x for the

variable x). We choose values of ∆x and ∆y on the order of 1 mm, which is small

enough that the fine structure of the reflected and transmitted fields is modeled

accurately. Once ∆x and ∆y are chosen, the number of summation points must

be large enough to avoid aliasing. This aliasing is a consequence of the approxi-

mation of the Fourier integrals by discrete sums, which causes the pressure field

to be repeated periodically in (x, y) space. If too few summation points are used,

the repeated pressure fields will overlap the desired pressure field, resulting in

error. For most of our calculations, 512 points in each dimension was sufficient

to model the pressure fields accurately.

Calculation of the angular spectrum for the second harmonic field involves

discretizing Eqn. (4.36) in the manner described by Eqn. (4.44). This results in
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an equation of the form

P̂ (2)
p (m∆kx, n∆ky) =

imax∑
i=imin

jmax∑
j=jmin

F (m∆kx, n∆ky, i∆k
′
x, j∆k

′
y)∆k

′
x∆k

′
y , (4.45)

where m and n are integers. Determining the complete angular spectrum P̂ (2)
p

thus requires summation over the indices i, j, m, and n, which becomes pro-

hibitively computationally intensive when enough points are used to model ac-

curately the sound fields under investigation in this chapter. In practice, the

sums over indices i and j for a given component P̂ (2)
p (m∆kx, n∆ky) are limited

to points within about 10◦ of the direction of (m∆kx, n∆ky). The error that

results from truncating these sums is small, because the nonlinear interaction

of plane waves is weak at large angles. In addition to truncating the sums, the

number of calculations needed to model the sound field is halved by exploiting

symmetry about the y axis.

4.3 Experimental results

Reflection and transmission experiments were performed using a plane piston

source, with source radius a = 1.22 cm, operating at 1 MHz, and with a source

pressure p0 = 100 kPa. The source, plate, and receiver were immersed in fresh,

deionized water. Details of the apparatus are given in App. A. The goal of the

experiments was to measure accurately the reflection and transmission of a sound

beam incident obliquely upon a 1/8 in. aluminum plate. Pressure was measured

at the fundamental and second harmonic frequencies.

We compare experimental results with predictions made using the model

described in the previous sections. We have found that, although the material

parameters that produce the best match between experiment and theory vary

by a few percent from angle to angle (for which different portions of the plate

are interrogated), the parameters that give the best match between theory and

experiment over all angles are given in Table A.1.

Figures 4.10–4.14 show the transmitted pressure field along the x axis as

the angle θ0 of the beam axis with respect to normal is varied. Measurements
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in Figs. 4.10 and 4.11 were made using a PVDF needlepoint hydrophone, and

all other measurements were made using a PVDF membrane hydrophone. The

source and receiver were both positioned at di = dt = 150 mm from the plate.

Experimental results are compared with theoretical predictions. In these plots

x = 0 cm corresponds to the location of the axis of the sound beam in the ab-

sence of the plate, predicted using ray theory. Measurements of the fundamental

and second harmonic are in good qualitative and quantitative agreement with

theory. At normal incidence the transmission coefficient is close to unity, as seen

in Fig. 4.7. The magnitude of the transmission coefficient drops rapidly as θ

increases from 0◦ to 9◦. Measurements over these angles are taken at approx-

imately every 2◦ because the transmission is very small and W changes slowly

through most of this range of angles. For angles from 11◦ to 32◦, W changes

rapidly, so measurements are taken at every degree.

Because 1 MHz is nearly a pass band for a 1/8 in. aluminum plate, the

magnitude of the transmitted pressure at the fundamental is large at normal

incidence. One feature of note in the transmitted pressure at the fundamental at

θ0 = 0◦ is that the sidelobes are about 5 dB lower with respect to the main lobe

than they are for a sound beam in the farfield with no plate. The magnitude of the

second harmonic is large as well, because the second-harmonic frequency is also

near a pass band for the plate. Discrepancies between theory and measurement

are probably the result of small differences between the material parameters for

the plate and the parameters in the model.

From normal incidence to 9◦ the transmitted pressure drops by an order of

magnitude. Although the beam pattern for the transmitted pressure at 9◦ is

heavily distorted, especially at the fundamental, theory is in agreement with

measurement. A null in the transmitted field at the fundamental is observed at

12◦. This corresponds to the excitation of the s1 mode. However, the excitation

of the a1 mode near 15◦ does not lead to strong nonspecular effects. Some of

the strongest nonspecular transmission phenomena at the fundamental occur

between 20◦ and 25◦. Figure 4.7 indicates that there is no Lamb excitation angle

in this range. The magnitude of the transmitted sound beam increases steadily
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Figure 4.10: Transmission through 1/8 in. aluminum plate, di = dt = 150 mm,
from θ0 = 0◦ to θ0 = 9◦. Source used is a plane piston, a = 1.22 cm, p0 = 100 kPa.
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Figure 4.12: Transmission through 1/8 in. aluminum plate, di = dt = 150 mm,
from θ0 = 15◦ to θ0 = 20◦.
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Figure 4.13: Transmission through 1/8 in. aluminum plate, di = dt = 150 mm,
from θ0 = 21◦ to θ0 = 26◦.
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Figure 4.14: Transmission through 1/8 in. aluminum plate, di = dt = 150 mm,
from θ0 = 27◦ to θ0 = 32◦.
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over this range of anlges. Changes in W over that range of angles due to the

a0 mode are apparently the cause of the distortion of the beam pattern. The

corresponding reflection of the fundamental from 21◦ to 25◦, shown in Fig. 4.15,

does not exhibit significant beam distortion. Above 27◦ there are no more nulls

in the transmitted sound beam at the fundamental, even though the a0 mode is

excited near 31◦.

The transmitted and reflected fields at the second harmonic are more com-

plicated than those at the fundamental frequency. For the second harmonic field

there are two potential causes of nonspecular effects. First, the second harmonic

generated after interaction with the plate is subject to the changes in the field at

the fundamental frequency, which is dictated by the reflection and transmission

coefficients at that frequency. Second, the second harmonic generated before

interaction with the plate is itself subject to nonspecular phenomena associated

with transmission through, or reflection from, the plate. In this latter case, the

transmission and reflection coefficients at the second harmonic frequency dictate

the interaction.

Of particular interest in the transmitted second harmonic is near 26◦. As

shown in Fig. 4.13, a well-defined null is present in the transmitted beam pat-

tern. This corresponds to excitation of the a1 mode by the second harmonic,

shown in Fig. 4.8, and also to the excitation of the a1 mode by the fundamental

at 27◦. There is a corresponding transmission maximum at the fundamental;

however, this maximum extends over a few degrees. This result implies that,

in certain cases, the second harmonic may provide clearer information than the

fundamental when determining Lamb wave excitation angles.

As θ0 approaches 32◦, theory for the second harmonic amplitude significantly

overestimates the measurement. Figures 4.7 and 4.8 indicate that the trans-

mission coefficients at the fundamental and second harmonic frequencies rapidly

approach zero after 30◦. Small deviations in the material parameters of the plate,

such as local fluctuations in thickness, may affect this behavior strongly.

Figures 4.15 and 4.16 show reflected fields. Because the source and its mount-

ing hardware disturb the reflected field at small angles, only reflection at larger
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values of θ0 could be measured. The receiver was positioned at dr = 300 mm

from the plate in order to keep it out of the way of the source, which was po-

sitioned at di = 150 mm. In general, nonspecular effects are stronger for the

reflected fields than for the transmitted fields. Near θ0 = 25◦ the reflected field

at the fundamental frequnency is mildly distorted; however, the second harmonic

field displays very strong interference phenomena corresponding to the presence

of the a1 mode. Figures 4.7 and 4.8 show that 25◦ is a Lamb angle at the second

harmonic, so that small changes in incident angle translate to large differences

in reflection. Changes in the reflection coefficient with angle of incidence near

25◦ are more gradual at the fundamental frequency. In general, very strong non-

specular effects occur between 27◦ and 31◦. At 29◦ nonspecular effects due to

Lamb angles at 27◦ and 31◦ combine.

The reflected and transmitted pressure fields are very sensitive to small varia-

tions in the parameters of the plate. Variations on the order of a few percent have

a very strong effect on the results. Because the measurements were not made all

at once, different portions of the plate were irradiated for measurements made at

different values of θ0. It is probable that there is some variation in the material

properties over the expanse of the plate, because theory may be matched almost

perfectly with experiment for any individual measurement by varying the values

of the material constants in the code by a few percent. This is illustrated in

Fig. 4.17. By varying in the calculations the shear sound speed ct by about one

percent, and the thickness l by about five percent, from their nominal values,

theory may be matched closely with measurement for the reflected sound beam

at θ0 = 30◦. At other angles, however, these values for the parameters of the

plate will lead to large discrepancies between theory and measurement.

4.3.1 Discussion

Comparison of theory with measurement shows that our model predicts accu-

rately the reflection and transmission of a sound beam incident upon an isotropic

plate at the fundamental and second harmonic frequencies. Although the re-

ceived second harmonic depends on the interaction of the sound beam with
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Figure 4.15: Reflection from 1/8 in. aluminum plate, di = 150 mm, dr = 300 mm,
from θ0 = 21◦ to θ0 = 26◦.
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Figure 4.16: Reflection from 1/8 in. aluminum plate, di = 150 mm, dr = 300 mm,
from θ0 = 27◦ to θ0 = 32◦.
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Figure 4.17: Comparison of measurement (solid) with theory for the reflected
sound beam at θ0 = 30◦. Parameters are ρ = 2727 kg/m3, cl = 6317 m/s, ct =
3128 m/s, and l = 3.048 mm (short dash), and, from Table A.1, ρ = 2727 kg/m3,
cl = 6317 m/s, ct = 3163 m/s, and l = 3.191 mm (long dash).

the plate at both f and 2f , our results (for example, the reflected pressure

at θ0 = 25◦, shown in Fig. 4.15) suggest that the measured second harmonic can

be used to determine the excitation angle for some Lamb modes at frequency 2f .

The reflection and transmission coefficients used in our model, while exact,

do not allow us to examine the effects of different Lamb modes seperately from

one another. However, as long as other transmission and reflection coefficients

can be expressed as functions of κ it is straightforward to substitute them into

our model. Approximate expressions that expand the reflection and transmission

coefficients as a sum of resonance terms corresponding to the excitation Lamb

modes, such as those developed by Fiorito et al.,48 could be used to explore the

effects of individual Lamb modes.



  

Chapter 5

SUMMARY AND CONCLUSIONS

This dissertation reports an investigation of the interaction of ultrasound with

layers and plates. Both theoretical and experimental work are reported. Models

were developed that describe the interaction of ultrasound with plates, and then

those models were evaluated experimentally. Effects of weak nonlinearity were

included in the models, and measurements included amplitudes of the second

(and sometimes third) harmonics. In Chaps. 2 and 3 we considered the interac-

tion of plane waves with plates at normal incidence. In Chap. 4 we considered

diffracting sound beams obliquely incident upon plates.

This work was motivated by studies in the field of acoustic nondestructive

testing. Ultrasonic inspection has long proved to be a useful method for probing a

sample’s characteristics. Traditional ultrasonic inspection techniques utilize the

linear propagation characteristics of the sound in the structure. Several recent

investigations indicate that fatigue and damage of a material cause changes in the

nonlinear parameters of the material, which can be orders of magnitude larger

than the changes in the linear parameters. For this reason, nonlinear acoustic

techniques for nondestructive evaluation have potential advantages over linear

techniques.

In Chap. 2 we presented theory and measurements for the second harmonic

and sum frequency pressures generated nonlinearly in, and radiated from, an

isotropic elastic layer. We first attempted to measure the nonlinearity of the layer

by measuring the second harmonic propagating back towards the source upon

interaction with the plate. Diffraction effects in the sound beam cause reflections

in the incident sound beam, even at pass-band frequencies. The second harmonic

generated in the fluid and reflected from the plate could not be distinguished

from the second harmonic generated in the plate and radiated back from the
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source. An alternative configuration was studied, in which two sound beams

with different source frequencies were normally incident upon the plate from

opposite directions. Nonlinear effects arising in the plate could not be identified

because the nonlinear generation occurred primarily in the fluid. Also, diffraction

effects in the sound beam were strong enough that the plane-wave model was

inadequate to describe the interaction.

In Chap. 3 the interaction of ultrasound with two plates meeting at a compli-

ant, nonlinear boundary was investigated. Theory was presented that predicted

both the linear and nonlinear response of a defective plate to a normally-incident

plane wave. The linear behavior was observed qualitatively in the measurements.

As the contact boundary increased in compliance, changes were predicted the-

oretically and observed experimentally in the reflection and transmission co-

efficients. Higher harmonic generation at the contact boundary was not ob-

served in our experiments; rather, all observed higher harmonic generation was

attributable to nonlinear effects in the fluid. One linear effect caused by the in-

clusion of a compliant boundary between the plates is the shifting of pass-band

frequencies. If the incident sound beam contains significant harmonics, reflec-

tion and transmission of those harmonics will be disproportionate because of

this shifting of resonance frequencies. For this reason care must be taken when

attempting to measure the nonlinearity of a plate not to confuse effects of linear

resonance shifting with nonlinear harmonic generation in the plate.

In Chap. 4 the reflection and transmission of a sound beam at oblique in-

cidence upon a homogeneous, isotropic plate was examined theoretically and

experimentally. Effects of diffraction, absorption, and weak nonlinearity are in-

cluded in the model. Diffraction in the sound beam is modeled using a Fourier

spectrum technique, in which the sound beam is represented as the superposition

of plane waves propagating in different directions. Second harmonic generation

in the fluid is taken into account using a model that is based on the analytic

solution for harmonic generation by pairs of noncollinear plane waves. The sec-

ond harmonic generated by each pair of plane waves is superposed numerically to

give the total second harmonic at the target plane. The theoretical model is fully



 

140

three-dimensional. All effects of interaction of the sound beam with the plate,

including the excitation and propagation of leaky Lamb waves, are taken into

account in the plane-wave reflection and transmission coefficients. Quantitative

agreement was found between theory and experiment at the fundamental and

second harmonic frequencies. Theoretical predictions indicate that the reflected

and transmitted sound fields are very sensitive to variations in the material pa-

rameters of the plate.

One situation not examined in this dissertation is the reflection and trans-

mission of ultrasound through anisotropic and inhomogeneous plates, such as

composites and laminates. Such an investigation may prove valuable, consider-

ing the increasing use of these materials. The theory described in Chap. 4 could

be adapted readily to accommodate such materials.

The overarching goal of this work was to explore practical arrangements for

using ultrasound for evaluating immersed plates, with an emphasis placed on

nonlinear effects. In Chap. 2 we found that, contrary to our motivating hypoth-

esis, the nonlinear generation of second harmonic in an isotropic plate was not

significantly enhanced by resonance effects. Also, diffraction effects and nonlin-

earity in the sound beam were strong enough to obscure the second harmonic

generated in the plate, even under the best circumstances we could devise. Work

by a number of authors indicated that harmonic generation in the plate could

be enhanced by introducing contact nonlinearity. As reported in Chap. 3, we at-

tempted to observe this enhanced harmonic generation but were unable to do so.

One explanation for this is that most other authors used optically polished sam-

ples that were pressed together, and typically excited the samples using contact

transducers. We chose to examine immersed, weakly bonded samples because

we felt this arrangement had the potential to be particularly useful for indus-

trial applications. Also, the use of contact transducers on the plates would have

disturbed resonances excited in the plate. However, any anomalous nonlinear-

ity generated in our experiments because of weak bonding was obscured by the

nonlinearity generated in the sound beam as it propagated in the water.

Although nonlinear effects were not observed in the plates, we obtained some
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results that are potentially useful. Observations of the linear reflection and trans-

mission coefficients of plates with planar, spring-like boundaries, described in

Chap. 2, are potentially useful for estimating the bond strength between two

joined plates. Also, the experiments reported in Chap. 4 are in good agreement

with theory. The beam patterns of the reflected and transmitted sound beam

are quite sensitive to the material parameters of the plate, and as such can be

used to characterize the sample.



     

Appendix A

Experimental Apparatus

All measurements reported in this dissertation were made at the Ultrasonics Lab-

oratory in the Mechanical Engineering Department of The University of Texas

at Austin. Details of the apparatus are given by Averkiou,75 TenCate,76 and

Landsberger.77 This appendix includes information from their descriptions.

A.1 Tank and positioning system

The heart of the ultrasonics laboratory is the immersion tank. The walls of the

tank are 1/2 in. thick glass panes with dimensions 0.9 m × 0.9 m × 1.5 m.

The tank is filled with filtered, degassed, deionized water. Although there is

no temperature control for the tank, the temperature is monitored continuously

during testing and the room is kept at approximately 21◦C by the climate con-

trol system of the building. The position of either the source or the receiver is

computer controlled with high precision. The positioning system has a 20 µm

readout resolution along the x and y axes, an 8 µm resolution along the z axis,

and 0.002◦ angular resolution in rotation about the vertical axis. The apparatus

is controlled by a Macintosh computer running LabVIEW by National Instru-

ments. Photographs of the laboratory and the tank are shown in Figs. A.1

and A.2, respectively. These photographs are repeated from the dissertation by

Landsberger.77

A.2 Laboratory equipment

A.2.1 Sources

The sources used in our measurements were piezoelectric immersion transducers

made by Panametrics Inc. Source diameters were 1 in. and 1.5 in., with resonance
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Figure A.1: Photograph of the ultrasonics laboratory (after Landsberger).

Figure A.2: Photograph of water tank with positioning apparatus (after Lands-
berger).
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frequencies of 1 MHz and 2.25 MHz. Both focused and plane piston sources were

used.

Calibration of the experimental apparatus is performed by exploiting the

nonlinear propagation of a sound beam in water, which can be modeled with

high accuracy. The only assumption is that the response of the hydrophone is

flat between the fundamental and second harmonic frequencies. In the supplied

calibration information, Marconi states that, between 1 MHz and 2 MHz, the

response of the membrane hydrophone is flat to within 0.5 dB. Source pressure

of the sound beam is determined by matching measurements of the sound field

in water with theory at the fundamental and second harmonic. Because the

coefficient of nonlinearity for fresh water at room temperature is known to be

β = 3.5,78 the source pressure may be determined.

Experimental measurements of the sound beam were matched to numerical

solutions of the KZK equation for a circular, plane piston source79 and for a

circular, focused piston source.80 As an example, comparison between theory

and experiment for a 1 MHz, 1 in. diameter plane piston source is shown in

Fig. A.3. Source pressure is determined to be 97.5 kPa for an input of 39.8 volts

to the source. The measured source radius is a = 1.225 cm, which is slightly

less than the manufacturer’s specification of a = 1.27 cm. The small differences

between theory and measurement may be the result of a slight nonuniformity in

the pressure distribution at the piston face.

A.2.2 Hydrophones and preamplifiers

The hydrophone used in most of our measurements is a PVDF membrane hy-

drophone made by GEC-Marconi. The hydrophone, shown in Fig. A.4, is made

of a thin membrane stretched out onto a rigid hoop (like a drum head). The

active element, with a diameter of 1 mm, is at the center of the membrane.

The membrane is approximately impedance matched to the water, such that the

transmission loss at 2.25 MHz is approximately 0.5 dB.75 The distance from the

active element to the hoop is 50 mm, and as a result an incident tone burst
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should be limited to about 30 µs in duration in order to avoid contamination

due to reflections from the hoop.

Figure A.4: Photograph of the PVDF membrane hydrophone used for most
experiments.

Directionality of the membrane hydrophone was measured by Landsberger77

at 1 MHz and 2 MHz. The hydrophone response was found to be flat to within

approximately 1 dB at both frequencies for angles of incidence within 5◦ of

normal incidence. For the measurements made in this dissertation we keep the

membrane hydrophone as close as possible to normal with the incident sound

beam, usually within a few degrees.

For some measurements an NTR-TNU001A (NP-1000) PVDF membrane,

needlepoint hydrophone was used. The active element is 0.5 mm in diameter.

This hydrophone was used when we needed to receive signals of longer than

about 30 µs duration. A styrofoam shroud was constructed to deflect the inci-

dent sound field away from the needle body, which caused interference with the

field measured at the active element. The needlepoint hydrophone was used in

situations where the sound field needed to be measured for durations longer than

30 µs from the first arrival at the hydrophone.

The hydrophones were connected to an EG&G model 115 wideband pream-

plifier. The preamplifier had two fixed settings of either 20 or 40 dB of gain. The
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input impedance of the preamplifier was either 50 Ω or 1 MΩ, and the output

impedance was 50 Ω. Connecting the preamplifier output to a high impedance

oscilloscope or digitizer input gives an additional 6 dB of gain, but no adverse

effects due to the large impedance mismatch were observed.

A.3 Signal generators and amplifiers

Waveforms used in this research were generated by an HP 3314A function gener-

ator and by a LeCroy model 112 arbitrary function generator. The HP was used

for most situations because of its simplicity, especially when changing frequen-

cies. The LeCroy function generator was used when source waveforms needed

to be windowed, or two signals were generated at once. The function generators

were computer-controlled via a GPIB connection to the Macintosh computer

running LabVIEW. Signals from the function generators were amplified using

ENI power amplifiers. An ENI model 2100L RF amplifier providing 55 dB of

gain was used for all measurements involving a single source. When two sources

were used, an ENI model 240L, which provides 50 dB of gain, was used to drive

the second source.

A.4 Material Characteristics

Material constants for the plates used in this dissertation are given in Table A.1.

Parameters given are velocities for longitudial waves cl and transverse waves

ct, density ρ, coefficient of nonlinearity β, plate thickness l, and absorption

α. Most of the measurements were made using an aluminum plate with thick-

ness l = 3.048 mm (≈ 1/8 in.). Some measurements were made using bonded

1/16 in. thick aluminum plates, and bonded 0.093 in. (2.362 mm) thick acrylic

plates. (This is a standard thickness for acrylic plates.)

Material constants used for aluminum (except for β) were determined in our

laboratory. The coefficient of nonlinearity β for longitudinal waves in aluminum

was derived using Eqn. (2.16), and measurements for the third-order elastic con-

stants which were reported by Landolt-Bornstein.81 Material constants used in
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this work for acrylic were reported by Landsberger and Hamilton64 and Lands-

berger.77

Although no experiments were performed using steel plates, predictions of

transmission, reflection, and second harmonic radiation involving steel plates are

given in Secs. 3.1.4 and 3.2.4. For these predictions, the material constants used

were taken from Kinsler et al..82

Material

water

aluminum

acrylic

steel

c c ρ β l α
l t

(m/s) (m/s) (kg/m )3 (mm)

l

1 MHz 2 MHz
(Np/m) (Np/m)

1.588

2.362

1486 998 3.5 .025 .10

27276317 3.048*3128

77006100

2760 1182 *

8.5

10

.025

a a

a a

b bc

d d d

f e

Table A.1: Physical parameters for the materials used in this dissertation. *Plate
thickness, unless otherwise specified. Sources of data: (a) Kinsler, et al.,82 (b)
Francois and Garrison,83 (c) Beyer,78 (d) Landsberger and Hamilton,64 (e) Lands-
berger,77 (f) Landolt-Bornstein.81 All other data were determined in our labora-
tory.

A.5 Signal processing

The signal from the preamplifier was fed into a Tektronix RTD 710 digitizer,

which samples with 10 bits of resolution at a maximum sampling frequency of

200 MHz. The input gain is also adjustable in discrete steps to maximize the

signal-to-noise ratio of the digitized signal. We used a sampling frequency of 100
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MHz, because the Nyquist frequency of 50 MHz is much higher than the response

of the Marconi which rolls off higher than about 20 MHz.

Digitized waveforms were sent to the computer via a GPIB connection. The

sampled waveform was usually 1024 points long (10.24 µs at the 100 MHz sam-

pling frequency), and although the source waveforms were tone bursts, the por-

tion of the received signal windowed was, as much as possible, in the steady

state. A Blackman-Harris window was applied to the sampled waveform in order

to more effectively discriminate among the harmonics.

Averaging was applied by the digitizer to increase the signal-to-noise ratio.

Typically, averaging over 128 samples gave a sufficient signal to noise ratio (ap-

proximately 90 dB). However, for discriminating very low-amplitude signals up

to 4096 samples were averaged. Even after averaging over 4096 samples, how-

ever, the signal-to-noise ratio is limited to about 100 dB because of word length

of the digitizer output and windowing artifacts.



    

Appendix B

Full Expression for Nonlinear Generation in an
Isotropic Layer

In this appendix we solve for the sum-frequency pressure that is generated in

an isotropic plate due to normally-incident plane waves from opposite sides and

radiated into the fluid. The solution of Eqn. (2.46) in Sec. 2.3.2 is

P (2)(0 ≤ x ≤ l) = (Hx+ C1) e
−jk+x + (Ix+ C2) e

jk+x + J e−jk−x + Kejk−x , (B.1)

where

H =
jD
2k+

, I = − jE
2k+

, J =
F

k2
+ − k2

−
, K =

G
k2

+ − k2
−
, (B.2)

and C1 and C1 are the two homogeneous solutions of Eqn. (2.46). The pressure

amplitudes of the waves radiated into the fluid are

P (2) =

P+
lefte

jkf+ x ≤ 0

P+
righte

−jkf+(x−l) x ≥ l ,
(B.3)

where kf+ = ω+/cf . Use of the one-dimensional linear momentum equation,

Eqn. (2.3), in Eqns. (B.1) and (B.3) gives the particle velocity amplitude,

U (2) =



−L+

zf
ejkf+x , x ≤ 0 ,[

(Hx+ C1) e
−jk+x − (Ix+ C2) e

jk+x + ω−
ω+

J e−jk−x − ω−
ω+

Kejk−x
]
/zs ,

0 ≤ x ≤ l ,
R+

zf
e−jkf+(x−l) , x ≥ l .

(B.4)

We now apply boundary conditions. As in Secs. 2.1 and 2.2, pressure and

particle velocity are equated across the interfaces x = 0 and x = l. Equating

pressures across interfaces gives

P+
left

2
= C1 + C2 + J + K (B.5)
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at x = 0 and

P+
right

2
= (Hl + C1) e

−jk+l + (Il + C2) e
jk+l + J e−jk−l + Kejk−l (B.6)

at x = l. Equating particle velocities across the interfaces at x = 0 and x = l

yields

−zsP
+
left

2zf

= C1 − C2 +
ω−
ω+

J − ω−
ω+

K (B.7)

at x = 0 and

zsP
+
right

2zf

= (Hl + C1) e
−jk+l − (Il + C2) e

jk+l +
ω−
ω+

J e−jk−l − ω−
ω+

Kejk−l (B.8)

at x = l.

Equations (B.5)–(B.8) may be solved for the four unknowns P+
left, P

+
right, C1,

and C2. The amplitudes P+
left and P+

right are

P+
left = −

{
j

[
J

(
ω−
ω+

− zf

zs

)
−K

(
ω−
ω+

+
zf

zs

)]
sin k+l

+

[
J

(
ω−zf

ω+zs

− 1

)
+ K

(
ω−zf

ω+zs

+ 1

)]
cos k+l

+ Hle−jk+l
(
1 − zf

zs

)
+ Ilejk+l

(
1 +

zf

zs

)

− J e−jk−l

(
1 − ω−zf

ω+zs

)
−Kejk−l

(
1 +

ω−zf

ω+zs

)}/
[
cos k+l +

j

2

(
zf

zs

+
zs

zf

)
sin k+l

]
, (B.9)

and

P+
right =

{
j

[
J e−jk−l

(
zf

zs

+
ω−
ω+

)
+ Kejk−l

(
zf

zs

− ω−
ω+

)]
sin k+l

+

[
J e−jk−l

(
1 +

ω−zf

ω+zs

)
+ Kejk−l

(
1 − ω−zf

ω+zs

)]
cos k+l

+ (Hl + Il − J −K) +
zf

zs

(Hl − Il − J + K)
}/

[
cos k+l +

j

2

(
zf

zs

+
zs

zf

)
sin k+l

]
, (B.10)
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where

H =
jβsω+

2ρsc3s
A1A2 , I = −jβsω+

2ρsc3s
B1B2 ,

J =
(βs − 1)ω2

+ − ω2
−

(ω2
+ − ω2

−)ρsc2s
A1B2 , K =

(βs − 1)ω2
+ − ω2

−
(ω2

+ − ω2
−)ρsc2s

B1A2 , (B.11)

and A1, A2, B1, and B2 are the first-order pressure amplitudes in the layer which

were determined in Sec. 2.1. In Fig. B.1 we compare the full solution with the

approximate solution as a function of f1, with f2 held at 2.06 MHz. Differences in

both magnitude and phase between full and approximate expressions are small.
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Figure B.1: Comparison of magnitude and phase of approximate expression for
P+

right (- - -) with full expression (—–), for an aluminum plate, f2 = 2.10 MHz.



    

Appendix C

Time Domain

In Chaps. 2 and 3 we considered the interaction of time-harmonic plane waves

with plates. In this appendix we report investigations of the interaction of plane

waves and sound beams with sawtooth waveforms normally incident upon plates.

Linear theory is presented for interaction of a plane sawtooth wave with an

isotropic layer and a layer with a defect, and experimental results are presented

for the transmission of an intense, focused sound beam through a plate of alu-

minum.

This work is motivated partly by work by Hedberg and Rudenko, who ex-

amined the response of a layer to an incident pulse.84 The authors considered

nonlinear layers that were soft with respect to the surrounding medium, and were

thin with respect to the length of the pulse so that resonance effects were not

included. In this appendix, we consider only linear effects, and resonance effects

are important.

C.1 Sawtooth Wave

According to weak shock theory for plane waves,70 a time-harmonic plane wave

for which nonlinear effects dominate over effects of thermoviscous absorption will

eventually develop into a shock wave. This shock wave has a broad frequency

spectrum. It is possible to exploit this property to probe a sample over a broad

range of frequencies, which extends over the bandwidth of most sources.

The shock wave takes a sawtooth form. The waveform p(t) is shown in

Fig. C.1. The Fourier series representation for the shock wave (at the shock

formation distance) is70

p(t) = p0

∞∑
n=1

1

n
sinnωt , (C.1)
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where p0 is the pressure amplitude of the undistorted wave. The amplitude of this

wave decays with distance from the source, but here we are concerned only with

the shape, and not the amplitude, of the waveform. According to Eqn. (C.1),

0
-2

-1.5

-1

-0.5

0

0.5
1

1.5

2

ω t

p
p
0

0

π π-

Figure C.1: Sawtooth wave.

the sawtooth wave contains harmonic components at angular frequencies nω,

where ω is the frequency of the plane wave before steepening. The amplitudes of

the frequency components are proportional to 1/n. The shock front carries the

high-frequency information, and it is sensitive to any changes in the distribution

of the harmonics from Eqn. (C.1). It is reasonable to expect a change in the

character of the shock front as it interacts with a layer.

C.1.1 Interaction model

We consider the transmission of a sawtooth wave in water at normal incidence

through a layer with sound speed cs and thickness l. The transmission coefficient

is given by Eqn. (2.5), easily expressed as a function of frequency:

W (ω) =
Pt

Pi

=
1

cos
(

ωl
cs

)
+ j

2

(
Zf

Zs
+ Zs

Zf

)
sin

(
ωl
cs

) , (C.2)

where Pi and Pt are amplitudes of time-harmonic incident and transmitted waves,

respectively. We assume the harmonics of the sawtooth wave interact with the
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plate independently. In that case the transmitted pressure pt is

pt = 2A
∞∑

n=1

1

n
W (nω) sinnωt , (C.3)

where W (nω) is the value of the transmission coefficient at angular frequency

nω.

Waveforms of the transmitted sawtooth waves as the frequency is swept

through the resonance at f = 2.075 MHz are shown in Fig. C.2. As the phases of

the harmonics change when the primary frequency is swept through resonance,

the waveform changes rapidly. When the primary frequency is at resonance,

f0 = 2.075 MHz (middle), the waveform is nearly indistinguishable from Fig. C.1.

Figure C.2 indicates that the changes in the sawtooth waveform upon transmis-

sion through a plate may provide a sensitive means of determining the resonance

frequency of the sample.

C.1.2 Experimental results

Experiments were performed using a focused source with effective source radius

a = 18 mm and focal length d = 162 mm normally incident upon an aluminum

plate, which is approximately 1/8 in. thick (properties for the plate are given in

Table A.1). The resonance frequency of the source was 2.25 MHz. The source-

plate distance was 150 mm, and the distance from the plate to the hydrophone

was 20 mm.

A direct comparison between waveforms with and without the plate could

not be made, because the pressure amplitude of the wave without the plate is

high enough to overload the preamplifier. We use a well-tested time-domain

computational model85 to predict the waveform at the receiver with no plate

between the source and receiver. The waveform is shown in Fig. C.3. Because

of diffraction effects, the incident waveform does not achieve a sawtooth form.

However, the predicted waveform indicates that a shock wave has formed, so the

waveform contains significant high-frequency information.
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Figure C.4 shows the transmitted waveform for f0 = 1.98 MHz to f0 =

2.28 MHz. Although the results do not resemble Fig. C.2 for a plane wave, the

waveform changes shape as the source frequency sweeps through the pass band.

This is due to the shifting of the phases of the harmonics in the incident with

respect to one another as the frequency is swept through the resonance. Another

characteristic of Fig. C.2 is that the waveform is steepened, but not shocked

as in Fig. C.3, indicating that the higher harmonics are attenuated significantly

upon transmission through the plate. Also, changes the waveforms shown in

Fig. C.4 occur over a range of about 0.2 MHz, whereas changes occur in the

waveforms shown in Fig. C.2 over a range of about 0.01 MHz. It is possible that

this disparity is due to the strong attenuation of the higher harmonics in the

measured waveforms.

C.1.3 Plates with defects

The transmission of a plane sawtooth wave through bonded plates was also mod-

eled. This was accomplished by replacing the transmission coefficient for an

isotropic layer, Eqn. (C.2), with the transmission coefficient for a plate with

a compliant planar boundary, derived in Chap. 3. Only linear phenomena are

considered.

Predictions are shown in Fig. C.5. We first consider two bonded 1/16 in. alu-

minum plates (the bond is located at η = x/l = 0.5, left column). The stiffness

is K = 2 × 1015 Pa/m, which was chosen because the effects of the defect are

significant but the sawtooth character of the transmitted waveform is intact. As

the excitation frequency sweeps from 0.985 MHz to the pass band at 0.995 MHz,

a spike appears which is centered at ωt = 0. As the frequency shifts above the

pass band the spike starts to vanish. If the frequency is tuned to f2 ≈ 2 MHz,

the spike does not appear. This is because the pressure is zero at the interface

(as shown in Fig. 2.4 for λ2 = l), so the spring boundary is not activated.

Next we consider bonded plates with different thicknesses. The total thickness

of the bonded plates is 1/8 in., with the bond located at η (right column).

Frequency is fixed at the pass band at 0.995 MHz. For η = 0.1, the spikes are
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near the maximum and minimum pressures on the waveform. As the bond is

moved towards the center of the plates (η = 0.5) the spikes grow in magnitude

and approach ωt = 0. This result suggests that it may be possible to localize the

position of a crack or defect by examining the received waveform.
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