
Copyright

by

Naman Maheshwari

2019



The Thesis Committee for Naman Maheshwari
certifies that this is the approved version of the following thesis:

Estimating the Minimum Bit-Width Precision for

Stable Deep Neural Networks Utilizing Numerical

Linear Algebra

APPROVED BY

SUPERVISING COMMITTEE:

Jaydeep P. Kulkarni, Supervisor

Sudhanva Gurumurthi



Estimating the Minimum Bit-Width Precision for

Stable Deep Neural Networks Utilizing Numerical

Linear Algebra

by

Naman Maheshwari

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2019



Dedicated to my Family.



Acknowledgments

I wish to thank the multitudes of people who helped me. I would like

to thank my advisor Dr. Jaydeep P. Kulkarni and mentor Dr. Sudhanva Guru-

murthi for giving me the opportunity to do a co-operative research internship

at Advanced Micro Devices (AMD) Research, Austin, in Fall 2018, which

formed as a starting point for this research work. Their guidance and support

throughout the course of this project was invaluable. I would also like to thank

Dr. Nicholas P. Malaya and Dr. Scott Moe for being great mentors and help-

ing me with my work on a day to day basis. I appreciate all the inputs I got

from them, which helped me progress with this work in a streamlined fashion.

I would also like to thank all my team-mates at AMD Research and Circuit

Research Lab, University of Texas at Austin for being amazing co-workers.

AMD, the AMD Arrow logo, and combinations thereof are trademarks

of Advanced Micro Devices, Inc. Other product names used in this publication

are for identification purposes only and may be trademarks of their respective

companies.

v



Estimating the Minimum Bit-Width Precision for

Stable Deep Neural Networks Utilizing Numerical

Linear Algebra

Naman Maheshwari, M.S.E.

The University of Texas at Austin, 2019

Supervisor: Jaydeep P. Kulkarni

Understanding the bit-width precision is critical in compact represen-

tation of a Deep Neural Network (DNN) model with minimal degradation in

the inference accuracy. While DNNs are resilient to small errors and noise

as pointed out by many prior sources, there is a need to develop a generic

mathematical framework for evaluating a given DNN’s sensitivity to input

bit-width precision. In this work, we derive a bit-width precision estimator

which incorporates the sensitivity of DNN inference accuracy to round-o↵ er-

rors, noise, or other perturbations in inputs. We use the tools of numerical

linear algebra, particularly stability analysis, to establish the general bounds

that can be imposed on the precision. Random perturbations and ‘worst-case’

perturbations, via adversarial attacks, are applied to determine the tightness

of the proposed estimator. The experimental results on AlexNet and VGG-19

vi



showed that minimum 11 bits of input bit-width precision is required for these

networks to remain stable. The proposed bit-width precision estimator can

enable compact yet highly accurate DNN implementations.

vii



Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

1.1 A Basic Neural Network . . . . . . . . . . . . . . . . . . . . . 1

1.2 Convolutional Neural Network Basics . . . . . . . . . . . . . . 2

1.2.1 Convolutional Layer . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Activation Function . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.4 Fully-Connected Layer . . . . . . . . . . . . . . . . . . . 4

1.3 Motivation to Reduce Precision . . . . . . . . . . . . . . . . . 5

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2. Related Work 7

2.1 Binary and Ternary Networks . . . . . . . . . . . . . . . . . . 8

2.2 Empirical Exploration of Bit-Width Precision . . . . . . . . . . 8

2.3 Theoretical Bounds . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Use of Numerical Linear Algebra . . . . . . . . . . . . . . . . . 10

Chapter 3. Stability Bounds on Forward Propagation 12

3.1 Single Neuron Estimator Derivation . . . . . . . . . . . . . . . 12

3.2 Multi-layer Network Estimator Derivation . . . . . . . . . . . . 16

viii



Chapter 4. Testing the Estimator with Adversarial Perturba-
tions 19

4.1 Techniques to Generate Adversarial Perturbations . . . . . . . 20

4.2 Generated DeepFool Perturbations . . . . . . . . . . . . . . . . 24

Chapter 5. Results 27

5.1 DeepFool Perturbations . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Random Perturbations . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 6. Conclusion and Future Work 36

Appendix 38

Appendix 1. Derivation of bound for other activation functions 39

1.1 Leaky Rectified Linear Unit (Leaky ReLU) . . . . . . . . . . . 39

1.2 Exponential Linear Unit . . . . . . . . . . . . . . . . . . . . . 39

1.3 Sigmoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.4 Hyberbolic Tangent . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 41

Vita 47

ix



List of Tables

4.1 Statistics of generated DeepFool perturbations. . . . . . . . . 25

5.1 Precision requirements for input representations based on Deep-
Fool perturbations. . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Precision requirements for input representations based on ran-
dom perturbations. . . . . . . . . . . . . . . . . . . . . . . . . 35

x



List of Figures

1.1 A simple fully-connected neural network. . . . . . . . . . . . . 2

1.2 A representative convolutional neural network. . . . . . . . . . 3

2.1 Empirical per layer quantization of weights, integer portion of
activations and fraction portion of activations for AlexNet [Judd
et al., 2015]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 A single neuron example. . . . . . . . . . . . . . . . . . . . . 13

3.2 Rectified Linear Unit (ReLU) activation function. . . . . . . . 14

3.3 Example calculation of estimator in Equation (3.8) for a 3-layer
neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 One common example of adversarial perturbation. . . . . . . . 20

4.2 Linearization of classification boundaries [Moosavi-Dezfooli et al.,
2016]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Relative magnitudes of generated DeepFool perturbations to
cause misclassification. . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Some interesting misclassifications. . . . . . . . . . . . . . . . 26

5.1  estimator values for DeepFool perturbations. . . . . . . . . . 29

5.2 Distribution of 16500 images over  estimator values. . . . . . 32

5.3  estimator values for random perturbations. . . . . . . . . . . 34

xi



Chapter 1

Introduction

Deep neural networks (DNNs) achieve very high accuracy in many ma-

chine learning tasks such as object recognition, speech recognition, and natural

language processing. Many kernels in deep learning, particularly in convolu-

tional neural networks (CNNs) are designed for computer vision tasks and are

dominated by computation. For example, AlexNet [Krizhevsky et al., 2012]

has nearly 62.5 million parameters, 0.65 million neurons, 2.3 million weights

(4.6 MB of storage) and requires 666 million MACs per 227x227 image (13

kMACs/pixel); whereas VGG-16 [Simonyan and Zisserman, 2015] possesses

14.7 million weights (29.4 MB of storage) and requires 15.3 billion MACs per

224x224 image (306kMACs/pixel) [Chen et al., 2016]. The trend in current

architectures is towards networks with more layers, which require more storage

and computation per pixel.

1.1 A Basic Neural Network

Figure 1.1 shows the example of a very simple fully-connected neural

network. The first layer is called the input layer, which takes the desired form

of input, such as images in case of CNNs designed for image recognition tasks.

1



Figure 1.1: A simple fully-connected neural network.

The circles inside each layer are called neurons. For the input layer, these

circles represent the pixel values of the image being applied to the network.

The input layer is followed by several hidden layers, two in this case, which

are responsible for feature extraction. The output of each neuron is called

activation and the layers are connected by parameters called weights. Finally,

the output layer can take various forms. For example, for an image recognition

task, this layer consists of the set of classifiers and the classifier with the highest

value is the predicted value of the neural network.

1.2 Convolutional Neural Network Basics

Convolutional Neural Network (CNN) is a class of deep neural network

that is used for Computer Vision or analyzing visual imagery. A representative

2



CNN is shown in Figure 1.2. The components of a CNN are discussed in the

following subsections.

Figure 1.2: A representative convolutional neural network.

1.2.1 Convolutional Layer

An image is read as pixels and expressed as a matrix of dimension

height by width by depth (NxNx3). Images makes use of three channels (RGB)

resulting in a depth of 3. The convolutional layer makes use of a set of learnable

filters. A filter is used to detect the presence of specific features or patterns

present in the original image (input). It is usually expressed as a matrix

(MxMx3), with a smaller dimension but the same depth as the input layer.

This filter is convolved (slid) across the width and height of the input layer,

and a dot product is computed to give an activation map. Di↵erent filters

which detect di↵erent features are convolved on the input layer and a set of

activation maps is outputted which is passed to the next layer in the CNN.

Convolutional layers are used to learn di↵erent low-level features from the

images.

3



1.2.2 Activation Function

The activation function is the non-linear transformation done over the

output of the convolution operation and helps in deciding if the neuron would

fire or not. This transformed output is then sent to the next layer of neurons

as input. Most commonly used activation function is the Rectified Linear

Unit (ReLU), which is discussed in Chapter 3. Some other common activation

functions are discussed in Appendix 1.

1.2.3 Pooling Layer

The pooling layer can be seen between convolution layers in a CNN

architecture and is used to reduce the amount of parameters and computation

in the network, controlling overfitting by progressively reducing the spatial size

of the network. Two most common pooling techniques are average pooling

and maximum pooling, which take the average or maximum from the pool

respectively. Unlike the convolution layer, the pooling layer does not alter the

depth of the network.

1.2.4 Fully-Connected Layer

In the fully-connected layer, the neurons have complete connections

to all the activations from the previous layers. Their activations can hence

be computed with a matrix multiplication followed by a bias o↵set. Fully-

connected layers are used to learn higher level features from the images and

provide the last phase for a CNN network. The last fully-connected layer is

4



Softmax, which converts the outputs to probabilities based on an exponential

function.

1.3 Motivation to Reduce Precision

Lowering bit-widths in both training and inference is advantageous for

these systems because it permits faster computation and reduced power use,

particularly when the underlying hardware can natively support reduced pre-

cision. However, higher performance must be balanced by the need for accu-

racy, particularly in safety-critical systems such as autonomous driving and

health-care solutions where failure can be catastrophic. While many CNN

architectures are resilient to lower precision, no rigorous and general result

exists that provides a-priori estimates of the accuracy impact from reduced

precision. Similarly, inference is shown to be more amenable to reduced preci-

sion than training through empirical analysis, but no theoretical results exist

demonstrating why this is the case in our knowledge.

Noting that modern DNNs are governed by computational arithmetic,

and so are amenable to the tools of numerical analysis, the approach presented

in this thesis develops an estimator that predicts the impact of small pertur-

bations to the inputs of a neural network on its output. This analysis must

be performed on a network-by-network basis. This estimator can further be

used to predict the minimal input precision required for that particular neural

network such that the network does not become less stable for the perturba-

tions to its input. We then numerically study this estimator on AlexNet and

5



VGG-19, using an adversarial perturbation technique to generate sample per-

turbations. We also characterize the e↵ect of perturbations more commonly

seen in the real world by studying the estimator with random perturbations.

This analysis used pre-trained models of two standard CNNs designed

for object recognition tasks on the ILSVRC2012 ImageNet dataset [Russakovsky

et al., 2015]: AlexNet [Krizhevsky et al., 2012] and VGG-19 [Simonyan and Zis-

serman, 2015]. AlexNet has five convolutional layers and three fully-connected

layers, while VGG-19 is a deeper network with sixteen convolutional and three

fully-connected layers.

1.4 Thesis Organization

This thesis is organized as follows. Related work in reduced precision

analysis for neural networks is explored in Chapter 2. Chapter 3 presents the

estimator of the condition number for a single neuron and a multi-layer neural

network. Chapter 4 discusses the techniques used to test the estimator with

the aid of adversarial perturbation generation methods. Chapter 5 discusses

the techniques employed to compute the estimator, followed by the estima-

tor results on two prominent CNN architectures, AlexNet and VGG-19 and

Chapter 6 concludes the work.

6



Chapter 2

Related Work

Bit-Width of neural network parameters has been extensively studied

as reducing precision can enable significant improvements in memory stor-

age requirements and computational e�ciency. Recent research e↵orts have

shown that neural networks are amenable to reduced precision and have taken

di↵erent directions to study the bit-width precision requirements for neural

networks. Prior DNN precision research work can be broadly classified into

four categories. The first category is the line of work which explores bina-

rization and ternarization techniques for di↵erent neural network parameters

during training and inference to compress the network with minimum or no

loss in accuracy. The second category is an empirical exploration of bit-width

precision for neural network parameters across di↵erent layers to achieve same

accuracy as the full precision model. The third category is based on the deriva-

tion of theoretical bounds for neural networks with limited precision. The last

category of prior work, which most closely relates to this thesis, uses of the

tools of numerical linear algebra such as matrix norms to study the properties

of DNNs and establishes analytical bounds on their characteristics. The fol-

lowing four sections summarize the related works in each of the four categories

respectively.

7



2.1 Binary and Ternary Networks

Training CNNs as well as inference with binary or ternary weights and

activations can achieve comparable accuracy to full precision networks ([Cour-

bariaux et al., 2015], [Li et al., 2016], [Courbariaux et al., 2016], [Rastegari

et al., 2016]). [Zhou et al., 2016] generalized this finding to enable di↵erent pre-

cision settings for weights and activations and also demonstrated how low pre-

cision can be used for gradients at training time. Recently, [Choi et al., 2019]

proposed 2-bit Quantized Neural Networks (QNNs) using techniques to indi-

vidually target weight and activation quantizations which can achieve higher

accuracy compared to the previous quantization schemes. [Ott et al., 2017]

explored reducing the numerical precision of weights and biases for di↵erent

Recurrent Neural Networks (RNNs) empirically and concluded that weight bi-

narization techniques do not work for RNNs while ternarization schemes yield

similar or even higher accuracy than the baseline versions. All these methods

help in greatly compressing the size of the neural networks, however, these

lack an analytical method of arriving at the precision settings.

2.2 Empirical Exploration of Bit-Width Precision

[Judd et al., 2015] studied per layer quantization and observed that the

tolerance of CNNs to reduced precision data varies not only across networks,

but also within di↵erent layers of a network. They proposed an empirical

method to find a low precision configuration for a network while maintaining

high accuracy. Figure 2.1 shows the proposed empirical analysis for AlexNet,

8



where the authors claim that nine bits for representation of weights, ten bits

for integer portion of the activations and nine bits for the fraction part of the

activations are enough to achieve the similar accuracy as the baseline network

with all single precision parameters. However, this method requires simula-

tions and does not provably guarantee no loss in accuracy. [Judd et al., 2016]

is an extension of the previous work, where the authors proposed a method

called Proteus which analyzes a given DNN implementation and maintains

the native precision of the compute engine by converting to and from a fixed-

point reduced precision format used in memory. This enables using di↵erent

representation per layer for neuron activations as well as weights and helps

in reducing storage footprint and data movement, thus resulting in reduced

power consumption. [Lacey et al., 2018] presented a learning scheme to enable

heterogeneous allocation of precision across layers for a fixed precision budget.

The scheme is based on stochastic exploration for the DNN to be able to learn

an optimal precision configuration and leads to a favorable regularization ef-

fect, thus preventing overfitting and improving generalization. However, the

optimal value of the precision budget is not known beforehand.

Figure 2.1: Empirical per layer quantization of weights, integer portion of
activations and fraction portion of activations for AlexNet [Judd et al., 2015].

9



2.3 Theoretical Bounds

[Sakr et al., 2017] derived theoretical bounds on the misclassification

rate in the presence of limited precision. Models pre-trained in floating point

precision are taken and bounds are established to limit misclassification after

quantizing activations and weights to a fixed-point format. However, this is

limited in scope because it just bounds the accuracy between floating-point

and fixed-point assignments. [Gupta et al., 2015] studied the impact of lim-

ited numerical precision on neural network training and the impact of rounding

scheme in determining networks behavior during training. It shows that 16-bit

fixed-point representation incurs little accuracy degradation by using stochas-

tic rounding but does not study the precision requirements during inference.

[Zhang et al., 2017] explored training at reduced precision but is mainly limited

to linear models.

2.4 Use of Numerical Linear Algebra

In this thesis, we leverage the tools of numerical linear algebra, partic-

ularly stability analysis, to establish the general bounds that can be imposed

on the precision. Such an approach is not without precedent, and investiga-

tions of the properties imposed on a network by the measure of the weight

matrix can be at least traced back to [Bartlett, 1996], who showed that the

generalization performance of a well-trained neural network with small train-

ing error depends on the size of the weights, not the number. Reasoning about

the generalization ability of a neural network in terms of the size, or norm, of

10



its weight vector is called norm-based capacity control and [Neyshabur et al.,

2015] evaluated this for feed-forward neural networks. Along with capacity,

they also investigated the convexity and characterization of the neural net-

works.[Bartlett et al., 2017] evaluated the spectral complexity of the neural

networks using the Lipschitz constant, i.e., the product of the spectral norms

of their weight matrices. It is used to derive a margin-based multiclass gener-

alization bound and showed that stochastic gradient descent selects predictors

whose complexity scales with the di�culty of the learning task. [Liang et al.,

2017] showed that the Fisher-Rao norm provides an estimate of the size of the

network weights and associates this with the trained networks generalization

capacity. In a very recent work which is closely related to this thesis, [Lin

et al., 2019] show that because of the error amplification e↵ect, the vanilla

quantized models become more prone to adversarial attacks by means of an

empirical study and propose a Defensive Quantization (DQ) method which

controls the Lipschitz constant of the network during quantization. This the-

sis uses the measure of the weight matrix to study the stability of the neural

networks to reduced precision and derive the precision requirements based on

the estimator presented in Chapter 3.

11



Chapter 3

Stability Bounds on Forward Propagation

In numerical analysis, the condition number of a system is a measure

of the change in the output value of a function or a network for a small change

in the input argument. If the condition number of a system is (A) = 10k,

then up to k digits of accuracy may be lost on top of the loss of precision from

arithmetic methods. This work derives an analogue of the numerical analysis

condition number for neural networks as,

 =

✓
k�yk / kyk
k�xk / kxk

◆
. (3.1)

We will define the variables used in Equation (3.1) in the Section 3.1.

This quantity estimates the susceptibility of a network to perturbations. For

most neural networks, this quantity can only be approximated, as shown in

Section 3.1. We begin with a single neuron example to demonstrate the tech-

nique and generate intuition, and then generalize to an n-layer network.

3.1 Single Neuron Estimator Derivation

Consider first a single neuron, neglecting bias, as shown in Figure 3.1.

Each input (x1, x2, . . . , xn) is multiplied by an associated weight (✓1, ✓2, . . . , ✓n).

12



The results are then passed through an activation function, f to produce the

output, y.

Figure 3.1: A single neuron example.

This is expressed as,

y = f(
X

i

✓ixi) = f(✓1x1 + ✓2x2 + · · ·+ ✓nxn).

Consider a common and representative activation function, the rectified

linear unit (ReLU),1

1
Other common activation functions are also considered and results are derived in Ap-

pendix 1.

13



f(z) =

(
z, for z > 0

0, for z  0

ReLU, due to its simplicity, has the added appeal of making subsequent

computations more straightforward. Figure 3.2 shows the graph of ReLU.

Notice that ReLU is simply max(0, z).

Figure 3.2: Rectified Linear Unit (ReLU) activation function.

In the rest of this thesis, we will use the shorthand ✓ x to indicate

multiplication of a matrix of weights ✓ by a matrix x. Additionally, if f is a

scalar defined function and x is a matrix, we will use the shorthand f(x) to

indicate f applied to each entry of x. Then, the output of a single layer neural

14



net satisfies,

kyk = kf(✓x)k = kmax(0, ✓x)k . (3.2)

Where kk denotes the generalized norm. To analyze the stability of

the single layer neural network, we introduce a small perturbation, �x, to the

inputs. The resulting perturbation to the outputs is defined as �y. Then,

�y := f(✓(x+ �x))� f(✓x),

k�yk = kf(✓(x+ �x))� f(✓x)k = kf(✓x+ ✓(�x))� f(✓x)k . (3.3)

It can be shown that, by the triangle inequality,

kf(✓x+ ✓(�x))� f(✓x)k  kf(✓x+ ✓(�x)� ✓x)k = kf(✓(�x))k . (3.4)

Using Equations (3.2), (3.3) and (3.4),

k�yk  kf(✓(�x)k  k✓�xk  k✓k k�xk , (3.5)

k�yk
k�xk

 k✓k .

This result indicates that a perturbation to the input of a single layer

neural network is bounded by the norm of the weight matrix. However, this

quantity is only significant relative to the overall magnitude of the data. For

15



example, what if the network f(✓x) shrinks the magnitude of every input?

Then, even though the quantity k✓�yk
k�xk is small, it may be a large perturbation

relative to the magnitude of the initial quantity, kyk
kxk . This intuition drives the

motivation that the pertinent quantity to be studied is therefore,

k�yk
k�xk

/

✓
kyk
kxk

◆
=

✓
k�yk / kyk
k�xk / kxk

◆
.

This is the quantity that was introduced in Equation (3.1). Our esti-

mator is the maximum value of this quantity,

̃ = max
x 6=0

 = max
x 6=0

✓
k�yk / kyk
k�xk / kxk

◆
. (3.6)

Since we have kyk in the denominator which can be zero, this estimator

cannot be computed exactly unless it is known that kyk � C > 0, 8 x 6= 0 for

some positive constant C. Therefore, the estimator ̃ is approximated by

calculating a set of ’s for many perturbations �x and inputs x.

3.2 Multi-layer Network Estimator Derivation

The analysis of the previous section is now generalized to many-layer

networks. Stability and rounding error concerns become more complicated

when considering additional layers because each layer could introduce an error

from rounding, which is amplified in the subsequent layers. The multi-layer

case has the form,

16



k�yk
k�xk


i�1Y

j=0

k✓n�jk . (3.7)

Where k✓ik is the norm of the weight matrix of layer i from the input side.

Considering perturbations at every single layer due to rounding error for a

simple feedforward neural network with n layers results in,

k�yk
k�xk


nX

i=1

 
i�1Y

j=0

k✓n�jk
!
. (3.8)

This is the product of all current and previous weight matrices, summed

over each layer. The above equation indicates that the deeper layers cause the

perturbations to grow because they amplify the rounding errors from previous

layers. To aid in intuition, Figure 3.3 shows the computation of k�yk
k�xk for a

simple three layer neural network. The first layer contributes to only one

term, while the second layer contributes to two terms, and the last layer is a

product of all the previous terms of the estimator.

17



Figure 3.3: Example calculation of estimator in Equation (3.8) for a 3-layer
neural network.

18



Chapter 4

Testing the Estimator with Adversarial
Perturbations

The estimator presented in Equation (3.6) provides an upper-bound of

the susceptibility of a network to a perturbation in input. A natural ques-

tion is how close is this bound to perturbations in the network. To explore

the tightness of the estimator presented in Equation (3.6), we minimize the

quantity, k�xk. In particular, the smallest perturbations k�xk that in turn

maximizes the quantity, k�yk. To e�ciently generate such perturbations, we

leverage the existing body of work on adversarial perturbations.

Adversarial attacks are methods designed to alter the solution or clas-

sifier output of a learning system. For CNNs, an adversarial perturbation,

�(x; k̂), refer to small perturbations r added to an input image x such that

the network classifier k̂(x) changes, leading to misprediction. This is formally

presented in Equation (4.1) as,

�(x; k̂) = min
r

krk subject to k̂(x+ r) 6= k̂(x). (4.1)

One common example to explain adversarial perturbations is shown in

Figure 4.1. A cat image is being recognized as a cat by the neural network as

19



expected, but when an adversarial perturbation is added to it, the classifier

of the network completely changes and now the cat is identified as guacamole

even though the image is visually imperceptible.

Figure 4.1: One common example of adversarial perturbation.

The techniques used to generate these perturbations are discussed in

Section 4.1, and then the results of these perturbations are presented in Section

4.2.

4.1 Techniques to Generate Adversarial Perturbations

Adversarial instability was first explored in [Szegedy et al., 2014]. The

authors calculated the adversarial examples by solving a constrained optimiza-

tion problem and conjectured that those exist because of the complex nature

of the neural networks and the probability of adversarial examples is too low

20



for those to be seen in the test set. However, this method is not scalable to

large datasets because the optimization method is time-consuming.

[Nguyen et al., 2015] proposed a method to generate crafted unrecog-

nizable images, which are predicted with high confidence by DNNs. [Tsai and

Cox, 2015] have provided a software to misclassify a given image in a spec-

ified class on multiple DNNs by using di↵erent existing algorithms, without

necessarily finding the minimal perturbation vectors. [Papernot et al., 2016]

introduced Jacobian-based Saliency Map Attack (JSMA) to construct adver-

sarial saliency maps that identify features of the input that most significantly

impact output classification, enabling the construction of network-dependent

and input-independent adversarial samples.

[Goodfellow et al., 2015] introduced ”fast gradient sign (FGS)”, an ef-

ficient method to compute adversarial perturbations, where the cost function

is linearized around the current value of ✓, obtaining an optimal max-norm

constrained perturbation ⌘ = ✏sign(rxJ(✓, x, y)), where J(✓, x, y) is the cost

function of the neural network. Essentially, this tries to generate the pertur-

bation vector in the direction of the gradient of the cost function, which is

presumably the direction of maximum ascent. In order to keep the perturba-

tion vector small, a small number ✏ is multiplied. However, the unique gradient

step often leads to sub-optimal solutions, hence, not yielding optimal pertur-

bations. [Kurakin et al., 2017] improved the FGS method by iteratively taking

smaller steps ↵ in the direction of the gradient and clipping the intermediate

values to ensure that they are in the ✏-neighbourhood of the original image.

21



This is done to generate smaller perturbations which are closer to the minimal

ones. However, FGS-based methods do not guarantee misclassification.

Using existing adversarial attacks permits leveraging existing techniques

that represent the best-known methods to reliably produce misclassification

from small perturbations to input. Existing techniques also have the advan-

tage of providing standard and peer-reviewed methods, making the results

more broadly accessible to the community. Based on these criteria, this work

focused on the common adversarial attack, DeepFool, which is discussed below.

[Moosavi-Dezfooli et al., 2016] proposed the untargeted attack tech-

nique known as DeepFool, which is optimized for the L2 distance metric. This

method is based on an iterative linearization of the classifier to generate mini-

mal perturbations su�cient to change the classification label. Figure 4.2 shows

the linearized classification boundaries in dotted line and the actual classifica-

tion boundaries in solid line. Initially, it is assumed that the neural networks

are completely linear, with classifiers separated by hyper-planes. Since neural

networks are non-linear, the linearization process is iterated until the classi-

fication index changes. In this work, the iterator was observed to converge

in less than four iterations for most images. The process of generating the

perturbations is computationally inexpensive and this is therefore an e↵ective

technique to generate small adversarial perturbations.

[Moosavi-Dezfooli et al., 2017] presents an extension of DeepFool which

generates a small, image-agnostic perturbation vector which causes misclas-

sification on a large set of images across a wide variety of classifiers. This

22



means that an image-specific perturbation vector need not be generated, and

a universal perturbation when added to di↵erent input images can cause mis-

classification with probability of about 70% across di↵erent networks. This is

particularly interesting from the perspective of this thesis, because our method

directly provides a bound on the magnitude of the universal perturbation.

Figure 4.2: Linearization of classification boundaries [Moosavi-Dezfooli et al.,
2016].

23



4.2 Generated DeepFool Perturbations

Figure 4.3 shows the magnitudes of DeepFool perturbations generated

for AlexNet and VGG-19 measured relative to the original image, or, k�xk, over

the norm of the input image, kxk. Since this quantity is much less than 1, the

results are plotted by the reciprocal on a logarithmic scale, or log( kxk
k�xk). The

x-axis spans di↵erent images, and the y-axis details the resulting perturbation

size. For this analysis, 16,500 test images were used. This sampled ImageNet

with 20 randomly chosen images from each class.

(a) AlexNet

Figure 4.3: Continued on next page.

24



(b) VGG-19

Figure 4.3: Relative magnitudes of generated DeepFool perturbations to cause
misclassification.

Table 4.1 summarizes the statistics in Figure 4.3. The smallest pertur-

bations relative to the image are of the order of 10�8 for AlexNet and 10�7 for

VGG-19. Even on average, the perturbations are of the order of 10�3 for the

two networks.

Table 4.1: Statistics of generated DeepFool perturbations.

Statistics AlexNet VGG-19

Mean 1.53E-03 2.05E-03
Maximum 2.43E-02 2.03E-02
Minimum 2.16E-08 1.03E-07

25



Note that all these generated perturbations, when added to the original

image, lead to misclassification by the network. Figure 4.4 shows some inter-

esting misclassifications by AlexNet when DeepFool perturbations are added

to the input images. In each case, the resulting perturbed images are indistin-

guishable to the human eye and yet, result in misclassification by the network.

Figure 4.4: Some interesting misclassifications.

26



Chapter 5

Results

This section compares the condition number (calculated with Equation

(3.6)) to the generalized of small perturbation vectors from the previous sec-

tion. Note that in this quantity, k�yk
k�xk and k�yk are computed as the magnitude

of the element-wise di↵erence of the pre-final output layer, i.e. the layer be-

fore the Softmax layer between the original and perturbed scenarios. We then

compare the estimator to empirical data generated via adversarial attacks and

random noise.

5.1 DeepFool Perturbations

The quantity  presented in Equation (3.6) was computed for AlexNet

and VGG-19 using the generated DeepFool perturbations applied to each of

the 16500 images discussed in Chapter 4. The  values are shown in Figure

5.1. The X-axis is the image number and Y-axis shows the the maximum value

of  for each image. All of the 16,500 data are rendered as blue circles. The

red triangle indicates the perturbation that resulted in the smallest change

in output to the network. The yellow square indicates the perturbation that

caused the largest change in the network output. These plots are similar,

27



indicating that the networks have similar susceptibility to perturbations in

input. For either network, the range of results spans many orders of magnitude,

indicating a wide range of possible impact from a perturbation.

The maximum  value created by applying the DeepFool perturbations

to inputs to AlexNet is about 651, the average image has a maximum  value of

about 100, and all images have a maximum  value of at least of 12. For VGG-

19, the maximum  value is about 825, the average image has a maximum 

value of about 117, and all images have a maximum  value of at least 16.

(a) AlexNet

Figure 5.1: Continued on next page.

28



(b) VGG-19

Figure 5.1:  estimator values for DeepFool perturbations.

Table 5.1 shows the precision requirements for input representations of

AlexNet and VGG-19 based on the mean, maximum and minimum value of .

The maximum value of  gives maximum amount a small perturbation to the

input of the neural network maybe amplified by the network.

In practice, the error in the output of the network can be expected to

be ✏̃, where ✏ is machine epsilon which gives the maximum relative error due

to rounding in floating point arithmetic and ̃ is defined in Equation (3.6).

Thus, ̃ gives an estimate of the minimum precision that should be used with

29



a particular neural network. The minimum digits required can be calculated

as log10(). The minimum number of bits is calculated as shown in Equation

(5.1).

Min. # of bits = dlog2()e+ 1 (5.1)

Table 5.1: Precision requirements for input representations based on DeepFool
perturbations.

Network AlexNet VGG-19

Mean  101.78 116.84
Minimum Digits 2.01 2.07
Minimum Bits 8 8

Maximum  651.06 824.53
Minimum Digits 2.81 2.92
Minimum Bits 11 11

Minimum  12.00 16.37
Minimum Digits 1.08 1.21
Minimum Bits 5 6

For the worst-case generated perturbations, 10 bits of precision could

be lost for both AlexNet and VGG-19 and hence, 11 bits are required for input

representations at a minimum. For the mean scenario, 8 bits of precision are

required for both networks, whereas the minimum  says that AlexNet requires

5 bits of precision while VGG-19 requires 6 bits. This shows that moving to

“int8”, a commonly supported precision in most processors, for representing

inputs of these networks may make them more likely to misclassify inputs.

However, these perturbations are very specially generated to maximize their

30



impact on the network and one may question how often perturbations like this

will be seen in practice.

Figure 5.2 shows the distribution of 16500 images over  values for both

AlexNet and VGG-19. Clearly, most of the values are distributed around the

mean and the distribution is positively skewed, meaning that the median of

the distribution is smaller than the mean. For most images,  value is either

lesser or slightly higher than the mean.  value is much higher than the mean

only for some particular images.

(a) AlexNet

Figure 5.2: Continued on next page.

31



(b) VGG-19

Figure 5.2: Distribution of 16500 images over  estimator values.

5.2 Random Perturbations

The DeepFool perturbations are deliberately constructed to cause mis-

classification by the network. An important question is what impact will

indiscriminate sources of perturbations, such as rounding error or noisy data,

have on the output of neural networks. To test this, 16500 random perturba-

tions of same magnitude as the DeepFool perturbations were generated. Those

perturbations were added those to the same set of images used in Section 5.1

and again the maximum value of  was estimated for each image. The  values

are shown in Figure 5.3. The X-axis is the image number and Y-axis shows the

the maximum value of  for each image. All of the 16,500 data are rendered

32



as blue circles. The red triangle indicates the perturbation that resulted in

the smallest change in output to the network. The yellow square indicates the

perturbation that caused the largest change in the network output.

(a) AlexNet

Figure 5.3: Continued on next page.

33



(b) VGG-19

Figure 5.3:  estimator values for random perturbations.

As can be seen from Table 5.2, the  values observed for these random

perturbations are much smaller than in Section 5.1. This suggests that for

applications where the consequences of infrequent misclassification are not

severe, and even lower precision than 11 bits may su�ce.

34



Table 5.2: Precision requirements for input representations based on random
perturbations.

Network AlexNet VGG-19

Mean Estimator 1.68 2.96
Minimum Digits 0.23 0.47
Minimum Bits 2 3

Maximum Estimator 4.19 6.39
Minimum Digits 0.62 0.81
Minimum Bits 4 4

35



Chapter 6

Conclusion and Future Work

In this thesis, we use the methods of numerical analysis to derive es-

timators which can predict the sensitivity of a neural network to random as

well as crafted perturbations. These estimators can help in estimating the

minimum precision requirements for input representations of various neural

networks. We show the results for two widely studied CNN architectures,

AlexNet and VGG-19.

This work can have an impact at di↵erent levels of design hierarchy.

It can help in the decision of precision support required at the hardware level

when designing machine learning accelerators, thus enabling energy-e�cient

edge computing where power consumption is a major bottleneck. At the soft-

ware level, this can help in estimating the maximum evaluation error required

for certification, validation or quantification of uncertainty. At the algorithmic

level, this work can help in better understanding the underlying characteristics

of deep neural networks and enable the design of e�cient DNN architectures

which can be resistant to noise or adversarial attacks.

In the future, we would like to extend this work by deriving the analyt-

ical expression for the condition number of a neural network such that it can

36



be made free of any empirical analysis. Further, we need to introduce pertur-

bations at each layer to mimic perturbing the weights and make the estimator

more robust as this may amplify the e↵ect of random perturbations. That

would also help us in establishing a tight bound for the estimator and extend

it to calculate the precision requirements for activations, weights and biases

for each layer. The final objective would be to come up with an estimator

which can be extended to a wide variety of neural networks - Recurrent Neu-

ral Networks (RNNs), Reinforcement Learning (RL), Generative Adversarial

Networks (GANs), etc. and not just be limited to CNNs.

37



Appendix

38



Appendix 1

Derivation of bound for other activation
functions

The bound presented in Chapter 3 was derived for the most common

activation function, Rectified Linear Unit (ReLU). Here, we derive the bounds

for other commonly used activation functions as well and show that the results

presented in the thesis hold true.

1.1 Leaky Rectified Linear Unit (Leaky ReLU)

f(z) =

(
z, for z > 0

↵z, for z  0; ↵ = small constant (e.g. 0.1)

kf(z)k = kMax(↵z, z)k  kzk

1.2 Exponential Linear Unit

f(z) =

(
z, for z > 0

↵(ez � 1), for z  0; ↵ = small constant (e.g. 0.1)

39



0 < kezk  1 for z  0

0  kez � 1k < 1 for z  0

kak kez � 1k  k↵k for z  0

kf(z)k = kMax(↵, z)k

1.3 Sigmoid

f(z) =
1

1 + e�z

��1 + e�z
�� > 1

kf(z)k < 1

1.4 Hyberbolic Tangent

f(z) =
ez � e�z

ez + e�z

kezk > 0,
��e�z

�� > 0

(kezk �
��e�z

��) < (kezk+
��e�z

��)

kf(z)k < 1

40



Bibliography

Peter L. Bartlett. For valid generalization, the size of the weights is more

important than the size of the network. In International Conference on

Neural Information Processing Systems (NIPS), 1996. URL http://dl.

acm.org/citation.cfm?id=2998981.2999000.

Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized

margin bounds for neural networks. In International Conference on Neural

Information Processing Systems (NIPS), 2017. URL http://dl.acm.org/

citation.cfm?id=3295222.3295372.

Yu-Hsin Chen, Tushar Krishna, Joel Emer, and Vivienne Sze. Eyeriss: An

energy-e�cient reconfigurable accelerator for deep convolutional neural net-

works. In IEEE International Solid-State Circuits Conference (ISSCC),

2016. doi: 10.1109/ISSCC.2016.7418007. URL https://ieeexplore.ieee.

org/document/7418007.

Jungwook Choi, Swagath Venkataramani, Vijayalakshmi Srinivasan, Kailash

Gopalakrishnan, Zhuo Wang, and Pierce Chuang. Accurate and e�cient

2-bit quantized neural networks. In Conference on Systems and Machine

Learning (SysML), 2019. URL https://www.sysml.cc/doc/2019/168.

pdf.

41



Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binarycon-

nect: Training deep neural networks with binary weights during prop-

agations. In International Conference on Neural Information Process-

ing Systems (NIPS), 2015. URL http://dl.acm.org/citation.cfm?id=

2969442.2969588.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and

Yoshua Bengio. Binarized neural networks: Training deep neural networks

with weights and activations constrained to +1 or -1. In arXiv preprint

arXiv:1602.02830, 2016. URL https://arxiv.org/abs/1602.02830.

Ian J. Goodfellow, Jonathan Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. In International Conference on Learning

Representations (ICLR), 2015. URL https://arxiv.org/abs/1412.6572.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish

Narayanan. Deep learning with limited numerical precision. In Inter-

national Conference on Machine Learning (ICML), 2015. URL http:

//proceedings.mlr.press/v37/gupta15.html.

Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, Natalie En-

right Jerger, Raquel Urtasun, and Andreas Moshovos. Reduced-precision

strategies for bounded memory in deep neural nets. In arXiv preprint

arXiv:1511.05236, 2015. URL https://arxiv.org/abs/1511.05236.

Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M. Aamodt, Na-

talie Enright Jerger, and Andreas Moshovos. Proteus: Exploiting numeri-

42



cal precision variability in deep neural networks. In International Confer-

ence on Supercomputing (ICS), 2016. URL http://doi.acm.org/10.1145/

2925426.2926294.

Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E. Hinton. Imagenet classi-

fication with deep convolutional neural networks. In International Con-

ference on Neural Information Processing Systems (NIPS), 2012. URL

http://dl.acm.org/citation.cfm?id=2999134.2999257.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples

in the physical world. In International Conference on Learning Representa-

tions (ICLR) Workshop Track, 2017. URL https://arxiv.org/abs/1607.

02533.

Gri�n Lacey, Graham W. Taylor, and Shawki Areibi. Stochastic layer-wise

precision in deep neural networks. In arXiv preprint arXiv:1807.00942, 2018.

URL https://arxiv.org/abs/1807.00942.

Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. In arXiv preprint

arXiv:1605.04711, 2016. URL https://arxiv.org/abs/1605.04711.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes.

Fisher-rao metric, geometry, and complexity of neural networks. In arXiv

preprint arXiv:1711.01530, 2017. URL https://arxiv.org/abs/1711.

01530.

43



Ji Lin, Chuang Gan, and Song Han. Defensive quantization: When e�ciency

meets robustness. In International Conference on Learning Representations

(ICLR), 2019. URL https://arxiv.org/abs/1904.08444.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-

fool: a simple and accurate method to fool deep neural networks. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

URL https://arxiv.org/abs/1511.04599.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal

Frossard. Universal adversarial perturbations. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017. URL https:

//arxiv.org/abs/1610.08401.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capac-

ity control in neural networks. In Conference on Learning Theory (COLT),

2015. URL https://arxiv.org/abs/1503.00036.

Anh Nguyen, Jason Yosinski, and Je↵ Clune. Deep neural networks are easily

fooled: High confidence predictions for unrecognizable images. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

URL https://arxiv.org/abs/1412.1897.

Joachim Ott, Zhouhan Lin, Ying Zhang, Shih-Chii Liu, and Yoshua Ben-

gio. Recurrent neural networks with limited numerical precision. In arXiv

preprint arXiv:1608.06902, 2017. URL https://arxiv.org/abs/1608.

06902.

44



Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay

Celik, and Ananthram Swami. The limitations of deep learning in adversarial

settings. In IEEE European Symposium on Security & Privacy (EuroS&P),

2016. URL https://arxiv.org/abs/1511.07528.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.

Xnor-net: Imagenet classification using binary convolutional neural net-

works. In European Conference on Computer Vision (ECCV), 2016. URL

https://arxiv.org/abs/1603.05279.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-

stein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual recog-

nition challenge. International Journal of Computer Vision (IJCV), 115(3):

211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. Analytical guarantees on

numerical precision of deep neural networks. In International Conference on

Machine Learning (ICML), 2017. URL http://proceedings.mlr.press/

v70/sakr17a.html.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. In International Conference on Learning

Representations (ICLR), 2015. URL https://arxiv.org/abs/1409.1556.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural

45



networks. In International Conference on Learning Representations (ICLR),

2014. URL https://arxiv.org/abs/1312.6199.

C.-Y. Tsai and D. Cox. Are deep learning algorithms easily hackable?, 2015.

URL http://coxlab.github.io/ostrichinator.

Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang.

Zipml: Training linear models with end-to-end low precision, and a little bit

of deep learning. In International Conference on Machine Learning (ICML),

2017. URL http://proceedings.mlr.press/v70/zhang17e.html.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng

Zou. Dorefa-net: Training low bitwidth convolutional neural networks with

low bitwidth gradients. In arXiv preprint arXiv:1606.06160, 2016. URL

https://arxiv.org/abs/1606.06160.

46



Vita

Naman Maheshwari was born in Delhi, India, the son of Mr. Mukesh

Maheshwari and Dr. Krishna Maheshwari. He received the Bachelor of En-

gineering (Hons.) degree in Electrical and Electronics from Birla Institute of

Technology & Science - Pilani, Pilani Campus, India in 2015 and had the op-

portunity to work on Approximate Multiplier Circuits during his internship at

the University of Alberta, Edmonton, Canada. He worked as an ASIC Design

Engineer in Design-for-Testability (DFT) domain as part of the Automotive

Radar team at Texas Instruments, Bangalore, India. He started his graduate

studies in Electrical and Computer Engineering (Integrated Circuits & Sys-

tems track) at The University of Texas at Austin in August, 2017. He interned

with the SoC Physical Design team at Apple Inc., Cupertino in Summer 2018

and did a co-op in the Applications, Software & Technology team at Advanced

Micro Devices (AMD) Research, Austin in Fall 2018.

Email address: naman@utexas.edu

This thesis was typeset with LATEX
† by ‘the author’.

†
LATEX is a document preparation system developed by Leslie Lamport as a special

version of Donald Knuth’s TEX Program.

47


