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The response of materials under extreme temperature and pressure conditions is a 

topic of great significance because of its relevance in astrophysics, geophysics, and 

inertial confinement fusion.  In recent years, environments exceeding several hundred 

gigapascals in pressure have been produced in the laboratory via laser-based dynamic 

loading techniques.  Shock-loading is of particular interest as the shock provides a 

fiducial for measuring time-dependent processes in the lattice such as phase transitions.  

Time-resolved x-ray diffraction is the only technique that offers an insight into these 

shock-induced processes at the relevant spatial (atomic) and temporal scales.   

In this study, nanosecond resolution x-ray diffraction techniques were developed 

and implemented towards the study of shock-induced phase transitions in polycrystalline 

materials.  More specifically, the capability of a focusing x-ray diffraction geometry in 

high-resolution in situ lattice measurements was demonstrated by probing shock-
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compressed Cu and amorphous metallic glass samples.  In addition, simultaneous lattice 

and free surface velocity measurements of shock-compressed Mg in the ambient 

hexagonal close packed (hcp) and shock-induced body centered cubic (bcc) phases 

between 12 and 45 GPa were performed.  These measurements revealed x-ray diffraction 

signals consistent with a compressed bcc lattice above a shock pressure of 26.2±1.3 GPa, 

thus capturing for the first time direct lattice evidence of a shock-induced hcp to bcc 

phase transition in Mg.  Our measurement of the hcp-bcc phase boundary in Mg was 

found to be consistent with the calculated boundary from generalized pseudopotential 

theory in the pressure and temperature region intersected by the principal shock 

Hugoniot.  Furthermore, the subnanosecond timescale of the phase transition implied by 

the shock-loading conditions was in agreement with the kinetics of a martensitic 

transformation.  In conclusion, we report on the progress and future work towards time-

resolved x-ray diffraction measurements probing solid-liquid phase transitions in high Z 

polycrystalline materials, specifically Bi. 
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1 INTRODUCTION 

In recent years, the extreme pressure and temperature conditions produced via 

dynamic loading have received great attention because of their relevance to astrophysical 

[1-5], geophysical [6, 7], and inertial confinement fusion (ICF) [8-10] environments.  

With dynamic loading techniques, such as shock-induced compression [11-13] generated 

via laser ablation or projectile impact, fundamental questions pertaining to the above 

environments can be answered within laboratory-scale experiments.  For example, an 

understanding of the formation of planetary systems can be obtained via laboratory 

equation-of-state measurements of hydrogen.  Such measurements can shed light onto the 

composition of the gas giant planets of our solar system, Jupiter and Saturn, to predict the 

formation of other planetary systems with similar gas giants.  In the area of geophysics, 

the temperature distribution of the Earth’s core that relates to a number of geodynamic 

phenomena, such as seismic discontinuities, can be deduced from an investigation of the 

phase diagram of Fe and Fe-rich compounds at pressures equivalent to the Earth’s inner 

core.  Such measurements can in principle be obtained using shock-loading to generate 

the equivalent pressure conditions, and a diagnostic such as streaked pyrometry for 

temperature measurements.  Last, in ICF an understanding of the response of the capsule 

and hohlraum materials is of paramount importance in order to minimize the possibility 

of microstructural effects that can seed plasma instabilities capable of quenching the 

implosion.  For this reason, dynamic loading of materials relevant to ICF (diamond, Be, 

Ta etc.) to capture plasticity and phase transition information is critical for predicting ICF 



 2 

yields.  Thus, the extreme pressure and temperature conditions accessed by dynamic 

loading are applicable to a broad spectrum of scientific and technological areas.   

An important problem in all of these areas, as indicated earlier, is gaining an insight 

into the lattice response especially in the vicinity of solid-solid and solid-liquid phase 

boundaries.  For most materials information on their phase boundaries comes from ab 

initio electronic structure calculations [14-17] where, in order to reduce computational 

effort, various approximate potentials are used.  Especially for structural changes with 

small equilibrium energy differences and/or phase boundaries at extremely high pressure 

and temperature conditions, these calculated phase boundaries can vary significantly.  

Shock-induced phase transformations are of particular interest, as time-resolved 

information on the phase transition along the shock Hugoniot can be revealed.  In this 

way, non-equilibrium theoretical models used in large-scale molecular dynamics 

simulations [18-20] can be evaluated, and experimental equation-of-state data within 

different phases can be obtained. 

Historically, two approaches have been employed to provide evidence of shock-

induced phase transformations:  sample recovery and in situ bulk property measurements.  

In the first approach, microstructural analysis of the recovered shocked samples has been 

applied in order to infer the dynamic lattice behavior [21-23].  In the second approach, 

real-time measurements of the bulk response have been performed with optical 

diagnostics such as velocimetry [24-26], reflectivity monitors [27-31] (linear and 

nonlinear), and time-resolved pyrometry [32, 33].  Even though these methods can in 

principle detect a phase change by features in the detected signal, they do not offer 

lattice-level information that could reveal the atomic re-arrangement process leading to 
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the structural change.  In the case of velocimetry measurements, where changes in the 

compressibility of materials are inferred from the slope of the velocity profile, phase 

changes with a small volume change (<1 %) may be undetectable.  For reflectivity 

probes, it may be difficult to disassociate changes in reflectivity resulting from the phase 

change vs. scattering losses attributed to deformation of the probed surface upon shock 

breakout.  Last, streaked optical pyrometry has currently a lower limit of ~0.5 eV [34] 

(~5.8x103 K) in the temperatures detected. 

Gaining a fundamental understanding of lattice-level phenomena under dynamic 

conditions requires in situ lattice measurements with sufficient temporal and spatial 

resolution.  Dynamic x-ray diffraction (DXRD) techniques of both single [35, 36] and 

polycrystalline materials [37, 38] have successfully shown such capabilities and 

therefore, have been increasingly employed as lattice diagnostics in shock studies over 

the past few years.  Remarkable breakthroughs in single-crystal nanosecond DXRD 

studies have been the time-resolved measurement of uniaxial compression in Si [39] and 

the confirmation of the well-known α-ε (bcc-hcp) transition in shock-compressed Fe [40, 

41] along the [001] direction.  In general, single-crystal DXRD has proven to be 

important in experiments attempting to associate lattice-level phenomena to the target 

crystallographic orientation. 

X-ray diffraction from shock-loaded polycrystalline materials offers significantly 

more complex information compared to single crystals due to the unpredictable material 

behavior along grain boundaries and other material anisotropies.  In general, 

polycrystalline DXRD is highly desirable from the point of view of interrogating 

materials used in engineering applications.  Even though polycrystalline DXRD 
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techniques are potentially very important in extracting information related to material 

texture, strength-strain rate dependence, and shock-induced phase transformations, 

probing shock-compressed polycrystalline materials with DXRD, especially these of high 

Z and/or complex phase diagrams, is a formidable experimental challenge.  Because of 

texture, polycrystalline materials are inherently inefficient x-ray scatterers.  Under 

dynamic conditions, the x-ray scattering efficiency decreases even further because of the 

highly disordered microstructure. 

In this dissertation the research that was proposed had two main thrusts: a) develop 

x-ray diffraction instrumentation capable of capturing single-shot nanosecond lattice 

information from shock-induced phase transitions in polycrystalline materials with 

improved signal-to-noise ratio and angular resolution compared to existing DXRD 

techniques.  The x-ray diffraction technique developed had to be applicable to laser-based 

x-ray sources and shock waves.  b) Demonstrate measurement of a shock-induced phase 

transition aiming specifically in resolving the controversies of the hcp to bcc phase 

boundary in Mg. 

This dissertation begins by introducing the fundamental concepts in shock physics, 

dynamic material response, and x-ray diffraction necessary to understand the experiments 

and results described.  More specifically, in Chapter 2, a hydrodynamic treatment of 

shocks is presented, including the criteria of stable shock formation and shock 

propagation in a material.  The concept of shock impedance and its effect on shock 

propagation across an interface of materials having mismatched impedances are also 

discussed as it will prove useful in understanding the shock properties in our ablator 

coated targets.   
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In Chapter 3, the material response to uniaxial compression is presented.  The 

material response, from the viewpoint of a pressure-volume Hugoniot measurement, is 

divided into elastic, plastic, and strong shock regimes.  Since the topic of this dissertation 

encompasses phase transitions, a thermodynamic description of these phenomena is also 

included.  The ablation process responsible for shock formation is briefly described. 

Chapter 4 provides a basic background on x-ray diffraction as well as specific 

information on the crystal structures investigated.  Most importantly, dynamic x-ray 

diffraction in the context of interpreting dynamic lattice-level phenomena is presented.  

The laser plasma x-ray sources are also described. 

In Chapter 5, the experimental techniques developed by the author and implemented 

for dynamic x-ray diffraction experiments are presented.  Special emphasis is given on 

the focusing x-ray diffraction instrument designed specifically for probing shock-induced 

phase transitions and for measuring density in absolute equation of state studies.  

The results obtained from the application of the techniques presented in Chapter 5 

are described in Chapter 6.  These include measurement of the density from shocked 

polycrystalline Cu and of the scattering function from an amorphous material.  The latter 

was performed in order to demonstrate the capability of the instrument in future 

measurements from a liquid substance.  Most important, the first in situ lattice 

measurement of the hcp-bcc phase transition in shocked polycrystalline Mg is presented.  

Because of the accuracy in our density and pressure determination, our measurements 

enabled us to assess ab initio phase boundary calculations based on the density functional 

theory.  These results on the hcp-bcc boundary in Mg explored along the principal 

Hugoniot as well as preliminary experiments towards a shock-induced solid-melt 
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investigation in Bi are presented. All of the above results represent original work led by 

the author. 

To gain knowledge of the shock properties in the ablator-coated and uncoated Mg 

foils, 1D Hydrodynamic simulations using the HYADES code were also performed by 

the author.  Simulation results, including a pressure vs. laser intensity scaling in 

coated/uncoated Mg and the dependency of the shock profile on the laser temporal 

profile, are presented in Chapter 7.  

Last, an overview of the overall work in this dissertation, progress towards shock-

initiated phase transition studies in high Z materials, and future work directions in 

dynamic phase transition studies are discussed in Chapter 8. 
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2 SHOCK PHYSICS CONCEPTS 

Shock waves are formed as a result of impulsive loading at a rate that is much 

faster than the intrinsic response time of the material.  A classic example of shock 

formation is that of a snow plow creating a discontinuity between loose and packed snow 

that travels at a speed that is faster than the speed of the plow itself.  The speed of the 

density discontinuity in the snow is referred to in shock physics terms as the “shock 

speed” whereas the speed of the plow that equals the rate of displacement of snow is the 

“particle speed”.  The plowing action represents “shock-loading”; when the loading rate 

is faster that the time it takes for the snow ahead to be displaced a shock front is formed.   

In this chapter, fundamental concepts in shock physics are presented in order to 

provide the necessary background for discussing the material response under shock-

loading [42-44].  Specifically, the conditions for shock formation and assumptions 

allowing a simple hydrodynamic treatment of the shock properties are discussed.  The 

conservation equations of mass, momentum, and energy are derived as they will be used 

to describe the thermodynamic and mechanical properties of matter in its initial and 

shocked states.  The thermodynamical information obtained from the combination of the 

conservation equations and an equation of state (EOS) is also discussed.  Last, the effect 

of impedance on the shock amplitude as it traverses a boundary is explained.  The latter 

concept will become useful in understanding shock propagation in the multi-layer targets 

used in the experiments, as well as in the relation of particle velocity to free surface 

velocity measured by Doppler velocimetry.   
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2.1 Shock Wave Formation 

In a laboratory frame of reference, the speed at a location on a compression wave 

can be represented by c+u, i.e. the sum of the speed of sound c in the material and the 

particle velocity u.  For a stable shock wave to be formed c1+u1 in the low pressure region 

of the compression wave must be smaller than c2+u2 in the high pressure region (Figure 

2.1).  This implies the criterion of shock front formation, namely an increasing adiabatic 

sound speed with pressure or density: 

 

Figure 2.1.  Shock front formation from a compressional disturbance.  The 
"steepening" effect occurs because of the increasing speed amplitude with pressure. 

 

 !c
!P

> 0  and  !c
!"

> 0 . (2.1) 

 

The adiabatic sound speed c is linked to the bulk modulus κ and the material 

density ρ by 

 c = !
"
.  (2.2) 
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Since the bulk modulus κ can be expressed in terms of the partial derivative of pressure P 

with respect to volume V, and density ρ, at constant entropy S as 

 

! = "V #P
#V
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the criterion for stable shock front formation becomes 
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which is equivalent to  
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!V 2

"
#$

%
&'
> 0          (2.5) 

 

upon substitution of ρ=1/V.  Furthermore, for a stable shock front to be sustained in a 

medium, additional stability criteria are: c+u (in the shocked state) ≥U, and c0 (in the 

unshocked state) <U where U represents the shock speed.  The shock wave must be 

subsonic with respect to the shocked state and supersonic with respect to the material 

ahead.  Satisfying the above criteria should result in the formation of an infinitesimally 

thin shock front: however, dissipative mechanisms such as viscosity and heat conduction 
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counteract the infinite steepening of the shock front and therefore, a steady stress wave is 

formed when the two opposing effects cancel out.   

2.2 Conservation Equations 

Conservation equations (mass, momentum, energy) that describe the properties of the 

shock front and of the material through which it propagates can be derived assuming the 

following: 

a) The material behaves as an ideal fluid, namely there is no strength and therefore, 

no shear stresses.  In other words, the applied stresses are isotropic. 

b) No phase transformations or elastic-plastic effects take place. 

c) The shock is an infinitesimally thin discontinuity of pressure, density, and internal 

energy. 

d) The application of stress is uniaxial and there is no lateral motion. 

Because of assumptions a), d), the concepts of applied stress and material pressure can be 

used interchangeably.  For a solid the above assumptions are only valid in the case where 

the applied stress greatly surpasses the dynamic flow stress of the material such that any 

deviations from an isotropic stress state are small.   

Within the above “hydrodynamic” framework, we can use the example of an ideal gas 

in a cylinder compressed by a piston of unit area (Figure 2.2) to derive expressions 

connecting the uncompressed state variables P0, ρ0, E0 and u0 to the compressed state 

variables P, ρ, E and u, where P the pressure, ρ the density, E the internal energy and u 

the particle velocity of the fluid.  The speed of the discontinuity front between the two 
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sets of parameters will be assigned the variable U.  In addition, the piston speed and 

average particle speed in the compressed state are assumed to be equal.   

 

Figure 2.2.  Compression of a gas by a moving piston. After time t=t1 the piston has 
moved by a distance equal to upt1 whereas the compression (shock) front by Ut1.  The 
front is depicted as a discontinuity in the thermodynamic variables between the 
initial and final equilibrium states. 

 

The piston and gas is initially (t0=0) at rest (u0=0).  At t>0, the piston starts to 

compress the gas while moving at speed u.  The front separating the compressed from the 

uncompressed gas region propagates at speed U.  Conservation of mass requires that the 

compressed mass bounded by the shock front and the piston at t=t1 is equal to the 

uncompressed mass encompassed by the shock front in time t1.  Thus 

 

 !0Ut1 = !(U " u)t1 # !0U = !(U " u)#U
u
=

!
! " !0

. (2.6) 
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The change in momentum Δp between the initially stationary gas and the 

compressed gas at t=t1 is equal to the applied impulse I from the piston.  Since by 

definition 

 

I = F!t = !P
A

!t = !p ,        (2.7) 

 

for a unit cross-sectional area A the pressure in the compressed gas becomes equal to 

 

P ! P0( )"t = # U ! u( )"t $u% P ! P0( ) = # U ! u( )u .      (2.8) 

 

By substituting ρ  with the expression obtained from the mass conservation equation 

 

 P ! P0 = "0Uu. (2.9) 

 

The above equation relates the compressed fluid pressure to the particle and shock speed.  

The latter two variables can be experimentally determined to provide a shock pressure 

calibration as it will be shown in Chapter 5.  Substituting the shock speed U in the above 

expression, using equation (2.6), results in 

 P ! P0 =
" # "0
" ! "0( )u

2 . (2.10) 
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This is another very useful expression for the shock pressure as density and particle speed 

can both be measured experimentally. 

Last, conservation of energy in the piston/gas system is satisfied when the work 

done by the piston ΔWpiston over a distance ut1 equals the sum of the change in kinetic 

energy ΔK.E.fluid and internal energy ΔE (per unit mass)fluid in the gas, ΔWpiston=ΔK.E.fluid + 

ΔE (per unit mass)fluid, namely 

 

 P !ut1 = 1
2 "0Ut1 !u

2 + "0Ut1 ! E # E0( ) . (2.11) 

 

Eliminating the particle and shock speed by using the conservation of mass/momentum 

relations yields 

 

 E ! E0( ) = 1
2 P + P0( ) " ! "0

""0

#
$%

&
'(

 (2.12) 

 

where upon substitution of V=1/ρ   results in the Rankine-Hugoniot equation 

 

 E ! E0( ) = 1
2 P + P0( ) V0 !V( ). (2.13) 

 

These conservation equations, derived with the assumption of an infinitesimally 

thick discontinuity or a “jump” between an initial and final equilibrium state, are also 

valid for steady shocks and shocks whose rise time is much faster than the material 

response.  Therefore the above equations are applicable to calculations for a wide range 
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of loading conditions.  They also constrain the five state variables (P, ρ, E, u, U) to a two 

dimensional surface.  In order to eliminate another independent variable as well as be 

able to predict the equilibrium thermodynamic state of the material behind the steady 

shock, a material-specific equation is introduced.   

2.3 Equation of State 

A well-known equation of state (EOS) is that of an ideal gas 

 

 E P,V( ) = PV
! "1

 (2.14) 

 

where γ=CP/CV the ratio of the specific heat at constant volume and pressure respectively.  

In the context of shocks in an ideal gas, substitution of the above expression into the 

Rankine-Hugoniot equation results in a P-V relation 

 

 P
P0

=
! +1( )V0 " ! "1( )V
! +1( )V " ! "1( )V0

 (2.15) 

 

which is referred to as the shock Hugoniot in an ideal gas.  For a solid, a commonly used 

EOS is the Mie-Gruneisen 

 

 E(P,V ) = Ek (V ) +
V (P ! Pk (V ))

"(V )
 (2.16) 
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where Ek(V), Pk(V) the internal energy and pressure on a reference isotherm respectively  

and Γ(V) the Gruneisen parameter 

 

 !(V ) = V "P
"E

#
$%

&
'(V

. (2.17) 

 

The Mie-Gruneisen equation can also be related to any other reference state such as a 

Hugoniot state.  In this way the off-Hugoniot P, E parameters can be determined 

assuming the same volume between the Hugoniot and off-Hugoniot states. 

In the shock physics literature the experimentally measured shock speed U and 

particle speed u are often combined into a linear equation of the form: 

 

 U = C0 + Su.  (2.18) 

 

This is also referred to as an EOS, where C0 and S are constants.  A table with the EOS 

constants C0 and S for materials of interest is shown below, together with U-u, P-u, and 

u-ρ plots for the same materials (Figure 2.3).  These plots are common representations of 

the shock Hugoniot nominally starting from ambient pressure and temperature conditions 

(principal Hugoniot). 

 

 

 

 



 16 

Table 2.1  Properties relevant to shock calculations for materials of experimental 
interest. 

Material ρ 0 (103 kg/m3) C0 (103 m/s) S γ  

Mg 1.74 4.49 1.24 1.6 

Cu 8.93 3.94 1.49 2.0 

Bi 9.84 1.83 1.47 1.1 
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Figure 2.3.  U-u, ρ-u, and P-u plots for Mg, Cu, and Bi using the equation of state 
parameters from Table 2.1. 
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2.4 Shock Hugoniot and Entropy 

In the previous section the formulation of a Hugoniot was demonstrated by 

combining the three conservation equations with an EOS.  In this section, a brief 

description of the Hugoniot properties will be provided together with the thermodynamic 

information that they convey. 

Based upon the derivation of the Hugoniot, it is clear that it does not represent a 

thermodynamic path.  The Hugoniot is a locus of end states that a material attains as a 

result of shock-loading from an initial P-V state.  However, it can be shown that in the 

limit of weak shocks the Hugoniot overlaps with the material isentrope (Figure 2.4).  For 

increasing pressure, the Hugoniot is above the isentrope; the difference in the area 

underneath the isentrope and Hugoniot between the same initial and final P-V conditions 

represents the irreversible heating caused by the shock.  Figure 2.4 depicts the Hugoniot, 

isentrope, and Rayleigh line between the initial and final states for a compressed ideal 

gas.  The isentrope for an ideal gas is given by 

 

 P
P0

=
V
V0

!
"#

$
%&

'(

,  (2.19) 

 

after differentiating the expression for entropy S = CV ln PV !( ) + const.  and setting dS=0.   

The Rayleigh line, namely the line connecting the initial and final Hugoniot states, 

represents the thermodynamic path of the loading process.  Its slope is proportional to the 
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Figure 2.4.  P-V plot depicting the Hugoniot, isentrope, and Rayleigh line connecting 
specific initial and final end states accessed via shock-loading. 

 

shock speed in the material, which can be shown by equation (2.10) after substituting ρ 

with 1/V.  We find that  

 

 P ! P0
V0 !V

=
U
V0

"
#$

%
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 (2.20) 

 

where 

 

 U = V0
P ! P0
V0 !V

 (2.21) 

and 

 

 u = P ! P0( ) V0 !V( ) . (2.22) 
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Thus, the slope of the Rayleigh line is proportional to the shock speed in the material.  In 

addition, since the specific kinetic energy equals u2/2 it is obvious from equation (2.22) 

that it equals the triangular area defined by the Rayleigh, P0, and V lines.  From the 

Rankine-Hugoniot equation (2.13), the change in the specific internal energy is 

represented by the area bounded by the Rayleigh, V0, and V lines.  Note that the Hugoniot 

is a concave upward function, that is the velocity is an increasing function of the shock 

pressure as required by the stability condition equation (2.5). 

2.5 Shock Impedance 

The behavior of shock waves at boundaries such as these present in multi-layer 

targets is an important problem.  A number of laser driven shock experiments utilize 

targets coated by an ablator layer to avoid material preheat, in other words ensuring that 

shock compression occurs on a target at ambient temperature conditions.  Furthermore, 

critical information is often extracted from the surface velocity of a compressed target 

during shock break out into vacuum or into another substrate such as LiF.  Therefore, the 

shock propagation properties across different interfaces must be well-understood.   

Let us consider two materials A, B with density ρA and ρB respectively (Figure 2.5).  

When a stress wave of amplitude σi reaches their interface, transmitted and reflected 

stress waves of amplitude σt and σr are generated to satisfy pressure continuity across the 

interface 

 ! i +! r = ! t . (2.23) 

In addition, continuity of velocity where vi  the incident, vr  the reflected, and vt  the 

transmitted velocity is satisfied by the relation 
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 vi ! vr = vt . (2.24) 

 

 

Figure 2.5.  Shock transmission and reflection at a boundary of materials with 
different impedance.  The effect on the incident shock amplitude in the cases ZA> ZB 
and ZB<ZA is illustrated. 

 

 Defining the product of the static density and shock speed as the material shock 

impedance Z ! " U and from equation 2.9, ! i = ZAvi , ! r = ZAvr  and ! t = ZBvt .  

Substituting the above expressions into (2.23) and combining with (2.24) we obtain the 
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ratios for the reflected and transmitted velocity amplitude to the incident velocity 

amplitude 

 

 vr
vi

=
ZB ! ZA

ZB + ZA

 (2.25) 

 

and 

 

 vt
vi

=
2ZA

ZB + ZA

. (2.26) 

 

Similarly the ratio of the transmitted and reflected stress wave amplitudes to the incident 

wave amplitude becomes  

 

 ! r

! i

=
ZB " ZA

ZB + ZA

 (2.27) 

 

and 

 

 ! t

! i

=
2ZB

ZB + ZA

. (2.28) 

 

From the above expressions, it is clear that impedance matching where ZA=ZB 

results in no reflections at an interface.  A shock wave in material A should propagate 
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undisturbed into material B.  This situation is encountered in several shock experiments 

utilizing a transparent backing material such as LiF, onto which a target material of equal 

impedance is coated.  The advantage of this configuration is that a “true” measurement of 

the particle velocity can be made as vt = vi .  In the limit ZB=0, such as when a shock 

breaks out into vacuum, ! r = "! i , vr = !vi , and vt = 2vi .  A reflected rarefaction wave 

of equal amplitude to the incident shock wave is generated at the material/vacuum 

interface.  In addition, the latter result supports the common assumption made in free 

surface velocimetry, namely that the free surface velocity equals twice the particle 

velocity in the target upon shock breakout into vacuum. 

In metallic targets coated by plastic ablator layers, discussed in more detail in 

Chapter 7, impedance mismatch is inevitable.  As an example consider a 10 GPa 

amplitude shock wave at the interface of a parylene-N ablator ρCH=1.11 x103 kg/m3 and a 

magnesium target ρMg=1.74 x103 kg/m3.  At a pressure of 10 GPa, equation of state data 

for parylene-N suggest a shock speed UCH=4.9 x103 m/s and ZCH=5.4 (x106).  Similarly 

for Mg at 10 GPa, UMg=5.8 x103 m/s and ZMg=10.1 (x106).  The reflected shock wave in 

parylene-N has amplitude ! r = 0.3! i .  The transmitted shock wave has amplitude 

! t = 1.3! i .  In general, for a given ablation pressure, the addition of a lower Z ablator 

layer on a target material can result in a favorable pressure increase at the interface 

because of the impedance mismatch between materials.  Simulations of this effect will be 

shown in Chapter 7.   
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3 MATERIALS RESPONSE UNDER SHOCK COMPRESSION 

In this chapter a background on the material response under shock compression is 

provided [45-48].  The role of shear stresses is now taken into account, which 

necessitates the formulation of a set of stress-strain conventions that describe the non-

hydrostatic component of the material response.  As the effect of shear stresses is 

dependent upon the shock-loading conditions, two regimes in the material behavior are 

differentiated; a low pressure elastic-plastic regime where the material behavior transits 

from being “spring-like” to becoming permanently deformed, and a high pressure “strong 

shock” regime where shear stresses are negligible compared to the hydrostatic component 

of pressure.  Features in the shock wave profile are linked to the macroscopic material 

response in these regimes.  A special section is dedicated to the thermodynamics of 

shock-induced phase transformations as they are highly relevant to the experimental 

results described in Chapter 6.  Last, the basic physics of shock generation via laser 

ablation are presented. 

 

3.1 Stress-Strain Conventions in Non-Hydrostatic Solids 

So far in our hydrodynamic treatment of shock wave propagation, pressure has 

been considered as a scalar.  More specifically, we have assumed a compressive load 

applied to an isotropic fluid in one direction (e.g.  x axis).  For materials of interest shear 

stresses and anisotropy require new conventions to link the quantities derived earlier in a 
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hydrostatic state to these of a non-hydrostatic solid.  Note that pressure in a fluid is 

related to stress, namely the force applied on a differential element in a solid by 

 

  

 

Pij = !" ij ,     (3.1) 

 

where by convention positive pressure results in compression.  Within a Cartesian 

coordinate system, x, y, z are the principal coordinates and all off-diagonal elements 

vanish.  Hence 

 

Pxx = Px ,  Pyy = Py ,  Pzz = Pz .    (3.2) 

 

In addition, considering a planar shock front propagating in the x direction 

  

Py = Pz .     (3.3) 

 

Compression of a material in one axis only is referred to as a state of uniaxial 

strain as the material is allowed to deform only along the direction of the compression 

front.  Upon release of the pressure the material returns to its original state much like a 

spring obeying Hooke’s law.  Deformation along the axes perpendicular to the shock 

front is encountered when defect formation and propagation in the material causes the 

material to deform plastically as it will be explained later. 
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Since the pressure component measured in shock experiments corresponds to Px, a 

mean pressure in the material can be defined as  

 

    

 

P =
Px + Py + Pz

3

! 

" 
# 

$ 

% 
& =

Px + 2Py

3

! 

" 
# 

$ 

% 
& .   (3.4) 

 

From the simple identity 

 

    

 

Px =
Px + 2Py

3

! 

" 
# 

$ 

% 
& + 2

Px ' Py

3
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" 
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% 
&     (3.5) 

 

(3.4) can be re-written as  

 

    

 

P = Px !
4
3
"       (3.6) 

 

where τ is called the maximum resolved shear stress, that is the shear stress on planes 

oriented at 45˚ with respect to the shock propagation axis.  From (3.6) the maximum 

resolved shear stress equates to 

 

    

 

! =
Px " Py( )

2
.      (3.7) 
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In addition, in plane shock wave experiments the dynamic yield strength [49] is a 

property that quantifies the difference between the longitudinal and lateral stresses in an 

isotropic material under uniaxial strain where 

 

    

 

Y = Px ! Py " P = Px !
2
3

Y .    (3.8) 

 

Note that in the case of hydrostatic (rather than uniaxial) compression   

 

P = Px = Phydrostatic.  

The difference between the hydrostatic Hugoniot and the Hugoniot inclusive of shear 

stresses is shown in Figure 3.1.  At increasingly higher shock pressure the yield strength 

becomes small compared to Phydrostatic so the shock pressure can be safely approximated to 

a hydrostatic Hugoniot end state.  More details on the material response at different shock 

regimes are presented below. 
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Figure 3.1.  Hugoniot curve relative to the hydrostatic Hugoniot (often 
approximated by the material isentrope at low pressures).  The pressure at the cusp 
of the Hugoniot is the Hugoniot Elastic Limit (HEL). 

3.2 Elastic and Plastic Shock Regimes 

The pressure region where the P-V Hugoniot of a material is a linear function of 

volume is called the elastic shock regime.  The strain in the material is uniaxial along the 

direction of shock propagation and there is no transverse motion.  Most importantly, the 

material deforms elastically during shock-loading restoring its initial state after shock 

release.  The maximum pressure beyond which this elastic behavior ceases is the 

Hugoniot Elastic Limit (HEL).  In the elastic shock regime the loading path (Rayleigh 

line connecting initial and final states) overlaps the Hugoniot.  The speed of the elastic 

wave in the material is given by the longitudinal sound speed 
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cl =
! + 4

3 G
"0

      (3.9) 

 

where κ the bulk modulus of the material defined by equation (2.3) and G the shear 

modulus.  A comprehensive treatment of the elastic properties for different types of 

materials can be found in several materials science/metallurgy textbooks [46, 48].  From 

equation (2.20) it can also be shown that under uniaxial strain (and stress) conditions the 

pressure in the material is  

 

    

 

P = V0 !V
V0

"0cl
2 .     (3.10) 

 

The application of a compressive load below HEL leads to the generation of a single 

shock front with amplitude given by equation (3.10). 

Above the HEL defect formation and propagation in the material causes the 

structure to deform in both the longitudinal and lateral directions to the shock front.  

Deformation in this pressure region becomes plastic, namely the material deforms 

irreversibly.  Assuming the amplitude of the shock front to be higher than HEL, the speed 

of the plastic wave is defined by equation (2.1) that is the shear stresses are neglected.   

Another attribute of the plastic shock regime that distinguishes it from the elastic 

shock regime is the presence of two separate shock fronts.  Figure 3.2 elucidates this 

effect.  For pressures less than PC  an elastic precursor wave is generated between the 
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initial (P0, V0) state and the (PA, VA) state corresponding to the HEL pressure.  A second 

(plastic) wave originates from (PA, VA) to the final state (PB, VB).  Since the Rayleigh line 

connecting the states A and B has a smaller slope than that of the linear response region 

the plastic wave propagates at a lower speed than the elastic wave.   

 

Figure 3.2.  Illustration of single shock wave generation in the elastic regime 
bounded by P0-PA.  Shock wave splitting occurs for P>PA that is when the Hugoniot 
end state lies in the plastic regime.  The elastic precursor has greater speed than the 
plastic wave indicated by the greater slope of the Rayleigh line in the elastic regime.  
For P>PC only a single plastic wave propagates in the material with speed greater 
than that of the elastic precursor. 

In this example the elastic and plastic shock speeds are 
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U A = V0
PA ! P0

V0 !VA

 and 
  

 

UB = VA
PB ! PA

VA !VB

 where UA> UB.  (3.11) 

 

For pressures greater than PC only a single shock exists.  This is called the strong shock 

regime. 

3.3 Strong Shock Regime 

In the example presented above a single shock front is established when a 

material is shocked to a Hugoniot end state with P>PC assuming that material remains in 

its initial structural phase.  However, shock Hugoniots may traverse a number of phase 

boundaries.  If the target end state has P>PD shock wave splitting occurs in a similar 

manner as in the elastic-plastic regime (Figure 3.3).  A mixed phase region results from 

shock pressures between PE and PF.  A single shock front is present in phase 1 between 

pressures PC and PD and in phase 2 for P>PF.  The phase diagram and respective Hugoniot 

for the materials investigated is shown in Figure 3.4.  Shock-loading Bi from ambient P-T 

is expected to result in multiple shock fronts as there is at least two low pressure solid-

solid phase boundaries [50-55].  For this reason, shock melt investigations in Bi choose to 

access the melt region by preheating the Bi samples.  At an elevated initial temperature a 

pressure of greater than 3 GPa is sufficient to achieve melt.  On the other hand, Cu is a 

material where the shock Hugoniot does not encounter a phase boundary until about 230 

GPa.  This makes Cu a good material for studies of strength, elastic-plastic effects etc. 

[21, 56-58].  Melt however requires a shock of amplitude exceeding 230 GPa.  Last, Mg 
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has a phase diagram with both solid-solid and solid-melt phase transitions at easily 

accessible pressures by laser-induced shock-loading [59].  This is one of the reasons Mg 

was chosen for our study of shock-induced structural transitions.   

 

Figure 3.3.  P-V diagram for a material for which shock compression provides 
access to two different phases.  Similar to the elastic-plastic regime a double shock 
front results for PC<P<PF.  The volume change between the two phases determines 
the extent of the shock wave splitting region as well as the difference in the speed of 
the shock fronts. 
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Figure 3.4.  P-T phase diagram and principal Hugoniot for Bi, Mg, and Cu. 
Intersection of the Hugoniot with a phase boundary results in the formation of a 
2nd shock front. 
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3.4 Shock-Induced Phase Transitions 

3.4.1 THERMODYNAMICS OF PHASE TRANSITIONS 

The equilibrium P-T phase diagram of materials has traditionally been 

investigated under static conditions.  Most equilibrium experimental data has been 

obtained in diamond anvil cells where both pressure and temperature can be easily 

controlled.  In our experiments, different regions in the P-T diagram of various materials 

were accessed dynamically via shock-loading.  During shock-loading the timescale for 

structural changes to occur is of the order of the shock duration or less, namely 

subnanosecond.  Therefore, the ultrafast timescales imposed by the loading mechanism 

make shock-induced phase transformations an extremely interesting topic.  In this 

section, I will attempt to link equilibrium thermodynamics of phase transformations to 

the shock Hugoniot properties following closely the treatment of Duvall and Graham 

[60].  Even though shock-loading is fundamentally a non-equilibrium process, 

equilibrium thermodynamics can still be applied for gaining an insight into the concepts 

of phase stability, phase transition volume change, and the shock Hugoniot.   

Phase stability, at constant temperature and pressure, occurs where the Gibbs free 

energy G is minimized.  The definition of G(P,T) is  

 

 G = H ! TS = E + PV ! TS , (3.12) 
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where H is the enthalpy, T the temperature, and S the entropy of the system.  In 

differential form G is given by 

 

 dG = VdP ! SdT  (3.13) 

after substitution of the 1st law of thermodynamics for dE where 

 

 dE = TdS ! PdV . (3.14) 

 

From (3.13) we can deduce the first derivatives of G with respect to pressure and 

temperature at constant T and P respectively 

 

 !G
!P

"
#$

%
&' T

= V  and !G
!T

"
#$

%
&' P

= (S . (3.15) 

 

Hence the slope of the Gibbs free energy as a function of pressure is equal to the volume 

at constant temperature (Figure 3.5).  For first order phase transformations the slope 

becomes discontinuous at the phase boundary resulting in a volume change.  A volume 

differential accompanies all first order phase transformations such as melting and 

solidification.  In shock-induced transformations a volume change manifests itself as a 

“kink” in the velocity profile recorded by velocimetry (VISAR) due to shock wave 

splitting.   
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As it was shown in Chapter 2, particle velocity, the quantity typically measured 

by velocimetry, is proportional to the square root of the volume difference between the 

initial and final Hugoniot state.  For the well-known !(bcc)" #(hcp)  phase 

transformation in Fe [61-64] the corresponding volume decrease is ΔV/V0=6.5%.  Such 

volume change was detectable in velocity profile measurements performed by a number 

of research groups and for this reason a wealth of information exists on the bcc to hcp 

boundary in Fe even prior to the development of dynamic x-ray diffraction.  On the other 

hand, phase transformations with an expected volume [65, 66] change of <1% such as the 

hcp to bcc in Mg are extremely challenging to diagnose.  Thus, an estimate of the phase 

transition volume change is always useful in order to predict the presence or absence of a 

double shock front or “kink” in the particle velocity profile measurement. 

 

Figure 3.5.  a) The Gibbs function G(P, T) at constant temperature for first order 
phase transformations.  b) The origin of the volume discontinuity at the phase 
boundary of first order phase transformations is illustrated. 
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Having discussed the origin of the volume discontinuity in a first order phase 

transformation we now examine the thermodynamic behavior at a phase boundary.  The 

criterion for equilibrium phase coexistence is 

 

 dGI = dGII !  (3.16) 

 

 VIdP ! SIdT = VIIdP ! SIIdT  (3.17) 

 

The curve defined by the intersection of GI and GII is mathematically expressed by the 

Clausius-Clapeyron equation 

 dP
dT

=
!S
!V

=
!H
T!V

. (3.18) 

 

Equation (3.18) describes the phase boundary in P-T space.  ΔH represents the latent heat 

of the phase transformation.  Depending on the slope of the phase boundary dP/dT can be 

either positive or negative.  Assuming that ΔV<0 for a shock compressed material, the 

shape of the Hugoniot for the cases where ΔS<0 and ΔS>0 is explained below (Figure 

3.6). 
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Figure 3.6.  Pressure-volume plot of the isotherm and shock adiabat (Hugoniot) 
when a) dP/dT>0, ΔS<0, ΔV<0 and b) dP/dT<0, ΔS>0, ΔV<0. 

To understand the features on the shock Hugoniot for materials undergoing a 

phase transformation we must first remind ourselves that the Hugoniot is not a 

thermodynamic path.  However, the thermodynamic process at the shock front is assumed 

to be adiabatic.  The shock Hugoniot (adiabat) for the case where ΔV<0 and ΔS<0 is 

shown in Figure 3.6a.  From (3.18) such conditions imply that dP/dT>0 such as in the 

example of the solid-liquid phase boundary in Cu.  The Hugoniot in this case exhibits a 

discontinuity at the onset of the phase transformation at VI.  A mixed phase region exists 

between VI-VII.  Similarly, when ΔV<0 and ΔS>0, dP/dT<0.  A decrease in temperature 

with increasing pressure is encountered in the negatively sloped boundary of the solid-

liquid phases in Bi and the hcp-bcc phases in Mg.  The second discontinuity in the 

Hugoniot slope at VII can be explained by means of a P-V-T surface where the family of 

isotherms, having decreasing temperature as P increases, along with the Rankine-
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Hugoniot curve are plotted [60].  In both cases a), b), stable two wave structures can be 

supported depending on the Hugoniot end state.  It can also be observed that as VI-VII 

becomes smaller the phase coexistence region and the two-wave stability pressure range 

decreases. 

3.4.2 KINETICS OF PHASE TRANSITIONS 

The kinetics of first order phase transformations is a topic of great experimental 

and theoretical interest.  In dynamic compression experiments the kinetics of non-

equilibrium phase transformations can span timescales from µs to ps.  For this reason, if 

there is no prior knowledge of the transformation mechanism and its corresponding 

timescale, detecting such transient processes becomes extremely challenging.  In general, 

there are two broad classes of phase transformations: displacive and diffusional [67].  A 

type of displacive transformation is the so-called martensitic and it takes place with a 

well-defined crystallographic relationship between the parent and daughter phases.  An 

example of this type of phase transformation is the hcp to bcc transition in Mg [68, 69].  

The suggested mechanism, simulated by ab initio molecular dynamics calculations, 

consists of a distortion of the (001)hcp plane into the (110)bcc by displacement of the atoms  

in the B layer of the hcp structure (ABAB…) followed by shearing (Figure 3.7).  

Therefore there is a change in volume associated with this type of transformation which 

for Mg is ~ 1%.   
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Figure 3.7.  Illustration of the atomic re-arrangement that results in the hcp to bcc 
transformation in Mg.  a) Atoms are initially displaced by an equal amount in layer 
B ((002) hcp plane).  Further shearing brings the (100) hcp to coincide with the (110) 
bcc plane.  b) 3D views of the corresponding planes in the hcp and bcc structure are 
shown. 

On the other hand, in diffusional transformations there is no specific 

crystallographic correspondence between the initial and final phase.  Diffusional 

transformations also occur at a much slower rate than displacive transformations and are 

not accompanied by a macroscopic change of shape.  In general, the differences between 

displacive and diffusional transformations stem from the underlying phase nucleation and 

growth mechanisms.  For this reason, I will briefly try to explain a simple model of 

nucleation and growth kinetics known as the Kolmogorov-Johnson-Mehl-Avrami 
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(KJMA) model [65, 66].  This model has successfully described a number of systems 

[70].   

When a system is forced to transform from phase 1 to phase 2 by a sudden change 

in pressure and temperature conditions, small regions of phase 2 will start to form at a 

nucleation rate of γ(t).  These stable phase 2 domains will continue to grow isotropically 

at a rate u.  At time t the radius of the domain that formed at t' becomes 

 

 r(t ! t ') = u " (t ! t ')  (3.19) 

 

The volume growth rate is then given by 

 

 w(t ! t ') = 4"u3(t ! t ')2  (3.20) 

 

Now taking into account the nucleation rate of the phase 2 domains γ(t) and the fact that 

phase 2 domains can only grow in the fractional volume occupied by phase 1, namely 

v1 = (1! v2 )  we see that the fractional volume of phase 2 is  

 

 dv2
dt

= (1! v2 ) w(t ! t ')" (t ')
0

t

# dt '  (3.21) 

 

Assuming that at t!"  the two phases coexist with equilibrium fractional volumes v1
0 

and v2
0 equation (3.21) becomes 
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dv2
dt

= (v02 ! v2 ) w(t ! t ')" (t ')
0

t

# dt '    (3.22) 

 

Taking v2
0 as a constant in time (3.22) can be integrated to result in a solution of the form 
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where τ   is the kinetic time constant.  Depending on the nucleation process n can take 

values between 1-4.  For homogeneous nucleation, a process having a time-independent 

growth rate γ=const., n varies between 3<n<4.  For heterogeneous nucleation, a process 

depending upon grain boundaries, impurities, and other defects in the material to initiate 

nucleation, n<3.  In general, homogeneous nucleation is an extremely fast process.  In 

studies of polycrystalline materials undergoing phase transformations (displacive or 

diffusional) phase nucleation at grain boundaries is the dominant mechanism.  

Furthermore, the KJMA model assumes no externally applied forces such as those of 

shock compression.  To obtain kinetics information under such condition the KJMA 

model must be coupled to a hydrodynamics model.   
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3.5 Shock Generation via Laser Ablation 

Investigating the response of materials under shock-loading requires the application 

of a well-characterized load.  A number of loading techniques have been employed over 

the years each with their advantages and disadvantages.  Projectile impact has been the 

most broadly used technique to generate shock fronts, employing gas guns [71], 

magnetically [72] or laser driven flyer plates [13], and explosives.  This technique has 

been particularly valuable in high accuracy EOS measurements because of the planarity 

of the induced shock fronts.  On the other hand, projectile impact has a lower limit on the 

timescales that can be investigated (typically microseconds).  In addition, the maximum 

flyer plate velocity attainable is dependent on the material properties of the flyer plate 

(e.g.  melting temperature of Al flyer plate) and for this reason, shock pressures are 

limited to <200 GPa. 

Inducing shocks into a solid sample by direct laser irradiation [73] is a versatile 

technique for the study of dynamic material response.  Depending on the laser source, 

loading timescales can be varied from microseconds to femtoseconds.  The shock 

pressures achieved can easily exceed 500 GPa depending on the material Hugoniot.  The 

main drawback however of laser-induced shock-loading is that of shock planarity which 

is critical for the accurate determination of the Hugoniot end states.  To ensure planarity a 

sufficiently large laser spot diameter to sample thickness ratio must be used.  In addition, 

beam smoothing techniques (such as phase plates) must be utilized to ensure a spatially 

uniform beam profile.  A temporally constant shock profile is much more difficult to 
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obtain as constant laser irradiance does not induce a constant pressure in the sample (see 

Chapter 7).  For this reason hydrodynamics simulations are very useful in understanding 

the pressure history as a function of irradiance and position in the sample.   

Despite the above difficulties, laser-induced shock-loading is still the most suitable 

technique for studying phenomena that occur at timescales within the rising edge of the 

shock front, such as elastic-plastic phenomena and phase transformations.  Since these 

were the primary phenomena studied throughout my PhD research, in this section I will 

summarize briefly the processes involved in the laser-matter interaction that lead to shock 

wave formation. 

3.5.1 MOMENTUM TRANSFER BY LASER ABLATION  

In the experiments described later, a laser pulse of a few nanoseconds in duration 

is incident on a metal target to induce a shock wave (Figure 3.8).  Energy is initially 

deposited within the skin depth of the material causing ablation on the surface of the 

material.  Subsequently the laser energy is absorbed in the plasma formed via ablation 

near the critical plasma density ncrit.  Momentum transfer from the plasma expanding into 

vacuum to the sample results in a forward moving shock front in the sample, similar to a 

rocket engine effect.  To derive a scaling law between the incident laser intensity I and 

the ablation pressure Pa let us assume that a fraction α of the laser intensity is absorbed 

and converted to kinetic energy in the backward expanding plasma such that 
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Figure 3.8.  Illustration of the laser-target interaction leading to ablation on the 
target surface and subsequent formation of an expanding plasma.  From 
conservation of momentum a forward propagating pressure wave is generated.  
Three regions of interest are shown.  Region I: low density, collisionless plasma.  
Region II: dense, collisional plasma with density reaching a critical value at which 
laser light cannot penetrate further.  Region III: compressed condensed matter 
phase due to shock-loading. 
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where A and E the laser spot area and energy respectively and taser the laser pulse 

duration.  Since the ablated mass flux is related to the density ρ and ion velocity v by 
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 m
Atlaser

= !v  (3.25) 

 

 (3.24) can be simplified to 

 

 ! I = "v3

2
. (3.26) 

 

Conservation of momentum (or Newton’s 3rd law) requires that a forward pressure front 

is generated in the sample in reaction to the backward expanding material.  The 

amplitude of this ablation-induced pressure Pa is then given by 

 

 Pa = !v2 = !1/3 2" I( )2 /3 . (3.27) 

 

Equation (2.37) associates the ablation pressure in a sample to the incident laser intensity 

with a power 2/3 scaling.  From empirical and theoretical models the simplified rocket 

engine model generally overestimates the ablation pressure as function of laser intensity.  

The overestimated pressure scaling could be attributed to the fact that the absorbed laser 

energy has been applied solely towards the kinetic energy of the ions in the plasma, 

omitting processes such as heat conduction and thermal radiation.  A comprehensive 

treatment of the ablation pressure as a function of irradiance for a number of materials 

using a 1D radiation hydrodynamics code (HYADES) can be found in [74].  In Chapter 7 
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simulations using the same hydrocode will be presented for the materials studied.  The 

processes of laser absorption, heat conduction, and thermal radiation are discussed next. 

3.5.2 LASER ABSORPTION IN A PLASMA 

The rocket engine model presented above provides an approximate scaling of the 

ablation pressure with laser intensity if the ablation mass density ρ  (or ion density) and 

absorption coefficient α are known.  We can obtain values for these coefficients by 

looking more closely into the interaction of the laser field with the ablation/plasma front 

[75].   

 After the initial breakdown of the target surface the laser energy does not reach 

the ablation front any longer.  Instead it is deposited in the expanding plasma formed 

whose density variation can be described by the three different regions.  Region I, 

consists of a low density collisionless plasma where the Debye length λD is much greater 

than the ion spacing R where  

 

 !D =
kTe

4"nee
2  and R =

3
4"ni

#
$%

&
'(

1/3

. (3.28) 

 

Region II is the area of a dense collisional plasma with Debye length comparable to the 

distance of neighboring ions.  In this strongly coupled plasma, where Γ the plasma 

coupling parameter 
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the plasma density gradient reaches the critical electron density for the incoming laser 

light.  Since the critical density  

 
 
ncrit =

!mec
2

e2"2Laser
!
1.1#1021

"[µm]2Laser
 (3.30) 

 

is the maximum density the laser light can penetrate we can assume that the laser energy 

is mostly deposited in the plasma near ncrit.  Therefore, the ablation mass ρ can be 

approximated to  

 

 ! =
ncrit
Z *

 (3.31) 

 

where Z* the ionic charge state.  In addition, since in Region II collisional processes 

dominate we can assume that Inverse Bremsstrahlung (IB) [76-79] is the primary 

absorption mechanism in the plasma in Region II.   

nverse Bremsstrahlung refers to the process in which an electron absorbs a 

radiation as it scatters in the Coulomb field of an ion.  For an exponential electron density 

profile  
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the absorption factor a [80] is given by 

 

 ! = 1" exp "
8Lvei

crit

3c
#

$
%

&

'
(  (3.33) 

 

where νcrit
ei the electron-ion collision frequency at the critical density and L the plasma 

scale length.  Experimentally the fraction of laser energy absorbed in Region II can the 

inferred from measurements of the scattered light.  The fractional amount of energy 

absorbed is subsequently transported by thermal conduction and radiative heat transport 

to the ablation front.  Therefore, three temperature (ions, electrons, radiation) hydrocode 

simulations taking into account thermal conduction and radiation diffusion are required to 

relate the absorbed laser intensity in the expanding plasma to the ablation pressure in the 

material.   

Region III represents the shock-compressed condensed phase whose temperature 

can be found by measurement of the Hugoniot end state.  The propagation of a thermal 

wave behind the shock front and the radiation from the material is described next. 

3.5.3 HEAT CONDUCTION  

As mentioned earlier, the energy absorbed at the plasma critical density is carried 

to the solid target (ablation) surface by electron transport.  The build up of “hot” electrons 
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at the ablation surface results in a thermal gradient!T  and subsequently a thermal wave 

towards the cold, lower density region of the target.  In lattice measurements of shock-

compressed solids, it is critical that the interplanar spacing measured by x-ray diffraction 

corresponds to the lattice strain induced by the shock only.  A thermal wave can cause the 

lattice to expand, which would result in an error in our lattice measurement under shock 

compression. 

Assuming 
 

!Te
Te
!1  (diffusive heat transport) as well as Maxwellian electron 

distribution function, the Spitzer thermal conductivity [81] 

 

 ! e = " 0
3
4

1
2#( )1/2

kB
me
1/2Z *e4 ln$C

kBTe( )5 /2  (3.34) 

 

can be inserted into the equation for conductive heat flux 

 

 S = !" e#Te  (3.35) 

 

where γ0  (~1) the Spitzer factor depending on the ionization state Z* and lnΛC the 

Coulomb logarithm.  Considering diffusion in one direction e.g.  in x, (3.35) can be 

written as  

 

 S = C kBTe( )5 /2 !Te
!x

" C kBTe( )5 /2 Te
x f

=
C
kB

kBTe( )7 /2 1
x f

 (3.36) 
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where C a constant composed of the conductivity terms in (3.34) left of kBTe( )5 /2 .  From 

energy conservation the conductive heat flux in the sample can be equated to the thermal 

energy density of an ideal gas.  Since the latter is equal to 

 

 S =
3
2
nekBTe

x f
t

 (3.37) 

it can be shown by substituting with 

 

 kBT =
2
3
St
x f

1
ne

 (3.38) 

 

into (3.36) that 

 x f ! t
7
9  (3.39) 

 

where x f  the position of the heat front along the x direction.  The above relation 

indicates that the thermal wave front has a sublinear dependence on time (Figure 3.9).  

On the other hand the position of a shock front xs =Ut  depends linearly on time, which 

implies that the shock front will overtake the thermal front at some point in time.  The 

distance in the sample at which this happens is equal to  
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Figure 3.9.  The x-t relation for a steady heat conduction front where gradT/T«1. 
The shock front eventually catches up with the heat front at distance x0. 

3.5.4 EQUILIBIRUM RADIATION TRANSPORT 

Blackbody radiation emission in shock-compression is encountered in the context 

of both a plasma in thermal equilibrium and a shock-heated solid in thermodynamic 

equilibrium.  In the former, radiation heat transport in the ablation plasma contributes to 

the formation of the shock front.  In the material at solid density the radiation mean free 

path is very small, so radiation transport can be “switched-off” in hydrocode simulations 
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of the shock propagation in the compressed solid.  On the other hand, the spectral 

emissivity [82] of a target heated by the shock front can yield important information 

about the Hugoniot state.  There have been a number of studies, especially in shock-

induced phase transformations, where time-resolved pyrometry [83-85] has been 

implemented in order to measure the temperature profile during loading and release of 

the shock pressure.  In general, it is assumed that the states across the P-V-T 

discontinuity are in thermodynamic equilibrium so that the Hugoniot jump conditions 

apply.   

Thermodynamic equilibrium implies that emission from the shock-heated target is 

isotropic.  For radiative equilibrium the spectral energy density function, namely the 

energy per volume per unit frequency interval for a frequency ν is given by Planck’s law 

 

 Uv (!) =
8"h! 3

c3
1

e
h!
kT #1

. (3.41) 

 

Defining x = h!
kT

 and performing integration over dx from 0 to ∞ results in an 

equilibrium spectral energy density  

 

U =
4!
c
T 4 = 1.37 "102T [eV ]4[erg / cm3]    (3.42) 
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where ! =
2" 5k 4

15h3c2
 is the Stefan-Boltzman constant.  It can be shown that spectral energy 

density maximizes at 

 

h! = 2.822kT  or "peak =
2898[µm]
T [K ]

.   (3.43) 

 

Because of (3.35) (Wien’s displacement law), there is a lower boundary to the 

temperatures that can be detected based upon the spectral sensitivity of current 

pyrometric detectors.  This limit is at ~ 1eV which corresponds to a peak emission 

wavelength of 250 nm.  For the temperatures relevant to our experiments measurement of 

the spectral emission would have been very difficult as the peak emission wavelength 

would have been around 2-6 µm.   
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4 X-RAY DIFFRACTION FUNDAMENTALS 

The principal experimental goal of this dissertation was to identify shock-induced 

phase transitions via a time-resolved measurement of the lattice.  This goal was achieved 

by developing x-ray diffraction instrumentation and by applying fundamental x-ray 

scattering principles to extract information about the atomic arrangement from the 

captured x-ray signal. 

In this chapter, a basic background on x-ray diffraction is presented.  A description 

of the pertinent crystal structures is provided at the start of the chapter followed by an 

explanation of the Bragg and Laue formulations used in relating diffraction peak position 

to the lattice plane origin of the diffracted signal.  The diffraction peak intensity is 

qualitatively discussed including crystal (structure factor) and x-ray energy specific 

factors.  Absorption of x-rays as a function of material atomic number Z and x-ray energy 

is also presented to assess x-ray penetration depth and x-ray filter attenuation for the 

different x-ray sources used in this study.   

Having provided a basic x-ray diffraction background, the effects of lattice 

compression on the x-ray diffraction signal are presented.  The macroscopic material 

response discussed in Chapter 3 is associated to microscopic lattice measurements.  

Specifically, a relationship between interplanar lattice spacing and density for the cases 

of uniaxial and hydrostatic compression is derived.  Last, the nanosecond laser-plasma x-

ray sources used to probe the lattice during shock compression are described. 
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4.1 Geometric Description of Crystals 

Designating lattice planes and directions within crystal structures is important to 

both experimental aspects of x-ray diffraction and in describing structure-dependent 

physical properties.  For example, in single crystal x-ray diffraction knowledge of the 

sample orientation, namely the lattice plane parallel to which the samples are cut and 

polished from the crystal rod is critical for detector and x-ray source alignment.  In 

addition, the sample orientation is equivalent to the shock propagation direction in 

ablatively driven shocks, as planar shocks always traverse the sample in a direction 

normal to the ablated surface.  Therefore, in studies of effects with an orientation 

dependence such as phase transformation mechanisms or slip systems responsible for 

plastic deformation, a well-characterized sample is crucial to the observed effects and 

their interpretation. 

In this section a description of the crystal structures present in our experiments is 

given.  For Cu and Mg the relevant crystal structures are face centered cubic (fcc), 

hexagonal close packed (hcp) and body centered cubic (bcc) (after phase transition). 

4.1.1 CUBIC LATTICES 

In crystallography, a Bravais lattice refers to a periodic array on which single 

atoms, unit cells, or groups of atoms are attached in a repeated fashion [86, 87].  The 

Bravais lattice is described by a position vector  

 

  R
!"
= ma
"
1 + na
"
2 + ka
"
3  (4.1) 
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where m, n, k are integers and  a
!
1 ,  a
!
2 ,  a
!
3  are the primitive vectors.  These vectors span 

all Bravais lattice points as m, n, k are varied.  For a simple cubic structure the primitive 

vectors are orthogonal ( x! ,  y
! ,  z!  directions) and have magnitude equal to the length of the 

cubic cell a.  An fcc unit cell can be constructed from the simple cubic cell by adding one 

atom at the center of each of the six faces (Figure 4.1).   

The fcc lattice can be represented by the symmetrical primitive vectors  

 

Figure 4.1.  Illustration of the conventional FCC and BCC unit cell.  The primitive 
vectors for each lattice structure are also drawn.  The additional atoms in the FCC 
and BCC unit cell compared to a simple cubic cell are shown in blue.  Note that the 
unit cells contain 4 atoms (FCC) and 2 atoms (BCC) . 

 

 
 
a
!

1 =
a
2
y" + z"( ), a! 2 =

a
2
z" + x"( )  and a

!
3 =

a
2
x" + y"( ) . (4.2) 

 



 58 

The selected fcc unit cell shown here contains four atoms ( 1
2
! 6 + 1

8
! 8 atoms= 4 

atoms).  Similarly, the bcc unit cell can be considered as a simple cubic cell containing an 

additional atom in the center of the cube (1+ 1
8
! 8 atoms= 2 atoms).  The primitive 

vectors for the bcc lattice shown here are 

 

 
 
a
!

1 = ax", a
!

2 = ay"  and a
!

3 =
a
2
x" + y" + z"( ) . (4.3) 

 

A table with lattice parameters for cubic metals is shown below.  This table will become 

useful in the calculation of diffraction peak positions later. 

 

Table 4.1  Lattice parameter a (Å) for representative elements with FCC or BCC 
crystal structure. [86] 

Material a (Å) Lattice 

Al 4.05 FCC 

Cu 3.61 FCC 

Fe 2.87 BCC 

Ta 3.31 BCC 

V 3.02 BCC 

 

Designating planes and directions in cubic systems is quite simple.  A procedure 

can be applied to all structures, regardless of the axial coordinate system, known as the 

Miller index notation.  For plane indexing, the intercepts of the plane with the axis 
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coordinates are initially determined.  Then the reciprocals of the intercepts are taken and 

cleared of the fractions so that a set of (hkl) integers can be found.  Similarly, the Miller 

index notation for directions dictates that the vector in the desired direction is First 

expressed in terms of a fraction of the axial coordinates.  These fractions are 

subsequently cleared to result in a set of integers [UVW] (Figure 4.2). 

 

Figure 4.2.  Example of crystallographic indexing of a) planes and b) directions.  In 
a) the plane shaded in yellow is the (243) as it intercepts the axial coordinates at 1, 
1/2 and 2/3.  The plane shaded in purple is the (020) since it intercepts the axes at  ∞, 
1/2 and ∞.  In b) the [110] and [221] directions are shown.  For vector [110] the x 
and y axis intercept is at 1, and z axis intercept at 0.  For vector [221] the 
corresponding x-y-z intercepts are at 1, 1, and 1/2 respectively.   

A useful parameter in x-ray diffraction calculations is the interplanar spacing dhkl 

[88, 89].  For cubic structures  

 1
dhkl
2 =

h2 + k2 + l2

a2
. (4.4) 

 

It is instructive to demonstrate the derivation of dhkl so that it can be calculated for any 

other crystal structure.  As we will see later, evaluating dhkl for a given lattice structure is 
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essential in x-ray diffraction calculations of peak position and lattice compression.  From 

Figure 4.2 and the description of Miller indexing we note that the planes described by 

(hkl) intercept the crystallographic axes at 
 

a
!

1

h
,  
a
!

2

k
,  
a
!

3

l
.  If  n! is a unit vector normal to 

(hkl), the perpendicular distance dhkl between parallel (hkl) planes becomes 
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a
!
1

h
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Our aim now is to find an expression for  n! .  We define a vector K
!"

 such that 
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where the vectors  b
!

1,  b
!

2 , b
!

3 correspond to the reciprocal lattice vectors 

 

 
 
b
!

1 = 2! a
!

2 " a
!

3

a
!

1ia
!

2 " a
!

3
,  b
!

2 = 2! a
!

3 " a
!

1

a
!

1ia
!

2 " a
!

3
,  b
!

3 = 2! a
!

1 " a
!

2

a
!

1ia
!

2 " a
!

3
. (4.7) 

 

By definition, the reciprocal lattice vectors are orthogonal to the primitive vectors of 

different index so that  
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From the orthogonality condition (4.8), it can be shown that the vector  K
!"

is normal to a 

plane (hkl) and therefore the unit vector  n!  becomes 

 

 
 
n! = K
"#

K
"#  (4.9) 

 

The perpendicular distance dhkl can then be expressed in terms of the reciprocal lattice 

vector  K
!"

 as  
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1

h
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In general, the reciprocal lattice formulation is very important in x-ray diffraction 

problems, as it will become obvious within Bragg’s law derivation.  Once the primitive 

lattice vectors are known, a map of the reciprocal space can be drawn.  Within this map a 

vector drawn from the origin to any point is then the vector  K
!"

, whose length is equal to 

the reciprocal of the real lattice spacing and its direction is orthogonal to the corresponding 

(hkl).   

4.1.2 HEXAGONAL CLOSE PACKED LATTICE 

Besides cubic lattice structures a significant amount of effort was devoted in 

understanding x-ray diffraction patterns from Mg, an element with a hexagonal close 

packed structure at room temperature and pressure.  The unit cell in hcp is defined by the 
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coplanar (basal plane) vectors  a
!
1 and  a

!
2 at 120° with respect to each other and a third 

normal axis defined by a vector  c
!

 (Figure 4.3).  The hexagonal symmetry of the lattice 

implies that a rotation of 60º around the c-axis will result in an identical lattice.  Because 

of this 6-fold rotation symmetry the Miller indexing scheme applied to cubic structures is 

in some cases inconvenient since it makes the prismatic planes, i.e. the planes vertical to 

the basal plane, indistinguishable.  For this reason, a redundant axis  a
!
3  is introduced as 

seen in Figure 4.3.  The index i of this additional axis is related to h, k by  

 

 i = !(h + k) . (4.11) 

 

In terms of directions, the 3-indexing system is the most practical.  In the Miller 

indexing system  a
!
1 ,  a
!
2 ,  a
!
3 , and  c

!
 are given by 

 

 a1 = [100],  a2 = [010],  a3 = [1!10],  and c = [001] . (4.12) 

 

However, sometimes x-ray diffraction measurements from hcp structures are 

quoted using a 4-index system.  Translating [UVW] to [uvtw] notation can be 

accomplished via the following transformations 

 

 u = 1
3

2U !V( ),  v = 1
3

2V !U( ),  t = - 1
3
V +U( ),  and w =W . (4.13) 
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Figure 4.3.  Illustration of the hexagonal close packed unit cell and its indexing 
notation.  On the left, the hcp unit cell is outlined by a parallelepiped.  The basal 
plane containing the 3 out of 4 primitive vectors is shown in red.  On the right, the 3 
and 4-index notation is demonstrated for the prismatic planes forming the basal 
plane hexagon. 

As an example the  a
!
1 = [100]  lattice vector in terms of the 4-index notation 

becomes [2 !1!10] .  For the purposes of our data analysis, hcp planes and coordinates 

will be quoted in the 3-index system.  The perpendicular lattice spacing in the hcp lattice 

can be derived from equation (4.10) to be 

 

 1
dhkl
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4
3

h2 + hk + k2

a2
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$
%&
+
l2

c2
. (4.14) 
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The lattice parameters of Mg and other hexagonal materials of interest are shown 

in the table below. 

 

Table 4.2  Elements with hexagonal close packed crystal structure. 

 a (Å) c (Å) c/a 

Be 2.29 3.58 1.56 

Mg 3.21 5.21 1.62 

Ti 2.95 4.69 1.59 

 

Note that the ideal c/a ratio in a perfect hcp lattice is 1.633.  An hcp structure with a 

distorted unit cell will have a c/a ratio that deviates from the ideal value as seen for Be 

and Ti.  The deviation from the static c/a ratio under compression is a measurement of 

great interest as the anisotropic behavior of the material upon compression or in other 

words its strength can be quantified.  From Table 4.2 the Mg c/a ratio is very close to the 

ideal value.  In general, studies of compressed Mg examining the variation of the c/a 

have shown only small deviation from the static c/a ratio. 

4.2 X-Ray Diffraction from Crystals 

Determining the lattice structure in materials where the interatomic spacing is of 

the order of a few Angstroms (10-10 m) requires electromagnetic radiation with a 

corresponding energy of several keV (
 
E =

hc
! ! 10"10 ), namely x-ray radiation.  In this 

section, an introduction to x-ray diffraction applicable to both single crystal and 

polycrystalline materials is presented [88, 89].  We will begin by associating diffraction 
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peak position and crystal structure via Bragg’s law.  Even though absolute measurement 

of the diffraction peak intensity was not important for the structural effects studied, a 

qualitative description of the factors affecting diffraction peak intensity is included.  

Especially the structure factors of Mg and Cu are derived to indicate the diffraction peaks 

expected to be detected, allowing texture effects to be evaluated.  Last, material Z and 

wavelength dependent absorption of x-rays and its application to filtering x-ray 

background signal is discussed. 

4.2.1 BRAGG’S LAW 

A very useful relation in x-ray diffraction linking the diffraction angle θ, the 

interplanar spacing dhkl and the x-ray wavelength λ is Bragg’s law.  W. L. Bragg 

formulated that for intense diffraction peaks to be observed (Bragg peaks) from scattered 

radiation originating from parallel planes of ions, the following criteria must be met: 1) x-

rays must be specularly reflected from the lattice planes and 2) the reflected x-rays from 

successive planes should interfere constructively.  The latter criterion is illustrated in the 

figure below (Figure 4.4).   

An incident x-ray in the direction of the unit vector  s
!
0  scatters from the planes 

denoted as A and B in the direction of the unit vector  s
!

.  Assuming specular reflection, 

the incident and reflected angles are equal to 90º - θ.   From geometry, the path difference 

KL + LM between the x-rays reflected from the adjacent parallel planes is 
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Figure 4.4.  Schematic of Bragg diffraction from consecutive (hkl) planes.  The 
difference between the incident and reflected unit vectors corresponds to a vector 
normal to the planes from which the diffraction condition is satisfied. 

   KL + LM = 2dhkl sin! .    (4.15) 

 

For constructive interference to occur the path difference must be equal to an integer 

multiple of the wavelength λ or  

 

 2dhkl sin! = "  (4.16) 

 

where the integer multiple is incorporated within dhkl.  This simple law leads to an 

essential understanding of diffraction patterns from polycrystalline and single crystal 

materials as well as the diffraction geometries required to successfully probe such 

materials.  Bragg’s law dictates that to observe diffraction from a given plane (hkl) either 

λ  or θ  must be varied.  Below are some examples where this principle is applied. 
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In single crystal diffraction, a collimated x-ray source of monochromatic radiation 

(fixed λ) incident on a sample will diffract from a plane (hkl) only when the sample is 

oriented at the correct angle θ .  To form a diffraction pattern from such geometry the 

sample must be rotated with respect to the x-ray source (vary θ).  To avoid rotation of the 

sample, a process that is generally quite time-consuming, diffraction patterns from 

stationary single crystals can be generated using a collimated broadband source (variable 

λ) (Figure 4.5).  The resulting diffraction pattern is a set of dots each corresponding to a 

specific (hkl) plane and x-ray wavelength λ.  An alternative single crystal x-ray 

diffraction method employs a monochromatic (fixed λ) point x-ray source allowing θ  to 

vary over 4π.  Intersection of the diffracted rings with planar x-ray detectors results in the 

diffraction pattern shown here for Bi in Figure 4.5.  

 

Figure 4.5.  Laue and Bragg diffraction from single-crystal Bi sample. In the Laue 
configuration variation in x-ray wavelength is provided by a broadband x-ray 
source, whereas the sample and source position is fixed.  In Bragg diffraction the 
wavelength is fixed by the monochromatic x-ray source (4.7 keV) whereas a variable 
angular orientation between the x-rays and sample is provided by a point source 
emitting over 4π. 
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On the other hand, polycrystalline samples composed of randomly oriented 

crystallites (grains) when probed by a collimated monochromatic x-ray source yield 

diffraction patterns as a result of the variation in angle amongst the grains.  Depending on 

the grain size the diffraction rings recorded can exhibit discontinuities as demonstrated in 

the figures below.  Here Sn and Bi were sputter coated on single crystal LiF substrates.  

The coating parameters (temperature of the substrate and sputter rate) in the first case 

resulted in grains as large as 25 µm (Figure 4.6).  When probed by a quasi-

monochromatic 4.75 keV source the diffraction pattern appeared to be interrupted which 

is a significant disadvantage for shock compression experiments, since a continuous 

diffraction ring is necessary in order to check for anisotropies in compression 

(measurement of strength).  On the other hand, large grain size samples may be useful for 

experiments investigating dynamic grain rotation or texture evolution.  In the case of 

sputter coated Bi on LiF, coating parameters were adjusted such that grains <5 µm were 

produced.  This was verified from the continuity of the Bragg peaks observed (Figure 

4.7).  
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Figure 4.6.  Polycrystalline x-ray diffraction from a tin target sputter coated on a 
LiF substrate, using 8 keV x-rays.  The discontinuous diffraction pattern is 
attributed to the large grain size.  Note that since the pattern was recorded in a 
cylindrical geometry where the target was placed on the cylinder axis, upon 
unfolding of the film the diffraction cones became straight lines. 

 

Figure 4.7.  Bragg diffraction pattern from a polycrystalline Bi sample sputter 
coated on LiF substrate. A section of the diffraction rings is shown. Note that 
because of the small (< 5 µm) grain size the diffraction pattern appears to be 
continuous.  4.7 keV x-rays were used for this exposure. 

diffraction-
single grain  

sample holder 
obstructing x-rays  



 70 

In general, Bragg’s law can be satisfied by varying λ or θ. The choice of variable 

is what distinguishes the various diffraction techniques.  Furthermore, it is interesting to 

note the equivalency between Bragg’s law and the reciprocal lattice vector  K
!"

described in 

(4.6).  From Figure 4.4 and Bragg’s law 

 

 
 

s
!
! s
!
0

"
=
2sin#
"

=
1
dhkl

= K
"!

. (4.17) 

 

The magnitude and angle of the incident and scattering vectors must be equal and their 

difference divided by the wavelength is equivalent to the magnitude of the reciprocal 

lattice vector. 

Even though Bragg’s law provides a fundamental understanding of the diffraction 

conditions, it does not describe the form of real 3D diffraction patterns since it is only 

expressed in scalar terms.  A description of actual diffraction patterns is more intuitive 

using equations based on general scattering principles where the phase difference 

between different scattering centers (atoms in the lattice) is considered.  For constructive 

interference to occur the Laue equations (in 3D) state that: 
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where  s
!

and  s
!
0 the scattered and incident x-ray unit vectors,  a

!
i the lattice vectors and h, 

k, l are integers.  Each of the above equations is satisfied by a series of cones with axes 

concentric to the row of scatterers. 

4.2.2 X-RAY SCATTERING INTENSITY 

There are several factors that influence the diffracted intensity which can be 

divided into two categories: material-related and diffraction geometry-related.  In this 

section the effect of the atomic arrangement on the diffraction intensity is discussed.  As 

it will be explained, satisfying the Bragg condition does not guarantee a diffracted signal.  

The atoms may be arranged in such a way within the unit cell of the material that the 

phase difference in the scattered beams may result in the sum of their amplitudes to 

cancel out.  For this reason, the structure factor, a factor determining the amplitude of the 

scattered radiation from a unit cell must be calculated in order to predict the absence or 

presence of diffraction peaks and their corresponding intensity.  Since the pertinent 

structures in this study are bcc, fcc and hcp the structure factors for these unit cells are 

calculated below. 

In a unit cell having N atoms with fractional coordinates u, v, w, the structure 

factor for reflection from an (hkl) plane is given by [88]: 

 

 Fhkl = fn
1

N

! exp 2"i(hun + kvn + lwn )[ ]  (4.19) 

 

where fn is the atomic scattering factor with the subscript n referring to different atomic 

species (e.g. in compounds).  The structure factor is generally a complex number and its 
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squared amplitude Fhkl
2 expresses the intensity of the scattered wave from a unit cell.  

An important remark about the structure factor is that it is independent of the unit cell 

size and shape, namely it depends only on the atomic positions in the chosen coordinate 

system.  This is illustrated below in the calculation of the bcc, fcc and hcp structure 

factors. 

Bcc structure factor: A body centered unit cell contains two atoms at the origin (0, 0, 0) 

and center of the cell ( 1
2

, 1
2

, 1
2

).  The structure factor becomes 

 

 Fhkl = f 1+ exp[!i(h + k + l)]( ) . (4.20) 

 

The (hkl) expected to result in no signal from a bcc unit cell are therefore combinations of 

h, k, l where h + k + l = odd .  Examples of planes where diffraction signal is absent for a 

bcc structure are the (111), (113), (221) etc. 

Fcc structure factor: The face centered cubic cell (Cu) is represented by four atoms at 

(0, 0, 0), ( 1
2

, 1
2

, 0), (0, 1
2

, 1
2

) and ( 1
2

, 0, 1
2

) so that the corresponding structure factor 

is given by 

 

 Fhkl = f 1+ exp[!i(h + k)]+ exp[!i(k + l) + exp[!i(h + l)]( )  (4.21) 

 

Cancellation of the structure factor for the fcc occurs when the h, k, l are mixed even and 

odd numbers such as the (112), (223), (100) etc. 
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Hcp structure factor: A unit cell that exemplifies the size and shape independence of 

the structure factor is that of the hexagonal close packed.  The unit cell of an hcp 

structure consists of two atoms located at (0, 0, 0) and ( 1
3

, 2
3

, 1
2

). Even though the 

lattice is not cubic as in the previous examples the structure factor can still calculated 

from (4.19).  It is 

 

 Fhkl = f 1+ exp[2!i(h
3
+
2k
3

+
l
2
)]"

#$
%
&'
= f 1+ exp[2!i(h + 2k

3
+
l
2
)]"

#$
%
&'  (4.22) 

 

To have Fhkl=0, the term in the exponent 2 h + 2k( )
3

+ l  must be equal to an odd number.  

This implies that h + 2k = 3n  where n is an integer and l must be an odd number.  

Besides the structure factor, other material specific factors together with 

geometric terms can be combined in one equation [88] describing the diffracted intensity 

from a certain plane hkl and scattering angle θ 

 

  Idiffraction = Fhkl
2 p

1+ cos2 2!
sin2 2! cos!

"
#$

%
&'
A(!)e(2M    (4.23) 

 

where Fhkl the material structure factor, p the multiplicity of the diffracting plane, A(θ) the 

absorption factor and e-2M  the temperature factor.  The trigonometric term in brackets is 

referred to as the Lorentz-Polarization factor and it is geometry dependant.  Multiplicity p 

refers to the number of permutations of (hkl) in position and ± sign that correspond to 
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planes of the same interplanar distance dhkl and Fhkl.  For example the planes (100), (-100), 

(010), (0-10), (001) and (00-1) of a cubic structure all contribute to the same diffraction 

peak according to Bragg’s law.  Therefore, the multiplicity factor for the (100) family of 

planes is 6 for a cubic crystal.   

The temperature factor otherwise known as the Debye-Waller factor is associated 

to the thermal vibrations of the atoms in the lattice.  Because of the uncertainty in dhkl 

introduced by thermal vibrations diffraction peaks appear to be broadened especially at 

elevated sample temperature resulting in a lower integrated diffraction peak intensity.  

The relation of the Debye-Waller factor to the material properties is shown in the 

expression for M [86] where 

 

 M =
1.15 !104T

A"2 [#(x) + x
4
] sin$

%
&
'(

)
*+
2

. (4.24) 

 

In equation (4.24) T is temperature, A the atomic weight, Θ the Debye characteristic 

temperature of the substance in Kelvin, φ(x) a tabulated function where x= Θ/T (see 

Cullity), Θ the scattering angle and λ the wavelength.  Using a sufficiently narrowband x-

ray source the width of the diffraction peaks could be related to the specific heat at 

constant volume cv and thermal expansion coefficient as a function of temperature.  

The absorption mechanism of x-rays from a material is discussed in detail next. 

The geometry specific terms of the diffraction signal intensity will be presented in the 

instrument descriptions in Chapter 5.  
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4.2.3 X-RAY ABSORPTION 

When x-ray radiation with intensity I0 is incident on a material, two processes 

occur that decrease the transmitted intensity I.  The first process involves the absorption 

of x-ray photons, whereas the second process causes scattering of the incident radiation 

from its direct path.  “True absorption” is simply the interaction of x-ray photons with 

electrons in the material causing electronic transitions and thus, atom excitation.  Upon 

decay to the ground state atoms emit fluorescent radiation which is isotropic (loss of 

directionality of the incident beam) and has different wavelength (λfluorescence>λincident) than 

the incident x-rays.  In x-ray diffraction measurements, fluorescence contributes to the 

background noise and it is particularly detrimental in diffraction from high Z materials 

where a large number of possible excited states exist.  An example of fluorescence was 

seen in the Laue diffraction pattern from Bi Figure 4.5.  Fluorescence in this particular 

diffraction measurement was recorded as a white halo that significantly decreased the 

diffracted signal to noise. 

Both “true absorption” and scattering are summed in a mass scattering coefficient 

µm  such that the attenuated intensity of a monochromatic x-ray beam on a material of 

density ρ is given by  

 

 I = I0 exp[!µm"x]  (4.25) 

 

where x the thickness of the material.  To understand the dependence of the mass 

absorption coefficient on the incident x-ray wavelength λ and material Z, the 
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transmission from a large number of materials has been characterized using a broadband 

(white light) x-ray source.  The dependence on λ and Z is given by the relation [88] 

 

 µm = C! 3Z 3  (4.26) 

 

where C a constant.  The plot below (Figure 4.8) illustrates the attenuation length namely 

the material thickness required for the incident x-ray intensity to decrease by 1/e.  The 

materials chosen correspond to filters commonly used to attenuate the respective Kα x-ray 

radiation.  In addition, the attenuation length from a low and a high Z material (ZBi=83 

and ZMg=12) is compared on the same plot.  Note that the attenuation curves exhibit a 

sawtooth pattern with peaks at the K, L, M etc. absorption edges, namely the energies 

where a K, L, or M electron is ejected respectively.  Only the K-edge is relevant to our 

experiments since the Kα line emission was used in our x-ray diffraction measurements.  

Another important remark is that for the purpose of blocking continuous 

background radiation while allowing the most from the characteristic Kα radiation to 

transmit, the filters and laser plasma source must use the same material.  Because of the 

slightly longer wavelength of the emitted Kα radiation versus the absorption K-edge, 

filters of the same atomic species as the ions in the plasma source have the highest 

transmission in the Kα wavelength.  Therefore, they are ideal attenuators for x-ray 

wavelengths other than that of the characteristic Kα line.  The reason for this wavelength 

discrepancy is the fact that the absorbed photon energy is higher than the emitted Kα 

because of an energy conservation argument; the absorbed photon energy must equal the 
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sum of the ejected K-shell electron kinetic energy plus the photon energy emitted upon 

decay of an L-shell electron to the K-shell.   

 

Figure 4.8.  Plot of the attenuation length for target (Mg, Cu, Bi) and filter (Ti, V, 
Fe, Cu) materials used in this study.  The vertical black and purple arrows show the 
energy of the Heα-like and Kα line emission respectively from Ti, Fe, and Cu. 
(Calculated using the Center for X-Ray Optics x-ray interaction with matter tools, 
http://www-cxro.lbl.gov/). 

In Figure 4.8 the Kα energy of typical x-ray sources is also compared to the absorption 

energy as well as the Heα-like radiation, namely the K-shell transition in a He-like ion.  

The difference in energy between the two emission lines comes from the fact that for Kα 

emission only a single electron is knocked out of the atom, specifically from the K-shell.  

In Heα-like emission the atom has been stripped of all but two electrons before a K-shell 

electron ejection and subsequent decay takes place.  In the first case the nucleus is 

screened more effectively by the electrons and therefore, the electronic binding energy is 

lower than in the He-like ion.  The higher energy of the Heα-like emission implies an 
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increase in the attenuation length.  A comparison of the Heα-like, Kα  and absorption edge 

wavelength can be found in the table below.  

 

Table 4.3 Wavelength of the Ka, Hea-like emission, and K-edge for Ti, Fe and Cu. 

 Kα (Å) Heα (Å) K-edge (Å) 

Ti 2.749 2.605 2.497 

Fe 1.936 1.851 1.743 

Cu 1.541 1.478 1.381 

 

4.3 Measuring the Dynamic Material Response with X-ray Diffraction 

In Chapter 3, the properties of the shock wave profile were linked to the bulk 

material response.  For example, shock wave splitting was attributed to elastic-plastic 

transitions and phase transformations occurring in the shock compressed material.  

However, information on the material response under shock compression using shock 

wave characterization methods is not only limited to a bulk material measurement but in 

some circumstances may be misleading.  For instance, in small volume phase changes, no 

shock wave splitting may be evident which would infer no structural change.  For this 

reason dynamic x-ray diffraction has become in recent years an extremely powerful tool 

in the studies of materials in extreme environments since it probes the physical processes 

happening in the evolving lattice at the relevant spatial and temporal scales.  Combined 

with a macroscopic bulk measurement technique such as velocimetry a complete picture 

of the dynamic material behavior can be assembled.  In this section, an interpretation of 
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dynamic x-ray diffraction signal with respect to the lattice level phenomena is provided.  

Specifically, the diffraction signatures of the elastic (or uniaxial) and hydrostatic response 

of the lattice under shock compression are described.  Material density is an important 

parameter than can be extracted from x-ray diffraction and used to obtain the material 

equation of state.  The density values obtained via measurement of the interplanar 

spacing under uniaxial or hydrostatic compression is presented.  Our treatment of density 

measurement is applicable to both single crystal and polycrystalline materials even 

though from a microscopic point of view the deformation mechanisms in the two 

structures are expected to be quite different. 

4.3.1 UNIAXIAL LATTICE COMPRESSSION 

Let us consider a crystalline solid (Figure 4.9).  When a planar shock is applied, 

the lattice initially responds by compressing the planes whose unit normal is (partially) 

aligned to the shock direction.  The lattice response is elastic as long as the applied stress 

does not exceed the Hugoniot Elastic Limit (HEL).  However, above the HEL nucleation 

of defects can cause the lattice to relax plastically in all three directions or in other words 

to deform irreversibly as depicted in both the lattice and wave profile picture.  In 

addition, depending upon the shock pressure in the Hugoniot end state and the material 

phase diagram a structural change may take place.  Both plastic relaxation and phase 

nucleation and growth are time-dependent phenomena and therefore kinetic studies 

attempting to determine their time constants are extremely important in the formulation 

of constitutive models. 
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Figure 4.9.  Illustration of a shocked crystalline material connecting the lattice 
processes to the observed bulk material behavior through measurement of the shock 
wave profile.  The latter is typically obtained by velocimetry (VISAR) whereas 
lattice information can be extracted by x-ray diffraction. 

Let us now consider the uniaxial lattice compression in the context of x-ray 

diffraction.  First, from Bragg’s law an expression for the change in the interplanar 

spacing or strain can be derived when the Bragg angle of the static and compressed 

diffraction peaks is known.  This expression is 

 !dhkl
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1
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Under uniaxial compression the lattice deforms (reversibly) in the direction of the applied 

shock (Figure 4.10).  Since a volume element is given by 

 

 V = Ax  (4.28) 

 

where A a unit area and x the height of the volume element, the ratio of the 

compressed/static volume and hence the density ratio of the static/compressed lattice 

becomes 

 

     V
V0

=
x
x0

!
"0
"

=
x
x0

.    (4.29) 

 

For a plane (hkl) whose unit normal vector n̂ is oriented parallel to the shock direction the 

density ratio is simply given by the interplanar spacing ratio 
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Figure 4.10.  Uniaxial lattice compression along the direction of the shock is shown 
for a plane with normal parallel to the shock direction and a plane with normal at 
an angle of 90˚-β to the shock direction.  In the first case only the interplanar 
spacing decreases upon compression.  In the second case both the interplanar 
spacing and the angle of the plane normal changes. 

For planes that are oriented at an angle of 90° ! " with respect to the shock, the 

density ratio cannot be expressed directly by the static and compressed interplanar 

spacing ratio.  From equation (4.29) and Figure 4.10 for theses planes 
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(Note that !" and ! in 4.31 and 4.30 are not the same.  They represent the respective 

angular shift and static Bragg angle from the (hkl) plane described in each example.)  

From equations (4.30) and (4.31) the density ratio measured from the planes that are 

normal and at an angle relative to the shock direction must be the same.  In addition the 

angles !" and !  in (4.31) can be determined via diffraction and !  is known from the 
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crystallographic orientation of the target.  Thus !"  can be calculated resulting in a 

measurement of the shear strain, namely the deformation of the lattice in the direction 

parallel to the plane surface. 

4.3.2 HYDROSTATIC LATTICE COMPRESSSION 

Having discussed how x-ray diffraction can provide a strain value for lattice that 

is compressed elastically in the direction of the shock, we will examine the other extreme 

of the material response; a lattice compressing hydrostatically.  This behavior is induced 

in a material by applying a stress that greatly exceeds the HEL.  In this case a 

measurement of density with x-ray diffraction should coincide with the hydrostatic (P-ρ) 

Hugoniot.  Furthermore, an absolute equation of state for hydrostatically compressed 

materials can be experimentally constructed by measuring density and particle velocity 

simultaneously using x-ray diffraction and Doppler velocimetry (VISAR) respectively.  

A schematic of a hydrostatically compressed lattice is shown in Figure 4.11.  Since the 

lattice compresses isotropically by factor α  in every direction, the compressed lattice 

volume becomes 

 

   V = xyz = ! 3x0y0z0 "
V
V0

= ! 3 .   (4.32) 
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Figure 4.11.  Hydrostatic lattice compression in a shocked crystalline material. 
When the applied stress greatly exceeds the shear strength in the material, the 
lattice compresses hydrostatically despite the fact that the shock is applied in one 
direction only.  Since the aspect ratio of the lattice remains the same under 
hydrostatic compression, a plane with normal at an angle of 90˚-β to the shock 
direction does not change orientation as in the case of uniaxial compression. 

The interplanar spacing dhkl is also expected to contract by the same factor α   hence 
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The hydrostatically compressed material density ratio is therefore given by the 

diffraction angle !  and the angular shift !"  from the static diffraction peak by 
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Since the lattice aspect ratio is maintained during isotropic compression, planes whose 

normal is at an angle with respect to the shock direction do not rotate as in the case of 

uniaxial compression.  For this reason, equation (4.34) is also valid for these types of 

planes.  However, a discrepancy in the strain measured for different (hkl) above the HEL 

may indicate strength so it is always necessary to compute strains from all diffraction 

planes where static and compressed diffraction signal has been captured.  In addition, an 

understanding of the error bars in the measurement of the diffraction peak position is also 

important in order to be able to distinguish a physical effect such as strength from a 

systematic error.  

4.3.3 PHASE TRANSITIONS 

In our study of shock-induced phase transitions, an understanding of both solid-

solid (Mg) and solid-liquid transitions (Mg, Bi) was pursued.  These types of transitions 

have been previously determined for the majority of known substances via static x-ray 

diffraction techniques.  Only recently developments in dynamic loading techniques and 

x-ray sources (mainly based on high power lasers) have excited an interest in the 

understanding of the dynamics and kinetics of transient phase transitions with timescales 

ranging from tens of nanoseconds to femtoseconds.  The α to ε (hcp to bcc) transition in 

Fe has been the leading material in dynamic x-ray diffraction studies due to its broad 

technological and scientific importance.  In general, probing solid-solid transitions under 

shock-loading has enabled an understanding of the lattice mechanisms and kinetics of 

these processes that was previously unknown. 

Specifically using x-ray diffraction and single crystals oriented along different 

crystallographic planes it is possible to isolate the most probable mechanism(s) of a solid-
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solid transformation.  However, single crystals samples are quite costly and in certain 

cases very difficult to prepare (cut and polish) at a specified orientation and thickness.  

Polycrystalline samples can therefore be used instead.  In this case, even though the 

structure of new phase can be identified it is almost impossible to identify the atomic re-

arrangement process leading to the phase.  For custom-manufactured samples there may 

be a way to prepare polycrystalline samples of a specific texture (grain size and 

orientation) such that changes in the sample texture upon compression may help constrain 

the phase transition pathway.  However, the risk in this technique is that, because of the 

original strong texture the new phase may not be observed at all.  Furthermore, for both 

single crystal and polycrystalline materials, kinetics play an important role in whether the 

phase transition will be captured within the duration of the x-ray pulse.  Having the shock 

as a temporal fiducial it is relatively simple to obtain the timescale of a phase transition in 

the bulk of the material using a nanosecond x-ray source such as this generated in our 

experiments.  If both single crystal and polycrystalline forms of the material of interest 

are available it is also very interesting to explore discrepancies in the kinetics of the 

phase transformation which would be attributed to the different phase nucleation and 

growth mechanisms in either material form. 

The solid-liquid phase transformation deserves a special attention since it has 

been the most challenging problem so far in dynamically induced phase transformations.  

Even though there exists literature on non-thermal melt (ablation-induced, fs timescale) 

solid-liquid transformations under shock conditions have never been observed.  The main 

challenge has been the low intensity of the diffraction peaks originating from the 

amorphous phase.  In addition, for the shock pressure required to achieve melt in most of 
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the substances, a high amplitude noise background is always superimposed on the 

diffraction signal.  In the paragraph that follows, I will aim to explain the nature of the 

signal expected from an amorphous substance, specifically a liquid.  This discussion will 

be useful later in association to the instrumentation design for detecting diffraction signal 

from liquids. 

As explained earlier the main factor contributing to the diffracted intensity is the 

square of the structure factor F2.  Re-writing equation (4.19) in terms of the reciprocal 

lattice vector  K
!"

 and the atomic positions in a lattice  x
!
n , we can express the diffracted 

intensity  I(K
!"
)  as 
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where only the real part is considered.  For x-ray diffraction from an isotropic body, such 

as a liquid, an average intensity is observed since the scattering probability is the same in 

all directions.  Experimentally this is manifested for a given diffraction angle as a ring 

whose intensity can be determined from equation (4.35) by taking the average of the 

cosine term.  This results in the Debye formula for intensity (also applicable to perfect 

powders)  
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where xn !n the distance in a pair of atoms [90].  It can be shown numerically that the 

average intensity maxima are at  

 

 
Kmaxxmax = 1.23! xmax = 1.23 "

#
2sin$max  (4.37) 

where the conversion to scattering angle comes from the equivalence of the reciprocal 

lattice vector  K
!"

to the Bragg diffraction formulation.  The diffraction pattern takes the 

form shown below (Figure 4.12).  Therefore, a measurement of such pattern in a solid-

liquid transformation induced by shock-loading would yield the average spacing of the 

atoms in the liquid and thus a density value, which could subsequently become an input 

to the material EOS.  (On the other hand, experiments where the liquid state would be 

inferred by a decrease in the intensity and eventually the disappearance of diffraction 

lines would unable to provide essential EOS data.)  
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Figure 4.12.  Plot of the scattered intensity from an amorphous (isotropic) body.  

 

4.4 X-ray Emission from a Thermal Plasma 

Multi-beam kJ level laser facilities such as OMEGA and the National Ignition 

Facility (NIF) offer the unique capability of probing materials under extreme temperature 

and pressure conditions [91, 92] with intense x-ray backlighter sources at a broad range 

of energies.  Such capability is critical in understanding for example the symmetry in 

inertial confinement fusion capsules and in revealing exotic lattice structures for 

materials approaching TPa conditions.  As a precursor to these type of experiments, a 

significant amount of work has already been dedicated in characterizing laser plasma 

sources, specifically correlating laser parameters to x-ray conversion efficiency and 

duration [93].  To date the most detailed characterization of thermal plasma x-ray sources 

can be found in Phillion’s paper [94]. 
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In general, line emission is produced by focusing a laser pulse onto a metal target.  

For the laser parameters used in our experiments (100-300 J, 1-4 ns, ~200 µm spot 

diameter) the plasma formed by the laser coupling mechanisms discussed in Chapter 2 

consists of highly ionized atoms resulting from electron-ion collisions.  Specifically He-α 

line emission (1s2p-1s2) occurs when an electron recombines with an ion in a hydrogen-

like state.  In order to understand the temporal properties of this K-shell line emission the 

rates of collisional ionization and three-body recombination must be considered.  

Assuming that the maximum electron density at which x-ray line generation 

occurs is the critical density ne, Seaton’s near-threshold collisional ionization cross 

section yields a timescale 
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where n = Rydberg shell number
a0 = Bohr radius = 0.529 Angstroms
EH =  Hydrogen ionization energy = 13.6 eV
c = speed of light = 3x108m / s
! =  fine structure constant = 1/137

g =  Gaunt factor of photoionization~0.42.

 

 

In between the above two extremes, the factor on the right hand side of equation (4.38) 

has a maximum value of 0.2541 at kT=3.75I.  It can be shown that for He-α lines τc is of 
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the order of several hundred ps, so in order to generate such line emission the laser pulse 

must be also at least several hundred ps.  

X-ray emission results from recombination into a Rydberg shell of an electron 

followed by radiative decay to the ground state. The three-body recombination rate is 

relevant for this process and it is given by (assuming spontaneous radiative decay) 
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where Z  the effective ionic charge.  Based on the above rates it is possible that line 

emission persists even after the laser pulse has switched off because of highly stripped 

ions that take longer to recombine.  An interesting study showing a comparison between 

the duration of the laser pulse and x-ray plasma source (K-shell line emission) was 

conducted by Burnett et al. [95].  Furthermore, Phillion’s experiments demonstrated the 

energy dependence of the x-ray conversion efficiency; intensities that were greater by an 

order of magnitude but having lower pulse length and energy produced an x-ray flux that 

was almost 4 times smaller than a laser source with greater energy and pulse duration but 

lower intensity by one order of magnitude.  For our experiments the laser parameters of 

He-a sources from laser plasmas formed by Ti, Fe and Cu were optimized.  The table 

below shows the laser parameters utilized. 
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Table 4.4  Laser energy, pulsewidth, and focal spot size for He-α x-ray backlighting. 

 E (J) tpulse(ns) D (µm) 

Ti 300 3 250 

Fe 240 3 150 

Cu 300 3 100 
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5 DESCRIPTION OF EXPERIMENTAL TECHNIQUE AND 

DIAGNOSTICS 

Having presented a brief background on the shock physics, dynamic material 

response, and x-ray diffraction, we now proceed into a detailed description of the 

experimental approach used to understand the phenomena induced by dynamic loading.  

The techniques for laser-based shock and dynamic x-ray diffraction (DXRD) experiments 

conducted at the JANUS laser facility are presented.  More specifically, the x-ray 

diffraction instrumentation developed during our studies, the velocimetry diagnostic for 

measurement of the transient material response, as well as the imaging diagnostics 

employed for reliable shock and x-ray drive beam alignment are described. 

5.1 General Description of Experimental Setup 

Experiments were performed at the two-beam kJ-level JANUS laser facility 

utilizing each of the laser arms for x-ray backlighting and shock drive.  A schematic of 

the JANUS target chamber and laser beam geometry is shown (Figure 5.1).  The EAST 

JANUS beam was routinely employed towards x-ray backlighting, whereas the WEST 

JANUS beam towards shock generation.  Since the target and x-ray source positioning in 

the diffraction geometries demanded that the laser beam foci were separated by several 

centimeters (and off-target chamber center (TCC)) the motorized final lenses of the 

JANUS arms were translated and/or tilted to accommodate our instrumentation.   
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Figure 5.1.  Top view of the JANUS target chamber.  The input ports for the 
VISAR, EAST, and WEST beams are shown together with the in-chamber 
target/beam geometry.  Port angles and chamber baseboard dimensions are also 
included. 

The diagnostic configuration for the two types of polycrystalline x-ray diffraction 

cameras is illustrated below (Figure 5.2, Figure 5.3).  Note that an imaging system 

enabled us to align the x-ray drive beam within ~100 µm from the center of the 

backlighter foil defined by a Cu washer having a 600 µm aperture.  Furthermore, to 

overlap within ~100 µm precision the x-ray backlighter spot, the shock drive spot, and 

VISAR probe, an equivalent plane imaging diagnostic was implemented and will be 

described later in this chapter.  We now present each of the experiment components in 

more detail. 
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Figure 5.2.  View of the JANUS target chamber with the Seeman-Bohlin (S-B) 
camera, VISAR, and x-ray backlighter imaging system in preparation for a data 
shot.  The S-B camera was shielded from background noise with a layer of Pb tape. 

 

Figure 5.3.  Photograph of the JANUS target chamber in preparation for dynamic 
x-ray diffraction experiments with the Cylindrical Pinhole Powder Camera (CPPC). 
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5.2 The Janus Laser System 

Our experiments were performed at the JANUS laser facility at LLNL.  The two-

beam laser system delivering approximately <350 J in 2ω (527 nm) per arm, in a single 

0.2-22 ns pulse, has been the test-bed for x-ray backlighting of dynamically loaded 

materials for several years.  The architecture of the laser system and its specifications are 

outlined below (Figure 5.4).   

 

Figure 5.4.  Diagram showing the optical design and performance for one of the 
JANUS long-pulse beams (courtesy of D. Price). 

The laser system front end consists of a single longitudinal mode solid-state 

continuous wavelength (CW) laser at 1053 nm with a linewidth of <10-5 nm.  The CW 

output is chopped by a Pockels cell into a 10 Hz pulse train with individual pulses of 100 

ns pulsewidth and then injected into a polarized single mode fiber.  A Mach-Zehnder 
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optical fiber modulator is employed at this stage to define the desired temporal pulse 

shape.  There are 96 waveform points or “glitches” spaced at 250 ps from each other and 

with a temporal width of ~300 ps that define the pulse-shape by control of their 

individual amplitude.  

After pulse-shaping the resulting pulse train of ~1 nJ per pulse in energy is 

injected into a regenerative amplifier (oscillator) with a TEM00 center cavity mode waist 

and an Nd:YLF gain medium.  The typical extracted pulse energy is 9 mJ.  After the 

regenerative amplifier, the initial Gaussian spatial profile of the laser pulse is converted 

to a top hat profile by passing through a spatial shaping diffractive element.  By relay 

imaging this top hat profile to a 9 mm aperture serrated edge apodizer, a supergaussian 

waveform is generated and propagated into the laser chain. 

To generate the kJ-level (in 1ω)  energy output in a single pulse, the beam 

emerging from the JANUS front-end is fed into a flash-lamp pumped amplifier chain 

consisting of six Nd-doped phosphate glass amplifiers (three rod and three disk 

amplifiers) whose details can be found in Figure 5.4.  The beam is spatially filtered and 

relay-imaged by a series of vacuum spatial filters along the amplifier chain.  Placement of 

a Faraday rotator (with a polarizer on the input and output) after each amplifier protects 

from feedback.  A 50 mm Pockels cell is also positioned in the amplification chain to 

reduce any amplified spontaneous emission.  All amplifiers are single-passed except for 

the first 9.4 cm disk amplifier, which is double-passed.  A pulsed Faraday rotator inserted 

before this amplifier rotates the polarization of the output pulse by 90º such that the 

output pulse from the disk amplifier is reflected by the polarizer into the rest of the 

amplifier chain.  At the end of the amplifier chain a ~710 J pulse is frequency doubled in 
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a 15 mm Type 2 KDP crystal.  The 527 nm pulse is then delivered into the target 

chamber and is focused at TCC by a 1010 mm focal length lens.   

When experiments necessitated a very smooth spatial profile, phase plates were 

inserted before the final lens.  The imaged drive spot using a 1 mm phase plate vs. a drive 

spot without a phase plate is shown below (Figure 5.5).  In general, we preferred 

adjusting our experimental parameters to accommodate the phase plates available at the 

facility in order to achieve spatially uniform pressure drives.  Otherwise hot spots in the 

focused beam caused great spatial variations in pressure, which were typically diagnosed 

in the velocimetry record as variations in the shock breakout time and fringe jump value 

along the spatial direction (more details on velocimetry are given in section 5.4).  

 

Figure 5.5.  JANUS beam profile used for the shock drive without and with a 1 mm 
phase plate. 

In addition, the pulse-shaping capability of JANUS that was described earlier was 

extremely important for generating a variety of loading conditions ranging from shocks to 

ramped waveforms of tens of nanoseconds.  However, we encountered a change in the 
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output energy as a function of pulse length, which is summarized in the series of shots 

plotted in Figure 5.6. 

 

Figure 5.6.  Plot of the JANUS laser output energy as a function of pulse length 
(courtesy of D. Price). 

5.3 X-Ray Diffraction Diagnostics  

During these studies x-ray diffraction diagnostics were developed in order to 

understand the lattice response of both single crystal and polycrystalline materials under 

nanosecond shock-loading.  Specifically we designed and implemented diffraction 

cameras that accommodated laser driven x-ray sources from the K-shell emission of the 

thermal plasma generated, as well as laser driven shocks.  The end goal was to apply this 

instrumentation to measure shock-induced phase transformations, specifically solid-solid 

and solid-melt, as well as strength effects in the compressed solids by capturing lattice-

level information on a single shot basis.  In this section, the two geometries relevant to 

the experimental results will be discussed.  As the author led the development of the 

focusing-type x-ray geometry, a more detailed characterization of this instrument will be 

presented. 
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5.3.1 THE SEEMAN-BOHLIN FOCUSING DIFFRACTION GEOMETRY 

The Seeman-Bohlin (S-B) camera [96] is a polycrystalline diffraction geometry 

that offers improved angular resolution and signal amplitude compared to Debye-

Scherrer type cameras by exploiting a geometric focusing effect.  Focusing of the 

diffracted x-rays onto the detector occurs when a point x-ray source, sample, and detector 

are arranged around a circle.  The sample can subtend a large solid angle relative to the x-

ray source such that a larger fraction of x-rays emanating from the point source can be 

used for probing the sample compared to collimated x-ray geometries.  In addition, the 

angular resolution is limited mainly by the spectral bandwidth of the x-ray source, similar 

to single crystal dynamic x-ray diffraction measurements.  

The S-B camera described here is ideally suited for laser based in situ dynamic x-

ray diffraction experiments, where a tightly focused high energy (>100 J) laser beam onto 

a metal foil is used to generate the point source of K-shell x-rays.  This bright x-ray point 

source together with a high dynamic range imaging plate detector permits a sample size 

small enough such that ablatively driven shocks with peak pressure >100 GPa can be 

produced.  Thus, while static diffraction patterns from powder samples have been 

previously acquired in a S-B geometry [97], we now demonstrate its capability in 

shocked polycrystalline diffraction performed on a laser platform suitable for both shock 

and x-ray production. 

 

Seeman-Bohlin camera description 

We designed a S-B diffraction camera to serve as a lattice diagnostic in 

polycrystalline material shock studies.  Focusing of the diffracted-x-rays occurred by 
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positioning the point x-ray source, polycrystalline sample, and imaging plate detector 

[98] (Fujifilm BAS-MS2040) around a circle of diameter D=100 mm (Figure 5.7).  On a 

circle, equal angles are subtended by arcs of equal lengths.  Therefore, all x-rays 

originating from a point S on the camera circle that diffract from a given (hkl) plane at an 

angle specified by the Bragg condition     

 

2dhkl sin!hkl = "  re-intersect the circle at a single 

point O.  

 

Figure 5.7.  The Seeman-Bohlin focusing geometry.  Aligning the point source, 
sample, and detector along the perimeter of a circle causes all x-rays diffracting at 
the same θBragg from points A, B on the sample to focus at point O on the circle.  In 
the camera presented here x-rays with angular spread δ=8.2° impinge upon the 
sample.  The sample is positioned around a focusing circle of diameter D=100 mm, 
at an angle i=20.5° with respect to the x-ray axis.  An imaging plate wrapped around 
the focusing circle above the sample and x-ray source captures diffraction cones of 
2θ=28°-167°. 

Figure 5.8 shows that the 2P level splitting in Fe Hea-like emission (1.8505 Å and 

1.8595 Å) upon diffraction from the Cu (311) and (222) planes can be resolved.  This 
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example demonstrates that due to the focusing effect the instrument geometry possesses 

angular resolution of better than ~1° in 2θ,  where 
    

 

!2" = 2(sin#1( $1

2dhkl

) # sin#1( $2

2dhkl

)), 

limited only by the laser based x-ray backlighter spectrum. 

 

Figure 5.8.  Demonstration of the instrument’s angular resolution by detecting the 
2P splitting in the Heα-like emission of Fe.  The wavelength difference between the 
resonance and intercombination lines, Δλ=0.009 Å, corresponds to Δ2θ~1°. 

Flat, polycrystalline foil samples (~65 mm2) were positioned 34 mm away from 

the point x-ray source with their front surface tangent to the focusing circle and at an 

angle i=20.5° with respect to the x-ray axis (Figure 5.9).  This allowed a 2θ detection 

range between 28° and 167° on the imaging plate, whose alignment around the focusing 

circle was repeatable to within 500 µm using reference pins.  Ideally, the sample 

curvature is required to match that of the circle for optimal focusing; however, since the 

sample length was small compared to the diameter of the S-B camera, focusing was 
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limited predominantly by the spectral bandwidth of the x-ray source rather than the 

mismatch in the sample-circle curvature. 

 

Figure 5.9.  The Seeman-Bohlin camera adapted for laser driven shock-compression 
and x-ray generation.  A point source of K-shell x-rays is produced at the focus of a 
high energy laser beam incident on a metal foil.  Shocks are formed via laser 
ablation on the sample’s front surface.  Samples can be pre-heated to different 
initial temperatures <600K.  Measurement of the sample’s rear surface velocity is 
obtained by a line-imaging VISAR. 

 A point x-ray source was generated by focusing one of the high-energy laser 

beams of JANUS on a metal foil.  The laser focal spot was aligned with an uncertainty of 

<100 µm to the center of a 600 µm diameter aperture placed on the focusing circle.  The 

x-rays emitted from the thermal plasma were confined to a solid angle of δ=8.2° by a 

stainless steel tube containing a 1 mm diameter pinhole.  This shielding construction 

prevented exposure of the imaging plate from direct line of sight x-rays.  It also resulted 

in a 5 mm by 15 mm elliptically-illuminated region on the sample (Figure 5.10).  The 
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relative alignment between the x-ray source and sample center was not critical as the 

diffraction angles were measured relative to the x-ray source only.  

 

Figure 5.10.  View of the x-ray backlighter and projected x-ray spot on the target 
using a green diode laser.  The laser was used to align the target center with respect 
to the x-ray axis before every data shot. 

The instrument response function 

Knowledge of the instrument response function is necessary in applications where 

quantitative diffraction peak intensity information is used to identify texture, the lattice 

morphology upon phase transformations, or novel material structures.  To derive an 

expression for the instrument response function, we calculated the sample absorption, the 

Lorentz-polarization factor (a geometric factor) and the filter absorption for the S-B 

geometry described.  Absorption by the sample can lead to significant attenuation of the 

diffracted x-rays.  To calculate the fraction of the incident x-ray intensity reflected by a 

sample of thickness z0 as a function of θ, we assumed that a quasi-collimated (small δ/2) 

x-ray source of unit cross sectional area impinges on the sample surface at an angle i and 

exits the sample surface at an angle 2θ-i  (Figure 5.11). 
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Figure 5.11.  X-ray scattering from a layer of thickness dz in a sample.  In the 
calculation of x-ray attenuation as a function of θBragg we assumed that: a) the x-ray 
beam is collimated, since i>>δ and b) the sample width is infinite, since z0 is of the 
order of tens of microns whereas the sample is typically several millimeters wide. 

 For a layer of material dz, at depth z, the volume dV in which x-ray absorption 

occurs is 

 

    

 

dV = dz
sin i

.     (5.1) 

 

The total path length of an x-ray reaching the sample surface after diffraction from the 

volume element dV, at depth z, and at an angle 2θ is 

 

    

 

dsample = ( 1
sin i

+ 1
sin(2! " i)

)z .   (5.2) 

 

Therefore, the intensity of the diffracted beam from element dV exiting the sample is 

proportional to 

 

    

 

dIsample !
1

sin i
exp["µsample(#)( 1

sin i
+ 1

sin(2$ " i)
)z]dz , (5.3) 
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where µsample is the wavelength dependent linear absorption coefficient of the material.  

Integration of equation (5.3) from z=0 to z0 yields the fraction of the total diffracted 

intensity as a function of Bragg angle θ from a sample of thickness z0, tilted at an angle i 

with respect to the incident x-ray direction, i.e. 

 

    

 

A(2! )sample =
1" exp["µsample(#)( 1

sin i
+ 1

sin(2! " i)
)z0]

µsample(#)(1+ sin i
sin(2! " i)

)
. (5.4) 

 

The Lorentz factor is a trigonometric factor in diffraction peak intensity 

calculations that combines three geometrical terms: 1) the angular range δθ centered 

around a specific Bragg angle θ  over which appreciable energy is diffracted, shown to be 

proportional to cosθ, 2) the fraction of grains whose plane normal is oriented to satisfy 

the Bragg condition within the angular range δθ, proportional to 1/sinθ,  and 3)  the 

intersection of the detector-diffraction cone for a given Bragg angle θ.  Thus, the Lorentz 

factor for the S-B geometry becomes 
  

 

cos!
sin(2! " i)sin2!

1
sin!

.  When multiplied by the 

polarization factor (1+cos22θ)/2 originating from electron scattering theory [99], the 

Lorentz-polarization (LP) factor is simplified to 

 

  

 

LP(! ) = 1+ cos2 2!
sin(2! " i)sin2!

.   (5.5) 
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We obtained the diffracted intensity factor due to filter absorption following the 

same steps as in the sample absorption calculation.  Since the diffracted x-rays are 

incident on the filter surface at an angle 2θ-i, the path length in the filter is 

 

    

 

d filter = t
sin(2! " i)

,    (5.6) 

 

where t is the filter thickness.  Therefore, filter attenuation is given by the factor 

 

    

 

B(2! ) filter = exp["µ filter(#) t
sin(2! " i)

].  (5.7) 

 

Finally, combining equations (5.4), (5.5), (5.7), the total diffracted intensity per unit 

length as a function of 2θ is given by  

 

    

 

I (2! ) = 1
D

1+ cos2 2!
sin2(2! " i)sin2!

A(2!)sample B(2!) filter .  (5.8) 

 

The additional 1/Dsin(2θ-i) term in (5.8) comes from the fact that diffracted intensity is 

proportional to the inverse of the sample-detector distance. 

A plot of the instrument response function when all design parameters described 

in the previous section were inserted into equation (5.8) is shown in Figure 5.12.  We 

chose a 30 µm thick Cu sample and a 25.4 µm thick Fe filter (as in the experiment 
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described in Chapter 6).  We also assumed 6.7 keV x-rays (Fe K-shell transition) to 

obtain the correct linear absorption coefficients for the Cu sample and Fe filter. 

The calculated instrument response function exhibits a steep rise in the low 2θ 

range with a maximum at 2θmax=47.5°, then declining to a minimum of approximately 

7.5% of its peak value at 2θmin=114°.  For the angular range of 114°-167°, the instrument 

response increases linearly by a factor of ~2.  Therefore, careful consideration must be 

given to experiments where important data occupies 2θ<114°.  In most cases, critical data 

can be shifted from the low angle range by selection of a longer wavelength x-ray source.  

In addition, filters of thickness ~12.5 µm can enhance signal levels by approximately an 

order of magnitude.  It is also evident that a S-B camera with smaller radius can increase 

the signal-to-noise ratio; however, potential drawbacks are a decrease in the angular 

resolution due to the smaller sample-detector separation and an increase in the 

background noise originating from sample fluorescence. 
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Figure 5.12.  a) Plot of the instrument response as a function of 2θ.  Factors included 
in the calculation of the instrument response were the x-ray filter and sample 
attenuation, the Lorentz-polarization, and sample-detector distance.  In b), c), the 
instrument response dependence on filter thickness and camera radius is shown 
respectively. 

The wide angular range of the S-B detector is highly desirable for in situ 

investigation of transient material properties induced by shock-loading.  For example, 

observation of anisotropic compression in multiple lattice planes could be used to infer 

material strength as a function of loading conditions.  In situ measurement of stacking 

fault densities could also be obtained from the diffraction peak shift in the 2nd and 4th 
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orders [100].  Another application of the S-B camera stemming from both its angular 

range and resolution is in the acquisition of multiphase equation of state data [101-103], 

where the density of each phase can be extracted via measurement of the mean lattice 

spacing, and particle velocity via velocimetry.  Here we designed a S-B camera with an 

angular range suitable for shock-induced melt experiments and demonstrated its 

capability by detecting the first two scattering peaks from an amorphous material (see 

Chapter 7).  From theoretical and synchrotron based studies, metals of interest that 

undergo melt typically exhibit their first two scattering maxima between q values of 2-6 

Å-1 [104, 105]. Since 
    

 

2! = 2sin"1( q#
4$

), for λ=1.85 Å (Fe K-shell wavelength), 2θmin=34° 

and 2θmax=124°, which is within the angular range of our S-B camera.  On the other hand, 

the camera’s limited lateral range (finite detector width) implies that diffraction rings are 

only partially captured.  Therefore, sample texture must be pre-characterized with a 

diagnostic such as electron backscatter diffraction (EBSD) [106] to ensure that 

directional diffraction effects associated with a textured microstructure are considered. 

Finally, precise determination of diffraction peak location is necessary to extract 

information on lattice compression and phase transitions reliably.  Radial sample 

displacement from the focusing circle due to the finite sample/substrate thickness and the 

sample curvature are the primary contributors to peak location error in the S-B geometry.  

Mathematical expressions of these two error factors for the S-B geometry are given by 

    

 

s
2R

sin2!
sin isin(2! " i)

 and 
  

 

!2

12
sin2"

sin isin(2" # i)
 respectively [107].  Assuming that the sample 

position is reproducible to within s=0.5 mm from the focusing circle and δ=8.2° the x-ray 

beam full angle, yields the error in 2θ plotted in Figure 5.13. 
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Figure 5.13.  Calculation results of the error in 2θ.  For the radial displacement 
error, a 0.5 mm displacement from the focusing circle was assumed.  The error 
related to sample curvature was estimated considering a flat sample irradiated by 
an x-ray beam of 8.2° full angle. 

5.3.2 THE CYLINDRICAL POWDER PINHOLE CAMERA  

During the development of x-ray diffraction instrumentation to study the material 

response under dynamic loading, we quickly realized that the diffraction camera 

geometry had to be matched to the observables of the phenomenon to be studied; in other 

words, a single polycrystalline diffraction camera of either a Debye-Scherrer type or 

focusing type would have been unable to provide all the necessary information.  A 

cylindrical Debye-Scherrrer geometry was therefore developed in parallel to the focusing 

geometry that allowed full diffraction rings (azimuthal angle 0 ! " ! 2# ) to be captured 

in contrast with the focusing geometry previously described where only a section of the 

rings was recorded.  Such capability was aimed towards the study of the texture of the 

sample as a function of compression revealing possibly dynamic grain rotation [108, 

109].  In addition, dynamic strength effects [110] as a function of strain rate could be 

quantified by the deviation of the diffraction rings from a circular to an elliptical form.  
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On the other hand, this cylindrical Debye-Scherrer geometry was expected to have 

inferior signal to noise ratio and angular resolution compared to the focusing geometry 

because of the divergence of the diffraction rings as a function of sample-detector 

distance.  

The cylindrical geometry for x-ray diffraction from polycrystalline (and 

amorphous) materials named Cylindrical Pinhole Powder Camera (CPPC) [38] is shown 

below (Figure 5.14).  

 

Figure 5.14.  Illustration and photograph of the actual CPPC diffraction camera.  
The imaging plate detectors are not shown here in order not to obstruct the target 
view.  Normally, the imaging plates were wrapped around the cylindrical frame of 
the camera. 

 

It comprised of a cylinder with inner diameter equal to 6.5 cm and length of 12 

cm.  A point x-ray source was generated by laser irradiation of a thin metal foil and was 

subsequently collimated by two pinholes (500 µm and 1 mm in diameter) to a ~2 mm 

diameter spot size on the target.  Since the pinholes were interchangeable, different x-ray 

spot sizes could be used to illuminate the target.  The x-ray source and target distance 

was 6 cm.  Positioning of the target center on the x-ray source axis was accomplished via 
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illumination of the x-ray source pinholes with a green diode laser and subsequent 

alignment of the illuminated spot on the target.  The Debye-Scherrer diffraction rings 

from grains satisfying the Bragg condition 2dhkl sinθ=λ were recorded on imaging plate 

detectors wrapped around the perimeter of the cylinder.  Both transmitted and reflected 

diffraction signals from the sample, oriented at 45º with respect to the quasi-collimated x-

ray source, were recorded on the imaging plate detectors. The sample orientation was 

selected to be at 45º with respect to the x-ray axis in order to capture information on the 

elastic component of the strain transverse and parallel to the shock direction from as 

many grains as possible.  In other words capturing strain information from a large 

number of grains in different orientations could enable an anisotropy measurement of 

strain along these orientations. 

Appropriate filter foils (depending on the energy of the line emission) were 

mounted in front of the imaging plate detectors to block the continuum emission from the 

plasma, fluorescence from the sample itself and other noise originating from the shock 

drive.  A typical filter package for Ti 4.7 keV Hea-like emission consisted of 37.5 µm 

thick Ti foil and ~25 µm thick aluminized Mylar.  The latter was used to prevent 

exposure of the imaging plates to the 527 nm laser radiation during a shot, which would 

have degraded the exposure.  (Exposed imaging plates are scanned by a green diode laser 

causing fluorescence in the regions where atoms had been excited by x-ray irradiation.  

Therefore, exposure to optical radiation before scanning can result in atomic de-

excitation, thus reducing the signal amplitude emitted from the imaging plate during 

scanning).  For Fe 6.7 keV x-rays we found that a combination of 25 µm thick Fe foil and 

25 µm thick aluminized Mylar provided the signal to noise necessary for x-ray diffraction 
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measurements from Mg.  In general, the above filter assemblies were customized 

depending on the x-ray scattering properties of the material in question by increasing or 

decreasing the foil thickness corresponding to the x-ray backlighter material by 12.5 µm 

until the desirable signal to noise ratio was attained.  The same approach for signal to 

noise optimization was also used in the focusing geometry described earlier.  

The diffraction signal recorded in this cylindrical arrangement took the form of 

straight lines in the transmitted and reflected directions at the corresponding Bragg angle 

2θ  upon unfolding the imaging plates. Thus, the data analysis was simplified 

considerably by the use of a cylindrical geometry.  The dispersion relation for the CPPC 

that was used to translate distance on the imaging plate (or pixel) to angle 2θ   was  
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(5.9) 

 

where C cm
pixel!" #$  a distance/pixel calibration obtained from the known imaging plate 

dimensions and the corresponding number of pixels in that dimension.  In this case, the 

dimension of interest was along the cylinder axis so that distance along this axis was 

converted to Bragg angle 2θ .  A plot of the dispersion relation is also shown below 

(Figure 5.15).  A more detailed characterization of the CPPC camera and its signal 

properties can be found in J. Hawreliak’s publication [38]. 
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Figure 5.15.  Plot of the CPPC angular dispersion as a function of distance of the 
unwrapped imaging plate. 

5.4 Two-Channel Line-Imaging Velocimetry  

Optical diagnostics have been the principal tools in the characterization of 

shocked materials for several decades.  Interferometric diagnostics in particular have 

been widely used in shock-wave experiments since the development of the velocity 

interferometer system for any reflector (VISAR) by Barker et al. [111] to measure gas-

gun and explosively driven shocks.  Since then VISAR has been implemented for a 

variety of measurements in the realm of dynamic loading such as free surface and 

interface velocity measurements, equation of state and reflectivity measurements, as well 

as a means for synchronization of x-ray backlighter pulses with shocks.  Currently 

VISAR systems available at facilities such as OMEGA, JANUS, and NIF are capable of 

recording shock/interface velocities as high as 50 km/s and with precision of ~1% [112].  

In our experiments VISAR served as a diagnostic of free surface velocity and shock 

speed.  In addition, VISAR assisted in the timing of our pump-probe measurements when 
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parylene-N coated targets were used.  In these experiments the x-ray pulse had to be 

synchronized with the shock arrival at the parylene-N/sample interface, so VISAR shock 

breakout data coupled to hydrodynamic simulations facilitated this timing.  Furthermore, 

observation of Mg in its elastic-plastic regime was achieved by resolving the elastic and 

plastic waves in VISAR traces. 

5.4.1 BACKGROUND ON DOPPLER VELOCIMETRY 

A VISAR system typically employs a single-mode pulsed laser probe that is 

incident normally on the surface whose velocity needs to be measured.  Upon back-

reflection from this moving surface the Doppler shifted probe beam is split into the two 

arms of an interferometer and recombined on the 2nd beamsplitter as shown in Figure 

5.16.  An image of the interference pattern is then relayed onto the slit of a streak camera 

detector where spatial and temporal information is captured.  

The VISAR interferometer is a Mach-Zehnder configuration with a temporal 

delay !  introduced in one of its arms.  This temporal delay is achieved by placing an 

etalon of precisely known length h and refractive index n in the interferometer arm and 

by displacing the etalon-mirror assembly along a direction perpendicular to the mirror 

plane.  The displacement is such that the apparent position of the mirror plane as viewed 

through the etalon is equal to the original mirror plane position without the etalon, that is 

the mirror position where there is zero path delay between the two interferometer arms. 
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Figure 5.16.  Diagram of a typical VISAR system.  The Doppler shifted VISAR 
probe beam is injected into a Mach-Zehnder-type interferometer after back-
reflection from the moving surface.  An etalon introduces a temporal delay in one of 
the interferometer arms resulting in interference of beams with slightly different 
wavelength on the reflecting surface of the output beamsplitter.  The fringe pattern 
formed is imaged onto a streak camera to obtain temporal and spatial information . 

The resulting temporal delay !  from such an arrangement is 

 

 ! =
2h
c

n " 1
n

#
$%

&
'(  (5.10) 

 

where c is the speed of light.  The etalon-mirror translation distance d required for correct 

placement of the apparent mirror plane is 
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Since the interfered beams have a relative time delay, a change in the Doppler 

shifted wavelength of the VISAR probe e.g. because of acceleration of the probed 

surface, results in interference of beams with a wavelength difference d! .  Considering 

that the optical phase difference !  in the arms is given by 

 

 ! =
2"
#

c$( )  (5.12) 

we can represent the resulting phase shift due to a wavelength shift by 

 

 d! =
2"c#
$

d$
$

. (5.13) 

 

Since the Doppler shift can be associated to a moving surface velocity u fs  by 

 

 d!
!

=
2u fs

c
 (5.14) 

 

the phase obtained in the VISAR trace is related to the free surface velocity by 

 

 d! =
4"#
$

u fs  (5.15) 

 

A phase shift is typically demonstrated in a VISAR trace by a fringe displacement 

y(t) along the spatial axis of the streak camera record (Figure 5.17).  Quantitatively, the 
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phase shift is associated to y(t) d! = 2" # y(t) / D  where D the fringe spacing.  Therefore, 

the expression for the surface velocity measured by VISAR becomes 

 

Figure 5.17.  Example of a VISAR trace, namely a streaked interferogram with 
subnanosecond temporal resolution.  The quantities extracted from a VISAR trace 
are typically the fringe shift y(t) and spatial frequency 1/D, the shock breakout time 
and occasionally reflectivity as a function of time.  From the first two quantities the 
fringe phase can be extracted from which the surface velocity can be calculated. 

 

 u fs (t) =
!
2"D

y(t) . (5.16) 

 

There are several corrections introduced to the above expression to account for the 

dispersion in the etalon material, the angle of incidence of the VISAR laser probe on the 

target and possible window materials used as target substrates.  These corrections and 

values for different window materials can be found in the paper by Celliers [112].  
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5.4.2 JANUS VISAR DESCRIPTION AND OPERATION 

The two-channel line-imaging VISAR system employed in our surface velocity 

measurements from single and polycrystalline materials was that of the JANUS laser 

facility.  The author also setup two additional VISAR systems at the Sandia National 

Laboratory Z-beamlet facility, Los Alamos National Laboratory Trident facility, and 

constructed a portable VISAR system for synchrotron dynamic measurements at the 

Argonne Photon Source.  Only the JANUS VISAR is presented here since this system 

was used for the measurements relevant to this dissertation. 

A schematic of the JANUS VISAR is shown in Figure 5.18.  A 532 nm, 50 mJ, 50 

ns Nd:YAG single-mode laser was coupled into a large core ( 1mm diameter) multimode 

fiber and propagated for several meters in order to accomplish a smooth speckle pattern.  

The use of a single-mode (injection seeded type) laser having a coherence length of ~2 m 

(130 MHz linewidth) was required to obtain interference from the two temporally 

separated beams in the VISAR interferometer.  The output of the multimode fiber was 

relay imaged to the target surface with a 1:1 ratio.  The focusing/collection lens from 

target was a multi-element achromatic lens with a 14.5 cm focal length and 2 in. 

diameter.  This was the shortest focal length (largest numerical aperture) lens we could 

have accommodated in our setup for efficient light collection from the shock-breakout 

surface.  To protect the lens from shocked material debris a blast shield (~2 mm thick AR 

coated glass substrate) was placed in front of the lens and was replaced on every shot.  

The collected light reflecting from the target’s moving surface was subsequently relayed 

back to the interferometer table shown in Figure 5.18 and split into the two 

interferometers.  Having two velocimetry channels enabled us to choose two etalons (UV 
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grade fused silica, AR coated) one with high and one with low fringe sensitivity or VPF 

(velocity per fringe [km/s/fringe]).  This capability proved to be necessary for data where 

multiple fringe jumps occurred or where the fringe shift direction in one of the 

velocimetry channels was ambiguous.  The etalon lengths used in our experiments and 

the corresponding VPF is shown in Table 5.1.  The VPF was calculated from the 

expression VPF =
!

2" (1+ # )
 for a wavelength of 532 nm taking into account a dispersion 

factor (1+ ! )  where ! = 0.0318  for fused silica. 

 

Figure 5.18. JANUS two-channel line imaging VISAR system. 
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Table 5.1 Selected etalon characteristics used in JANUS experiments. 

Etalon thickness h 
(cm) 

End mirror 
displacement (µm) 

Time delay τ  (s) VPF (km/s/fringe) 

0.466 1472.29 2.415 E-11 10.677 

0.815 2574.47 4.222 E-11 6.106 

1.164 3678.71 6.033 E-11 4.273 

1.518 4797.53 7.868 E-11 3.277 

7.391 23358.72 3.831 E-10 0.673 

 

In each interferometer the image of the target was relayed onto the output 

beamsplitter.  To ensure that the image of the target was relayed on the face of the output 

beamsplitter, a telescope was setup imaging that plane.  The multi-element VISAR lens 

in front of the target was translated until a well-focused image appeared on the telescope 

monitor.  An interference pattern superimposed on the target image appeared on the face 

of the output beamsplitter when light from both arms were allowed to overlap.  The tip-

tilt adjustments of the output beamsplitter were adjusted to produce the desired fringe 

spacing and orientation.  It is important to note that at the beginning of an experimental 

campaign the zero delay position of the interferometer arms was checked with a white 

light source.  The extremely short coherence length of such a light source enabled 

determination of the zero delay position to ~1 µm. 

Last, when an interference pattern with satisfactory fringe contrast was 

established on the output beamsplitter, it was relay imaged to the streak camera  

(Hamamatsu C7700) ~100 µm wide slit such that the full width (~ 2.5 cm) of the slit was 

illuminated.  A cylindrical lens before the streak camera slit condensed the image to a 
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line in order to increase the streak record intensity.  In addition to the interference pattern, 

a fiducial was injected into the streak camera to establish a relative timing with the shock 

drive (WEST) beam.  Temporal overlap of the fiducial and WEST beam was 

accomplished by directing the WEST into the VISAR path and imaging it on the streak 

camera.  An appropriate delay was then introduced by a DG 535 (digital delay generator) 

box such that the fiducial and WEST beam signal were temporally overlapped. 

5.4.3 VISAR FREE SURFACE VELOCITY EXTRACTION  

The interferograms recorded in our experiments were analyzed to extract fringe 

phase and thus, surface velocity as a function of time and space.  There are several 

methods that can extract phase information from interferograms.  We used a Fourier 

transform method (FTM) developed by Takeda and others [113, 114] where the fringe 

intensity is initially represented by a function 

 

 
S(x,t) = B(x,t) + C(x,t)exp 2!if0x + i"0( ) + c.c.

= B(x,t) + A(x,t)exp i#(x,t) / 2( ) $ exp 2!if0x + i"0( ) + c.c.
 (5.17) 

 

where B(x,t)  the average un-modulated intensity background, A(x,t)  the fringe 

amplitude, !(x,t)  the phase to be determined, f0 the fringe frequency, and !0 an arbitrary 

constant phase.  The FTM then proceeds by taking the Fourier transform of equation 

(5.17) at fixed time 

 s( f ,t) = b( f ,t) + c( f ! f0 ,t) + c
*( f ! f0 ,t) , (5.18) 
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and applying a filter that isolates the power spectrum around the c-lobe.  An inverse 

Fourier transform of the filtered power spectrum yields a “wrapped” phase (bounded in a 

[!" ," ]  interval), which is subsequently unwrapped removing any 2!  discontinuities.  

The phase background given by 2! f0x + "0 is also subtracted.  An illustration of this 

process using a VISAR algorithm developed by D. Hicks at LLNL is shown in Figure 

5.19. 

 

Figure 5.19.  Surface velocity extraction procedure from VISAR streak camera 
record.  a) The VISAR trace recorded depicting the region of interest (ROI) 
selected.  b) After application of a Fourier transform algorithm and further 
processing steps involving frequency filtering and an inverse Fourier transform, a 
wrapped phase function W(t) is extracted.  c)  The velocity field obtained after 
unwrapping the phase function and d) the velocity profile from the lineout (in red) . 

This method successfully extracted the surface velocity from the fringe patterns 

recorded except for the cases where discontinuities in the fringes at shock-breakout were 

present or when substantial loss of reflectivity from the interrogated surface occurred 

(Figure 5.20).  For the former data, the user had to “guess” the correct direction of the 
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fringe jump by observing the direction of the fringe jump for lower pressure records 

where discontinuities were not evident or by comparison with the second VISAR 

channel.  Another way to define fringe jump direction was by an estimate of the expected 

velocity from hydrodynamic simulations.  Subsequently, the program was instructed to 

implement the correct fringe jump direction.  For VISAR streak records where fringe loss 

occurred due to poor target reflectivity upon shock-breakout, the breakout time and target 

thickness was used to infer the shock speed and thus, the shock pressure using a tabulated 

equation of state. 

 

Figure 5.20.  Examples of ambiguous VISAR traces because of a) reflectivity loss 
upon free surface expansion, b) fringe jump discontinuity.  In the latter type of 
traces, an educated guess of the fringe jump direction was made based upon the 
irradiance of the shock drive and comparison with the second VISAR channel. 

5.5 Beam Alignment Diagnostics 

We performed single lens imaging of the x-ray backlighter and shock drive laser 

spot size.  We used achromatic AR coated lenses with a variety of focal lengths for 

adjusting the magnification of the imaging system such that the CCD chip (6 mm x 4 

mm) of the WATEC camera used was almost completely filled.  For imaging the laser 
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focus on the x-ray back lighter foil, the imaging system was placed at the entrance of the 

diffraction camera as shown in Figure 5.3, and a motorized shield ensured that the lens 

was blocked before every shot.  The 10 Hz alignment beam was pointed in this way with 

an accuracy of ~ 100 µm to the center of a 600 µm diameter washer that held the x-ray 

backlighter foil. 

Alignment of the shock drive was even more critical for our experiments since 

any misalignment compromised both the VISAR probe overlap and the x-ray backlighter 

overlap.  Since the imaging plate detectors used in our diffraction cameras obstructed the 

direct view of the target, an equivalent plane imaging system was setup to confirm the 

location of the shock drive spot before every shot.  Specifically, after the shock drive 

location was defined on the target, a mirror was placed to deflect the shock drive beam 

away from the target.  The equivalent target plane on the deflected laser beam was then 

imaged by looking at the distance where the spot size (the image of the 1 mm phase 

plate) was at best focus.  The image of the equivalent target plane was marked on a 

monitor.  After replacing the target for a data shot, the beam was aligned into the marked 

area on the monitor (Figure 5.21).  The mirror deflecting the shock drive laser beam was 

then removed and the target was irradiated on the pre-determined area with an accuracy 

of ~100 µm. 
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Figure 5.21.  Optical setup for imaging the shock driven area by a) standard single 
lens imaging, and b) by an equivalent plane imaging configuration.  In the latter, a 
motorized vacuum controlled mirror is inserted in the path of the shock drive laser 
and the equivalent target plane, i.e. the plane at a distance equal to the mirror-
target distance is imaged. 
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6 EXPERIMENTAL RESULTS 

In this chapter, the results of the three main experiments executed during the 

course of this PhD study are presented.  The common premises of these experiments were 

laser-induced shock-loading of polycrystalline samples, nanosecond lattice measurements 

obtained by the diffraction instrumentation developed throughout this research effort, and 

free surface velocimetry for characterization of the material response.   

We begin with the results of a proof of principle density measurement using 

dynamic x-ray diffraction in the Seeman-Bohlin diffraction geometry.  The purpose of 

this measurement was to demonstrate the superior signal to noise and angular resolution 

of the focusing diffraction geometry, thus assessing its capability in future equation-of-

state measurements, as well as experiments where the diffracted signal amplitudes are 

expected to be low.  The relevant example for this study is phase transition experiments, 

where low diffraction signals are expected from the partially transformed lattice.  The 

second experiment presented in this chapter describes our time-resolved measurement of 

the hcp to bcc phase boundary on the principal shock Hugoniot in Mg.  The results here 

are of great significance since the low uncertainty of our data allowed us to define the 

hcp-bcc boundary in Mg, thus differentiating for the first time among various hcp-bcc 

boundary models with considerable discrepancies in pressure and temperature.  Finally, 

our experimental efforts in diagnosing shock-induced melt are described.  Even though 

direct evidence of melt was not attained due to low signal to noise in x-ray diffraction and 

loss of reflectivity in velocimetry, the progress towards shock-induced melt studies is 

presented. 
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6.1 Density Measurement of Shock-Compressed Copper 

 Our early experiments aimed in demonstrating the capability of the focusing 

Seeman-Bohlin camera in equation-of-state measurements, where particle velocity and 

material density must be captured simultaneously.  We performed these experiments 

using the Seeman-Bohlin camera described earlier to detect lattice compression and thus 

density of shocked Cu, together with VISAR for free surface velocity measurement 

(Figure 6.1).  Experiments were performed in the JANUS target chamber for generating a 

laser plasma x-ray source synchronous to nanosecond shock-loading.  A thermally 

excited He-like plasma was generated on the surface of a 9 µm thick Fe foil by focusing 

the JANUS EAST beam (527 nm, 2 ns, ~300 J) to a ~120 µm diameter focal spot.  X-

rays resulting from the 1s2p -1s2 1P-1S (1.8505Å) and 1s2p - 1s2 3P-1S (1.8595 Å) e- 

transitions were emitted over 4π  steradians.  Approximately 35% of the 6.7 keV Fe K-

shell x-rays were transmitted through the Fe foil. 
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Figure 6.1.  (not to scale) The experimental geometry for laser driven shocks and 
dynamic x-ray diffraction studies in Cu using the S-B camera. 

Samples of 25 µm thick, 99.99% pure, Cu rolled foil were ablatively shock-

loaded with an irradiance of around 4x1011 W/cm2 provided by the JANUS WEST beam 

(527 nm, 4 ns).  An example of our shock and x-ray backlighter drive waveforms is 

presented in Figure 6.2.  Despite requesting for a smooth flat top temporal profile, there 

existed considerable fluctuations in the laser waveforms because of problems in the 

pulse-shaping code input.  However, we did not expect that the fluctuations depicted here 

to result in significant pressure variations since these irradiance variations are smoothed 

out during the shock formation process.  On the other hand, spatial intensity fluctuations 

in the laser spot contributed to significant discrepancies in the pressure calibration 

between shots, as it will be explained later. 
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Figure 6.2.  Laser waveforms for the EAST (x-ray backlighting) at 313 J, 2ns, and 
the WEST (shock drive) at 224 J, 4 ns.  A delay of 1.8 ns delay was present in the 
EAST relative to the WEST beam.  Even though there were considerable 
fluctuations in the amplitude of the WEST, hydrodynamic simulations have shown 
that the material response smoothes these fluctuations out during shock formation. 

The 4.7 µm x-ray probe depth (attenuation length of 6.7 keV x-rays at 20.5 ° 

incidence in Cu) was sufficient for interrogating the lattice structure past the ablation 

front (<1 µm).  The velocity history of the sample’s rear free surface was measured for 

every shot over a ~1 mm diameter spot by the two-channel line-imaging VISAR.  The 

fringe constant for each channel was 0.997 km/s/fringe and 3.316 km/s/fringe 

respectively.  Because of an oxide layer that was present on the back surface of the foils, 

the reflectivity of the VISAR probe was low.  Upon breakout reflectivity dropped 

dramatically and for this reason (and because of limited number of available shots), only 

two data points with good VISAR data were obtained for Cu (Figure 6.3). 
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Figure 6.3.  Particle velocity profiles extracted from VISAR interferograms after 
probing the free surface expansion of shock-compressed Cu foils.  The peak particle 
velocity of the two records shown are 0.48 km/s and 0.32 km/s respectively. 
Spallation is evident as a "dip" in the velocity sometime after the release wave has 
back-propagated into the sample. 

In most dynamic x-ray studies, it is important to record diffraction patterns from 

the static lattice to provide an absolute instrument calibration as well as to measure 

material texture and peak width for each sample.  In our geometry we acquired signals 

from both the un-shocked and shocked region of the Cu foil in a single shot by having an 

x-ray source projection that was ~4x the drive area in addition to appropriate pump-probe 

timing.  The temporal overlap between the drive and x-ray pulse was arranged such that 

the ~2 ns pulse of 6.7 keV x-rays arrived at the sample surface 1.5 ns after the leading 

edge of the flat top, 4 ns, drive pulse.  This allowed the shock front to propagate a 

distance of approximately 7.5 µm into the sample before the x-rays turned on.  The static 

sample texture was also pre-characterized using the cylindrical (CPPC) geometry 

described in Chapter 5 coupled to a laboratory Cu Kα source.  In this way, we were able 
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to deduce qualitatively that there was no significant texture (preferential grain 

orientation) that would have affected our measurements, especially since the Seeman-

Bohlin camera only partially records the diffraction rings from the sample (Figure 6.4). 

As it can be seen in Figure 6.4, the grain size of the sample was small enough that the 

diffraction rings from the rolled Cu foil appeared to be smooth (no granularity).   

 

Figure 6.4.  Static diffraction data from a 25 μm thick rolled Cu foil illunimated by 
a collimated laboratory Cu Kα source for a qualitative texture and grain size 
characterization. 

From this study, we reported the first lattice-level measurement from a shock-

loaded polycrystalline target using a S-B focusing x-ray diffraction geometry.  Spatially 

and temporally integrated x-ray signal from the un-driven regions of the Cu foil exhibited 

sharp diffraction lines (Figure 6.5).  Line profiles were extracted from the central 1mm 

portion of the imaging plate, as 3D effects were evident in the curvature and broadening 

of the diffraction peaks away from the center of the diffraction pattern because of 

focusing in a single plane.  

2θ
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Figure 6.5.  Diffraction image from shocked polycrystalline Cu at 13 GPa probed by 
a 6.7 keV, 4 ns x-ray pulse.  Line profiles taken from the center of the diffraction 
pattern clearly depict static and shocked diffraction signal from all Cu (hkl) planes 
within the angular range of the detector except for (222) (low shocked signal 
amplitude). 

Cu (hkl) planes were assigned to the corresponding diffraction peaks by using the 

relation 2! = 2!0 + "2! =
X
D

+ 2!min , where θ0  the static Bragg angle, Δ2θ the measured 

peak shift, and X the distance between a fiducial marker at 2θmin=28 ° and a diffraction 

peak along the length of the imaging plate.  Furthermore, the ratio of the Hugoniot end-

state to the initial material density in the (220) plane was calculated.  Assuming 

hydrostatic compression, the ratio of compressed to static density becomes 

    

 

!
!0

= ( d0

d
)3 = (

sin(2" 2 )

sin(2"0
2 )

)3 ,    (6.1) 
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where d, d0 is the compressed and static interplanar spacing respectively.  The calculated 

Bragg angle 2θ   as a function of the density ratio for different lattice planes in Cu using 

either a 6.7 keV (Fe) or 8.4 keV (Cu) x-ray backlighter is illustrated in Figure 6.6. 

 

Figure 6.6.  Plot of diffraction angle 2θ vs. compressed to static density ratio for the 
fcc lattice of Cu.  The expected angle as a function of density is shown for 
compressed (111), (200), and (220) planes probed by a 6.7 keV (Fe) and an 8.4 keV 
(Cu) x-ray source. 

The above plot was used as a quick reference during experiments to identify the range of 

compressions captured for different loading conditions, from the diffraction peak shift of 

a given lattice plane. 

We estimated a peak shock pressure of 13+/-1 GPa from the velocity profiles of 

Figure 6.3 by combining the Rankine-Hugoniot equation     

 

P = !0UsU p and a Cu EOS 

given by     

 

Us = 3.94 !103(m
s ) + 1.49 !U p  [43], where P is the shock pressure, Us the shock 
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speed, and Up the particle speed.  It is important to note that as the shocked material 

released into vacuum, we assumed that Up was approximately 1/2 the free surface 

velocity measured by the line-imaging VISAR.  In addition, the particle velocity 

measured by velocimetry and the compressed to static density ratio determined from 

diffraction were plotted (Figure 6.7).   

 

Figure 6.7.  Plot of the particle velocity as a function of the compressed to static 
density ratio for polycrystalline Cu.  This was a proof of principle equation-of-state 
measurement using velocimetry for particle velocity and x-ray diffraction for 
density determination . 

Thus, we were able to demonstrate an equation-of-state measurement from Cu 

where in terms of Up  and !
!0

, Up =
C0

1

1! "
"0( )!1

! S
 (see Chapter 2).  For  !

!0

" 1 , 

Up ! "C0 + C0 #
$
$0

 and from our data C ~ 5.19 km
s .  Unfortunately, as previously 

mentioned, the surface finish of our targets resulted in poor VISAR reflectivity for 

several of our data points.  For only the two points displayed we were able to capture 
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good diffraction and velocimetry data.  Furthermore, the discrepancy between the linear 

fit provided by our two data points and the Cu EOS could be explained by spatial 

variations in the laser intensity profile, which would have resulted in pressure 

fluctuations.  These variations stemmed from the fact that in order to accomplish a large 

drive area on the sample (and thus a large diffraction area) we did not employ a phase 

plate to focus the drive laser beam.  Therefore, the driven target area imaged on the streak 

camera of our VISAR may have sampled free surface velocities that did not exactly 

translate to the average lattice compression measured by x-ray diffraction over a larger 

area.  Thus, even though the S-B instrument proved to be suitable for EOS studies, 

accurate measurements would require the use of appropriate drive beam smoothing.  

 In addition, to declare EOS measurements as “absolute” the shock speed should 

have been obtained instead of particle velocity, since particle velocity is not measured 

directly from velocimetry (free surface velocity is).  In these experiments, even though 

the shock speed was captured by observation of the shock-breakout time and knowledge 

of the sample thickness, the oxide layer present on the back surface of our samples and 

the use for some shots of parylene-N coated samples introduced a large uncertainty in the 

sample thickness determination which would have translated to an uncertainty in the 

shock speed.  Typically, shock speed is precisely determined by using stepped thickness 

targets and/or impedance matched substrates [115-117].  In this way, the shock does not 

release into vacuum, which results in a backward propagating release wave in the sample.  

Interaction of this release wave with the incoming portion of the shock wave caused 

spallation, as seen in the “dip” of the velocity profile of the free standing Cu foils in 

Figure 6.3.  
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6.2 In situ Lattice Measurement of the Bcc Phase Boundary in 

Magnesium Along the Principal Hugoniot 

The critical role of the pressure–induced s to d band electron transfer on the 

structural stability and physical properties, such as superconductivity, of transition metals 

has been studied extensively over the years [118-120].  Recently, high pressure structural 

sequences in 3rd period metals [121, 122] have also been elucidated when taking into 

account the lowering and filling under compression of the initially vacant d-band.  The 

hcp to bcc phase transition in Mg is an example of such structural change attributed to a 

pressure-induced d-band population.  A number of first principles calculations within the 

framework of density functional theory [123-126] have attempted to define the hcp-bcc 

phase boundary in Mg, however with great discrepancies.  These discrepancies are 

generally attributed to the extremely small enthalpy barrier between the hcp and bcc 

phases (~1.1 mRy at P=35 GPa and T=0 K). 

 In our study, we attempted to capture lattice evidence of the hcp to bcc phase 

transition in Mg on the principal Hugoniot, thus providing an evaluation of the various 

bcc phase boundary calculation methods in Mg.  The reason behind choosing shock-

loading to induce the phase transition was twofold:  First, via shock-loading, the desired 

pressure (and temperature) regime for the hcp-bcc transition in Mg can be easily accessed 

and characterized with velocimetry.  Second, the shock itself provides a fiducial for 

measuring time-dependent processes in the lattice, yielding important information on the 

kinetics of the phase transition during dynamic loading.  In Mg, the proposed martensitic-

type transformation [68, 69] implies that the kinetics should be extremely fast (<ps).  



 139 

Therefore, a large volume of material should transform within the nanosecond timescales 

of our pump-probe experiment. 

6.2.1 EXPERIMENT DESCRIPTION 

The experiment was performed at the JANUS two-beam, kJ-level laser utilizing 

the sample and x-ray source geometry of the cylindrical camera described in Chapter 5.  

The reason behind replacing the S-B camera for these measurements was that at the 

higher shock pressures needed to induce the phase transition in Mg, a large noise 

background was present originating mainly from the shock drive.  To reduce such noise 

background it was beneficial to detect diffraction in transmission allowing the sample 

itself to act as a noise filter.  In addition, a phase plate with a focal spot comparable to the 

size of the collimated x-ray source was used in the drive laser beam to provide a spatially 

uniform shock front.  A diagram of the experimental setup is drawn in Figure 6.8. 

 

Figure 6.8.  (not to scale) Experimental geometry for laser driven shocks and 
dynamic x-ray diffraction studies in Mg using the CPPC camera. 
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A 4.7 keV, 3 ns, point x-ray source was generated by one of the 527 nm laser 

beams when incident on a 12 µm thick Ti foil with a peak intensity of ~4x1014 W/cm2.  

Approximately 60% of the 4.7 keV line emission was transmitted through the Ti foil.  

The Heα-like x-rays emitted over 4π sr from the thermal plasma were collimated by a 

series of pinholes to a ~2 mm diameter spot size on the target.  The Debye-Scherrer 

diffraction rings from grains satisfying the Bragg condition 2dhklsinθ=λ were 

subsequently recorded on imaging plate detectors wrapped around the perimeter of the 

cylinder.  

Samples of 50 µm thick, 99.98% pure rolled Mg foil coated with a 39 µm 

parylene-N/80 nm Al ablator layer were used in the experiments.  The static texture of the 

samples was characterized with a continuous Cu Kα laboratory source prior to shock-

loading.  The texture and orientation of the samples relative to the collimated x-ray 

source resulted in certain Mg planes appearing exclusively in reflection ((002)hcp and 

(102)hcp), or in transmission ((100)hcp ), or both ((101)hcp) (Figure 6.9).  All allowed 

diffraction planes (see Chapter 4, equation (4.22)) were captured.  Texture did not 

compromise our measurements here as the cylindrical diffraction geometry was able to 

record full Debye-Scherrer rings.  We also obtained a quantitative measurement of the 

Mg grain size (and orientation distribution) by imaging an area from the cross-section of 

an Mg foil with Dark Field-Transmission Electron Microscopy (DF-TEM) [127].  In this 

technique, an electron beam is incident on the specimen, in this case Mg that was cut and 

polished by a focused ion beam.  The grains whose plane normals satisfy the diffraction 

condition with respect to the direction of the electron beam are “illuminated”.  The DF-

TEM image appears dark in the areas consisting of grains that do not diffract and bright 
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in the areas of the grains that diffract (Figure 6.10).  From the images obtained we 

deduced that the grains in the Mg foil were <3 µm and that there was no strong 

orientation preference. 

 

Figure 6.9.  Static diffraction data from a 50 μm thick rolled Mg foil illuminated by 
a collimated laboratory Cu Kα source for a qualitative texture and grain size 
characterization. 

 

Figure 6.10.  DF-TEM images from the cross-sectional area of a 50 μm Mg rolled 
foil captured at different k-vector orientations.  The grains illuminated have 
dimensions no larger than ~3 μm. 

2θ
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Shocks were ablatively driven in the parylene-N coating of the samples using 

single 527 nm laser pulses with peak intensity between 4x1011-1.5x1012 W/cm2 resulting 

in shock pressures in Mg between 12 and 45 GPa.  A trapezoidal laser temporal profile 

with <500 ps rise time and 6 ns duration was chosen to provide a steady amplitude shock 

front at the ablator/Mg interface (Figure 6.11) [74, 128].  To ensure spatially uniform 

shock-loading over a 1 mm2  area, we placed the sample front surface at the focus of a 

KPP phase plate.  The shock propagation behavior in the sample was confirmed by 1D 

Lagrangian hydrodynamics simulations, which are presented in detail in Chapter 7. 

 

Figure 6.11.  An example of laser waveforms used in the shock-compression 
experiments of polycrystalline Mg.  For this data shot, the EAST (x-ray 
backlighting) delivered 338 J, 3ns, and the WEST (shock drive) 83 J, 6 ns.  The 
leading edge of the EAST was delayed by 4.5 ns with respect to the leading edge of 
the WEST pulse. 

Two-channel line-imaging Doppler velocimetry was implemented to verify the 

Hugoniot end state pressure and material response via measurement of the sample’s rear 

free surface velocity upon shock breakout.  Because of the free surface velocity range of 
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our shock pressure scan (1.5-6 km/s), etalons with fringe constants from 0.993 

km/s/fringe to 10.677 km/s/fringe were used inside the VISAR interferometers. 

6.2.2 RESULTS FROM X-RAY DIFFRACTION AND VELOCIMETRY 

Single shot diffraction data integrated over the x-ray pulse duration were recorded 

in the transmitted and reflected direction from the sample.  The sample thickness probed 

corresponded approximately to the attenuation length of the 4.7 keV x-rays incident on 

Mg at 45º with respect to the sample surface, namely 22 µm.  A static reference signal 

was captured on every shot by timing the x-ray pulse to start ~1 ns before the arrival of 

the shock front at the ablator/Mg interface.  An example of diffraction signal is shown in 

Figure 6.12 for a shock pressure of 12.7±0.5 GPa.  The static hcp planes are overlaid by 

dashed lines, whereas the signal from the compressed hcp planes is depicted by dash-

dotted lines.  Note that the difference in the noise background between the transmitted 

and reflected directions was found to scale by a factor of ~1/2. 

For shock pressures below 26 GPa, compression of the hcp (100), (002), (101) 

and (102) planes was evident in the diffraction images as additional lines parallel to the 

static reference lines at a higher Bragg angle 2θ.  Gaussian profiles were fitted by least 

squares optimization to the line profiles extracted from the imaging plate detectors.  

Lattice compression for each (hkl) plane was calculated from the shift in 2θ measured 

relative to the corresponding un-shocked diffraction peak for every shot.  In the data 

shown here, the (100) was compressed by 7.3%, the (002) by 6.8%, the (101)  by 7.4% 

and the (102)  by 6.8%.  Within the uncertainty of our measurement (~0.2%), the 
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observed lattice strains along different orientations were approximately equal implying 

hydrodynamic compression. 

 

Figure 6.12.  Diffraction data and line profiles taken at 12.7±0.5 GPa displaying 
static and compressed diffraction signal from the Mg (100), (101), (002), and (102) 
hcp planes. 

 Our compression measurements below 26 GPa in which good diffraction and 

velocimetry data were acquired on a single shot basis are summarized in the table below. 
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Table 6.1 % compression of the lattice planes diffracting in transmission (T) and in 
reflection (R) as a function of shock pressure, where P<26 GPa. 

Pressure (GPa) (100) T (002) R (101) T (102) R 

7.8±0.7 _ _ 4.8 _ 

8.4±0.7 5.7 _ 5.7 _ 

12.7±0.5 7.3 6.8 7.4 6.8 

16.6±0.9 _ 9.3 9.2 9.0 

17.5±1.0 _ _      8.4 (?) _ 

19.4±0.8 _ _ 9.6 _ 

20.7±1.2 _ _      9.2 (?) _ 

22.2±0.6 _ _ 9.8 _ 

23.2±1.0 _ _ 10.5 _ 

 

For shock pressures above 26 GPa, the number of diffraction lines from shock-

compressed planes decreased, as shown in Figure 6.13.  Apart from the static reference 

lines, only a single diffraction line was observed from the shocked state in both the 

transmitted and reflected orientations.  To interpret this line as either a compressed hcp or 

bcc phase, the measured material density assuming either phase was compared against 

the Mg shock Hugoniot.  In the paragraphs that follow, the essential steps in obtaining 

density from the diffraction peak shifts are explained as they will eventually lead to an 

understanding on how the bcc phase was identified from our data. Note that lattice 

compression measurements from only the (101) hcp plane were available throughout our 

pressure range.  The diffraction peak from the (100) plane above 13.0 GPa merged with 

the static (101) plane and could not be resolved.  The compressed (002) and (102) 



 146 

diffraction peaks suffered from low signal to noise being detected on the side of the 

shock drive.  For this reason, for pressures greater than 18 GPa, it was very difficult to 

obtain a reliable measurement of their position. 

 

Figure 6.13.  Diffraction data and line profiles taken at 44.5±1.1 GPa indicating 
signal from the compressed Mg bcc phase . 

 To obtain Mg density from the interplanar spacing measured via x-ray 

diffraction, we assumed an isotropically compressed end state.  This assumption was 

supported in our diffraction measurements by the absence of significant strength effects 

that would have been exhibited as a variation in the measured lattice strain along the 
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azimuthal direction ! .  In other words, if strength effects were present we would have 

measured a variation in the !2" = 2" # 2"0 along the length of the imaging plate detector 

for each diffracting plane.  (Diffraction rings, in the presence of strength, take an 

elliptical form.  In our experiments, such deviation in the shape of the diffraction rings 

due to strength was not observed.) 

The density ratio between the compressed and the static state in the hcp phase was 

calculated, as before, from the expression 

 

!
!0

= ( d0
d
)3 = (

sin 2" 2
sin 2" 0 2

)3.  For the bcc phase, a 

calculation of the expected diffraction angle 2!  as a function of the density ratio 

proceeded in the following way.  First, from the definition of density, ! in the bcc phase 

is given by  

 

 ! =
2
a3

MMg

NA

 (6.2) 

 

where a the lattice constant, NA=Avogadro’s number=6.022x1023 and MMg=24g/mol-1 the 

atomic mass of Mg.  The factor 2 comes from the presence of two atoms in the bcc unit 

cell.  The lattice constant a can thus be expressed as  
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where !  and !0  the compressed and uncompressed density in the bcc phase of Mg.  

Since the interplanar distance dbcc in the bcc phase and the lattice constant a are related by  

 

 dbcc =
a

h2 + k2 + l2
, (6.4) 

 

where h, k, l, the Miller indices of a plane, dbcc can be re-written in terms of the density 

ratio of the compressed and un-compressed bcc phase as  
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Here the density !0 was taken as equal to that of ambient density Mg namely 1.738 

g/cm3.  Combining Bragg’s law 2dhkl sin! = "  with the assumption of isotropic 

compression and equation (6.5), the 2!  angle of diffracting bcc planes becomes 
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The diffraction angle 2!  for a number of hcp and bcc planes in Mg is plotted as a 

function of the density ratio for a 4.75 keV x-ray backlighter in Figure 6.14.  The same 
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plot was generated using 6.7 keV x-rays to illustrate the effect of a higher energy x-ray 

backlighter in the placement of the diffraction lines (Figure 6.15).  As it is observed from 

the plots, using a 6.7 keV (Fe) backlighter would have resulted in diffraction peaks 

positioned too closely to be resolved.  Especially, the (110)bcc plane would have diffracted 

extremely closely to the (101)hcpand the (002)hcp making its identification quite difficult. 

 

Figure 6.14.  Plot of diffraction angle 2θ vs. compressed to static density ratio for the 
hcp and bcc lattices of Mg probed by a 4.75 keV x-ray source. 
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Figure 6.15. Plot of diffraction angle 2θ vs. compressed to static density ratio for the 
hcp and bcc lattices of Mg probed by a 6.7 keV x-ray source. 

We performed two-channel line-imaging velocimetry for an experimental 

characterization of our shock conditions.  The shock pressure calibration provided by 

velocimetry was also crucial in identifying the single compressed peak captured for shock 

pressures above 26 GPa via the measured P ! "  Hugoniot.  The particle velocity profiles 

extracted (Up !
1
2
U fs ) at 12.7 GPa and 44.5 GPa are shown in Figure 6.16.  The velocity 

profile at 44.5 GPa exhibited no wave splitting, as expected, because of the small ΔV/V0 

of <1% in the hcp to bcc transition in Mg.  The interferometric data for this Hugoniot 

state is also shown (Figure 6.17). 
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Figure 6.16.  Particle velocity profiles extracted from VISAR interferograms after 
probing the free surface expansion of shock-compressed Mg foils.  The peak particle 
velocity of the two records shown are 3.1 km/s and 1.2 km/s corresponding to a peak 
pressure of 44.5 GPa and 12.7 GPa respectively. 

 

Figure 6.17.  Example of a VISAR interferogram from Mg acquired at a pressure 
(44.5 GPa) above the phase transition.  No shock-wave splitting is evident in the 
VISAR record as a result of the phase transition. 

A summary of the compression values from the single compressed peak that 

appeared in diffraction above 26 GPa, assuming an hcp or a bcc lattice, is presented in the 
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table below.  Comparison of the % compression in the (101) hcp plane calculated below 

and above 26 GPa (Tables 6.1 and 6.2) shows a downward jump in compression from 

10.5% at 23.2 GPa to 8.5 % at 26.2 GPa, which clearly indicates that the compressed 

peak observed above 26 GPa does not correspond to the hcp phase.  If it did, the trend in 

increasing compression with pressure for the (101) hcp plane should have continued 

above 26 GPa.  Instead for pressures exceeding 23.2 GPa the compression in the (101) 

hcp appeared to be <10.5 %.  On the other hand, the hypothesis of a (110) bcc peak is in 

agreement with the expected trend of increasing % compression with pressure, having a 

% compression value of 11.3 % at 26.2 GPa.  We now discuss a more rigorous method in 

proving that the observed diffraction peak belonged to the bcc (110) plane. 

 

Table 6.2 % compression assuming diffraction from either (110) bcc or (101) hcp 
planes above 26 GPa.  The uncertainty in compression is ~0.2%. 

Pressure (GPa) (110) bcc (101) T 

26.2±1.2 11.3 8.5 

26.9±1.4 11.2 8.4 

29.5±1.3 11.5 8.7 

31.2±3.8 11.6 8.8 

31.8±1.8 11.9 9.1 

36.0±1.5 12.2 9.5 

37.7±2.0 12.5 9.7 

44.5±1.1 13.1 10.3 
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6.2.3 IDENTIFICATION OF THE BCC PHASE IN MG 

In order to confirm the presence of a bcc phase in the shock-compressed Mg 

above 26 GPa, the pressure estimated by velocimetry and the compressed to static density 

ratio measured by nanosecond x-ray diffraction assuming isotropic compression was 

plotted (Figure 6.18).  

 

Figure 6.18.  Plot of shock pressure against the material compressed to static density 
ratio.  The principal Hugoniot from SESAME table #2860 and that measured by 
Marsh et al. are also shown.  Above 26 GPa, a bcc interpretation of the data 
appeared to be consistent with the Mg shock Hugoniot and the small volumetric 
change of the hcp to bcc phase transition. 

 Below 26 GPa, the data were in good agreement with the shock Hugoniot. 

Significant strength effects, which would have caused a discrepancy between the density 

 “jump” not physical 
 

 assumes hcp (no 
phase change) 

 

 assumes bcc 
(new phase) 
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obtained from x-ray diffraction and the value predicted by the Mg EOS for a given 

pressure, were not evident.  Above 26 GPa, the diffraction angle 2θ measured was 

assumed to originate from either an hcp or bcc compressed lattice as explained earlier.  

Calculation of a density ratio assuming diffraction from compressed (101) hcp planes 

resulted in a significant deviation from the Mg shock Hugoniot.  A similar result was 

obtained assuming diffraction from compressed (002) hcp planes.  In contrast, assignment 

of a density ratio from compressed (110) bcc planes overlaid our data points the closest to 

the Mg Hugoniot and in close proximity to the experimentally measured Hugoniot by 

Marsh et al. [129].  Since the expected hcp-bcc ΔV/V0 of <1% corresponds to a lattice 

distortion with an imperceptible discontinuity in the pressure-volume plot, we deduced 

that the new diffraction peak observed above a shock pressure of 26 GPa belonged to 

compressed (110) bcc planes.  Thus, from the data shown in (Figure 6.13) at 44.5±1.1 

GPa, the lattice strain in the (110) bcc plane was measured to be 13.1% in transmission 

and 12.3% in reflection resulting in a material density ratio of 1.52 and 1.49 respectively.   

Measurement of a compressed bcc phase on the principal Hugoniot was verified 

above P=26.2±1.3 GPa.  The uniformity of the new line representing the compressed 

(110) bcc suggested no significant texture in the new phase.  This could be attributed to 

an original hcp phase texture that was favorable towards the atomic re-arrangement 

mechanism, as well as a highly degenerate transition pathway.  The proposed hcp to bcc 

transition mechanism in Mg consisting of a shuffling of planes such that the (100) hcp 

coincides with the (110) bcc has a twelve-fold degeneracy due to the rotational symmetry 

of the hexagonal structure [130].  A schematic of this mechanism was presented earlier in 

Figure 3.7.  Furthermore, the intensity of the new (110) bcc relative to the compressed 
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hcp lines is in agreement with Olijnk’s [131] DAC diffraction data above the transition 

pressure.  Specifically Olijnyk reported a strong decrease in the intensity of the 

compressed hcp peaks upon appearance of the (110) bcc signal, similar to our observed 

diffraction intensity above 26 GPa, which would support a fast transformation from the 

hcp to the bcc phase in the bulk of the material.  Such timescale (<1 ps) is characteristic 

of martensitic transformations, i.e. the hcp to bcc.  In addition, the low scattering 

intensity observed by Olijnyk in bcc planes other than (110) bcc supports the absence of 

additional bcc diffraction peaks in our experiments due to the limited signal to noise ratio 

of our technique.  A dhcp phase claimed by Errandonea [132] in the low pressure-high 

temperature region of the Mg phase diagram could not be verified by our measurements; 

a diffraction geometry with improved angular resolution [133] would have been required 

for the detection of such small structural change from the original hcp phase. 

6.2.4 COMPARISON BETWEEN AB INITIO BCC BOUNDARY CALCULATIONS AND 

EXPERIMENTS IN MG 

In this study, shock-loading to end states on the principal Hugoniot provided 

access to a P-T region in the Mg phase diagram where calculated bcc phase boundaries 

vary significantly.  In this way, we were able to assess the performance of different first 

principles electronic structure calculation methods within the framework of the density 

functional theory, unlike data previously obtained at 300 K where phase boundary 

predictions overlap closely.  Figure 6.19 shows the calculated bcc phase boundaries in 

Mg together with the locus of end states that we probed on the principal Hugoniot.  The 

principal Hugoniot intersects the bcc general gradient approximation (GGA) boundary at 

P=32 GPa, T=1270 K, the local density approximation (LDA) bcc boundary at P= 30 
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GPa, T=1155K [134] and the LDA-GPT (generalized pseudopotential theory) bcc 

boundary at P=27 GPa, T=1020 K [59].   

 

Figure 6.19.  The calculated P-T phase diagram of Mg from various ab initio 
methods including the experimental points obtained in this study and by Olijnyk et 
al.  The bcc phase measured above 26 GPa agrees well with the phase boundary 
calculated from generalized pseudopotential theory. 

Our lattice measurement of a bcc phase above 26 GPa closely agrees with the 

LDA-GPT approximation.  Thus, the lower pressure predicted for the bcc phase boundary 

by the LDA-GPT method is consistent with our experimental observation.  In order to 

verify the bcc phase boundary in Mg along more than one P-T points, an experiment with 

samples pre-heated at a range of temperatures would have been necessary.  Specifically, 

the material response close to the triple point would have been an interesting area to 
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investigate.  Not only this is the region with the greatest variation in the boundary 

location amongst various density functional theory calculations, but it is also the region 

of a well-debated dhcp (possibly metastable) phase.  This dhcp phase has not been 

predicted before by any of the models discussed here and the DAC experimental results 

by Errandonea et al. [132] have not been confirmed so far by other experiments.  To 

obtain a measurement from such phase (if it actually exists) an instrument with better 

angular resolution than that of our CPPC camera would be needed.   

A brief introduction to the ab initio calculations within the framework of density 

functional theory (DFT) is now presented in order to gain a high-level understanding of 

the methods used to predict the bcc phase boundary in Mg.  An excellent primer on DFT 

can be found in references [135, 136]. 

 

Density functional theory 

Predictions of the properties of materials stemming from interactions between the 

electrons and nuclei, require a solution of the Schrödinger equation for the N-electron 

system in question.  However, Schrödinger’s equation is rarely solvable analytically, 

even in the approximation of stationary ions expressed by 
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where Ĥ the Hamiltonian composed by an electron kinetic energy term, an ionic 

potential energy term, and the Coulombic interaction potential for the N electrons, ! is 

the N-electron wavefunction and E the total energy of the system in its ground state. 

Because of the immense computational effort required to solve the Schrödinger 

equation for the large number of electrons required to represent the unit cell in most 

solids of interest, a number of numerical approaches have been developed for electronic 

structure calculations.  To the problem, Hohenberg and Kohn [124] re-casted 

Schrödinger’s equation from 3N spatial coordinates to only 3 spatial coordinates by 

introducing functionals of the electron density  n(r
!
) .  More specifically, by realizing that 

the electron density  n(r
!
)  encapsulates all the information of the N-electron wavefunction 

since  
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Hohenberg and Kohn constructed a ground-state energy E functional of the form  

 

 E[n] = T [n]+Vion[n]+Vee[n]  (6.9) 

 

where T the electron kinetic energy, Vion the ionic potential and Vee the electron-electron 

potential all expressed as functions of the density  n(r
!
) .  Thus, density functional theory 

was introduced in electronic structure calculations in which the only constraint for 

minimizing the ground state E was  
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By expressing the ionic potential functional in E[n] as  
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one needed to find a functional that represented the sum of the electron kinetic and 

potential energy.  In other words, the exchange-correlation contribution to the 

Hamiltonian (in a functional form) could be isolated completely from the ionic or any 

other external potential.   

A number of approximate forms of the electronic energy functional have been 

constructed and later compared with experimental data.  The approximations considered 

here in the calculation of the Mg bcc boundary resulted from the Kohn and Sham 

formulation [125] in which the N-electron wavefunction !  is replaced with a single 

electron wavenefunction  ! l (r
!
)  resulting in an electron density distribution given by 
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In this case, the many-body Schrödinger equation is also modified to solve for single 

electron wavefunctions, and has the form  
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where  Exc[n(r
!
)]  the exchange-correlation energy functional of the free electron gas 

whose density is assumed to be uniform.  A simple illustration of the classic Schrödinger 

picture versus the Kohn-Sham DFT formulation is shown below (Figure 6.20).  The 

complicated problem of interacting electrons in an external potential is simplified to non-

interacting particles in the “effective” potential of the Hamiltonian in equation (6.13). 

 

Figure 6.20.  A comparison between the classic quantum mechanical view of 
electrons interacting in a potential and the density functional theory view of non-
interacting electrons (Kohn-Sham) in an effective potential.  Agreement between the 
actual and effective potentials depends on the form of the exchange correlation 
functional. 

 A number of approximate forms of the exchange-correlation functional  Exc[n(r
!
)]  

exist.  For example, in the local density approximation (LDA)  Exc[n(r
!
)]  becomes 
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Exc[n] = ! xc[n] n(r

!
)" dr
!
    (LDA)  (6.14) 

 

namely it depends only on the electron density at the spatial coordinate where the 

functional is evaluated.  On the other hand, in the general gradient approximation (GGA) 

the gradient of density at the specific spatial coordinate and electron spin is considered  

 

 
 
Exc[n!,n" ] = # xc[n!,n",$n!,$n" ] n(r

!
)% dr
!
    (GGA) . (6.15) 

 

Last, after observing that material properties are mostly influenced by the 

behavior of the valence electrons in the atoms, a further simplification of ab initio 

electronic structure calculations was implemented via the application of pseudopotentials 

[126, 137, 138].  Pseudopotentials effectively replace the explicit treatment of core 

electrons with an effective core potential.  However, the caveat for such simplification is 

that if the pseudopotential is inaccurate then the electronic structure calculation will be 

too, potentially affecting any EOS prediction.  Phase boundaries depend on small 

differences between large ground state energies and therefore, are particularly sensitive to 

inaccuracies in electronic structure calculations.  As an example, Moriarty showed that 

Mg should remain in its original hcp phase at densities up to ten times its ambient density 

when the d-band population was omitted [122]. 

In general, for Mg, a number of first principles calculations within the framework 

of density functional theory have attempted to define the hcp-bcc phase boundary taking 

advantage of Mg’s simple atomic arrangement and nearly-free electron properties up to 

pressures of ~100 GPa [59, 122, 134, 139, 140].  In this work, our experimental data were 
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compared with bcc boundary calculations within the LDA, GGA, and LDA-GPT 

frameworks.  Amongst these ab initio studies the location of the hcp-bcc phase boundary 

in Mg was predicted with a variation of ~5 GPa at room temperature, to >8 GPa for 

T>500 K because of the small free energy difference between the competing crystal 

structures.  We found our results consisted with Moriarty’s pseudopotential (GPT) 

treatment at the location of the principal Hugoniot.  More details on the forms of the 

exchange correlation potentials used in these calculations can be found in their respective 

references. 

6.3 Shock-Induced Melt Studies Using Dynamic X-ray Diffraction 

6.3.1 DEMONSTRATION OF SINGLE SHOT NANOSECOND X-RAY DIFFRACTION FROM 

AN AMORPHOUS MATERIAL 

The capability of determining the atomic distribution in an amorphous material is 

extremely important in shock-induced phase transition studies such as solid-melt, where 

the crystalline structure may be completely or partially lost.  In general, x-ray diffraction 

studies of amorphous materials and materials undergoing shock-induced melt require a 

detection geometry with sufficient signal-to-noise ratio and angular range 2θ  to capture 

the broad peaks associated with the scattering function S(q) as explained in Chapter 5.  

The high signal amplitude and wide angular range of the S-B camera could therefore 

prove to be important for such experiments. 

We performed static diffraction from an amorphous metal foil MetGlas® 

[Ni55Fe27Co15Si1.6Al1.4] as a proof of principle for amorphous signal detection in the S-B 

camera, a camera specifically designed with an angular detection range suitable for melt 
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studies.  A laser-produced 6.7 keV, 4 ns, x-ray source was used to probe the amorphous 

material.  These results are presented below (Figure 6.21). 

 

Figure 6.21.  Diffraction data from MetGlas® with a 6.7 keV, 4 ns x-ray source.  
Broad peaks at q=3.2 and 5.4 are evident and are in good agreement with peaks 
measured with a continuous x-ray source.  The sharp lines present originated from 
un-shielded camera edges. 

We detected the first two peaks of the scattering function S(q) from Metglas® at 

q1=3.2 and q2=5.4.  This result was in good agreement with scattering measurements from 

MetGlas® performed with a laboratory Cu Kα source coupled to a Philips vertical 

goniometer.  The exhibited sharp peaks were attributed to diffraction occurring from the 

Al camera fixture.  They were subsequently eliminated using appropriate shielding. 

Having demonstrated diffraction from an amorphous solid we also attempted 

diffraction from a static liquid.  Gallium was chosen since it melts at T=303 K.  Ga pieces 

were packaged inside two layers of 100 µm thick black Kapton, a plastic material used in 
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all diffraction experiments for mounting our targets on the diffraction camera target 

holder.  We heated this Ga/Kapton assembly above the melting point of Ga with a 

radiative heat source (fiber lamp) and then performed in vacuum x-ray diffraction with 

the same x-ray source as for Metglas.  No diffracted signal from the liquid Ga was 

observed.  We deduced that for this experiment to succeed, a vacuum-sealed cell with 

liquid Ga had to be prepared in order to probe a liquid layer of uniform thickness.  Even 

though Ga has a very low vapor pressure (4.7x10-3 mTorr at 456 K), its vapor pressure 

was comparable to our vacuum conditions (~3x10-3 mTorr), so most of the liquid Ga 

sample prepared must have evaporated during evacuation of the target chamber. 

6.3.2 DETERMINATION OF THE SOLID-LIQUID BOUNDARY IN SHOCKED BISMUTH 

Motivated by a desire to understand the dynamics of phase transitions in high Z 

materials with complex phase diagrams, an experimental campaign was proposed at the 

start of this PhD work that involved studying the solid-liquid boundary in shocked Bi.  

Bismuth has been an attractive material for shock induced transformation studies for a 

variety of reasons: a low pressure (< 5 GPa) is required to drive pre-heated Bi samples 

into the solid-liquid phase boundary and, interestingly, the negative slope of the solid-

liquid boundary at low pressure yields re-solidification of the material upon isentropic 

release from the shocked liquid state (Figure 6.22).  
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Figure 6.22.  The phase diagram of Bi, depicting the shock Hugoniot from T=425 K 
and the isentropic release path from a shocked liquid state. 

However, the unknown phase transition kinetics of Bi have historically posed a 

great challenge in capturing the solid to liquid phase transition.  The two extreme cases 

that have been postulated are the following: 1) if the melt transition takes place at an 

infinite rate (shock duration>phase transition time) a three-wave structure should be 

evident in the shock pressure as indicated by calculations utilizing a multiphase Bi EOS, 

or 2) if the melt transition has a finite rate (shock duration< phase transition time) a two-

wave structure should appear corresponding to a transition between the Bi I phase and a 

metastable Bi II compressed phase (Figure 6.23).  In the former case, the three-wave 

structure would result from a) intersection of the shock Hugoniot with the liquid phase 

boundary, b) further compression upon isentropic flow along the phase boundary to the 

triple point (negative slope) and c) a second shock wave compressing the material to the 

driving stress.  In the case of slow melt kinetics, the phase boundary of the metastable Bi 
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II phase would extend into the liquid phase of Bi resulting in a solid Bi I-solid Bi II phase 

transition.   

 

Figure 6.23.  The effect of the melt kinetics in Bi on the stability of the shock wave is 
shown.  Two and three wave structures are possible depending on whether the 
phase transition timescale is slower or faster than the shock-loading conditions 
respectively. 

There have been a number of experimental studies in Bi employing loading scales 

ranging from several µs to tens of ns [50-54, 141-146].  These experiments have 

predominantly relied upon features in the shock wave profile to predict the phase 

transition pathway.  In early experiments by Johnson, Asay and others, neither of the two 

kinetic extremes explained earlier was evident in the wave profile data.  It was concluded 

that most likely the measured end state was that of the triple point which implied the 

presence of a mixed solid/liquid phase.  More recently, Smith et al. [66, 147] employed 

ramp compression (isentropic loading) over 35 ns of pre-heated Bi samples.  During these 

ramp compression tests, a velocity plateau was observed after the expected phase 

transition point.  By entering the know strain rate  !!  of the experiment into an Arrhenius 

type equation where  ln( !!)" #P / kT , an estimate of the thermally activated energy 
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barrier was allowed.  Comparison with simulations predicting the energy barrier for each 

type of phase transition (solid-solid or solid-liquid) enabled an identification of the phase 

transition and thus, a timescale measurement from the temporal width of the plateau 

observed in the velocimetry profile.  However, to this date there has been no time-

resolved lattice measurement of the phase transition mechanisms in Bi. 

We proposed to investigate the dynamics and kinetics of phase transitions in 

shock-loaded Bi via nanosecond x-ray diffraction and velocimetry.  We suggested 

focusing primarily on inducing a solid-melt transition in the low-pressure region (20-50 

kbar) by pre-heating samples of polycrystalline Bi.  This investigation would have taken 

place in the S-B diffraction camera described in Chapter 5, utilizing its conductive 

heating capability, developed specifically for Bi experiments.  Unfortunately, no facility 

time was ever allocated for this effort.  However, by tagging along various other 

experiments, preliminary data was taken on both static and shocked Bi samples (at room 

temperature) which led into valuable insights on how a successful diffraction experiment 

in Bi could be performed in the future.   

An example of preliminary static data from polycrystalline Bi is shown in (Figure 

6.24).  The greatest challenge in performing x-ray diffraction from Bi was the restrictions 

in sample thickness and the noise increase due to fluorescence as a result of Bi’s high Z 

(ZBi=83).  Both of these issues are interconnected as fluorescence could in principle be 

attenuated by the sample itself via the choice of a diffraction geometry detecting 

diffraction peaks in transmission (e.g. CPPC).  However, the extremely low attenuation 

length of Bi (~2 µm at 8 keV) would require very thin samples which would imply very 

short shock-loading time scales in order to avoid release waves interacting with the shock 
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front.  Therefore, a study of the kinetics in shock-melted Bi would have been extremely 

difficult in transmission.  If the signal-to-noise in the reflected direction was adequate to 

perform shocked studies, samples of thickness> 100 µm would have been required to 

support shock-loading of >20 ns.  From preliminary data shots with a shock drive, we 

found that a shocked state in Bi could not be observed because of the poor signal to noise.  

Our suggestions for a diffraction study in shocked-Bi will be discussed in the 

Conclusions Chapter. 

 

Figure 6.24.  X-ray diffraction from a static 34.5 μm thick Bi foil in the Seeman-
Bohlin geometry using a 4.75 keV, 4ns source.  The signal to noise appeared 
sufficient for detecting a number of (hkl) planes in Bi, as well as the triplet resulting 
from the 1s2p -1s2  1P-1S and 1s2p - 1s2  3P-1S electronic transitions in He-like Ti. 

 



 169 

7 SIMULATIONS OF ABLATION-DRIVEN SHOCKS 

In our targets, shock formation via laser ablation and shock propagation was 

modeled using a 1D radiation hydrodynamics code (HYADES version 01.06.06).  A 1D 

(in space) hydrodynamic treatment was sufficient in simulating the material response, 

since over the region of interest the loading conditions were such that uniform shock-

loading (no edge effects) could be assumed.  In practice, this was accomplished by laser 

drive spot diameters (> 1 mm) that by far exceeded the shock propagation distance in the 

sample (<100 µm).  

 In this Chapter, simulations performed in uncoated and parylene-N coated Mg 

are presented.  These simulations provided an understanding of the relation between laser 

irradiance and pressure induced on Mg prior to experiments.  Most importantly, they 

aided in the timing between the x-ray and drive pulse, where the delay of the x-ray pulse 

had to be predicted and set before each shot to an accuracy of ~0.5 ns.  Selecting the 

correct delay was critical especially for coated Mg targets where the shock had to 

propagate initially across the width of the parylene-N ablator before reaching Mg.  In 

these experiments, a too long of a delay posed the risk of capturing lattice information 

from Mg in release, which would have complicated our investigation of the shocked 

material response.  A too short of a delay would have resulted in integrating only a small 

amount of diffracted signal from the shock-compressed lattice and therefore, in 

compressed lattice measurements with a very low signal-to-noise.  Since the shock drive 

duration was ~7 ns while the x-ray backlighter drive was of the order of 2-4 ns, the room 

for error in the pump-probe timing of coated Mg targets was very small.  Experiments 
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with uncoated targets were much simpler, since the only concern for timing was the 

release from the back surface of the sample.  However, there were three arguments 

behind the use of coated targets despite their timing complexities: 1) shock front 

generation on the ablator ensured that the x-ray pulse probed material that was not pre-

heated by the ablation front causing spurious artifacts in the diffracted signal, 2) it was 

observed that the noise in diffraction from indirectly driven samples was much less than 

from samples driven directly (energetic electrons, x-ray emission), and 3) the impedance 

mismatch between the plastic ablator and Mg worked in our favor for producing the same 

shock pressure for a smaller irradiance compared to an uncoated Mg sample. 

Besides laser irradiance vs. pressure other simulated parameters using HYADES 

were pressure as a function of propagation distance, especially depicting the pressure 

“jump” experienced at the ablator/Mg interface, and also temporal shock profile vs. laser 

irradiance history.  A brief introduction on the 1D radiation hydrodynamics code 

HYADES is presented next. 

7.1 An Introduction to HYADES Simulations  

HYADES is a one dimensional radiation hydrodynamics code developed by Jon 

Larsen [148] in which the equations of continuum dynamics, heat conduction, and 

radiation transport are solved simultaneously.  For simulating laser ablation and dynamic 

loading, three-temperature hydrodynamics (electrons, ions, radiation) are assumed.  In the 

laser-matter interaction region ablation via laser deposition in the expanding plasma is 

simulated taking into account thermal conduction and radiation diffusion.  In the bulk of 

the sample the material response is affected mainly by hydrodynamics.  There the 
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accuracy of the tabulated equation of state used (SESAME tables) is what determines the 

outcome of the simulations.  For this reason, there exists a significant experimental and 

computational effort in testing and updating new and existing equation-of-state data 

within national laboratories especially LLNL and LANL. 

HYADES uses a 1D Lagrangian frame of reference, namely a reference frame in 

which time derivatives are expressed along coordinates moving locally with the material.  

The partial differential equations representing the physics models used in HYADES are 

approximated by finite-difference discretization.  Discretization is implemented in the 

input file of HYADES, where the material becomes partitioned into m zones defined by 

m+1 mesh points.  Some physical quantities are calculated at the mesh points (e.g. 

position, velocity) and others at the zone centers (e.g. density, pressure).  For this reason, 

the zone definition in the HYADES input file is generally the most crucial part of the 

simulations.  On one hand, for an accurate computation of the shock parameters a large 

number of zones (zone width < 1 µm) is desirable.  On the other hand, a large number of 

zones implies long computational times, so a balance must be found.  In HYADES, this 

balance can be achieved with a “feathering” of the zone width in the regions where 

complex physics are expected.   

In our case, for plastic ablator coated targets (including an 80 nm layer of Al 

flashing on top of the plastic) the problem was divided into five regions as shown in 

(Figure 7.1).  Feathering was applied ensuring a small zone width (<10 nm) on the 

interface where complex physics was simulated.  Feathering (with either decreasing or 

increasing zone width) was selected to be <15%, as recommended by Jon Larsen.  For the 

stability of the code, it was also important that adjacent zones on an interface e.g. the 



 172 

plastic ablator and Mg interface, contained approximately the same mass.  Therefore, 

calculations of the initial zone widths and feathering to satisfy the above criteria were 

necessary.  In general, in order to run HYADES within a reasonable amount of 

computational time the total number of zones in a problem was kept to <300.  For 

uncoated Mg targets, ~5% feathering over the width of the sample was applied (initial 

zone width of 1 nm). 

 

Figure 7.1.  (not to scale) Definition of the HYADES problem for a coated Mg target 
consisting of an 80 nm Al flash coating, a 39 μm parylene-N coating and a 50 μm Mg 
sample.  The problem was divided into five regions, each with a specific feathering 
as indicated.  To minimize the number of zones (a zone is defined by adjacent 
dashed lines) feathering was applied at the interfaces only, over a few microns 
width.  Mg was feathered towards an increasing zone width with a ratio of 1.071. 

Other input parameters required to run HYADES simulations of laser-driven 

shocks were 1) a tabulated EOS (provided in the HYADES software package), 2) an 

ionization model for the calculation of conductivities for laser deposition and heat 

conduction (Thomas-Fermi or Saha) and 3) a flux limiter, chosen to be 0.03 of the free-

stream value, a common choice for this type of simulations based on extensive 

comparisons of experimental data and HYADES simulations [149].  The flux limiter f is 
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a factor entered in the heat flux equation S = !"#T $ fnevekBTe  at the free-stream limit, 

to account for large temperature gradients where the electron mean free path 

!e = ve" e may be larger than the plasma scale length L =
Te
!Te

.  In this situation, the heat 

flux equation must be corrected with a flux limiter f otherwise it predicts that thermal 

energy is transported in the plasma faster than the free-stream limit, which is not 

physical. 

7.2 Simulations of Shock-Loading in Mg   

We performed HYADES simulations to predict a shock pressure vs. laser 

intensity relationship in Mg.  For coated samples these simulations provided the shock 

pressure in the ablator and in the sample for specific laser intensity.  These results are 

plotted below together with the experimentally obtained pressure by velocimetry (Figure 

7.2).  A curve fitting to the pressure scaling law P = a + bI ! was applied.  From the 

simple ablation model presented in Chapter 1, where shock generation was assumed to 

result from momentum transfer between the ablated particles and the solid material, a 

! ~ 0.66  was expected.  A ~20% difference in the simulated value of ! for the ablator 

could be attributed to the calculated conductivity for laser deposition and heat 

conduction, as well as the choice of the flux limiter. 
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Figure 7.2.  Pressure vs. laser irradiance for parylene-N and Mg as calculated by 
HYADES simulations.  In the simulations, a flat top laser pulse (spatially and 
temporally) is incident on the Al flashing/parylene-N layer so that shock formation 
occurs in this layer, not in Mg.  The experimentally obtained pressure vs. laser 
irradiance is also shown. 

As expected, a pressure jump between the pressure in the parylene-N and Mg was 

evident in the simulations because of the impedance mismatch between the two materials.  

A direct comparison between ablator coated and uncoated Mg vs laser intensity is 

presented in (Figure 7.3).  Here the experimentally measured shock pressure and laser 

intensity are plotted for the two types of targets.  For laser intensities > 4x1011 W/cm2 the 

pressure differential started to grow significantly (~50% at 8.5x1011 W/cm2) supporting 

our argument for the use of an ablator to provide a pressure “boost” for a given laser 

intensity. 
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Figure 7.3.  Comparison of the induced shock pressure between uncoated and 
coated Mg targets as a function of laser intensity. 

1D hydrodynamics simulations in HYADES rarely agree with experimentally 

measured quantities because of the inherent approximations in the calculated physical 

quantities resulting from the finite-difference method.  For this reason, HYADES 

simulations are typically scaled to experimental results.  The offset between the 

experimental and simulated values appeared to be much smaller for uncoated targets, 

where the equation of state of one material (instead of three for coated targets) was used 

(Figure 7.4).  In other words, the discrepancy observed between simulations and 

experiments could be due to inaccuracies in the EOS, as well as the definition of other 

parameters such as the flux limiter, artificial viscosity value, etc.  Furthermore, 
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discrepancies could arise from the simulated waveform (constant intensity, with 100 ps 

rise and fall time) versus the actual waveform.  A closer examination of this problem is 

presented later in this Chapter. 

 

Figure 7.4.  Pressure vs. laser irradiance for directly driven Mg samples, from 
HYADES simulations and experiments. 

The approximate pressure vs. laser intensity scaling established by HYADES was 

used in conjunction with a known Us-P relation for Mg and parylene-N to predict shock 

transit times in the ablator and Mg sample respectively (Figure 7.5).  An estimate of these 

transit times proved to be extremely useful in defining the temporal delay between the x-
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ray probe pulse and the shock drive pulse such that both the uncompressed and 

compressed lattice details were captured on a single shot.  

 

Figure 7.5.  Plot of the shock speed as a function of pressure in Mg and in parylene-
N. 

To demonstrate the necessity for accurate pump-probe timing in x-ray diffraction 

experiments, snapshots of a shock propagating in a coated sample are plotted below 

(Figure 7.6).  The modulations in the pressure amplitude shown here are artifacts of the 

simulation and may be dependent on the choice of the artificial viscosity value.  At 6 ns, 

the shock formed in the ablator reaches the ablator/Mg interface as indicated by the 

sudden increase in pressure.  Because of the transition into a higher density material a 

reflected shock is also formed at this interface with amplitude such that the addition of 
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the incident and reflected shock amplitudes is equal to the transmitted shock amplitude.  

In the temporal window between 6-9 ns, the first 25 µm of Mg are compressed at a 

constant pressure.  Since the attenuation length of 4.75 keV x-rays in Mg is 

approximately 25 µm, it is important that the amount of material contained in a depth of 

25 µm is shock loaded to a constant pressure while being probed by the x-ray pulse.  

Therefore, for the loading conditions of this example, the x-ray pulse (e.g. 3 ns duration) 

should be switched on at t=5 ns such that 1 ns of the static and 2 ns of the compressed 

material at constant pressure are probed.  A delay of the x-ray pulse to a later t=6 ns 

would result in no static signal being captured, whereas an even longer delay would be 

probing the lattice in release.  

 

Figure 7.6.  Snapshots of a shock front propagating in a coated Mg target (80 nm 
Al/39 μm CH/50 μm Mg).  The incident laser pulse duration was 7 ns. 
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The accuracy in the pump and x-ray probe timing for uncoated targets was not as 

restrictive as for coated targets (Figure 7.7).  In the example shown in Figure 7.7, a 3 ns 

x-ray pulse could have a maximum delay of 7 ns with respect to the 10 ns duration shock 

drive pulse. 

 

Figure 7.7.  Snapshots of a shock front propagating in an uncoated 50 μm thick Mg 
target.  The incident laser pulse duration was 10 ns. 

7.3 Shock Profile versus Laser Temporal Waveform 

We simulated various laser waveforms incident on coated targets in order to 

assess the sensitivity of the shock profile on the temporal features of the laser.  

Specifically, we varied the pulse duration of a constant intensity waveform and added 

ramped intensity profiles to waveforms of the same (7 ns) duration. 
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In the laser pulsewidth tests in coated targets, the most significant effects were 

observed for short laser pulsewidths, where the resultant shock profile suffered 

attenuation from the release wave catching up to the shock front.  This is an undesirable 

situation for x-ray diffraction as the main goal is to probe the lattice at a single 

compression value, if possible, in order to be able to detect strength effects, elastic-plastic 

effects, phase transitions etc.  Probing the lattice response to the shock front displayed in 

Figure 7.8 would result in broad diffraction peak widths representative of the 

compression range in this triangular shock profile.  (Remember that the diffraction 

pattern is integrated over the duration of the x-ray pulse.)  For this reason, the 39 µm 

parylene-N layer thickness in our experiments was tailored specifically to the 6-7 ns 

shock drive pulse. 

 

Figure 7.8.  Simulation of a shock front propagating in a coated Mg sample with 
incident laser pulse duration of 3 ns.  Shock amplitude attenuation is caused by the 
release wave catching up to the shock front. 
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Last, the effect of ramped, 7 ns pulsewidth, laser waveforms was investigated 

with HYADES simulations.  Quite often during experiments, laser waveforms were 

observed to have ramps, so the following simulations helped in understanding their effect 

on the shock profile.  The ramped laser profiles chosen are shown in Figure 7.9. 

 

Figure 7.9.  The ramped laser waveforms tested in HYADES for investigating the 
resultant shock profile . 

Starting with a flat top intensity profile, we gradually introduced a slope with the steepest 

ramp starting at one third the peak intensity.  Snapshots of the generated shock profiles 

from the three ramped laser waveforms propagating in a coated target are displayed in 

Figure 7.10.  Surprisingly, the shock profiles were not affected by the ramped laser 

waveform, an observation also confirmed by HYADES simulations of Swift et al. in 

plastic ablators [149, 150].  To obtain a ramped shock profile, the pulse length would 

most likely have to be considerably extended in addition to the sloped intensity profile. 
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Figure 7.10.  Snapshots of shock fronts propagating in a coated Mg sample, where 
the incident laser temporal profiles are designed with different ramped temporal 
shapes.  The ramped laser profiles seem to have no obvious effect on the simulated 
shock profiles. 

In summary, the HYADES simulations discussed here assisted us in 

understanding the pressure vs. laser intensity scaling in the ablators and in Mg, as well as 

selecting the appropriate pump-probe delays with an accuracy of ~ 1 ns.  Furthermore, 

they provided a qualitative assessment of the factors influencing the shock profile in the 

material as a function of propagation distance.  From the parameters tested, the laser 

pulsewidth appeared to be the most critical in the evolution of the shock profile in the 

sample. 
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8 CONCLUSIONS 

8.1 Summary of Results 

The main goal of this PhD work was to develop time-resolved lattice diagnostics 

employing x-ray diffraction, in order to identify and characterize the shocked material 

behavior at the relevant spatial and temporal scales.  Shock-induced phase transitions 

were of particular interest to this study as shock-loading can alter drastically the 

timescales and thermodynamic pathway of the phase nucleation and growth process 

compared to quasistatic experiments.  In addition, obtaining nanosecond snapshots of the 

lattice for a material undergoing phase transition is an extremely interesting problem 

because not only the timescales of the phase transition but also the atomic re-arrangement 

mechanism leading to the new structure can be revealed.  

In pursuit of a lattice diagnostic with the necessary angular and temporal 

resolution as well as a satisfactory x-ray signal-to-noise ratio for nanosecond shock-

loading experiments, we developed polycrystalline x-ray diffraction cameras using laser-

based x-ray sources.  These pulsed x-ray sources were generated from a thermal plasma 

K-shell line emission formed when a several hundred Joule, nanosecond laser pulse was 

focused on a thin (<12 µm) foil (Ti, Fe, Cu).  These point x-ray sources were then 

adapted onto x-ray cameras where diffraction signals were captured in transmission or in 

reflection (or both) from shock driven or static samples. 

In order to improve angular resolution and signal-to-noise in shocked lattice 

measurements, we designed and characterized a focusing diffraction camera.  Focusing of 

x-rays diffracting from a broad area on a sample resulted from a simple geometric effect 
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explained in detail in Chapter 5.  Thus, via x-ray illumination of a large area of the 

sample and subsequent focusing on the detector, this Seeman-Bohlin-type diffraction 

camera demonstrated higher signal amplitudes compared to Debye-Scherrer-type cameras 

where a) the incident collimated beam illuminates only a narrow spot on the sample 

(otherwise the angular resolution is compromised) and b) the diffracted peaks from the 

sample diverge with increasing sample-detector distance.  In addition, the focusing 

geometry exhibited angular resolution of <1º by resolving the 2P level splitting in Fe Hea-

like emission (1.8505 Å and 1.8595 Å) upon diffraction from the Cu (311) and (222) 

planes.  Following initial characterization tests with static samples, polycrystalline Cu 

samples were shocked in this diffraction geometry.  Information from isotropically lattice 

planes was captured for the first time from this type of diffraction camera.  Having 

provisioned access to a line-imaging velocimeter both lattice and free surface velocity 

measurements were obtained simultaneously, thus allowing for a proof-of-principle 

equation of state measurement in Cu with <1% error in the density and particle velocity 

measured via diffraction and velocimetry respectively.  If time permitted, a more 

thorough investigation on the equation of state of Cu (or another polycrystalline material) 

would have been performed.  In addition, we demonstrated the application of this camera 

in studies of amorphous materials by acquiring diffraction signal from metallic glass. 

After having developed nanosecond x-ray diffraction techniques, the next set of 

experiments involved identifying a shock-induced phase transition.  We selected 

polycrystalline Mg because its principal Hugoniot intersects the solid-solid and solid-melt 

phase boundaries at readily accessible pressures (or laser intensities).  In addition, the 

hcp-bcc phase boundary in Mg has been highly controversial; A number of first 
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principles calculations within the framework of density functional theory have attempted 

to define the hcp-bcc phase boundary in Mg taking advantage of its simple atomic 

arrangement; however, because of the small free energy difference between the 

competing crystal structures, the location of the hcp-bcc phase boundary has been 

predicted with a variation of ~5 GPa at room temperature, to >8 GPa for T>500 K.  Here, 

using laser-based nanosecond x-ray diffraction and shock-loading we obtained a direct 

lattice measurement of the hcp to bcc phase transition in polycrystalline Mg.  The peak 

shock pressure above which the bcc phase became evident was 26.2±1.3 GPa in 

agreement with the bcc phase boundary calculated by Moriarty et al. using a total energy 

pseudopotential method.  The subnanosecond timescale of the phase transition implied by 

the shock-loading conditions was in agreement with the kinetics of a martensitic 

transformation. 

We also attempted to diagnose shock-induced melt on the bcc-liquid boundary in 

Mg (~60 GPa) and in Bi (~ 3 GPa if preheated to >475 K and P>70 GPa from T=293 K).  

The solid-liquid phase transition in Bi under shock is a particularly interesting problem 

because of the yet to be understood timescales and thermodynamic transition pathway.  

Unfortunately, poor signal-to-noise mainly attributed to the ablation noise and sample 

fluorescence, and an extremely small x-ray penetration depth (<2 µm) did not allow for 

any lattice compression to be detected in Bi.  However, having gained significant 

knowledge from these preliminary experiments in Bi and other polycrystalline materials, 

we are now in a position where we can define the experimental geometry for a successful 

lattice-level investigation on shock-compressed Bi and other high Z materials in general. 
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Finally, a series of 1D hydrodynamic simulations was performed to gain an 

understanding of the plastic ablator pressure and sample pressure vs. laser intensity 

scaling as well as the shock transit times in both the plastic ablator and Mg.  A prediction 

of these parameters prior to experiments was important for planning the shots (e.g. 

determine the phase plate focal spot size) and also for providing an accurate pump-probe 

timing during the experiments.  Timing to within ~0.5 ns was critical to our experimental 

results, since it ensured that lattice information from both the static (reference) lattice and 

compressed lattice were captured.  In addition, hydrodynamic simultations aided in 

understanding how sensitivities in the temporal profile of the laser translated to features 

on the shock profile.  It was found that laser profiles with a small intensity ramp still 

produced stable shocks of approximately constant amplitude; however, laser profiles 

below a certain duration caused shock waves in the sample to attenuate rapidly with 

propagation distance, a situation that is undesirable for lattice measurements where the 

compression detected averages over the penetration depth in the material.  

8.2 Progress Towards Lattice Measurements in Shocked High Z 

Materials 

During our dynamic x-ray diffraction experiments testing high Z materials such as 

Bi, several challenges were identified as mentioned earlier.  The potential solutions to 

these challenges are now presented. 

Perhaps the most important challenge in x-ray diffraction from high Z materials is 

their short x-ray penetration depth (<5 µm for <8.4 keV x-rays) which limits the allowed 

sample thickness for x-ray detection in transmission.  To alleviate this problem, we 
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suggested employing a focusing diffraction geometry where the focused signals are 

captured in reflection from the sample.  It was soon realized that the ablation noise and 

fluorescence from the high Z materials contributed to a significant background in our x-

ray diffraction measurements in reflection from the sample.  Therefore, it was concluded 

that for experiments probing high Z materials, a diffraction geometry in transmission 

from the sample would be necessary, since the sample itself would act as a noise filter.  

However, the challenge in implementing a transmissive geometry is that the samples 

would have to have a thickness equivalent to the x-ray penetration depth.  Such samples, 

especially for high Z materials are very expensive and difficult to produce (even with 

sputter deposition techniques).  Furthermore, thin samples imply extremely short shock 

transit times so that effects from the interaction of the release wave with the shock front 

may be observed.   

Here we suggest different methods for performing lattice measurements from 

shocked high Z materials. The first method takes advantage of the noise filtering 

provided by the sample itself (see diffraction images in Mg), without however any 

sample thickness limitations.  To achieve this, we suggest that the laser drive and x-ray 

probe are incident on opposite sides of the sample.  In this way, the ablation noise is 

filtered by the sample whose thickness in this case is not limited by the penetration depth 

of the x-rays.  The sample can be placed in the focusing geometry described in this 

dissertation to exploit the increased signal amplitude and angular resolution.  In this 

configuration, the ablation noise issue in high Z targets should be resolved.  However, 

this arrangement would require a very precise timing of the x-ray pulse such that the 

lattice is probed before any release occurs.  In order to increase the x-ray penetration 
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depth, development of higher energy x-ray backlighters would be required.  In addition, 

the focusing camera would have to allow velocimetry access from the side of the x-ray 

source, something that can be done relatively easily. 

A second method for probing shocked high Z materials, which would target to 

increase the signal-to-noise in a reflective geometry, would be to use multiple x-ray 

backlighter sources.  In principle, such an experiment could be performed within a multi-

kJ laser facility such as the OMEGA laser at LLE and potentially the National Ignition 

Facility.  

From the experiments performed here, the x-ray signal-to-noise ratio was the main 

battle to be won in detecting shock-induced phase transitions, especially melt.  Even 

though multiple laser-based x-ray sources probing the target simultaneously with the 

laser-driven load will be the way forward for in situ lattice measurements at laser 

facilities, experiments could in principle be performed at an x-ray source with better 

spectral brightness such as LCLS.  The prospect of coupling high energy laser systems to 

the free electron laser at LCLS is very attractive for high energy density materials science 

as all the methods discussed earlier in improving the signal levels would not be necessary 

with a tunable (2-25 keV) narrow linewidth ( !"
"

= 10#3 ) x-ray source such as LCLS.  

Furthemore, the spatial coherence of LCLS could prove to be invaluable in extracting 

both phase and amplitude information from the scattered signal from dynamically driven 

targets. 
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8.3 Future Work 

We propose continuing the investigation of shock-induced phase transitions 

addressing the following: 

1) A complete map of the hcp-bcc boundary in Mg in order to assess the validity of 

ab initio calculations.  Such measurement would be possible with a heated target 

capability provided by either a CW laser beam or conductive heating via a 

substrate.  By preheating Mg targets to different initial temperatures an 

investigation of the intersection of the bcc boundary along different Hugoniots 

would be possible. 

2) The phase transition pathway in the shock-induced hcp-bcc transition in Mg is 

another interesting problem, which could be addressed via shock-loading single 

crystal Mg along different crystallographic orientations.  With a known lattice and 

shock orientation, dynamic x-ray diffraction could reveal the atomic re-

arrangement mechanism.  Such mechanism has been proposed for Mg through ab 

initio molecular dynamics simulations but has never been experimentally verified. 

3) Because of the relatively low pressure melt boundary in Mg (>60 GPa) and the 

long penetration depth of the material, Mg would be the ideal candidate for 

continuing the investigation of shock-induced melt, prior to performing melt 

experiments in high Z materials.  Preliminary data has shown that for melt 

experiments to be successful, our signal-to-noise ratio would have to be improved 

significantly.  We propose that future experiments on this problem be performed 
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at LCLS taking advantage of its high spectral brightness (1012 photons per pulse, 

linewidth !"
"

= 10#3 ). 

4) Upon successful demonstration of shock-melt in a low Z material such as Mg, Bi 

would be the next material forward for this type of studies.  In Bi, information on 

both the timescale and thermodynamic path of the loading process are extremely 

interesting and for this reason, measurements with subpicosecond temporal 

resolution would be required.  Again, the free electron x-ray laser at LCLS with x-

ray pulses of 2-300 fs would be an ideal venue for this study, as it would provide 

both the temporal and spatial resolution to understand the highly speculated Bi 

response under shock-loading. 

5) Last, 2D (or 3D) dynamic diffractive imaging from non-periodic structures [151, 

152] is another avenue of experiments that the author has found extremely 

interesting for gaining an insight into the nanoscale phenomena that lead into the 

bulk phase transformation.  Diffractive imaging exploiting the coherence of free-

electron x-ray sources has already demonstrated imaging of biological structures 

and single atomic layers [153-155].  We envisage that this technique could be 

used to elucidate the processes occurring at a nanoscale level in a shock-loaded 

material, thus providing snapshots of defect formation in the material, phase 

nucleation and growth, and possibly the shock formation mechanism itself. 
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