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The De Giorgi method was developed in 1957 for showing continuity of non-linear elliptic

problems. In this work we will apply generalizations of that method to a variety of degenerate prob-

lems. Such problems include first-order equations with negative viscosity, hypoelliptic equations

including the nonlocal Focker-Planck equation, and transport-diffusion equations with boundary,

for which the diffusion is of critical order and degenerates near the boundary. We will also consider

a separate problem in which energy techniques can be brought to bear on a hyperbolic problem,

namely the stability of shocks to conservation laws.
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Chapter 1

Introduction

1.1 Hilbert’s Nineteenth Problem

In 1900, Hilbert laid out a list of 23 problems that he felt would guide the future of math-

ematics, similar to our modern Millennium Prize problems. The nineteenth such problem was a

foundational question in the calculus of variations:

Problem 1. Let Ω ⊆ Rd, and let X ⊆ L2(Ω) be the functions satisfying some boundary condition.

Let F : Rd → R be a smooth uniformly convex function with bounded derivative. Are

elements of X for which the energy

E(u) :=

�
F (∇u) dx,

is minimized necessarily smooth?

It was already known that, for example, minimizers of
�
|∇u|2 are harmonic functions and

hence analytic. The hypothesis was that for uniformly convex Lagrangians, which in particular

satisfy F (ξ) ≈ |ξ|2, minimizers would be similarly regular.

The Euler-Lagrange equation for such an energy E is (using Einstein summation convention

and subscripts representing derivatives) ∂iFi(∇u) = 0. By taking a derivative of this expression in

the jth direction, we obtain

∂i (Fik(∇u)∂kuj) = 0. (1.1)

At this point we can consider the equation (1.1) as a linear equation in uj . Simply define

Aik(x) := Fik(∇u(x)) and consider

div(A∇uj) = 0.
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This technique is known as “freezing” the coefficient or “freezing” the equation. Note that it is

distinct from “linearizing” the equation, which involves expanding the equation around a given

point using the first derivative and Taylor’s theorem, though that term is often used colloquially

to refer to both procedures.

Because F is smooth by assumption, the coefficient matrix A will have the same amount of

regularity as ∇u. For example, if u ∈ Ck,α for some k ∈ N>0 and α ∈ (0, 1), then A ∈ Ck−1,α by the

chain rule and basic composition laws for Hölder continuous functions. Moreover, we know a priori

that there exists a constant λ ∈ (0, 1) so λ|ξ|2 ≤ ξᵀAξ ≤ λ−1|ξ|2 just by the uniform coercivity

assumption on F .

These facts give us a simple strategy to prove the existence of smooth solutions.

1. By the direct method, a minimizer of E can be constructed in H1(Ω).

2. Using the De Giorgi-Nash-Moser Theorem and the a priori bounds on A, we can show that

any weak solution w ∈ H1(Ω) of div(A∇w) = 0 is necessarily Hölder continuous in Cα(Ω).

3. By Schauder’s Theorem, if A ∈ Ck,α and u ∈ Ck+1,α then w = uj ∈ Ck+2,α as well (c.f.

Gilbarg and Trudinger [GT01])

By induction, we find that u ∈ Ck,α for all k ∈ N.

Historically, the De Giorgi-Nash-Moser theorem was the most difficult step to prove, and

so Hilbert’s Nineteenth Problem was first proven in De Giorgi’s 1957 paper [DG57] (independently

also by Nash [Nas58] in the same year, and later by Moser [Mos60] in 1960).
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1.2 The De Giorgi Method

The method of De Giorgi was first applied to this elliptic problem, but in fact the core

concept has wide-ranging applications. We will explore the method below, using the toy model of

an inhomogeneous parabolic equation.

Let d ≥ 1 a dimension and λ ∈ (0, 1) a coercivity parameter, let A : R+ × Rd → Rd×d a

matrix satisfying λ|ξ|2 ≤ ξᵀA(t, x)ξ ≤ λ−1|ξ|2 for all ξ ∈ Rd, and let f : R+ × Rd → R a scalar

forcing term. Suppose that u ∈ L2(R+;H1(Rd))∩L∞(R+;L2(Rd)) satisfies the parabolic equation

∂tu = div(A∇u) + f for (t, x) ∈ R+ × Rd. (1.2)

The first step is to derive an energy inequality. Assuming u solves (1.2) in the sense of

distributions, we can formally multiply the equation by a test function of the form ϕ(t, x)(u− k)+

for ϕ a smooth cutoff function (i.e. which is identically one on some space-time region Q1 and

identically zero outside of some region Q2) and k an arbitrary constant. This new equality can be

manipulated by standard integration by parts and Hölder-type estimates into an energy inequality.

Of course test functions must be smooth, and in general we cannot assume that (u−k)+ is smooth.

In this parabolic case, we can generally assume that a solution u exists in L2(H1), which is sufficient

to justify this formal calculation. In general, one may need to take the energy inequality so derived

as an a priori assumption, and construct solutions which satisfy the energy inequality but not

necessarily the regularity assumption needed to justify it (as in [SV20]).

The energy inequality, in the parabolic case, will have the general form

�
A

(u(t, ·)− k)2
+ dx+

� t

s

�
A
|∇(u− k)+|2 dxdt

≤ C

[�
B

(u(s, ·)− k)2
+ dx+ ‖f‖Lp

(� t

s

�
B

(u− k)p
∗

+ dxdt

)1/p∗
]

where A ( B are two bounded open sets with A compactly contained in B, s < t are two times,

1/p+ 1/p∗ = 1, and the constant C depends on the ellipticity constant λ and the distance between
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A and B{. This is called an energy inequality because the energy
�

(u− k)2
+ at a time t is smaller

than the energy at an earlier time s, where the dissipation term
�
|∇(u− k)+|2 causes the energy

to decrease or dissipate, and the source term corresponding to f puts more energy into the system,

allowing the energy to increase. Note that the energy in a small region A is bounded by the energy

in a larger region B, to account for energy that travels through space and enters through the

boundary.

Though this form of the energy inequality makes the dynamics of the system clear, a more

useful form is to consider intervals in time rather than points in time. For A a bounded open

region in space and [t, s] a time-interval, consider some parameter ε > 0 and define Aε to be the

ε-envelope around A (the points within distance ε of A). We call [a−ε, b]×Aε a parabolic envelope

of [a, b]×A. Then

sup
t∈[a,b]

�
A

(u−k)2
+ +

� b

a

�
A
|∇(u−k)+|2 ≤ C

[� b

a−ε

�
Aε

(u− k)2
+ +

(� b

a−ε

�
Aε

(u− k)p
∗

+

)1/p∗
]
. (1.3)

Armed with this energy inequality, the next step is to prove the so-called “first De Giorgi

lemma.” This result is sometimes called L2 − to − L∞ regularization. It comes in two flavors: a

global-in-space variety which shows that any solution to (1.2) with L2 initial data is necessarily in

L∞ locally in time, and a localized version which states that if (u − k)+ has a sufficiently small

L2 norm in the parabolic envelope of some local region, then (u − k)+ will satisfy an L∞ bound

in that region. For different PDE, either one of these results may or may not hold, but in general

the former version is simpler so we shall concentrate on the latter version. It is the latter version

which is useful in the proof of Hölder continuity.

Specifically, the first De Giorgi lemma states that

Lemma 1.2.1 (First De Giorgi Lemma). There exists a constant δ0 such that, for u a solution to

(1.2) on [0, 2]×B2 with ‖f‖Lp([0,2]×B2) ≤ 1 for some p sufficiently large, if
�

[0,2]×B2

(u− 0)2
+ dxdt ≤ δ0

4



then u(t, x) ≤ 1
2 for (t, x) ∈ [1, 2]×B1.

The proof of this lemma is by recursion. A sequence of functions uk := (u − 1−2−k

2 )+ and

regions Qk := [1− 2−k, 2]×B1+2−k are considered, and the goal is to prove that if�
Q0

u2
0 =

�
[0,2]×B2

(u− 0)2
+ ≤ δ0

then

lim
k→∞

�
Qk

u2
k =

�
[1,2]×B1

(u− 1)2
+ = 0.

To accomplish this, one constructs a recursive inequality comparing
�
Qk
uk to

�
Qk−1

uk−1.

The main ingredient of this recursive inequality is the energy inequality (1.3), which com-

pares the L∞(L2) ∩ L2(H1) norm of uk on Qk to the L2 ∩ Lp∗ norm of uk on Qk−1.

By a variant of Sobolev’s inequality, the L∞(L2) ∩ L2(H1) norm of u on the left-hand-side

of (1.3) controls the Lq norm of u, for some q > 2. As compared to the L2 norm, the L∞(L2)

norm has greater control on integrability in time, and the L2(H1) norm has greater control on the

integrability in space. By interpolation we obtain an improvement in both time and space:

‖uk‖2Lq(Qk−1) ≤ C
[
‖uk‖2L2(H1) + ‖∇uk‖2L2(Qk−1)

]
.

We now want to see that the right-hand-side of the energy inequality, the L2 ∩ Lp∗ norm,

is controlled by the Lq norm of uk−1 on Qk−1, with the same q as on the left-hand-side. This

is true because uk−1 is bounded below on the support of uk, meaning that in particular uak ≤

2(k+1)(b−a)ubk−1 for any 0 ≤ a < b. We have the non-linear bound, assuming p∗ ≤ q,
�
Qk−1

u2
k +

(�
Qk−1

up
∗

k

)1/p∗

≤
�
Qk−1

uqk−1 +

(�
Qk−1

uqk−1

)1/p∗

.

Notice that the exponent on uk−1 is always q, but the exponent on the integral itself varies.

Combining this with the energy inequality and our bound on the left-hand-side of the energy

inequality, we obtain

‖uk‖Lq(Qk−1) ≤ C
k
[
‖uk−1‖

q/2
Lq(Qk−1) + ‖uk−1‖

q/(2p∗)
Lq(Qk−1)

]
.

5



So long as the exponents q
2 and q

2p∗ are strictly greater than 1, this inequality is superlinear. In

that case, if the initial value of the sequence is sufficiently small, the limit will be zero. This is

sufficient to prove the lemma.

This proof method works because the energy inequality bounds a first-order norm (meaning

a norm involving first derivatives) by an zeroth-order norm (meaning a norm involving no deriva-

tives). For a generic function, inequalities such as Sobolev’s embedding show that zeroth-order

norms are controlled by first-order norms, but the opposite is not true for generic functions This is

a very strong property of solutions to (1.2) and other parabolic equations. After reducing the order

of the energy inequality by applying Sobolev embedding, we find that the Lq norm is bounded by

an L2 norm and an Lp
∗

norm. Recall that for a generic function on a bounded domain, Lebesgue

norms with large exponents bound Lebesgue norms with smaller exponents. However, assuming p

is sufficiently large (specifically 1/p+ 2/q < 1), we have 2, p∗ < q so the reduced energy inequality

bounds a large-exponent Lebesgue norm by two small-exponent Lebesgue norms. It is therefore

not surprising that L2 − to− L∞ regularization is possible. When applying the De Giorgi method

to a given PDE, among the first questions one must ask is whether the natural exponent q is larger

than any exponents which may appear on the right-hand-side of the energy inequality.

The next step in the De Giorgi argument is to prove the second De Giorgi lemma, also

known as the isoperimetric inequality.

Lemma 1.2.2 (Second De Giorgi Lemma). There exists a constant µ0 > 0 such that, for u a

solution to (1.2) on [−1, 4]×B3 with ‖f‖Lp([−1,4]×B3) ≤ 1 for some p sufficiently large, if

u(t, x) ≤ 2 ∀(t, x) ∈ [−1, 4]×B3 (1.4)

and

|{u ≥ 1} ∩ [2, 4]×B2| ≥ δ0 (1.5)

and

|{u ≤ 0} ∩ [0, 4]×B2| ≥
|[0, 4]×B2|

2
(1.6)

6



then

|{0 < u < 1} ∩ [0, 4]×B2| ≥ µ0. (1.7)

The isoperimetric lemma is a quantitative version of the claim “solutions to (1.2) cannot

have jump discontinuities.” The assumption (1.4), together with the energy inequality, will give

us a regularity estimate for the solution u. In practice, this assumption will be ensured by an

application of the first De Giorgi lemma. The claim (1.5) uses the same δ0 as in the statement of

the first De Giorgi lemma 1.2.1. The intention is that, if (1.5) fails to be satisfied, then the first

lemma can be applied to some translation of (u− 1)+.

Note that the assumption (1.4) must be satisfied on a larger region [−1, 4] × B3 than

the rest of our assumptions. This is so that, by the energy inequality (1.3), (u − 0)+ will be

in L2([0, 4];H1(B2)). If we could say that, given assumption (1.4), ‖(u− 0)+‖H1([0,4]×B2) were

uniformly bounded, meaning it is regular in both time and space, and we could set µ0 = 0, then

the lemma would be trivial, simply because a function in H1 cannot have a jump discontinuity.

Assuming still that ‖(u− 0)+‖H1([0,4]×B2) uniformly bounded, even for µ0 > 0 we could

easily prove the result by contradiction. Take a sequence of solutions uk satisfying (1.4)-(1.6) but

such that

|{0 < uk < 1} ∩ [0, 4]×B2| ≤
1

k
.

This sequence uk would be uniformly bounded in H1, and so it would have a strong L2 limit u∞.

But u∞ ∈ H1 and u∞ has a jump discontinuity, which gives us our contradiction.

Unfortunately, it is generally not the case that (u− 0)+ is H1-regular in time. The proof of

Lemma 1.2.2 relies on showing that the sequence uk has enough uniform regularity in time (derived

still from the assumption (1.4)) so that the strong-L2 limit u∞ exists, and cannot have a jump

discontinuity. In general, it is easier to bound ∂tu∞ from above than to bound it from below. This

is why assumption (1.5) is phrased on the time-interval [2, 4] rather than [0, 4]: to guarantee that

a jump discontinuity in u∞ will exist such that ∂tu∞ ≥ 0 in the sense of distributions.

7



The actual technique for showing regularity-in-time is highly dependent on the specific PDE

in question, and so it is not useful to give a more detailed outline.

Once the first and second De Giorgi lemmas are proven, the proof of Hölder continuity is

typically similar across different applications of the method. One merely needs to apply the first

and second lemmas to various translated and scaled copies of u. It is necessary therefore that the

equation (1.2) be symmetric under a large family of transformations. In particular, we will consider

transformations of the form ū(t, x) := C + αu(t, x) for possibly negative constants C,α ∈ R.

A common intermediate step between the De Giorgi lemmas and the proof of Hölder conti-

nuity is known as the oscillation lemma. Note that some sources use the name “second De Giorgi

lemma” to refer to the oscillation lemma, rather than the isoperimetric inequality.

The oscillation of a function over a set S is defined by

osc
S
f := sup

x∈S
f(x)− inf

x∈S
f(x).

The oscillation lemma then states that the oscillation of a solution u to (1.2) over a space-time

region Q is bounded by a constant times the oscillation of the same u over a parabolic envelope of

that region. We will present the lemma in a more rigid formulation, for clarity of presentation:

Lemma 1.2.3 (Oscillation Lemma). There exists a constant λ0 > 0 such that, for u a solution to

(1.2) on [−1, 4]×B3 with ‖f‖Lp([−1,4]×B3) ≤ λ0 for p sufficiently large, if

−2 ≤ u(t, x) ≤ 2 ∀(t, x) ∈ [−1, 4]×B3

then

osc
[3,4]×B1

u ≤ 4− λ0.

The oscillation will either decrease from above or below, depending whether the measure

|{u ≤ 0} ∩ [0, 4]×B2}| is more or less than |[0,4]×B2|
2 . We can assume without loss of generality

that it is greater, and otherwise we can simply apply the following argument to −u.

8



Consider the sequence of functions u0 = u and uk := 2uk−1 − 2. Note that each uk will

solve (1.2) (with source term 2kf) and satisfy assumptions (1.4) and (1.6) of the second De Giorgi

lemma.

Assume that for some k0, the function uk0 satisfies the assumption (1.5). In particular,

because of the way the sequence uk is constructed, this means that uk satisfies (1.5) for all 0 ≤ k ≤

k0. Therefore we can apply the second De Giorgi lemma and find that

|{0 ≤ uk ≤ 1} ∩ [0, 4]×B2| ≥ µ0 ∀0 ≤ k ≤ k0.

Because each of these k0 sets are disjoint by construction, and because they are all contained in

[0, 4] × B2 which has finite measure, we find that our assumption on k0 cannot hold for k0 =

|[0, 4]×B2| /µ0. For this k0, we conclude that uk0 does not satisfy (1.5).

We can now apply the first De Giorgi lemma to uk0 − 1 and conclude that uk0(t, x) ≤ 3/2

for (t, x) ∈ [3, 4]×B1, or equivalently u(t, x) ≤ 2− 2−(k0+1).

Recall that a function g is Hölder continuous with exponent α at a point y0 if and only if

osc
|y−y0|≤r

g(y) ≤ Crα.

Therefore, by applying the oscillation lemma to dilations of u, we can easily conclude that u is

Hölder continuous.

Because the constant µ0 in the second De Giorgi lemma is obtained by a compactness

argument, none of the constants obtained thereafter can be explicit. Most notably, the exponent

α is not explicit. Therefore it is often desirable to obtain the second De Giorgi lemma by a more

constructive argument, as in [Gue20].

1.3 Main Results and Outline

The remaining chapters of this dissertation will present will present various problems to

which the De Giorgi method can be applied. Chapters 2, 3, 4, and 5 are based on the works [SV18],

9



[Sto19a], [SV20], and [Sto19b] respectively, with only minor modifications.

Early applications of the De Giorgi method were to equations which were either elliptic

or parabolic, or nonlinear equations which can be reduced to an elliptic or parabolic form. One

defining feature of such equations is that the regularity of the solutions is primarily driven by the

second-order term; lower order terms can be viewed as perturbations. However, the method is

capable of tackling equations which are not elliptic at all. In chapter 2, we apply the method to a

problem in which the regularization is driven by a first-order term |∇u|p. This equation contains a

second-order term which is not only non-elliptic, it acts as an accumulative (rather than dissipative)

force and hence an obstacle to regularization. In chapter 3, we apply the method to a hypoelliptic

kinetic equation which has a Laplacian-like term (−∆v)
sf acting only in the v-direction and has no

terms at all which directly regularize in the x-direction. Regularization in the x-direction is caused

not by an elliptic term but by a hyperbolic mixing term. In chapter 4, we apply the method to an

equation which has both a first-order dissipation term (−∆)1/2θ and also a first-order transport

term. The transport term can ultimately be viewed as a perturbation, but only after a very precise

analysis of the energy inequality. Finally, in chapter 5 we consider a different kind of energy

method, the relative entropy method, and apply this to a hyperbolic conservation equation. In

appendix 0.1, we elaborate on an alternative proof of the second De Giorgi lemma which applies to

nonlocal equations. The technique shown there is already known in the literature, but is intended

to be an entry-level survey.

In chapter 2 we consider a Hamilton-Jacobi equation with superquadratic growth in its

first-order term.

Hamilton-Jacobi equations are a class of highly nonlinear PDE. They are typically studied

as a non-divergence form problem (using techniques such as Perron’s method and maximum prin-

ciples), as opposed to divergence form(using techniques such as distributional solutions and energy

estimates), because they are not typically in the form of an Euler-Lagrange equation. The class of

10



Hamiltonian that we will study are of the form

∂tu = H(x, u,∇u,D2u) ≈ −|∇u|p + error terms

where p > 2 is a constant. Equations of this form appear in the work of Schwab [Sch09], in the study

of homogenization for stochastic optimal control problems; taking the homogenous limit requires

compactness, which comes in the form of a uniform regularity estimate. The first order term |∇u|p

has a regularization effect, as proven by Cardaliaguet [Car09]. For p > 2, the first order term will

dominate even when the “error” includes certain second order terms, as had been proven using

probabilistic methods and comparison with sub- and supersolutions ([CC10], [CR11]), including

the most comprehensive result by Cardaliaguet and Silvestre [CS12]. Using a modification of the

De Giorgi method, the case without second-order error was tackled by Chan and Vasseur in [CV17].

The case with second-order error will be addressed in chapter 2 in which we will prove the following:

Theorem 1.3.1 (c.f. Theorem 2.1.1, first proven in [SV18]). Let Ω an open subset of Rn and

[0, T ] a time interval. Let p > 2 and Λ ≥ 1 be constants, and f ∈ Lq with q sufficiently large, and

A : [0, T ]× Ω→ Rn×n satisfying |ξᵀA(t, x)ξ| ≤ Λ|ξ|2 for all vectors ξ.

Then if u : [0, T ]× Ω→ R is a weak solution to

∂tu+
1

Λ
|∇u|p ≤ f + div(A∇u),

∂tu+ Λ|∇u|p ≥ −Λ +m−(D2u)

for m− the least-negative-eigenvalue function, u will be Hölder continuous uniformly on any compact

subset of (0, T ]× Ω. Its modulus of continuity will depend on p, Λ, and ‖u‖L∞.

Note that A is not assumed non-negative-definite.

This problem initially seems ill-suited for De Giorgi’s method. It is nonlinear in an essential

way and has no corresponding energy functional, which is why most previous investigations used

maximum principles instead of energy methods which typically involve some form of linearization.

11



De Giorgi method is an elliptic method, meaning it is typically driven by the coercivity of the

second order term. This problem is not only non-elliptic, its second order term is actually a major

obstacle to regularity. By tackling this problem using De Giorgi’s method, however, we are able to

expand the class of allowable errors beyond what was known in the literature, specifically allowing

for discontinuous coefficients on the second order term and for source terms which are unbounded

from above.

One major technical hurdle is that, unlike in the work of Chan and Vasseur [CV17], the

Caccioppoli inequality that underlies the De Giorgi method will only be valid in regions where u

is large. Another hurdle is the non-linearity of the equation; normally with De Giorgi we break

nonlinear equations into a coupled linear (or at least variational) system and only treat these simpler

equations, but in this problem the superquadratic growth is essential to the regularization. Lastly,

as a consequence of the nonlinearity, the regularization from below happens backwards in time. In

order to obtain the regularization that we desire, we must construct subsolutions which transport

the regularity forwards in time and apply a maximum principle, thus mixing divergence-form and

non-divergence-form methods.

In chapter 3, we consider a family of hypoelliptic kinetic equations.

Hypoelliptic equations are a class of degenerate elliptic equations with mixed elliptic and

hyperbolic features. In particular, they include certain kinetic equations of the form

∂tf + v · ∇xf −Q(f) = σ (1.8)

for f(t, x, v) a function of time, space and velocity, Q an elliptic operator in the velocity variable,

and σ a source term. The idea is that such equations are elliptic in some variables (v) and hyperbolic

in others (x), but due to mixing (v · ∇x) regularization occurs in all variables.

General hypoelliptic equations were studied by Kolmogorov and by Hörmander [Hör67] as

early as the 1930s. They originally considered only smooth solutions, but more recently a Sobolev
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Hs theory developed in the form of the study of averaging lemmas ([Ago84], [GLPS88]). An

averaging lemma states that if the kinetic derivative of a function [∂t + v · ∇x] f is bounded in

the Sobolev sense, then the velocity averages
�
f dv are regular. The theory of averaging lemmas

had been developed into a full Sobolev hypoelliptic theory by Bouchut [Bou02], for Q a fractional

Laplacian, and that theory in turn was used by Golse, Imbert, Mouhot and Vasseur [GIMV16] to

prove Hölder continuity for Q a second order local elliptic operator in v.

I particularly studied the case of Q a uniformly elliptic singular integral operator. Such

equations occur in the study of astrophysics to model particles interacting with a plasma ([Kan19],

[Goy17], [LK74], [MR94]). They are also of interest for their relationship to the Boltzmann equation

in the absence of the Grad cutoff assumption. Authors including Silvestre, Mouhot, Imbert and

others ([IS16], [IMS18], [Mou18], [Sil16], [HST17], [HS17]) have recently been building an elliptic

theory of the Boltzmann and Landau equations. In a landmark paper of this project, Silvestre and

Imbert were able to prove Hölder continuity for a class of equations including both the Boltzmann

equation and general uniformly elliptic singular integral operators as subcases.

In chapter 3 we study (1.8) with Q an integral operator in v given by

Q(f)(t, x, v) :=

�
K(t, x, v, w)[f(t, x, w)− f(t, x, v)] dw,

with K symmetric in v and w and κ−1 ≤ K(t, x, v, w)|v − w|n+2s ≤ κ for some s ∈ (0, 1) and

constant κ, and σ an Lp function with finite but large p. We are able to show that solutions are

Cα regular even with merely Hs initial data:

Theorem 1.3.2 (c.f. Theorem 3.1.1, frst proven in [Sto19a]). Let Ω and open subset of Rn and

[0, T ] a time interval. Let s ∈ (0, 1) and κ ≥ 1 be constants and Q as described above.

Then there exists p∗ < ∞ so that for any function σ ∈ Lp ∩ L2([0, T ] × Ω × Rn) and any

weak solution f ∈ L∞([0, T ]× Ω× Rn) ∩ L2([0, T ]× Ω;Hs(Rn)) to (1.8) will be Hölder continuous

in space and time on any compact subset of (0, T ]×Ω. The modulus of continuity depends only on

σ and the L∞ norm of the initial data.
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The class of operators we consider is a special case of that considered by Imbert and Silvestre

[IS16], who combined De Giorgi techniques and a Krylov approach to obtain regularity. Using the

theory of averaging lemmas, we are able to apply solely energy-based techniques for a simplified

proof and to allow for unbounded source terms. This work is inspired by that of Golse, Imbert,

Mouhot and Vasseur [GIMV16], but requires a different approach due to the nonlocality of Q. In

particular, we cannot use the full regularity result of Bouchut and need to work directly with a more

standard averaging lemma [Béz94]. We are able to obtain L2 → Lp (p > 2) regularization from the

regularization of averages, and then use the De Giorgi method to turn this into Cα regularization.

In chapter 4 we consider the Surface Quasi-Geostrophic equation (SQG) on a bounded

domain.

The SQG equation is a special case of the equations describing large-scale atmospheric

and oceanic currents ([Ped92], [Cha71]). In addition to its physical importance, SQG is of a

mathematical form with interesting commonalities to the 3D Euler equations ([CMT94]), which

explains its widespread study in pure and applied fluid mechanics. The form of SQG that we

study, with critical dissipation, is

∂tθ +
[
∇⊥(−∆)−1/2θ

]
· ∇θ + (−∆)1/2θ = 0. (1.9)

Note that (−∆)1/2 and (−∆)−1/2 are both nonlocal operators.

Well-posedness for SQG on R2 has been known since 2010 ([CV10a], [KNV07], [CV12]), with

multiple proofs from various perspectives. Physically motivated by, for example, air currents near

land-sea boundaries, a few authors ([Kri15], [NV18b], [NV19]) have considered SQG on bounded

domains. There are multiple ways to define the boundary behavior of such a system, however, so

several different models have been proposed. In any case, the behavior of the nonlocal operator

near the boundary complicates the analysis and demands new techniques.

Recently, Constantin and Ignatova [CI17] proposed a new model for SQG on bounded

domains (specifically, defining (−∆)1/2 as the spectral square-root of the Laplacian with homoge-
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neous Dirichlet boundary conditions). They and Nguyen have published several papers on the topic,

studying existence, uniqueness, regularity, and convergence for the equation with varying strengths

of dissipation ([CI17], [CI16], [CIN18], [CN18a], [CN18b]). In particular, Constantin and Ignatova

[CI16] showed that, for sufficiently regular initial data, solutions to the critical SQG are smooth in

the interior of the domain. In said paper they identify boundary regularity, and specifically Hölder

continuity up to the boundary, as a difficult open problem and an important step in the analysis

of this equation.

In chapter (4) we obtain Hölder continuity up to the boundary:

Theorem 1.3.3 (c.f. Theorem 4.1.1, first proven in [SV20]). Let Ω a bounded open subset of R2

with smooth boundary, [0, T ] a time interval, and θ : [0, T ]×Ω→ R a weak solution to critical SQG

(1.9) in L∞(0, T ;L4(Ω)) ∩ L2(0, T ;H1
0 (Ω)) with L2 initial data θ0.

Then θ is Hölder continuous in time and space on [ε, T ]× Ω̄ for any ε > 0. The modulous

of continuity depends only on the domain and ‖θ0‖L2.

Critical SQG has a dissipation term which is regularizing, and a transport term which

has the potential to be deregularizing. Since the problem is critical, they are ostensibly equal in

strength, so it is difficult to predict how solutions will behave. The transport term is particularly

difficult to control near the boundary because the Dirichlet boundary conditions on (−∆) are not

translation invariant, and hence the commutator [∇, (−∆)1/2], is singular in this region. This proof

is inspired by the previous work of Caffarelli and Vasseur [CV10a] on the global SQG to consider

weaker norms in which the transport term may be bounded. In the case of global SQG, BMO is

strong enough to constrain the regularity of the solution but weak enough that ∇⊥(−∆)−1/2 is a

bounded operator, while for the bounded-domain case, it was necessary to define a sophisticated

and novel Banach space (somewhat analogous to B0
∞,∞(Ω)) adapted to this specific problem. This

space is based on a generalized analogue of Littlewood-Paley theory (first studied by Iwabuchi, Mat-

suyama, and Taniguchi [IMT19], [IMT17], [IMT18]) in order to distinguish the low/high frequencies
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present in the commutator. The proof also utilizes a mixed Eulerian-Lagrangian approach with

a moving reference frame adapted to counteract the transport term. Though utilized previously

in the case of R2, this approach presents new difficulties in this case because, from a Lagrangian

perspective, the domain is time-dependent.

In chapter 5 we consider the stability of shocks to a conservation law.

A shock is a special kind of traveling wave solution to a conservation law, i.e. of the form

s(x−σt) for σ constant. A 1D inviscid shock is discontinuous at a single point and is constant, with

two distinct values, on either side of that discontinuity; a viscous shock is a smoother approximation

thereof. There is a significant literature devoted to the stability of shocks in both the L1 and L2

norms, so we shall concentrate on the case of scalar case. Many results give stability only for small

perturbations ([FS98], [Kru70], [IO60]). Large perturbation L2 stability of small inviscid shocks

has been achieved by Vasseur and his group (e.g. [SV16], [LV11], [Leg11]) using the relative entropy

method first introduced by DiPerna and Dafermos [Daf96] to study stability of Lipschitz solutions.

L2 stability will generally only hold up to a shift which depends on the solution:

∀ sol’n u,∃γ s.t.
d

dt

�
|u(t, x)− s(x− γ(t))|2 dx ≤ 0.

In the dissipative case, meaning conservation laws of the form

∂tu+ divA(u) = ν∆η′(u), (1.10)

most of the time it is necessary to consider instead a weighted L2 norm with a weight function a,

called L2-type stability. A recently developed relative-entropy technique has been able to obtain

L2-type stability with a arbitrarilly close to 1 in the L∞ sense. This technique has been used in

the case of 1D dissipative systems [KV19] (including 1D Navier-Stokes) and 1D scalar equations

with near-constant dissipation [KV17] (e.g. η′(u) = u).

We prove in chapter 5 that 1D dissipative scalar conservation laws with uniformly convex
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flux and a nonlinear viscosity are L2-type stable for sufficiently small shocks, independent of the

dissipative parameter ν:

Theorem 1.3.4 (Theorem 1 in [Sto19b]). Let η,A : R→ R be any uniformly convex functions with

continuous third derivatives at 0. Then there exists ε0 > 0 such that for any ν > 0 and ε ∈ (0, ε0]

the following holds:

If s : R → R is a shock solution to (1.10) with ‖s‖L∞ ≤ ε, then there exists a weight

function a : R → (0, 2) such that s is L2-type stable up to a shift. Moreover, ‖a− 1‖L∞ can be

made arbitrarilly small by taking ε sufficiently small.

Because this result holds independently of the strength of dissipation ν, the result will apply

also to vanishing viscosity limit solutions to the equivalent hyperbolic conservation law.

We use the relative entropy method. We are able to handle a wider variety of nonlinear

viscosities by utilizing η (the function appearing in the dissipative term) as the entropy. This proof

only uses one entropy for each equation, which is important if a technique is expected to generalize

to systems; conservation systems typically only have a single entropy.

As in previous L2-type estimates, we break up the solution u into a part which is L∞ close

to s and an error term which may be large in L∞. The close part is handled similarly to the existing

literature, while for the error term we need to make careful use of the relationship between the

dissipative term and the mass density of the derivative of the weight function a.

Notation. Throughout this work, C will represent arbitrary constants which may change

from line to line. The function space C∞c contains smooth functions with compact support. We

will use the notation (x)+ := max(0, x). When the parentheses are ommited, the subscript + is

merely a label.
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Chapter 2

Hamilton-Jacobi equations with unbounded right-hand side

2.1 Introduction

In this chapter1, we will study Cγ regularization of solutions to a Hamilton-Jacobi evolution

equation with viscosity:

∂tu+H(x,u,∇u)−ε∆u= 0, (t,x)∈ (0,T )×Ω,

where Λ>0, ε∈ [0,Λ], Ω⊆Rn, and the Hamiltonian has superquadratic growth in the gradient

variable, uniform in x and t:

1

Λ
|v|p−f(x,t)≤H(t,x,z,v)≤Λ|v|p+Λ, p>2,f ∈Lm,m>1+

max(n,2)

p
.

We will show that solutions are uniformly Hölder continuous away from the boundary of Ω

and after a positive time has elapsed.

Because p>2, it is the first order term that will dominate at small scales. The second order

term acts merely as a perturbation. In fact, although our motivation is a first-order Hamilton-

Jacobi equation with viscosity, our techniques can handle much more general second order terms.

Specifically, we will show the following theorem.

Theorem 2.1.1 (Main Theorem). Let constants Λ>0, Λ0≥0, p>2, m>1+ max(n,2)
p be given,

and let Ω⊆Rn open and T >0 be given, and let f ∈Lm([0,T ]×Ω) with ‖f‖m≤Λ and a matrix

A∈L∞([0,T ]×Ω;Rn×n) with ‖A‖∞≤Λ be given, and let Ω̄⊂Ω compact and 0<s<T be given.

1The contents of this chapter are based on joint work of the author with Alexis Vasseur originally appearing in
“L. F. Stokols and A. Vasseur. De Giorgi techniques applied to Hamilton-Jacobi equations with unbounded right-hand
side. Commun. Math. Sci., 16(6):1465–1487, 2018.” Both authors contributed equally to this work.
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There exists 0<γ<1, depending on p, Λ, Λ0, m, and n, such that any u∈L∞((0,T )×Ω),

∇u∈Lp, satisfying

∂tu+Λ−1|∇u|p−div(A∇u)≤f (1.1)

in the sense of distributions, and satisfying

∂tu+Λ|∇u|p−Λ0m
−(D2u)≥−Λ (1.2)

in the sense of viscosity, will have

u∈Cγ((s,T )× Ω̄)

with norm depending on ‖u‖∞, p, Λ, Λ0, m, n, s, and the distance between Ω̄ and Rn \Ω.

Here m− is a function that returns the lowest eigenvalue of a symmetric matrix, or 0 if all

of the eigenvalues are positive. For a function to solve Inequality (1.2) in the sense of viscosity

means, following the definition of Barles [Bar13], that the lower-semicontinuous envelope of that

function is a viscosity supersolution of

∂tu+Λ |∇u|p−Λ0m
−(D2u) =−Λ.

Hamilton-Jacobi equations of this general form, with a viscosity term and polynomial growth

in the gradient, were studied by Lasry and Lions [LL89] in 1989, in connection with stochastic

control problems. For the case p<2, this first-order-term can be viewed as a perturbation of a

simple heat equation, and indeed solutions will be regular so long as the viscosity term is uniformly

parabolic. However, in the superquadratic case p>2, it is the first order term which dominates at

small scales, so standard parabolic theory does not apply.

Schwab [Sch09] studied homogenization problems for Hamilton-Jacobi equations with su-

perquadratic growth, which required him to prove that the regularity of solutions to these equa-

tions is independent of the regularity of the Hamiltonian. His result still required, however, that the

Hamiltonian be convex in Du. It was Barles [Bar10] and Dolcetta, Leoni, and Porretta [DLP10] who

19



noticed that convexity was unnecessary in the time-independent case, and Cardaliaguet ([Car09],

[CC10], [CS12]) for the time-dependent case.

In the case that f is bounded, Cardaliaguet and Silvestre ([CS12], Theorem 1.2) showed

Hölder continuity, using a second order term m+(D2u) instead of div(A∇u) in (1.1). In the case

that f is not assumed bounded, they could only show Hölder regularity with second order term

tr(AD2u), A∈C1. Our result requires no regularity on A, at the expense of requiring that ∇u∈Lp

and u solve Inequality (1.1) in the sense of distribution. The motivation for considering f unbounded

is from Lasry and Lions [LL07].

Most of the aforementioned results are proven by constructing super- and subsolutions. In

[CV17], Hölder estimates are obtained, with f bounded and no second order term, using a variation

of De Giorgi’s method. The results in this chapter are a continuation of that project.

The proof will proceed mostly along the same lines as De Giorgi [DG57] and [CV17]. In the

classical De Giorgi proof, in order to prove Hölder continuity one merely shows that if the function

u is “mostly negative” in some range of time, then the upper bound is improved in a later range

of time. If, alternatively, the function is not “mostly negative,” it must be “mostly positive” and

hence one can apply the original argument to −u, improving the lower bound on u in the same

later range of time. Either way, the L∞-bound of u is improved in the later time range.

In the sequel, the function −u does not satisfy the same Inequality (1.1) as u. However,

time-reversed −u does satisfy Inequality (1.1) with A replaced by −A, since time reversal creates an

extra minus sign on the ∂t term. Thus unlike the classical De Giorgi proof, while the upper bound is

improved in a later time range, the lower bound on u is improved in an earlier time range, because

time was reversed. Note that while replacing A by −A should ostensibly cause great difficulty, the

second order term is here a perturbation, and the first order term is the driver of regularization, so

we can handle negative viscosities so long as the solution is known to exist and to be bounded.

Next we must use the comparison principle in a small but crucial argument. Based on

Inequality (1.2), a subsolution is constructed to show that a lower bound improvement in the early
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time range implies a smaller-but-still-positive improvement in the later time range. This is referred

to as “flowing the improvement forward in time.”

The key ingredient in improving the upper bound is an energy inequality. Because of the

second order term, we must multiply (1.1) by u+ to obtain the energy inequality (then we integrate

by parts, and turn the second order term into a |∇u|2 term). But the viscosity is a perturbation,

and the true driver of the proof is the first order term. Multiplying the first order term by u+

yields u+|∇u+|p, which is difficult because u+ acts like a coefficient which is not bounded below.

Luckily, our goal is to bound u, and the difficulties only occur when u+ is small.

Section 2.2 derives an energy inequality, which quantifies the ellipticity of our equation.

Sections 2.3 and 2.4 use the energy inequalities to prove De Giorgi’s two lemmas. Section 2.5

demonstrates how to flow the improvement forward in time, correcting for the necessary time

reversal. Finally, in Section 2.6 we combine these lemmas to prove Hölder continuity. A reader

unfamiliar with De Giorgi-style proofs might want to begin with Section 2.6, lest the former sections

seem unmotivated.

Instead of proving continuity directly for u, it is preferable to consider

ū :=u+Λt, f̄ :=f+Λ

which satisfies the inequality

∂tū+Λ|∇ū|p−Λ0m
−(D2ū)≥0. (1.3)

Note also that, by scaling our solution appropriately, we can assume that Λ0 is arbitrarily

small.

Throughout this article, C will indicate a constant which varies from line to line. No two

instances of the symbol should be assumed related to each other.
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2.2 The Energy Inequalities

We begin by deriving the Energy Inequalities, which play an analogous role to the Cacciopoli

inequality in De Giorgi’s original paper. These inequalities serve to quantify the coercivity of the

PDE in question. We actually consider an infinite family of Energy Inequalities, corresponding to

different entropies, indexed by the parameter b. These inequalities must be valid even for non-

positive matrices A.

The lemma below claims three different forms for the Energy Inequality. The first form will

be used to compare distinct truncations of a solution in Section 2.3. The second and third forms

are only valid for large values of b, the former being used in Section 2.3 and the latter being used

in Section 2.4. Notice that the gradient of u appears in the right hand side of the first form, but

not of the second or third forms.

Lemma 2.2.1 (Energy Inequality). Given u verifying Inequality (1.1), with ‖A‖∞ ,‖f‖m≤Λ, on

some domain [S,0]×Ω, given constants b, c and S<T <0, and given φ a smooth non-negative

function constant in time and compactly supported in Ω, and defining u∗= (u−c)+, then u∗ satisfies

the inequality

sup
t∈[T,0]

�
φ2ub+1

∗ (t)+

� 0

T
φ2ub∗ |∇u∗|

p

≤C(Λ,b)

(
1+

1

T −S

)(
‖φ‖2∞+‖∇φ‖2∞

)[� 0

S
(ub+1
∗ +ub−1

∗ |∇u∗|2)χ{φ}+

(� 0

S
ubm

∗
∗ χ{φ}

) 1
m∗
]
.

(2.4)

Moreover, if b>σ :=
(

1− 2
p

)−1
, then

sup
t∈[T,0]

�
φ2ub+1

∗ (t)+

� 0

T
φ2ub∗ |∇u∗|

p

≤C(Λ,b)

(
1+

1

T −S

)(
‖φ‖2∞+‖∇φ‖2∞

)[� 0

S
(ub+1
∗ +ub−σ∗ )χ{φ}+

(� 0

S
ubm

∗
∗ χ{φ}

) 1
m∗
]
.

(2.5)
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If b>σ but φ is not necessarily constant in time, then still we have

〈∂t(ub+1
∗ ),φ2〉[S,0]×Ω +

� 0

S
φ2ub∗ |∇u∗|

p

≤C(Λ,b)

(� 0

S
φ2ub∗f+

� 0

S
ub+1
∗ |∇φ|2 +

� 0

S
φ2ub−σ∗

)
.

(2.6)

The integrals without limits are over all of Ω, χ{φ} means the indicator function of the

support of φ, and m∗ means the Hölder conjugate of m.

Proof. Formally, we want to integrate Inequality (1.1) against the test function φ2ub∗. Because

our solution u is by assumption in Lp(W 1,p), the distributions |∇u|p and div(A∇u) both have

enough regularity for this integration to make sense. To justify our calculations on ∂tu, one can

simply use the test function τ ∗(φ2(τ ∗u∗)b) for τ some approximation to the identity and ∗ meaning

convolution in time and space, though for reasons of clarity we drop the mollifiers in the formal

calculations below.

Multiply Inequality (1.1) by φ2ub∗, then integrate over all of space Ω:
�
φ2ub∗∂tu+Λ−1

�
φ2ub∗ |∇u|

p+

�
(∇(φ2ub∗))A(∇u)≤

�
φ2ub∗f.

Notice that Du∗=χ{u∗>0}Du for any first order differential operator D, so in the above expression

we may replace every instance of u with u∗. By the product rule, (b+1)ub∗∂tu∗=∂t(u
b+1
∗ ). Also,

we can use the product rule and Young’s Inequality to bound the A-term:

∇
(
φ2ub∗

)
A∇u∗= bφ2ub−1

∗ (∇u∗A∇u∗)+2φub∗(∇u∗A∇φ)

≤ bΛφ2ub−1
∗ |∇u∗|2 +2Λ

(
φu

b−1
2
∗ |∇u∗|

)(
u
b+1

2
∗ |∇φ|

)
≤ bΛφ2ub−1

∗ |∇u∗|2 +Λ

(
φu

b−1
2
∗ ∇u∗

)2

+Λ

(
u
b+1

2
∗ ∇φ

)2

= (b+1)Λφ2ub−1
∗ |∇u∗|2 +Λub+1

∗ |∇φ|2.

Putting all of these together, we arrive at

1

b+1

�
φ2∂t(u

b+1
∗ )+Λ−1

�
φ2ub∗ |∇u∗|

p≤
�
φ2ub∗f+Λ

�
ub+1
∗ |∇φ|2 +(b+1)Λ

�
φ2ub−1

∗ |∇u∗|2.
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If b>σ, then using Young’s Inequality with exponents p/2 and σ, and a small constant η,

we can break up the final term of the above inequality:

ub−1
∗ |∇u∗|2≤C(p)

((
ηu

2b
p
∗ |∇u∗|2

)p/2
+

(
1

η
u
b
(

1− 2
p

)
−1

∗

)σ)
≤C(p)

(
η
p
2ub∗|∇u∗|p+η−σub−σ∗

)
.

By taking η sufficiently small (depending on p, b, Λ), the ub∗|∇u∗|p term on the right can be absorbed

by the same term with larger constant on the left. We use the shorthand

T (u∗,b) :=

{
ub−1
∗ |∇u∗|2 if b≤σ
ub−σ∗ if b>σ

and write

�
φ2∂t(u

b+1
∗ )+

�
φ2ub∗ |∇u∗|

p≤C(Λ,b)

(�
φ2ub∗f+

�
ub+1
∗ |∇φ|2 +

�
φ2T (u∗,b)

)
.

In the case that φ is time dependent, we can integrate the above in time to obtain (2.6).

From now on, we assume that ∂tφ= 0, and hence
�
φ2∂t(u

b+1
∗ ) = d

dt

�
φ2ub+1

∗ .

For any times s,t satisfying S≤s≤T ≤ t≤0, we can integrate the above inequality over

[s,t] (and apply Hölder’s to remove dependence on f):

�
φ2ub+1

∗ (t)+

� t

s
φ2ub∗ |∇u∗|

p

≤C(Λ,b)

(�
φ2ub+1

∗ (s)+

(� t

s
(φ2ub∗)

m∗
) 1
m∗

+

� t

s
ub+1
∗ |∇φ|2 +

� t

s
φ2T (u∗,b)

)
.

Due to our choice of s,t, the above inequality implies that

�
φ2ub+1

∗ (t)+

� t

T
φ2ub∗ |∇u∗|

p

≤C(Λ,b)

(�
φ2ub+1

∗ (s)+

(� 0

S
(φ2ub∗)

m∗
) 1
m∗

+

� 0

S
ub+1
∗ |∇φ|2 +

� 0

S
φ2T (u∗,b)

)
.
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Since the right side is independent of t, we can take a supremum of the left side over T ≤ t≤0. Add

to this the inequality with t= 0 to obtain

sup
t∈[T,0]

�
φ2ub+1

∗ (t)+

� 0

T
φ2ub∗ |∇u∗|

p

≤C(Λ,b)

(�
φ2ub+1

∗ (s)+

(� 0

S
(φ2ub∗)

m∗
) 1
m∗

+

� 0

S
ub+1
∗ |∇φ|2 +

� 0

S
φ2T (u∗,b)

)
.

Lastly, since this inequality holds for all S≤s≤T , it also holds if we average the right hand side

over all values of s in that range,

sup
t∈[T,0]

�
φ2ub+1

∗ (t)+

� 0

T
φ2ub∗ |∇u∗|

p

≤C(Λ,b)

(
1

T−S

� T

S
φ2ub+1

∗ +

(� 0

S
(φ2ub∗)

m∗
) 1
m∗

+

� 0

S
ub+1
∗ |∇φ|2 +

� 0

S
φ2T (u∗,b)

)
.

From here the result follows naturally.

2.3 First De Giorgi Lemma

Now we present De Giorgi’s first lemma. If we define

Q2 := [−2,0]×B2, Q1 := [−1,0]×B1,

this lemma tells us that the supremum in Q1 of solutions to (1.1) can be controlled by the measure

of {u>0} in Q2.

Proposition 2.3.1 (De Giorgi’s First Lemma). There exists a constant δ0>0 depending only on

Λ, p, m, and the dimension such that, for any u satisfying Inequality (1.1) on Q2 in the sense of

distributions, the following implication holds:

If

u(t,x)≤1 ∀(t,x)∈Q2
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and ∣∣{u>0}∩Q2

∣∣≤ δ0,

then

u(t,x)≤ 1

2
∀(t,x)∈Q1.

De Giorgi’s first lemma is proved by cutting off u at larger and larger values, and showing

that as the cutoff value tends to 1/2, some Lebesgue norm of the remainder tends to zero.

Proof. Let us specify the sequence of cutoffs. We’ll consider

� heights Ck = 1
2−2−k−1 from C0 = 0 to C∞= 1

2 with Ck−Ck−1 = 2−k−1;

� functions uk = max(u−Ck,0) from u0 =u+ to u∞= (u− 1
2)+;

� balls Bk of radius 1+2−k from B0 =B2 ={x : |x|<2} to B∞=B1 ={x : |x|<1};

� times Tk =−1−2−k from T0 =−2 to T∞=−1 with Tk−Tk−1 = 2−k;

� and smooth functions φk such that supp(φk) =Bk and φk�Bk+1≡1, with 0≤φk≤1 and

|∇φk|≤2k+2.

Define the ”energy” of the kth level to be

Ek := sup
t∈[Tk+1,0]

�
(φkuk)

2(t)+

�
k+1

φ2
kuk |∇uk|

p ,

where
�
k means

� 0
Tk

�
Rn . First we will show via Sobolev’s inequality that this energy term controls

some L(1+β)q norm of φkuk. Then we will show via the Energy Inequality that the same L(1+β)q

norm controls this energy term.

Step 1: Controlling L(1+β)q using Ek
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Before we can apply Sobolev’s inequality, we have to deal with the inhomogeneity of the

gradient term. We do this by ”going up a level” from uk to uk+1.

Ek≥
�
k+1

φ2
kuk |∇uk|

p

≥
�
k+1

φ2
k

[
2−(k+2)χ{uk≥2−k−2}

]
|∇uk|p

= 2−k−2

�
k+1

φ2
kχ{uk+1≥0} |∇uk|p

= 2−k−2

�
k+1

φ2
k |∇uk+1|p

≥2−k−2

�
k+1

χ{Bk+1} |∇uk+1|p

=C−k
� 0

Tk+1

‖∇uk+1‖pLp(Bk+1)

=C−k‖∇uk+1‖pLp([Tk+1,0];Lp(Bk+1))

We introduce now a parameter β∈ (0,1], satisfying

0<
1

n
− β

2
<

1

p
, n≥2

or β= 1 if n= 1. We are going to apply Sobolev’s Inequality to bound the Lp
′

norm of u1+β
k by

some Lebesgue norm of ∇u1+β
k .

Since∥∥∥uβk+1

∥∥∥2/β

L∞([Tk+1,0];L2/β(Bk+1))
= sup
t∈[Tk+1,0]

‖uk+1(t)‖2L2(Bk+1)≤ sup
t∈[Tk+1,0]

‖φkuk(t)‖2L2(Bk+1)≤Ek,

we know by elementary properties of Lebesgue spaces that

� 0

Tk+1

∥∥∥∇uβ+1
k+1

∥∥∥p
L

2p
2+pβ (Bk+1)

=
∥∥∥uβk+1∇uk+1

∥∥∥p
Lp([Tk+1,0];L

2p
2+pβ (Bk+1))

≤
∥∥∥uβk+1

∥∥∥p
L∞([Tk+1,0];L2/β(Bk+1))

‖∇uk+1‖pLp([Tk+1,0];Lp(Bk+1))

≤
(
E
β/2
k

)p
CkEk =CkE

1+ pβ
2

k .

(3.7)
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If n>1, then let 1
p′ =

2+pβ
2p −

1
n = β

2 + 1
p−

1
n . If n= 1, then take p′=p (which renders some of

the following calculations trivial). Sobolev Embedding yields∥∥∥u1+β
k+1

∥∥∥
Lp′(Bk+1)

≤
∥∥∥∥u1+β

k+1−
 
Bk+1

u1+β
k+1

∥∥∥∥
Lp′(Bk+1)

+ |Bk+1|
1
p′−1

�
Bk+1

u1+β
k+1

≤C
(∥∥∥∇u1+β

k+1

∥∥∥
L

2p
2+pβ (Bk+1)

+‖uk+1‖1+β

L2(Bk+1)

)
.

Remember that
�
E := 1

|E|
�
E , and 1+β≤2 so L1+β⊆L2.

With the above calculation and (3.7), we can estimate

� 0

Tk+1

∥∥∥u1+β
k+1

∥∥∥p
Lp′ (Bk+1)

≤C
� 0

Tk+1

(∥∥∥∇u1+β
k+1

∥∥∥
L

2p
2+pβ (Bk+1)

+‖uk+1‖1+β
L2(Bk+1)

)p
≤C

(� 0

Tk+1

∥∥∥∇u1+β
k+1

∥∥∥p
L

2p
2+pβ (Bk+1)

+Tk+1 sup
t∈[Tk+1,0]

‖uk+1(t)‖p(1+β)

L2(Bk+1)

)

≤C
(
CkE

1+ pβ
2

k +E
p 1+β

2
k

)
≤CkE1+ pβ

2
k .

This last estimate holds as long as Ek is less than one.

We wish to apply the Riesz-Thorin theorem to interpolate between the Lp(Lp
′
) and

L∞(L
2

1+β ) norms of u1+β
k+1 . First define

q=p+

(
1− p

p′

)
2

1+β
. (3.8)

Because p′≥p and hence q≥p, we can let θ= p
q ∈ [0,1] and interpolate to obtain

(1−θ) 1

∞
+θ

1

p
= 0+

1

q
=

1

q

and

(1−θ) 1+β

2
+θ

1

p′
=

(
q−p
q

)
1+β

2
+

1

q

(
p

p′

)
=

1

q

(
1− p

p′

)(
2

1+β

)
1+β

2
+

(
p

p′

)
1

q
.
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=
1

q
.

Therefore the Riesz-Thorin interpolation theorem yields

∥∥∥u1+β
k+1

∥∥∥
Lq([Tk+1,0]×Bk+1)

≤C

[∥∥∥u1+β
k+1

∥∥∥
L∞

(
[Tk+1,0];L

2
1+β (Bk+1)

)
]1−θ[∥∥∥u1+β

k+1

∥∥∥
Lp([Tk+1,0];Lp′ (Bk+1))

]θ

≤C

[
sup

t∈[Tk+1,0]
‖φkuk‖1+β

L2(Bk)

]1− p
q
[(

CkE
1+ pβ

2
k

)1/p
] p
q

≤Ck
[
E

1
2

+β
2

k

]1− p
q

E
1
q

+β
2
· p
q

k

=CkE
1
q

+ 1
2

(
1+β− p

q

)
k .

Thus finally,

�
k+1
|φk+1uk+1|(1+β)q≤

�
k+1

χ{Bk+1}(u
1+β
k+1)q≤CkE1+

(1+β)q−p
2

k . (3.9)

Step 2: A Recursive relation for the sequence Ek

Recall from the definition (3.8) of q that (1+β)q= 2+(1+β)p−2 p
p′ . If n>1, then by the

definition of p′ we have that 2 p
p′ = 2+pβ−2 pn . If n= 1, then p′=p and β= 1. Therefore,

(1+β)q=p+2
p

n
, n>1

(1+β)q= 2p, n= 1.
(3.10)

The Energy Inequality (2.4), applied to uk with b= 1, φk, and times Tk+1 and Tk, tells us

that

Ek≤C2k+2

(�
k
(u2
k+ |∇uk|2)χ{Bk}+

(�
k
um
∗

k χ{Bk}

)1/m∗
)
. (3.11)

Now that we have (3.9), we are ready to bound the three terms on this inequality’s right hand side.

For the first and third terms on the right hand side, we can use a well known trick of

De Giorgi [DG57]. For any j≤ (1+β)q we can apply Hölder’s inequality followed by Chebyshev’s
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inequality to obtain�
k
ujkχ{Bk}=

�
k
(φk−1uk)

jχ{Bk∩{uk−1>2−(k+1)}}

≤
(�

k
(φk−1uk)

(1+β)q

)j/[(1+β)q] ∣∣∣{φk−1uk−1>2−(k+1)}
∣∣∣1−j/[(1+β)q]

≤
(�

k−1
(φk−1uk−1)(1+β)q

)j/[(1+β)q] ∣∣∣{(φk−1uk−1)(1+β)q>2−(k+1)(1+β)q}
∣∣∣1−j/[(1+β)q]

≤
(�

k−1
(φk−1uk−1)(1+β)q

)j/[(1+β)q](
2(k+1)(1+β)q

�
k−1

(φk−1uk−1)(1+β)q

)1−j/[(1+β)q]

≤2(k+1)((1+β)q−j)
�
k−1

(φk−1uk−1)(1+β)q

≤CkE1+
(1+β)q−p

2
k−2 .

We know from (3.10) that 2< (1+β)q and m∗≤1+ p
n ≤ (1+β)q, so setting j= 2 and j=m∗ gives

us bounds on the first and third terms of (3.11), respectively.

For the second term of (3.11), calculate�
k
|∇uk|2χ{Bk}≤

�
k
φ

4/p
k−1χ{uk>0}|∇uk−1|2χ{φkuk>0}

≤
(�

k
φ2
k−1χ{uk−1>2−(k+1)}|∇uk−1|p

)2/p ∣∣∣{φk−1uk−1>2−(k+1)}
∣∣∣1−2/p

≤
(

2k+1

�
k
φ2
k−1uk−1|∇uk−1|p

)2/p ∣∣∣{(φk−1uk−1)(1+β)q>2−(k+1)(1+β)q}
∣∣∣1−2/p

≤
(

2k+1Ek−1

)2/p
(

2(k+1)(1+β)q

�
k−1

(φk−1uk−1)(1+β)q

)1−2/p

≤
(

2k+1Ek−2

)2/p
(

2(k+1)(1+β)qCk−2E
1+

(1+β)q−p
2

k−2

)1−2/p

≤CkE
1+

(
1− 2

p

)
(1+β)q−p

2

k−2 .

The second-to-last inequality used (3.9), and the fact that Ek−1≤Ek−2.

Finally we have the recursive relation

Ek≤Ck
(
E

1+
(1+β)q−p

2
k−2 +E

1+
(

1− 2
p

)
(1+β)q−p

2

k−2 +E

(
1+

(1+β)q−p
2

)
( 1
m∗ )

k−2

)
. (3.12)
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From (3.10) and p>2, one sees that the first two of these exponents are strictly greater than 1.

From (3.10) and m∗<1+ p
n , one sees that the third exponent is strictly greater than 1.

Because we can assume wlog that all Ek are small, this simplifies for our purposes to

Ek≤CkE1+ε
k−2.

Therefore the sequence E2n+1 is bounded by a sequence an+1 = cna1+ε
n , a0 =E1. Because the

exponent is greater than one, the bounding sequence will tend to zero as long as a0 is sufficiently

small.

But since u≤1 by assumption, we can calculate, for any b>σ,

E1 = sup
[T1,0]

�
φ2

1u
2
1 +

�
1
φ2

1u1 |∇u1|p

= 22(b−1)

(
sup
[T1,0]

�
φ2

1u
2
1

(
2−2χ{u0>2−2}

)b−1
+

�
1
φ2

1u1

(
2−2χ{u0>2−2}

)b−1 |∇u1|p
)

≤22(b−1)

(
sup
[T1,0]

�
φ2

1u
2
1u
b−1
0 +

�
1
φ2

1u1u
b−1
0 |∇u1|p

)

≤22(b−1)

(
sup
[T1,0]

�
φ2

0u
b+1
0 +

�
1
φ2

0u
b
0 |∇u1|p

)

≤C

(�
0
(ub+1

0 +ub−σ0 )χ{B0}+

(�
0
ubm

∗
0 χ{B0}

) 1
m∗
)

≤C
(
|{u>0}∩Q2|+ |{u>0}∩Q2|+ |{u>0}∩Q2|1/m

∗
)
.

Therefore there exists a δ0>0 sufficiently small that, if
∣∣{u>0}∩Q2

∣∣≤ δ0, then E1 will be small

enough that Ek→0 as k→∞.

If Ek→0, then

‖uk‖Lq([−1,0]×B1)≤‖φkuk‖Lq([Tk,0]×Bk)≤C
kE

1
q

+ q−p
2q

k →0.

By the monotone convergence theorem, we conclude that ‖(u−1/2)+‖Lq([−1,0]×B1) = 0 and so

|{u> 1

2
}∩ [−1,0]×B1|= 0.
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2.4 Second De Giorgi Lemma

The second De Giorgi lemma is a quantitative version of the statement “solutions to our

PDE cannot have jump discontinuities.”

Define the sets

Q3 = [−4,0]×B3, Q2 = [−4,0]×B2,

and remember that

Q2 = [−2,0]×B2.

According to the next theorem, if a solution to (1.1) is negative in Q2 on a set of large measure,

and ≥1 in Q2 on a set of large measure, and it is bounded on all of Q3, then that solution must be

strictly between 0 and 1 on a set of large measure in Q2.

The proof is by compactness. Because the solution is bounded on Q3, we can use the Energy

nequality to bound its derivatives on Q2. By a theorem of Aubin and Lions, which is an instance of

the general principle “bounded derivatives imply compactness,” we can conclude that the family of

bounded solutions is precompact. Therefore, if the interstitial measure is not bounded below, there

must be a limit function which would have both bounded derivatives and a jump discontinuity, a

contradiction.

Because of the coefficient on |∇u| in the Energy Inequality, the derivatives are not well

controlled when u is near zero. This is solved by considering instead u raised to some power,

whose derivatives are trivially controlled when u is near zero, and whose convergence implies the

convergence of u.

Proposition 2.4.1 (De Giorgi’s Second Lemma). There exists a positive constant µ0 depending

on Λ, p, m, δ0, and the dimension, such that for any u satisfying Inequality (1.1) in the sense of
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distributions, with

u(t,x)≤2 ∀(t,x)∈Q3

and

|{u≤0}∩Q2|≥
|Q2|

2
,

and, for δ0 the quantity divined in Proposition 2.3.1,

∣∣{u≥1}∩Q2

∣∣≥ δ0,

it must be the case that

|{0<u<1}∩Q2|≥µ0.

Proof. Suppose the proposition is false. Then we can consider a sequence ui of functions which

satisfy all the hypotheses of this proposition but for which

|{0<ui<1}∩Q2|≤
1

i
.

Rather than seek a limit of the sequence ui, we will actually seek a limit of (ui)
σ+2
+ , where

1
σ + 2

p = 1 consistent with the notation in Lemma 2.2.1. First we need to bound the space and time

derivatives of (ui)
σ+2
+ uniformly in i.

Step 1: Bounding the derivatives

To bound the spatial derivatives, we use the Energy Inequality (2.5) with b= (σ+1)p, and

choose a smooth cutoff function φ satisfying

φ :B3→ [0,1], φ≥0, supp(φ) compact, ψ(x) = 1 ∀x∈B2.

By the Energy Inequality, we have

�

B2×[−4,0]

|∇(ui)
σ+2
+ |p≤ (σ+2)p

� 0

−4
ψ(ui)

p(σ+1)
+ |∇(ui)+|p
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≤C
� 0

−4

(
(ui)

p(σ+1)−σ
+ +(ui)

p(σ+1)+1
+

)
χ{B3}+C

(� 0

−4
(ui)

m∗p(σ+1)
+ χ{B3}

)1/m∗

≤C(Λ,p,n,m).

Therefore the sequence ∇(ui)
σ+2
+ is bounded in Lp([−4,0];Lp(B2)) uniformly in i.

Bounding the time derivative is much more involved. We will show that ∂t(ui)
σ+2
+ are

uniformly bounded in M([−4,0];W−1,∞), where M means the dual space to L∞ and W−1,∞ is the

dual of C∞0 (B2)∩W 1,∞(B2).

Using the Energy Inequality (2.6) with b=σ+1 and any test function ϕ :Q3→R which

is smooth and compactly supported in space (but not necessarily compactly supported in time),

together with the fact that ‖f‖1≤‖f‖m≤Λ and ui≤2, gives us the bound

〈∂t(ui)σ+2
+ ,ϕ2〉[−4,0]×B3

≤C(p,Λ)

(�
ϕ2(ui)

σ+1
+ f+

�
ϕ2(ui)+ +

�
(ui)

σ+2
+ |∇ϕ|2

)
≤C(p,Λ)

(
‖ϕ‖2L∞(Q3) +‖∇ϕ‖2L∞(Q3)

)
.

We must find a similar bound on 〈∂t(ui)σ+1
+ ,ψ〉 when ψ is not necessarily the square of a

smooth function. Our strategy is to decompose ψ as a sum of a perfect square and a function

independent of time. To this end, define
√
φ a specific smooth function (of space only) supported

in B3 and identically 1 on B2. Then φ :=
√
φ

2
will also be smooth, supported on B3, and identically

1 on B2.

Consider any ψ∈C∞0 (Q3), and set K=‖ψ‖∞+‖∇ψ‖∞. Here and in the sequel, ‖·‖∞ means

‖·‖L∞(Q3). Note that ψ+Kφ is non-negative, so we can define ϕ by the relation

ψ=ϕ2−Kφ.

Estimate

�

Q2

ψ∂t(ui)
σ+2
+ =−K

�

Q3

φ∂t(ui)
σ+2
+ +

�

Q3

ϕ2∂t(ui)
σ+2
+
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≤K
∣∣∣∣� 0

−4

d

dt

�
φ(ui)

σ+2
+

∣∣∣∣+C
(
‖ϕ‖2∞+‖∇ϕ‖2∞

)
≤K

[�
φ(ui)

σ+2
+ (0,·)+

�
φ(ui)

σ+2
+ (−4, ·)

]
+C

(
‖ψ+Kφ‖∞+

∥∥∥∥(∇√ψ+Kφ
)2
∥∥∥∥
∞

)
.

By the chain rule, this last term becomes

2
∥∥∥(∇

√
ψ+Kφ)2

∥∥∥
∞

=

∥∥∥∥ |∇ψ+K∇φ|2

ψ+Kφ

∥∥∥∥
∞

= sup

(∥∥∥∥ |∇ψ+K∇φ|2

ψ+Kφ

∥∥∥∥
L∞(Q2)

,

∥∥∥∥ |∇ψ+K∇φ|2

ψ+Kφ

∥∥∥∥
L∞(Q3\Q2)

)

= sup

(∥∥∥∥ |∇ψ|2ψ+K

∥∥∥∥
L∞(Q2)

,

∥∥∥∥ |K∇φ|2Kφ

∥∥∥∥
L∞(Q3\Q2)

)

≤ sup

(
1

‖∇ψ‖∞

∥∥|∇ψ|2∥∥∞ , K2

K

∥∥∥∇√φ∥∥∥2

∞

)
≤CφK.

In the above calculation, remember that φ is constant on Q2 and ψ= 0 outside Q2, that ψ+K≥

‖∇ψ‖∞ by the definition of K, and that
√
φ is smooth by assumption.

We see now that

〈ψ,∂t(ui)σ+2
+ 〉≤C(Λ,p,n,φ)(‖ψ‖∞+‖∇ψ‖∞)

and, by duality, ∂t(ui)
σ+2
+ is bounded in M([−4,0];W−1,∞(B2)).

In order to apply our compactness lemma, we need (ui)
σ+2
+ to be absolutely continuous in

time (i.e. we want L1, not M). Therefore consider a family of mollifiers ηδ tending to a dirac

measure as δ→0. Convolving with respect to time, we obtain smooth-in-time functions.

ηδ ∗(ui)
σ+2
+ ∈Lp([−4,0];W 1,p(B2)), ∂t

[
ηδ ∗(ui)

σ+2
+

]
∈L1([−4,0];W−1,∞(B2))

are uniformly bounded independent of δ<1.

The Aubin-Lions Lemma indicates that the family ηδ ∗(ui)
σ+2
+ is compact in L1([−4,0]×B2).

Choose a sequence δi→0 such that∥∥(ui)
σ+2
+ −ηδi ∗(ui)

σ+2
+

∥∥
L1≤

1

i
.
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By compactness, the sequence ηδi ∗(ui)
σ+2
+ has a subsequential limit v, and

∥∥(ui)
σ+2
+ −v

∥∥
1
≤
∥∥(ui)

σ+2
+ −ηδi ∗(ui)

σ+2
+

∥∥
1
+
∥∥ηδi ∗(ui)

σ+2
+ −v

∥∥
1
→0.

That is to say, (ui)
σ+2
+ →v in L1(Q2).

Step 2: Showing that the limit engenders a contradiction

By a measure-theoretic argument,

|{v≤0}∩Q2|≥
|Q2|

2
, (*)

|{v≥1}∩Q2|≥ δ0, and (**)

|{0<v<1}∩Q2|= 0.

The map f 7→‖∇f‖Lp(Q2) is lower-semi-continuous on L1(Q2), and hence

� 0

−4
‖∇v‖pLp(B2) dt<∞.

This implies that for almost every t∈ [−4,0], ‖∇v‖p is finite; and for such t, v must have no

spatial jump discontinuities. In other words, there are three kinds of t∈ [−4,0]: those at which v

is identically 0, those at which v(t,x)≥1 ∀x∈B2, and the exceptions which have measure zero in

[−4,0].

If we define a new smooth cutoff φ on B2, and set

H(t) =
∥∥φ2(·)v(t,·)

∥∥
L1(B2)

,

then for a.e. t, either H(t) = 0 or H(t)≥
∥∥φ2

∥∥
1
.

On the other hand, we know that H cannot have (certain kinds of) jump discontinuities.

Because (ui)
σ+2
+ →v in L1(Q2), we know that

Hi≡
∥∥φ2(ui)

σ+2
+

∥∥
1
−→H in L1([−4,0]).
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And by the Energy Inequality (2.6), with cutoff φ and b=σ+1, the derivative of each Hi is bounded

uniformly in i: notice that ∂tφ= 0 and so for any time interval [s,t] we have

Hi(t)−Hi(s) =

� t

s

d

dt

�
φ2(ui)

σ+2
+

≤C(p,Λ,φ)

� t

s

(
(ui)

σ+1
+ +(ui)

σ+2
+ +(ui)

1
+

)
χ{supp(φ)}

≤ [s− t]C(p,Λ,φ).

Therefore (again by lower-semi-continuity), d
dtH is bounded above.

This means in particular that if H(s) = 0, then H(t) = 0 ∀t≥s. And we know by (*) that

v= 0 on a set of large measure. In fact, necessarily H(t) = 0 ∀t∈ (−2,0]. This contradicts (**), and

so the proposition is proven.

2.5 Transporting Improvement Forwards in Time

Using the propositions proven thus far, one can show, under the appropriate hypotheses,

that if a solution to Inequality (1.1) is ≥−2 in Q3, then it is in fact ≥−2+ε in [−4,−3]×Bε. This

is not quite what we set out to prove; we want solutions to become regular after some time elapses,

and hence the lower bound must be somewhere in the region [−1,0]×B1.

To bridge the gap, we use a barrier function to ”flow” the improvement forward in time.

Our solution will still be ≥−2+ε′ on a ball of radius ε′ at the end of the time interval, and though

ε′ becomes smaller as time elapses, it never vanishes entirely.

This is the first time we use (1.3). This inequality is true only in a viscosity sense, so instead

of energy methods, we must construct a barrier function which constitutes a subsolution to

∂tu+Λ|∇u|p−Λ0m
−(D2u) = 0.
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Proposition 2.5.1. There exists a constant 0<K0<1 depending only on p, Λ, and n such that

the following holds: Let 0<λ≤K0 be a constant and u a viscosity supersolution to Inequality (1.3)

on the interior of [0,T ]×B2 with T <4 and Λ0≤λ2K0. Suppose that

u≥−2 on [0,T ]×B2,

u≥−2+λ2 on 0×Bλ.

Then

u≥−2+
λ2

2
on [0,T ]×Bλ/2.

Proof. We define the barrier function

σ(t,x) :=−2+λ2β

(
|x|
λ

)
− λ

2

8
t,

where β :R+→R is a smooth function supported on [0,1] and identically 1 on [0,1/2].

If we can show that σ is a subsolution to (1.3), and that it is less than u on the parabolic

boundary 0×B2∪ [0,T ]×∂B2, then the standard theory of comparison principles tells us that u≥σ

on the whole interior of [0,T ]×B2. See [Cra97] for the elliptic version of the comparison principle,

and [Juu01] for a treatment more specific to the parabolic case.

In particular, for (t,x)∈ [0,T ]×Bλ/2 we have

σ(t,x) =−2+λ2(1− t/8)≥−2+λ2(1−T/8)≥−2+λ2/2.

Thus showing u≥σ will prove the proposition.

Step 1: Barrier is below u on the boundary

At t= 0,

σ(0,x)≤−2+λ2≤u ∀x∈Bλ,

σ(0,x)≤−2≤u ∀x∈B2 \Bλ;
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and on the spatial boundary |x|= 2,

σ(t,x) =−2− λ
2

8
t≤−2≤u ∀t∈ [0,T ].

Thus on the parabolic boundary of [0,T ]×B2, we have σ≤u.

Step 2: Barrier is a subsolution

By construction

∂tσ(t,x) =−λ2/8

and

|∇σ|(t,x) =λβ′
(
|x|
λ

)
.

To compute D2σ, notice that σ is radially symmetric in space, and so it suffices to compute the

Hessian at the point x= (|x|,0,. ..,0). At this point, one can compute directly that

∂11σ(t,x) =
d2

dh2

∣∣∣∣
h=0

λ2β

(
|x|+h

λ

)
=β′′

(
|x|
λ

)
and for i 6= 0

∂iiσ(t,x) =
d2

dh2

∣∣∣∣
h=0

λ2β

(√
|x|2 +h2

λ

)

=
λ

|x|
β′
(
|x|
λ

)
.

For any i 6= j, assume without loss of generality that i 6= 1. Then [∂iσ](x) = 0 for any x in the

hyperplane xi= 0, by radial symmetry. Therefore ∂j [∂iσ] = 0 at (|x|,0,. ..,0).

We conclude that the matrix D2σ(t,x) is a diagonal matrix with eigenvalues

λ

|x|
β′
(
|x|
λ

)
and β′′

(
|x|
λ

)
,

and by symmetry it should have the same eigenvalues at generic x.
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Therefore, to see if σ is a subsolution, calculate

∂tσ+Λ|∇σ|p−Λ0m
−(D2σ) =−λ

2

8
+Λλp(β′)p−Λ0 min

(
β′′,

λ

|x|
β′,0

)
≤ −λ

2

8
+Λλp

∥∥β′∥∥p∞+Λ0

∥∥β′′∥∥∞+Λ0
λ

1/2

∥∥β′∥∥∞
≤ −λ

2

8
+Λλp

∥∥β′∥∥p∞+λ2K0

∥∥β′′∥∥∞+2λ3K0

∥∥β′∥∥∞
=λ2

(
Λλp−2

∥∥β′∥∥p∞+K0

∥∥β′′∥∥∞+2λK0

∥∥β′∥∥∞− 1

8

)
≤λ2

(
ΛKp−2

0

∥∥β′∥∥p∞+K0

∥∥β′′∥∥∞+K2
0

n−1

1/2

∥∥β′∥∥∞− 1

8

)
.

This last quantity is negative provided K0 sufficiently small, depending on Λ, p, the dimen-

sion, and the specific choice of β.

2.6 Proof of the Main Theorem

Having completed the core of the proof, we now come to the final section. The pieces are

all present, and we need only put them together. This section contains three lemmas before the

proof. The first two (Lemmas 2.6.1 and 2.6.2) tell us which scalings constitute symmetries of our

PDE. Lemma 2.6.3, the Oscillation Lemma, applies Propositions 2.3.1 and 2.4.1 iteratively in order

to control the oscillation of solutions to our PDE. Finally the proof of the Main Theorem will show

how the Oscillation Lemma is equivalent to interior Hölder continuity.

The proof of the Oscillation Lemma is slightly non-standard. The rest is technical, with no

new ideas.

Lemma 2.6.1. If u satisfies the two equations (1.1) and (1.3) on a cylinder [T0,0]×Ω, and α,β>0

are any two real numbers satisfying

β≤α−1 β≤α−
p−1
p−2 , β≤α−

p(m−1)+1
p(m−1)−n ,
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then the modified function

v(t,x) :=αu(αp−1βpt,βx)

satisfies the equations

∂tv+Λ−1 |∇v|p−div(A′∇v)≤f ′

∂tv+Λ |∇v|p−Λ′0m
−(D2v)≥0

on
[

T0
αp−1βp

,0
]
× 1
βΩ, with Λ′0 =αp−1βp−2Λ0≤Λ0, ‖A′‖∞≤‖A‖∞ and ‖f ′‖m≤‖f‖m.

Proof. One must take

f ′(t,x) :=αpβpf(αp−1βpt,βx),

A′(t,x) :=αp−1βp−2A(αp−1βpt,βx).

Applying our differential operator to v, we obtain

∂tv+Λ−1 |∇v|p−div(A′∇v) = (αβ)p∂tu+(αβ)pΛ−1 |∇u|p−(αβ)pdiv(A∇u)

= (αβ)p
[
∂tu+Λ−1 |∇u|p−div(A∇u)

]
≤f ′

For the other inequality, similarly,

∂tv+Λ |∇v|p−Λ0m
−(D2v) = (αβ)p∂tu+(αβ)pΛ |∇u|p−αβ2Λ0m

−(D2u)

= (αβ)p
[
∂tu+Λ |∇u|p−Λm−(D2u)

]
≥0.

That Λ′0≤Λ0 and ‖A′‖∞≤‖A‖∞ follows immediately from our assumptions on α, β. For

‖f ′‖m, we notice that p− p+n
m is necessarily positive, and calculate

∥∥αpβpf(αp−1βpt,βx)
∥∥
m

=αpβp(αp−1βpβn)−1/m‖f‖m
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=αp−
p−1
m βp−

p+n
m ‖f‖m

≤αp−
p−1
m

(
α
− p(m−1)+1
p(m−1)−n

)p− p+n
m

‖f‖m=‖f‖m .

Lemma 2.6.2. If u satisfies Inequality (1.1) on a cylinder [T0,0]×Ω, there exist constants e1∈ (2,p)

and e2<0 dependent on n, m, p such that, for any two real numbers 0<β≤1 and 1≤α≤βe2, the

modified function

v(t,x) :=αu(βe1t,βx)

also satisfies Inequality (1.1) on [T0,0]×Ω with parameters ‖f ′‖m≤‖f‖m, ‖A′‖∞≤‖A‖∞ and the

same Λ.

Proof. Since n
m−1 <p and p>2, we can choose a constant e1∈ ( n

m−1 ,p) such that e1>2. Let

e2 := max

(
−p−e1

p−1
,
n

m
−e1

m−1

m

)
so that

αp−1βp−e1 =

(
α

(
1

β

)− p−e1
p−1

)p−1

≤
(
α

(
1

β

)e2)p−1

≤1

and αβe1
m−1
m
− n
m ≤1.

Define

A′(t,x) :=βe1−2A(βe1t,βx),

f ′(t,x) :=αβe1f(βe1t,βx).

Applying our differential operator to v, we obtain

∂tv+Λ−1 |∇v|p+div(A′∇v) =αβe1∂tu+(αβ)pΛ−1 |∇u|p+αβe1 div(A∇u)

=αβe1
[
∂tu+

(
αp−1βp−e1

)
Λ−1 |∇u|p+div(A∇u)

]
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≤αβe1
[
∂tu+Λ−1 |∇u|p+div(A∇u)

]
≤αβe1f =f ′.

That ‖A′‖∞≤‖A‖∞ follows immediately from our assumption that e1>2. It remains to

calculate the norm of f ′: ∥∥f ′∥∥
m

=αβe1(βe1βn)−1/m‖f‖m

=αβe1(1− 1
m

)− n
m ‖f‖m

≤‖f‖m .

A priori, v will satisfy this inequality on
[
T0
βe1 ,0

]
× 1
βΩ. Since we assume β≤1, this in

particular means it is satisfied on [T0,0]×Ω.

At last we can prove the Oscillation Lemma. The oscillation of a function is the distance

between its supremum and its infimum, and for solutions of (1.1) and (1.3), if the oscillation is

finite on a region it will be strictly less on a strictly smaller region.

Lemma 2.6.3 (Oscillation Lemma). There exist constants λ∗>0, r∗>0, T ∗<0 depending on Λ,

p, n, µ0 (from Proposition 2.4.1), δ0 (from Proposition 2.3.1), K0 (from Proposition 2.5.1), and

e1, e2 (from Lemma 2.6.2) such that, for any solution u to Inequalities (1.1) and (1.3) on Q3, with

Λ0< (λ∗)2K0, we have the following implication: If

|u|≤2 ∀(t,x)∈Q3,

then either

sup
[T ∗,0]×Br∗ (0)

u≤2− (λ∗)2

2

or

inf
[T ∗,0]×Br∗ (0)

u≥−2+
(λ∗)2

2
.
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The idea of the proof is to apply De Giorgi’s First Lemma to some truncation of u. Re-

member that De Giorgi’s First Lemma says that if the measure of {u+>0} is sufficiently small,

then u+ is L∞-bounded on some smaller domain. This L∞ bound is precisely what we wish to

prove. We attempt to apply the lemma to each of (u−Ck)+ for Ck an increasing series of constants.

Obviously the measure shrinks as Ck increases; De Giorgi’s Second Lemma allows us to quantify

the decrease in measure, and find a precise k for which De Giorgi’s First Lemma applies.

Proof. Let k0 be the smallest integer greater than |Q2|/µ0, where µ0 is the constant in Proposi-

tion 2.4.1, and define

Qsmall := [−4 ·2k0e1/e2 ,0]×B2·2k0/e2 .

There are two cases to consider: either we will upper-bound the supremum or we will

lower-bound the infimum of u in the region [T ∗,0]×Br∗(0). If

|{u≤0}∩Qsmall|≥
|Qsmall|

2
,

we are in the former case, so we call u “mostly negative” and define

v(t,x) :=u(2k0e1/e2t,2k0/e2x).

Otherwise, we are in the latter case, so we call u “mostly positive” and define

v(t,x) :=−u(2k0e1/e2(−4− t),2k0/e2x).

In either case,

|{v≤0}∩Q2|≥
Q2

2
.

For integers k∈ [0,k0] consider the functions

vk = 2k(v−2)+2.
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Notice that for all k≤k0, vk≤2 on Q3. By Lemma 2.6.2 with α= 2k and β= 2k0/e2 and domain

Q3, combined with the fact that Inequality (1.1) is preserved by translations, addition of constants,

and the transformation f(t,x) 7→−f(−t,x), each vk satisfies Inequality (1.1) on Q3.

We claim that |{vk0≥1}∩Q2|≤ δ0. If this were not the case, then in fact

|{vk≥1}∩Q2|>δ0,

for all k≤k0, because the quantity is non-increasing as k increases. Similarly,

|{vk≤0}∩Q2|≥
|Q2|

2

for all k≤k0, because the same holds for v0 and the quantity is non-decreasing.

This is enough for us to apply De Giorgi’s Second Lemma to each vk. By construction, the

Lemma tells us that

|{vk+1≥0}∩Q2|≤ |{vk≥0}∩Q2|−µ0.

This cannot possibly be true for all k between 0 and k0, since k0µ0> |Q2|. This is a

contradiction.

Therefore |{vk0≥1}∩Q2|≤ δ0. We can apply De Giorgi’s First Lemma to vk0−1, and learn

that vk0≤3/2 on Q1. In terms of v,

v(t,x)≤2−2−k0−1 ∀(t,x)∈Q1.

In the case that u is mostly negative, this means

u(t,x)≤2−2−k0−1 ∀(t,x)∈ [T,0]×Br(0), T =−2k0e1/e2 , r= 2k0/e2

and the proof is complete. So consider the case where u is mostly positive. We’ve shown that

u≥−2+2−k0−1 ∀(t,x)∈ [−4 ·2k0e1/e2 ,−3 ·2k0e1/e2 ]×Br.
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The problem here is the time interval; we want a lower bound on the infimum of u in a parabolic

neighborhood of (0,0). Define

λ∗= min(K0,
√

2−k0−1).

Proposition 2.5.1 applied to the lower-semicontinuous envelope of u tells us that, since we assumed

Λ0≤ (λ∗)2K0,

u≥−2+
(λ∗)2

2
on [4T,0]×Bλ∗/2.

Letting T ∗=T , r∗= min(r,λ∗/2), we see that either

sup
[T ∗,0]×Br∗ (0)

u≤2− (λ∗)2

2

or

inf
[T ∗,0]×Br∗ (0)

u≥−2+
(λ∗)2

2
.

Finally, we are ready to prove Theorem 2.1.1.

Proof. Instead of proving continuity directly for u, it is preferable to consider

ū≡u+Λt,

which satisfies the Inequalities (1.1) and (1.3). Clearly ū and u will have the same Hölder exponent.

Since Ω̄ is compact, there is a radius ρ such that Bρ(x)⊆Ω for each x∈ Ω̄.

Consider any two points (t0,x0),(t1,x1)∈ (s,T )× Ω̄, and assume wlog that t0≥ t1. If these

points are far away, then we can estimate the Hölder norm in a very rough way, using the L∞ norm

of ū. If the points are very close together, then we must use the Oscillation Lemma.

We want to rescale the function ū to obtain w centered at (t0,x0) but solving the PDE on

Q3, with ‖w‖∞≤2, and with Λ0≤ (λ∗)2K0. To that end, choose αw,βw small enough that

αw≤
2

‖ū‖L∞([T,0]×Ω)

, 3βw≤ρ, 4αp−1
w βpw≤s, αp−1

w βp−2
w Λ0≤ (λ∗)2K0,
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and

αwβw≤1, αp−1
w βp−2

w ≤1, αp(m−1)+1βp(m−1)−n≤1.

Note that αw and βw depend on ‖u‖L∞ .

Lemma 2.6.1 tells us that

w(t,x) :=αwū
(
t0 +αp−1

w βpwt,x0 +βwx
)

is a solution to Inequalities (1.1) and (1.3) on Q3, with Λ0≤ (λ∗)2K0. By construction |w|≤2 on

Q3.

Now that w is formatted correctly, the plan is to apply Lemma 2.6.3 iteratively, showing

that the oscillation of w decreases as the distance to (0,0) decreases.

Set

α1 =
4

4−(λ∗)2/2
,

and take β1 small enough that 3β1≤ r∗, and 4αp−1
1 βp1 ≤−T ∗, and small enough to satisfy the

hypotheses of Lemma 2.6.1. Define w0 =w and iteratively define

wk+1(t,x) :=α1

[
wk(α

p−1
1 βp1t,β1x)± (λ∗)2

4

]
,

with ± chosen as whichever sign minimizes ‖wk+1‖L∞(Q3). By induction, |wk|≤2 on Q3 and wk

solves Inequalities (1.1) and (1.3) on Q3 with Λ0≤ (λ∗)2K0, and hence satisfies the hypotheses of

Lemma 2.6.3.

Therefore, for all k≥0, we find that for Qk = [−(αp−1
1 βp1)k,0]×Bβk1 ,

sup
Qk

w(t,x)− inf
Qk
w(t,x)≤ 1

αk−1
1

(
4− (λ∗)2

2

)
.

Remember that we are trying to bound the Hölder norm, the quantity

(∗) =
|ū(t1,x1)− ū(t0,x0)|

|(t0− t1)2 + |x0−x1|2|γ/2
.
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If
√

(t0− t1)2 + |x0−x1|2≥αp−1
w βpw, then we can bound

(∗)≤
2‖ū‖∞

(αp−1
w βpw)γ

.

Otherwise, we can use the control on the oscillation of w. Specifically, if√
(t0− t1)2 + |x0−x1|2≤αp−1

w βpw(αp−1
1 βp1)k

for any integer k≥0, then, because αwβw≤1 and α1β1≤1,(
t1− t0
αp−1
w βpw

,
x1−x0

βw

)
∈Qk.

Therefore ∣∣∣∣w( t1− t0
αp−1
w βpw

,
x1−x0

βw

)
−w(0,0)

∣∣∣∣=αw |ū(t1,x1)− ū(t0,x0)|≤
4− (λ∗)2

2

αk−1
1

.

This relationship implies that

|ū(t1,x1)− ū(t0,x0)|≤
(

4− (λ∗)2

2

)/αwα
log

(√
(t0−t1)2+|x0−x1|2

/
(α
p−1
w β

p
w)

)
log(α

p−1
1 β

p
1 )

−2

1


≤
(

4− (λ∗)2

2

)
α2

1

αw
α

log(α
p−1
w β

p
w)

log(α
p−1
1 β

p
1 )

1

√
(t0− t1)2 + |x0−x1|2

(
− log(α1)

log(α
p−1
1 β

p
1 )

)
.

Hence if

γ=
−log(α1)

log(αp−1
1 βp1)

,

then

(∗)≤
(

4− (λ∗)2

2

)
α1

αw
α

log(α
p−1
w β

p
w)

log(α
p−1
1 β

p
1 )

1 .

Note that the bound depends non-linearly on αw and βw, and hence on ‖u‖∞, but γ depends

only on n, p, m, Λ, and Λ0.

This completes the proof.
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Chapter 3

A Family of Nonlocal Hypoelliptic Kinetic Equations

3.1 Introduction

We study in this chapter1 the family of nonlocal kinetic equations

[∂t+v ·∇x]f =Lf+a, (1.1)

Lf :=

�
K(t,x,v,w)[f(w)−f(v)]dw.

The kernel K can be any measurable function which is symmetric in v and w and which satisfies

a coercivity bound,

K(t,x,v,w) =K(t,x,w,v), K(t,x,v,v+w) =K(t,x,v,v−w)

χ{|v−w|≤6}
1

κ
|v−w|−(n+2s)≤K(t,x,v,w)≤κ|v−w|−(n+2s)

(1.2)

for some constants 0<s<1 and κ>1. The function a is a source term we take to be in some

Lebesgue space, the variables t, x and v are taken in R, Rn, and Rn respectively, and we restrict

ourselves to the case 2s<n. The integral defining L is taken in the principle value sense.

These models are used extensively in nuclear- and astro-physics (c.f. Zaslavsky [Zas94],

Goychuk [Goy17], and Haubold and Mathai [HM00]) to model the behavior of neutral particles

moving through a plasma (c.f. Larsen and Keller [LK74]). They can also model two-species particle

fields wherein the test particles are of a very dilute species ([Goy17]). The theory of anomalous

diffusion (Mellet [Mel10] and Mellet, Mischler, and Mouhot [MMM11]) derives the small-mean-free-

path limit of fractional kinetic equations such as (1.1) and shows that these equations represent the

1The contents of this chapter are based on work originally appearing in “L. F. Stokols. Hölder continuity for a
family of nonlocal hypoelliptic kinetic equations. SIAM J. Math. Anal., 51(6):4815–4847, 2019.”
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mesoscopic behavior of fat-tailed equilibrium distributions. These fat-tailed distributions appear

in physical observations from astrophysics ([LK74] and Mendis and Rosenberg [MR94]).

One notable special case of (1.1) is the fractional kinetic Fokker-Planck Equation, corre-

sponding to L= (−∆v)
s or equivalently to a homogeneous kernel K(t,x,v,w) =Cn,s|v−w|−n−2s.

The (local) kinetic Fokker-Planck Equation is obtained in the limit s→1, correpsponding to

L=−∆v.

If we think of f as a density function for a collection of particles, with t, x, and v being

time, space, and velocity respectively, then the equation (1.1) states that these particles move

freely through space with their velocities changing in a stochastic manner. If the velocity of a given

particle varied according to the Weiner process, then f would obey a (local) kinetic Fokker-Planck

Equation. However, when the velocity of each particle varies according to a Levy process (without

drift), the density function obeys (1.1). A Levy process, unlike the Weiner process, allows individual

particles to change velocity suddenly and discontinuously, which better approximates the effect of

elastic collisions.

Another important model from the statistical mechanics of particles is the Boltzmann Equa-

tion

[∂t+v ·∇x]f =Q(f,f).

In the non-cutoff case, the Boltzmann Equation sometimes enjoys a regularization effect similar

the fractional Fokker-Planck equation (Alexandre, Morimoto, Ukai, Xu, and Yang [AMU+10]).

Our equation (1.1) is closely related to the linear approximation of the bilinear collision operator

Q(·,·). If the mass, energy, and entropy of a solution are assumed to be uniformly bounded,

then regularization due to hypoellipticity is observed for the Boltzmann Equation (Imbert and

Silvestre [IS16]), and also for the closely related Landau Equation (Henderson and Snelson [HS17],

Cameron, Silvestre, and Snelson [CSS18]). Note that [IS16] rewrites the Boltzmann equation in

the form (1.1), but with kernel satisfying weaker constraints than (1.2). Their regularity results

are discussed below. The most important assumption these papers require is that the mass is
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bounded away from the vacuum, which is connected to the coercivity of the collision operator.

In [HST17], Henderson, Snelson, and Tarfulea show that this assumption really does hold for the

Landau Equation. See Mouhot [Mou18] for a thorough review of the current state of research on

this front.

Equation (1.1) is a typical hypoelliptic equation. Although regularization of the integral

operator happens only in v, we will gain regularity in t, x thanks to the mixing property of the

transport operator. This is reminiscent of the hypoelliptic theory based on C∞ of Hörmander

[Hör67] and Kolmogorov. Averaging lemmas such as [GLPS88] (Golse, Lions, Perthame, Sentis)

can be seen as an Hs theory of hypoellipticity.

This Hs theory has already been applied specifically to the nonlocal kinetic Fokker-Planck

Equation. Lerner, Morimoto, and Pravda-Starov [LMPS12] showed that solutions to certain frac-

tional kinetic equations are in a Sobolev space Hσ in all three variables. This result was inspired

by the work on hypoelliptic equations by Bouchut [Bou02], which is discussed in more detail be-

low. The precise amount of Sobolev regularity is improved and expanded upon, for example, by

Morimoto and Xu [MX07] and by Li [Li14]. In fact, [MX07] obtains C∞ solutions in the case of no

source term and L a specific operator similar to (−∆)s.

This chapter extends a Cα hypoellipticity theory, as was first introduced for kinetic Fokker-

Planck by Golse, Imbert, Mouhot, and Vasseur [GIMV16]. They show that solutions to the (local)

kinetic Fokker-Planck Equation

[∂t+v ·∇x]f = ∆vf

are Hölder continuous. In [IM18], Imbert and Mouhot show that, for certain initial data, the

nonlinear Fokker-Planck Equation has smooth solutions for all time. They utilize the Hölder

continuity of [GIMV16], as well as a Schauder-type estimate. In [IS16], Imbert and Silvestre obtain

Hölder continuity for a class of nonlocal kinetic Fokker-Planck-type equations with operators L

more general than those considered in the present chapter, and with uniformly bounded source

terms.
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The seminal work on averaging lemmas is by Golse, Lions, Perthame and Sentis in 1988

[GLPS88], which shows that solutions to [∂t+v ·∇x]f =g have their weighted velocity averages

ρ[f ] =
�
ηfdv in H1/2, assuming f and g are in L2. This result had precursers in [GPS85] and

Agoshkov [Ago84]. Many results followed, see for example DiPerna, Lions, and Meyer [DLM91]

and DeVore and Petrova [DP01], which show various levels of regularity for ρ[f ] assuming different

regularity measures of f and g.

Notable in the history of averaging lemmas is [Bou02], which showed that if f is regular in

v (in the Sobolev sense) then not only is ρ[f ] regular but so is f itself. This powerful result was

followed by generalizations in [LMPS12], [MX07], and [Li14] which are especially relevant to (1.1).

We’ve used these results to establish the regularity needed to justify our calculations, as explained

in Section 3.1, but we do not rely on their quantitative estimates.

Instead, the primary averaging lemma that we utilize is by Bezard [Béz94]. Like Golse et

al. but unlike Bouchut, this lemma gives regularity only for the density ρ[f ]. Bezard requires only

that f and g lie in a negative Sobolev space H−sv , which gives us plenty of flexibility.

Our proof follows the De Giorgi method, pioneered by De Giorgi in [DG57] (c.f. also

Vasseur [Vas16a], [SV18], Caffarelli and Vasseur [CV10b], Caffarelli, Chan, and Vasseur [CCV11a],

and [GIMV16]). We are particularly inspired by [GIMV16], which applies De Giorgi’s method

to a kinetic equation, and [CCV11a], which applies the method to a nonlocal integro-differential

operator.

For two functions f,g∈Hs(Rn), and t∈R and x∈Rn, define the bilinear operator

Bt,x(f,g) =B(f,g) :=
1

2

�
K(t,x,v,w)[f(w)−f(v)][g(w)−g(v)]dwdv,

and note that

�
g(v)L(f)(v)dv=

�
g(v)

�
K[f(w)−f(v)]dwdv

=

�
K[f(w)−f(v)]g(v)dwdv
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=
1

2

(�
K[f(w)−f(v)]g(v)dwdv+

�
K[f(v)−f(w)]g(w)dvdw

)
=−1

2

(�
K[f(w)−f(v)][g(w)−g(v)]dwdv

)
=−Bt,x(f,g).

We call f ∈L2(Q;Hs(Rn)) a weak solution to (1.1) on a domain Q⊆R×Rn when

−
�

f [∂t+v ·∇x]φdvdxdt=−
�

B(f,φ)dxdt+

�
aφdvdxdt ∀φ∈L2(Q;Hs(Rn)).

Our main theorem is

Theorem 3.1.1 (Main theorem). Given constants s∈ (0,1), κ>1, and 2s<n∈N, there exist ex-

ponents α∈ (0,1) and r0>2 such that for any open set Ω⊆Rn, T >0, constant r0<r≤∞, and

source term

a∈Lr([0,T ]×Ω×Rn)∩L2([0,T ]×Ω×Rn),

there exists a constant such that the following is true:

If

f ∈L∞([0,T )×Ω×Rn)∩L2([0,T )×Ω;Hs(Rn)),

is a weak solution to (1.1) subject to (1.2), then f is in Cα((0,T )×Ω×Rn).

Morover, for any 0<T̄ <T and any compact set Ω̄⊂Ω, there exists a constant C=

C(n,s,κ,Ω,Ω̄,T,T̄ )>0 independent of f such that the following bound holds:

‖f‖Cα([T̄ ,T ]×Ω̄×B1)≤C
(
‖f‖L∞([0,T ]×Ω×Rn) +‖a‖Lr([0,T ]×Ω×Rn)

)
.

Although the assumption (1.2) on the kernel is a natural one for studying absolutely con-

tinuous kernels from an energy perspective, it is too strict to apply to e.g. the Boltzmann equation

because the collision kernel may not be absolutely continuous or symmetric. As a result, in the

case a∈L∞, our result is included in the result of [IS16]. Their proof does not use a averaging
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lemma, instead utilizing a careful study of the Green’s function for the fractional Kolmogorov equa-

tion. They employ a Krylov approach to obtain a weak Harnack inequality. The advantage of our

stronger assumtptions on the kernel is that our proof can be entirely energy based, which allows

us to consider source terms which are not uniformly bounded. We are also able to take a unified

variational approach to the cases s<1/2 and s>1/2 by adapting the technique of [CCV11a] to the

kinetic context.

The assumption that solutions are in L∞ will hold in particular when the initial data and

source term are both in L∞. In such a case, we could obtain a maximum principle by computing

d
dt

�
(f−C− t‖a‖∞)2

+dvdx.

With arbitrary source term, a more robust L∞ bound can sometimes be obtained by adapt-

ing Proposition 3.3.1 below. As stated, this proposition requires an assumption of uniformly

bounded growth for large values of v, to avoid interactions between high-velocity particles and

the boundary ∂Ω of our spatial domain. Though outside the scope of the present work, this as-

sumption could be removed with proper boundary conditions. For example, if we take x∈Tn the

torus, then solutions will be L∞ at any positive time.

In the case that K is homogeneous near the origin, meaning equal to |v−w|−n−2s for |v−w|

sufficiently small, we can obtain existence of an L2(Hs) weak solution from [MX07] Theorem 1.1

(by treating the difference between Lf and (−∆)sf as a source term). When K is not homogeneous

near the origin, our result is an a priori estimate. In particular, when a uniform L∞ bound exists (as

discussed above), we can obtain existence of continuous solutions through the method of continuity.

The symmetry assumption posed in (1.2) is actually two symmetry assumptions. The

former, K(t,x,v,w) =K(t,x,w,v), is crucial to the weak formulation of the problem and hence

is used throughout this chapter. The latter assumption K(t,x,v,v+w) =K(t,x,v,v−w) is really

only used in the proof of Lemma 3.2.3. It is necessary because otherwise, in the case s≥1/2, the

operator L might not be bounded even from C∞c to L∞. We list here a few alternative assumptions,

any one of which could replace the latter symmetry assumption of (1.2) with no loss of generality.
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� For any C2 function φ, ‖Lφ‖∞≤C ‖φ‖C2 .

� The parameter s is strictly less than 1/2.

� For any t,x,v∈R×Rn×Rn,
�
B1
wK(t,x,v,w)dw= 0.

� The function K(t,x,v,v+w) is independent of v.

The lower bound on the exponent r for the source term is

r0 =
n(1+s)(n+1)

s

(
2
s

n
+

1

2
+
n

2s

)
.

This bound is strictly greater than 2, and it is also strictly greater than n+1+n/s, which is the

critical scaling exponent. This lower bound may not be sharp.

The remainder of this article is dedicated to the proof of Theorem 3.1.1. Section 3.2 contains

a few preliminary lemmas. Sections 3.3 and 3.4 are dedicated to the proofs of the first and second

De Giorgi lemmas, respectively. Section 3.5 combines the De Giorgi lemmas to obtain a Harnack

inequality that proves Theorem 3.1.1.

In this chapter, a constant is called “universal” if it depends only on the dimension n, the

order s of the operator L, and the coercivity bound κ.

3.2 Preliminary Lemmas

This section contains three lemmas which will be relied upon extensively in the forthcoming

sections.

The operator L behaves in many ways like the operator −(−∆v)
s=−Λ2s. The following

lemma codifies the important similarities between the two operators, specifically the relationship

between B and the Hs norm, and between L and the Bessell potential.
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Lemma 3.2.1. There exists a constan C=C(n,s,κ) such that, for any function f ∈Hs(Rn), we

have the following bounds:

�
|Λsf |2dv≤ inf

t,x
C

(
Bt,x(f,f)+

�
f2dv

)
,

and

sup
t,x

∥∥∥(1−∆v)
−s/2Lt,xf

∥∥∥
L2(Rn)

≤C
(
‖Λsf‖L2(Rn)

)
.

Since these results are true irrespective of t and x, we will omit their mention in the sequel.

Proof. For the first inequality, simply calculate

B(f,f) =

�
K [f(w)−f(v)]2 dwdv

≥ 1

κ

�
|v−w|≤6

[f(w)−f(v)]2

|v−w|n+2s
dwdv

=
1

κ

�
[f(w)−f(v)]2

|v−w|n+2s
dwdv− 1

κ

�
|v−w|≥6

[f(w)−f(v)]2

|v−w|n+2s
dwdv

≥ 1

κ

�
[f(w)−f(v)]2

|v−w|n+2s
dwdv− 2

κ

�
f(v)2

�
χ{|u|≥6}

|u|n+2s
dudv− 2

κ

�
f(w)2

�
χ{|u|≥6}

|u|n+2s
dudw

=C(n,s,κ)

�
|Λsf |2dv−C ′(n,s,κ)

�
f2dv.

For the second inequality, let g be any function in Hs(Rn). For t and x fixed, we have the

following bound on inner products in v:

|〈Lf,g〉|v =

∣∣∣∣� [f(v+w)−f(v)][g(v+w)−g(v)]K(t,x,v,v+w)dwdv

∣∣∣∣
=

∣∣∣∣∣
� (

[f(v+w)−f(v)]|w|
n+2s

2

) [g(v+w)−g(v)]

|w|
n+2s

2

Kdwdv

∣∣∣∣∣
≤
(�

[f(v+w)−f(v)]2K2|w|n+2sdwdv

)1/2(�
[g(v+w)−g(v)]2

dwdv

|w|n+2s

)1/2

≤κ
(�

[f(v+w)−f(v)]2
dwdv

|w|n+2s

)1/2(�
[g(v+w)−g(v)]2

dwdv

|w|n+2s

)1/2
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=C(n,s,κ)

(�
|Λsf |2 dv

)1/2

‖g(t,x, ·)‖Hs(Rn) .

Therefore if φ is any L2(Rn) test function, then

〈(1−∆v)
−s/2Lf,φ〉= 〈Lf,(1−∆v)

−s/2φ〉

≤C(n,s,κ)

(�
|Λsf |2 dv

)1/2∥∥∥(1−∆v)
−s/2φ

∥∥∥
Hs(Rn)

=C(n,s,κ)

(�
|Λsf |2 dv

)1/2

‖φ‖L2(Rn) .

The lemma follows by taking a supremum over all such φ.

We now come to the energy inequality. An inequality of this type is to be expected due to

the parabolic flavor of Equation (1.1), and it is in some ways the most important quality of our

equation. Notice that the inequality gives control over the regularity in v, but not in t or x.

Lemma 3.2.2 (Energy Inequality). There exists a universal constant C=C(n,s,κ) such that the

following is true:

Let T <S<0 be times, and let Ω⊆Rn be an open region in space and Ω̄⊆Ω a compact subset.

Let R>0 a radius and ψ :Rn→R a function of velocity. Denote Q := (T,0]×Ω and Q̄ := [S,0]× Ω̄,

and define

δ := min
(
|T −S|,dist(Ω̄,ΩC)

)
.

Let f ∈L2(Q;Hs(Rn)) be any weak solution to (1.1) subject to (1.2) satisfying

f(t,x,v)≤ψ(v) ∀(t,x)∈Q,|v|≥R,

and denote f+ := max(f−ψ,0) and f− := max(ψ−f,0) so that f =f+ +ψ−f−.
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Then the following energy inequality holds:

�
Q̄
B(f+,f+)dxdt−

�
Q̄
B(f+,f−)dxdt≤

C

δ

[
R

�
Q

�
f2

+dvdxdt+

(
sup
|v|<R

|Lψ(v)|

)�
Q

�
f+dvdxdt+‖a‖Lr(Q)‖f+‖Lr∗ (Q)

]
.

The constant δ here is the distance from Q̄ to the parabolic boundary of Q.

The quantity B(f+,f+) is, as shown in Lemma 3.2.1, related to the fractional Dirichlet

energy of f+. We have an additional dissipation term −B(f+,f−) which we call the cross term.

Because f+ and f− have disjoint supports,

−B(f+,f−) =−
�

K[f+(w)−f+(v)][f−(w)−f−(v)]dwdv

=

�
K[f+(w)f−(v)+f+(v)f−(w)]dwdv

= 2

�
Kf+(v)f−(w)dwdv.

In particular this means the cross term is non-negative. The cross term represents, in a sense, the

energy which is lost when we localize f to create f+. The bound on the cross term is critical to

our proof in Section 3.4 of De Giorgi’s second lemma.

Remark 3.2.1. The quantity f− appears on the left but not the right hand side of the energy

inequality. This means in particular that the growth and decay of any solution to (1.1) is constrained

by the local behavior alone.

Proof. Define φ :Rn→ [0,1] a function which equals 1 on Ω̄, which is supported on Ω, and which is

Lipschitz with constant ‖φ‖C1≤2δ−1.

Multiplying the left side of Equation (1.1) by the quantity φ2f+, we see that

φ2f+ [∂t+v ·∇x]f =φ2f+ [∂t+v ·∇x](f+ +ψ−f−)

=φ2 1

2
[∂t+v ·∇x]f2

+ +φ2f+ [∂t+v ·∇x]ψ−φ2f+ [∂t+v ·∇x]f−
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=
φ2

2
[∂t+v ·∇x]f2

+

because ψ is independent of x and t, and f+ and f− have disjoint supports.

Since f+∈L2(Hs), we can multiply Equation (1.1) by 2φ2f+ and integrate with respect to

x and v to obtain

d

dt

�
(φf+)2dvdx−

�
f2

+v ·∇x(φ2)dvdx=−2

�
φ2B(f+,f+ +ψ−f−)dx+2

�
φ2af+dvdx

=−2

�
φ2B(f+,f+)dx−2

�
φ2f+Lψdvdx+2

�
φ2B(f+,f−)dx+2

�
φ2af+dvdx.

For any S≤ τ ≤T , we integrate this equality from τ to 0 in time and then rearrange to

obtain

�
(φf+(0))2dvdx+2

� 0

τ

�
φ2B(f+,f+)dxdt−2

� 0

τ

�
φ2B(f+,f−)dxdt

=

� 0

τ

� (
v·∇xφ2

)
f2

+dvdxdt+2

� 0

τ

�
φ2L(ψ)f+dvdxdt+

� 0

τ

�
φ2af+dvdxdt+

�
(φf+(τ))2dvdx.

In particular,

2

� 0

T

�
φ2B(f+,f+)dxdt−2

� 0

T

�
φ2B(f+,f−)dxdt

≤
� 0

S

� ∣∣v ·∇xφ2
∣∣f2

+dvdxdt+2

� 0

S

�
φ2 (|L(ψ)|+ |a|)f+dvdxdt+

�
(φf+(τ))2dvdx.

Now only one term depends on τ . If we take the average value over τ ∈ [S,T ] for both sides

of the inequality, we obtain

2

� 0

T

�
φ2B(f+,f+)dxdt−2

� 0

T

�
φ2B(f+,f−)dxdt

≤
� 0

S

� ∣∣v ·∇xφ2
∣∣f2

+dvdxdt+2

� 0

S

�
φ2 (|L(ψ)|+ |a|)f+dvdxdt+

1

|S−T |

� T

S

�
(φf+)2dvdxdt.

Our energy inequality follows.
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The classical technique to localize a solution to a PDE is multiplication by a compactly

supported cutoff function. This allows us to disregard the behavior of the solution outside a

specified region, while the localized function usually solves the original PDE, modulo some sort of

error term. One should not expect this technique to work for nonlocal PDE; the far-away behavior

of the solution cannot be completely disregarded.

Instead, we must localize by a “soft cutoff,” which is a fixed function ψ that vanishes in

a specified local region but grows without bound outside that region. We have already seen soft

cutoffs used in the statement and proof of Lemma 3.2.2 just above.

Throughout the following sections, we will utilize a few different soft cutoff functions. We

will define all of our soft cutoff functions here and list all their relevant properties, then refer back

to this lemma as we use them. These functions ψ1 and ψθ are tailored to the required assumptions

of Lemmas 3.3.1 and 3.4.1 respectively. They also must have certain specific relationships with

eachother in order to prove Lemma 3.5.2, which is why we prefer to construct them here all at

once.

Lemma 3.2.3. Let s∈ (0,1) and 2s<n∈N be specified constants. There exists a function ψ1 :

Rn→R+ and a family of functions ψθ :Rn→R+ indexed by θ∈ (0,1) with the following properties:

(i) There exists a constant Cψ such that for all v∈Rn

sup
t,x

∣∣Lt,xψ1(v)
∣∣≤Cψ, sup

t,x
|Lt,xψθ(v)|≤Cψ,

and for all |v|≤3

sup
t,x
|Lt,xψθ(v)|≤Cψθ3s/2.

(ii) For |v|≤1,

ψ1(v) = 0

and for |v|≤θ−1,

ψθ(v) = 0.
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(iii) For any θ<ϑ, and for all v∈Rn

ψθ(v)≤ψϑ(v)≤ψ1(v).

(iv) For all |v|≥2, for any θ∈ (0,1),

1+ψθ(v)≤ψ1(v).

(v) For each θ, there exists ε0 =ε0(s,θ) such that ε<ε0 implies that for all |v|>ε−1,

ψθ (v)≥2ψθ(εv)+2.

Proof. First define a function g : [0,∞)→ [0,∞) such that, for all x>1,

g(x) =xs/2

but g(0) =g′(0) = 0, and in the interval [0,1] let g be defined so that g is smooth and non-decreasing,

and g(x)≤xs/2.

Next define functions gr for each r>0 by

gr(x) =

{
0 x<r

g(x−r) x≥ r.

Then gr is pointwise-decreasing in r and both ‖g′′r ‖L∞ and the Hölder semi-norm ‖gr‖Ċs/2

are finite and independent of r.

We’ll define

ψθ(v) :=gθ−1(|v|).

Let C1>1 be a constant large enough that for any θ∈ (0,1), for all |v|≥2

1+ψθ(v)≤C1g1(|v|).

Then define

ψ1(v) =C1g1(|v|).
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Properties ((ii)), ((iii)), and ((iv)) all follow immediately from the construction. Notice also

that all of these functions have uniformly bounded second derivatives and uniformly bounded Ċs/2

semi-norms.

Let ψ be either ψ1 or any of the ψθ, and let v∈Rn be chosen. We wish to calculate Lψ(v),

so let us break up the defining integral into the “near” part and the ”far” part.

Lψ(v) =

�
|w|<1

K(v,v+w)[ψ(v+w)−ψ(v)]dw+

�
|w|≥1

K(v,v+w)[ψ(v+w)−ψ(v)]dw.

For the near part, we utilize the fact that ψ is smooth with bounded second derivative. We

apply Taylor’s theorom to find that

ψ(v+w)−ψ(v) =Dψ(v) ·w+D2ψ(u)w⊗w

for some u on the line segment between v and v+w. By the symmetry (1.2) of K,

�
|w|<1

K(v,v+w)Dψ(v) ·wdw= 0.

Note that this integral must be understood in the principal value sense.

The remainder is

�
|w|<1

K(v,v+w)D2ψ(u)w⊗wdw≤Cκ
�
|w|<1

|w|2

|w|n+2s
dw,

with C here being the bound on
∥∥D2ψ

∥∥
∞ which is independent of ψ. Since n+2s−2<n, the

integral is finite.

Notice that if ψ=ψθ with θ<1/4 and if |v|≤3 then the near part of the integral is in fact

zero.

For the far away part, we utilize the fact that ψ is Hölder continuous in Ċs/2 and estimate

|ψ(v+w)−ψ(v)|≤C|w|s/2
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with C independent of ψ. The integral of the far away part becomes

�
|w|≥1

K(v,v+w)[ψ(v+w)−ψ(v)]dw≤Cκ
�
|w|≥1

|w|s/2

|w|n+2s
dw.

Since n+2s− s
2 >n, the integral is finite.

In the case ψ=ψθ with θ<1/4 and |v|≤3, ψ(v) = 0 so we can make the stronger estimate

|ψ(v+w)−ψ(v)|≤gθ−1(|w|+3)≤max(|w|+3−θ−1,0)s/2.

The integral of the far away part becomes

�
|w|≥1

K(v,v+w)[ψ(v+w)−ψ(v)]dw≤κ
�
|w|≥(θ−1−3)

(|w|+3−θ−1)s/2

|w|n+2s
dw≤C

�
|w|> θ−1

4

dw

|w|n+ 3
2
s
.

This integral is proportional to θ3s/2. The property ((i)) follows.

All that remains is to show ((v)), so fix some value of θ. We’ll show the equivalent claim

ψθ(v/ε)≥2ψθ(v)+2 ∀|v|≥1. (2.3)

For |v|≥θ−1 +1 and any 0<ε<1, we can say

ψθ(v/ε) = (|v|/ε−θ−1)s/2≥ (|v|/ε−θ−1/ε)s/2 =ε−s/2(|v|−θ−1)s/2.

There exists 0<ε1<1 and r1>θ
−1 +1 so that if ε<ε1 and |v|≥ r1 then

ε−s/2(|v|−θ−1)s/2≥2ψθ(v)+2.

Now take ε0<ε1 small enough that ψθ(1/ε0)≥2ψθ(r1)+2. Now for 1≤|v|≤ r1 the inequality (2.3)

holds because

ψθ

(v
ε

)
≥ψθ(1/ε0)≥2ψθ(r1)+2≥2ψθ(v)+2,

and for |v|>r1 it holds by construction of r1. This proves property (2.3).

63



3.3 First De Giorgi Lemma

In this section we will prove De Giorgi’s first lemma, which states that if a function solving

(1.1) is bounded in some region in an integral sense, then it is pointwise bounded in a smaller

region.

The function ψ1 in the statement of this lemma is defined in Lemma 3.2.3.

Proposition 3.3.1 (De Giorgi’s First Lemma). There exists a universal constant δ0>0 such that

the following is true:

For any f ∈L2([−2,0]×B2;Hs(Rn)) a weak solution to (1.1) subject to (1.2) with source

term ‖a‖Lr([−2,0]×B2×Rn)≤1, if

f(t,x,v)≤ψ1(v) ∀x∈B2,t∈ [−2,0], |v|≥2

holds and �
[−2,0]×B2×B2

max(f−ψ1,0)2dvdxdt≤ δ0

holds, then

f(t,x,v)≤ 1

2
∀x∈B1,t∈ [−1,0],v∈B1.

As in most De Giorgi-style proofs, we take a sequence of cutoffs of our function and show

that their L2 norm tends to zero. We show this by producing a non-linear recursive inequality.

The key to the proof is the inequality (3.14), which is located at the end of the second step. This

inequality tells us that our function cannot have very bad singularities, because any singularity

which is L2 integrable is also Lq integrable for some specific q>2. Classically such an inequality is

produced using the energy inequality and Sobolev embedding, but in this case we will also require

an averaging lemma.

Our proof will proceed in three steps. In the first step, we will apply the averaging lemma

to our cutoff function to show that it has higher integrability in the t and x variables. Actually
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we will apply the averaging lemma to a barrier function, because our solution itself has certain

negative measures in its derivatives. This is fine, since higher integrability for the barrier function

trivially implies higher integrability for the original function. In the second step, we will obtain

higher integrability in the v variable using the usual technique (with the energy inequality and

Sobolev embedding). Then we use Riesz-Thorin interpolation to combine our integrability in t, x

and v. In the third and final step, we produce the standard nonlinear recursion and argue that our

cutoffs tend to zero in the limit.

Proof. We begin by specifying the sequence of cutoff functions. For k∈N, consider soft cutoffs

ψk :=ψ1 +
1

2
−2−k−1

so that ψ0 =ψ1 and in the limit ψ∞=ψ1 + 1
2 . Then we have a sequence of cutoff functions

fk := max(f−ψk,0).

We’ll make frequent use of the fact that for any k,

χ{fk>0}≤2k+1fk−1. (3.4)

We also must specify a sequence of space-time regions. Define

Tk :=−1−2−k, Bk :={x∈Rn : |x|≤1+2−k}, Qk := [Tk,0]×Bk

so that Q0 = [−2,0]×B2 and in the limit Q∞= [−1,0]×B1. Notice that the distance from the

interior of Bk to the boundary of Bk−1 is 2−k, and that Tk−Tk−1 = 2−k.

For brevity, we will use
�
k to denote an integral with bounds [Tk,0] or Bk or Qk, as shall

be clear from context. We also frequently will use Ck to mean [C(n,s,κ)]k, a quantity which grows

geometrically in k for n, s, and κ held constant.

Step 1: Higher integrability in t,x
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Define ηk,ε a smooth function which is supported on [Tk−1,0] and equal to 1 on [Tk,−ε].

Then define µε(t) =χ{[−ε,0]}∂tηk,ε the derivative of ηk,ε near 0, and assume without loss of generality

that µε≤0. The derivative of ηk,ε will be bounded uniformly in ε except for the blowup near 0

which is captured by µε. In symbols, supε‖∂tηk,ε−µε‖∞≤C
k.

In addition, let φk(x) be a smooth function supported on Bk−1 and equal to 1 on Bk, with

derivative ‖∇xφk‖∞≤Ck.

We want to apply the averaging lemma to ηk,εφkfk, so let’s apply the transport operator to

this function.

[∂t+v ·∇x](ηk,εφkfk) =fk [∂t+v ·∇x](ηk,εφk)+ηk,εφk [∂t+v ·∇x]fk

=fk [∂t+v ·∇x](ηk,εφk)+ηk,εφkχ{f>ψk} [∂t+v ·∇x](f−ψk)

=fk [∂t+v ·∇x](ηk,εφk)+ηk,εφkχ{f>ψk}Lf+ηk,εφkχ{f>ψk}a

=fk [∂t+v ·∇x](ηk,εφk)+ηk,εφkχ{f>ψk}Lψk+ηk,εφkχ{f>ψk}a+ηk,εφkχ{f>ψk}L(f−ψk).

By a well known pointwise inequality (c.f. Caffarelli and Sire [CS17]),

χ{f>ψk}L(f−ψk)≤Lfk.

Also µε≤0. Therefore if we define

Fk :=ηk,εfk(v ·∇xφk)+φkfk(∂tηk,ε−µε)+ηk,εφkχ{f>ψk}Lψk+ηk,εφkχ{f>ψk}a,

then

[∂t+v ·∇x](ηk,εφkfk)≤Fk+L(ηk,εφkfk).

The source term Fk is in L2(R×Rn×Rn). From (3.4), Lemma 3.2.3 property ((i)), and the

definitions of φk, ηk,ε and µε,

�

R×Rn×Rn

F 2
k ≤

�
k−1

[
η2
k,ε(v ·∇xφk)2 +φ2

k(∂tηk,ε−µε)2
]
f2
k +

�
k−1

(ηk,εφk)
2
[
(Lψk)

2 +a2
]
χ{fk>0}
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≤Ck
�

k−1
f2
k +Ck

�
k−1

f2
k−1 +Ck

(�
k−1

f2
k−1

)1− 2
r

≤Ck
(�

k−1
f2
k−1

)1− 2
r

. (3.5)

Because the averaging lemma requires equality, not the inequality that we have, we’ll con-

struct a barrier function gk. Define gk as some solution to the PDE
[∂t+v ·∇x]gk =Fk+Lgk ∀t,x,v∈ (Tk−1,∞)×Rn×Rn

gk =ηk,εφkfk = 0 t=Tk−1

gk = 0 t<Tk−1.

(3.6)

Since Fk ∈L2(R×Rn×Rn), a solution gk ∈L2
loc([0,∞)×Rn;Hs(Rn)) exists by [MX07] (see

Section 3.1 for more detail).

Moreover, gk≥ηk,εφkfk≥0 by a maximum principle: the function max(ηk,εφkfk−gk,0) is

a subsolution to [∂t+v ·∇x]h=Lh so it has non-increasing energy, and it vanishes at t=Tk−1 so it

must be identically zero.

We’ll now produce some bounds on gk. Take the PDE (3.6) and multiply it by gk, then

integrate over x∈Rn, v∈Rn.

d

dt

1

2

�
g2
kdvdx=−

�
B(gk,gk)dx+

�
gkFkdvdx.

Now applying Lemma 3.2.1 and Hölder’s inequality,

d

dt

1

2

�
g2
kdvdx+

1

κ

�
|Λsgk|2 dvdx≤C

�
g2
kdvdx+

1

2

�
F 2
k dvdx. (3.7)

If we define

G(t) =

�
Rn×Rn

g2
k(t)dvdx

we see from (3.7) that G satisfies

d

dt
G(t)≤CG(t)+

�
F 2
k (t).
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Also, by construction, G(Tk−1) = 0. Thus by Gronwall’s inequality, for all t>Tk−1:

G(t)≤eC(t−Tk−1)

� t

Tk−1

�
F 2
k (τ)dvdxdτ

≤eC(t−Tk−1)

�
R×Rn×Rn

F 2
k dvdxdτ.

This means that for any compact interval K in R,

‖gk‖L∞(K;L2(Rn×Rn))≤CK ‖Fk‖L2(R×Rn×Rn) . (3.8)

Armed with this inequality, and the fact that ∂tχK is in the dual space of L∞(t), we integrate (3.7)

over K:

�

K×Rn×Rn

|Λsgk|2 dvdxdt≤C(n,s,κ)

(�
K×Rn×Rn

g2
k+

�
K×Rn×Rn

F 2
k dvdxdt+

�
R×Rn×Rn

g2
k∂tχK

)

≤CK
�

R×Rn×Rn
F 2
k dvdxdt. (3.9)

We can now apply Lemma 0.2.1, the Averaging Lemma, to gk. Let η(v) be a C∞c (Rn)

function which is identically 1 on v∈B2 and non-negative for all v, and choose any set, for example

[−3,1]×B3, which compactly contains [−2,0]×B2. The lemma yields that∥∥∥∥� ηgkdv

∥∥∥∥
Hβ([−2,0]×B2)

≤C
(
‖gk‖L2([−3,1]×B3×Rn) +

∥∥∥(1−∆v)
−s/2 (Fk+Lgk)

∥∥∥
L2([−3,1]×B3×Rn)

)
with β= (2(1+s))−1<1.

Therefore, by the bounds (3.5) and (3.8), and by Lemma 3.2.1 and the bound (3.9),∥∥∥∥� ηgkdv

∥∥∥∥
Hβ([−2,0]×B2)

≤Ck
(�

k−1
f2
k−1

) 1
2
− 1
r

. (3.10)

Define p1 by
1

p1
=

1

2
− β

n+1
=

1

2
− 1

2(1+s)(n+1)
∈ (0,1/2).
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By Sobolev embedding, ∥∥∥∥� ηgkdv

∥∥∥∥
Lp1 (t,x)

≤C
∥∥∥∥� ηgkdv

∥∥∥∥
Hβ(t,x)

. (3.11)

Since fk is supported where η≡1, the integral
�
ηfkdv is just the L1(v) norm of fk. Recall

also that ηk,εφkfk≤gk. Therefore we can bound the Lp1,p1,1 norm of fk:

� −ε
Tk

�
Bk

(�
fkdv

)p1

dxdt≤
� (�

η [ηk,εφkfk] dv

)p1

dxdt

≤
� (�

ηgkdv

)p1

dxdt

Since this inequality is true for all ε, we can chain it with (3.10) and (3.11) to conclude that

‖fk‖Lp1,p1,1(Qk×Rn)≤C
k‖fk−1‖

1− 2
r

L2(Qk−1×Rn)
. (3.12)

Step 2: Higher integrability in all three variables

Since each fk is supported on |v|≤2, and ‖Lψk‖∞≤Cψ by Lemma 3.2.3, property ((i)), we

can apply the energy inequality from Lemma 3.2.2 to obtain

�
k+1

B(fk,fk)≤Ck
�

k
f2
k +Ck

�
k
fk+Ck‖fk‖Lr∗ (Qk) .

From this inequality, Lemma 3.2.1, and (3.4):

�
k+1
|Λsfk|2≤Ck

�
k
f2
k−1 +Ck

(�
k
f2
k−1

)1/r∗

.

When ‖fk‖2<1, as we assume without loss of generality, the second term on the right-hand-side

will dominate.

Therefore, letting p2 be defined by 1
p2

= 1
2−

s
n , we have by Sobolev embedding

‖fk‖L2,2,p2 (Qk+1×Rn)≤C
k‖fk−1‖

1/r∗

L2(Qk×Rn)
. (3.13)

Now we wish to utilize Riesz-Thorin interpolation to interpolate between this inequality

and (3.12).
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Consider θ∈ [0,1] and the function

θ 7→
[
θ

2
+

1−θ
p1

]
−
[
θ

p2
+

1−θ
1

]
.

Because this function is negative at θ= 0 and positive at θ= 1, it must equal zero at some point

θ∗, and at this point we can define q by

1

q
:=

θ∗

2
+

1−θ∗

p1
=
θ∗

p2
+

1−θ∗

1
.

Moreover, since 1/q is a nontrivial convex combination of 1/2 and 1/p1, it must be the case that

q>2. Riesz-Thorin tells us that

‖fk‖Lq,q,q(Qk×Rn)≤‖fk‖
θ∗

L2,2,p2 (Qk×Rn)‖fk‖
1−θ∗
Lp1,p1,1(Qk×Rn)

.

Combining this with the bounds (3.12) and (3.13),

‖fk‖Lq(Qk×Rn)≤C
k‖fk−2‖

1− 2
r

+ θ∗
r

L2(Qk−2×Rn)
. (3.14)

This bound is the key to De Giorgi’s first lemma.

Step 3: The recursion

This step is standard to all De Giorgi arguments. It does not depend on the specifics of our

PDE (1.1) in any way, except through the bound (3.14).

For any k, by (3.4),
�

k
f2
k =

�
k
f2
kχ

q−2
{fk>0}

≤2(k+1)(q−2)

�
k
f2
kf

q−2
k−1

≤Ck
�

k−1
f qk−1.

From this and (3.14),

�
k
f2
k ≤Ck

(�
k−3

f2
k−3

) q
2

(
1− 2

r
+ θ∗

r

)
.
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Since q and θ∗ are independent of r and q>2, the exponent on this recursive inequality will be

greater than 1 for r sufficiently large. Specifically, the exponent exceeds 1 precisely when r>r0,

with r0 as defined in Section 3.1, though we omit the explicit calculation.

Since the exponent is greater than one, and the sequence

k 7→
�

k
f2
k (3.15)

is monotone decreasing, by a standard fact about sequences (c.f. [Vas16a]) we can now say that

this sequence limits to 0 as k→∞, provided the initial value

�
[−2,0]×B2×Rn

max(f−ψ1,0)2dvdxdt≤ δ0

is sufficiently small.

Lastly, since the limit of that sequence (3.15) is zero, by the Lebesgue’s monotone conver-

gence theorem �
[−1,0]×B1×Rn

(f−ψ1− 1

2
)2
+dvdxdt= 0.

Since ψ1 = 0 on B1, the proposition is proven.

3.4 Second De Giorgi Lemma

In this section we will prove the second De Giorgi lemma, the intermediate value lemma. It

says that solutions to our PDE cannot have, in a small region, very much measure above a certain

value and also very much measure below another value unless the solution also has sufficient measure

between the two values. The lemma is sometimes called an isoperimetric inequality.

To state Proposition 3.4.1, we must define four cylindrical regions in space-time:

Qext := [−6,0]×B3

Qint := [−5,0]×B2
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Figure 3.1: Four overlapping cylinders described in Proposition 3.4.1.

Qearly := [−5,−4]×B2

Qlate := [−2,0]×B2.

The constant δ0 in the statement of this proposition is defined in Proposition 3.3.1.

Proposition 3.4.1 (Second De Giorgi Lemma). There exist universal constants γ0>0 and 0<

θ0<1/3 such that the following is true:

For any f ∈L2(Qext;H
s(Rn)) a weak solution to (1.1) subject to (1.2) with

‖a‖Lr(Qext×Rn)≤θ0

satisfying

|f(t,x,v)|≤1+ψθ0(v) ∀(t,x,v)∈Qext×Rn,

if

|{f ≤0}∩Qearly×B2|≥
|Qearly| · |B2|

2
(4.16)

and

|{f ≥1−θ0}∩Qlate×B2|≥ δ0 (4.17)
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then

|{0<f <1−θ0}∩Qint×B3|≥γ0. (4.18)

As in other applications of De Giorgi’s method, the idea of the proof is to produce a sequence

of solutions to our PDE with smaller and smaller intermediate measure, show that they are compact

and have a discontinuous limit, and then show that said limit function inherits enough regularity

from the PDE to result in a contradiction.

Our version of the proof is divided into four steps. In the first step, we show that our

sequence is uniformly differentiable in v. We then use the averaging lemma to show that, in some

very specific sense, our sequence is uniformly differentiable in t and x. In the second step, we

combine the results of step one to obtain compactness in all three variables, thus producing our

limit. In the third step, we show that this limit function is regular in v. The limit is constant in v

for |v| small, and behaves like an indicator function depending only on t and x. In the fourth and

final step, we show that certain t- and x-derivatives of our limit function are bounded, and that

this contradicts what we know about the jump discontinuities in our limit.

Proof. Assume that the theorem is false. Then there must exist a sequence fi of solutions to our

equation (1.1) with operators Li subject to (1.2) and source terms

‖ai‖Lr(Qext×Rn)≤1/i

such that

|fi(t,x,v)|≤1+ψ1/i ∀(t,x,v)∈Qext×Rn

while

|{fi≤0}∩Qearly×B2|≥
|Qearly| · |B2|

2
,

|{fi≥1− 1

i
}∩Qlate×B2|≥ δ0,

|{0<fi<1− 1

i
}∩Qint×B3|≤

1

i
.
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We wish to take a limit of these functions fi.

Step 1: Regularity in v and regularity in t,x

Let F :Rn→R be a smooth radially-increasing function of v which is identically −1 on B2

and identically 0 outside of B3. Since F ∈C∞c , it is trivial to show that

‖LiF‖∞≤C(n,s,κ). (4.19)

To obtain compactness, we use a very blunt cutoff function ψ̄ defined by

ψ̄(v) :=ψ 1
3
(v)+1+F (v),

f+
i := max

(
f− ψ̄,0

)
,

f−i := max
(
ψ̄−f,0

)
.

Because ψ1/3≥ψθ for all θ<1/3 by Lemma 3.2.3, property ((iii)), each f+
i for i sufficiently

large will be supported on v∈B3. In fact

0≤f+
i (t,x,v)≤−F (v) ∀(t,x,v)∈Qext×Rn. (4.20)

Each fi is a solution to (1.1), so we can apply Lemma 3.2.2 on the regions Qext and Qint

with cutoff ψ̄. From (4.19) and Lemma 3.2.3, property ((i)) we know that
∥∥Liψ̄∥∥∞ is bounded by a

finite universal constant. The right hand side of this energy inequality is then universally bounded

by (4.20) so �
Qint

Bi(f
+
i ,f

+
i )dxdt−

�
Qint

Bi(f
+
i ,f

−
i )dxdt≤C(n,s,κ). (4.21)

In particular, by Lemma 3.2.1,

�
Qint

� ∣∣Λsf+
i

∣∣2 dvdxdt≤C(n,s,κ). (4.22)

Critically, the constant C(n,s,κ) does not depend on i.

74



Unfortunately the energy inequality does not give us regularity in the t and x variables. In

order to obtain compactness, therefore, we must rely on an averaging lemma. To that end, apply

the transport operator to f+
i

2
and obtain

[∂t+v ·∇x]f+
i

2
= 2f+

i [∂t+v ·∇x]fi

= 2f+
i Lifi+2f+

i ai

= 2f+
i Li

(
fi− ψ̄

)
+2f+

i Liψ̄+2f+
i ai.

For any function g and operator L satisfying (1.2), and g+ := max(g,0), it is true that, for

any t, x fixed,

2g+Lg=

�
2[g+(v)g(w)−g+(v)2]K(t,x,v,w)dw

=

�
[g+(w)2−g+(v)2]Kdw+

�
[2g+(v)g(w)−g+(v)2−g+(w)2]Kdw

=

�
[g+(w)2−g+(v)2]Kdw−

�
[g+(w)−g+(v)]2Kdw+

�
2g+(v)[g(w)−g+(w)]Kdw

=Lg2
+−

�
[g+(w)−g+(v)]2Kdw−2

�
g+(v)g−(w)Kdw.

Thus

[∂t+v ·∇x]f+
i

2
=H :=H1 +H2 +H3 +H4

where

H1 :=Li

(
f+
i

2
)
,

H2 :=−
�

[f+
i (w)−f+

i (v)]2K(v,w)dw,

H3 :=−2

�
f+
i (v)f−i (w)K(v,w)dw,

H4 := 2f+
i Liψ̄+2f+

i ai.

We proceed to bound H, term by term, independent of i.
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We begin with an Hs bound on f+
i

2
:

� ∣∣∣Λs(f+
i

2
)
∣∣∣2 dv=

� |f+
i

2
(w)−f+

i
2
(v)|2

|v−w|n+2s
dwdv

=

� [
f+
i (w)+f+

i (v)
]2 |f+

i (w)−f+
i (v)|2

|v−w|n+2s
dwdv

≤22
∥∥f+

i

∥∥2

L∞

� ∣∣Λs(f+
i )
∣∣2 dv. (4.23)

From this, the bounds (4.20) and (4.22), and Lemma 3.2.1, we obtain∥∥∥(1−∆v)
−s/2H1

∥∥∥
L2(Qint×Rn)

≤C(n,s,κ). (4.24)

The terms H2 and H3 are strictly negative, so their total variations as measures are simply

the absolute values of their integrals. Thus their norms in M(Qint×Rn) are∣∣∣∣�
Qint

�
H2dvdxdt

∣∣∣∣=�
Qint

Bi(f
+
i ,f

+
i )dxdt,

∣∣∣∣�
Qint

�
H3dvdxdt

∣∣∣∣=−�
Qint

Bi(f
+
i ,f

−
i )dxdt.

These are of course universally bounded by (4.21).

Recall that (1−∆v)
−(s+n

2 )/2 can be represented as convolution with a Green’s function

Gs+n/2(v) (see e.g. Stein [Ste70]). The function Gs+n/2 decays exponentially as |v|→∞ and has a

singularity like 1

|v|
n
2−s

near zero. Therefore Gs+n/2 is in L2. By Young’s Inequality, convolution of

a measure and an L2 function is bounded by the product of their M and L2 norms respectively, so∥∥∥(1−∆v)
−(s+n

2 )/2H2

∥∥∥
L2(Qint×Rn)

≤C(n,s,κ), (4.25)

∥∥∥(1−∆v)
−(s+n

2 )/2H3

∥∥∥
L2(Qint×Rn)

≤C(n,s,κ). (4.26)

Lastly, from (4.20) and since r≥2 we know

‖H4‖L2(Qint×Rn≤C(n,s,κ). (4.27)
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Finally we are ready to apply Lemma 0.2.1 to f+
i

2
, which says for any η∈C∞c (Rn) and any

subset Ω̄ compactly contained in the interior of Qext,∥∥∥∥� ηf+
i

2
dv

∥∥∥∥
Hα(Ω̄)

≤C(η,Ω̄)

(∥∥∥f+
i

2
∥∥∥
L2(Qint×Rn)

+
∥∥∥(1−∆v)

−(s+n
2 )/2H

∥∥∥
L2(Qint×Rn)

)
where

α=
(

2
(
s+

n

2

))−1
.

From (4.24), (4.25), (4.26), and (4.27), we can say that in fact∥∥∥∥� ηf+
i

2
dv

∥∥∥∥
Hα(Ω̄)

≤C(n,s,κ,η,Ω̄). (4.28)

Step 2: Producing a strong L2 limit

Since all the f+
i are bounded by (4.20), {f+

i
2}i is a bounded subset of L2(Qint×Rn). By

Banach-Alaoglu, there exists a function f+ such that, along some subsequence,

f+
i

2
⇀f+2

weakly in L2(Qint×Rn).

Our goal is to show that this limit converges also strongly in L2
loc(Qint;L

2(Rn)). To that

end, fix some compact subset Ω̄ of Qint.

Strong and weak limits, when both exist, must be equal, so with the bound (4.28) we apply

Rellich-Kondrachov to prove that

�
η(v)f+

i
2
dv→

�
η(v)f+2

dv

strongly in L2(Ω̄), without passing to a further subsequence, for any η∈C∞c (Rn).

In particular, if we fix some η such that ηε(v) =ε−nη(v/ε) is an approximation to the

identity, then for ε>0 and v∈Rn fixed,

�
Ω̄

[�
f+
i

2
(w)ηε(v−w)dw−

�
f+(w)2ηε(v−w)dw

]2

dxdt
i→∞−−−→0.
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Note that this is pointwise (in v) convergence of convolutions.

Since the f+
i are all bounded by (4.20), and by weak convergence so is f+, we can apply the

Lebesgue dominated convergence theorem to conclude that not only do these convolutions converge

pointwise in v, but they converge in integral as well. That is,

� �
Ω̄

[(
f+
i

2 ∗v ηε
)

(v)−
(
f+2 ∗v ηε

)
(v)
]2
dxdtdv→0. (4.29)

It is known (see Lemma 0.2.3 in the appendix for a proof) that for any g∈Hs(Rn),

‖g−g∗ηε‖L2(Rn)≤C(n,s,η)‖g‖Hs(Rn)ε
s.

Therefore for our functions f+
i

2
,

�
Ω̄

� (
f+
i

2−f+
i
s ∗v ηε

)2
dvdxdt≤C(n,s,η)ε2s

�
Qint

�
|Λsf+

i |
2dvdxdt.

Remember that
∥∥∥f+

i
2
∥∥∥
L2(Qint;Hs(Rn))

is bounded by (4.23) and (4.22), and, since the Hs

norm is weakly lower-semi-continuous,
∥∥∥f+2

∥∥∥
L2(Qint;Hs(Rn))

will be bounded as well.

Therefore we can bound∥∥∥f+
i

2−f2
+

∥∥∥
2
≤
∥∥∥f+

i
2−ηε ∗v f+

i
2
∥∥∥

2
+
∥∥∥ηε ∗v f+

i
2−ηε ∗v f+2

∥∥∥
2
+
∥∥∥f+2−ηε ∗v f+2

∥∥∥
2

≤Cεs+
∥∥∥ηε ∗v f+

i
2−ηε ∗v f+2

∥∥∥
2
.

By ‖·‖2 we mean ‖·‖L2(Ω̄×Rn). For any δ>0, we take ε small enough that Cεs≤ δ/2. Then with

ε fixed, we choose i large enough that (by (4.29))
∥∥∥ηε ∗v f+

i
2−ηε ∗v f+2

∥∥∥
2
≤ δ/2. This proves that∥∥∥f+

i
2−f2

+

∥∥∥
2

goes to 0 as i→∞.

Since this is true for any Ω̄ compactly contained in the interior of Qint, we can say that

f+
i

2→f+2
in L2

loc(Qint;L
2(Rn)).

In fact, since our domain is compact, this convergence happpens in L1
loc(Qint;L

2(Rn)) as

well. Since f+
i and f+ are non-negative, and since (x−y)2≤

∣∣x2−y2
∣∣ for any non-negative real
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numbers x and y, we can say that

f+
i →f+ in L2

loc(Qint;L
2(Rn)).

Step 3: The limit is constant in v

We’ll denote

f =f+ +1+F.

Because f+
i →f+ strongly in L2

loc, we know that

|{f = 0}∩Qearly×B2|≥
|Qearly| · |B2|

2
,

|{f = 1}∩Qlate×B2|≥ δ0,

|{1+F <f <1}∩Qint×B3|= 0.

(4.30)

Remark 3.4.1. If s≥1/2, we can use the fact that the Hs
v norm of f is known to be finite for almost

every t,x fixed and obtain (4.33) immediately, making the remainder of Step 3 unnecessary. It is

only in the case s<1/2 that this regularity in v is insufficient to rule out jump discontinuities.

Therefore we follow the technique used in [CCV11a] and by Bass and Kassmann in [FBK05] to

exploit the energy inequality’s cross term.

For 0<λ�1, define the functions

f+
i,λ := (fi−ψλ−1−λF )+ ,

f−i,λ := (fi−ψλ−1−λF )− .

From the the energy inequality of Lemma 3.2.2, we see that for all i the cross term is

bounded

−
�
Qint

B
(
f+
i,λ,f

−
i,λ

)
≤C(n,s,κ)

[�
Qext

�
f+
i,λ

2
+ sup
v∈B3

Li(ψλ+λF )

�
Qext

�
f+
i,λ+‖ai‖r

∥∥∥f+
i,λ

∥∥∥
r∗

]
.

(4.31)
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For v∈B3, Lemma 3.2.3, property ((i)) says that Liψλ(v)≤Cψλ3s/2. Moreover by (4.19),

|LiλF (v)|≤Cλ for some universal constant C.

For λ fixed and i sufficiently large,

fi≤1+ψ1/i≤1+ψλ

so

0≤f+
i,λ≤λF.

Therefore, for λ fixed and i sufficiently large, the inequality (4.31) yields

�
Qint

−B
(
f+
i,λ,f

−
i,λ

)
≤C(n,s,κ)

[
λ2 +(λ+λ3s/2)λ+(1/i)λ

]
.

The cross term in turn bounds the integral of f+
i,λ and f−i,λ. For any t,x fixed

−Bi(f+
i,λ,f

−
i,λ) =

�
K(v,w)f+

i,λ(v)f−i,λ(w)dwdv

≥ 1

κ

�
|v−w|≤6

f+
i,λ(v)f−i,λ(w)

|v−w|n+2s
dwdv

≥ 1

κ

�
|v|≤3,|w|≤3

f+
i,λ(v)f−i,λ(w)

6n+2s
dwdv

=C

�
B3

f+
i,λdv

�
B3

f−i,λdv.

Since fi→f strongly in L2
loc(Qint;L

2(Rn)), these upper- and lower-bounds on the cross term

hold in the limit:

�
Qint

[�
B3

(f−ψλ−1−λF )+ dv

�
B3

(f−ψλ−1−λF )− dv

]
dxdt≤C(n,s,κ)(λ2 +λ1+3s/2). (4.32)

This bound on the limit f is very strong, because by (4.30) we have either f(t,x,v) = 1 or

f(t,x,v) = 1+F (v) for almost all (t,x,v)∈Qint×B3. For such (t,x,v), also ψλ(v) = 0 and so

f−ψλ−1−λF = [−λF ]χ{f=1}+[(1−λ)F ]χ{f=1+F}.
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The function −λF is non-negative, while (1−λ)F is non-positive, so at any point t,x∈Qint,

�
B3

(f−ψλ−1−λF )+ dv=−λ
�
Fχ{f=1}dv

�
B3

(f−ψλ−1−λF )− dv=−(1−λ)

�
Fχ{f=1+F}dv.

Plugging this into (4.32) and moving all the λ to one side, we obtain

�
Qint

�
Fχ{f=1}dv

�
Fχ{f=1+F}dvdxdt≤C(n,s,κ)

λ2 +λ1+3s/2

λ(1−λ)
.

The left-hand side is independent of λ, and the right side tends to 0 as λ→0, so we conclude that

the left-hand side is in fact 0. In particular, this means that for almost every t,x∈Qint, either

|{v :f(t,x,v) = 1}∩B3|= 0 or |{v :f(t,x,v) = 1+F}∩B3|= 0. (4.33)

Step 4: The limit has bounded derivative, which is a contradiction

What remains is to argue that f increases from 0 to 1, without taking intermediate val-

ues along the way, despite having bounded derivative. Moreover, it is not enough to bound the

derivatives in any weak sense, because jump discontinuities can hide in sets of measure zero.

Since f is only defined up to an a.e.-equivalence class, we can assume without loss of

generality that, for every (not a.e.) t,x∈Qint, either f(t,x,v)≡1 or f(t,x,v)≡1+F .

For each i, since ψ̄ is constant in t and x, it is true that

[∂t+v ·∇x]
(
fi− ψ̄

)
=Li

(
fi− ψ̄

)
+Liψ̄+ai.

Multiplying by χ{fi≥ψ̄} and recalling the standard pointwise inequality for integral operators (c.f.

[CS17]),

[∂t+v ·∇x]f+
i ≤Lif

+
i +χ{fi≥ψ̄}Liψ̄+χ{fi≥ψ̄}ai.

By (4.19) and Lemma 3.2.3, property ((i)), the term χ{fi≥ψ̄}Liψ̄ is less than a universal

constant C(n,s,κ), and of course the Lr norm of χ{fi≥ψ̄}ai is less than 1/i so this term will vanish
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in the limit. Let φ∈C∞c (Qint×Rn) be a non-negative test function and consider

−〈f+
i ,[∂t+v ·∇x]φ〉≤〈f+

i ,Liφ〉+〈C,φ〉+
1

i
‖φ‖r∗ .

For φ∈C∞c fixed, the functions Liφ will be uniformly bounded in L∞ and decay like |v|−n−2s.

In particular they are uniformly bounded in L2(Qint×Rn). Therefore

〈f+
i −f

+,Liφ〉→0

so in little-o notation

−〈f+
i , [∂t+v ·∇x]φ〉≤〈Lif+,φ〉+〈C,φ〉+o(1).

By (4.33) and (4.19),

Lif
+ =−χ{t,x:f≡1}LiF ≤C(n,s,κ).

Thus for some universal constant C1 =C1(n,s,κ) we have, in the sense of distributions,

[∂t+v ·∇x](f−1−F )≤C1.

To make the remaining calculation rigorous, let ηε(t,x) be an approximation to the identity

and define

fε=ηε ∗t,x f.

These functions fε are smooth and fε→f pointwise a.e. as ε→0. For (t,x)∈Qint fixed, fε, like f ,

is constant over all v∈B2. Because the transport operator commutes with convolution in t and x,

[∂t+v ·∇x]fε=ηε ∗t,x [∂t+v ·∇x]f ≤C1.

This inequality is true not only in the sense of distributions but also pointwise because the functions

are smooth.

Define two sets

M1 ={t,x∈Qlate :f(t,x,v) = 1},

82



M0 ={t,x∈Qearly :f(t,x,v) = 1+F (v)}.

By (4.30) we know that |M0|≥
|Qearly|

2 and |M1|≥ δ0
|B2| . By Egorov’s theorem, for ε sufficiently small,

|M ε
1 | := |{t,x∈Qlate :fε(t,x,v)>0.9∀v∈B2}|≥

δ0

2|B2|
, (4.34)

|M ε
0 | := |{t,x∈Qearly :fε(t,x,v)<0.1∀v∈B2}|≥

|Qearly|
4

.

Fixing ε, choose a point (t0,x0)∈M ε
0 .

For any (t1,x1)∈M ε
1 , we can define the velocity v̄ := x1−x0

t1−t0 and see that |v̄|≤2. Then the

function

τ 7→fε
(
(1−τ)t0 +τt1,(1−τ)x0 +τx1, v̄

)
is equal to 0 at τ = 0 and equal to 1 at τ = 1, and its derivative is less than (t1− t0)C1. Therefore

H1 (segment[(t0,x0),(t1,x1)]∩{t,x : 0.1<f(t,x,v)<0.9∀v∈B2})≥
.8
√

1+ |v̄|2
C1

≥ 2

C1
. (4.35)

The facts (4.34) and (4.35) tell us, by the elementary geometric argument of Lemma 0.2.2,

that the cone with vertex (t0,x0) and base M ε
1 must intersect {t,x : 0.1<f(t,x,v)<0.9∀v∈B2} on

a set with measure (δ0/2|B2|)(2/C1)2/80.

In particular,

|{0.1<fε<0.9}∩Qint×B2|≥
2δ0

80C2
1 |B2|

>0.

This bound holds for all ε sufficiently small, but we know from (4.30) that it is not true for

f . By Egorov’s theorem, this is a contradiction.

Therefore our sequence fi must not exist, and the proposition must be true.
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3.5 Hölder Continuity

In this section, we explain how Proposition 3.3.1 and Proposition 3.4.1 together lead to

Hölder regularity of our solution. We begin by showing that the PDE (1.1) is scaling invariant.

We then show, in Lemma 3.5.2, how to combine Proposition 3.3.1 and Proposition 3.4.1 to create

a sort of Harnack’s inequality. The ideas here are not new, in particular we follow [CCV11a] very

closely.

Lemma 3.5.1 (Scaling). If f solves (1.1) on some region Q×Rn⊆R×Rn×Rn, then for any

constant ε<1,

f̄(t,x,v) :=f(ε2st,ε1+2sx,εv)

will solve

∂tf̄+v ·∇xf̄ =

�
[f̄(w)− f̄(v)]K̄(t,x,v,w)dw+ ā

on the appropriate region Qε×Rn with K̄ symmetric and satisfying (1.2), and with

‖ā‖Lr(Qε×Rn)≤ε
2s

(
1−n+1+n/s

r

)
‖a‖Lr(Q×Rn) .

Proof. Denote

p= (t,x,v), p̄= (ε2st,ε1+2sx,εv).

Evaluate the equality (1.1) at the point p̄, so that

(∂tf)(p̄)+εv ·(∇xf)(p̄) = (Lf)(p̄)+a(p̄). (5.36)

For our modified function f̄ evaluated at p,

∂tf̄(p) =ε2s(∂tf)(p̄), (5.37)

∇xf̄(p) =ε1+2s(∇xf)(p̄). (5.38)

Define

K̄(t,x,v,w) :=εn+2sK(ε2st,ε1+2sx,εv,εw).
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It’s clear that K̄ is still symmetric. Since

K̄(t,x,v,w)≥εn+2sχ{ε|v−w|≤6}
1

κ
(ε|v−w|)−(n+2s)≥χ{|v−w|≤6}

1

κ
|v−w|−(n+2s)

and

K̄(t,x,v,w)≤εn+2sκ(ε|v−w|)−(n+2s) =κ|v−w|−(n+2s),

K̄ satisfies the bound (1.2).

For this K̄,
�

[f̄(w)− f̄(v)]K̄(p,w)dw=εn+2s

�
[f(εw)−f(εv)]K(p̄,εw)dw

=εn+2s 1

εn

�
[f(εw)−f(εv)]K(p̄,εw)d(εw)

=ε2s(Lf)(p̄). (5.39)

Define

ā(t,x,v) :=ε2sa(ε2st,ε1+2sx,εv). (5.40)

Then the Lr norm of ā is

‖ā‖r =ε2sε−
2s+n(1+2s)+n

r

(�
a(ε2st,ε1+2sx,εv)rd(ε2st)d(ε1+2sx)d(εv)

)1/r

.

Plugging (5.37), (5.38), (5.39), and (5.40) into (5.36) yields

ε−2s∂tf̄(p)+εε−1−2sv ·∇xf̄(p) =ε−2s

�
[f̄(w)− f̄(v)]K̄(p)dw+ε−2sā(p).

Multiply both sides by ε2s to obtain our desired result.

Remark 3.5.1. In addition to scaling, we can also translate solutions of (1.1). If f is a solution and

(t0,x0,v0) is a point in its domain, then

f̄(t,x,v) :=f(t0 + t,x0 +x+v0t,v0 +v)

will be a solution to (1.1) with similarly adjusted source term and kernel. This translation invariance

is necessary for the proof of Hölder continuity, though we omit any further detail.
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The following lemma should be thought of as a Harnack inequality, except that it keeps

track also of the growth in v.

In the sequel, θ0 and γ0 refer to the constant defined in the statement of Proposition 3.4.1,

and δ0 refers to the constant defined in Proposition 3.3.1 which is used again in the statement of

Proposition 3.4.1.

Lemma 3.5.2 (Oscillation Lemma). There exists a universal constant 0<λ<1 such that the

following is true:

If f ∈L2(Qext;H
s(Rn)) is a weak solution to (1.1) subject to (1.2) with source term

‖a‖Lr(Qext)
≤λθ0

and satisfying

|f(t,x,v)|≤1+λψθ0(v) (5.41)

for all t,x∈Qext, v∈Rn, then[
sup

[−1,0]×B1×B1

f

]
−
[

inf
[−1,0]×B1×B1

f

]
≤2−λ.

Moreover, at least one of the two functions

f̄1(t,x,v) =

(
1+

λ

2

)[
f(λ2st,λ1+2sx,λv)+λ/2

]
or

f̄2(t,x,v) =

(
1+

λ

2

)[
f(λ2st,λ1+2sx,λv)−λ/2

]
will also solve (1.1) subject to (1.2) in the weak sense with source term smaller than λθ0 and satisfy

|f̄i(t,x,v)|≤1+λψθ0(v)

for all t,x∈Qext, v∈Rn.
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Proof. Choose k0∈N such that

γ0k0> |Qint×B3|.

Take λ small enough that

λ≤ θ
k0+1
0

2
, 3λ1+2s<1, 6λ2s<1, λ<ε0, and

(
1+

λ

2

)
λ

2s
(

1−n+1+n/s
r

)
≤1 (5.42)

where ε0 =ε0(s,θ0) is defined in Lemma 3.2.3 property ((v)).

Assume without loss of generality that

|{f ≤0}∩Qearly×B2|≥ |Qearly| · |B2|/2. (5.43)

If this were not true, then we could simply discuss −f instead. This proposition holds for f if and

only if it holds for −f .

With this assumption, we will assert that the proposition’s result is true for

f̄(t,x,v) =

(
1+

λ

2

)[
f(λ2st,λ1+2sx,λv)+λ/2

]
.

It is clear by Lemma 3.5.1 and linearity of Equation (1.1) that f̄ will solve (1.1) subject to (1.2)

with source term ā smaller than λθ0 by (5.42). We must show that f̄ is also bounded as desired.

Consider the sequence of functions

f0 =f

fk =
fk−1−1

θ0
+1 =

f−1

θ0
k

+1.

Since equation (1.1) is linear, all fk will also be solutions with source terms 1
θk0
a.

For each 0≤k≤k0 +1 and any (t,x,v)∈Qext×Rn,

|a(t,x,v)|≤ λθ0

θk0
≤θ0

by the assumption (5.42), and by (5.41) and (5.42),

fk =
f−1

θ0
k

+1≤ λ

θ0
k
ψθ0 +1≤ψθ0 +1. (5.44)
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We wish to show that fk0 satisfies

|{fk0≥1−θ0}∩Qlate×B2|≤ δ0. (5.45)

Therefore assume, for contradiction, that (5.45) does not hold. Then by construction, each fk will

satisfy (4.17) for 0<k≤k0. Moreover, all fk will satisfy (4.16) since f0 does by (5.43). Therefore

we can apply Proposition 3.4.1 and conclude that each fk for k from 0 to k0 must satisfy (4.18).

That means that the set

Sk := |{fk≤0}∩Qint×B3|

must increase in measure by at least γ0 with each increment of k. By choice of k0, this would be a

contradiction. We conclude that (5.45) holds.

Due to (5.44) and Lemma 3.2.3, property ((iv)), we say that for all t,x∈Qlate and all |v|≥2

fk0+1(t,x,v)≤1+ψθ0(v)≤ψ1(v).

By (5.44), fk0+1(t,x,v)≤1 for all (t,x,v)∈ [−2,0]×B2×B2, so we can say by (5.45) that

�
Qlate×B2

max(fk0+1−ψ1,0)2dvdxdt≤ δ0.

This is sufficent to apply Proposition 3.3.1 to fk0+1 and conclude that fk0+1≤1/2 on

[−1,0]×B1×B1. Thus for the original f ,

−1≤f ≤1− 1

2
θ0
k0+1≤1−λ ∀(t,x,v)∈ [−1,0]×B1×B1. (5.46)

This proves the lemma’s first claim.

We now know from (5.46), the definition of f̄ , and (5.42) that for all t,x∈Qext and |v|≤λ−1

f̄(t,x,v)≤
(

1+
λ

2

)
[1−λ+λ/2]≤1,

f̄(t,x,v)≥
(

1+
λ

2

)
[−1+λ/2]≥−1.
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For t,x∈Qext and |v|≥λ−1, since λ<ε0, we know by Lemma 3.2.3, property ((v)) that

2ψθ0(λv)+2≤ψθ0(v).

Therefore

∣∣f̄(t,x,v)
∣∣≤(1+

λ

2

)
[1+λψθ0(λv)+λ/2]

≤
(

1+
λ

2

)[
1+

λ

2
ψθ0(v)−λ+λ/2

]
≤1+λψθ0(v).

This completes the proof.

Theorem 3.1.1 is proven by iteratively applying this Lemma 3.5.2 to an appropriately scaled

function.
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Chapter 4

Critical SQG on bounded domains

4.1 Preliminaries

The surface quasigeostrophic equation (SQG) is a special case of the quasi-geostrophic

system (QG) with uniform potential vorticity. The QG model is used extensively in meteorology

and oceanography (e.g. Charney [Cha71]). These models are described in Pedlosky [Ped92]. The

SQG model was popularized by Constantin, Majda and Tabak in [CMT94], due to its similarities

with the Euler and Navier-Stokes equation. They proposed it as a toy model for the study of 3D

Fluid equations (see also Held, Garner, Pierrehumbert, and Swanson [HPGS95]).

We consider in this chapter1 critical SQG on a bounded domain. We will focus on the

following model, which was introduced by Constantin and Ignatova in [CI17] and [CI16]. Consider

Ω a connected bounded domain in R2 with C2,β boundary for some β∈ (0,1), and the Laplacian

with homogeneous Dirichlet boundary conditions −∆D. If (ηk)k∈N is the sequence of L2-normalized

eigenfunctions of −∆D with corresponding eigenvalues λk listed in non-decreasing order, define

Λf :=
∞∑
k=0

√
λk〈f,ηk〉L2(Ω)ηk.

The critical SQG problem on Ω with initial data θ0∈L2(Ω) is
∂tθ+u ·∇θ+Λθ= 0 (0,T )×Ω,

u=∇⊥Λ−1θ [0,T ]×Ω,

θ=θ0 {0}×Ω.

(1.1)

1The contents of this chapter are based on joint work of the author with Alexis Vasseur originally appearing in
“Logan F. Stokols and Alexis F. Vasseur. Hölder regularity up to the boundary for critical SQG on bounded domains.
Arch. Ration. Mech. Anal., 236(3):1543–1591, 2020.” Both authors contributed equally to this work.
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In the model, the dissipation Λ = (−∆D)1/2 is due to the Ekman pumping, while the non-

linear velocity u comes from the geostrophic and hydrostatic balance (see [Ped92]).

The main result of this chapter is the following:

Theorem 4.1.1. There exists a universal constant C1>0 such that the following holds:

For any Ω⊆R2 open and bounded with C2,β boundary, β∈ (0,1), there exists for any S>0

a constant CS>0 (depending also on Ω), and for any k>0 a constant αk,S ∈ (0,1) (depending also

on Ω) so the following holds:

For any θ0∈L2(Ω) there exists a global-in-time weak solution θ∈L∞([0,∞);L2(Ω))∩

L2([0,∞);H1/2) to (1.1) verifying θ(t,x) = 0 on (0,∞)×∂Ω and limt→0θ(t,·) =θ0 in the L2-weak

sense. For k≥‖θ0‖L2(Ω) and for every S>0

θ∈Cαk,S ([S,∞)× Ω̄)

where Ω̄ denotes the closure of Ω.

Moreover,

‖θ‖L∞([S,∞)×Ω̄)≤
C1

S
‖θ0‖L2(Ω)

and

‖θ‖Cαk,S ([S,∞)×Ω̄)≤CS ‖θ0‖L2(Ω) .

This model was first thoroughly studied in the cases without boundaries (either R2 or the

torus T2). Global weak solutions were first constructed in Resnick [Res95]. Global regularity

was first shown with small initial values by Constantin, Cordoba, and Wu [CCW01], or extra

Cα regularity on the velocity in Constantin and Wu [CW08] and Dong and Pavlović [DP09]. In

[KNV07], Kiselev, Nazarov and Volberg showed the propagation of C∞ regularity. The global C∞

regularity for any L2 initial values was first proved in [CV10b] (see also Kiselev and Nazarov [KN09]

and Constantin and Vicol [CV12]).
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In the presence of boundaries, there are several distinct ways to define SQG. This can be

attributed to alternative generalizations of the fractional Laplacian. Kriventsov [Kri15] considered

a two-phase problem which satisfies critical SQG only in part of the domain, and was able to prove

Hölder regularity in the time-independent case. This problem, intended to model air currents over a

region containing both land and water, contains a half-Laplacian and a Riesz transform defined, not

spectrally, but in terms of extension. In [NV18b], the authors consider the Euler-Coriolis-Boussinesq

model and derive the full 3D inviscid quasigeostrophic system in an impermeable cylinder (see also

[NV19] for the construction of small time smooth solutions to the model). They obtain natural

boundary conditions for SQG distinct from the homogeneous conditions introduced in [CI17], [CI16]

and described above. However, due to the complexity of the model described in [NV18b], we focus

in this chapter only on the homogenous case.

Existence of weak solutions for (1.1) is proven in [CI17], and local existence and uniqueness

for strong solutions with sufficiently smooth initial data is proven by Constantin and Nguyen in

[CN18b] (see also Constantin and Nguyen [CN18a] and Constantin, Ignatova, and Nguyen [CIN18]

for the inviscid case). The interior regularity of solutions is proven in [CI16] (together with propaga-

tion of L∞ bounds). The method of proof for interior regularity uses nonlinear maximum principles,

introduced by Constantin and Vicol [CV12]. However, the bounds obtained in [CI16] blow up near

the boundary and do not provide global regularity. In [CI16] Remark 1, questions about global reg-

ularity are suggested as open problems. Both the Cα(Ω̄) regularity, and bootstrapping to C∞(Ω̄)

regularity, are indentified as interesting problems. Our result answers the first question, by showing

that solutions θ to (1.1) are globally Hölder continuous. Bootstrapping to C∞ involves different

techniques, and will be studied in a forthcoming work [SV].

Our proof is based on the De Giorgi method pioneered by De Giorgi in [DG57]. The method

was applied to the SQG problem first in [CV10b]. The method is powerful for showing Cα regularity

of elliptic- and parabolic-type equations. It has been applied in a variety of situations for non-local

92



problems, such as the fractional heat equation in [CCV11b], the time-fractional case in [ACV16],

the 3D Quasigeostrophic problem in [NV18a], or the kinetic setting by Imbert and Silvestre [IS16]

or in [Sto19a]. The method has also been applied in more exotic, non-elliptic situations such as

Hamilton-Jacobi equations (see [CV17], [SV18]).

The De Giorgi method involves rescaling our equation by zooming in iteratively, and ap-

plying regularity results at each scale. Therefore it is important that certain results be proven

independently of the domain Ω. The particular dependence on Ω will be made clear in each lemma

of this chapter. As a general overview, in the proof of Theorem 4.1.1 we will apply the results of

Sections 4.3 and 4.4 only on a single fixed domain, while the results of Sections 4.5 and 4.6 must

be applied at each level of zoom with a different rescaled domain each time.

The first broad idea of our proof consists in decoupling the velocity u from θ to work on a

linear equation, and prove alternating regularity results for θ and u independently. We can show

that θ is in L∞ without any assumption on u (see Section 4.3). Using that L∞ bound, we will

need to obtain scaling invariant controls on the drift u=∇Λ−1θ. By scaling invariant, we mean

that the bound, once proven on Ω fixed, will remain true of the scaled function u(ε·,ε ·) for all

ε. Unfortunately, although the Riesz transform is bounded from Lp to Lp for all p finite, it is

not bounded for p=∞. The usual technique, therefore, is to consider BMO (as in [CV10b] and

[NV18a]), but in the case of bounded domains the Riesz transform is not known to be bounded

in this space either. Our solution is to use extensions of the Littlewood-Paley theory to bounded

domains.

The adaptation of Fourier analysis and Littlewood-Paley theory to Schrodinger operators

is a well-studied subject (e.g. Zheng [Zhe06], Benedetto and Zheng [BZ10]). As an application of

this theory, Iwabuchi, Matsuyama, and Taniguchi [IMT19], [IMT18], and Bui, Duong, and Yang

[BDY12] have considered operators defined on open subsets of Rn, which includes as a special

case the operator −∆D (a Schrodinger operator with zero potential). In particular, in [IMT17],
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Iwabuchi, Matsuyama, and Taniguchi derive many important results, including the Bernstein in-

equalities, for Besov spaces adapted to the operator −∆D on bounded open subsets of Rn with

smooth boundary. This theory turns out to greatly improve our understanding of the Riesz trans-

form ∇Λ−1 on bounded domains.

Using the results of [IMT17], we will be able to show that the Riesz transform of an L∞

function whose Fourier decomposition f =
∑
fkηk is supported on high frequencies k>N will be

bounded in the weak sobolev space W−1/4,∞, and the Riesz transform of an L∞ function whose

Fourier decomposition is supported on low frequencies k<N will have bounded Lipschitz constant.

The cutoff N for dividing high frequencies from low frequencies must depend however on the

size of the domain Ω. In the case of R2, where ∇ and Λ−1 commute, this is equivalent to the

observation that the Riesz transform is bounded from L∞ to the Besov space B0
∞,∞. In the case of

bounded domains, the argument must be more subtle. We must decompose θ into its Littlewood-

Paley projections, individually bound the Riesz transform of each projection in multiple spaces,

and then recombine these infinitely-many functions into a low-frequency collection and a high-

frequency collection depending on the scale of oscillation we are trying to detect (see Section 4.4

and Lemma 4.5.1).

We make this notion precise with the following definition:

Definition 4.1.1 (Calibrated sequence). Let Ω⊆R2 be any bounded open set and 0<T ∈R. We

call a function u∈L2([0,T ]×Ω) calibrated if it can be decomposed as the sum of a calibrated

sequence

u=
∑
j∈Z

uj

with each uj ∈L2([0,T ]×Ω) and the infinite sum converging in the sense of L2.

We call a sequence (uj)j∈Z calibrated for a constant κ and a center N if each term of the

sequence satisfies the following bounds.

‖uj‖L∞([0,T ]×Ω)≤κ,
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‖∇uj‖L∞([0,T ]×Ω)≤2j2−Nκ,∥∥∥Λ−1/4uj

∥∥∥
L∞([0,T ]×Ω)

≤2−j/42N/4κ.

In Section 4.7 we will show that a calibrated velocity remains calibrated at all scales (specif-

ically, with fixed constant κ but a changing center N). Therefore we can consider, for any domain

Ω and time T , the system of linear equations{
∂tθ+u ·∇θ+Λθ= 0, [−T,0]×Ω

divu= 0 [−T,0]×Ω.
(1.2)

In Section 4.3 we show that solutions to (1.1) with L2 initial data exist and regularize

instantly into L∞, and in Section 4.4 we show that the Riesz transform of L∞ data is calibrated.

Then in Sections 4.5 and 4.6 we will show that solutions to (1.2) with calibrated velocity have

decreasing oscillation between scales. By iteratively applying this oscillation lemma and scaling

our equation, we show in Section 4.7 that θ is Hölder continuous.

The low-freqency component of a calibrated velocity u will be uniformly Lipschitz, which

means it is only bounded up to a constant. This is similar to the case of BMO velocity functions in

[CV10b] and [NV18a], which by the John-Nirenberg inequality are also bounded up to a constant.

As in these cases, we consider a moving reference frame, denoted Γ : [0,T ]→R2, in which our

velocity is shifted by a constant, making the low-frequency component of u bounded. There are

two differences between our implementation of this technique and the implementation in [CV10b]

and [NV18a]: firstly, we subtract off the value of the low-frequency part of u at a point, rather than

subtracting off the average of u on a ball. Secondly, rather than applying the standard De Giorgi

argument to θ̃(t,x) :=θ(t,x+Γ(t)), we must reformulate the De Giorgi argument to “follow” the

path Γ(t) explicitly. This is a purely notational difference, but it is necessary because otherwise Ω

would be time-dependent.

At each scale, there will be a natural Lagrangian path Γ` corresponding to the low-frequency

part of u. However, the low-frequency part of u changes non-trivially as we zoom, so Γ` will be

95



different at each scale. Throughout Sections 4.5 and 4.6, we will use Γ` to denote the “current”

Lagrangian path and Γ to denote the Lagrangian path at the previous scale. In the proof of The-

orem 4.1.1 in Section 4.7, these are denoted Γk(t) and ε−1Γk−1(εt) respectively. In Lemmas 4.5.2,

4.5.3, 4.5.4 and 4.6.1, we will make assumptions about θ which are centered on x≈Γ(t) and ob-

tain conclusions which are similarly centered on x≈Γ(t), conditioned on γ := Γ`−Γ being small in

Lipschitz norm. Finally in Lemma 4.6.2, we will show that, given bounds on θ for x≈Γ(t), we

can bound θ for x≈Γ`(t) for t sufficiently small, again conditioned on γ := Γ`−Γ being small in

Lipschitz norm. Controlling γ amounts to controlling the change in Γ` between consecutive scales,

which is much easier to obtain than scale-independent bounds on Γ`.

Previous applications of the De Giorgi method to non-local equations such as (1.2) generally

make extensive use of either an extension representation (c.f. [CV10b]) or a singular integral

representation (c.f. [NV18a]). In this chapter, we use the singular integral representation for the

Dirichlet fractional Laplacian derived by Caffarelli and Stinga [CS16]. It is based on the results of

Stinga and Torrea [ST10] which generalize the extension representation of Caffarelli and Silvestre

[CS07]. This theory is pivotal in translating the existing non-local De Giorgi techniques to the

problem at hand (see Section 4.2).

In order to apply De Giorgi’s method to weak solutions of (1.2), we will need to assume

a certain a priori estimate which holds, in particular, for L2(H1
0 ) weak solutions. However, such

solutions are only known to exist for short time and for H2 initial data, as shown by Constantin

and Nguyen in [CN18b]. We call weak solutions in L2(H1/2) which happen to verify this a priori

estimate “suitable solutions,” by analogy to suitable solutions to Navier-Stokes as in [CKN82]. We

give the formal definition of suitable solutions in Section 4.3, where we also construct global-in-time

suitable solutions using the vanishing viscosity method. Compared to [CI17], our solutions verify

a full family of localized energy inequalities which allow us to apply the De Giorgi method.

The chapter is organized as follows. Section 4.2 is dedicated to basic properties of the
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operator Λ and the corresponding Sobolev spaces Hs. In Section 4.3 we construct weak solutions

which verify the suitability conditions. In Section 4.4 we prove that the Riesz transform of the L∞

function θ is callibrated. Section 4.5 contains the De Giorgi Lemmas. Section 4.6 is dedicated to

the local decrease in oscillation through an analog of the Harnack inequality. Finally in Section 4.7

we prove the main theorem, Theorem 4.1.1. In the Appendix 0.3 we prove a few technical lemmas

which are needed in the main chapter.

Notation. Throughout the chapter, we will use the following notations. By ηk and λk

we mean the eigenfunctions and eigenvalues of −∆D, with λ0≤λ1≤ .. . and ‖ηk‖2 = 1 for all k. If

f =
∑

k fkηk then

‖f‖Hs :=

(∑
k

λskf
2
k

)1/2

=

�
|Λsf |2 .

We suppress the dependence on Ω, though in fact Λ, λk, and ηk are defined in terms of the domain

Ω. The relevant domain will be clear from context. The norm on Hs is in fact a norm, not a

seminorm, since ‖f‖L2(Ω)≤λ
−s/2
0 ‖f‖Hs .

For a set A and a function f :A→R, denote

[f ]α;A := sup
x,y∈A,x 6=y

|f(x)−f(y)|
|x−y|α

, α∈ (0,1],

‖f‖Cα(A) :=‖f‖L∞(A) +[f ]α;A , α∈ (0,1],

‖f‖Ck,α(A) :=
k∑

n=0

‖Dnf‖L∞(A) +
[
Dkf

]
α;A

, α∈ (0,1],k∈N.

When the domain A is ommited, the relevant spatial domain Ω is implied.

Throughout this chapter, if an integral sign is written
�

without a specified domain, the

domain is implied to be Ω, with Ω defined in context.

For any vector v= (v1,v2), by v⊥ we mean (−v2,v1). By ∇⊥ we mean (−∂y,∂x).
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In the remainder of this chapter, the differential operator D2 refers to the Hessian in space,

excluding time derivatives. By abuse of notation, if Γ : [a,b]→R2, we write [a,b]×BR(Γ) to denote

{(t,x)∈ [a,b]×R2 : |x−Γ(t)|≤R}.

4.2 Properties of the Fractional Dirichlet Laplacian

In this section we will investigate the basic properties of the operator Λ and the space Hs

on a general domain Ω.

We begin by stating a result of [CS16] which gives us a singular integral representation of

the Hs norm.

Proposition 4.2.1 (Caffarelli-Stinga Representation). Let s∈ (0,1) and f,g∈Hs on a bounded

C2,β domain Ω⊆R2. Then

�
Ω

ΛsfΛsgdx=

�
Ω2

[f(x)−f(y)][g(x)−g(y)]K2s(x,y)dxdy+

�
Ω
f(x)g(x)B2s(x)dx (2.3)

for kernels K2s and B2s which depend on the parameter s and the domain Ω.

There exists a constant C=C(s) independent of Ω such that

0≤K2s(x,y)≤ C(s)

|x−y|2+2s

for all x 6=y∈Ω and

0≤B2s(x)

for all x∈Ω.

Moreover, for any s,t∈ (0,2) there exists a constant c= c(s,t,Ω) such that for all x 6=y∈Ω

Kt(x,y)≤ c|x−y|s−tKs(x,y). (2.4)

Proof. See [CS16] Theorems 2.3 and 2.4.
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Theorem 2.4 in [CS16] does not explicitly state the result (2.4). However, it does state that

for each kernel Ks there exists a constant cs dependent on s and Ω such that

1

cs
|x−y|2+sKs(x,y)≤min

(
1,
η0(x)η0(y)

|x−y|2

)
≤ cs|x−y|2+sKs(x,y).

Since the middle term does not depend on s, we can say that

|x−y|2+tKt(x,y)≤ ctcs|x−y|2+sKs(x,y)

from which (2.4) follows.

From the explicit formulae given in [CS16], we see that K2s is approximately equal to the

standard kernel for the R2 fractional Laplacian (−∆)s when both x and y are in the interior of Ω or

when x and y are extremely close together, but decays to zero when one point is in the interior and

the other is near the boundary. The kernel B2s is well-behaved in the interior but has a singularity

at the boundary ∂Ω. This justifies our thinking of the K2s term as the interior term and B2s as a

boundary term.

When comparing the computations in this chapter to corresponding computations on R2,

one finds that the interior term behaves nearly the same as in the unbounded case, while the

boundary term behaves roughly like a lower order term (in the sense that it is easily localized).

Many useful results can be derived from Caffarelli-Stinga representation formula. We sum-

marize them in the following lemma.

Lemma 4.2.2. Let Ω⊆R2 be a bounded open set with C2,β boundary for some β∈ (0,1).

(a) Let s∈ (0,1). If f and g are non-negative functions with disjoint support (i.e. f(x)g(x) = 0

for all x), then �
ΛsfΛsgdx≤0.

99



(b) Let s∈ (0,1). If g∈C0,1(Ω) then for some constant C=C(s) independent of Ω

‖fg‖Hs≤2‖g‖∞‖f‖Hs +C ‖f‖2 sup
y

�
|g(x)−g(y)|2

|x−y|2+2s
dx.

(c) Let s∈ (0,1). If g∈C0,1(Ω) then for some constant C=C(s) independent of Ω

‖fg‖Hs≤C ‖g‖C0,1(Ω) (‖f‖2 +‖f‖Hs).

(d) Let s∈ (0,1/2). Let g an L∞(Ω) function and f ∈H2s be non-negative with compact support.

Let Cdmn be a constant such that

Ks(x,y)≤Cdmn |x−y|3sK4s(x,y). (2.5)

Then there exists a constant C depending only on s and Cdmn such that
�

Λs/2gΛs/2f ≤C ‖g‖∞ |supp(f)|1/2 (‖f‖2 +‖f‖H2s).

(e) Let g an L∞(Ω) function and f ∈H1/2 be non-negative with compact support. Let Cdmn be a

constant such that

K1/4(x,y)≤Cdmn |x−y|3/4K1(x,y).

Then there exists a constant C depending only on Cdmn such that
�
gΛ1/4f ≤C ‖g‖∞ |supp(f)|1/2 (‖f‖2 +‖f‖H1/2).

Proof. We prove these corollaries one at a time.

Proof of ((a)): From Proposition 4.2.1
�

ΛsfΛsgdx=

�
[f(x)−f(y)][g(x)−g(y)]K(x,y)dxdy+

�
f(x)g(x)B(x)dx.

Since f and g are non-negative and disjoint, the B term vanishes. Moreover, the product

inside the K term becomes

[f(x)−f(y)][g(x)−g(y)] =−f(x)g(y)−f(y)g(x)≤0.
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Since K is non-negative, the result follows.

Proof of ((b)): From Proposition 4.2.1

�
|Λs(fg)|2 =

�
(g(x)[f(x)−f(y)]+f(y)[g(x)−g(x)])2K+

�
f2g2B

≤2‖g‖2∞‖f‖
2
Hs +C(s)

�
f(y)2

�
|g(x)−g(y)|2

|x−y|2+2s
dxdy.

Proof of ((c)): This follows immediately from ((b)), since

|g(x)−g(y)|≤ (‖g‖∞)∧(‖∇g‖∞ |x−y|)

and �
1∧|x−y|2

|x−y|2+2s
dx

is bounded uniformly in y.

Proof of ((d)): From Proposition 4.2.1 we can decompose

�
Λs/2gΛs/2f = I<+I≥+II

where

I< :=

�
|x−y|<1

[g(x)−g(y)][f(x)−f(y)]Ks,

I≥ :=

�
|x−y|≥1

[g(x)−g(y)][f(x)−f(y)]Ks,

II :=

�
fgBs.

First we estimate I<. From (2.5) and from the symmetry of the integrand and the fact that

[f(x)−f(y)] vanishes unless at least one of f(x) or f(y) is non-zero,

|I<|≤2

�
|x−y|<1

χ{f>0}(x) |g(x)−g(y)| · |f(x)−f(y)| · |x−y|3sK4s.
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We can break this up by Hölder’s inequality

|I<|≤2

(�
|x−y|<1

χ{f>0}(x)[g(x)−g(y)]2|x−y|6sK4s

)1/2(�
[f(x)−f(y)]2K4s

)1/2

.

The kernel |x−y|6sK4sχ{|x−y|<1} is integrable in y for x fixed. Therefore

|I<|≤2

(
(2‖g‖∞)2

�
Cχ{f>0}(x)dx

)1/2(
‖f‖2H2s

)1/2
. (2.6)

For the term I≥, by the symmetry of the integrand we have

|I≥|≤2‖g‖∞2

�
|f(x)|

�
|x−y|≥1

Ks(x,y)dydx.

Since Ksχ{|x−y|≥1} is integrable in y for x fixed,

|I≥|≤C ‖g‖∞‖f‖1 . (2.7)

For the boundary term II,

|II|≤‖g‖∞
�
χ{f>0}fBs.

Since f ≥0, [f(x)−f(y)][χ{f>0}(x)−χ{f>0}(y)]≥0. Therefore�
χ{f>0}fBs≤

�
Λs/2χ{f>0}Λ

s/2f =

�
χ{f>0}Λ

sf.

Applying Hölder’s inequality, we arrive at

|II|≤‖g‖∞ |supp(f)|1/2‖f‖Hs .

This combined with (2.6) and (2.7) gives us�
Λs/2gΛs/2f ≤C ‖g‖∞

(
|supp(f)|1/2‖f‖H2s +‖f‖1 + |supp(f)|1/2‖f‖Hs

)
.

The lemma follows since ‖f‖1≤|supp(f)|1/2‖f‖2 and since ‖f‖Hs≤‖f‖L2 +‖f‖H2s .

Proof of ((e)): This is an immediate application of part ((d)).
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Let us consider the relationship between the norm Hs and the Hs norm on R2.

It is known (see [CI16] and [CS16]) that for s∈ (0,1) the spaces Hs are equivalent to certain

subsets of Hs(Ω) spaces defined in terms of the Gagliardo semi-norm. In particular, we know that

smooth functions with compact support are dense in Hs for s∈ [0,1] and that elements of Hs have

trace zero for s∈ [1
2 ,1].

The most important fact for us is that the fractional Sobolev norms defined in terms of

extension are dominated by our Hs norm with a constant that is independent of Ω.

We do not claim that this result is new, but we present a detailed proof because the result is

crucial to the De Giorgi method. The De Giorgi lemmas require Sobolev embeddings and Rellich-

Kondrachov embeddings which are independent of scale.

Define the extension-by-zero operator E :L2(Ω)→L2(R2)

Ef(x) =

{
f(x) x∈Ω,

0 x∈R2 \Ω.

Proposition 4.2.3. Let Ω⊆R2 be any bounded open set with C2,β boundary for some β∈ (0,1).

For any s∈ [0,1] and function f ∈Hs,

�
R2

∣∣∣(−∆)s/2Ef
∣∣∣2≤�

Ω
|Λsf |2 .

Here (−∆)s is defined in the fourier sense.

We will prove this proposition by interpolating between s= 0 and s= 1. Before we can do

this, we must prove the same in the s= 1 case. This result is known (see e.g. Jerison and Kenig

[JK95]) but we include the proof for completeness.

Lemma 4.2.4. Let Ω⊆R2 be any bounded open set with Lipschitz boundary. For all functions f

in H1, �
Ω
|∇f |2 =

�
Ω
|Λf |2 .
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Proof. Let ηi and ηj be two eigenfunctions of the Dirichlet Laplacian on Ω. Note that these functions

are smooth in the interior of Ω and vanish at the boundary, so we can apply the divergence theorem

and find �
∇ηi ·∇ηj =−

�
ηi∆ηj =λj

�
ηiηj =λjδi=j .

Consider a function f =
∑
fkηk which is an element of H1, by which we mean

∑
λkf

2
k <∞.

Since ‖∇ηk‖L2(Ω) =
√
λk, the following sums all converge in L2(Ω) and hence the calculation is

justified:

�
|∇f |2 =

� (∑
i

fi∇ηi

)∑
j

fj∇ηj


=

� ∑
i,j

(fifj)∇ηi ·∇ηj

=
∑
i,j

(fifj)

�
∇ηi ·∇ηj

=
∑
j

λjf
2
j .

From this the result follows.

We come now to the proof of Proposition 4.2.3. The proof is by complex interpolations

using the Hadamard three-lines theorem.

Proof. Let g be any Schwartz function in L2(R2), and let f be a function in Hs. Define the function

Φ(z) =

�
R2

(−∆)z/2gEΛs−zf, z∈C,Re(z)∈ [0,1].

Recall (see e.g. [JK95]) that when t∈R, (−∆)it is a unitary transformation on L2(R2), and

Λit is a unitary transformation on L2(Ω).

When Re(z) = 0, then
∥∥∥(−∆)z/2g

∥∥∥
2

=‖g‖2 and ‖Λs−zf‖2 =‖f‖Hs . Hence

Φ(z)≤‖g‖2‖f‖Hs , Re(z) = 0.
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When Re(z) = 1, integrate by parts to obtain

Φ(z) =

�
R2

(−∆)(z−1)/2g (−∆)1/2EΛs−zf.

Then
∥∥∥(−∆)(z−1)/2g

∥∥∥
2

=‖g‖2, while ‖Λs−zf‖H1 =‖f‖Hs . As an H1 function, Λs−zf has trace zero

so ∥∥∇EΛs−zf
∥∥
L2(R2)

=
∥∥∇Λs−zf

∥∥
L2(Ω)

=‖f‖Hs .

Of course
∥∥∥(−∆)1/2 ·

∥∥∥
L2(R2)

=‖∇·‖L2(R2) in general so

Φ(z)≤‖g‖2‖f‖Hs , Re(z) = 1.

In order to apply the Hadamard three-lines theorem, we must show that Φ is differentiable

in the interior of its domain.

Rewrite the integrand of Φ as

F−1 (|ξ|z ĝ)E
∑
k

λ
s−z

2
k fk.

The derivative d
dz commutes with linear operators like F−1 and E, so the derivative is

F−1 (ln(|ξ|)|ξ|z ĝ)E
∑
k

λ
s−z

2
k fk+F−1 (|ξ|z ĝ)E

∑
k

−1

2
ln(λk)λ

s−z
2

k fk. (2.8)

Fix some z∈C with Re(z)∈ (0,1). Since g is a Schwartz function, ln(|ξ|)|ξ|z ĝ is in L2.

Moreover, for any ε>0 we have ln(λk)λ
s−z

2
k ≤Cλ

s−z+ε
2

k for some C independent of k but dependent

on z, ε. Take ε<Re(z) and, since f ∈Hs, this sum will converge in L2.

The differentiated integrand (2.8) is therefore a sum of two products of L2 functions. In

particular it is integrable, which means we can interchange the integral sign and the derivative d
dz

and prove that Φ′(z) is finite for all 0<Re(z)<1.
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By the Hadamard three-lines theorem, for any z∈ (0,1) we have Φ(z)≤‖g‖2‖f‖Hs . Evalu-

ating Φ(s), we see �
R2

(−∆)s/2gEf ≤‖g‖L2(R2)‖f‖Hs .

This inequality holds for any Schwartz function g∈L2(Rn) and any f ∈Hs.

Since Schwartz functions are dense in L2(R2) and (−∆)s/2 is self-adoint, the proof is com-

plete.

4.3 Existence of suitable solutions

In this section, we define the needed notion of suitable solutions. This involves two families

of localized energy inequalities. The first family (3.11) concerns the time evolution of
�

Ω(θ−Ψ)2
+

for generic cutoff functions Ψ. We need also to control the time derivative ∂t(θ−Ψ)2
+ in the sense

of distributions for the second De Giorgi lemma (see Proposition 4.5.4, step 2). This control comes

in the family of inequalities (3.12).

It is important that the universal constant C∗ appearing in the suitability conditions (3.11)

and (3.12) is independent of Ω. The De Giorgi argument requires that we apply the same bound

iteratively as we rescale the solution, so our bounds must be scale independent. For this reason, we

will define the constant through Proposition 4.3.1 before stating the definition of suitable solutions.

As with the Navier-Stokes equations, it is not obvious that weak solutions constructed directly

from the Galerkin scheme are suitable. Therefore we will construct our weak solutions as vanishing

viscosity limits of 
∂tθ+u ·∇θ+Λθ=ε∆θ (0,∞)×Ω,

u=∇⊥Λ−1θ [0,∞)×Ω,

θ=θ0 {0}×Ω.

(3.9)

The construction of solutions to (3.9) will follow the Galerkin method (as in [CI17]).
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We begin by defining the universal constant C∗ and simultaneously showing that the in-

equalities (3.11) and (3.12) are valid for sufficiently smooth solutions to the linear equation{
∂tθ+u ·∇θ+Λθ=ε∆θ,

divu= 0,
(3.10)

uniformly with respect to ε∈ [0,1]. This smoothness requirement will be shown to be valid when

ε>0.

Proposition 4.3.1 (Energy Inequalities). There exists a universal constant C∗ such that the fol-

lowing holds:

Let Ω⊆R2 be bounded and open with C2,β boundary, β∈ (0,1), and let 0<T <∞ a time, and

let ε∈ [0,1]. Let θ,u be a solution to (3.10) on Ω× [0,T ], with θ∈L∞(0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω))

and u∈L∞(0,T ;L2(Ω))∩L4(0,T ;L4(Ω)).

Then for any smooth non-negative function Ψ∈C∞([0,∞)×R2) satisfying

‖∇Ψ‖L∞([0,∞)×R2)≤k and the Hölder seminorm sup[0,∞) [Ψ(t,·)]1/4;R2≤k for some constant k, any

time S∈ (0,T ), and any smooth non-negative ϕ∈C∞c (S,T ;C∞(Ω)), the function θ+ := (θ−Ψ)+

satisfies

d

dt

�
θ2

+ +

� ∣∣∣Λ1/2θ+

∣∣∣2≤C∗(k2

�
χ{θ≥Ψ}+

∣∣∣∣� θ+(∂tΨ+u ·∇Ψ)

∣∣∣∣) ∀t∈ [0,T ] (3.11)

in the sense of distributions and

−1

2

� T

S

�
θ2

+∂tϕ≤
1

2

� T

S

�
θ2

+u ·∇ϕ−
� T

S

�
ϕθ+ (∂tΨ+u ·∇Ψ)+C∗‖ϕ‖C0(S,T ;C2)

((
1+

1

S

)� T

0

�
θ2

+

+k2

� T

0

�
χ{θ≥Ψ}+

� T

0

∣∣∣∣� θ+ (∂tΨ+u ·∇Ψ)

∣∣∣∣).
(3.12)

Remark 4.3.1. Note that since C∗ is universal, Proposition 4.3.1 does not depend on the values of

‖θ‖L∞(L2), ‖θ‖L2(H1
0 ), ‖u‖L∞(L2), or ‖u‖L4(L4), but only on the fact that these quantities are finite.

Therefore, using the natural scaling of (3.10), if (θ,u) verify the assumptions of Proposition 4.3.1
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on [0,T ]×Ω, then so does
(
λθ(µ·,µ·),u(µ·,µ·)

)
on [0,µ−1T ]×µ−1Ω, for any λ∈R and µ>0 such

that µ−1ε∈ [0,1]. Therefore the proposition applies also to these scaled functions, with the same

universal constant C∗.

Proof of Proposition 4.3.1. Since θ+∈L∞(0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω)), we can multiply (3.10) by

θ+ and integrate in space to obtain

0 =

�
θ+ [∂t+u ·∇+Λ−ε∆](θ+ +Ψ−θ−)

which decomposes into three terms, corresponding to θ+, Ψ, and θ−. We analyze them one at a

time.

Firstly,

�
θ+ [∂t+u ·∇+Λ−ε∆]θ+ =

(
1

2

)
d

dt

�
θ2

+ +

(
1

2

)�
divuθ2

+ +

� ∣∣∣Λ1/2θ+

∣∣∣2 +ε

�
|∇θ+|2

=

(
1

2

)
d

dt

�
θ2

+ +

� ∣∣∣Λ1/2θ+

∣∣∣2 +ε

�
|∇θ+|2 .

The Ψ term produces important error terms:

�
θ+ [∂t+u ·∇+Λ−ε∆]Ψ =

�
θ+∂tΨ+

�
θ+u ·∇Ψ+

�
Λ1/2θ+Λ1/2Ψ+ε∇θ+ ·∇Ψ

=

�
θ+(∂tΨ+u ·∇Ψ)+

�
Λ1/2θ+Λ1/2Ψ+ε∇θ+ ·∇Ψ.

Since θ+ and θ− have disjoint support, the θ− term is nonnegative by Lemma 4.2.2 part

((a)):

�
θ+ [∂t+u ·∇+Λ]θ−=

(
1

2

)�
θ+∂tθ−+

�
θ+u ·∇θ−+

�
Λ1/2θ+Λ1/2θ−+ε

�
∇θ+∇θ−≤0.

Put together, we arrive at(
1

2

)
d

dt

�
θ2

+ +

� ∣∣∣Λ1/2θ+

∣∣∣2 +

�
Λ1/2θ+Λ1/2Ψ

≤−
�
θ+(∂tΨ+u ·∇Ψ)−ε

[�
∇θ+ ·∇Ψ+

�
|∇θ+|2

]
. (3.13)
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The ε term is bounded, using the fact that ∇θ+ =χ{θ+>0}∇θ+ and ε∈ [0,1], by

−ε
[�
|∇θ+|2 +

�
∇θ+ ·∇Ψ

]
≤ −ε

2

�
|∇θ+|2 +

ε

2

�
|∇Ψ|2χ2

{θ+>0}

≤ k
2

2

�
χ{θ+>0}.

(3.14)

At this point we break down the Λ1/2θ+Λ1/2Ψ term using the formula from Proposition 4.2.1.
�

Λ1/2θ+Λ1/2Ψ =

�
[θ+(x)−θ+(y)][Ψ(x)−Ψ(y)]K(x,y)+

�
θ+ΨB.

Since B≥0 and Ψ is non-negative by assumption, the B term is non-negative and so
�

Λ1/2θ+Λ1/2Ψ≥
�

[θ+(x)−θ+(y)][Ψ(x)−Ψ(y)]K(x,y). (3.15)

The remaining integral is symmetric in x and y, and the integrand is only nonzero if at least one

of θ+(x) and θ+(y) is nonzero. Hence∣∣∣∣� [θ+(x)−θ+(y)][Ψ(x)−Ψ(y)]K(x,y)

∣∣∣∣≤2

�
χ{θ+>0}(x)|θ+(x)−θ+(y)| · |Ψ(x)−Ψ(y)|K(x,y).

Now we can break up this integral using Young’s inequality, and since
�

[θ+(x)−θ+(y)]2K≤

‖θ+‖2H1/2 the inequality (3.15) becomes
�

Λ1/2θ+Λ1/2Ψ+
1

2

� ∣∣∣Λ1/2θ+

∣∣∣2≥−2

�
χ{θ+>0}(x)[Ψ(x)−Ψ(y)]2K(x,y). (3.16)

It remains to bound the quantity [Ψ(x)−Ψ(y)]2K(x,y). By Proposition 4.2.1, there is a

universal constant C such that

K(x,y)≤ C

|x−y|3
.

The cutoff Ψ is locally Lipschitz, and Hölder continuous with exponent 1/4, by assumption. There-

fore

[Ψ(x)−Ψ(y)]2K(x,y)≤Ck2|x−y|−1∧|x−y|−2.5.

Since 1<2<2.5, this quantity is integrable. Thus
�
χ{θ+>0}(x)

�
[Ψ(x)−Ψ(y)]2K(x,y)dydx≤Ck2

�
χ{θ+>0}dx.
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Combining this with (3.13), (3.16), and (3.14) we obtain (3.11).

We begin now the proof of (3.12). Since θ+∈L∞(0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω)), by inter-

polation we can further conclude θ+,u∈L4(0,T ;L4(Ω)). Therefore we can multiply (3.10) by ϕθ+

and integrate in space to obtain

0 =

�
ϕθ+ [∂t+u ·∇+Λ](θ+ +Ψ−θ−)

which decomposes into three terms, corresponding to θ+, Ψ, and θ−. After rearranging and inte-

grating by parts, this becomes

1

2

�
ϕ∂tθ

2
+ =

1

2

�
θ2

+u ·∇ϕ−
�
ϕθ+ (∂tΨ+u ·∇Ψ)−

�
ϕθ+Λθ+−

�
ϕθ+ΛΨ+ε

�
ϕθ+∆(θ+ +Ψ).

(3.17)

The ε term decomposes as

ε

�
ϕθ+∆(θ+ +Ψ) =−ε

�
ϕ∇θ+ ·∇(θ+ +Ψ)−ε

�
θ+∇ϕ ·∇(θ+ +Ψ)

=−ε
�
ϕ|∇θ+|2−ε

�
ϕ∇θ+ ·∇Ψ+

ε

2

�
θ2

+∆ϕ−ε
�
θ+∇ϕ ·∇Ψ

≤ ε
2

�
ϕ |∇Ψ|2χ{θ+>0}+

ε

2

�
θ2

+∆ϕ+
ε

2

�
θ2

+|∇ϕ|+
ε

2

�
χ{θ+>0}|∇ϕ||∇Ψ|2

≤k2‖ϕ‖C1

�
χ{θ+>0}+‖ϕ‖C2

�
θ2

+.

(3.18)

The
�
ϕθ+Λθ+ term is bounded by Lemma 4.2.2 part ((c))

−
�
ϕθ+Λθ+≤C ‖ϕ‖C1

(�
θ2

+ +

� ∣∣∣Λ1/2θ+

∣∣∣2) (3.19)

and the
�
ϕθ+ΛΨ term is bounded, just as for the

�
θ+ΛΨ term in the previous family of inequalities
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but with the addition of Lemma 4.2.2 part ((c)),

−
�
ϕθ+ΛΨ≤

�
[ϕ(x)θ+(x)−ϕ(y)θ+(y)][Ψ(x)−Ψ(y)]K1

≤2

�
χ{θ+>0}|ϕ(x)θ+(x)−ϕ(y)θ+(y)| · |Ψ(x)−Ψ(y)|K1

= 2

� (
‖ϕ‖−1/2

C1 |ϕ(x)θ+(x)−ϕ(y)θ+(y)|
)(
‖ϕ‖1/2

C1 χ{θ+>0}|Ψ(x)−Ψ(y)|
)
K1

≤‖ϕ‖−1
C1 ‖ϕθ+‖2H1/2 +‖ϕ‖C1

�
χ{θ+>0}[Ψ(x)−Ψ(y)]2K1

≤C ‖ϕ‖C1

(�
θ2

+ +

� ∣∣∣Λ1/2θ+

∣∣∣2)+Ck2‖ϕ‖C1

(�
R2

|y|−1∧|y|−2.5dy

)�
χ{θ+>0}.

(3.20)

From the inequality (3.11) already proven, we can obtain by a standard argument

� T

S

� ∣∣∣Λ1/2θ+

∣∣∣2≤ 1

S

� T

0

�
θ2

+ +k2

� T

0

�
χ{θ+>0}+

� T

0

∣∣∣∣� θ+ (∂tΨ+u ·∇Ψ)

∣∣∣∣. (3.21)

By combining (3.17) with (3.18), (3.19), and (3.20) we obtain

1

2

�
ϕ∂tθ

2
+ =

1

2

�
θ2

+u ·∇ϕ−
�
ϕθ+ (∂tΨ+u ·∇Ψ)+C ‖ϕ‖C2

(�
θ2

+ +k2

�
χ{θ+>0}+

� ∣∣∣Λ1/2θ+

∣∣∣2).
Integrating this inequality from S to T and applying (3.21), we obtain (3.12).

We will construct global-in-time solutions to (1.2) (equivalently (3.10) with ε= 0) for any

initial value θ0∈L2 which verify these energy inequalities (3.11) and (3.12) with the same universal

constant C∗ at all scales, but which may not be in L2(H1
0 ).

Definition 4.3.1. A pair θ,u is called a suitable solution to (1.2) on [0,∞)×Ω if Ω⊆R2 open

and bounded, θ,u∈L∞(R+;L2(Ω)), θ∈L2(R+;H1/2(Ω)), u∈L3(R+;L3(Ω)) and θ,u is a suitable

solution on [0,T ]×Ω for all 0<T <∞.

A pair θ,u is called a suitable solution to (1.2) on a space time domain [0,T ]×Ω if T <∞,

Ω⊆R2 open and bounded, θ,u∈L∞(0,T ;L2(Ω)), θ∈L2(0,T ;H1/2(Ω)), u∈L3(0,T ;L3(Ω)) and
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1. θ, u solve (1.2) in the sense of distributions on [0,T ]×Ω,

2. θ, u satisfy (3.11) and (3.12) at all scales with the same universal constant C∗ defined in

Proposition 4.3.1. More specifically, the following holds:

Let λ∈R and µ∈ (0,1) be given and let Ψ∈C∞([0,∞)×R2) be any smooth non-negative

function satisfying ‖∇Ψ‖L∞([0,∞)×R2)≤k and sup[0,∞) [Ψ(t,·)]1/4;R2≤k for some constant k.

Define Ω̃ :={x∈R2 :µx∈Ω}, T̃ :=µ−1T , θ̃+(t,x) := (λθ(µt,µx)−Ψ(t,x))+, and ũ(t,x) :=

u(µt,µx). Let S∈ (0,T̃ ) and let ϕ∈C∞c (S,T ;C∞(Ω̃)) be non-negative.

Then θ̃+ and ũ and ϕ and Ψ satisfy (3.11) and (3.12) on Ω̃ with times 0, S and T̃ , with the

same universal constant C∗.

The rest of this section is dedicated to the proof of the following proposition:

Proposition 4.3.2 (Existence of global suitable solutions). There exists a universal constant C>0

such that the following holds:

Given an open, bounded domain Ω⊆R2 with C2,β boundary, β∈ (0,1), and initial data

θ0∈L2(Ω), there exists a global-in-time weak solution θ to (1.1) such that, for any 0<T <∞, θ

and u :=∇⊥Λ−1θ are a suitable solution to (1.2) on [0,T ]×Ω.

Moreover, θ∈L∞([0,∞);L2(Ω))∩L2([0,∞);H1/2(Ω)), and θ(t,·)→θ0(·) weakly in L2(Ω) as

t→0, and for any S>0

‖θ‖L∞([S,∞)×Ω)≤
C

S
‖θ0‖L2(Ω) .

To construct global suitable solutions, we will use the vanishing viscosity method. First,

we must prove existence of global weak solutions to (3.9).

Lemma 4.3.3 (Existence for viscous equation). There exists a universal constant C such that the

following holds:
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Given an open, bounded domain Ω⊆R2, initial data θ0∈L2(Ω) and a constant ε>0, there

exists a global-in-time weak solution θ to (3.9).

In particular, θ∈C0([0,∞);L2(Ω))∩L2([0,∞);H1
0 (Ω)), u∈C0([0,∞);L2(Ω))∩L4([0,∞)×

Ω), and ∂t∈L2([0,∞);H−1(Ω)), and θ(t,·)→θ0(·) weakly in L2(Ω) as t→0, and for any S>0

‖θ‖L∞([S,∞)×Ω)≤
C

S
‖θ0‖L2(Ω) .

The proof of existence is by Galerkin’s method, while the L∞ bound uses a De Giorgi

argument.

Proof. Recall that ηj are the eigenfunctions of −∆D. Let N be an integer parameter, and WN :=

span(η0,. ..,ηN ), which consists only of smooth functions which vanish on ∂Ω. We seek first a

solution θN ∈WN to the weak equation

�
ϕ∂tθN +

�
ϕ∇⊥Λ−1θN ·∇θN +

�
ϕΛθN +ε

�
∇θN∇ϕ= 0, ∀t∈R≥0,ϕ∈WN . (3.22)

If we write

θN (t,x) :=

N∑
i=0

αi,N (t)ηi(x)

and choose ϕ=ηi as a test function, then θN solves (3.22) if and only if, for all i≤N ,

α′i,N (t)+
N∑
j=0

N∑
k=0

αj,N (t)αk,N (t)Bijk+λ
1/2
i αi,N (t)+ελiαi,N (t) = 0

with

Bijk =λ
−1/2
j

�
ηi∇⊥ηj ·∇ηk

a constant tensor.

By Peano’s existence theorem for ODEs, solutions to this system exist on some interval [0,T ]

where T depends on Ω and N and (since WN is finite dimensional and all norms are equivalent)

the L2 norm of the initial data.
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Since θN ∈WN we can take θN as a test function and obtain, for any solution θN to (3.22),

d

dt

�
θ2
N +

� ∣∣∣Λ1/2θN

∣∣∣2 +ε

�
|∇θN |2 = 0.

Therefore in particular ‖θN‖L2(Ω) is non-increasing in time and we conclude that θN exists for all

time. Moreover, θN is uniformly bounded in L∞(L2(Ω)) and L2(H1
0 (Ω)).

To take a limit in N , we need uniform regularity in time. From (3.22) we can bound

� ∞
0

�
∂tθNϕ≤‖θN‖2L4(L4)‖ϕ‖L2(H1

0 ) +‖θN‖L2(L2)‖ϕ‖L2(H1
0 ) +‖θN‖L2(H1

0 )‖ϕ‖L2(H1
0 ) .

Note that θN is uniformly bounded in L4(L4) by interpolation and L2(L2) by Poincaré’s inequality.

Therefore
�
ϕ∂tθN ≤C ‖ϕ‖L2(H1

0 ) for all ϕ∈L2(WN ) for a constant C independent of N . Since

∂tθN ∈WN , this is sufficient to show that ‖∂tθN‖L2(H−1) is uniformly bounded.

By Aubin-Lions, we conclude that θN is a compact sequence in L2([0,∞)×Ω) and so it has

an L2 limit θ. This limit θ is in L∞(L2(Ω)) and L2(H1
0 (Ω)) and ∂tθ∈L2(H−1(Ω)).

We must prove that θ is a weak solution to (3.9). Let ϕ∈C∞c (WM ) for some M . For

N ≥M ,

−
�

θN∂tϕ−
�

θN∇⊥Λ−1θN ·∇ϕ+

�
θNΛϕ−ε

�
θN∆ϕ= 0.

This expression is continuous for θN ∈L2(L2), so by taking N→∞ we obtain

−
�
θ∂tϕ−

�
θ∇⊥Λ−1θ ·∇ϕ+

�
θΛϕ+ε

�
∇θ ·∇ϕ= 0

for any ϕ∈C∞c (WM ) for any M ∈N. By density, θ solves (3.9) in the sense of distributions.

Since ∂tθN is uniformly bounded in L2(H−1), we know θN (t,·)→θ0 weakly in L2 uniformly

in N and so the same holds for θ.

Lastly, for any constant a≥0, the function (θ−a)+ satisfies

d

dt

�
1

2
(θ−a)2

+ +

� ∣∣∣Λ1/2(θ−a)+

∣∣∣2 =
−1

2

�
u ·∇(θ−a)2

+−
�
aΛ(θ−a)+−ε

�
|∇(θ−a)+|2
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=−
�
a(θ−a)+B1−ε

�
|∇(θ−a)+|2

≤0.

This inequality is scaling-invariant, so the same holds for λθ(µt,µx) for any λ,µ>0.

By the standard De Giorgi argument (see Lemma 0.3.1 in the Appendix for details), there

exists a universal constant δ such that
� 2

0

�
(λθ(µt,µx)2

+dxdt≤ δ implies θ≤λ−1 on [µ1,µ2]. In fact,

by comparison with a constant super-solution, θ≤λ−1 on [µ,∞). Taking λ=
√

δ
2µ−2‖θ0‖2L2(Ω)

, we

find θ(t, ·)≤Ct−1‖θ0‖L2(Ω) for a universal constant C. Applying the same argument to −θ gives

the L∞ bound.

Now that we have global existence of solutions to (3.9) for ε>0, we can prove Proposi-

tion 4.3.2 by taking a limit as ε→0.

Proof of Proposition 4.3.2. For any parameter ε>0, define θε∈L2(H1
0 ) the weak solution to (3.9)

constructed in Lemma 4.3.3. The θε are uniformly bounded in L∞(L2) and L2(H1/2) by the

standard energy argument, so by interpolation they are also uniformly bounded in L4(L8/3). Recall

that θε are uniformly bounded in L∞(L∞) after any positive time.

For any smooth ϕ, we have

� ∞
0

�
∂tθεϕ≤‖θε‖2L4(L8/3)‖ϕ‖L2(W 1,4) +‖θε‖L2(H1/2)‖ϕ‖L2(H1/2) +ε‖θε‖L2(H1/2)‖ϕ‖L2(H3/2) .

Therefore ∂tθε is uniformly bounded in L2(H−3/2). By Aubin-Lions, the sequence θε, up to a

subsequence, has a strong limit in L2(L2). Call this limit θ.

Since ∂tθε is uniformly bounded and θ(t,·)→θ0 weakly in L2, the same holds for θ.

Define uε :=∇⊥Λ−1θε, and by continuity of the Riesz transform we have uε→u in

L2([0,∞)×Ω) where u :=∇⊥Λ−1θ.
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It remains only to prove that θ and u satisfy the energy inequalities (3.11) and (3.12).

Recall that θε and uε satisfy (3.11) and (3.12) by Proposition 4.3.1, so we need only show that

these inequalities hold also in the limit. The details of this calculation are given below.

Let 0<T <∞ be a constant, and let λ, µ, Ψ, S and ϕ be as in the definition of suitable

solutions. Define

θ̃ε(t,x) :=λθε(µt,µx), θ̃(t,x) =λθ(µt,µx),

ũε(t,x) :=uε(µt,µx), ũ(t,x) :=u(µt,µx),

θ̃ε,+(t,x) :=
(
θ̃ε(t,x)−Ψ(t,x)

)
+
, θ̃+(t,x) :=

(
θ̃(t,x)−Ψ(t,x)

)
+
,

and let Ω̃ :={x∈R2 :µx∈Ω}, T̃ :=µ−1T , ε̃ :=µ−1ε.

Note that θ̃ε and ũε are weak solutions to (3.10) with viscosity ε̃. Therefore, if ε≤µ then

θ̃ε,+ and ũε satisfy (3.11). The terms
�
θ̃ε,+(∂tΨ+ ũε ·∇Ψ) and

�
χ{θ̃ε≥0} are continuous under L2

limits, and the quantities d
dt

�
θ̃2
ε,+ and

� ∣∣∣Λ1/2θ̃ε,+

∣∣∣2 are lower-semicontinuous under L2 limits, so

we conclude that θ̃+ and ũ satisfy (3.11).

Similarly, θ̃ε,+ and ũε satisfy (3.12) if ε≤µ. On [S,T̃ ] we have a uniform L∞(L∞) bound

for θ̃ε. Therefore θ̃ε,+ converges in L3(L3), and so
� T̃
S

�
θ̃2
ε,+ũε ·∇ϕ is conserved in the limit ε→0.

The remaining terms in (3.12) are L2(L2) continuous, so θ̃+ and ũ satisfy (3.12).

4.4 Littlewood-Paley Theory

In this section we will prove that, because θ is uniformly bounded in L∞, the velocity

u=∇⊥Λ−1θ is calibrated (see Definition 4.1.1). The proof will utilize a Littlewood-Paley theory

adapted to a bounded set Ω.

Because the Littlewood-Paley theory depends in an essential way on the domain Ω, any

results proven in this way will also be domain-dependent. Therefore, in the proof of Hölder conti-

nuity in Section 4.7, we will apply the following Proposition only to the unscaled function θ on the
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unscaled domain Ω. As we zoom in, the velocity will remain calibrated, so there will be no further

need for this result.

Proposition 4.4.1. Let Ω⊆R2 be a bounded set with C2,β boundary for some β∈ (0,1). Let

θ∈L∞(Ω). Then there exists an integer j0 = j0(Ω) and a sequence of divergence-free functions

(uj)j≥j0 calibrated for some constant κ=κ(Ω,‖θ‖∞) with center 0 (see Definition 4.1.1) such that

∇⊥Λ−1θ=
∑
j≥j0

uj

with the infinite sum converging in the sense of L2.

Before we can prove this, we define the Littlewood-Paley projections and prove some of

their properties:

Let φ be a Schwartz function on R which is suited to Littlewood-Paley decomposition.

Specifically, φ is non-negative, supported on [1/2,2], and has the property that

∑
j∈Z

φ(2jξ) = 1 ∀ξ 6= 0.

For any f =
∑
fkηk in L2(Ω), we define the Littlewood-Paley projections

Pjf :=
∑
k

φ(2jλ
1/2
k )fkηk.

Note that Pj depends strongly on the domain Ω.

Recall that −∆D has some smallest eigenvalue λ0 (depending on Ω) so if we define j0 =

log2(λ0)−1 then Pj = 0 for all j <j0.

The Bernstein Inequalities adapted for a bounded domain are proved in [IMT17]. We restate

their result here:

Lemma 4.4.2 (Bernstein Inequalities). Let 1≤p≤∞ and Ω⊂R2 a bounded open set with C2,β

boundary for some β∈ (0,1), and let (Pj)j∈Z be the Littlewood-Paley decomposition defined above.
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There exists a constant C depending on p and Ω such that the following hold for any f ∈

Lp(Ω):

For any α∈R and j∈Z,

‖ΛαPjf‖Lp(Ω)≤C2αj ‖f‖Lp(Ω) .

For any α∈R and j≥ j0

‖∇ΛαPjf‖Lp(Ω)≤C2(1+α)j ‖f‖Lp(Ω) .

Proof. The first claim is Lemma 3.5 in [IMT17]. It is also an immediate corollary of [IMT18]

Theorem 1.1.

The second claim is similar to Lemma 3.6 in [IMT17]. A hypothesis of Lemma 3.6 is that

∥∥∇e−t∆D
∥∥
L∞→L∞≤

C√
t

0<t≤1

(a property of Ω). The result of Lemma 3.6 only covers the case j >0.

In [FMP04] it is proved that that if Ω is C2,β then

∥∥∇e−t∆D
∥∥
L∞→L∞≤

C√
t

0<t≤T

which, by taking some T depending on j0, is enough to prove the desired result for j≥ j0 by a

trivial modification of the proof in [IMT17].

The following lemma is a simple but crucial result which can be thought of as describing the

commutator of the gradient operator and the projection operators. In the case of R2, the Littlewood-

Paley projections commute with the gradient so Pi∇Pj = 0 unless |i−j|≤1. On a bounded domain,

this is not the case; the gradient does not maintain localization in frequency-space. However, the

following lemma formalizes the observation that Pi∇Pj≈0 when i<<j.
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Lemma 4.4.3. Let 1≤p≤∞. There exists a constant C depending on p and Ω such that or any

function f ∈Lp(Ω),

‖Pi∇Pjf‖p≤Cmin(2j ,2i)‖f‖p .

Proof. Let q be the Hölder conjugate of p and g be an Lq function. Then since Pi is self-adjoint

�
gPi∇Pjf =

�
(Pig)∇Pjf ≤C2j ‖g‖q ‖f‖p

by Lemma 4.4.2.

Further integrating by parts,

�
gPi∇Pjf =−

�
(∇Pig)Pjf ≤C2i‖g‖q ‖f‖p .

This also follows from Lemma 4.4.2.

The result follows.

We are now ready to prove Proposition 4.4.1.

Proof of 4.4.1. For each integer j≥ j0, we define uj to be the π
2 -rotation of the Riesz transform of

the jth Littlewood-Paley projection of θ:

uj :=∇⊥Λ−1Pjθ.

Qualitatively, we know that θ∈L2 and hence uj ∈L2. In fact, u=
∑
uj in the L2 sense.

We must bound uj , Λ−1/4uj , and ∇uj all in L∞(Ω).

By straightforward application of Lemma 4.4.2,

‖uj‖∞≤C ‖θ‖∞ . (4.23)
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Since uj ∈L2, we know that

Λ−1/4uj =
∑
i∈Z

PiΛ
−1/4uj .

Define P̄k :=Pk−1 +Pk+Pk+1. Then P̄kPk =Pk, and since the projections Pk are spectral operators,

they commute with Λs and each other. We therefore rewrite(
PiΛ

−1/4uj

)⊥
=
(

Λ−1/4P̄i

)
(Pi∇Pj)

(
Λ−1P̄j

)
θ.

On the right hand side we have three bounded linear operators applied sequentially to θ∈L∞.

The first operator has norm C2−j(21 +20 +2−1) by Lemma 4.4.2. The second operator has

norm Cmin(2j ,2i) by Lemma 4.4.3. The third operator has norm C2−i/4(21/4 +20 +2−1/4) by

Lemma 4.4.2. Therefore ∥∥∥PiΛ−1/4uj

∥∥∥
∞
≤C2−i/4 min(2j ,2i)2−j ‖θ‖∞ .

Summing these bounds on the projections of Λ−1/4uj , and noting that∑
i∈Z

2−j2−i/4 min(2j ,2i) = 2−j
∑
i≤j

2i3/4 +
∑
i>j

2−i/4≤C2−j/4,

we obtain ∥∥∥Λ−1/4uj

∥∥∥
∞
≤C2−j/4‖θ‖∞ . (4.24)

Lastly, we must show that ∇uj is in L∞. Equivalently, we will show that Λ−1Pjθ is C1,1.

The method of proof is Schauder theory.

For convenience, define

F := Λ−1Pjθ.

Notice that F is a linear combination of Dirichlet eigenfunctions, so in particular it is smooth and

vanishes at the boundary. Therefore

−∆F = Λ2F = ΛPjθ.
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We apply the standard Schauder estimate from Gilbarg and Trudinger [GT01] Theorem

6.6 to bound some C2,α semi-norm of F by the L∞ norm of F and the Cα norm of its Laplacian.

By assumption there exists β∈ (0,1) such that Ω is C2,β, and for this β we have by the Schauder

estimate [
D2F

]
β
≤C

∥∥Λ−1Pjθ
∥∥
∞+C ‖ΛPjθ‖∞+C [ΛPjθ]β . (4.25)

By Lemma 4.4.2,

∥∥Λ−1Pjθ
∥∥
∞≤C2−j ‖θ‖∞ ,

‖ΛPjθ‖∞≤C2j ‖θ‖∞ ,

‖∇ΛPjθ‖∞≤C22j ‖θ‖∞ .

By Lemma 0.3.2 (see Appendix 0.3) we can interpolate these last two bounds to obtain

[ΛPjθ]β≤C2j(1+β)‖θ‖∞ .

Plugging these estimates into (4.25) yields

[
D2F

]
β
≤C

(
2−j +2j +2j(1+β)

)
‖θ‖∞ .

Recall that without loss of generality we can assume j≥ j0. Therefore up to a constant

depending on j0, the term 2j(1+β) bounds 2j and 2−j so we can write

[
D2F

]
β
≤C2j(1+β)‖θ‖∞ .

Using this estimate and the fact that ‖∇F‖∞=
∥∥∇Λ−1Pjθ

∥∥
∞≤C ‖θ‖∞ (see (4.23)), we

can interpolate to obtain an L∞ bound on D2F . Lemma 0.3.3 states that since F ∈C2,β and Ω is

sufficiently regular, there exist a constant `= `(Ω) such that for any δ∈ [0,`] we have

∥∥D2F
∥∥
∞≤C

(
δ−1‖∇F‖∞+δβ

[
D2F

]
β

)
≤C

(
δ−1 +δβ2j(1+β)

)
‖θ‖∞ .
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Set δ= 2−j(2j0`)≤ `. Then

∥∥D2F
∥∥
∞≤C

(
2j +2−jβ2j(1+β)

)
‖θ‖∞=C(Ω)2j ‖θ‖∞ .

Since D2F =∇uj , this estimate together with (4.23) and (4.24) complete the proof.

4.5 De Giorgi Estimates

Our goal in this section is to prove De Giorgi’s first and second lemmas for suitable solutions

to (1.2) with u uniformly calibrated. The De Giorgi lemmas will eventually be applied iteratively

to various rescalings of the solution θ, so the following results must be independent of the size of

the domain Ω. Any properties we do assume for the domain, such as the regularity of the boundary,

must be scaling invariant.

Rather than working directly with the calibrated sequence, we will decompose u into just

two terms, a low-pass term and a high-pass term. The construction is described in the following

lemma. Note that we make no assumption on the center of calibration, which means this result is

indendent of scale.

Lemma 4.5.1. Let

u=
∞∑
j0

uj

with the sum converging in the L2 sense. Assume that (uj)j∈Z is a calibrated sequence with constant

κ and some center, and that div(uj) = 0 for all j.

Then

u=u`+uh

with

‖∇u`‖L∞([−T,0]×Ω)≤2κ,
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∥∥∥Λ−1/4uh

∥∥∥
L∞([−T,0]×Ω)

≤6κ.

and div(u`) = div(uh) = 0.

We call u` the low-pass term, and uh the high-pass term.

Proof. Let N be the center to which (uj)j∈Z is calibrated.

We define

uh=
∞∑

j=N+1

uj

and bound ∥∥∥Λ−1/4uh

∥∥∥
∞
≤
∑
j>N

∥∥∥Λ−1/4uj

∥∥∥
∞
≤κ 2−1/4

1−2−1/4
.

We define

u`=

N∑
j=j0

uj

and bound

‖∇u`‖∞≤
∑
j≤N
‖∇uj‖∞≤κ

1

1−2−1
.

In order to prove the De Giorgi lemmas, we must derive an energy inequality for the function

(θ−Ψ)+ where Ψ(t,x) grows sublinearly in |x|. Considering the suitability condition (3.11), we see

that control can only be gained if the quantity ∂tΨ+u ·∇Ψ is bounded. This requires a barrier

function which is moving in space along a Lagrangian path Γ` of u`.

To that end, we shall consider, for any domain Ω and time T , functions θ : [−T,0]×Ω→R,

L2 functions u` and uh : [−T,0]×Ω→R2, and a Lipschitz path Γ` : [−T,0]→Ω which satisfy
θ,(u`+uh) suitable solution to (1.2) on [−T,0]×Ω,

div(u`) = div(uh) = 0 on [−T,0]×Ω,

Γ̇`(t) =u`(t,Γ`(t)) on [−T,0].

(5.26)
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Because Γ` depends on u` which depends on N , the path Γ` will change significantly be-

tween scales. In particular, though Γ`∈Lip([−T,0];R2), we cannot assume any uniform bound on

it Lipschitz constant. We can bound, however, the difference between Γ` at consecutive scales.

Therefore we must consider in the following lemmas an arbitrary Lipschitz path Γ, which was

produced at a previous scale, and denote γ := Γ`−Γ which will be uniformly bounded.

Now we prove an energy inequality for solutions to (5.26). Though this lemma is indepen-

dent of the size of the domain, it depends on the geometry of the domain in a way encoded by the

constant Cdmn . We will later show that this constraint on Ω is scaling invariant.

Lemma 4.5.2 (Energy inequality). Let κ, Cdmn , Cpth , T , and R be positive constants, and let

ψ :R2→R be a function such that ‖∇ψ‖∞,
∥∥D2ψ

∥∥
∞, and supt [ψ(t,·)]1/4 are all finite. Then there

exists a constant C>0 such that the following holds:

Let Ω⊆R2 be a bounded open set with C2,β boundary for some β∈ (0,1), and let Γ : [−T,0]→

R2 be Lipschitz. Assume that on Ω the functions K1/4 and K1 (defined in (2.3)) satisfy the relation

K1/4(x,y)≤Cdmn |x−y|3/4K1(x,y) ∀x 6=y∈Ω.

Let θ, u`, uh, and Γ` solve (5.26) on [−T,0]×Ω, and satisfy
∥∥Λ−1/4uh

∥∥
L∞([−T,0]×Ω)

≤6κ

and ‖∇u`‖L∞([−T,0]×Ω)≤2κ. Denote γ := Γ`−Γ and assume ‖γ̇‖L∞([−T,0])≤Cpth and γ(0) = 0.

Consider the functions

θ+ := (θ−ψ(·−Γ))+ , θ− := (ψ(·−Γ)−θ)+ .

If θ+ is supported on x∈Ω∩BR(Γ(t)) then θ+ and θ− satisfy the inequality

d

dt

�
θ2

+ +

� ∣∣∣Λ1/2θ+

∣∣∣2−� Λ1/2θ+Λ1/2θ−≤C
(�

χ{θ≥ψ}+

�
θ+ +

�
θ2

+

)
.

Proof. Define

Ψ(t,x) :=ψ(x−Γ(t))
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so that

∂tΨ+(u`+uh) ·∇Ψ = (u`− Γ̇+uh) ·∇ψ(x−Γ(t)).

Applying (3.11) we arrive at

d

dt

�
θ2

+ +

� ∣∣∣Λ1/2θ+

∣∣∣2≤C(� χ{θ≥ψ}+

∣∣∣∣� θ+(u`− Γ̇(t)+uh) ·∇ψ(x−Γ(t))

∣∣∣∣). (5.27)

Consider first the high-pass term
�
θ+uh ·∇ψ. This term is equal to

�
Λ1/4(θ+∇Ψ)Λ−1/4uh,

as can be calculated by first decomposing θ+∇Ψ and uh as sums of eigenfunctions. The operations

on these infinite sums are justified because θ+∇Ψ, Λ1/4(θ+∇Ψ), uh, and Λ−1/4uh are all in L2.

Therefore we can apply Lemma 4.2.2 parts ((e)) and ((c)) to obtain

�
Λ−1/4uhΛ1/4(θ+∇ψ)≤C

∥∥∥Λ−1/4uh

∥∥∥
∞

(
‖∇ψ‖∞+

∥∥D2ψ
∥∥
∞
)
|supp(θ+)|1/2 (‖θ+‖L2 +‖θ+‖H1/2).

We apply Young’s inequality to find that for any constant ε>0 there exists C=C(ψ,κ,Cdmn ,ε)

such that �
uhθ+∇ψ(x−Γ(t))dx≤C

(
|supp(θ+)|+

�
θ2

+

)
+ε

� ∣∣∣Λ1/2θ+

∣∣∣2 . (5.28)

Consider now the low-pass term. By (5.26)

u`(t,x)− Γ̇(t) =u`(t,x)−u`(t,Γ+γ)+ γ̇. (5.29)

Since u` is has derivative bounded by 2κ,

|u`(t,x)−u`(t,Γ+γ)|≤ |u`(t,x)−u`(t,Γ)|+ |u`(t,Γ)−u`(t,Γ+γ)|

≤2κ|x−Γ|+2κ|γ|.

By assumption |γ̇|≤Cpth and γ(0) = 0, and so for t∈ [−T,0] we have |γ(t)|≤TCpth .

Plugging these bounds into (5.29) we obtain∣∣∣u`(t,x)− Γ̇(t)
∣∣∣≤2κ|x−Γ|+2κTCpth +Cpth .
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Now we can bound the low pass term

�
(u`− Γ̇)θ+∇ψ(x−Γ)≤ (2κT +1)Cpth ‖∇ψ‖∞

�
θ+dx+‖∇ψ‖∞2κ

�
|x−Γ|θ+dx.

By assumption, |x−Γ|θ+≤Rθ+, so from this, (5.28), and (5.27) the result follows.

This energy inequality is sufficient to prove the De Giorgi Lemmas.

The first lemma is a local version of the L2 to L∞ regularization, stating that solutions

with small L2 norm in a region will have small L∞ norm in a smaller region.

Proposition 4.5.3 (First De Giorgi Lemma). Let κ, Cdmn , and Cpth , be positive constants. Then

there exists a constant δ0>0 such that the following holds:

Let Ω⊆R2 be a bounded open set with C2,β boundary for some β∈ (0,1), and let Γ : [−2,0]→

R2 be Lipschitz. Assume that on Ω the functions K1/4 and K1 (defined in (2.3)) satisfy the relation

K1/4(x,y)≤Cdmn |x−y|3/4K1(x,y) ∀x 6=y∈Ω.

Let θ, u`, uh, and Γ` solve (5.26) on [−2,0]×Ω, and satisfy
∥∥Λ−1/4uh

∥∥
L∞([−2,0]×Ω)

≤6κ

and ‖∇u`‖L∞([−2,0]×Ω)≤2κ. Denote γ := Γ`−Γ and assume ‖γ̇‖L∞([−2,0])≤Cpth and γ(0) = 0.

If

θ(t,x)≤2+
(
|x−Γ(t)|1/4−21/4

)
+

∀t∈ [−2,0],x∈Ω\B2(Γ(t))

and � 0

−2

�
Ω∩B2(Γ(t))

(θ)2
+dxdt≤ δ0

then

θ(t,x)≤1 ∀t∈ [−1,0],x∈Ω∩B1(Γ(t)).

Proof. Let ψ be such that ψ= 0 for |x|≤1 and ψ(x) = 2+
(
|x|1/4−21/4

)
+

for |x|>2, and let ∇ψ

and D2ψ be bounded.
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For any constant a>0, we can apply Lemma 4.5.2 to the function

θa := (θ(t,x)−ψ(x−Γ(t))−a)+

and obtain
d

dt

�
θ2
a+

� ∣∣∣Λ1/2θa

∣∣∣2≤C(� χ{θ≥ψ+a}+

�
θa+

�
θ2
a

)
.

Thus θ−ψ(x−Γ) satisfies the assumptions of Lemma 0.3.1. There exists a constant, which

we call δ0, so that if � 0

−2

�
(θ(t,x)−ψ(x−Γ(t)))+ dxdt≤ δ0

then

θ(t,x)≤1+ψ(x−Γ(t)) ∀t∈ [−1,0],x∈Ω.

By construction of ψ, our result follows immediately.

Next, we will prove De Giorgi’s second lemma, a quantitative analog of the isoperimetric

inequality.

Proposition 4.5.4 (Second De Giorgi Lemma). Let κ, Cdmn , Cpth , and β∈ (0,1) be positive con-

stants. Then there exists a constant µ>0 such that the following holds:

Let Ω⊆R2 be a bounded open set with C2,β boundary for some β∈ (0,1) , and let Γ : [−5,0]→

R2 be Lipschitz. Assume that on Ω the functions K1/4 and K1 (defined in (2.3)) satisfy the relation

K1/4(x,y)≤Cdmn |x−y|3/4K1(x,y) ∀x 6=y∈Ω.

Let θ, u`, uh, and Γ` solve (5.26) on [−5,0]×Ω, and satisfy
∥∥Λ−1/4uh

∥∥
L∞([−5,0]×Ω)

≤6κ

and ‖∇u`‖L∞([−5,0]×Ω)≤2κ. Denote γ := Γ`−Γ and assume ‖γ̇‖L∞([−5,0])≤Cpth and γ(0) = 0.
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Suppose that for t∈ [−5,0] and any x∈Ω,

θ(t,x)≤2+
(
|x−Γ(t)|1/4−21/4

)
+
.

Then the three conditions

|{θ≥1}∩ [−2,0]×B2(Γ)|≥ δ0/4, (5.30)

|{0<θ<1}∩ [−4,0]×B4(Γ)|≤µ,

|{θ≤0}∩ [−4,0]×B4(Γ)|≥2|B4| (5.31)

cannot simultaneously be met.

Here δ0 is the constant from Proposition 4.5.3, which of course depends on κ, Cpth , and

Cdmn .

Proof. Suppose that the proposition is false. Then there must exist, for each n∈N, a bounded open

set Ωn with C2,βn boundary for βn∈ (0,1), a Lipschitz path Γn : [−5,0]→R2, a function θn : [−5,0]×

Ωn→R, functions un` ,u
n
h : [−5,0]×Ωn→R2, and paths Γn` = Γn+γn : [−5,0]→R2 which solve (5.26)

and satisfy all of the the assumptions of our proposition (with the same constants κ, Cpth , and

Cdmn), except that

|{0<θn<1}∩ [−4,0]×B4(Γn)|≤1/n. (5.32)

Let ψ :R2→R be a smooth function which vanishes on B2 such that ψ(x) = 2+(
|x|1/4−21/4

)
+

for |x|>3.

Fix n and define

θ+ := (θn−ψ(x−Γn))+ .

Then θ+ is supported on Ω∩B3(Γn) and is less than 2+31/4−21/4≤3 everywhere.
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Our goal is to bound the derivatives of θ2
+ so that we can apply a compactness argument to

the sequence θn. (It is the calculations in Step 2 below in which it becomes necessary to consider

θ2
+ instead of θ+.)

The remainder of the proof is divided in three steps. First we show that the sequence of θ+

is compact in space, then we show that it is compact in time, and finally we show that the limiting

function implies a contradiction.

Step 1: Compactness in space

Apply the energy inequality Lemma 4.5.2 to θ and ψ(x−Γn), and find that for some C

independent of n
d

dt

�
θ2

+≤C. (5.33)

Moreover, by integrating Lemma 4.5.2 in time from −5 to s∈ [−4,0] and taking a supremum over

s, we find

sup
[−4,0]

�
θ2

+ +

� 0

−4

� ∣∣∣Λ1/2θ+

∣∣∣2 +

� 0

−4

�
Λ1/2θ+Λ1/2θ−≤C. (5.34)

This proves in particular that θ+∈L2(−4,0;H1/2(Ω)) is uniformly bounded.

Furthermore,
∥∥θ2

+

∥∥
L2(−4,0;H1/2(Ωn))

is uniformly bounded because

∥∥∥Λ1/2(θ2
+)
∥∥∥2

2
=

�
[θ+(x)2−θ+(y)2]2K+

�
θ4

+B

≤2

�
θ+(x)2[θ+(x)−θ+(y)]2K+2

�
θ+(y)2[θ+(x)−θ+(y)]2K+‖θ+‖2∞

�
θ2

+B

≤C ‖θ+‖2∞‖θ+‖2H1/2 .

By Proposition 4.2.3, for E the extension-by-zero operator from L2(Ωn) to L2(R2),

∥∥Eθ2
+

∥∥
L2(−4,0;H1/2(R2))

≤C (5.35)

where C does not depend on n.
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Step 2: Compactness in time

Let ϕ∈C∞0 ([−4,0];C∞(Ω)) a test function. Since each θn and unh+un` is a suitable solution

to (1.2) on [−5,0]×Ωn by assumption, we can apply the inequality (3.12) to find that, for some

constant C independent of n and of ϕ, on [−4,0]×Ωn

�
ϕ∂tθ

2
+ +

�
ϕΓ̇n ·∇θ2

+≤
�

θ2
+

(
un` − Γ̇n+unh

)
·∇ϕ−2

�
ϕθ+

(
un` − Γ̇n+unh

)
·∇ψ

+C ‖ϕ‖C0(C2)

(
1+

� 0

−5

∣∣∣∣� θ+

(
un` − Γ̇n+unh

)
·∇ψ

∣∣∣∣). (5.36)

For the low pass terms, as in the proof of Lemma 4.5.2, we have
∣∣∣un` (t,x)− Γ̇n(t)

∣∣∣≤
(1+8κ)Cpth +6κ for t∈ [−4,0] and x∈ supp(θ+)⊆B3(Γn(t)). Thus for t∈ [−4,0] we have for C

independent of n and ϕ � (
un` − Γ̇n

)
·
(
θ2

+∇ϕ
)
≤C ‖∇ϕ‖L∞(Ω) ,� (

un` − Γ̇n

)
·(θ+ϕ∇ψ)≤C ‖ϕ‖L∞(Ω) ,� (

un` − Γ̇n

)
·(θ+∇ψ)≤C.

(5.37)

For the high pass terms, we have unh uniformly bounded in Ẇ−1/4,∞. From step 1, we know

θ2
+ is uniformly bounded in L2(−4,0;H1/2) so, by Lemma 4.2.2 parts (e) and (c), there is a constant

C independent of n and ϕ such that
�

unh ·(θ2
+∇ϕ)≤C

(
‖∇ϕ‖C0(−4,0;L∞(Ω)) +‖ϕ‖C0(−4,0;C2(Ω))

)
,

�
unh ·(θ+ϕ∇ψ)≤C

(
‖ϕ‖C0(−4,0;L∞(Ω)) +‖ϕ‖C0(−4,0;C1(Ω))

)
,

� 0

−5

∣∣∣∣� unh ·(θ+∇ψ)

∣∣∣∣≤C.
(5.38)

Plugging these six bounds into (5.36), for a constant C independent of n and ϕ, for any ϕ

nonnegative we have

� 0

−4

�
Ωn

(
∂tθ

2
+ +Γ̇n ·∇θ2

+

)
ϕdxdt≤C ‖ϕ‖C0(−4,0;C2(Ωn)) . (5.39)
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Note that

� 0

−4

�
Ωn

(
∂tθ

2
+ +Γ̇n ·∇θ2

+

)
dxdt=θ+(0,Γn(0))2−θ+(−4,Γn(−4))2

is uniformly bounded above and below. Therefore, by decomposing ϕ= (ϕ+‖ϕ‖C0)−‖ϕ‖C0
into a

non-negative smooth function plus a constant, we can see that (5.39) holds for general ϕ.

Step 3: Taking the limit

We wish to analyze the limiting behavior of θ2
+ in the vicinity of Γn. First we shift these

functions following Γn and define new functions on [−4,0]×R2 by

vn(t,x) :=

{
θ+(t,x+Γn(t))2, x+Γn(t)∈Ωn,

0, x+Γn(t) /∈Ωn.

Each vn is supported on |x|≤3, and

vn(t,x) = (θn(t,x+Γn(t))−ψ(x))2
+ (5.40)

whenever the right hand side is defined.

Note that

∂tvn(t,x) =∂tθ
2
+(t,x+Γn)+Γ̇n ·∇θ2

+(t,x+Γn).

For C independent of n, we know from (5.35) that

‖vn‖L2(−4,0;H1/2(R2)≤C

and from (5.39) that

‖∂tvn‖M(−4,0;C−2(Ω))≤C

where M is the space of Radon measures with total-variation norm and C−2(Ω) is the dual of

C2(Ω).
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Therefore, by the Aubin-Lions Lemma, the set {vn}n is compactly embedded in

L2([−4,0]×R2). Up to a subsequence, there is a function v∈L2([−4,0]×R2) such that

vn
L2

−→v.

We know that v∈L∞, supp(v)⊆ [−4,0]×B3(0), and v∈L2(H1/2) because these properties

hold uniformly on vn.

By (5.33)
d

dt

�
R2

vndx=
d

dt

�
Ωn

θ2
+dx≤C (5.41)

so the same must be true of v, for d
dt interpreted in the sense of distributions.

By (5.30), (5.32), and (5.31) applied to vn (recalling the relation (5.40)), we conclude that
|{v≥1}∩ [−2,0]×B2(0)|≥ δ0/4,∣∣{0<v< [1−ψ]2}∩ [−4,0]×B4(0)

∣∣≤0,

|{v≤0}∩ [−4,0]×B4(0)|≥2|B4|.
(5.42)

For any (t,x)∈ [−4,0]×B4(0), either v(t,x)≥ [1−ψ(x)]2 or else v(t,x) = 0. In fact, since

‖v(t, ·)‖H1/2 <∞ for almost every t and H1/2 does not contain functions with jump discontinuities,

the function v is either identically 0 or else ≥ [1−ψ(x)]2 at each t.

Thus
�
v(t,x)dx is either 0 or else ≥

�
[1−ψ(x)]2dx>0 at each t. By (5.41) and (5.42),

v must be identically zero for all t>−2 but also must be non-zero for some t>−2, which is a

contradiction.

Our assumption that the sequence θn exists must have been false, and the proposition must

be true.
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4.6 A Decrease in Oscillation

We combine the two De Giorgi lemmas (Propositions 4.5.3 and 4.5.4) to produce an oscil-

lation lemma. This result is similar to the weak Harnack inequality for harmonic functions. As

in the previous section, all of the following results must be independent of the size of Ω, and any

assumptions made on Ω must be scaling invariant.

Lemma 4.6.1 (Oscillation Lemma). Let κ, Cdmn , and Cpth , be positive constants. Then there

exists a constant k0>0 such that the following holds:

Let Ω⊆R2 be a bounded open set with C2,β boundary for some β∈ (0,1), and let Γ : [−5,0]→

R2 be Lipschitz. Assume that on Ω the functions K1/4 and K1 (defined in (2.3)) satisfy the relation

K1/4(x,y)≤Cdmn |x−y|3/4K1(x,y) ∀x 6=y∈Ω.

Let θ, u`, uh, and Γ` solve (5.26) on [−5,0]×Ω, and satisfy
∥∥Λ−1/4uh

∥∥
L∞([−5,0]×Ω)

≤6κ

and ‖∇u`‖L∞([−5,0]×Ω)≤2κ. Denote γ := Γ`−Γ and assume ‖γ̇‖L∞([−5,0])≤Cpth and γ(0) = 0.

Suppose that for all t∈ [−5,0] and any x∈Ω

θ(t,x)≤2+2−k0

(
|x−Γ(t)|1/4−21/4

)
+
, (6.43)

and that

|{θ≤0}∩ [−4,0]×B4(Γ)|≥2|B4|.

Then for all t∈ [−1,0], x∈Ω∩B1(Γ) we have

θ(t,x)≤2−2−k0 .

Proof. Let µ and δ0 as in Proposition 4.5.4, and take k0 large enough that (k0−1)µ>4|B4|.

Consider the sequence of functions,

θk(t,x) := 2+2k(θ(t,x)−2).
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That is, θ0 =θ and as k increases, we scale vertically by a factor of 2 while keeping height 2 as a

fixed point. Note that since θ satisfies (6.43), each θk for k≤k0 and (t,x)∈ [−5,0]×Ω satisfies

θk(t,x)≤2+
(
|x−Γ(t)|1/4−21/4

)
+
.

This is precisely the assumption in Proposition 4.5.4.

Note also that

|{θk≤0}∩ [−4,0]×B4(Γ)| (6.44)

is an increasing function of k, and hence is greater than 2|B4| for all k.

Assume, for means of contradiction, that

|{1≤θk}∩ [−2,0]×B2(Γ)|≥ δ0/4 (6.45)

for k=k0−1. Since this quantity is decreasing in k, it must then exceed δ0/4 for all k<k0 as well.

Applying Proposition 4.5.4 to each θk, we conclude that

|{0<θk<1}∩ [−4,0]×B4(Γ)|≥µ.

In particular, this means that the quantity (6.44) increases by atleast µ every time k increases by

1. By choice of k0 and the fact that quantity (6.44) is trivially bounded by 4|B4|, we obtain a

contradiciton. Therefore, the assumption (6.45) must fail for k=k0−1.

Therefore θk0 must satisfy the assumptions of Proposition 4.5.3. In particular, we conclude

that

θk0(t,x)≤1 ∀t∈ [−1,0],x∈Ω∩B1(Γ).

For the original function θ, this means that

θ(t,x)≤2−2−k0 ∀t∈ [−1,0],x∈Ω∩B1(Γ).
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By assuming that θ is small near x= Γ(t), we have shown that the oscillation of θ is decreased

in a smaller neighborhood of Γ(t). However, our goal is to control the oscillation near x= Γ`(t)).

Therefore we will prove the following proposition:

Proposition 4.6.2 (Oscillation Lemma with shift). Let κ, Cdmn , and Cpth , be positive constants,

and let k0 be as in Lemma 4.6.1. Then there exists a constant λ>0 such that the following holds:

Let Ω⊆R2 be a bounded open set with C2,β boundary for some β∈ (0,1), and let Γ : [−5,0]→

R2 be Lipschitz. Assume that on Ω the functions K1/4 and K1 (defined in (2.3)) satisfy the relation

K1/4(x,y)≤Cdmn |x−y|3/4K1(x,y) ∀x 6=y∈Ω.

Let θ, u`, uh, and Γ` solve (5.26) on [−5,0]×Ω, and satisfy
∥∥Λ−1/4uh

∥∥
L∞([−5,0]×Ω)

≤6κ

and ‖∇u`‖L∞([−5,0]×Ω)≤2κ. Denote γ := Γ`−Γ and assume ‖γ̇‖L∞([−5,0])≤Cpth and γ(0) = 0.

Suppose that for all t∈ [−5,0] and any x∈Ω

|θ(t,x)|≤2+2−k0

(
|x−Γ(t)|1/4−21/4

)
+

(6.46)

and that

|{θ≤0}∩ [−4,0]×B4(Γ)|≥2|B4|.

Then for any ε∈ (0,1/5] such that

5Cpth ≤ε−1−3 (6.47)

we have ∣∣∣∣ 2

2−λ
[θ(εt,εx)+λ]

∣∣∣∣≤2+2−k0

(
|x−ε−1Γ`(εt)|1/4−21/4

)
+
.

for all t∈ [−5,0] and x such that εx∈Ω.

The idea of the proof is to consider a small enough time interval that Γ(t) is very close to

Γ`(t). This is possible because Γ`−γ is uniformly Lipschitz by assumption.
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If, in this proposition, we only wished to show the existence of some ε=ε(k0,Cpth) satisfying

the proposition’s conclusion, then a simpler non-constructive proof would suffice. However, in

Section 4.7 we will apply this proposition with parameters k0 and Cpth depending on ε. To avoid

circularity, we must prove the result for all ε satisfying (6.47).

Proof. Let λ̄>0 and α>1 be the universal constants defined in Lemma 0.3.4. Take λ>0 such that

2λ≤2−k0 , (2+λ)(
2

2−λ
)≤2+2−k0 λ̄,

2

2−λ
≤α. (6.48)

Denote

θ̄(t,x) :=
2

2−λ
[θ(εt,εx)+λ]

defined for t∈ [−5/ε,0] and

x∈Ωε :={x∈R2 :εx∈Ω}

and denote

φ(x) :=
(
|x|1/4−21/4

)
+
.

We proved in Lemma 4.6.1 that θ(t,x)≤2−2−k0 for t∈ [−1,0] and x∈Ω∩B1(Γ). On this

same set, θ(t,x)≥−2 by assumption. By the definition of θ̄ and by (6.48), for all t∈ [−1/ε,0] and

x∈Ω∩B1/ε(ε
−1Γ(εt)) we have therefore{

θ̄(t,x) ≤ 2
2−λ

[
2−2−k0 +λ

]
≤ 2

2−λ [2−λ] = 2.

θ̄(t,x) ≥ 2
2−λ [−2+λ] =−2.

(6.49)

Similarly, the bound (6.46) on θ becomes the equivalent bounds on θ̄, for all (t,x)∈

[−5/ε,0]×Ωε

θ̄(t,x)≤ 2

2−λ

[
2+2−k0φ(|εx−Γ(εt)|)+λ

]
(6.50)

and

θ̄(t,x)≥ 2

2−λ

[
−2−2−k0φ(|εx−Γ(εt)|)+λ

]
. (6.51)
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Let t∈ [−5,0] and x∈Ωε, and define

y :=x−ε−1Γ(εt).

From (6.50) and the assumptions (6.48), we can bound

θ̄(t,x)≤ 2

2−λ

[
2+λ+2−k0φ(ε|y|)

]
≤2+2−k0 λ̄+2−k0αφ(ε|y|)

= 2+2−k0
[
λ̄+αφ(ε|y|)

]
.

From (6.51) and the assumptions (6.48), we can bound

−θ̄(t,x)≤ 2

2−λ

[
2−λ+2−k0φ(ε|y|)

]
≤2+2−k0αφ(ε|y|)

≤2+2−k0
[
λ̄+αφ(ε|y|)

]
.

Therefore ∣∣θ̄(t,x)
∣∣≤2+2−k0

[
λ̄+αφ(ε|y|)

]
. (6.52)

If |y|≤ε−1 then from (6.49) we have

∣∣θ̄(t,x)
∣∣≤2≤2+2−k0φ(x−ε−1Γ(εt)−ε−1γ(εt))

which is our desired result. Therefore assume without loss of generality that |y|≥ε−1. In this case

we can apply Lemma 0.3.4 which states that, since ε<1/2 and ε|y|≥1, it is a property of φ, α,

and λ̄ that

2+2−k0
[
λ̄+αφ(ε|y|)

]
≤2+2−k0

[
φ(|y|−ε−1 +3)

]
.

For t∈ [−5,0], we have by assumption (6.47)

|y|−ε−1 +3≤|y|−5Cpth ≤|y−ε−1γ(εt)|.
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The estimate (6.52) becomes

∣∣θ̄(t,x)
∣∣≤2+2−k0φ(|x−ε−1Γ(εt)−ε−1γ(εt)|).

This concludes the proof.

4.7 Hölder Continuity

In this section we shall prove the main theorem, Theorem 4.1.1. We will demonstrate Hölder

continuity by iteratively applying Proposition 4.6.2 and rescaling.

We begin with a lemma to describe the scaling properties of (1.2).

Lemma 4.7.1 (Scaling). Let Ω⊆R2 be a bounded open set with C2,β boundary for some β∈ (0,1),

and let j0∈Z and ε>0 be constants.

Suppose that θ : [−T,0]×Ω→R and u : [−T,0]×Ω→R2 are a suitable solution to (1.2) and

u is calibrated by a sequence (uj)j≥j0 with constant κ and center N .

Suppose that on Ω the functions K1/4 and K1 (defined in (2.3)) satisfy the relation

K1/4(x,y)≤Cdmn |x−y|3/4K1(x,y) ∀x 6=y∈Ω.

Then

θ̄(t,x) :=θ(εt,εx)

and

ū(t,x) :=

∞∑
j=j0

ūj(t,x), ūj(t,x) :=uj(εt,εx)

are also a suitable solution to (1.2) on [−T/ε,0]×Ωε where Ωε={x∈R2 :εx∈Ω}.
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Moreover, (ūj)j≥j0 is calibrated with the same constant κ but with center N− log2(ε), and

the relation

K̄1/4(x,y)≤Cdmn |x−y|3/4K̄1(x,y) ∀x 6=y∈Ωε (7.53)

holds.

Proof. Denote by Λ̄ the square root of the Laplacian with Dirichlet boundary conditions on Ωε.

One can calculate (see e.g. [CS16] Section 2.4) that for (t,x)∈ [−T/ε,0]×Ωε

Λθ(εt,εx) =εΛ̄θ̄(t,x).

Similarly, in the Caffarelli-Stinga representation from Proposition 4.2.1 the operator Λ̄s will

have kernel

K̄s(x,y) =εs−2Ks(εx,εy).

From these facts it is clear that the scaled functions satisfy (1.2) and (7.53).

To show that (ūj)j∈Z is calibrated, we must translate the three bounds on uj to correspond-

ing bounds on ūj . Each of the calculations are similar, so we show only one:

‖∇ūj‖∞=ε‖∇uj‖∞≤2log2(ε)2j2−Nκ= 2j2−(N−log2(ε))κ.

The next lemma demonstrates Hölder continuity of suitable solutions. The proof method

is to consruct a sequence of rescaled functions all of which, by induction, satisfy the assumptions

of Proposition 4.6.2. We will assume that the velocity u is the Riesz transform of an L∞ function

Θ, which will in practice typically be θ itself, up to scaling and translation.
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Lemma 4.7.2 (Continuity of suitable solutions). There exists a universal constant C such that the

following holds:

Let Ω⊆R2 be an open, bounded domain with C2,β boundary, β∈ (0,1). Let Θ∈L∞([−5,0]×

Ω). Then there exists a constant α∈ (0,1) depending on Ω and ‖Θ‖L∞ such that the following holds:

Let θ : [−5,0]×Ω→R and u : [−5,0]×Ω→R2 be a suitable solution to (1.2). Assume that

‖θ‖L∞([−5,0]×Ω)≤2 and that u=∇⊥Λ−1Θ.

Then for any point P ∈ Ω̄, θ is Hölder continuous at (0,P ) and

sup
(t,x)∈[−5,0]×Ω

|θ(t,x)−θ(0,P )|
(|t|2 + |x−P |2)α/2

≤C.

Proof. By relabelling our coordinate system, we can assume without loss of generality that P = 0

is the origin in R2.

From Proposition 4.4.1, we know that

u=∇⊥Λ−1Θ =
∞∑
j=j0

uj

for a sequence (uj)j≥j0 of divergence-free functions calibrated with some constant κ=κ(Ω,‖Θ‖L∞)

and center 0. Assume without loss of generality that j0<0.

Choose a constant 0<ε<1/5 such that

5max
(
−κlog2(ε)e10εκ,(1−j0)κ

)
≤ε−1−3. (7.54)

For integers k≥0 consider the domains

Ωk :={x∈R2 :εkx∈Ω}.

If Kk
s are the kernels defined in Proposition 4.2.1 corresponding to the operators Λs on Ωk, then

by Proposition 4.2.1 and Lemma 4.7.1 the relation

Kk
1/4(x,y)≤Cdmn |x−y|3/4Kk

1 (x,y) ∀x 6=y∈Ωk
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holds for some constant Cdmn independent of k.

For notational convenience, denote

∑
k

=
∑

j>−k log2(ε)

,
k∑

=
∑

j≤−k log2(ε)

and define the following functions on [−5,0]×Ωk:

uk` (t,x) :=
k∑
uj(ε

kt,εkx),

ukh(t,x) :=
∑
k

uj(ε
kt,εkx).

By Lemmas 4.7.1 we know the sequence (uj(ε
k·,εk·))j is calibrated with constant κ and center

−k log2(ε), and hence by 4.5.1 we know that, independently of k,∥∥∥Λ−1/4ukh

∥∥∥
L∞([−5,0]×Ωk)

≤6κ

and ∥∥∥∇uk`∥∥∥
L∞([−5,0]×Ωk)

≤2κ.

Each uk` is a finite sum of L∞ functions, hence L∞ itself, though not uniformly in k.

Define Γk,γk : [−5,0]→R2 by the following recursive formulae and ODEs:

Γ0(t) := 0, t∈ [−5,0],

γk(0) := 0, k≥0,

γ̇k(t) :=uk` (t,Γk(t)+γk(t))− Γ̇k(t), k≥0,t∈ [−5,0)

Γk(t) :=ε−1γk−1(εt)+ε−2γk−2(ε2t)+ ·· ·+ε−kγ0(εkt), k≥1,t∈ [−5,0].

Since each uk` is L∞ in space-time and Lipschitz in space, these γk exist by a version of the Cauchy-

Lipschitz theorem. For example, Theorem 3.7 of Bahouri, Chemin, and Danchin [BCD11] proves
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existence and uniqueness in our case. In particular, since uk` is a vector field which is tangential to

the boundary of Ωk and has unique flows, the Lagrangian path

Γk` (t) := Γk(t)+γ(k)

for uk` must remain inside Ω̄k for all time and so our expressions remain well-defined.

The quantity γk here corresponds to the frequency packets uj with −(k−1)log2(ε)<j≤

−k log2(ε). These frequencies are included in the definition of uk` but not the definition of uk−1
`

(they would instead be included in uk−1
h ).

By construction, for k≥0 we have Γk+1(t) =ε−1γk(εt)+ε−1Γk(εt). Therefore

Γ̇k+1(t) =∂t
[
ε−1γk(εt)+ε−1Γk(εt)

]
= γ̇k(εt)+Γ̇k(εt)

=uk` (εt,γk(εt)+Γk(εt))

=uk` (εt,εΓk+1(t)).

With this in hand, we can bound the size of γk. Namely, for k≥1,

γ̇k(t) =uk` (t,Γk(t)+γk(t))− Γ̇k(t)

=uk` (t,Γk(t)+γk(t))−uk−1
` (εt,εΓk(t))

=
k∑
uj(ε

kt,εkΓk(t)+εkγk(t))−
k−1∑

uj(ε
kt,εkΓk(t))

=
k−1∑[

uj(ε
kt,εkΓk(t)+εkγk(t))−uj(εkt,εkΓk(t))

]
+

k∑
k−1

uj(ε
kt,εk .. .)

=
[
uk−1
`

(
εt,εΓk(t)+εγk(t)

)
−uk−1

` (εt,εΓk(t))
]

+

k∑
k−1

uj(ε
kt,εk .. .).

The function x 7→uk−1
` (εt,x) is Lipschitz, with Lipschitz constant less than 2κ. Moreover, each uj

has ‖uj‖∞≤κ. Thus from the above calculation we can bound

|γ̇k(t)|≤2κε|γk(t)|−κlog2(ε). (7.55)
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Applying Gronwall’s inequality, we find that for t∈ [−5,0]

|γk(t)|≤
−log2(ε)

2ε

(
e10εκ−1

)
.

Plugging this estimate back into (7.55),

|γ̇k(t)|≤−κlog2(ε)e10εκ ∀k≥1.

Trivially |γ̇0|≤ (1−j0)κ, so if we define

Cpth = max
(
−κlog2(ε)e10εκ,(1−j0)κ

)
then for all k≥0 and t∈ [−5,0]

|γ̇k(t)|≤Cpth .

Moreover, the assumption (6.47) then follows from (7.54).

Define

θ0(t,x) :=θ(t,x)

and for each k≥0, if |{θk≤0}∩ [−4,0]×B4(Γk(t))|≥2|B4| then set

θk+1(t,x) :=
2

2−λ
[θk(εt,εx)+λ].

Otherwise, set

θk+1(t,x) :=
1

1−λ
[θk(εt,εx)−λ].

From Lemma 4.7.1, we know that θk and the calibrated function
∑

j≥j0 uj(ε
k·,εk·) solve

(1.2). By construction, θk, u
k
` , u

k
h, and Γk` solve (5.26).

Since |θ0|≤2 by assumption, we know in particular that

|θk|≤2+2−k0

(
|x−Γk(t)|1/4−21/4

)
+

(7.56)
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holds for k= 0.

If (7.56) holds for k, then at least one of θk or −θk (depending on whether |{θk≤0}∩

[−4,0]×B4(Γk(t))| is more or less than 2|B4|) will satisfy the assumptions of Proposition 4.6.2. In

either case, we conclude that θk+1 satisfies (7.56). By induction, this bound holds for all θk.

Each θk is between −2 and 2 on [−5,0]×B2(Γk). But recall that each Γk is Lipschitz with

constant kCpth . Thus |Γk(t)|≤1 for t∈ [−(kCpth)−1,0]. On that time interval,

|θk(t,x)|≤2 ∀x∈B1(0).

We conclude that∣∣∣∣∣ sup
[−εk(kCpth )−1,0]×B

εk
(0)

θ(t,x)− inf
[−εk(kCpth )−1,0]×B

εk
(0)
θ(t,x)

∣∣∣∣∣≤4

(
2

2−λ

)−k
.

In particular, for some positive constant C such that

εCk≤ (kCpth)−1 ∀k≥0,

we can say that

|t|2 + |x|2≤ε(1+C)k

implies that (t,x)∈ [−εk(kCpth)−1,0]×Bεk(0) which in turn implies that

|θ(t,x)−θ(0,0)|≤4

(
2

2−λ

)−k
.

In other words,

|θ(t,x)−θ(0,0)|≤4

(
2

2−λ

)− 1
1+C

logε(|t|2−|x|2)+1

= 4

(
2

2−λ

)
exp

[
ln

(
2

2−λ

)
ln(|t|2 + |x|2)

−(1+C)ln(ε)

]
=

8

2−λ
(|t|2 + |x|2)

− ln(2)−ln(2−λ)
(1+C)ln(ε)
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≤8(|t|2 + |x|2)
− ln(2)−ln(2−λ)

(1+C)ln(ε)

We are now able to prove the main result, Theorem 4.1.1.

Proof of Theorem 4.1.1. Recall that Ω, S, k, and θ0 are given.

In Proposition 4.3.2 we construct global-in-time solutions to (1.1). By construction, there

is a universal constant C1 so ‖θ(t, ·)‖L∞(Ω)≤C1t
−1‖θ0‖L2(Ω).

Consider a point (t0,x0) with t0>S. Consider arbitrary constants λ,µ∈ (0,1] and note that

θ̃(t,x) :=λθ(t0 +µt,µx), ũ(t,x) :=u(t0 +µt,µx)

is a suitable solution to (1.2) on [−t0/µ,∞)× Ω̃ where Ω̃ :={x∈R2 :µx∈Ω}.

If S+µ(−5) = S
2 , or equivalently if µ=S/10, then then we have∥∥∥θ̃∥∥∥

L∞([−5,0]×Ω̃)
≤λ2C1

k

S
.

Take λ=S/(C1k).

On [−5,0]× Ω̃ we have θ̃ and ũ a suitable solution to (1.2) satisfying
∥∥∥θ̃∥∥∥

L∞
≤2 and ũ=

∇⊥Λ−1Θ with ‖Θ‖L∞≤2C1k/S. Therefore we can apply Lemma 4.7.2 to θ̃, ũ and find that θ̃

satisfies, for α=α(k,S) and C universal,

sup
(t,x)∈[−5,0]×Ω̃

|θ̃(t,x)− θ̃(t0,x0)|
(|t− t0|2 + |x−x0|2)α/2

≤C.

For the original unscaled θ, we have

sup
(t,x)∈[S/2,t0]×Ω

|θ(t,x)−θ(t0,x0)|
(|t− t0|2 + |x−x0|2)α/2

≤Cλ−1µ−α≤C(λµ)−1 =C
10C1

S2
k.

145



Chapter 5

L2-type Contraction of Shocks for Large Family of Scalar
Conservation Laws

5.1 Introduction

This chapter1 will consider 1D scalar dissipative conservation equations of the form

∂tu+∂x [Q(u)] =ν∂xxη
′(u), (1.1)

where Q and η are uniformly convex functions, meaning that for some constant Λ≥1,

1

Λ
≤η′′(x),Q′′(x)≤Λ (1.2)

holds for all x∈R. This bound on η′′ is natural because η′′ measures the coercivity of the dissipation

in divergence form.

Equations of this form admit a class of traveling wave solutions known as shocks. Shocks

are monotone decreasing and exponentially constant at ±∞. Given any two values s−>s+, there

exists a shock s :R→ (s+,s−) such that

lim
s→∞

s(x) =s+,

lim
s→−∞

s(x) =s−,

and s(x− tσ) is a solution to (1.1) with constant

σ :=
Q(s−)−Q(s+)

s−−s+
.

1The contents of this chapter are based on work originally appearing in “L. F. Stokols. L2-type contraction of
viscous shocks for large family of scalar conservation laws. preprint, page arXiv:1911.12526, 2019.”
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This formula for σ is known as the Rankine-Hugoniot condition. Viscous shocks are a generalization

of inviscid shocks, which are piece-wise constant with a single jump discontinuity. Inviscid shocks

are recovered in the limit as ν→0.

We will show in this paper that sufficiently small shock solutions are L2-stable. Since even

small perturbations in L2 can significantly affect the travelling speed of a shock, we will show

stability only up to a Lipschitz shift which depends on the perturbation. This limitation is not

present in the L1 theory (see Kruzkhov [Kru70]), but is well known in the theory of L2 shock

stability (see Leger [Leg11]).

We will prove the following:

Theorem 5.1.1 (Main Theorem). Let Λ≥1 be a constant, and let η,Q :R→R be satisfy (1.2) on

the interval (−R,R) for R∈ (0,+∞], and let η′′′, Q′′′ continuous at 0. Then there exists a constant

ε0 such that the following holds:

Let ν >0 be any constant. Let s :R× [0,∞)→ [s+,s−] be a shock solution to (1.1) with

|s+−s−|= 2ε≤2ε0, and let u :R× [0,∞)→R be a solution to (1.1) such that ‖u(·,0)−s(·,0)‖L2(R)<

∞. If R<∞, assume ‖u(·,0)‖L∞(R)<R.

Then there exists a Lipschitz function γ : [0,∞)→R such that for any t∈ [0,∞) we have

�
|u(x,t)−s(x−γ(t),t)|2dx≤4Λ2

�
|u(x,0)−s(x,0)|2dx.

The quantity ‖γ′‖L∞ depends only on ε, Λ, and ‖u(·,0)−s(·,0)‖L2(R).

Notice that this result is independent of the strength ν of the dissipation.

We prove this result using the method of relative entropy, first introduced by DiPerna

and Dafermos [Daf96] to study stability of Lipschitz solutions of conservation laws. This method

has since been applied by Vasseur, Serre, Leger, and others ([SV16], [LV11], [Leg11]) to show L2

stability of shocks under large perturbations.
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For an entropy function f , we denote the relative entropy between two solutions u1 and u2

by

f(u1|u2) :=f(u1)−f(u2)−f ′(u2)[u1−u2].

In this paper, we will use the function η, the antiderivative of the dissipative term, as our entropy

function. Our proof involves taking the time-derivative of the relative entropy of u relative to the

shock s. Because of the assumption (1.2), the integral of the relative entropy is essentially equal to

the L2 norm. However, this quantity will not decrease in general, as shown by Vasseur and Kang

in [KV17]. We supplement the method by considering a weighted psuedo-norm, as in [Vas16b] and

[Vas08]. The weight function a is independent of solution u, and is approximately constant.

We will show the following result, from which Theorem 5.1.1 follows as a corollary:

Theorem 5.1.2. Let Λ≥1 be a constant, and let η,Q :R→R satisfy (1.2) for all x∈R, and let

η′′′, Q′′′ continuous at 0. Let ν= 1. Then there exists a constant ε0 such that the following holds:

Let 0<ε<ε0 be a constant and let s :R→ [s+,s−] be a stationary shock solution to (1.1)

with s±=∓ε. Then there exists a weight function a :R→ [1/2,2] such that the following holds:

For any u :R× [0,∞)→R solving (1.1) such that ‖u(·,0)−s(·)‖L2(R)<∞, there exists a

Lipschitz function γ : [0,∞)→R such that for any t∈ [0,∞) we have

d

dt

�
a(x+γ(t))η(u(x,t)|s(x+γ(t)))dx≤−ε0

�
a(x+γ(t))

∣∣∂x(η′(u)−η′(s))
∣∣2 dx.

The quantity ‖γ′‖L∞ depends only on ε, Λ, and ‖u(·,0)−s(·)‖L2(R), and ‖a−1‖∞ tends to

0 as ε→0.

The theory of L2 stability of shocks is contrasted with the L1 theory, as in the work of

Kruzkov [Kru70]. See also Ilyin and Oleinik [IO60] and Freistuhler and Serre [FS98]. Unlike

Kruzkov’s result, we only need one entropy. Though 1D scalar laws have infinitely many entropies

in general, systems of conservation laws typically only have one entropy so methods which rely on
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multiple entropies are more difficult to generalize, though such generalizations exist, see for example

Bressan, Liu, and Yang [BLY99]. The Lp stability theory has also been studied by Adimurthi,

Ghoshal, and Veerappa Gowda [AGVG14]. L2 stability has been studied outside the context of

relative entropy, as by Goodman [Goo86], though wish stronger assumptions on the perturbation.

Since our result is independent of the strength ν of dissipation, it is well suited to taking

an inviscid limit.

The technique used in this paper has previously been applied by Kang and Vasseur to

certain 1D dissipative systems in [KV19] (including 1D isotropic Navier-Stokes) and 1D scalar

equations with constant dissipation in [Kan19] (i.e. η′(u) =u). We are able to consider arbitrary

convex dissipation by utilizing η as an entropy.

As in [KV19], the proof proceeds by braking up the solution u into a part which is L∞

close to s and an error term which may be large in L∞. The close part is handled similarly to the

existing literature, while for the error term we must make careful use of the relationship between

the dissipative term and the derivative of the weight function a.

The paper is structured as follows: in Section 5.2 we compute the time derivative of the

relative entropy. In Section 5.3 we present a number of lemmas which will be used throughout

the paper. In Section 5.4 we show that our expression for the derivative of the relative entropy is

non-positive under a number of special assumptions. Finally in Section 5.5 we prove Theorems 5.1.1

and 5.1.2.

5.2 Time derivative

For any function f , define

f(x|y) :=f(x)−f(y)−f ′(y)(x−y),

In particular, for η our entropy the quantity η(u|s) is called the relative entropy of u relative to s.
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We call η an entropy function if there exists a function G such that

G′(x) =Q′(x)η′(x).

In the 1D case, such a G trivially exists.

We also define

F (x;y) :=G(x)−G(y)−η′(y)[Q(x)−Q(y)].

We begin by computing the time derivative of the relative entropy with arbitrary shift and

arbitrary weight.

Proposition 5.2.1 (Time Derivative). Let u :R× [0,∞)→R and s :R→R be solutions to (1.1)

with ν= 1 and s a stationary solution. Assume |u(·,t)−s(·)|∈L2(R) for all t.

Then for any differentiable function γ : [0,∞)→R and weight function a∈L∞(R), we have

d

dt

�
a(x+γ(t))η

(
u(x)

∣∣s(x+γ(t)
)
dx=R(u) := γ̇Y (u)+B(u)−D(u)

where

Y (u) :=

�
a′η (u|s)dx−

�
as′η′′(s)(u−s)dx,

D(u) :=

�
a|∂x(η′(u)−η′(s))|2dx,

B(u) :=

�
a′F (u;s)dx−

�
aη′′(s)s′Q(u|s)dx+

�
a′′

2
(η′(u)−η′(s))2dx+

�
aη′(u|s)∂xQ(s)dx.

Here it is understood that u is evaluated always at (x,t) while a and s are evaluated at

x+γ(t).

The expressions Y (u), B(u), D(u) will be referenced throughout this paper with the def-

initions given above, and they will be abbreviated as Y , B, D when the input u is clear from

context.
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Proof. Initially, we have

d

dt

�
a(x+γ(t))η (u(x)|s(x+γ(t)) dx=

�
a′γ̇η (u|s) dx+

�
a
[
η′(u)−η′(s)

]
∂tudx

+

�
a
[
−η′′(s)(u−s)

]
∂tsdx.

Since ∂ts= γ̇s′, we have, with Y as defined in the theorem statement,

d

dt

�
aη(u|s)dx= γ̇ [Y ]+

�
a
[
η′(u)−η′(s)

]
∂tudx (2.3)

Note that

∂tu=∂xxη
′(u)−∂xQ(u)

and that because s is a shock with zero drift,

∂xQ(s) =∂xxη
′(s).

Therefore, writing w=η′(u)−η′(s),
�
aw∂tudx=

�
aw
[
∂xxη

′(u)−∂xQ(u)
]
dx+

�
a
[
−η′′(s)(u−s)

][
∂xxη

′(s)−∂xQ(s)
]
dx

=

�
aw∂xxwdx+

�
aη′(u|s)∂xxη′(s)dx−

�
a
(
w∂xQ(u)−η′′(s)(u−s)∂xQ(s)

)
dx

(2.4)

Now, notice that

∂xF (u;s)+η′′(s)Q(u|s)s′=
[
η′(u)Q′(u)−η′(s)Q′(u)

]
∂xu+

[
−η′′(s)(Q(u)−Q(s))

]
s′

+η′′(s)Q(u|s)s′

=
[
η′(u)−η′(s)

]
Q′(u)∂xu+η′′(s)s′ [Q(u|s)−(Q(u)−Q(s))]

=
[
η′(u)−η′(s)

]
∂xQ(u)−η′′(s)(u−s)Q′(s)s′

=w∂xQ(u)−η′′(s)(u−s)∂xQ(s).

(2.5)

Combining (2.3), (2.4), and (2.5) we obtain

d

dt

�
aη(u|s)dx= γ̇ [Y ]+

�
aw∂xxwdx+

�
aη′(u|s)∂xQ(s)dx−

�
a
[
∂xF (u;s)+η′′(s)s′Q(u|s)

]
dx.
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Integrating by parts, we have

�
aw∂xxwdx=

1

2

�
a′′w2dx−

�
a|∂xw|2dx

=
1

2

�
a′′w2dx−D

and �
a∂xF (u;s)dx=−

�
a′F (u;s)dx.

The proposition follows.

Notice that each term in Y and B contain either a derivative of s or a derivative of a. This

inspires us to choose our weight function a to be a linear transformation of s. We can then perform

a change of variables and simplify the expression even further. The new variable y=η′(s(x)) is

known as the entropic variable.

Lemma 5.2.2. Under the same assumptions as Proposition 5.2.1, if a := 1− λ
ε η
′(s) for some λ>0

then, in terms of the variable y :=η′(s), we have

Y =
λ

ε

�
η(u|s)dy+

�
a(u−s)dy,

D=−
�
aη′′(s)s′|∂yw|2dy,

B=
λ

ε

�
F (u;s)dy+

�
aQ(u|s)dy+

λ

ε

�
Q′(s)

2η′′(s)
w2dy−

�
a
Q′(s)

η′′(s)
η′(u|s)dy.

Proof. Notice first that x 7→η′(s) is a monotone-decreasing differentiable bijection, so u is a well-

defined function of y. The integrating factor for this new variable is

dy=−η′′(s)s′dx.

Note the minus sign because s′ is negative so the direction of integration is reversed.
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The derivatives of a are

∂xa=−λ
ε
η′′(s)s′

and

∂xxa=−λ
ε
∂xxη

′(s) =−λ
ε
∂xQ(s).

The derivative of Q(s) is

∂xQ(s) =Q′(s)s′=−Q(s)

η′′(s)
η′′(s)s′.

From here, the form of Y and B are trivial to compute.

For D, we must simply compute

∂xw=η′′(s)s′∂yw.

5.3 Lemmas

This section consists of a series of lemmas which will be necessary throughout the rest of

the paper.

We begin by applying Taylor’s formula to each of the quantities appearing in the expressions

Y (u), B(u), and D(u) defined in Lemma 5.2.2. These estimates, together with the bounds on the

derivatives of η and Q, will be the basis of all our control on the quantities Y , B, D.

Lemma 5.3.1. Let x1 and x2 be real numbers. Then the following estimates hold:

(a) There exists a point z0 between x1 and x2 such that

x1−x2 =
1

η′′(z0)
(η′(x1)−η′(x2)).

(b) There exists a point z1 between x1 and x2 such that

Q(x1|x2) =
Q′′(z1)

2η′′(z0)2
(η′(x1)−η′(x2))2.
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(c) There exists a point z2 between x1 and x2 such that

η(x1|x2) =
η′′(z2)

2η′′(z0)2
(η′(x1)−η′(x2))2.

(d) There exists a point z3 between x1 and x2 such that

η′(x1|x2) =
η′′′(z3)

2η′′(z0)2
[η′(x1)−η′(x2)]2.

(e) There exists a point z4 between x1 and x2 such that

η′(x1|x2) =

(
1− η

′′(x2)

η′′(z4)

)
[η′(x1)−η′(x2)].

(f) There exists a point z5 between x1 and x2 such that

F (x1;x2) =
1

2
η′′(z5)

Q′(z5)

η′′(z0)2
(η′(x1)−η′(x2))2 +

1

2
η′(z5)−η′(x2)]

Q′′(z5)

η′′(z0)2
(η′(x1)−η′(x2))2.

(g) If s is a stationary shock solution to (1.1) with ν= 1, and ς ∈ (s+,s−) is a real number, then

there exist points z6,z7,z8∈ (s+,s−) such that

−η′′(s)s′�s=ς =
Q′′(z6)

2η′′(z7)η′′(z8)
[η′(ς)−η′(s+)][η′(s−)−η′(ς)].

Proof. Claim (a) follows immediately from Taylor’s theorem:

η′(x1) =η′(x2)+η′′(z0)(x1−x2).

Applying Taylor’s theorem to Q,

Q(x1) =Q(x2)+Q′(x2)(x1−x2)+
Q′′(z1)

2
(x1−x2)2.

Therefore

Q(x1|x2) =
Q′′(z1)

2
(x1−x2)2

and (b) follows from (a).
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Claims (c) and (d) follow by the same logic as (b).

Apply (a) to the definition of η′(x1|x2) to obtain

η′(x1|x2) = [η′(x1)−η′(x2)]− η
′(x2)

η′(z0)
[η′(x1)−η′(x2)]

and (e) follows.

For (f), we can calculate, by Taylor’s theorem,

F (x1;x2) =F (x2;x2)+
d

dx1
F (x2;x2)(x1−x2)+

1

2

d2

dx2
1

F (t5;x2)(x1−x2)2

= 0+0+
1

2

[
η′′(t5)Q′(t5)−Q′′(t5)

[
η′(t5)−η′(x2)

]]
(x1−x2)2.

From this and (a), the claim (f) follows.

Since s is a shock solution, ∂xQ(s) =∂xxη
′(s). Moreover ∂xη

′(s)�s=s−= 0. Therefore

−η′′(ς)s′�s=ς =−∂xη′(ς)�s=ς =Q(s−)−Q(y).

Now since Q(s+) =Q(s−) by the Rankine-Hugoniot condition, there exists a point z6∈ (s+,s−) such

that

Q(s−)−Q(ς) =Q′′(z6)(ς−s+)(s−− ς).

Applying (a) a final time, the proof is complete.

The following lemma is Proposition 3.3 in [KV19]. It is a Poincaré type inequality.

Lemma 5.3.2 (Poincaré). Given a constant C1, there exists a constant δ0>0, such that for any

δ≤ δ0 the following holds:

For any W ∈L2(0,1) such that
√
x(1−x)∂xW ∈L2(0,1) with ‖W‖22≤C1, the quantity

−1

δ

 1�

0

W 2dx+2

1�

0

Wdx

2

+(1+δ)

1�

0

W 2dx+
2

3

1�

0

W 3dx+δ

1�

0

|W |3dx−(1−δ)
1�

0

x(1−x)|∂xW |2dx

is non-positive.
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The following lemma is a kind of weighted Gagliardo-Nirenberg interpolation. The quantity

D(u) defined in Lemma 5.2.2 controls the second derivative of w but that control degenerates near

the endpoints. The lemma interpolates between D and the L2 norm to control arbitrary Lp norms.

Lemma 5.3.3 (Gagliardo-Nirenberg). Let h>0, p≥1, L>0, and C̄≤2h2L be constants. For any

w∈L2([−L,L]) with � L

−L
w2dy≤ C̄,

define

D̃ :=

� L

−L
(y−L)(L−y)χ{|w|>h} |∂yw|2 dy.

Then for any q∈ (0,1) there exists a constant Cq depending only on q such that

�
(w−h)p+dy≤Cq

(
h−2C̄

)q |L|−p/2D̃p/2.

Proof. By Chebyshev’s inequality, |{|w|>h}|≤h−2C̄ so since h−2C̄≤L there exists a point y0∈

[−L/2,L/2] such that (w−h)+(y0) = 0.

For any other point y1, we can calculate

|(w−h)+(y1)|= |(w−h)+(y1)−(w−h)+(y2)|

≤
� y1

y0

|∂y(w−h)+|dy

≤
(� y1

y0

[(L+y)(L−y)]−1 dy

)1/2(� y1

y0

[(L+y)(L−y)]|∂y(w−h)+|2 dy
)1/2

≤
(

1

2L
[ln(L+y)− ln(L−y)]y1

y0

)1/2

D̃1/2

=
D̃1/2

(2L)1/2
[ln(L+y1)− ln(L−y1)− ln(L+y0)+ln(L−y0)]1/2

Since y0∈ [−L/2,L/2], we can estimate L+y0

L−y0
∈ [1/3,3] so ln(L+y0)− ln(L−y0) is bounded. The

expression ln(L+y1)− ln(y1−L) is similarly bounded for |y1|<L/2. For |y1|>L/2, the ln(L−y1)
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term will dominate for y1 positive and the ln(y1 +L) term will dominate for y1 negative, so for

some constant C we have the bound

|(w−h)+(y1)|≤C

(
D̃

L

)1/2

max(1,|ln(L−|y1|)|)1/2 .

Let µ≤h−2C̄ be the measure of the set {|w|>h}. Without loss of generality we assume

that this region is concentrated near ±L, and so

�
(w−h)p+dy≤2

� L

L−µ/2
Cp

(
D̃

L

)p/2
|ln(L−|y1|)|p/2 dy

≤C

(
D̃

L

)p/2� µ/2

0
| ln(x)|p/2dx

≤Cq

(
D̃

L

)p/2
µq.

Here we have used an estimate of the integral of ln(x) near the origin which uses the fact that ln(x)

grows slower than any power of x.

Since µ≤h−2C̄, the lemma follows.

The following final lemma shows that the quantity Y bounds the L2 norm.

Lemma 5.3.4. There exists a constant C=C(Λ) so that the following holds:

Let η and Q as in Theorem 5.1.2 and u,s be any functions such that u−s∈L2(R). Let

Y (u) be as in Lemma 5.2.2. Then the function w :=η′(u)−η′(s) satisfies

�
w2dy≤C(Λ)

[
ε

λ
|Y (u)|+ ε3

λ2

]
.

Proof. From the definition of Y , we know that

λ

ε

�
η(u|s)dy≤|Y |+

�
a(u−s)dy.
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The right-hand side is of course non-negative since η convex.

Recall the notation w=η′(u)−η′(s). From Lemma 5.3.1 (c) and (a) we know that η(u|s)≥

Λ−3w2 and |u−s|≤Λ|w|. Of course |a|≤2. Therefore

�
w2dy≤Λ3 ε

λ
|Y |+Λ3 ε

λ
2Λ

�
|w|dy.

By Hölder’s inequality, 2
�
|w|dy≤ λ

2Λ4ε

�
w2dy+ 2Λ4ε

λ

�
1dy. Thus

�
w2dy≤Λ3 ε

λ
|Y |+ 1

2

�
w2dy+2Λ8 ε

2

λ2

�
1dy.

Since �
1dy=η′(s−)−η′(s+)≤2Λε,

the lemma follows.

5.4 Functional Estimates

In this section, we consider the quantity −Y (u)2 +B(u)−D(u) under certain assumptions

on u. Note that we do not need to assume u is a solution of (1.1) in this section at all, only that

u and s are in some sense small functions.

Proposition 5.4.1 (Decrease for small perturbations). Let η and Q satisfy (1.2) for all x∈R and

have η′′′, Q′′′ continuous at 0. For any positive constant C̄, there exist constants h1>0 and ε1>0,

such that the following holds:

Let s be a stationary shock solution to (1.1) with ν= 1 and s±=∓ε with 0<ε<ε1, and

let ū∈L∞(R) be such that |w̄| := |η′(ū)−η′(s)|≤h for some 0<h<h1. Let 0<λ<ε1 and a :=

1− λ
ε η
′(s) such that 1/2≤a≤2. Assume

�
w̄2≤ C̄ ε

3

λ2
.
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Then

R̄ :=
−1

2ε2
Y (ū)2 +B(ū)−(1−h)D(ū)

is non-positive.

In the case that η and Q are quadratic polynomials, for example if Λ = 1, this theorem

would hold by a straightforward application of Lemma 5.3.2. Since η and Q have continuous

second derivatives, for small inputs their second derivatives will be nearly constant and we can

treat them as polynomials. We will use Taylor’s theorem, specifically in the form of Lemma 5.3.1,

to formalize this observation.

Proof. Let δ0 be the constant indicated by Lemma 5.3.2 corresponding to constant ΛC̄, and consider

arbitrary 0<δ≤ δ0.

We will estimate Y , B, and D using the formulae provided in Lemma 5.2.2. Notice that,

since η′′′ and Q′′′ exist and are continuous at 0, η′′ and Q′′ must also be continuous at 0.

First we analyze the term Y . Define

Y1 :=
λ

ε

�
η(ū|s)dy.

By Lemma 5.3.1 (c), there exist t1, t2∈ [−ε1−h1,ε1 +h1] so∣∣∣∣Y1−
1

2η′′(0)

λ

ε

�
w̄2dy

∣∣∣∣= ∣∣∣∣ η′′(t1)

2η′′(t2)2
− 1

2η′′(0)

∣∣∣∣ λε
�
w̄2dy.

Since η′′ is continuous at 0, for ε1 +h1 sufficiently small we can say∣∣∣∣Y1−
1

2η′′(0)

λ

ε

�
w̄2dy

∣∣∣∣≤ δλε
�
w̄2dy.

Define

Y2 =

�
a(u−s)dy
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and, by applying Lemma 5.3.1 (a), we can argue as above that for ε1 +h1 sufficiently small we have∣∣∣∣Y2−η′′(0)−1

�
w̄dy

∣∣∣∣=� [
η′′(t1)−1a−η′′(0)−1

]
w̄dy

=

�
η′′(t1)−1(a−1)w̄dy+

� [
η′′(t1)−1−η′′(0)−1

]
w̄dy

≤
� (

λΛ+
∣∣η′′(t1)−1−η′′(0)−1

∣∣) |w̄|dy
≤C(λ+δ)

�
|w̄|dy.

Since Y =Y1 +Y2, assuming without loss of generality ε<δ, we can apply the general for-

mula −(a+b)2≤−
(
ε
2δ

)
a2 + ε

δ b
2 for a,b∈R and ε/δ∈ (0,1] to obtain

−Y 2≤ ε

8δ
η′′(0)−2

(
λ

ε

�
w̄2dy+2

�
w̄dy

)2

+C
ε

δ

(
(λ+δ)

�
|w̄|dy+δ

λ

ε

�
w̄2dy

)2

Since
�
|w̄|dy≤Cε1/2

√�
w̄2dy and

�
w̄2dy≤ C̄ε3/λ2,

−Y 2≤ ε
δ

Λ2

8

(
λ

ε

�
w̄2dy+2

�
w̄dy

)2

+C(λ+δ)2 ε

δ

(�
|w̄|dy

)2

+C
ε

δ
δ2λ

2

ε2

ε3

λ2

�
w̄2dy

≤ ε
δ

Λ2

8

(
λ

ε

�
w̄2dy+2

�
w̄dy

)2

+C

(
ε2λ2

δ
+ε2δ+δ

)�
w̄2dy.

(4.6)

Now we analyze B.

For the relative flux term, we estimate by Lemma 5.3.1 (b) and continuity of η′′ and Q′′∣∣∣∣� aQ(ū|s)dy− Q′′(0)

2η′′(0)2

�
w̄2dy

∣∣∣∣≤� ∣∣∣∣a Q′′(t1)

2η′′(t2)
− Q′′(0)

2η′′(0)2

∣∣∣∣w̄2dy

≤
� (

Q′′(t1)

2η′′(t2)
|a−1|+

∣∣∣∣Q′′(t1)

2η′′(t2)
− Q′′(0)

2η′′(0)2

∣∣∣∣)w̄2dy

≤
� (

λ
Q′′(t1)

2η′′(t2)
+

∣∣∣∣Q′′(t1)

2η′′(t2)
− Q′′(0)

2η′′(0)2

∣∣∣∣)w̄2dy

≤C(λ+δ)

�
w̄2dy

(4.7)

for ε1 and h1 sufficiently small.
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The w̄2 term is an error term:

λ

ε

�
Q′(s)

2η′′(s)
w̄2dy≤λΛ2

2

�
w̄2dy, (4.8)

as is the η′(ū|s) term: by Lemma 5.3.1 (d), for ε0 and h0 sufficiently small

�
a
Q′(s)

η′′(s)
η′(ū|s)dy≤Cε

�
w̄2dy. (4.9)

Note that C here depends on η′′′(0).

To bound the F term of B, we utilize the formula, valid for any f with f(0) =f ′(0) = 0,

f(x) =

� x

0
f ′′(t)(x− t)dt.

Since
d2

dx2
F (x;s) =Q′′(x)[η′(x)−η′(s)]+Q′(x)η′′(x),

we have, letting cQ∈ [−ε,ε] be the unique point such that Q′(cQ) = 0,

F (x;s) =

� x

s
(x−τ)[η′(τ)−η′(s)]Q′′(τ)+(x−τ)η′′(τ)Q′(τ)dτ

=

� x

s
(x−τ)(τ−s)η′′(t1)Q′′(τ)dτ+

� x

s
η′′(τ)Q′′(t2)(x−τ)(τ−cQ)dτ

=

� x

s
η′′(t1)Q′′(τ)(x−τ)(τ−s)dτ+

� x

s
η′′(τ)Q′′(t2)(x−τ)(τ−s)dτ

+

� x

s
η′′(τ)Q′′(t2)(x−τ)(s−cQ)dτ

(4.10)

for some points t1∈ [s,τ ] and t2∈ [cQ,τ ] depending on τ .

We can estimate each of these three integrals:∣∣∣∣� x

s
η′′(t1)Q′′(τ)(x−τ)(τ−s)dτ−η′′(0)Q′′(0)

(x−s)3

6

∣∣∣∣≤ sup
τ

∣∣η′′(t1)Q′′(τ)−η′′(0)Q′′(0)
∣∣ |x−s|3

6
,∣∣∣∣� x

s
η′′(τ)Q′′(t2)(x−τ)(τ−s)dτ−η′′(0)Q′′(0)

(x−s)3

6

∣∣∣∣≤ sup
τ

∣∣η′′(τ)Q′′(t2)−η′′(0)Q′′(0)
∣∣ |x−s|3

6
,∣∣∣∣� x

s
η′′(τ)Q′′(t2)(x−τ)(s−cQ)dτ

∣∣∣∣≤2εΛ2

� s

x
|x−τ |dτ =εΛ2(x−s)2.

(4.11)
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Therefore, if ε1 and h1 are sufficiently small then from (4.10) and (4.11) we obtain∣∣∣∣λε
�
F (ū;s)dy− λ

ε

Q′′(0)

3η′′(0)2

�
w̄3dy

∣∣∣∣≤Cλε δ
�
|w̄|3dy+Cλ

�
w̄2dy. (4.12)

Combining (4.7), (4.8), (4.9), and (4.12),

B≤ λ
ε

Q′′(0)

3η′′(0)2

�
w̄3dy+δ

λ

ε
C

�
|w̄|3dy+

Q′′(0)

2η′′(0)2

�
w̄2dy+C(λ+δ+ε)

�
w̄2dy. (4.13)

Lastly, we bound the quantity D. Define y± :=η′(∓ε). Applying Lemma 5.3.1 (g),

(1−h)D(ū)≥ Q′′(t1)

2η′′(t2)η′′(t3)
(1−h)

�
[y−y−][y+−y]|∂yw̄|2dy

≥ Q′′(0)

2η′′(0)2
(1−δ)

�
[y−y−][y+−y]|∂yw̄|2dy

(4.14)

so long as ε1 and h1 are sufficiently small.

We can now bound the quantity R̄. By combining the bounds (4.6), (4.13), and (4.14) on

Y , B, and D respectively,

R̄≤ −C
εδ

(
λ

ε

�
w̄2dy+2

�
w̄dy

)2

+
λ

ε

Q′′(0)

3η′′(0)2

�
w̄3 +

Q′′(0)

2η′′(0)2

�
w̄2

− Q′′(0)

2η′′(0)2
(1−δ)

�
[y−y−][y+−y]|∂yw̄|2dy

+C

(
λ2

δ
+λ+δ+ε

)�
w̄2dy+C

λδ

ε

�
|w̄|3dy

=
Q′′(0)

2η′′(0)2

[
−C
εδ

(
λ

ε

�
w̄2dy+2

�
w̄dy

)2

+
λ

ε

2

3

�
w̄3 +

�
w̄2

−(1−δ)
�

[y−y−][y+−y]|∂yw̄|2dy

+C

(
ε2λ2

δ
+λ+δ+ε

)�
w̄2dy+C

λδ

ε

�
|w̄|3dy

]

(4.15)

We will now perform a change of coordinates. Let L :=η′(s+)−η′(s−). Consider z∈ [0,1]

and define

y :=η′(s+)+zL,
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dy=Ldz,

W (z) :=
λ

ε
w̄(y) =

λ

ε
w̄
(
η′(s+)+zL

)
,

∂zW (z) =
λ

ε
L∂yw̄(y).

Note that z= 0 corresponds to y=η′(s+) and z= 1 to y=η′(s−).

In these coordinates,

�
w̄dy=

ε

λ
L

�
W dz,

�
w̄2dy=

ε2

λ2
L

�
W 2dz,

�
w̄3dy=

ε3

λ3
L

�
W 3dz,

�
[y−y−][y+−y]|∂yw̄|2dy=

ε2

λ2
L

�
z(1−z)|∂zW |2dz.

In terms of z and W , (4.15) becomes

R̄≤ LQ
′′(0)

2η′′(0)2

ε2

λ2

[
−C2L

εδ

(�
W 2dz+2

�
W dz

)2

+
2

3

�
W 3dz+

�
W 2dz−(1−δ)

�
z(1−z)|∂zW |2dz

+C3

(
ε2λ2

δ
+λ+δ+ε

)�
W 2dz+Cδ

�
|W |3dz

]

Fixing now δ so that δ< δ0
3C3

and δ<C2Λδ0, then taking ε1 small enough that C3(λ
2

δ +δ+

ε+λ+δ)≤ δ0 and ε1<δ, and recalling L/ε≤Λ, we can bound

R̄≤C ε
2

λ2

[
−1

δ0

(�
W 2dz+2

�
W dz

)2

+
2

3

�
W 3dz+δ0

�
|W |3dz+(1+δ0)

�
W 2dz

−(1−δ0)

�
z(1−z)|∂zW |2dz

]
.

We can now apply Lemma 5.3.2 and the proof is complete.

Now that we know −ε−2Y 2 +B−D is non-negative for u sufficiently close to s, we can

bound the same quantity for u large by decomposing into a part near s and a part far away.
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Proposition 5.4.2 (Decrease for large perturbations). Let η and Q satisfy (1.2) for all x∈R and

have η′′′, Q′′′ continuous at 0. For any positive constant C̄, there exists a constant ε2>0 such that

the following holds:

Let s be a stationary shock solution to (1.1) with ν= 1 and s±=∓ε with 0<ε<ε2. There

exists a λ>0 such that for all u :R→R such that w :=η′(u)−η′(s) satisfies

�
w2≤ C̄ ε

3

λ2
,

u and a := 1− λ
ε η
′(s) satisfy

R(u) :=
−1

2ε2
Y (u)2 +B(u)−D(u)≤−ε2D(u).

Proof. Let h1 and ε1 be the parameters defined by Proposition 5.4.1, and define ū for a parameter

0<h<h1 such that {
ū=u |η′(u)−η′(s)|≤h,
η′(u)−η′(s) =hsign(u−s) else.

Then we can define w̄ :=η′(ū)−η′(s), w̃ :=w− w̄, Ỹ :=Y (u)−Y (ū), B̃ :=B(u)−B(ū), and D̃ :=

D(u)−D(ū). For D̃ we have

D̃=

�
aχ{|w|>h}|∂x(η′(u)−η′(s))|2dx. (4.16)

We will bound Ỹ , B̃, and D̃ one at a time.

To bound Ỹ , we calculate

η(u|s)−η(ū|s) =

� u

ū
η′(t)−η′(s)dt

≤Λ

� u

ū
[t−s]dt

= Λ

[
t2

2
− ts

]u
ū

= Λ

[
(u− ū)2

2
+(u− ū)(ū−s)

]
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≤C
(
w̃2 +hw̃

)
.

Therefore

Ỹ ≤Cλ
ε

(�
w̃2 +h

�
w̃

)
+

�
w̃

≤Cλ
ε

�
w̃2dy+C

(
λh

ε
+1

)�
w̃dy.

Since

−Y (u)2≤−Y (ū)2/2+ Ỹ 2,

and
�
w̃≤ε1/2

(�
w̃2
)1/2

, and
�
w̃2≤ C̄ε3/λ2, we can bound

−1

ε2
Y (u)2≤ −1

2ε2
Y (ū)2 +Cε

�
w̃2dy+C

(
ε+

λ2h2

ε

)�
w̃dy. (4.17)

For the B term, we must assume without loss of generality that 2Λε≤h1 (so that Q′ does

not change sign between ū and u). Then we can calculate

F (u;s)−F (ū;s) =

� u

ū
Q′(t)[η′(t)−η′(s)]dt

≤Λ2

∣∣∣∣� u

ū
t[t−s]dt

∣∣∣∣
= Λ2

∣∣∣∣ t33 − t2s2
∣∣∣∣u
ū

= Λ2

∣∣∣∣(u− ū)3

3
+(u− ū)2ū− (u− ū)2s

2
+(u− ū)ū2−(u− ū)ūs

∣∣∣∣
≤C

(
|w̃|3 +hw̃2 +h2|w̃|+εw̃2 +εh|w̃|

)
.

(4.18)

Similarly,

Q(u|s)−Q(ū|s) =

� u

ū
[Q′(t)−Q′(s)]dt

≤Λ

� u

ū
[t−s]dt

= Λ

[
(u− ū)2

2
+(ū−s)(u− ū)

]
≤C

(
w̃2 +hw̃

)
,

(4.19)
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and

η′(u|s)−η′(ū|s) =

� u

ū
η′′(x)−η′′(s)dx

≤2Λ

∣∣∣∣� u

ū
dx

∣∣∣∣
≤2Λ2|w̃|,

(4.20)

and trivially
w2− w̄2 = w̃2 +2w̄w̃

≤ w̃2 +2h|w̃|.
(4.21)

Combining (4.18), (4.19), (4.20), and (4.21), we can bound B̃

|B̃|≤C
(
λ

ε
|w̃|3 +

[
λ

ε
(h+ε)+1+λ

]
w̃2 +

[
λ

ε
(h2 +εh)+(ε+h)+ε+λh

]
|w̃|
)

=C

(
λ

ε
|w̃|3 +

[
λh

ε
+1+λ

]
w̃2 +

[
λh2

ε
+ε+h+λh

]
|w̃|
)
.

(4.22)

Using (4.16), (4.17), and (4.22), we can decompose the quantity R(u) as

R(u)≤
[
−1

2ε2
Y (ū)2−B(ū)−(1−h)D(ū)

]
+

[
1

ε2

(
λ

ε

�
w̃2dy+

(
1+

λh

ε

)�
w̃dy

)2

+
λ

ε

�
w̃3dy+

λh

ε

�
w̃2dy−(1−h)D̃

]

+

[
λh2

ε

�
w̃dy− h

2
D(u)

]
− h

2
D(u)

:=R1 +R2 +R3−
h

2
D(u).

(4.23)

By Proposition 5.4.1, we know R1≤0. It remains to show the same for R2 and R3.

Using the fact that
�
w̃2dy≤ C̄ε3/λ2, we can bound the quantity R2

R2≤
1

ε2

[
λ2

ε2

(�
w̃2dy

)�
w̃2dy+

(
1+

hλ

ε

)2(�
w̃dy

)2
]

+
hλ

ε

�
w̃2dy+

λ

ε

�
w̃3dy−(1−h)D̃

≤
(

1

ε
+
hλ

ε

)�
w̃2dy+

(
1

ε2
+
h2λ2

ε4

)(�
w̃dy

)2

+
λ

ε

�
w̃3dy−(1−h)D̃.

(4.24)
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By Lemma 5.3.3, we know that for any exponent q∈ (0,1) we have�
w̃dy≤Cq

(
ε3

h2λ2

)q
ε−1/2D̃1/2,

�
w̃2dy≤Cq

(
ε3

h2λ2

)q
ε−1D̃,

�
w̃3dy≤Cq

(�
w̃2dy

)1/2(�
w̃4dy

)1/2

≤
(

ε3

h2λ2

)q/2
ε1/2

hλ
D̃.

From these estimates with the appropriate q, we find that if ε, λ and h are appropriately

small (specifically if ε≤Chλ3 for constant Ch depending on h) then(
1

ε
+
hλ

ε

)�
w̃2dy+

(
1

ε2
+
h2λ2

ε4

)(�
w̃dy

)2

+
λ

ε

�
w̃3dy≤ 1

2
D̃.

Plugging this estimate into (4.24), and assuming without loss of generality h<1/2, the

quantity R2 will be non-positive.

It remains to bound the quantity R3.

Let f :=
(
|w|− h

2

)
+

. Then w̃=
(
f− h

2

)
+

.

By Lemma 5.3.3 with exponent 3/4,�
f2dy≤C ε5/4

h3/2λ3/2
D(u).

By Chebyshev’s inquality,�
|w̃|dy=

�
(|w|−h)+ dy≤

2

h

�
f2dy.

Therefore,

R3≤

(
C
λh2

ε

2

h

ε5/4

h3/2λ3/2
− h

2

)
D(u) =

(
C

ε1/4

h3/2λ1/2
−1

)
h

2
D(u).

So long as ε<
(
C−1h3/2λ1/2

)4
, the quantity is non-positive.

Since R1, R2, and R3 are all non-positive, by (4.23) we know R(u)≤−h/2D(u)≤−ε2D(u).
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5.5 Proof of Main Theorem

We will now prove Theorem 5.1.2. The idea of the proof is to define the shift function γ

such that when |Y (u)| is large, the γ̇Y term is negative and dominant, while when |Y (u)| is small

we can apply Proposition 5.4.2.

Proof. Take ε0 to be the constant ε2 defined in Proposition 5.4.2.

We must construct a shift function γ, so we begin by making elementary bounds on the

term B. Note that u(x)−s(x) is guaranteed to be in L2 for short time by the basic existence

theorems of, for example, [Ser99]. Moreover,

�
|s(x)−s(x−ξ)|2dx≤C(1+

√
(ξ)). (5.25)

From the estimates of Lemma 5.3.1, we know that for some constant C,

|B(u)|≤C(ε,λ,Λ)

(�
w3dy+

�
w2dy+

�
wdy

)
.

Moreover, since by Hölder’s inequality
�
w3dy≤

(�
w2dy

)3/4(�
w6dy

)1/4
, we can further say by

Lemma 5.3.3, by taking h2 = 2Λ
ε

�
w2dy, that

�
w3dy≤C

(�
w2dy

)3/4(
Λhε+ε−1D3

)1/4
≤C(ε)

(�
w2dy

)7/8

+C(ε)

(�
w2dy

)3/4

D3/4.

It follows that

2|B|−(1−ε0)D≤C(ε)

[
1+

(�
w2dy

)3
]
. (5.26)

Of course,
�
w2dy depends on γ.

Define

Φε(y) :=


1 y≤−ε2

−y
ε2

|y|≤ε2

−1 y≥ε2.
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We define γ(t) as the solution of the nonlinear ODE:{
γ̇(t) = Φε(Y (uγ))

(
1
ε2

(2|Bγ(u)|−(1−ε1)Dγ(u))+ +1
)

γ(0) = 0

From (5.25) and (5.26), we know that

(2|Bγ(u)|−(1−ε1)Dγ(u))+≤C(ε,

�
|u(x)−s(x)|2dx)

[
1+ |γ(t)|3/2

]
.

Therefore the quantity γ exists for a short time.

If |Y |≥ε2 then

γ̇Y +B−D≤−2(2|B|−(1−ε0)D)+ +1+B−D

≤−2|B|+(1−ε0)D−ε2 +B−D<−ε0D.

Alternatively, if |Y |≤ε2, then

γ̇Y ≤− 1

ε2
Y 2.

We can therefore apply Proposition 5.4.2 and conclude that

γ̇Y +B−D<−ε0D.

It follows, from Proposition 5.2.1, that
�
|u(x)−s(x−γ(t))|2dx is uniformly bounded so

long as γ exists.

Now that we have a uniform bound on
�
w2dy, the bound (5.26) shows that γ exists and is

Lipschitz for all time.

Lastly we prove Theorem 5.1.1.

Proof. The proof is by application of Theorem 5.1.2.

If s is not of the form required by Theorem 5.1.2, we can replace Q by

Q̃(x) :=Q(x−a)+bx+c
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for suitable constants a, b, and c so that s is stationary and centered about 0. Recall that by the

Rankine-Hugoniot condition, if Q(s+) =Q(s−) then s is stationary.

If η and Q only satisfy the bound (1.2) on a compact interval [−R,R] then, so long as

‖u‖∞<R, we can modify η and Q outside this region and u will solve the modified (1.1).

If ν 6= 1, we merely consider

ũ(t,x) :=u(x/ν,t/ν)

and

s̃(x) :=s(x/ν).

Then ũ solves (and s̃ is a shock solution to)

1

ν
∂tu+

1

ν
∂xQ(u) =

1

ν2
ν∂xxη

′(u)

which is equivalent to (1.1) with ν= 1.
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0.1 Isoperimetric Inequality for low-order diffusion

The proof of the isoperimetric inequality outlined in section 1.2 relies crucially on the fact

that functions with finite H1 norm cannot have jump discontinuities. For the fractional heat

equation

∂tu+(−∆)s/2u= 0, (1.27)

this proof breaks down when s<1. This is because the natural energy inequality for this equation

shows that solutions are in Hs/2, and elements of Hs/2 can have jump discontinuities whenever

s<1. For example, χ{|x|<1}∈H1/4. However, solutions to these low-order heat equations are in

fact Hölder continuous. This is shown, for example, by Caffarelli, Chan, and Vasseur in [CCV11b]

using the De Giorgi method. The technique they use is based instead on the nonlocality of (−∆)s/2.

In fact, the technique will work for any s∈ (0,2).

This technique originated in the work of Bass and Kassmann in [FBK05], before being

used in [CCV11b] and later in [Sto19a] (which is contained in the present work as chapter 3, c.f.

proposition (3.4.1) step 3).

Because this technique has the potential to be utilized in a wide variety of circumstances,

we will present two versions of the method in its simplest possible context.

Recall that

(−∆)s/2u(x) :=

�
cd,s

[u(x)−u(y)]

|x−y|d+s
dy. (1.28)

We will use the following notation, modelled after [CCV11b]:

B[u,v] :=

�
Rd

�
Rd
K(t,x,y)[u(x)−u(y)][v(x)−v(y)]dxdy,

ψλ(x) :=
(
|x|−λ−4/s

)s/4
+
−1)+,

F (x) := sup(−1, inf(0, |x|2−9),

φ0 = 1+ψλ+F,
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φ1 = 1+ψλ+λF.

Note that

0≤ψλ1(x)≤ψλ2(x)

for λ1<λ2, and for λ sufficiently small we have ψλ(x)≡0 for |x|≤3. The function F is non-positive,

compactly supported in B3(0), and equal to −1 in B2. Therefore φ0 vanishes on B2(0).

It is proven in [CCV11b] that for u solving (1.27) with u(x)≤ψ1(x) for all |x|≤3, we have

d

dt

�
(u−ψ)2

+ +‖(u−ψ)+‖2Hs/2(Rd)−B[(u−ψ)+,(u−ψ)−]

≤C
[�

(u−ψ)2
+ +

�
χ{u−ψ1>0}(x)[ψ(y)−ψ(x)]2dxdy

]
(1.29)

The following lemma is equivalent to Lemma 4.1 in [CCV11b].

Lemma 0.1.1 (Isoperimetric Inequality for [CCV11b]). Let δ>0 be a constant, s∈ (0,2) and d∈N.

Then, there exists γ >0, and λ∈ (0,1), depending only on δ, d, and s, such that for any solution

u : [−3,0]×Rd→R of (1.27) satisfying

u(t,x)≤1+ψλ(x) on [−3,0]×Rd, (1.30)

|{u≤φ0}∩(−3,−2)×B1|≥ |B1|,

and

|{u≥φ1}∩(−2,0)×B3|≥ δ,

we have ∣∣∣{φ0<u<φ1}∩(−3,0)×Rd
∣∣∣≥γ.

The proof follows three steps: first we consider, at each time-slice, the sets where u is above

φ1, below φ0, and between the two. Second we use an intermediate cutoff between φ0 and φ1,

together with the energy inequality, to show that the derivative of a certain function H is bounded
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above, and also the energy B[u+,u−] corresponding to the interaction between small and large

values of u is bounded above. Third, we combine these facts to find a large set of times where u is

between φ0 and φ1.

Proof. Define the following set-valued functions:

A0(t) ={x∈B1 :u(x,t)≤φ0(x)}

A1/2(t) ={x∈Rd :φ0<u(x,t)<φ1}

A1(t) ={x∈B3 :φ1≤u(x,t)}.

Clearly |A0(t)|+ |A1/2(t)|+ |A1(t)|≥ |B1| for all t. By assumption, we must have
� −2
−3 |A0(t)|dt≥|B1|

and
� 0
−2 |A1(t)|dt≥ δ. From the assumption (1.30) we know that A1/2(t),A1(t)⊆B3 and of course

A0(t)⊆B1 for all t∈ [−3,0].

By Chebyshev’s inequality, for any α sufficiently small we have

|[−3,−2]∩{|A0|>α}|≥0.99,

|[−2,0]∩{|A1|>α}|≥1.99.
(1.31)

Choose one such α, small enough that

7α< |B1|. (1.32)

Without loss of generality, we can assume∣∣[−3,0]∩{|A1/2>α}
∣∣≤ .01 (1.33)

because otherwise, we could take γ= .01α and the proof would be complete.

Define

φ1/2 := 1+ψλ+2λF.

This is an intermidiary cutoff φ0≤φ1/2≤φ1. By the assumption (1.30), we know that

(
u−φ1/2

)
+
≤−2λF.
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One can calculate that

�
χ{u>φ1/2}(x)[φ1/2(y)−φ1/2(x)]2K(t,x,y)

≤C
�

χ{B3}(x)[ψλ(y)−ψλ(x)]2K(t,x,y)+

�
[2λF (x)−2λF (y)]2K(t,x,y)≤Cλ2

and that

� (
u−φ1/2

)2
+
≤C

�
(2λF )2

≤Cλ2.

Therefore, by the energy inequality (1.29),

d

dt

� (
u−φ1/2

)
+
dx≤Cλ2 (1.34)

and

−
� 0

−3
B
[(
u−φ1/2

)
+
,
(
u−φ1/2

)
−

]
dt≤Cλ2. (1.35)

On the other hand, for any fixed t∈ [−3,0], the good term is bounded below

−B
[(
u−φ1/2

)
+
,(u−φ−1/2)−

]
= 2

� (
u−φ1/2

)
+

(x)
(
u−φ1/2

)
− (y)K(x,y)

≥
�

x,y∈B3

(
u−φ1/2

)
+

(x)
(
u−φ1/2

)
− (y)6−d−2s

=C

�
B3

(
u−φ1/2

)
+
dx

�
B3

(
u−φ1/2

)
− dx

≥C
�
A1

λF dx

�
A0

(1−λ)F dx

≥Cλ
�
A1

F dx

�
A0

F dx.

Therefore, combining this with (1.35) and dividing by λ, we see that

� 0

−3

(�
A1

F dx

�
A0

F dx

)
dt≤Cλ. (1.36)
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Note that for any E⊆B3,
�
EF ≥f(|E|) for some monotone-increasing function f .Therefore the

above inequality shows that |A0(t)| and |A1(t)| cannot both be large at the same time. This is an

integral bound, however, not a pointwise-in-time bound, so there may exist a singular set

S :={t∈ [−3,0] : |A1|>α and A0>α}.

However, for α fixed, because of (1.36), Chebyshev’s inequality, and the fact that f is monotone

increasing, we can make this singular set arbitrarily small by taking λ very small. In little-o

notation,

|S|=o(λ). (1.37)

Now we consider the function

H(t) :=

� (
u(t,x)−φ1/2(x)

)2
+
dx.

Recall from (1.34) that H ′(t)≤Cλ2.

By dividing up the support of
(
u−φ1/2

)
+

into the regions A0, A1/2, A1, and {u≤φ0}\B1,

we see that

λ2[|B1|−|A0|−|A1/2|]≤H(t)≤λ2[4|A1|+ |A1/2|].

Then we can divide [−3,0] into three sets,

H0 :={t : |A1(t)|,|A1/2(t)|≤α}⊆{t :H(t)≤λ25α},

H1 :={t : |A0(t)|,|A1/2(t)|≤α}⊆{t :λ2[|B1|−2α]≤H(t)},

H1/2 :={t :λ25α<H(t)<λ2[|B1|−2α]}⊆{t : |A1/2(t)|>α or (|A1(t)|,|A0(t)|>α)}.

Note that λ25α<λ2[|B1|−2α] by (1.32).

Our goal now is to show that H1/2 has large measure. To prove this, we will use the fact

that H ′ is bounded and H0, H1 are non-empty.
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The set H0∩ [−3,−2] is nonempty, because

H0⊇ [−3,−2]∩{A0>α}∩S{∩{A1/2>α}{.

But by the assumptions (1.31), (1.33), and (1.37) we can say |H0|≥ .99− .01−|S|>0 for λ suffi-

ciently small. We argue similarly for

H1⊇ [−2,0]∩{A1>α}∩S{∩{A1/2>α}{

that H1∩ [−2,0] 6=∅.

We have shown that there exist points s∈H0 and t∈H1 such that s<t. Because H ′≤Cλ2

by (1.34), we know by elementary calculus that

∣∣H1/2

∣∣≥ λ2[|B1|−2α]−λ25α

supH ′
≥ λ

2[|B1|−7α

Cλ2
= C̄.

Note that C̄ depends on α but not on λ.

Recall that H1/2⊆{A1/2>α}∪S. Therefore

∣∣{A1/2>α}
∣∣≥ C̄−|S|.

Because |S| is arbitrarily small by (1.37), and because∣∣∣{φ0<u<φ1}∩(−3,0)×Rd
∣∣∣=� 0

−3
|A1/2(t)|dt≥α

∣∣{|A1/2>α}
∣∣,

the proof is complete.

Note that the above proof is constructive, i.e. γ and λ can in principle be calculated

explicitly.

Compare this proof to the standard De Giorgi argument, applicable when s>1.
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Assume that we have some compactness result of the form

{u solving (1.27) s.t. u(t,x)≤1+ψ1/3∀(t,x)∈ [−4,0]×Rd}bL2([−3,0]×B3).

Such a result is usually utilized in a proof of an isoperimetric inequality for the De Giorgi method,

though we did not use such a result in the above proof. Note also that the assumptions made

in the above lemma would need to be strengthened slightly to utilize such a result, formulating

assumption (1.30) on [−4,0] instead of [−3,0].

Using such a compactness result, and with such a strengthened assumption, we could assume

for contradiction that no such γ exists, then find a limit function u∞ which would have all the

properties of u used in this proof, but with the additional property that A1/2(t) =∅ for all t∈ [−3,0].

In the case s>1, because Hs/2 functions cannot have jump discontinuities, we would imme-

diately conclude that S=∅ as well. This would of course simplify the proof significantly. However,

because compactness is used, the proof is no longer constructive.

In chapter 3, this combined approach in used to prove the isoperimetric inequality. To

illustrate the method, we apply this method below to prove a toy lemma.

Lemma 0.1.2 (Isoperimetric Inequality). Let δ>0 be a constant, s∈ (0,2), d∈N, and let X be a

compact subset of L2([−3,0]×Rd). Then, there exists γ>0, and λ∈ (0,1), depending only on δ, d,

and s, such that for any solution u : [−3,0]×Rd→R of (1.27) satisfying u∈X,

u(t,x)≤1+ψλ(x) on [−3,0]×Rd,

|{u≤φ0}∩(−3,−2)×B1|≥ |B1|,

and

|{u≥φ1}∩(−2,0)×B3|≥ δ,

we have ∣∣∣{φ0<u<φ1}∩(−3,0)×Rd
∣∣∣≥γ.
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Proof. Suppose that the lemma is false. Then there must exist a sequence of solutions uk ∈X which

satisfy

u(t,x)≤1+ψ1/k(x) on [−3,0]×Rd, (1.38)

|{u≤0}∩(−3,−2)×B1|≥ |B1|,

and

|{u≥1+(1/k)F}∩(−2,0)×B3|≤ δ,

but

|{φ0<u<1+(1/k)F}∩(−3,0)×B3|≤1/k.

Since uk ∈X a compact set, we have uk→u∞ converging up to a subsequence in L2([−3,0]×

Rd). Notice that for any (t,x)∈ [−3,0]×B3 either u∞(t,x)≤1+F (x) or else u∞(t,x) = 1.

Define the following set-valued functions:

A0(t) ={x∈B1 :u∞(x,t)≤0}

A1(t) ={x∈B3 :u∞(x,t) = 1}.

Clearly we have |A0(t)|+ |A1(t)|≥ |B1| for all t. By assumption, we must have
� −2
−3 |A0(t)|dt≥|B1|

and
� 0
−2 |A1(t)|dt≥ δ.

By Chebyshev’s inequality, for any α sufficiently small we have

|[−3,−2]∩{|A0|>α}|≥0.99,

|[−2,0]∩{|A1|>α}|≥1.99.
(1.39)

Choose one such α, small enough that

2α< |B1|. (1.40)

Let θ>0 and define

φ1/2 :=ψθ+θF.
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Because φ0≤φ1/2 for k sufficiently large, we know that u∞≥φ1/2 only when u∞= 1. Therefore

(
u∞−φ1/2

)
+

=−θFχ{A1}.

One can calculate that

�
[φ1/2(y)−φ1/2(x)]2K(t,x,y) =Cθ2

and that for any k sufficiently large

� (
uk−φ1/2

)2
+
≤C

�
(θF )2

=Cθ2.

Therefore, by the energy inequality (1.29), for all k sufficiently large we have

d

dt

� (
uk−φ1/2

)
+
dx≤Cθ2

which implies, since uk→u∞ in L2,

d

dt

� (
u∞−φ1/2

)
+
dx≤Cθ2. (1.41)

In the same manner, we know

−
� 0

−3
B
[(
uk−φ1/2

)
+
,
(
uk−φ1/2

)
−

]
dt≤Cθ2. (1.42)

On the other hand, for any fixed t∈ [−3,0] and k sufficiently large, the good term is bounded

below

−B
[(
uk−φ1/2

)
+
,(uk−φ−1/2)−

]
= 2

� (
uk−φ1/2

)
+

(x)
(
uk−φ1/2

)
− (y)K(x,y)

≥
�

x,y∈B3

(
uk−φ1/2

)
+

(x)
(
uk−φ1/2

)
− (y)6−d−2s

=C

�
B3

(
uk−φ1/2

)
+
dx

�
B3

(
uk−φ1/2

)
− dx.
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Because uk→u∞ strongly in L2, we can take a limit of this bilinear expression and obtain,

using (1.42), � 0

−3

(�
B3

(
u∞−φ1/2

)
+
dx

�
B3

(
u∞−φ1/2

)
− dx

)
≤Cθ2. (1.43)

Note that �
B3

(
u∞−φ1/2

)
+

=θ

�
A1

|F |≥θf(|A1|)

for f some explicit monotone-increasing function, and similarly

�
B3

(u∞−φ−1/2)−≥ (1−θ)
�
A0

|F |≥f(|A0|).

Therefore, we have
� 0
−3f(|A1|)f(|A0|)dt≤Cθ and we conclude that |A1| and |A0| are not

often simultaneously large, especially as θ decreases. Explicitly, if we define a set of singular times

S :={t∈ [−3,0] : |A1|>α and A0>α}

then, in little-o notation,

|S|=o(θ). (1.44)

Now we consider the function

H(t) :=

� (
u∞(t,x)−φ1/2(x)

)2
+
dx=θ2

�
A1(t)

F (x)2dx.

Recall from (1.41) that H ′(t)≤Cθ2.

Because |A0|+ |A1|≥ |B1| and F (x)2∈ [0,1] for all x,

θ2[|B1|−|A0(t)|]≤H(t)≤θ2|A1(t)|.

In particular, if |A1|<α then H(t)≤θ2α, and if |A0|<α then H(t)≥θ2[|B1|−α]. By assumption

(1.40), θ2α<θ2[|B1|−α].

Therefore H(t) can only be in the range (θ2α,θ2[|B1|−α]) when |A0(t)| and |A1(t)| are both

greater than α, i.e. when t∈S. As we have seen in (1.44), this set shrinks to zero measure as θ→0.
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By (1.31), there exist points s∈ [−3,−2] such that |A0(s)|>α and hence H(s)≤

By (1.39) and (1.44), there exists a point s∈ [−3,−2] such that H(s)≤θ2α because

{H≤θ2α}⊇{|A1|≤α|}⊇ [−3,−2]∩{|A0|>α}∩S{.

Simalarly, there exists a point t∈ [−2,0] such that H(t)≥θ2[|B1|−α]. Because H ′≤Cλ2 by (1.34),

we know by elementary calculus that

|S|≥
∣∣{H ∈ (θ2α,θ2[|B1|−α)

∣∣≥ θ2[|B1|−α]−θ2α

supH ′
≥ θ

2[|B1|−2α]

Cθ2
= C̄.

The constant C̄ does not depend on θ, so this cannot possibly be true for all θ. This is a contra-

diction.
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0.2 Technical Lemmas for Chapter 3

We prove here the averaging lemma used throughout this chapter. This lemma is an imme-

diate corollary of [Béz94] Theorem 6. It is merely a localization of that result.

Lemma 0.2.1 (Averaging Lemma). Let Ω be an open subset of space-time R×Rn, and Ω̄ a compact

subset of Ω.

For any smooth function η∈C∞c (Rn) and any m∈R+, there exists a constant C=

C(n,m,η,Ω̄,Ω) and a constant

α=
1

2(1+m)

such that the following is true:

For any two functions f and g in L2(Ω×Rn) satisfying

[∂t+v ·∇x]f =g,

it is true that ∥∥∥∥� ηf dv

∥∥∥∥
Hα(Ω̄)

≤C
(
‖f‖L2(Ω×Rn) +

∥∥∥(1−∆v)
−m/2g

∥∥∥
L2(Ω×Rn)

)
.

By ‖g‖Hα(Ω̄), we mean the infimum of ‖g̃‖Hα(Rn+1) over all extensions g̃ of g to Rn+1.

Proof. Let φ(t,x) be a smooth function supported on Ω and identically equal to 1 on Ω̄. Then

[∂t+v ·∇x](φf) =φg+f [∂t+v ·∇x]φ.

By [Béz94] Theorem 6,∥∥∥∥φ� ηf dv

∥∥∥∥
Hα(R×Rn)

≤C
(
‖φf‖L2(R×Rn×Rn) +

∥∥∥(1−∆v)
−m/2 (φg+f [∂t+v ·∇x]φ)

∥∥∥
L2(R×Rn×Rn)

)
.

Because (1−∆v)
−m/2 is a bounded operator from L2 to L2, and because φ is a smooth function

supported on Ω and depending only on t and x,∥∥∥(1−∆v)
−m

2 (φg+f [∂t+v ·∇x]φ)
∥∥∥
L2(R1+2n)

≤C(φ)
∥∥∥(1−∆v)

−m
2 g
∥∥∥
L2(Ω×Rn)

+C(m,φ)‖f‖L2(Ω×Rn).
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The result follows.

The following is a technical lemma about the geometry of cones. We use it at the very end

of the proof of Proposition 3.4.1.

-5 -4 -2 0

S
B

bμ
(t0,x0)

x

t
-2

2

Figure 1: A diagram showing the assumptions of Lemma 0.2.2.

Lemma 0.2.2. Let C⊆R×Rn be a cone from a vertex (t0,x0)∈ [−5,−4]×B2 to a base set B⊆

[−2,0]×B2. Let S be a subset of R×Rn such that for each b∈B, the line segment connecting

(t0,x0) to b intersects S on a set with Hausdorff H1 measure at least µ.

Then

|C∩S|≥ |B|µ
2

80
.

Proof. Let A(t) be the cross-sectional area of our cone at time slice t. If Hn is the Hausdorff

measure of dimension n, we write

A(t) =Hn (C∩ [{t}×Rn]).

By the nature of cones, A(t0) = 0, A is affine for t0<t<−2, then sub-affine for −2<t<0, and

A(t) = 0 for t>0. Specifically,

A(t) =
A(−2)

−2− t0
(t− t0) t0<t<−2,
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A(t)≤ A(−2)

−2− t0
(t− t0) −2≤ t.

Since B is contained in C∩ [−2,0]×Rn,

|B|≤
� 0

−2
A(t)dt≤

� 0

−2

A(−2)

−2− t0
(t− t0) dt=

A(−2)

−2− t0
[
t20−(2+ t0)2

]
/2≤4A(−2).

This means that

A(−2)≥ |B|
4
.

Now we have a lower bound on the size of the cone, so for t0≤ t≤−2

A(t)≥ |B|
4(−2− t0)

(t− t0). (2.45)

Consider the map from B to {0}×Rn given by stereographic projection from the point

(t0,x0), and let db be a probability measure on B proportional to the pullback of Hn�{0}×Rn under

this projection. Then db represents the proportion of any time-slice of C generated by rays through

a given portion of B.

To find the measure of C∩S, we must ask how much each time slice intersects S, or in

integral form

|C∩S|=
� 0

t0

A(t)

�
b∈B

χ{(t,x)∈C∩S}dbdt.

By Fubini, this becomes

|C∩S|=
�
b∈B

� 0

t0

A(t)χ{(t,x)∈C∩S}dtdb. (2.46)

From the definition of µ and the arc length formula,

µ≤
� 0

t0

χ{(t,x)∈C∩S}
√

1+ |b−x0|2/(−2− t0)2dt≤
√

5

� 0

t0

χ{(t,x)∈C∩S}.

Because A(t) is increasing and χ{(t,x)∈C∩S} integrates to at least µ/
√

5,

� 0

t0

A(t)χ{(t,x)∈C∩S}dt≥
� t+µ/

√
5

t0

A(t)dt.

185



From this bound, (2.46), and (2.45) we can at last compute

|C∩S|≥ |B|
4(−2− t0)

� t0+µ/
√

5

t0

(t− t0)dt=
|B|

4(−2− t0)

µ2

10
≥ |B|µ

2

80
.

The following lemma is a commonly known fact about mollifiers. Despite being known,

a proof is surprisingly difficult to find in the existing literature. Therefore, in the interest of

completeness, we prove it here.

Lemma 0.2.3. Let η∈C∞c (Rn) be such that the sequence ηε(v) =ε−nη(v/ε) is an approximation

to the identity. There exists a constant C=C(n,s,η) such that, for any g∈Hs(Rn),

‖g−g∗ηε‖L2(Rn)≤C ‖g‖Hs(Rn)ε
s.

Proof. The bound is easy to compute by taking the Fourier transform and using Plancharel’s

theorem:

‖g−g∗ηε‖2L2 =

�
ĝ2 (1− η̂ε)2 dξ

≤
�

(1+ξ2)sĝ2dξ sup
ξ

|1− η̂ε(ξ)|2

(1+ξ2)s

=‖g‖2Hs(Rn) sup
ξ

|1− η̂ε(ξ)|2

(1+ξ2)s
.

Since η∈C∞c , the fourier transform η̂ is Lipschitz with some constant C̄. Thus η̂ε(ξ) = η̂(εξ)

is Lipschitz with constant C̄ε. Since ηε is an approximation to the identity, η̂ε(0) = 1 and |η̂ε(ξ)|≤1

for all ξ. Thus

|1− η̂ε(ξ)|≤min(2,C̄ε|ξ|).

The function min(2,C̄εξ)2

(1+ξ2)s
achieves its maxumum value at the critical point C̄ε|ξ|= 2, and

that maximum value is
22(

1+
(

2
C̄ε

)2)s =
4ε2s(

ε2 +4/C̄2
)s ≤Cε2s.
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0.3 Technical Lemmas for Chapter 4

In this appendix we state and prove a few technical lemmas.

Lemma 0.3.1 (De Giorgi Iteration Argument). For any constant C̄≥0, there exists a δ>0 such

that the following holds:

Let Ω⊆R2 be a bounded open set with C2,β boundary for some β∈ (0,1). Let f ∈L2([−2,0]×

Ω) be a function with the property that for any positive constant a

d

dt

�
(f−a)2

+ +

� ∣∣∣Λ1/2(f−a)+

∣∣∣2≤ C̄(� χ{f≥a}+

�
(f−a)+ +

�
(f−a)2

+

)
. (3.47)

Then � 0

−2

�
(f−0)2

+dxdt≤ δ

implies that

f(t,x)≤1 ∀t∈ [−1,0],x∈Ω.

Proof. Consider for k∈N the constants tk :=−1−2−k (so that t0 =−2 and t∞=−1), and functions

fk := (f−1+2−k)+

(so that f0 = (f)+ and f∞= (f−1)+).

Define

Ek :=

� 0

tk

�
Ω
f2
k dxdt.

When fk+1>0, then in particular fk≥2−k−1. Thus for any finite p, there exists a constant

C so

χ{fk+1>0}≤Ckf
p
k . (3.48)
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Let k≥0 and define η : [−2,0]→R a continuous function

η(t) :=


0 t≤ tk
2k+1(t− tk) tk≤ t≤ tk+1

1 tk+1≤ t.

Let s∈ (tk+1,0). Multiplying the inequality (3.47) with cutoff ak by η(t) and integrating in

time from −2 to s, then integrating by parts, we obtain

�
fk(s,x)2dx−2k+1

tk+1�

tk

�
fk(t,x)2dxdt+

s�

tk+1

� ∣∣∣Λ1/2fk

∣∣∣2 dxdt≤ C̄
 0�

tk

�
χ{fk>0}+fk+f2

k dxdt


By taking the supremum over all s∈ (tk+1,0), we obtain

sup
[tk+1,0]

�
f2
k dx+

� 0

tk+1

� ∣∣∣Λ1/2fk

∣∣∣2 dxdt≤C(2k+1

� 0

tk

�
f2
k dxdt+

� 0

tk

�
χ{fk>0}+fkdxdt

)
(3.49)

From Proposition 4.2.3 and Sobolev embedding,

� 0

tk+1

(�
f4
k dx

)1/2

dt≤C
� 0

tk+1

� ∣∣∣Λ1/2fk

∣∣∣2 dxdt.
Therefore by the Riesz-Thorin interpolation theorem,

� 0

tk+1

�
f3
k dxdt≤C

(
sup

[tk+1,0]

�
f2
k dx+

� 0

tk+1

� ∣∣∣Λ1/2fk

∣∣∣2)3/2

.

This estimate, along with (3.49) and (3.48), and the fact that tk−1<tk and fk−1≥fk, tell us that

� 0

tk+1

�
f3
k dxdt≤CkE

3/2
k−1.

Now we can estimate, using again (3.48) and the fact fk≥fk+1,

Ek+1≤Ck
� 0

tk+1

�
f3
k dxdt≤CkE

3/2
k−1.
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This nonlinear recursive inequality Ek+1≤CkE
3/2
k−1, by a standard fact about nonlinear re-

cursions (see [DG57] or [Vas16a]), tells us that there exists a constant δ depending only on C (which

in turn depends only on the constant C̄ in (3.47))

E0≤ δ implies lim
k→∞

Ek = 0.

By assumption

E0 =

� 0

−2

�
(f)+≤ δ.

Therefore Ek→0 and, by the dominated convergence theorem,
� 0

−1

�
(f−1)+dxdt= 0.

The result follows.

Lemma 0.3.2. Let α∈ (0,1). There exists a constant C=C(α) such that, for any set Ω and any

f ∈C0,1(Ω),

[f ]α≤C ‖f‖
1−α
∞ ‖∇f‖α∞ .

Proof. This simple lemma is a straightforward calculation:

sup
x,y∈Ω

|f(x)−f(y)|
|x−y|α

= sup|f(x)−f(y)|1−α
(
|f(x)−f(y)|
|x−y|

)α
≤ (2‖f‖∞)1−α

(
sup
|f(x)−f(y)|
|x−y|

)α
≤C ‖f‖1−α∞ ‖∇f‖α∞ .

Lemma 0.3.3. Let α∈ (0,1) and Ω a set that satisfies the cone condition. There exist constants

C=C(α,Ω) and `= `(Ω) such that, for any f ∈C1,α(Ω)

‖∇f‖∞≤C
(
δ−1‖f‖∞+δα [∇f ]α

)
for all δ<`.
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The idea of the proof is to average ∇f along an interval of length δ with endpoint x. The

magnitude of the average will be small, since f ∈L∞, and the average will differ not very much

from ∇f(x) since ∇f ∈C1,α.

Proof. Since Ω satisfies the cone condition, there exist positive constants ` and a<1 such that, at

each point x∈ Ω̄, there exist two unit vectors e1 and e2 such that |e1 ·e2|≤a and x+τei∈Ω for

i= 1,2 and 0<τ ≤ `. In other words, Ω contains rays at each point that extend for length `, end at

x, and are non-parallel with angle at least cos−1(a).

Consider the directional derivative ∂if of f along the direction ei, and observe that for any

0<δ≤ `, ∣∣∣∣� δ

0
∂if(x+τei)dτ

∣∣∣∣= |f(x+δei)−f(x)|≤2‖f‖∞ . (3.50)

On the other hand, ∂if is continous so, for any τ ∈ (0,`],

|∂if(x)−∂if(x+τei)|≤ [∇f ]ατ
α.

From this, we obtain that� δ

0
∂if(x+τei)dτ ≤

� δ

0
(∂if(x)+[∇f ]ατ

α) dτ = δ∂if(x)+[∇f ]α
δ1+α

1+α

and a similar bound holds from below. Thus∣∣∣∣δ∂if(x)−
� δ

0
∂if(x+τei)dτ

∣∣∣∣≤ [∇f ]α
δ1+α

1+α
.

Combining this bound with (3.50), we obtain

|∂if(x)|≤ 2

δ
‖f‖∞+

δα

1+α
[∇f ]α .

This bound is independent of x and of i= 1,2. Since e1 ·e2≤a by assumption, by a little

linear algebra we can bound ∇f in terms of the ∂if and obtain that, for all δ∈ (0,`],

‖∇f‖∞≤
C

1−a2

(
δ−1‖f‖∞+δα [∇f ]α

)
.
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Lemma 0.3.4. There exist constants λ̄>0 and α>1 such that, for any 0<ε≤1/2 and any z≥1(
|ε−1(z−1)+3|1/4−21/4

)
+
−α

(
|z|1/4−21/4

)
+
≥ λ̄.

Proof. For z fixed, this function is increasing as ε decreases, so it will suffice to show the lemma

when ε= 1/2, that is to show

fα(z) :=
(
|2z+1|1/4−21/4

)
+
−α

(
|z|1/4−21/4

)
+
≥ λ̄

for all z≥1. Note that fα(z)≥fβ(z) if α<β.

For z≥2,

fα(z) = (2z+1)1/4−21/4−αz1/4 +α21/4 =z1/4
(

(2+1/z)1/4−α
)

+(α−1)21/4.

For any α<21/4, clearly fα(z) tends to ∞ as z increases. Therefore there exist N and α0>1 such

that

fα(z)≥1 ∀z≥N,α≤α0.

We can decompose fα(z) =g1(z)−(α−1)g2(z) where

g1(z) :=
(
|2z+1|1/4−21/4

)
+
−
(
|z|1/4−21/4

)
+
,

g2(z) :=
(
|z|1/4−21/4

)
+
.

Note that g1, g2 are both continuous, and g1(z) is strictly positive for z≥1. Therefore we can take

α∈ (1,α0] small enough that

α−1<
inf [1,N ]g1

sup[1,N ]g2
.

For this α, fα(z) is strictly positive on the compact interval [1,N ], and fα(z)≥1 on [N,∞).

Therefore fα(z) has a positive lower bound λ̄ for all z≥1.
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