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Engineered nanomaterials (ENMs) are used in numerous applications due to their unique 

advantages.  Gold nanomaterials (AuNMs) are one such functional ENM, which are utilized as 

model nanoparticles due to their controlled properties.  AuNMs can be synthesized with highly 

uniform size and shape, where increase in the anisotropy gives rise to novel properties; e.g., unique 

Plasmon resonance, shape dependent physico-chemical properties, and quantum confinement, etc. 

These advantages have popularized the use of AuNMs in a wide range of applications in sensing, 

drug delivery, and photodynamic therapies. Increased use of these ENMs calls for systematic 

evaluation of the AuNMs to assess the effect of their size and shape on fate and transport in aquatic 

environment.   

The natural environment, due to the presence of natural colloids and potential presence of 

secondary ENMs, presents additional system complexities in studying ENM fate and transport.  

This dissertation was designed to address two major data gaps: i.e., roles of i) anisotropy and ii) 

presence of secondary particles on aggregation and deposition of AuNMs.  Poly-acrylic acid 

(PAA) coated uniform-sized gold nanospheres (AuNS) and nanorods (AuNR) are utilized as model 

nanoparticles. The first part of this research investigated the effect of shape of AuNMs on their 
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aggregation and deposition in singular particulate system under relevant ionic strengths.  The 

second part of this dissertation focused on investigation of the effects of a secondary nanoparticle, 

i.e., pluronic acid modified single-walled carbon nanotubes (PA-SWNTs), on aggregation and 

filtration of AuNSs under a wide range of ionic strength.  

Effects of shape of AuNMs on their aggregation kinetics were investigated by employing 

time resolved dynamic light scattering (TRDLS) in a wide range of mono- and di-valent electrolyte 

conditions.  Aggregation histories were obtained for the AuNSs and AuNRs in presence of a wide 

range of NaCl and CaCl2 conditions.  The critical coagulation concentrations (CCCs), computed 

from the stability plots of the AuNMs, were used to compare the aggregation propensity of the 

PAA coated AuNSs with the AuNRs.  The deposition kinetics was monitored using the quartz 

crystal microbalance with dissipation (QCM-D) technique for a range of NaCl concentrations.  

Deposition rates determined were used to understand the effects of shape of the AuNMs on their 

deposition kinetics.  Experimental findings suggest that the shape of nanomaterials can influence 

interfacial properties and result in unique aggregation and deposition behavior under typical 

aquatic conditions 

Effects of AuNS size on their aggregation behavior was investigated using citrate stabilized 

30 nm and 60 nm sized National Institute of Standards and Technology (NIST) standard particles 

in biological media.  Continuous size evolution of AuNS aggregates was monitored over a 24 h 

period employing DLS and static light scattering (SLS).  Electrokinetic measurements, UV-vis 

spectroscopy, and electron microscopy were performed for material characterization.  The findings 

from this study indicate that initial differences in AuNS sizes diminish over time as the particles 

aggregate under the influence of elevated ionic strength in the media.  The results from this study 
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will likely influence characterization and experimental design considerations for in vitro nano-

toxicity studies. 

The effects of the presence of a secondary particle, PA-SWNTs, on hetero-aggregation 

behavior of PAA coated AuNS were systematically studied over a wide range of mono- and di-

valent electrolyte conditions.  PA modification of SWNTs made them stable in the entire range of 

electrolyte concentration where SWNT-SWNT aggregation has been eliminated via steric 

interaction.  Hetero-aggregation mechanisms of AuNS were deciphered utilizing electron 

microscopy and electrokinetics. Experimental results suggest that the AuNS aggregates faster in 

hetero-dispersion in presence of PA-SWNT than in homo-disperstion at elevated ionic strength. 

However, hetero-rates are slower in case of low ionic strength cases.  Techniques developed in 

this study can be can be adopted elsewhere to assess hetero-aggregation of a wider set of ENMs, 

hence achieving reliability in nanoparticle environmental exposure and risk.  

Co-transport of AuNS in presence of PA-SWNTs through saturated porous media was also 

assessed using bench-scale column experiments under a wide range of aquatic conditions (1-100 

mM NaCl).  Homogenous AuNS suspensions were utilized as control to compare their 

breakthrough properties with those of the AuNS hetero-dispersions (in presence of PA-SWNTs).  

This study also assessed the role of pre-coating of the collectors (with PA-SWNTs) on AuNS' 

mobility to understand the order of introduction of the secondary particles.  The study results 

demonstrate that the presence of secondary particles and the order in which these are introduced 

to the experimental system strongly influence AuNS mobility.  Thus ENM can be highly mobile 

or can get strongly filtered out, depending on the secondary PA-SWNT and background 

environmental conditions.  



x 
 

This research not only evaluates the role of material attributes in their fate and transport 

but also extends to assess the role of environmental complexities on the same. The research 

findings enhance our current understanding of environmental interaction of the ENMs and call for 

further studies, incorporating additional complexities (i.e., material and system), to assess the fate, 

transport, and effects of the ENMs in the natural environment.   
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Chapter 1 

 

 

Background and Introduction 
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1.1 Introduction  

Inspired by molecular engineering and guided by Richard Feynman's vision, the nanotechnology 

revolution has enabled material scientists and engineers to take control over atomistic 

manipulation.  Such tremendous capacity of nano-scale engineering has become evident by the 

discovery of geodesic structures, i.e., fullerenes in 1985.  Since then engineered nanomaterials 

(ENM) have become the primary building blocks of new technologies, guiding and shaping the 

directions of numerous commercial and service product lines with an estimated market value of 

$26 billion in 2014, and projected to reach $64.2 billion by 20191. The nanotechnology revolution, 

alongside the technological advancement, poses risk of exposing new class of contaminants (i.e., 

ENMs) to the environment following unique fate and transport processes. Broadly, this dissertation 

focuses on the effect of ENMs’ physico-chemical properties and environmental complexities on 

the fate and transport of ENMs. 

1.2 Environmental Release of the Engineered Nanoparticles  

 ENMs are defined as materials with at least one dimension between 1-100 nm, possessing unique 

properties compared to their bulk counterpart.  This novel material-class with superior physical, 

chemical, electrical, and biological properties are now ubiquitously used in a large number of 

consumer products ranging in a wide category of appliances: automotive, electronics, personal 

care, cleaning, construction, home furnishing, and textiles2.  ENMs have also been used in various 

other applications, which include but are not limited to coatings, drug delivery, solar cells, and 

sensors3.  Unlike bulk materials, nanomaterials’ size and shape have distinct effect on their 

properties that inspired interest and subsequent control over these attributes to tune ENMs 

properties.  For instance, rod-like NMs4-10, i.e., tubes, wires, rods, and whiskers, with large 
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diameter to length ratio (i.e., aspect ratio) present unique optical11, thermal12, and electrical13 

properties and impart multifunctionality in a wide range of applications5, 14-16.   

 Carbonaceous nanomaterials (e.g., single-walled and multiwalled carbon nanotubes), with 

diameters in the nano-scale and lengths in microns, are known to be the first and primary 

anisotropic nano-scale materials17-19.  Anisotropic carbonaceous NMs are widely used20 in 

antimicrobial coatings21, conducting films22, microelectronics23, energy storage24, and 

biotechnology25.  Anisotropic metallic NMs on the other hand, i.e., metallic nanorods and 

nanowires5, 26, 27, are widely used in energy sectors and biomedical applications.  For example, 

silver nanorods are used in antimicrobial applications28, while zinc-oxide rods are utilized in 

hydrogen storage14, field emission devices29, 30, solar cells31-33, and sensing applications34-37. Rod-

shaped titanium dioxides are used in photo-electrochemical applications38-42, while gold nanorods 

(AuNRs) are used in biological sensing, drug, and gene delivery43-49.  Anisotropic ENMs are 

gaining increasing interests as material scientists are mastering their abilities to ‘dial in’ desired 

optical, chemical, and electronic properties by gaining control over their aspect ratio.   

 Such widespread usage of and continued interests in anisotropic NMs indicate that these 

materials will be released in the natural environment.  Hence appropriate attention to assess their 

environmental health and safety (EHS) and risk assessment is highly desired.  Environmental 

release of any ENM may occur intentionally, e.g., via their usage in environmental remediation or 

during the manufacturing process, or unintentionally, e.g., accidental or inappropriate disposal of 

NMs from consumer products.  Upon release at different stages of their life cycle, ENMs are likely 

to participate in various physical (e.g., aggregation and disaggregation, sedimentation and 

resuspension, deposition and release), chemical (e.g., dissolution, sorption, redox, surface coating 

replacement), and biological (e.g., uptake, bio-macromolecule-ENM interaction, and 
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microorganism-mediated chemical transformation) processes50.  These fate and transport 

processes are also known to influence subsequent environmental transformation of ENMs.  

Therefore, reliable nano-EHS necessitates systematic assessment of environmental fate and 

transport of ENMs as a function of material attributes as well as environmental parameters.  

1.3 Aggregation and Deposition of Nanoparticles  

Natural water typically consists of several dissolved species and ions. The ionic strength of the 

natural water varies on the basis of its source.  In general, freshwater ionic strength ranges between 

1-10 mM, while potable or drinking water ionic strength has 1-20 mM range, with seawater having 

ionic strength of greater than 700 mM51.  In the presence of such ionic species, randomly moving 

(under the influence of Brownian diffusion) charged nanoparticles usually experience electrical 

double layer compression, followed by particle-particle attachment. This attachment process is an 

interplay between attractive van der Waals (VDW) attraction and repulsive electrostatic double 

layer forces52.  Such (irreversible) agglomeration of multiple particles, commonly termed as 

aggregation, is the physico-chemical process that all ENM will undergo when released in natural 

and engineered aquatic environments. This particle-particle attachment process has been studied 

systematically over the past half-a-century by environmental engineers and colloidal scientists 

with an interest to remove particulate contaminants from water in water and wastewater treatment 

plants53. Aggregation of ENMs will not only modulate particle size over time but will also 

influence their settling, mobility, bioavailability, and toxicity in aquatic and soil systems54, 55.  

Groundwater aquifer and marine sediments are the two most likely sinks of ENMs in the 

natural environment.  In these micro-environments, ENMs interact with natural surfaces (e.g., soil 

or collector grains) and can get deposited or removed from the water streams.  Elemental 

composition and surface chemistry of the ENMs, aggregation state, ionic strength of the pore 
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water, physical and geo-chemical nature of the porous media, pore water velocity, and redox-state 

and pH are factors known to influence ENM deposition in natural porous media.  ENMs' mobility 

and persistence in the porous media determines their potential exposure to the soil and benthic 

organisms.  Moreover, understanding ENM's deposition through the porous media is extremely 

important in assessing their removal mechanism during conventional sand filtration processes and 

also in predicting their transport during groundwater and soil remediation application. 

Aggregation and deposition behavior of ENMs are the key piece of the complex puzzle of 

nano-EHS.  Despite considerable improvement in understanding aggregation and deposition 

processes in the lab-scale clean systems, the role of material attributes (size, shape, surface 

functionality) and environmental complexities (i.e., presence of other particulate matter, bio- and 

geo-macromolecules, collector heterogeneity) are understudied54, 56. These environmental and 

material complexities are likely to influence ENMs’ aggregation, deposition, and transformation 

in the natural environment57, thus demanding complete mechanistic understanding of such 

influences through experimental and theoretical investigations.  

1.3.1 Role of Anisotropy on Aggregation and Deposition  

Classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is generally used to predict ENMs' 

aggregation and deposition behavior58-65.  In addition, clean-bed filtration theory (CFT) is utilized 

to predict NM mobility in porous environmental systems60, 62, 64, 65.  However, rod-shaped NMs, 

due to their anisotropic geometry, violate most fundamental assumptions of these theoretical 

formulations and experimental predictions, exhibiting unknown aggregation rates66, fractal 

structures,67 and unique filtration mechanisms68.   

 Classical colloidal literature bears evidence of particle geometry playing a significant role 

in modulating aggregation propensity69, deposition mechanism70, and surface interaction71.  Extent 
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of VDW attraction has been described to be stronger between the anisotropic particles because of 

greater number of atoms in close proximity in a rod shaped particle compared to a spherical one71.  

Shape of a colloid also influences the effective drag force acting on the particle in the aqueous 

suspensions72.  However, systematic assessment of variation of geometric parameters on ENM 

interaction is scarce.  To date, studies on fate and transport of anisotropic NMs have mostly been 

limited to carbon nanotubes (with little to no control over aspect ratio within the same sample) 62, 

64, 73-78, with unresolved mechanisms for aggregation and deposition of these materials.  Inspired 

by colloidal evidences, some recent studies79, 80 reported shape-dependent aggregation 

characteristics of ENMs in environmentally relevant solution chemistry.  While our knowledge 

and understanding about aggregation behavior is expanding, detailed mechanistic understanding 

of the shape-effect on aggregation and deposition is yet to be discerned.  

1.3.2 Role of Secondary Particles on Aggregation and Deposition  

Natural environmental conditions are typically simulated by varying pH, ionic strength, and 

natural organic matter in the experimental studies.  Though the natural aquatic environments can 

contain naturally occurring particles or previously released ENMs, nano-EHS studies are lacking 

in evaluating the role of such secondary particulate entities.  Colloidal aggregation literature has 

put considerable focus in understanding interaction between dissimilar (with respect to charge, 

size, shape, and elemental composition) particles81, 82.  Extension of these studies to ENM 

aggregation and deposition has been limited.  Introduction of environmental complexity with 

secondary particles in ENM aggregation processes is challenging due to the difficulty in 

distinguishing between primary and secondary particles using the common experimental tools. 

ENM deposition assessment on the other hand has also been limited to single particle systems with 

continued challenges in theoretical and mechanistic understanding of these processes.  
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Complexity of natural systems arises from the presence of pre-existing colloids that cause 

altered aggregation (hetero-aggregation) behavior and also can alter particle transport through 

porous media (co-transport).  The hetero-aggregation problem has primarily been addressed in 

studies relevant to chemical applications (e.g., toners, advanced ceramics, core-shell composites, 

etc.) or in case of natural waters containing clay or other colloids, using symmetric spherical 

colloids83-87. Additionally, complexity and heterogeneity of natural aqueous systems is well known 

in the literature to have significant impact on ENM behavior63, 68, 74, 88, 89.  In earlier ENM studies, 

NOM has been widely used as an effort to mimic the effect of system complexity on the 

aggregation and deposition behavior of ENMs56, 90. Some recent studies90-93 also reported the effect 

of bacteria and biofilm on the aggregation and deposition of NMs. However, the number of 

systematic studies evaluating aggregation and deposition behavior of ENMs in presence of a 

secondary NM is small.  Therefore, a critical data gap also exists in understanding hetero-

aggregation/co-deposition behavior of NMs in representative aqueous or subsurface environments. 

Consequently, reliability issues emanate regarding ENMs' aggregation and deposition data from 

the large gap between the conditions used in such studies and those that exist in the natural 

environment. 

1.4 Problem Statement and Significance 

Systematic evaluation of environmental behavior of anisotropic ENMs calls for uniformity 

in particle geometry, which requires careful control in the synthesis process.  Gold nanomaterials 

(AuNMs) are among the few ENMs, where control over synthesizing highly uniform particles (in 

terms of size and shape) has been achieved94, 95.  Gold enjoys many advantages over other metallic 

nanoparticles: it is considerably less redox-active, chemically very stable, and has low background 

in natural waters; making it easy to detect either optically or by inductively-coupled plasma mass 
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spectrometry (ICP-MS).  For these reasons, AuNMs have often been used as a model in 

fundamental studies of nano-EHS.   

 Even though isotropic (gold nanospheres, AuNS) and anisotropic (AuNR) nanoparticles 

are assumed to be safe to use has led to their incorporation in a number of biomedical 

applications96,  recent in vitro and in vivo findings have demonstrated significant toxic responses 

of AuNMs in model biological systems77, 96-106 98, 101, 107-109.  Cellular necrosis and apoptosis may 

occur at certain doses depending on AuNR aspect ratio100, 101.  Moreover, AuNRs have been shown 

to bind to DNA, causing conformational changes that affect transcription110.  AuNRs have also 

been found to induce inflammatory response and apoptosis in the liver of higher vertebrates such 

as mice77, 96, 97.  The toxicological potential of AuNRs together with their advantages as model 

NMs provide support for their usage in systematic and mechanistic studies to better understand 

potential risks associated with anisotropic ENMs in general.      

As noted earlier, a data gap in reliable fate and transport properties (incorporating the 

material and system complexities) of ENMs make exposure analyses difficult and to date have 

resulted in a lack of regulation of NM usage111, 112.  Evaluation of the aggregation and deposition 

of AuNRs could potentially address the data gap in the ENMs’ fate and transport literature in terms 

of material complexity. However, any complete risk assessment of AuNMs must incorporate 

environmental complexities in the experimental design.  Therefore, there is a critical need for 

systematic research in understanding the role of anisotropy and environmental complexity on the 

fate and transport of AuNMs.  

1.5 Research Objectives 

 Appreciating the aforementioned data gap, this dissertation aims to achieve three specific 

goals: first, investigating the role of size and shape on the aggregation and deposition behavior of 
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AuNMs; second, assessing the role of secondary entity on aggregation kinetics of AuNMs, i.e., 

hetero-aggregation; and third, transport of AuNMs through porous media in presence of a pre-

existing NM (e.g., carbon nanotube), i.e., co-transport.  AuNSs in combination with nonionic 

polymer, pluronic acid coated single-walled carbon nanotubes (PA-SWNTs) are used to evaluate 

such aggregation and transport behavior in binary particulate systems and under a wide range of 

environmentally relevant conditions.  

1.6 Research Hypotheses 

Hypothesis 1: Size and shape of AuNMs will influence their aggregation and deposition in aquatic 

environment  

Hypothesis 2: Presence of secondary NMs (e.g., PA-SWNT) will alter AuNS aggregation 

behavior 

Hypothesis 3: Transport of AuNS through porous media will be influenced by the secondary 

particles, e.g., PA-SWNTs’ presence 

1.7 Approach and Methodology  

In this research AuNMs are used to assess the role of anisotropy and system complexity on the 

aggregation and deposition of the nanoparticles. SWNTs are used as the secondary NMs.   

Accomplishment of the stated research goals involves successful completion of the tasks outlined 

below. 

Task 1. a) Role of shape on aggregation and deposition kinetics of AuNM 

        b) Role of preliminary size in the aggregation of AuNS under high salinity 

Task 2. Hetero-aggregation of AuNS in presence of PA-SWNT 

Task 3. Co-transport of AuNS in presence of PA-SWNT 
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1.8 Organization of the Dissertation  

The dissertation is organized in six chapters and four appendices.  The body consists of chapters 

2, 3, 4, and 5, which comprise of the materials prepared for publication in peer reviewed journals 

of Chemosphere, Journal of Nanoparticle Research, and Environmental Science and Technology.  

Chapter 1 presents the introduction to this dissertation with a brief overview on ENMs' aggregation 

and deposition, data gap, problem statement and significance, research objective, and hypotheses.    

 Chapter 2 presents research results that test the first hypothesis; i.e., studying the influence 

of shape on the aggregation and deposition, employing PAA coated AuNSs and AuNRs.  Dynamic 

light scattering (DLS) and quartz-crystal-microbalance with dissipation (QCM-D) were used for 

aggregation and deposition study, respectively.  This work was led by A. R. M. Nabiul Afrooz and 

co-authored by Sean T. Sivalapalan, Catherine J. Murphy, Saber M. Hussain, John J. Schlager, 

and Navid B. Saleh and was published in Chemosphere in December 2012, with a title113 "Spheres 

vs. Rods: The Shape of Gold Nanoparticles Influences Aggregation and Deposition Behavior". 

 Chapter 3 is considered a continuation of the evaluation of the first hypothesis.  This study 

provides an insight on the effect of ENMs' preliminary diameter on their aggregation behavior 

under high salinity condition.  PAA-coated AuNSs were exposed to cell culture media to monitor 

their aggregate size and structure over 24 h.  This work was led by A. R. M. Nabiul Afrooz and 

co-authored by Saber M. Hussain and Navid B. Saleh and was published in Journal of 

Nanoparticle Research in December 2014, with the title114 "Aggregate size and structure 

determination of nanomaterials- Importance of dynamic evolution". 

 Chapter 4 presents the task performed to test the second hypothesis.  It presents a novel 

technique to assess influence of a secondary ENMs on AuNS aggregation using DLS and 

transmission electron microscopy (TEM).  PAA-coated AuNS and PA-SWNTs have been used to 
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study hetero-aggregation of AuNSs under a wide range of ionic strength.  Effect of natural organic 

matter (NOM) on hetero-aggregation of AuNSs was also presented.  This work was led by A. R. 

M. Nabiul Afrooz and co-authored by Iftheker A. Khan, Saber M. Hussain, and Navid B. Saleh 

and was published in Environmental Science and Technology in January 2013, with the title115 

"Mechanistic Hetero-aggregation of Gold Nanoparticles in a Wide Range of Solution Chemistry". 

 Chapter 5 presents a systematic study to investigate the final hypothesis.  This chapter 

presents experimental results of PAA-coated AuNS transport through saturated porous media in 

presence of PA-SWNTs.  This study also evaluates effects of coated collectors with PA-SWNTs 

(already filtered out SWNTs) on AuNS transport.  The effects of NOM on co-transport of AuNS-

SWNT has been assessed.  This article will be submitted for publication and will be led by A. R. 

M. Nabiul Afrooz and co-authored by Dipesh Das, Catherine J. Murphy, Peter Vikesland, and 

Navid B. Saleh.  The tentative title of the manuscript is "Co-transport of Gold Nanoparticles with 

Single-Walled Carbon Nanotubes in Saturated Porous Media". 

 The final chapter (Chapter 6) presents the summary, conclusions, environmental 

implications, and future recommendations relevant to ENM fate, transport, and toxicity.  
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Chapter 2 

 
 

Spheres vs. Rods: The Shape of Gold 
Nanoparticles Influences Aggregation and 

Deposition Behavior1 
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Abstract 

The influence of shape on nanomaterial aggregation and deposition was systematically studied 

with PAA coated uniform-sized AuNSs and AuNRs.  Time resolved dynamic light scattering was 

employed to study their aggregation kinetics in a wide range of mono- and di-valent electrolyte 

conditions.  Results indicated that PAA coated AuNSs have higher aggregation propensity 

compared to anisotropic PAA coated AuNRs, as observed through critical coagulation 

concentration (CCC).  The CCC values were estimated as 50 mM NaCl and 1.8 mM CaCl2 for 

AuNS, which showed substantial increase to 250 mM NaCl and 7 mM CaCl2 for anisotropic 

AuNRs.  Though electrokinetic behavior showed similar surface potential for the spherical and 

rod-shaped materials, the geometric differences between the samples have likely resulted in unique 

conformation of the PAA coatings, leading to different magnitudes of steric hindrances and hence 

yielding the observed aggregation behavior.  The deposition kinetics was monitored using the 

quartz crystal microbalance with dissipation technique.  AuNRs showed relatively slower 

deposition compared to AuNSs for low electrolytes concentrations.  With the increase in 

electrolyte concentration, the differences in deposition rates between spheres and rods diminished.  

The results from this study showed that the shape of nanomaterials can influence interfacial 

properties and result in unique aggregation and deposition behavior under typical aquatic 

conditions.  

 

 

 

Keywords: Gold nanorods; gold nanospheres; shape; aggregation; deposition; poly (acrylic acid); 

conformation 



 

21 
 

2.1 Introduction 

Rod-like nanomaterials 1, 2 with high aspect ratio (length to diameter ratio) have unique optical 3, 

thermal 4, and electrical 5 propertiesthus considered an exciting material class exhibiting multi-

functionality in many applications 1.  Presently, carbonaceous nanomaterials (e.g., single-walled 

and multiwalled carbon nanotubes) are the most widely produced anisotropic nanostructures 6, 

followed closely by metallic nanorods and nanowires 1, 7.  Due to concerns about fibrous ‘asbestos-

like’ structure, there has been significant attention directed toward environmental implications and 

biocompatibility of anisotropic carbon nanostructures. However, a considerable lack in such 

studies for metallic anisotropic materials still exists.   

AuNMs are identified as one of the dominant ones within the plasmon-resonant functional 

material classused for biological imaging and image-guided non-invasive therapies 8.  

Anisotropic AuNMs, i.e., AuNRs, yield unique optical properties relevant to biological 

applications, e.g., drug delivery, contrast agents 9, 10.  However, recent in vitro and in vivo findings 

have demonstrated toxicity of AuNRs 11, 12.  Cellular necrosis and apoptosis may occur at certain 

doses depending on AuNR size 13.  These anisotropic nanomaterials have also been shown to 

induce inflammatory response and apoptosis in the liver of higher vertebrates, such as mice. Such 

reports not only highlight necessity of fate and transport studies of AuNR but also indicate the 

need for careful evaluation of aggregation behavior to enumerate toxicity mechanisms with 

anisotropic gold.  

Spherical colloids have been used for decades for studying fundamental interfacial 

interactions 14, 15.  Moreover, particle geometry is a key parameter influencing their behavior 16.  

In addition, physico-chemical properties, aggregation propensity, and surface interaction of 

colloids are known to be substantially altered by the change in colloid shape; i.e., from spheres to 
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cylinders 17, 18.  Despite such evidence, there are a paucity of studies that systematically evaluates 

shape effects of nanomaterials on their environmental behavior and toxicity.  A recent review on 

experimental aggregation and deposition studies of engineered nanomaterials is a testament to this 

reality, where an exhaustive list of implication literature is presented with no evidence of shape-

effect studies 19.  Fundamental studies on the shape-effect on aggregation propensity in biological 

exposure conditions are also lacking 9.  There are only a handful of studies 20, 21 that systematically 

evaluated the role of shape on aggregation and deposition of nanoparticles.  

The objective of this study is to investigate the effect of AuNM shape on aggregation and 

deposition behavior in a wide range of mono- and di-valent electrolyte conditions.  The ability to 

uniformly synthesize AuNSs and AuNRs enables such systematic evaluation.  AuNM morphology 

is evaluated with transmission electron microscopy (TEM), while their plasmon-resonance 

signature is identified with UV-Vis spectroscopy.  The aggregation kinetics are systematically 

studied using a time resolved dynamic light scattering technique (TRDLS).  Deposition behavior 

is evaluated with the interfacial Quartz Crystal Microbalance with Dissipation (QCM-D) 

technique.  This study evaluates the role of shape on AuNM aggregation and deposition, where 

the mechanisms are enumerated with electrokinetic measurements and role of geometry on surface 

coating conformation.   

2.2 Materials and Methods: 

2.2.1 Synthesis and Sample Preparation 

AuNSs with 12 nm diameter at 2 nM concentration and AuNRs with same diameter and an aspect 

ratio of 5 (i.e., 12 × 60 nm dimensions) at 0.2 nM strength were prepared using a seed mediated 

approach.  The details of synthesis have been discussed elsewhere 22, 23.  For this study the protocol 

is essentially controlled reduction of gold salts in aqueous solution at room temperature in the 
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presence of a “structure-directing” cationic surfactant; e.g., cetyltrimethyl-ammonium bromide, 

CTAB 24.  After purification by dialysis and centrifugation, a bilayer of CTAB remained on the 

AuNM surfaces, rendering positive surface charge to the particles and thus preventing aggregation 

25.  Overcoating the AuNMs with anionic polymers such as poly (acrylic acid), PAA, switches the 

surface charge to a negative potential.  Colloidal suspension of AuNS was prepared with a dilution 

factor of 75 while the AuNR was used at the original synthesized concentration.  

2.2.2 Surface PropertiesMorphology, Chemistry, and Electrokinetics 

AuNM morphology and physical attributes (shape and size uniformity) was probed with electron 

microscopy, employing a JEOL 2100F TEM.  The aqueous dispersions of AuNMs were placed on 

200-mesh (0.075 mm) copper grids coated with carbon-Formvar (Electron Microscopy Science) 

and dried at room temperature.  Images were obtained at 200 kV accelerating voltage.  Upon 

synthesis, Plasmon resonance spectra were obtained on a Cary 500 UV-Vis-NIR 

spectrophotometer.  In addition, electrophoretic measurements, to ensure effective surface 

overcoating from with PAA, were performed on a Brookhaven ZetaPALS instrument.  After 

shipping from Illinois to South Carolina, AuNS and AuNR stability were verified optically with 

an Agilent 8453 UV-Vis spectrometer (Santa Clara, CA).  For such measurements, 3 mL of AuNM 

suspensions at 10-fold dilution were added to a 5 mm path-length quartz cuvette.  Spectral response 

for the UV and visual wavelength range (200 to 1100 nm) was collected.  Multiple runs were 

performed to ensure reproducibility.  Further surface characterization was performed with 

electrokinetic measurements, measuring electrophoretic mobility (EPM) by a Malvern Zetasizer 

(Malvern Instruments, Worcestershire, UK).  1 mL AuNM suspension (with dilution factor 75 and 

1 for AuNS and AuNR, respectively) was injected into the polycarbonate capillary cell (DTS 
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1060C), ensuring no air-bubble intrusion.  At least 20 measurements, with triplicate samples, were 

recorded at 22 °C.  

2.2.3 Aggregation Kinetics 

The aggregation kinetics was studied using TRDLS.  A robust light scattering precision instrument 

(ALV/CGS-3, Langen, Germany), equipped with a 22 mW HeNe laser at 632 nm (equivalent to 

800 mW laser at 532 nm) and a highly sensitive High QE APD detector with photomultipliers, 

was used.  Detailed procedures regarding TRDLS has been described elsewhere 26, 27.  In brief, 2 

mL volume of 3.01 × 1012 mL-1 number-particle of AuNS or AuNR was injected to a rigorously 

cleaned glass vial (Supelco, Bellefonte, PA).  A pre-measured amount of electrolyte solution, to 

achieve 1-200 mM NaCl and 0.1-7.6 mM CaCl2 for AuNS and 1 to 550 mM NaCl and 0.1 to 20 

mM CaCl2 for AuNR, was introduced to initiate aggregation.  Scattered light intensity was detected 

with a photon-detector, positioned at 90° from the incident laser.  The hydrodynamic radii (HR) 

profile was generated using auto-correlation function and cumulant analysis.  A gradual increase 

of HR was plotted against time to obtain initial aggregation rates for each salt concentration.  The 

estimated rates were normalized with the favorable aggregation slope.  Further details on the 

formulae used for such computation is presented as SM-1 in supplementary material (SM) section. 

2.2.4 Interfacial Deposition 

Deposition experiments were performed using a Q-sense E4 (Q-sense, Västra Frölunda, Sweden) 

QCM-D.  A pre-cleaned (with 2% hellmanex solution) silica quartz crystal was first treated in a 

plasma chamber for 20 min 28.  Upon establishment of inherent frequency and dissipation for the 

quartz crystal (F&D), the crystal was equilibrated with the background electrolyte solution of 

concern to establish a stable baseline.  AuNM suspensions at 6.02 × 1014 mL-1 number-particle 

was then introduced to the flow-through chamber at identical background chemistry.  A range of 
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mono-valent electrolyte, i.e., 10-1000 mM NaCl, was used to evaluate deposition behavior.  

Deposition of particles on the crystal was monitored with the change in vibrational frequency of 

the crystal in the third overtone 28.  The frequency profile was recorded with Q-soft 401 software 

and initial deposition slopes were estimated to obtain deposition rates of the AuNMs at each 

electrolyte condition. 

2.3 Results and Discussion 

2.3.1 AuNM Characteristics 

Representative TEM micrographs of the AuNS and AuNR are presented in Fig. 2.1.  Figure 1a 

shows uniform sized spheres with relatively rounded edges. Slight angularity is noticed in some 

of the spherical features. 

 
 
FIGURE 2.1. Representative TEM micrographs of (a) AuNS and (b) AuNR.  Scale bars are 25 
nm. 
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  A high degree of uniformity is observed for the synthesized AuNS showing 12±0.5 nm diameters.  

For AuNR, similar degree of uniformity in rod diameter and length is observed (Fig. 2.1b).  The 

rods are observed to be near identical with 12±0.8 nm × 60±2 nm dimensions.  The rod edges are 

observed as symmetrically rounded. 

Plasmon resonance of AuNS and AuNR is probed with UV-Vis spectroscopy as presented 

in Fig. 2.2.  The AuNSs show characteristic localized surface plasmon resonance (LSPR) at 520-

540 nm wavelength range (Fig. 2.2a).  AuNRs exhibit two LSPR peaksfirst one near 520 nm, 

corresponding to the resonance from the shorter dimension of the rods (transverse), where the 

second peak at 830 nm corresponds to response from the longitudinal axis (Fig. 2.2b).  These 

results are consistent with literature presented LSPR peaks that report 520 nm for AuNS 29  and 

518 and 860 nm for transverse and longitudinal AuNR axes, respectively 30. 

  The surface potentials of the AuNMs are presented in Figure 2.3 for a range of mono- and 

divalent electrolyte concentrations.  The EPM values of AuNS showed a gradual decrease from – 

(2.95±0.04) × 10-8 to – (0.74±0.02) × 10-8 m2 V-1 s-1 with an increase of NaCl concentration from 

3 to 100 mM.  In the case of AuNRs, EPM values were reduced from – (2.88±0.17) × 10-8 to –

(0.29±0.01) × 10-8 m2 V-1 s-1 for a similar increase in NaCl concentration.  The negative surface 

potential demonstrates effective overcoating of AuNM surfaces with PAA.  For divalent Ca2+, 

approximately one and half log leftward shift was observed for EPM sensitivity; as expected with 

multi-valent counterions. A gradual decrease from – (2.86±0.28) × 10-8 to – (0.55±0.23) × 10-8 and 

– (2.32±0.19) × 10-8 to – (0.28±0.32) × 10-8 m2 V-1 s-1 was observed for AuNS and AuNR, 

respectively.  Similar electrokinetic behavior, i.e., reported -potential of -(36.9±6.6) mV, is 

observed in earlier literature for PAA coated 12 nm AuNS 31; whereas, PAA coated AuNR 

exhibited -33 mV 32. 
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FIGURE 2.2. Characteristic UV-Vis spectra of (a) AuNS and (b) AuNR showing the LPSRs for 
both shapes. 
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FIGURE 2.3. Electrophoretic mobility (EPM) of AuNS and AuNR with (a) monovalent NaCl 
and (b) divalent CaCl2. The measurements were performed at 22 °C. 
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2.3.2 AuNM Aggregation Kinetics 

Figure 4 presents stability profiles of the AuNMs for mono- and di-valent electrolyte scenarios.  

Overall, the AuNSs show classical Derjaguin-Landau-Verwey-Overbeek type aggregation 

behavior with defined unfavorable or reaction limited (RLCA) and favorable or diffusion limited 

aggregation (DLCA) regimes.  In the case of AuNRs, both aggregation regimes exist, although the 

regime switch is more abrupt compared to AuNSs.  In addition, the AuNRs show higher stability 

compared to the AuNSs, where this effect is more profound with mono-valent electrolyte case.  

The attachment efficiencies computed from raw aggregation profiles (Fig. A-1) show a gradual 

increase with the increase in NaCl concentration for AuNS.  The regime confluence, quantified 

with critical coagulation concentration (CCC), show relatively lower stability for AuNS50 mM 

NaCl in this case.  The anisotropic AuNRs show a steeper response in the RLCA regime, though 

exhibit a half log right-shift to initiating the regime (Fig. 2.4a).  The estimated CCC for AuNR is 

~250 mM NaCl with a less defined regime confluence.  CCC values of 70 mM NaCl for citrate-

coated 30 nm AuNSs have been reported 33 earlier.  Significantly higher stabilities were reported 

for 1,1-mercaptoundecanoic acid coated 28 nm AuNSs yielding a CCC of 200 mM NaCl 33. 

Similar aggregation behavior is observed with divalent cations, however with a 1.5-2.0 log 

left-shift, compared to monovalent NaCl.  The stability ratios, computed from aggregation profiles 

(Fig. A-2), are presented in form of stability plots in Fig. 2.4b.  Overall, differences in aggregation 

between AuNS and AuNR appear to have minimized with divalent cations.  AuNSs show relatively 

lower stability compared to AuNRs in the RLCA regime; such differences largely diminish in 

higher salt conditions, i.e., in the DLCA regime.  The CCC values are estimated as 1.8 and 7 mM 

for AuNS and AuNR, respectively.  Though the literature includes at least one comparative  
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FIGURE 2.4. Stability plots of AuNS and AuNRs with (a) monovalent NaCl and (b) divalent 
CaCl2. The measurements were performed at 20 °C. 
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aggregate formation study in the presence of various divalent metallic salts 34, to our knowledge, 

this is the first quantitative study of AuNM aggregation as a function of divalent cations.  

2.3.3 Mechanism of Aggregation 

The aggregation behavior differences for spheres and rods occurred primarily due to steric 

interaction and physical packing uniqueness, in RLCA and DLCA regimes, respectively.  It is well 

known in the literature that polyelectrolyte conformation on interfaces is highly influenced by 

surface curvature 35.  In this study, the AuNSs possess higher curvature compared to the AuNRs 

with flat longitudinal surfaces.  Such differences will likely alter PAA conformation on these 

surfaces, resulting in a relatively compressed PAA layer for AuNSs compared to an extended 

brush-like layer for AuNRs.  Thus higher steric interaction alongside with a relatively higher 

electrokinetic contribution from the AuNR surfaces resulted in their enhanced stability at the 

RLCA regime.  At the DLCA regime, where polyelectrolytes have most likely undergone charge 

screening with high amount of cations, the stabilization for AuNRs had likely occurred from 

physical packing hindrances as observed in for uncharged random-packing cases 36-38rods are 

known to possess higher hindrances, thus less packing density, compared to spheres.  Electrosteric 

interactions at the RLCA regime and physical hindrances to packing in the DLCA regime are 

identified as the key mechanisms for the shape effects on aggregation. 
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FIGURE 2.5. Deposition rates of AuNMs onto a silica coated quartz crystal in the presence of 
NaCl. Deposition rates are expressed as the rates of normalized frequency shift at the third 
overtone. Each data point represents the mean of triplicate measurements conducted at the same 
experimental conditions, and the error bars represent standard deviations.  Measurements were 
carried out at 20 °C. 
 

2.3.4 Deposition Behavior 

Interfacial deposition rates of AuNMs, evaluated with QCM-D, are presented in Figure 2.5.  The 

deposition rates are computed from frequency profiles (Fig. A-3).  Both AuNSs and AuNRs show 

relatively similar deposition behavior under a range of NaCl concentrations; however, AuNRs 

show slightly lower deposition rates compared to AuNSs up to 100 mM.  Deposition rates of AuNS 

vary from 0.2 to 1.6 Hz min-1 for AuNS; whereas for AuNR, this variation is from 0.04 to 1.61 Hz 

min-1.  Compared to the aggregation behavior, the differences in deposition rates between AuNS 

and AuNR are less profound for the lower NaCl concentrations.  Such differences might have 

occurred not only from the interfacial chemical differences but also from relative packing of 

AuNRs onto quartz deposition surface, compared to AuNS cases.  The absence of PAA coatings 
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on the quartz crystals have also caused a reduced steric hindrance to deposition for rods, which 

was otherwise observed in the aggregation study.  Previous literature also reported less profound 

interfacial interaction during deposition, when compared to aggregation; e.g., for fullerenes 39.   

2.4 Conclusions 

This article presents a systematic study probing the effects of shape on aggregation and deposition 

behavior of uniformly synthesized AuNMs.  Results indicate that anisotropic nanorods have higher 

stability compared to nanospheres and thus are likely to be more mobile in environmental systems.  

Relatively higher stability of AuNRs also can have unique implications in their interaction with 

biological entities.  As AuNRs are identified as more potent to manifest deleterious effects to 

environmental and biological systems, further systematic studies are necessary for carefully 

evaluation of their fate, transport, and toxicity behavior.  
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Chapter 3 

 

 

Aggregate Size and Structure Determination of 
Nanomaterials in Physiological Media: 

Importance of Dynamic Evolution2 
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Abstract 

 Most in-vitro nanotoxicological assays are performed after 24 h exposure. However, in 

determining size and shape effect of nanoparticles in toxicity assays, initial characterization data 

is generally used to describe experimental outcome. The dynamic size and structure of aggregates 

are typically ignored in these studies. This brief communication reports dynamic evolution of 

aggregation characteristics of gold nanoparticles. The study finds that gradual increase in 

aggregate size of AuNS occurs up to 6 h duration; beyond this time period, the aggregation process 

deviates from gradual to a more abrupt behaviour as large networks are formed. Results of the 

study also show that aggregated clusters possess unique structural conformation depending on 

nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples 

likely occurred due to geometric differences, causing larger packing propensities for smaller sized 

particles. Both such observations can have profound influence on dosimetry for in vitro 

nanotoxicity analyses. 
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3.1 Introduction 

Toxicity concerns in regard to ENMs have emanated from early history of particulate toxicity1-3.  

Initial evaluation and quantitation of toxic potential at the nano-scale has followed molecular 

toxicity principles and protocols, where physico-chemical characterization of ENMs received 

minor attention. However, over time, for better understanding of toxicity mechanisms, 

nanotoxicologists gave considerable attention to careful evaluation of size, shape, aggregation 

propensity, dissolution, oxidative radical production capabilities, and other physico-chemical 

properties4.  Among this set of parameters, dynamic aggregation propensity, not only convoluted 

delineation of toxicity mechanisms, but more so caused uncertainties in determining effective 

dosage; necessitating accurate determination of aggregate cluster size and shape, delivered to the 

cellular or organelle hosts 5, 6. 

Though definitional controversies exist between the US national nanotechnology 

initiative’s (NNI’s) and that of the more recent one’s from European Union’s Scientific Committee 

on Emerging and Newly Identified Health Risks  (SCENIHR)7, ENMs are defined to possess a 

finite size (1-100nm) bounded by a conglomerate of molecules.  At this scale, quantum mechanical 

forces dominate and ‘diffusion’ serves as the driving parameter for particulate transport in a fluid 

phase.  Thus ENM, when introduced to a fluid, undergoes diffusional transport and inevitable 

collisions between the particulate entities, resulting in subsequent agglomeration or aggregation.  

Thus aggregated cluster formation has confounded nano-safety evaluation by presenting 

challenges of dynamic agglomeration, making the dose consideration in nanotoxicology 

questionable. Moreover, nanotoxicity literature presents conflicting evidence with regard to size-

dependence on toxicity 1, 8, 9.  Realizing these challenges, i.e., effective dose determination and 

precise interpretation of geometry dependent toxic responses of ENMs, recent studies urged 
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determination of time-dependent concentration of ENMs in a dose-response assay 10, 11.  The state-

of-the-art nano-safety literature only considers primary ENM size in exposure fluid matrices 

leaving the inevitable aggregation impact unaddressed12, 13.It is also well known that aggregation 

properties of ENMs are influenced by ENM shape, surface functionalities, and exposure medium 

properties 14-16.  Furthermore, classical colloidal literature has identified that aggregation of nano-

scale entities will not only evolve with time, but will also possess an internal structure; that too 

depends on material physico-chemical properties and surrounding fluid chemistry17.  The 

aggregation dynamics and structure will both influence diffusion and sedimentation of ENMs and 

thus necessitate systematic evaluation of such parameters for delineation of toxicity mechanism or 

accurate dose determination in nano-safety studies. 

A significant number of the nanotoxicity studies gave considerable attention to size 

characterization, but the majority of them ignored the time dependent evolution of aggregate size 

for the duration of the exposure. The objective of this study is to present a new insight onto 

aggregation of AuNS in presence of biological media through continuous monitoring of the 

aggregate size and structure. In this study time dependent aggregate size and structure evolution 

were evaluated using dynamic and static light scattering (DLS/SLS). Electrophoresis, UV-vis 

spectroscopy, and electron microscopy were performed for material characterization. The findings 

from this study will likely influence nanomaterial characterization for in vitro toxicity studies. 

3.2 Materials and methods 

3.2.1 Sample Preparation 

Monodisperse AuNS were procured from National Institute of Standard and Technology (NIST) 

possessing nominal diameter of 30 and 60 nm (reference material RM-8012 and RM-8013, 

respectively).  For measurements in presence of de-ionized (DI) water, stock nanoparticle 
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suspension (50 mg/L) was vortexed for 10 s and diluted 20 times to obtain 2.5 mg/L concentration.  

This value is in the range of commonly used concentration in published toxicity studies18, 19 . On 

the other hand, for measurements in presence of media, similar dilution of the stock suspension 

was performed using the exposure media (RPMI solution with 1% streptomycin in presence of 

10% fetal bovine serum, FBS).This solution chemistry was used for all subsequent electro-kinetic 

and light scattering measurements.    

3.2.2 Transmission Electron Microscopy 

High resolution transmission electron microscopy (HRTEM) was performed with a Hitachi H-

9500 (Hitachi High Technologies America Inc., Pleasanton, CA) to evaluate the morphology of 

gold nanosphers (AuNSs) in DI water.  Prepared 2.5 mg/L AuNS suspensions were diluted by a 

factor of two to achieve desired particle concentration and were placed on the carbon formvar 

TEM grid and dried at 60°C. An accelerated voltage of 30 kV was used to adequately image the 

aggregates. 

3.2.3 Zeta-potential Measurement 

Zeta-potential of 30 and 60 nm AuNSs in DI, exposure media, with 1% streptomycin and 10 % 

FBS were determined using Malvern zetasizer (Malvern Instruments Ltd, Worcestershire, UK). 1 

mL sample of prepared AuNS suspension was injected into the polycarbonate capillary cell (DTS 

1060C) ensuring zero air bubble introduction.  At least 20 measurements were recorded for each 

of the conditions to ensure measurement reproducibility.  

3.2.4 Dynamic Light Scattering 

State-of-the-art DLS goniometer system (ALV-CGS/3, ALV-GmbH, Langen, Germany) was 

employed to carefully monitor the aggregation profiles, collecting average hydrodynamic radii in 

15 s interval.  Detailed measurement protocol has been described elsewhere 16. In brief, 2 mL 
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AuNS sample at 2.5 mg/L concentration in biological media with serum (RPMI-1640 + 1% 

Penicillin-streptomycin+ 10% FBS) was placed in a previously cleaned borosilicate vial.  A 632.8 

nm laser was shined through the sample and scattered light was collected at an angle of 90°.  AuNS 

size data were collected through the software interface attained by data processing with an attached 

auto-correlator.. Hydrodynamic radii of the particles were then plotted against measurement time. 

All measurements were carried out at a temperature of 37 °C to simulate a typical cell culture 

condition. 

3.2.5 Static Light Scattering 

The ALV-CGS/3 goniometer system (ALV-GmbH, Langen, Germany) was also used to carry out 

angle-dependent SLS of the AuNSs.  Stock suspensions of AuNSs were diluted to 2.5 mg/L in the 

media was added to the borosilicate glass vial quiscently left for 1 h to undergo initial aggregation.  

Upon reaching quasi-equilibrium in the aggregation process, angle-dependent sattering was 

started.  Scattered intensity for an angular range of 12.5° to 100° were collected in 0.5° increment.  

Aggregate structure was measured in every 2 h for 24 h duration at 37 °C.  Measurements were 

performed in triplicates for reproducibility.  Fractal dimension of the aggregate was computed by 

plotting a log-log profile of scattering intensity against the wave vector magnitude.  Slope of the 

fractal regime profile was computed using linear fit, which represented the fractal dimension (Df). 

3.3 Results and Discussion 

3.3.1 Morphological and Electro-kinetic Characterization of the Nanoparticles 

TEM micrographs in Figure 3.1 show that the AuNSs are nearly spherical and relatively uniform 

in size.  Diameter of the nanoparticles observed in TEM varied from 25-32 nm to 45-65 nm for 30 

and 60 nm diameter AuNSs, respectively.  Initial sizes of the nanoparticles in DI water were further 

confirmed using DLS measurements.  Figure B-1 shows relatively stable average size profile for 
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both the AuNSs, indicating high stability of the gold suspensions. Characteristic Plasmon 

resonance of the AuNS is confirmed with UV-Vis spectroscopy as shown in Figure B-2.  Both 

AuNSs showed well-defined characteristic peaks at 524 and 532 nm for 30 and 60 nm particles, 

respectively.  

Surface potential as a function of background solution chemistry is presented in Figure B-

3.  AuNS show negative surface charge in DI water and zeta-potential values are found to be –

(30.65 ± 4.18) and –(46.22 ± 7.89) mV for 30 and 60 nm, respectively.  However, in presence of 

exposure media, the values are reduced to – (8.84 ± 3.19) and – (15.29 ± 3.39) mV, respectively.  

It is noteworthy, that addition of streptomycin and FBS didn’t influence the surface potential of 

the AuNS’s substantially; i.e. resulting in values of – (9.82± 3.42) and – (11.99± 5.69) mV, 

respectively.  The reduction in zeta-potential is likely due to electrostatic screening in presence of 

high amount of mono- and di-valent electrolyte in the exposure media.  Such behavior was 

consistently observed in prior studies 20.   
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FIGURE 3.1 Transmission electron microscope (TEM) images of gold nanoparticles 
demonstrating rounded morphologies and corresponding size histograms. a) 30 nm sample, b) 60 
nm sample 
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3.3.2 Aggregate Sizes of the Nanoparticles in the Culture Media 

Figure 3.2 presents dynamic aggregation profiles of the AuNSs over a time period of 24 h.  The 

initial aggregation pattern shows classical cluster formation with time; i.e., formation of dimers, 

trimers, tetramers, etc.  Such gradual increase in cluster size, which likely results from particle 

collisions via electrostatic screening, continued until 6 h, beyond which the average size data 

started to show significant scatter.  The classical size evolution profile up to this time period 

consistently showed noticeable cluster-size differences for the two particle types; e.g., at 6 h, 30 

and 60 nm AuNS formed 331±65 and 526±86 nm clusters, respectively.  From 6-24 h period, the 

observed scatter in average size data bears unique significance.  Based on the fundamentals of 

particulate scattering21, such deviation in size in short time increment (15 s) can be interpreted as 

a wide particle network; where light is scattered from a smaller segment of the network at an 

instant, when at the next instant the scattering occurs from a much larger cluster.  This large 

variation in size or ‘scatter’ widened for this 6-24 h period.  The dynamic aggregation profiles 

signify that cluster-size differences diminished beyond 6 h period thus can have profound impact 

on effective dose for in vitro studies; i.e., gradual nano-scale AuNS will mostly be suspended up 

to 6 h time period, whereas sudden and significant settling of larger sized AuNS clusters will likely 

occur at and beyond this critical time.  Thus an overall dose determination for nanomaterials with 

no consideration of variation of the effective dosage over time is likely compromising the 

mechanistic evaluation of most nanotoxicity.  Such accurate dose determination issues have been 

otherwise observed as a challenge in earlier nanotoxicity literature6, 8.  
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FIGURE 3.2 Aggregation characteristics of gold nanoparticles in physiological condition 
consisting RPMI media a) 30 nm samples, b) 60 nm samples 
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3.3.3 Aggregate Structures of the Nanoparticles in the Culture Media 

Aggregate structural conformation was also studied via SLS as shown in Figure 3.3.  

Angle-dependent scattering data I (q) was plotted with wave vector, q for the entire scattering 

regime.  The linear fractal regime data was then analyzed employing classical fractal theory22.  

Using linear fit of the fractal regime I vs q to determine fractal dimension Df.  The theoretical 

relationships relevant to fractal dimension and the wave vector are presented by Equations I and 

II). 

 ஽೑ ......................................................... (I)ିݍ ܫ

ݍ =  
ସగ ௦௜௡మ

ఒ
 ...................................................... (II) 

where, θ is used to express scattering angle, while  λ stands for laser wavelength.  Df values 

thus determined for 30 and 60 nm AuNSs over 24 h period are presented in Figure 3.3. The Df 

values presented here were estimated from statistical fit from the scattering data, shown in Figure 

B-4.  The Df for 30 nm AuNS showed consistency over the entire exposure period, which varied 

between 2.79±0.01 and 2.72±0.03 (Table B-1).  The values indicate relatively compact structural 

conformation for the 30 nm AuNS.  It is to be noted that Df values closer to the numerical value 

3.0 represents a more compact structure with little internal porosity, whereas, Df values near 1.0 

represents a more loose internal structure with large internal porosity.  However, the 60 nm AuNSs 

showed relatively lower Df, with an increasing trend for the exposure period of 12 to 24 h; i.e., 

1.99±0.13 to 2.62±0.02 (Table B-2).  The dynamic aggregation and packing of 60 nm AuNSs thus 

will likely result in an evolving structural conformation of the clusters that varies from relatively 

loose packing toward compact conformation with the progression in time.  A two-way ANOVA 

analysis (Table B-3) showed significant effect of size of the particle (p<0.001) and the time of 

measurement (p=0.0035) on the structure of the nanoparticle aggregates. However, relatively  
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FIGURE 3.3 Angle dependent static light scattering (SLS) measurement of gold nanoparticles.  
a) Raw data for fractal dimension (Df) calculation, b) Bar chart showing Dfover 24 h period for 
different sizes of nanoparticles. A two-way ANOVA analysis showed significant difference 
among individual observations 
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lower p-value for 60 nm particles indicates larger variability of Df over time. The deviation from 

the increasing trend of Df after 6 h time period for this case reinforces the complex structure 

formation at longer exposure periods.  Eventually, after long exposure times, both particle types 

reach rather compact structural form and lose size specific differences in aggregation. Thus 

differences in cluster formation of the 30 and 60 nm AuNSs will not only show diminished 

differences for overall size, but also for structural conformation.   

The mechanism for both dynamic aggregation behavior and cluster conformation of the 

AuNSs lacks presentation of direct evidence in this article.  However, the hypothetical explanation 

of the observed behavior is outlined as follows.  The initial aggregation behavior as shown in 

Figure 3.3 (until the 6 h mark) can easily be explained by the size differences between the two 

particles.  The cluster size evolution and sizes attained up to this point thus reflect the initial size 

difference of these particles.  The network formation of the AuNSs, however, indicates a critical 

size attainment of the clusters near to the 6 h time period; where the grown clusters served as 

critical nucleating size for fast growth of aggregate networks.  As observed in the zeta-potential 

values, low electrokinetic energy barrier resulted in short ranged particle interaction, which likely 

had caused accelerated aggregation to form large networked structure.  This process of large 

networked formation is similar to ‘aggregative nucleation’ process, where individual particles or 

clusters are coerced to already aggregated clusters23.  This mechanism is known as non-classical 

nucleation of cluster formation compared to the classical LaMer mechanism24. In addition to this 

process, protein (from the FBS) possess charged moieties, which is likely to induce bridging by 

divalent calcium ion (from the RPMI), could also contribute to such network formation.  However, 

in order to support any such hypothesis, systematic studies involving multiple biological media in 

presence of a range of protein structures should be performed. 
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 The differences in the networked structure of Df between the two AuNS samples, likely 

resulted from geometric size differences causing unique packing propensities; larger the AuNSs 

higher was the resistance to packing, when compared to the smaller counterpart25. It should be 

noted that, Figure 3b lacks in capturing a defined trend for Df over time.  This further confirms the 

complexity of formed particle network beyond the 6 hour period. SLS experiments collect 

localized scattering information, which can be considered as average measurements of the overall 

particle sample at a time point.  Since Figure 3.2 has shown abrupt alteration of particle size beyond 

6 hour time period, and a likely formation of particle network, the localized SLS measurement 

thus was unable to capture the actual fractal dimension of these network structures.  This data thus 

further highlights the complexity of these network formation and reinforces the observations from 

Figure 3.2. 

3.4 Conclusions 

Time-dependent aggregation and Df measurements thus highlight the importance of dynamic 

evaluation of these properties for nanomaterials in physiological conditions. Most of the 

toxicological studies consider 24 h as the time period for collection and analysis of biological 

assays. Nanotoxicology literature has reported multi-micron sized aggregate formation at the end 

of exposure time-period when size was evaluated in relevant biological media; e.g., magnetite 

particles in RPMI (2.2±0.6 µm) (Schulze et al. 2008), polystyrene in Krebs-Ringer-modified buffer 

(~4 µm) (Wiogo et al. 2011), titanium in Dulbecco's Modified Eagle's Medium (DMEM) 

(2.37±0.16 µm) (Long et al. 2006), titanium in RPMI (1.8±0.4 µm) (Long et al. 2007).  

Conceptually, nano-toxicological studies to date assume that these aggregates are discrete entities 

of a certain size and settle following Stokes’s law in the in vitro exposure well.  However, the 

findings in this study—i.e., possible formation of network structure and thus a completely different 
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mode of settling (zone setting)—show that these reported sizes have likely painted an inaccurate 

picture of nanoparticle exposure for in vitro studies.  A singular time-point size assessment likely 

captures a "snapshot" of the true aggregation state; i.e., a single time-point measurement does not 

capture large size variability (in short time interval) and can lead to wrong assessment of in vitro 

mechanisms.   

The continuous measurement of size evolution of AuNSs indicates that important size 

information (which can result in altered effective dosage of nanoparticles) can be lost if singular 

size data point is utilized in such analysis. As found in this study, formation of networked structure 

after 6 h may necessitate a reconsideration of re-designing the cell viability studies that use 24 h 

time point as exposure period.  Accurate assessment of nanotoxicity mechanisms will either 

require continuous evaluation of particle size over time, intermediate time point for toxicity assays, 

or inverted in vitro approach, where effective dosage of nanoparticles will only be influenced by 

diffusion and not by aggregation and subsequent sedimentation (Cho et al. 2011).Thus continuous 

measurement of particle size evolution is necessary to better understand nano-bio interaction, 

particularly in cases of in vitro exposures. 
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Chapter 4 
 
 

Mechanistic Hetero-aggregation of Gold 
Nanoparticles in a Wide Range of Solution 

Chemistry3 
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Abstract 

Hetero-aggregation behavior of AuNS in presence of PA modified single-walled carbon nanotubes 

(PA-SWNTs), was systematically studied for a wide range of mono- and di-valent (NaCl and 

CaCl2) electrolyte conditions.  Homo-aggregation rates of AuNS were also determined to delineate 

hetero-aggregation mechanisms.  Time resolved DLS was employed to monitor aggregation.  The 

homo-aggregation of AuNS showed classical DLVO type behavior with defined reaction limited 

(RLCA) and diffusion limited (DLCA) aggregation regimes.  PA-SWNTs homo-aggregation on 

the other hand showed no response with electrolyte increase.  AuNS hetero-aggregation rates on 

the other hand, showed regime dependent response.  At low electrolyte or RLCA regime, AuNS 

hetero-aggregation showed significantly slower rates, compared to its homo-aggregation behavior; 

while, enhanced hetero-aggregation was observed for DLCA regime.  The key mechanisms of 

hetero-aggregation of AuNS are identified as ‘obstruction to collision’ at RLCA regime and 

‘facilitating enhanced attachment’ at DLCA regime, manifested by the presence of PA-SWNTs.  

Presence of Suwannee River humic acid (SRHA) also showed aggregation enhancement for both 

homo- and hetero-systems, in presence of divalent Ca2+ ions.  Bridging between SRHA molecules 

is identified as the key mechanism for increased aggregation rate.  The findings of this study are 

relevant, particularly to co-existence of engineered nanomaterials.  The strategy of using non-

aggregating PA-SWNTs is a novel experimental strategy that can be adopted elsewhere to further 

the hetero-aggregation studies for a wider set of particles and surface coatings.    

 

Keywords: Hetero-aggregation; co-existence; gold nanoparticles; single-walled carbon 

nanotubes; pluronic 
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4.1 Introduction 

Unique advantages at the nano-scale have encouraged research and commercialization of ENMs 

and nano-laden products.  Safety concerns on nanotechnology thus increasing, necessitate realistic 

prediction of their fate and transport 1 and mechanistic evaluation of their toxicity 2.  In the fate 

and transport literature, aggregation propensity is systematically studied using classical colloidal 

techniques and under environmentally relevant background conditions 3-6.  In nano-toxicity studies 

aggregation is mostly evaluated in control settings with little relevance to the actual exposure 

conditions 7.  However, most of such studies concentrate on singular particulate systems with little 

emphasis on the influence of secondary  particulate matter—that are highly relevant to biological 

and aquatic systems containing particulate biological entities and naturally occurring colloids; e.g., 

proteins, particulate organic matter, clay,  and other inorganic particles 8-10.  In addition, co-

existence of ENMs also presents a binary particulate scenario in environmental settings 11.  

Understanding aggregation behavior in heterogeneous environment is thus of immense importance 

that will allow for reliable evaluation of ENM fate and nano-bio interaction mechanisms.  

Particle-particle interaction in a singular system, i.e., homo-aggregation, is primarily 

influenced by diffusion potential at the colloidal scale and particle collision radius 12-14.  

Experimental and theoretical studies are well established on the fundamentals of homo-

aggregation theory and mechanisms for a variation of their surface properties, background solution 

chemistry, and other physico-chemical attributes 10, 13, 15-17.  In a more complex natural or 

biological setting, aggregation occurs in presence of other dissimilar particles—in terms of 

chemical composition, electrical charge, size, or shape—and is termed as hetero-aggregation 18-22.  

Hetero-aggregation of ENMs is identified as an important phenomenon not only in biological and 

natural systems but also in engineered processes; e.g., separation technology 23, coating processes 
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24, food and biotechnological processes 12, 18, ceramic industries 25, and composites or core-shell 

materials 24.  Nanomaterial interaction in such hetero-systems is also likely to be influenced by 

physico-chemical properties and background chemical conditions.  However, the state-of-the-art 

ENM fate and transport, mechanistic nano-bio interaction, and particle processing literature have 

paid little attention to systematically evaluate hetero-aggregation as a function of such key 

parameters.   

Classical colloidal studies focused on resolving short- and long-ranged interfacial 

interaction issues 26, 27 and developed DLVO models (with necessary extensions) to predict and 

analyze colloidal stability 28.  These models are later applied for homo-aggregation analyses of 

ENMs as a function of particle size, geometry, chemical composition, crystal structures, and 

surface coatings 10, 15-17.  On the contrary, colloidal hetero-aggregation studies showed a limited 

focus with the use of asymmetric colloidal systems only; i.e., soft and/or hard colloids with 

opposite surface potential 19, 29-36.  Such classical hetero-aggregation studies present aggregation 

rate determination at different electrolyte conditions and evaluate mechanisms with theoretical 

DLVO predictions and its Hogg–Healey–Fuerstenau (HHF) approximation 18, 19, 33, 35, 37, 38.  

Overall, the hetero-mixtures in such studies showed less stability compared to their homogeneous 

suspensions at similar electrolyte conditions 38, 39.  It is noteworthy that hetero-aggregates, i.e., 

aggregated clusters with more than one colloidal identity, are found to be formed at both low and 

high electrolyte concentration ranges 29, 35, 36, 40.  Electrostatic attraction between oppositely 

charged entities though dominate at the low range, the mechanism of aggregation get obscured 

with complexities in the higher electrolyte range—arising from simultaneous electrostatic 

screening of both the charged entities as well as competitive attachment of similar and dissimilar 

colloids 35.  Attempts have been made to address such complexities by subtracting the homo-
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aggregation rates from simultaneous homo-hetero-aggregation ones 29, 35.  However, these 

challenges become more profound in case of ENMs, which possess inherent complexities in their 

physico-chemical attributes.  The focus for hetero-aggregation of ENMs thus got further limited 

to extremely low electrolyte cases (0.1 mM NaCl) where the key parameter remains to be the 

relative concentrations of the binary entities 41.  The key data gap in classical colloid literature is 

the lack of techniques or strategies for hetero-aggregation, applicable to like-charged particles and 

for a wide range of electrolytes.  In addition, the strategies of simultaneous homo/hetero studies to 

decipher hetero-mechanisms also fail to apply to more complex ENM systems.  Thus systematic 

evaluation of ENM hetero-aggregation in a wide range of electrolytes requires a novel strategy 

that can employ light scattering as an effective and singular detection technique.  

The objective of this study is to establish light scattering as a single analytical technique 

that can determine aggregation behavior and enumerate aggregation mechanisms of AuNSs in a 

binary system; i.e., in presence of PA coated single-walled carbon nanotubes (PA-SWNTs).  Due 

to unique spectral signature, chemical stability, and low background concentration, AuNS is used 

as a model nanomaterial,—with size dependent plasmon resonance—which leaves room for future 

expansion of this technique to address a wider set of natural colloids and ENMs.  PA-SWNTs is 

used as a secondary entity on the premise of co-existence of nanomaterials 11; while choice of PA 

is based on the likelihood of similar non-ionic organic matter presence in the natural environment 

42, 43.  In this study, PA surface modification enabled a physical presence of SWNTs as secondary 

tubular entities with no response (i.e., aggregation response) to electrolytes and thus allowed the 

use of light scattering as a singular technique to evaluate hetero-aggregation of AuNS in a wide 

range of electrolytes.  The physico-chemical properties of AuNS and PA-SWNTs are characterized 

using UV-vis and Raman spectroscopy, TEM, and electrophoretic measurements.  Time-resolved 
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dynamic light scattering is used to evaluate aggregation behavior of AuNS with mono- and 

divalent electrolytes in both homo- and hetero-aggregation scenarios. The aggregation data are 

analyzed using classical stability theory while mechanisms of aggregation are enumerated using 

TEM, electrokinetic properties, and classical colloid and polyelectrolyte literature. 

4.2 Materials and Methods 

4.2.1 Preparation of the AuNS Suspension 

Aqueous suspension of poly (acrylic acid) stabilized AuNSs with 10 nm primary particle diameter 

were procured from Nanopartz Inc. (Loveland, CO).  Manufacturer reported the concentration of 

AuNS to be 4.0 g/L as determined by inductively coupled plasma mass spectrometry (ICPMS) 

method at pH 7.0.  The AuNS stock suspension was vortexed for 30 s and diluted 200 times to 

perform aggregation studies and physico-chemical characterizations.  

4.2.2 PA-SWNT Preparation  

To perform surface functionalization with PA F127 (Sigma Aldrich), CoMoCat SWNTs (SG65) 

were procured from SouthWest NanoTechnologies Inc. (SWeNT, Norman, OK).  A 0.02% (w/v) 

stock solution of PA was prepared in deionized water (resistivity ~18.2 MΩ-cm).  SWNTs were 

added to 50 mL of surfactant solution to yield 105±5 mg/L initial concentration (SWNT: PA=1:2).  

The suspension was then subjected to tip sonication (S-4000, Misonix) for 30 min with ice cooling, 

and an average energy input of 45±5 kJ was maintained.  The dispersion was allowed to stand for 

24 h and subsequently subjected to centrifuge for 1 h at ~10,900 ×g (Sorvall RC 5C plus, Thermo-

Fisher, MA).  The supernatant was decanted to collect the PA-SWNT stock for all subsequent 

measurements.   
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4.2.3 Characterization of AuNS and PA-SWNTs 

The AuNSs and PA-SWNTs were characterized to determine their chemical signatures as well as 

to evaluate the key physico-chemical properties. TEM imaging was performed to evaluate 

morphology of individual nanomaterials as well as to enumerate hetero-aggregation mechanisms.  

UV-vis and Raman Spectroscopy were performed to study AuNS characteristic signature and 

SWNT defects and extent of oxidation, respectively.  Electrophoretic mobility measurements were 

performed for the entire range of solution conditions to evaluate electrostatic interaction for 

delineation of aggregation mechanisms. 

 TEM was performed with a Hitachi H-9500 (Hitachi High Technologies America Inc., 

Pleasanton, CA) to evaluate size, shape, and physical morphology of AuNS and PA-SWNTs.  A 

few drops of previously prepared nanomaterial suspension were placed on the carbon formvar 

TEM grid and dried at 60 °C.  An accelerating voltage of 30 kV was used.  For hetero-aggregation 

cases, a few drops of the AuNS and PA-SWNT mixture with relevant electrolytes were added to 

the TEM grids and imaged following previously mentioned protocol. 

 UV-vis spectroscopy was performed on an Agilent 8453 UV-vis system (Santa Clara, CA) 

to evaluate the characteristic plasmon resonance of AuNS.  3 mL of AuNS suspension at a dilution 

of 200 were added to a 5 mm path-length quartz cuvette and a spectral response was collected 

spanning between 300 to 800 nm wavelength ranges.  The structural signature of SWNTs, both 

pristine and PA- modified, was determined using Raman spectroscopy on a LabRam confocal 

Raman spectrometer (JY Horiba, HORIBA Instruments Inc., Irvine, CA), equipped with a liquid 

nitrogen-cooled CCD detector and a He/Ne (632.817 nm) laser for excitation.  The spectra 

presented here is the average of at least 5 scans with integration times of 120 s for each.  
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Surface potentials of AuNS and PA-SWNTs were measured with Malvern Zetasizer 

(Malvern Instruments Ltd, Worcestershire, UK). For each condition, 1 mL sample was injected 

into the polycarbonate capillary cell (DTS 1060C) ensuring no air bubble introduction.  At least 

20 measurements were recorded for each condition using multiple replicate sample analysis to 

ensure reproducibility.  Entire range of experimental ionic strength for NaCl and CaCl2 was 

considered; while Suwannee River humic acid (SRHA) was added to appropriate dilution to 

evaluate role of NOM on electrokinetic behavior. 

4.2.4 Solution Chemistry 

All aggregation experiments, (e.g., homo- and hetero-aggregation) were performed in the presence 

of mono-valent (NaCl) and di-valent (CaCl2) electrolyte solutions (BDH Chemicals, Dubai, UAE) 

over a wide concentration range, i.e., 1 mM to 550 mM NaCl and 0.1 mM to 30 mM CaCl2.  The 

pH of the stock suspension was unadjusted (ambient) and determined to be 6.5±0.05.  All reagent 

solutions were filtered with 0.45 μm inorganic membrane filters (VWR international LLC, Radnor, 

PA, USA).   

SRHA (Standard II, International Humic Substances Society) was used as a model NOM.  

A 410 mg/L SRHA stock was prepared and subsequently filtered with 0.22 m cellulose acetate 

membrane filter (Corning Inc., Corning, NY).  The pH of SRHA was adjusted to 6.5 by adding 

NaOH and was stored at 4 °C in the dark.  A diluted stock of SRHA at 2.5 mg/L TOC, relevant to 

most natural surface waters 16, was used for aggregation and electrokinetic experiments.  

4.2.5 Dynamic Light Scattering Measurement 

TRDLS was utilized to determine evolution of hydrodynamic radius with time.  A 22 mW 632 nm 

HeNe laser incorporated ALV/CGS-3 compact goniometer system (ALV-Laser GmbH, 

Langen/Hessen, Germany) with QE APD detector (photomultipliers of 1:25 sensitivity) was 
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employed to monitor size evolution in every 15 s for at least 50 min.  Detailed procedure of TRDLS 

has been described elsewhere 16, 17.  In brief, 2 mL of AuNS suspension at 20 mg/L concentration 

is used for both homo- and hetero-aggregation measurements.  It is critical to maintain uniform 

concentration for all the measurements to draw appropriate comparisons between aggregation 

rates.  The equal concentration was ensured not only through carefully controlling the dilutions 

but also monitoring the raw scattering intensity over time.  For the hetero-aggregation studies 

AuNS suspensions at identical concentration to the singular systems, i.e., 20 mg/L, were added to 

PA-SWNTs at 1 mg/L concentration.  The borosilicate vials used to evaluate aggregation behavior 

were thoroughly cleaned prior to measurements 16, 17.  The singular and binary suspensions were 

then added with electrolyte solutions at appropriate dilutions and vortexed for 10 s before inserting 

to toluene-filled sample housing. Scattered light was collected at 90° and analyzed using auto 

cross-correlator to calculate average hydrodynamic radii.  For each electrolyte condition, initial 

aggregation rate was estimated from linear regression of aggregate size vs. time data; up to 30% 

increase of aggregates size from initial sizes measured by DLS 17, 41. Homo- and hetero-

aggregation rates were the key parameters determined to draw comparisons and mechanisms of 

the singular and binary systems.  However, attachment efficiencies () were determined only in 

case of homo-aggregation using equation 1. The inability to achieve a favorable aggregation rate, 

even at near-saline conditions, restricted estimation of  value for hetero-aggregation. 

Attachment efficiency ‘’ is represented as follows 16, 17; 

ߙ =  
ቂ೏ೃబ(೟)

೏೟ ቃ
{೟ ⇾ బ}

ቂ೏ೃబ(೟)
೏೟ ቃ

{೟ ⇾ బ,೑ೌೡ}

……………………………………………….(1) 
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where,  is the attachment efficiency, and t is the time of aggregation.  All TRDLS measurements 

were conducted at 20±0.5 °C and at least duplicate samples were tested to obtain significant 

reproducibility. 

4.3 Results and Discussion 

4.3.1 Morphological and Chemical Characterization 

AuNS and PA-SWNTs were characterized with TEM to evaluate their physical morphology.  

Figure 4.1(a) shows spherical structures with angular features for some of the entities.  The AuNS 

size, as determined from TEM, ranges from 10-20 nm; with most of the AuNS found to be near 

10 nm size with having spherical geometry.   

 
FIGURE 4.1. Representative TEM micrographs of a) AuNS and b) PA-SWNTs in DI water. 
 

The PA-SWNTs morphology on the other hand, show dispersed tubes that are relatively 

long with high degree of debundling (Figure 4.1b).  Amorphous features, likely to be pluronic 

coatings, are observed throughout the micrographs.  These features also appear to be closely 

associated with the SWNTs.  In addition, a few spherical dark objects are consistently observed in 

the micrographs that are likely to be catalyst clusters, used during synthesis 17.  Such debundling 
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and declustering of carbon structures due to PA modification, e.g., in case of graphene, was 

observed elsewhere 44.   

The chemical surface properties of AuNS and PA-SWNTs are evaluated with UV-vis and 

Raman spectroscopy, respectively.  Figure C-1a shows absorbance spectrum of AuNS.  A broad 

absorbance band is observed between 450-600 nm wavelengths.  Such behavior occurs from 

collective oscillation of conductive electrons at the interface of metallic particles and its 

surroundings, resulting in Plasmon resonance at a specific wavelength; i.e., 522 nm with 0.44 

absorbance, in this case.  The resonance wavelength is consistent with the literature reported values 

45, that show peaks near 520 nm for 10 nm AuNS 45.  Surface characteristics of pristine and PA-

SWNTs on the other hand, is probed with Raman spectroscopy, as shown in Figure C-1b.  The 

Raman spectrum of pristine SWNTs shows defined peaks at 1320 and 1590 cm-1, known as defect 

mode or ‘D’ band and high energy graphitic ‘G’ band, respectively.  The D and G band show 

similar peaks at 1310 and 1593 cm-1 for PA-SWNTs.  However, the D/G ratio is estimated as 

0.21±0.01 for pristine case, which slightly decreased to 0.16±0.01 upon PA modification.  The 

decline in D/G ratio reflects on surface coverage by PA molecules, which likely have caused partial 

shielding of surface defects.  Such low defect levels on the surfaces of the SWNTs are comparable 

to literature reported values that shows a D/G range of 0.05 to 0.21 46.  Lowering of surface defects 

due to non-covalent surface modification is also observed earlier in the literature 47.  In addition, 

Figure S1b also shows defined peaks at 2620 and 2595 cm-1, which represent double Raman 

resonance of SWNTs.  The occurrence of G’ bands is consistent with literature reporting 46, while 

defined peaks—of the second harmonic response—reaffirms low extent of defects on SWNT and 

PA-SWNT surfaces.  
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4.3.2 Electrokinetic Properties 

Electrokinetic properties of AuNS and PA-SWNTS with mono- and di-valent electrolytes are 

presented in Figure 4.2.  The EPMs are measured at each salt concentration for AuNS, whereas, 

only a subset of low and high electrolyte concentrations are used for non-ionic PA-SWNTs.  Figure 

4.2a shows presence of negative surface potential on AuNS surfaces for the entire range of 

electrolytes.  It confirms surface presence of PAA; which has negative carboxyl functionalities 

along its polymeric backbone 48.  The EPM values showed gradual decrease with the increase in 

NaCl and CaCl2 concentrations, with a ~1.5 log concentration separation.  In presence of NaCl 

(0.01-0.55 M) and CaCl2 (0.0003-0.03 M), the EPM varied from –(1.83±0.01) × 10-8 to –

(0.70±0.02) × 10-8 and from –(1.51±0.04) × 10-8 to –(0.27±0.18) × 10-8 m2V-1S-1, respectively, for 

the lower and higher end of electrolyte concentrations.  The decrease in EPM follows classical 

electrostatic screening of surface charges along the backbone of the attached polyelectrolytes, due 

to increased cation presence 49.  Literature values show both negative 50 and positive 51 surface 

potentials for AuNS, depending on the type of surface coating.  Relatively high EPM are reported 

in case of citric acid (CA) and mercaptoundecanoic acid (MDA) modified AuNS with values of  –

(3.29±0.16) × 10-8 and –(3.55±0.55) × 10-8 m2V-1S-1, respectively 50.  The relatively higher EPM 

values in such cases likely have resulted from a higher coverage of relatively smaller molecular 

weight surface coatings, compared to that of PAA.   
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FIGURE 4.2. Electrophoretic mobility (EPM) of (a) AuNS and (b) PA-SWNTs with mono- and 
di-valent salts (NaCl and CaCl2).  Measurements were carried out at a pH of ~6.5 and a 
temperature of 20 C. 
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Figure 4.2b shows EPM of PA-SWNTs with 10, 30, and 100 mM NaCl and CaCl2.  It is 

well-known that SWNTs acquire negative surface potential in water during mechanochemical 

suspension procedures 17.  The non-ionic PA modification in this study dominated the SWNT 

surface chemistry as demonstrated by negligible EPM values varying between –(0.32±0.33) × 10-

8 to –(0.05±0.19) × 10-8 m2V-1S-1.  The presence of CaCl2 showed relatively lower EPM compared 

to NaCl cases, however, with high standard deviation between replicate measurements.  Overall, 

such lower magnitude of surface potential with non-ionic PA F127 modification of SWNTs is 

observed elsewhere in the literature 52; with reported zeta-potential of –(18.40±7.6) mV.  Similar 

surface potential is also observed for non-ionic triton-x modified graphene and multiwalled carbon 

nanotubes, showing values of -28 mV and -30 mV, respectively.  

4.3.3 Homo- and Hetero-Aggregation Kinetics 

Figure 4.3 presents homo- and hetero-aggregation rates, systematically measured for a wide range 

of mono- and di-valent electrolytes.  The attachment efficiencies () are only computed for homo-

aggregation of AuNS (Figure C-2); hetero-aggregation rates did not reach plateau at the diffusion 

limited regime and thus disallowed estimation of their  values.  The homo-aggregation rates, 

estimated from aggregation profiles (Figure C-3), show gradual increase—from 0.0004 to 0.3072 

nm/s—with the increase in mono-valent NaCl concentration (Figure 4.3a).  The homo-aggregation 

behavior of AuNS is better manifested in its stability plot (Figure C-2a) that shows typical DLVO 

type behavior with well-defined aggregation regimes; i.e., reaction limited (RLCA) or unfavorable 

and diffusion limited (DLCA) or favorable regimes.  Similar trend of homo-aggregation rates 

(Figure 4.3b) and  values (Figure C-2b) are observed with CaCl2, showing defined RLCA and 

DLCA regimes.  High sensitivity to both Na+ and Ca2+ at RLCA regime is observed from 

electrokinetic behavior (Figure 4.2a) as well as from the steep sloped stability profiles of AuNS  
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FIGURE 4.3. Initial aggregation rates of homo- and hetero-aggregation of AuNS with (a) NaCl 
and (b) CaCl2.  Measurements were carried out at pH of ~6.5 and a temperature of 20 C. 
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(Figure C-2).  Such responses to salt not only signify reduced electrostatic interaction between 

AuNS but also reflect on the conformational change of the polyelectrolytes. 

At low electrolyte conditions, PAA brushes are known to be fully extended, while they 

contract sharply with increase in cation presence 49. Initial AuNS particle size data qualitatively 

reflects on such conformational change; where, initial diameter of 15±1 nm at DI water increases 

to less than 20 nm with an addition of 10 mM NaCl (less than the diameter of a dimer).  A 

combination of lowered electrostatic repulsion along with significantly lower steric contribution 

from contracted polyelectrolyte brushes has likely contributed to aggregation of AuNS.  The CCC 

for homo-aggregation of AuNS is determined as 57.5 mM NaCl and 3.3 mM CaCl2.  Literature 

reported values show similar CCC (70 mM NaCl) for CA modified AuNS, while MDA 

modification resulted in significantly higher CCC (200 mM NaCl) 50.   

 Hetero-aggregation rates of AuNS show regime specific behavior (Figure 4.3).  At low 

electrolyte conditions, the AuNSs aggregate at a substantially lower rate in presence of PA-

SWNTs, compared to its homo-aggregation.  The hetero-rates are estimated from hetero-

aggregation profiles as presented in Figure C-4.  While the AuNS respond to added electrolyte, 

PA modified SWNTs shows no aggregation—even with the addition of 1 M NaCl or 55 mM CaCl2; 

Such response from PA-SWNTs is demonstrated with near-equal hydrodynamic radii—101±4 nm 

at 1 M NaCl compared to 98±4 nm in DI water (Figure C-5),—and nearly unchanged EPM values 

(Figure 2b).  For AuNS hetero-aggregation however, the rates varied from 0.003-0.019 and 0.031-

0.234 nm/s for [NaCl] of 30-55 mM and [CaCl2] of 1-3 mM, respectively.  These values are 

substantially lower compared to homo-rates of 0.164-0.230 and 0.108-0.259 nm/s under similar 

[NaCl] and [CaCl2], respectively.  The hetero-rates demonstrate enhanced aggregation near and 

beyond the CCC values for both mono- and di-valent electrolytes.  For [NaCl] of 76-550 mM and 



 

70 
 

[CaCl2] of 5.5-30 mM, the hetero-rates varied from 0.378-0.575 and 0.307-0.603 nm/s, 

respectively with no signs of plateau; whereas, homo-rates plateaued at these conditions with 

values of 0.256-0.307 and 0.269-0.310 nm/s, respectively.  Literature reported 2.37 and 1.33 times 

higher hetero-rates—compared to homo-aggregation rates—for silica and polystyrene latex duo 

under RLCA and DLCA conditions, respectively 19.  Similarly, colloids with oppositely charged 

polyelectrolytes showed enhanced aggregation at RLCA regime due to polymer bridging 40.  

Relatively higher enhancement of hetero-rates at RLCA—compared to DLCA regime—can be 

explained with higher favorable interaction between oppositely charged colloids (with lower 

electrostatic screening) at low electrolyte conditions (compared to higher ones).  The only reported 

ENM hetero-aggregation study showed effects of hematite and multiwalled carbon nanotube 

relative ratio on hetero-rates; where the maximum hetero rate of 0.28 nm/s was achieved at 

multiwalled:hematite of 0.0316 41.  However, this study has failed to present hetero-aggregation 

results at electrolyte conditions beyond 0.1 mM NaCl.  This study thus presents the first reported 

hetero-aggregation rates of ENMs for both RLCA and DLCA regimes.  The mechanisms of 

aggregation are discussed in the following subsection.    

4.3.4 Mechanisms of Hetero-aggregation  

Presence of PA-SWNTs alters aggregation behavior of AuNS substantially, for the entire range of 

electrolytes.  The key mechanisms driving hetero-aggregation are based on the interplay between 

electrostatic interaction of AuNS at each cation concentration, conformational changes of PAA 

coatings at AuNS surfaces, and the physical presence of non-aggregating PA-SWNTs.  At low 

mono- and di-valent cation concentrations, i.e., at RLCA regime, gradual electrostatic screening 

and contraction of polyelectrolyte layer thickness 49 initiate AuNS aggregation.  It is our conjecture 

that in such conditions, the physical presence of PA-SWNTs likely act as hindrance to AuNS 
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collision, thus resulting in relatively lower values of hetero-aggregation rates as compared to those 

of homo-aggregation.   

 
 

FIGURE 4.4. Representative TEM micrographs of hetero-aggregates at (a) DI water and with (b) 
100 mM NaCl.  The DI water case represents reaction limited (RLCA) regime while 100 mM 
NaCl serves as the diffusion limited (DLCA) regime.  
 

Such physical hindrance provided by PA-SWNTs is observed in the representative TEM 

micrograph, as presented in Figure 4.4a.  AuNSs are seen to be either entrapped within curved PA-

SWNT segments or attached to the tubular structures.  The role of PA-SWNTs transfer from 

hindrance to facilitation of aggregation in higher electrolyte conditions, i.e., in DLCA regime.  The 

enhanced aggregation of AuNS as observed in such conditions, most likely result from utilization 

of PA-SWNTs as additional attachment surfaces. It is well-known in the colloid literature that 

charged colloidal entities act as ‘sticky particles’—with higher attachment propensity due to 

screened electrostatic interaction—in favorable DLCA regimes 53. AuNSs are likely to 

demonstrate similar ‘sticky’ behavior, where PA-SWNTs serve as facilitator to attachment and 

thus result in enhanced hetero-aggregation.  Such phenomenon is observed in the TEM micrograph 
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as presented in Figure 4b.  It shows aggregated AuNS with a preferential clustering along the 

backbone of PA-SWNTs.  Upon substantial electrostatic screening, the AuNS not only attach to 

each other but also to PA-SWNTs.  Subsequent attachment of AuNS to already attached entities 

on PA-SWNT surfaces can explain the continual increase in hetero-rates even at near saline 

conditions.  Thus the key mechanisms of hetero-aggregation of AuNS are hypothesized as 

‘obstruction to collision’ at RLCA regime and ‘facilitating enhanced attachment’ at DLCA regime, 

manifested by the presence of PA-SWNTs. However, this study lacks absolute proof of the validity 

of this hypothesis because of the inherent perturbation (i.e., drying) induced in the TEM imaging 

process. Cryo-TEM imaging of the samples may eliminate such sample perturbation during 

microscopy, and has already been attempted (C-6).  However the presence of the SWNTs in the 

hetero-dispersion is not distinctly visible in the micrographs, possibly due to large dimensional 

difference between 10 nm diameter AuNS and 1 nm diameter dispersed PA-SWNTs.  Cryo-TEM 

image presented in the appendix is yet not conclusive, hence highlights the need for further 

experimentation to definitely prove the hetero-aggregation mechanism proposed in this study.  

4.3.5 Role of Natural Organic Matter (NOM) on Hetero-aggregation 

Presence of SRHA as representative NOM also altered AuNS aggregation at 10 mM ionic strength; 

i.e., mixed electrolyte condition with 7 mM NaCl and 1 mM CaCl2.  At this condition with no 

SRHA presence, AuNS aggregation profiles show relatively linear increase of aggregate size 

(Figure 5a) with a slightly lower hetero-rate of 0.064±0.004 nm/s compared to a homo-rate of 

0.146±0.007 nm/s (Figure 4.5b).  In presence of SRHA however, both the homo- and hetero-rates 

showed substantial increase with values of 0.298±0.040 nm/s and 0.351±0.013 nm/s, respectively 

(Figure 4.5b).  Moreover, the overall ultimate sizes of aggregates are also found to be higher with 

SRHA for both homo- and hetero-aggregation (Figure 4.5a).  It is also observed that electrokinetic  
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FIGURE 4.5.  (a) Aggregation profile and (b) aggregate rate plot for homo- and hetero-

aggregation of AuNS in presence of 7 mM NaCl + 1 mM CaCl2 and with and without the 

presence of Suwannee River humic acid (SRHA).  Measurements were carried out at pH of ~6.5 

and a temperature of 20 C. 
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behavior of AuNS and PA-SWNTs at these conditions are not substantially enhanced with SRHA 

addition (Figure C-6).  The altered aggregation behavior is thus unlikely to be influenced by 

electrokinetic properties of either material.   

 SRHA average molecular weight of ~1490 Da 54 is substantially lower compared to both 

poly (acrylic acid) at >5000 Da and pluronic F127 at 12,600 Da.  Therefore, replacement of either 

of these higher molecular weight surface coatings with SRHA is highly unlikely; as observed in 

well-known molecular weight dependent surface attachment literature of polymers and surfactants 

55.  Lack of enhancement in EPM values with SRHA addition for both AuNS and PA-SWNTs 

(Figure C-6) can thus be explained.  The SRHA, being unsuccessful in replacing either of the 

polymeric coatings, will likely remain in continuous aqueous phase and potentially serve as 

additional surfaces for interaction.  The presence of Ca2+ ions can also result in bridging between 

SRHA molecules and thus generate aggregated SRHA entities 56.  Presence of SRHA and Ca2+ are 

thus likely to increase collisions between AuNS and/or PA-SWNTs and have resulted in enhanced 

aggregation for both homo- and hetero-aggregation scenarios.   

4.4 Environmental Implications 

 ENMs, such as AuNS, upon release will encounter particulate entities—either naturally occurring 

colloids or other ENMs (such as, PA-SWNTs)—and thus will be exposed to a binary particulate 

environment.  Aggregation behavior of AuNS, as determined in this study, shows slower hetero-

rates at low electrolyte conditions, indicating to higher mobility under such typical aquatic 

conditions.  In presence of high electrolytes, relevant to marine or estuarine environment, AuNS 

will likely undergo enhanced hetero-aggregation and thus will generate larger aggregates with 

potentially faster settling or deposition in such areas.  NOM, such as SRHA, can also increase 

aggregation rates with divalent cation presence, resulting in slower mobility through the aqueous 
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systems.  The findings of this study are relevant particularly to co-existence of ENMs.  In addition, 

the strategy of using non-aggregating PA-SWNTs is a novel experimental strategy that can be 

adopted elsewhere to further the hetero-aggregation studies for a wider set of particles and surface 

coatings.  The results from this study shows importance of hetero-aggregation in environmental 

fate and thus will likely invoke interest in the scientific community to systematically evaluate 

hetero-rates of ENMs in a wide range of electrolytes—potentially with a combination approach of 

scattering and Plasmon resonance techniques.   
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Chapter 5 

 
 

Gold Nanoparticles’ Transport Through 
Saturated Porous Media in Presence of Single-

walled Carbon Nanotubes4 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4Afrooz, A. R. M. N., Das, D., Murphy, C.J., Vikesland, P., & Saleh, N.B. Co-
transport of gold nanospheres with single-walled carbon nanotubes in saturated 
porous media. (in preparation) 
Contributions of the Co-Authors: D.D: Characterization of the Materials; C.J.M and P.V: Co-
PIs 
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Abstract 

ENM transport through porous media is typically assessed in a controlled environment.  Presence 

of a secondary particle, though environmentally realistic, is rarely considered to evaluate ENM 

transport behavior.  This is one of the first studies to systematically assess the role of a secondary 

nanoparticle (i.e., PA-SWNTs) on AuNS transport through saturated porous media and under a 

wide range of aquatic conditions (1-100 mM NaCl).  Homogenous AuNS suspensions are utilized 

as control to compare their breakthrough properties with those of the AuNS hetero-dispersions (in 

presence of PA-SWNTs).  Though AuNS homo-dispersion showed classical ionic strength-

dependent transport behavior, presence of PA-SWNTs nearly eliminated the ionic strength effects 

and made the AuNSs highly mobile.  This study also assessed the role of pre-coating of the 

collectors (with PA-SWNTs) on AuNS' mobility to understand the order of introduction of the 

secondary particles.  Pre-existence of the secondary particles in the porous media transport 

enhances filtration of primary AuNSs.  The study results demonstrate that the presence of 

secondary particles and the order in which these are introduced to the experimental system, 

strongly influences AuNS mobility.  Thus ENM can be highly mobile or can get strongly filtered 

out, depending on the secondary PA-SWNT and background environmental chemistry.  

 

 

 

 

Keywords: Co-transport; porous media; gold nanoparticles; single-walled carbon nanotubes; 

pluronic 
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5.1 Introduction 
 
Increased use of ENMs makes their environmental release, i.e., intentional as remedial agents, 

accidental from manufacturing processes, or inevitable at the end of life of ENM-containing 

products1-4, highly likely.  Regardless of routes of release and exposure5-7, sediments and porous 

subsurface are identified as the likely environmental sinks8, 9 for these ENMs, where they undergo 

subsequent transport and transformation10.  Fate and transport, the primary processes dictating 

ENM exposure and risks, are at the center of nano EHS research11, which devotes most of its 

efforts in determining appropriate fate descriptors (deposition rate and efficiency or transport 

distance) via breakthrough studies12-22 or by studying deposition onto polished crystal surfaces23-

31.  Although reliable prediction of ENM transport is the ultimate goal of nano-EHS studies, most, 

if not all, are performed in clean and controlled environmental platforms.  

 State-of-the-art ENM transport studies have systematically evaluated the effects of various 

material properties and background chemistries for a wide set of nanoparticles32; e.g.,  fullerenes 

(nC60), carbon nanotubes (CNTs), nano-scale zero valent iron (nZVI), titanium dioxide (TiO2), 

zinc oxide (ZnO), and silver nanoparticles (AgNP).  Influence of solution chemistry (pH33, ionic 

strength14, organic matter31), ENM characteristics (size and size distribution17, concentration17, 

shape34, surface charge35, synthesis method36, surface coating37, and magnetic properties38), 

collector properties (grain size distribution39), and operating conditions (flow velocity13 and flow 

direction40) on their mobility also have been reported.  In addition to the aforementioned 

experimental investigations, efforts have been made to predict and validate ENM transport 

theoretically employing clean-bed filtration theory (CFT)41, 42.  However, such experimental and 

theoretical studies of ENMs in homogeneous and single particulate systems have little 

transferability to the realistic natural environment where presence of natural particles and other 
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ENMs is common43.  A critical need thus exists to assessing the influence of system complexity 

on ENMs' transport.  

Most common attempts to simulate system complexity involve investigation of the effects 

of physical (surface roughness44 and shape45) and geo-chemical (surface charge46, surface 

coating47, and mineralogical compositions48) heterogeneities of the collectors, mostly focusing on 

colloid transport.  Although collectors’ shape has been reported to influence the single collector 

efficiency almost by a factor of 2, effects of surface roughness of the collectors proved to be 

insignificant for colloid deposition45.  Similarly, the degree of favorable surface charge distribution 

(patchwise) of the collectors has been correlated with the degree of colloid deposition, both 

experimentally49 and theoretically50.  Recent efforts have also been made to understand various 

ENMs’ (e.g., nZVI, nC60, TiO2) transport through natural soil, e.g., through ultisol51, appling52 and 

11 other soil53 types.  Soil texture and mineralogical compositions are found to accelerate or 

decelerate the deposition of the ENMs in a soil column depending on the specific interaction 

between the ENMs and the natural collectors.51-53.  Furthermore, the role of pre-coating21, 32, 47, 54 

of the collector surfaces with NOM, clay or biofilm has been investigated, where ENM transport 

is reported to decrease due to competition between the ENMs and the NOMs for the attachment 

sites or to increase due to the availability of increased surface sites of the collectors for NM 

deposition36, 54.  Such altered interfacial interaction of the ENM may also occur due to the presence 

of a secondary particle in the suspensions55-57.  However, understanding the influences of such 

secondary particles on ENM transport (co-transport) is limited.  

The primary parameter considered in the ENM co-transport literature is the presence of 

bacteria, where enhanced mobility has been reported for TiO2
36, 58 when compared to TiO2 only 

transport.  On the other hand, bacterial transport in presence of CNT has also been reported59, 
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where reduced microbial mobility at high ionic strength condition occurred (25-100 mM) in 

presence of CNTs.  Such evidence suggest that particle transport through porous media is 

significantly influenced by the presence of a secondary particulate entity (co-transport); where the 

underlying mechanism is likely higher collision and facilitated filtration.  However, studies 

reporting ENM co-transport is scarce in fate and transport literature.  To date, only two such studies 

report ENM co-transport of TiO2 and multiwalled carbon nanotube60 and TiO2 and nC60
61, 

respectively.  Both of these studies were performed at low ionic strength (0.1-10 mM). These 

studies reported significant differences in the mobility of the primary particles in singular and 

binary matrices with strong pH and ionic strength dependence.  The persistent data gap in ENM 

co-transport is deciphering filtration mechanisms under the influence of the following parameters: 

a wide range of environmentally relevant ionic strength, the order of addition of the secondary 

particles, and presence of NOM. 

The objective of this study is to investigate transport of a model nanoparticle, i.e., AuNSs, 

in presence of a secondary ENM, single-walled carbon nanotube (SWNT), over a wide range of 

ionic strength.  In order to mechanistically assess the filtration mechanisms, inherent SWNT-

SWNT interaction at elevated ionic strength is eliminated via PA functionalization55.  A range of 

PA concentration is used to generate PA-SWNTs with desirable stability; i.e., highly stable 

suspensions are utilized for co-transport studies, whereas, SWNTs with lower stability are used to 

pre-coat the collector surfaces.  Hetero- dispersion of AuNSs and SWNTs are used in transport 

studies through saturated packed bed of sand.  The ionic strength is varied over a wide range (1-

100 mM NaCl).  This study also investigates the effect of pre-coating of the collectors (by less 

stable PA-SWNTs) on AuNS mobility. This is a first-of-its-kind study to mechanistically assess 

co-transport of AuNSs over a wide range of ionic strength.  This study is the first step to attain a 
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more reliable assessment of ENM co-transport through porous media under a wide range of 

environmental conditions  

5.2 Materials and Methods  
5.2.1 Preparation of AuNS Suspensions 

Poly (acrylic acid) or PAA-coated AuNS suspension at a concentration of 50 mg/L was procured 

from Nanopartz Inc. (Loveland, CO).  The supplier reported nominal diameter of the AuNS of 10 

nm.  Procured AuNSs were diluted 4 times to achieve a concentration of 12.5 mg/L for all transport 

experiments.   

5.2.2 Preparation of PA-SWNTs 

Dry SWNTs, produced by high pressure carbon monoxide dispropornation or HipCO method62 

was obtained from Tubes at Rice (Houston, TX).  The supplier reported average diameter and 

length of the SWNTs were 1.03 nm (a range of 0.7-1.45 nm) and 0.93 µm (a range of 0.1-2.6 µm), 

respectively.  Commercially available PA F-127 was obtained from Sigma Aldrich (St. Louise, 

MO) and 0.02, 0.1, 1, and 10% (w/v) PA solution was prepared using filtered (0.45 μm inorganic 

membrane filters, VWR international LLC, Radnor, PA) deionized (DI) water (Millipore, 

Darmstadt, Germany).  The PA solutions were prepared by magnetic stirring for 1 h at room 

temperature.  

 10 mg of procured SWNTs was added to 100 mL (0.02, 0.1, 1, and 10%) of PA solution 

and sonicated in an ice bath for 1 h employing a S-4000 ultrasonicator (Misonix, Inc. 

Farmingdale,NY) at a controlled input energy of 100–105 kJ.  The sonicated samples were 

quiescently left aside for 24 h and the supernatant was decanted and centrifuged at 12000 ×g for 1 

h with a Beckman Coulter (Brea, CA) centrifuge.  The supernatant of the centrifuged samples was 

then decanted and used for subsequent experiments.   
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5.2.3 Solution Chemistry  

All transport experiments were performed in the presence of monovalent (NaCl) at 1, 10, 30, and 

100 mM concentration. NaCl stock of 5 M was purchased from a commercial source (BDH 

Chemicals, Dubai, UAE) and diluted with filtered DI water to obtain the solution of appropriate 

ionic strength.  The pH of the salt solutions was unadjusted (ambient) and determined to be 6.56 

± 0.04.  

5.2.4 Characterization of AuNSs and PA-SWNTs 

Physical morphology of the AuNSs and SWNTs was characterized using a JEOL 2010F 

Transmission Electron Microscope (TEM) at the Texas Material Institute.  Copper-carbon TEM 

grids were prepared using the NM suspensions at desired particle concentrations and dried at 60 

°C for 15 min.  Bright field imaging and high-resolution (HR) microscopy techniques were utilized 

to investigate the particle size and shape.  An open source software, i.e., imageJ was used to 

determine the particle size distribution from the TEM micrographs. 

DLS was employed to characterize the size of the NMs in the experimental matrices.  

Details of the DLS technique has been described elsewhere63.  Briefly, 2 mL of NM suspension 

was added into a clean borosilicate glass vial under chosen solution chemistry.  A 632.8 nm laser 

was shined through the vial and scattered light was detected at 90 and converted to hydrodynamic 

radii (HR) employing an auto-correlator and cumulant analysis. HR data were collected every 10 

s for 30 min duration.  

To assess and confirm the chemical identity of the AuNS, an Agilent 8454 UV-vis 

spectrophotometer (Santa Clara, CA) was used.  AuNS suspensions were prepared and injected 

using a 1 mL syringe to a flow through cell of 300 µL volume.  Spectral response was collected 

for the entire UV and visible range (200-1100 nm).  
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 Electrokinetic characterization, i.e., electrophoretic mobility (EPM) of the NMs in their 

homo- and heterogeneous dispersion states were evaluated using Malvern Zetasizer (Malvern 

Instruments Ltd., Worcestershire, UK) at pH 6.7±0.1 and at a temperature of 20 °C.  For each 

condition, 800 µL sample was injected into the disposable capillary cell (DTS 1070) ensuring that 

the sample is in contact with the electrodes without any air bubble introduction.  Four different 

cells were used for AuNS, PA-SWNT (0.02%), PA-SWNT (5%), and AuNS-PA-SWNT (5%) 

suspensions. Cells were flushed 10 times with DI water between each measurement.  3 replicates 

were taken for every measurement to ensure reproducibility.  NaCl concentrations of 1, 10, 30 and 

100 mM were considered for all the suspensions.   

5.2.5 Column Experiment 

2.5 cm diameter and 10 cm long, Kontes Glass columns (Kimble Chase, Vineland, NJ) were 

packed with Ottawa sand (Fischer Scientific, Waltham, MA).  The 20-30 mesh sand was carefully 

washed and cleaned following a detailed cleaning protocol described elsewhere12.  In brief, the 

Ottawa sand was saturated in DI water overnight and then boiled for 10 min followed by bath 

sonication and subsequent washing to remove impurities and colloids.  Sonication procedure 

involved multiple sonication-rinsing cycles (10 min sonication and 2 min rinsing).  Each sonicated 

batch was rinsed thrice and the supernatant was decanted prior to the next cycle of sonication.  A 

total of 15 such sonication-rinsing cycles were used to remove all suspended impurities.  The 

cleaned sand was then soaked overnight in concentrated hydrochloric acid (HCl), to remove any 

metallic impurities.  The sand collectors were then washed with DI until the pH reached 6.5 

following by an additional cycle of soaking with 50 mM CaCl2.  Additional 5 cycles of sonication-

rinsing were performed to remove tightly bound colloids removal the collector surfaces.  Such 

extensive cleaning of the sand was necessary to eliminate convolution of the breakthrough signal 



 

88 
 

from any potential release of inherent colloids that are typically present in the as-received sand.  

The cleaned sand was then dried at 80 C and stored in an airtight container.  The cleaned sand 

was re-sieved with 20-25 mesh sieve, to attain a narrower grain size of 700-800 µm.    

The Kontes columns were dry-packed14 following a layer-by-layer packing process, where 

1-cm layers were poured in and compacted with a wooden mullet.  A vibrator was used to ensure 

uniform packing and eliminate stratification.  Carbon dioxide gas was flowed through the column 

for 20 minutes to remove all the air from the pore spaces. Next the column was saturated by 

pumping DI water (Figure D-1) through the column for 8 h via an Ismatec precision variable-speed 

peristaltic pump purchased from IDEX Inc. (Wertheim, Germany).  Porosity of the packed beds 

was determined gravimetrically weighing the column before and after DI saturation, and found to 

be 0.376 ±0.013.  Right after saturating the column, tracer studies were performed using 4 pore 

volumes (PVs) of lithium bromide (LiBr) solution.  The tracer was monitored continuously at 

197.nm wavelength.  Prior to introduction of the NMs, the packed column was flushed with at 

least 4 PVs of appropriate background solution.  The approach velocity of the tracer and the carrier 

solution was adjusted to 0.003 cm s-1 (equivalent to a volumetric flow rate of ~1 mL min-1).  NMs 

were then introduced at the same background electrolyte concentration as a finite pulse (~4PV).  

The pulse was followed by the injection of respective electrolyte solution for 4 PV.  Subsequent 

injection of DI water was made to observe NM release.  For each new experiment, a cleaned and 

newly packed column was employed.   

The eluent concentration was measured at the outlet using the pre-established calibration 

curves (Figure D-2) for AuNS, PA-SWNTs, and AuNS-PA-SWNT mixture.  Dilution factors of 

2, 4, 6, and 8 to the stock AuNS suspensions were used to obtain a calibration curve at 517 nm 

using a flow through cell (Agilent Technologies, Santa Clara, CA) of 300 µL volume.  On the 
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other hand, 5, 10, 20, 40 dilution factors were used to generate a calibration curve for the PA-

SWNTs at 235 nm. Calibration curve obtained for the AuNS and PA-SWNTs both resulted in a 

R2 value of 0.9999. Similar calibration curve was obtained at 517 nm for the AuNS-PA-SWNT 

hetero-dispersion utilizing the same flow through cell with a R2 value of 0.9998.  For the NM 

transport studies, the column eluent concentration was monitored in every 15 s (approx. 0.02 pore 

volume) for the entire duration of the experiment.  

To monitor single particle transport, AuNSs only were flowed through the saturated 

columns under relevant NaCl concentration.  PA-SWNT (0.02%, 0.1%, 1%, and 5%) suspensions 

were flowed through the porous media in presence of 1mM NaCl and 100 mM NaCl.  Such wide 

variation in salt concentration was used to reflect the effect of aggregation and extent of surface 

modification of SWNT on their transport behavior. At least one replicate run (through freshly 

packed column) was performed for each condition.  

Co-transport experiments were performed flowing a hetero-dispersion of AuNS-SWNT (at 

a mass ratio of 1:5 for SWNT:AuNS).  Also, sequential flow of PA-SWNT and AuNS was made, 

where PA-SWNTs was flowed through the sand packed column followed by AuNS injection.  

Such runs were made to assess the influence of SWNT pre-coating (of the collectors) on the 

mobility of the AuNS through the sand packed column.  Co-transport and sequential-transport 

experiments were carried out at identical electrolyte concentrations, as utilized for the control 

“AuNS only” transport experiments.  

5.3 Results and Discussions 

5.3.1 Morphological and Chemical Properties 

Figure D-3 shows representative HRTEM micrographs of AuNS and SWNTs. AuNSs show 

spherical morphology with an average diameter of 12.9±1.7 nm (Figure D-3a) determined from 
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imageJ particle size analysis.  SWNTs are found to be well dispersed within the amorphous 

structure of PA (Figure D-3b). A significant number of dark spots are found in the PA-SWNT 

images, which are likely the metal catalysts used for SWNT synthesis. Elemental analysis (EDS) 

of the samples confirms the presence of iron (Fe) catalysts in the sample.  EDS of the AuNS 

samples were also performed for elemental confirmation of the gold in the sample.   

The elemental signature of the AuNS and surface properties of the PA-SWNTs were further 

evaluated using UV-vis spectroscopy and Raman Spectroscopy, respectively. AuNSs show a 

characteristics peak at 517 nm (Figure D-4a) with an absorbance of 0.347 a.u. at an AuNS 

concentration of 16.66 mg/L (DF of 3)64.  Raman spectroscopy analysis of the SWNTs confirms 

characteristics defect or D and graphitic or G peaks at 1330 and 1595 cm-1, respectively (Figure 

D-4b).  The attenuation of the D/G ratio of SWNTs from 0.5580 to 0.1778 for pristine and PA-

SWNTs (dispersed in 5% PA), respectively confirms the surface coverage of the SWNTs by PA.  

Similar attenuation of D/G has previously been reported in the literature65.  

The stability and size of the NMs were characterized by DLS (Figure D-5).  The average 

hydrodynamic radii (HR) of the AuNSs in DI water and of PA-SWNTs are measured as 18.9±1.2 

and 180.5±15.8 nm, respectively.  However, the mixture of AuNS-SWNT demonstrates an average 

HR of 41.4±10.4 nm. The reduction of particle size in the hetero-dispersion is likely due to 

averaging of smaller AuNSs with relatively larger sized PA-SWNTs; as CONTIN algorithm 

provides intensity averaged particle sizes over the measurement period.  On the other hand, higher 

particle size for the AuNSs and PA-SWNTs in the aqueous suspension compared to their TEM 

size can be attributed to the associated water molecules around the particles (or hydrated particles) 

during DLS measurement. Such differences between DLS and TEM size has been reported widely 

in the literature for colloids and ENMs12, 55.  
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5.3.2 Electrokinetic Properties 

EPMs of the NMs were measured as a function of ionic strength. NMs demonstrate a decreasing 

trend in the absolute values of the EPMs with the increase of electrolyte concentration (Figure D-

6), supporting the classical electrokinetic behavior of charged particles12, 14.  EPMs of AuNSs 

decreases from – (2.78±0.18) to – (1.63±0.23) × 10−8 m2 V−1 S−1 for an increase in NaCl 

concentration from 1 to 100 mM.  The origin of such surface potential is likely from the PAA 

polyelectrolytes (negative carboxyl moieties) and is consistent with previously reported literature 

values34, 55, 66.  However, EPMs for both 0.02% and 5% PA-SWNTs doesn’t vary substantially; 

demonstrating values from − (0.35 ± 0.03) and − (0.29 ± 0.03) × 10−8 m2 V−1 S−1 to − (0.03 ± 0.03) 

and − (0.03 ± 0.02) × 10−8 m2 V−1 S−1, respectively for an increase in NaCl concentration from 1 

to 100 mM.  Since PA is a nonionic polymer, such low values of EPMs confirm effective coating 

of the SWNT surfaces with these polymers, and the likely stabilization has occurred from steric 

interaction between the sorbed polymer layers67, 68.  For the hetero-dispersion of AuNSs and 5% 

PA-SWNTs, changes of background ionic strength from 1 to 100 mM results in an EPM decrease 

from −(1.02 ± 0.23) to −(0.18 ± 0.02) × 10−8 m2 V−1 S−1.  These values are interestingly 

intermediate to the EPM values of AuNS and PA-SWNT homo-dispersions.  Since EPM 

measurements are also presented as averages, the nonionic PA coated SWNTs (with low EPM) 

has likely reduced the overall electrokinetics of the hetero-dispersion.  

5.3.3 Transport of AuNS Homo-dispersions 

 Mobility of the AuNS homo-dispersions is presented in Figure 1 as a function of NaCl 

concentration.  Background electrolytes significantly influence the AuNS transport through the 

sand column, as their mobility decreases with the increase in electrolyte concentrations.  The 

percent eluted of AuNSs is estimated as 96.9±4.6% of the influent mass for 1 mM NaCl case.  
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Such negligible deposition at lower ionic strength indicates strong electrostatic repulsion between 

AuNSs and collector surfaces.  Other mechanisms of filtration, i.e., straining are not likely 

significant, because the size ratio of the AuNS and the sand grains (i.e., 0.0003) is much lower 

than literature reported favorable colloids/media diameter ratio (i.e., 0.005) for physical 

filtration69. Maximum C/C0 value reduces to 0.91±0.06 and 0.79±0.02 for 10 mM and 30 mM, 

respectively, associated with 83.5±6.3% and 67.7±5.7% elution.  AuNS mobility is the lowest in 

presence of 100 mM NaCl with a breakthrough plateau of 0.49±0.03 and elution of 40.0±2.3%.  

The decreasing trend of the elution of the AuNS homo-dispersion through the sand column with 

increasing ionic strength can be explained by corresponding reduction in electrostatic double layer 

interaction as evident from Figure D-6.  Our results corroborate similar findings12, 14 for other 

negatively charged ENMs.  

Each breakthrough history was followed by a release curve obtained flowing DI water 

through the column.  At low ionic strength, (i.e., 1 mM NaCl) no detachment of the AuNS was 

observed.  Representative release curves for 10, 30 and 100 mM are presented in Figure D-7.  

Numerical integration of the release curves suggest that 57%, 87%, and 86% of the retained 

material has been released when the solution chemistry changed to DI from 10, 30, and 100 mM, 

respectively.  Shape of the breakthroughs and the increasing release percentages with increased  
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FIGURE 5.1. Transport of AuNS Homo-dispersion a) Breakthrough b) Percent Transport  
 

mono-valent salt concentrations suggest that the AuNS depositions onto the sand surface are 

primarily electrostatic and at the secondary minima.  Observed detachments of the particles can be 

attributed to removal of particles from the secondary energy well as observed earlier for the ENMs, 

i.e., SWNTs and CeO2
14, 70. 

5.3.4 Transport of PA-SWNT Homo-dispersions 

SWNTs, dispersed in solutions of wide range of PA percentages (0.02-5%), were injected through 

the sand column in presence of low (1 mM) and high (100 mM) electrolyte concentrations.  At low 

ionic strength, the effect PA functionalization on PA-SWNTs mobility is negligible (Figure D-8). 

Even though the EPMs of the PA-SWNTs slightly decreases (Figure D-6) with an increase in the 

amount of PA used in dispersion, their breakthrough plateau and retention percentage is similar 

for the entire range of the PA in such cases.  Average retention of the PA-SWNTs, for the entire 

range (0.02-5%) of the PA, is 6.9±1.5 % at 1 mM NaCl as shown in Figure D-8.  Filtration of PA-

SWNTs at low ionic strength with no detectable releases can be attributed to physical removal 

mechanism for the PA-SWNTs, which are consistent with the previous findings14, 71.  
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FIGURE 5.2. Transport of PA-SWNT Homo-dispersion at 100 mM NaCl a) Breakthrough b) 
Percent Transport  
 

At 100 mM NaCl however, the amount of PA used in dispersing SWNTs demonstrates 

significant influence on their transport behavior.  The percent breakthrough of PA-SWNTs 

increases with the increase in PA concentrations.  The elution of 5 % PA-SWNTs is found to be 

92.9±3.3 % compared to 29.1±6.4 % for the 0.02% PA-SWNTs.  Percent eluted is estimated as 

57.4±8.6 and 71±4.5 for 0.1 and 1% PA-SWNT, respectively.  Similar effects on transport as a 

function of surface modification for SWNTs have been reported earlier72, 73.  The shape of the PA-

SWNT breakthrough curves at 100 mM NaCl do not follow the tracer or other PA-SWNT transport 

trends, rather show a gradual increase over time with no plateau at the end of the pulse injection. 

Such behavior can be attributed to blocking of available deposition sites as described in multiple 

previous studies74, 75. We believe that continual injection of PA-SWNTs blocks the available 

surface sites on the sand collectors via attachment of the SWNTs over time.  Thus subsequent PA-

SWNT injection results in SWNT-SWNT interaction between SWNTs in pore water and SWNTs 

that have already coated the collector grains.  Thus these longer PV flushing causes complete 

recovery of these PA-SWNTs after 15 PV.  Therefore, increased mobility of PA-SWNTs with the 
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increase in PA concentration likely has occurred from steric interaction from the attached nonionic 

macromolecules (i.e., PA) on the SWNTs76 with the SWNTs in the porewater.  

5.3.5 Transport of AuNS & PA-SWNT Hetero-dispersions 

Role of the presence of PA-SWNTs on AuNS deposition was evaluated by performing transport 

experiments of AuNS-PA-SWNT hetero-dispersions.  SWNTs dispersed in a 5% PA solution were 

used to prepare the hetero-dispersions (to ensure minimal deposition of PA-SWNTs only).  Figure 

3 presents the breakthrough curves (Figure 3a) and corresponding elution percentages (Figure 3b) 

determined from the co-transport experiments.  The maximum C/C0 values decreased (i.e., from 

0.99±0.007 to 0.96±0.01) and % eluted (i.e., 98.0±1.2% to 79.1±3.2%) as the ionic strength was 

increased from 1 mM to 100 mM.  Percent eluted for the AuNS-PA-SWNTs were 97.3±3.0 and 

83.6±1.6 at 10 and 30 mM, respectively.  Though the strength of the electrolytes showed minimal 

effect on the breakthrough plateau on the co-transport of AuNSs, the shape of the breakthrough 

histories showed significant differences between high and low electrolyte conditions.  AuNS 

hetero-dispersion breakthroughs (Figure 3a) deviate from their homo-dispersion cases (Figure 1a), 

but closely resembles the shape of the breakthrough of 5% PA-SWNT (Figure 2a).  Observed 

resemblance suggests that higher mobility of the AuNSs in presence of PA-SWNTs, under high 

ionic strength condition, may be attributed to their facilitated transport via highly mobile 5% PA-

SWNTs.  The filtration of AuNSs likely have occurred indirectly via facilitated removal of PA-

SWNTs, where AuNSs nucleated at high ionic strength.  Similar observations have been reported 

elsewhere for AuNS hetero-aggregation55.  Similar transport mechanisms describing enhanced 

mobility of titanium dioxide (TiO2) in presence of CNTs have been reported earlier60.  Such 

preferential attachment of the negatively charged AuNSs onto the PA-SWNTs, instead of the sand 

grains, can be explained by unfavorable electrostatic interaction between charged AuNSs and 
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likely charged sand surfaces (i.e., -40 mV77 to -25 mV78) compared to electrostatically favorable 

AuNS and PA-SWNTs interaction (with PA-SWNT EPM values of -3.5 mV to -0.6 mV, Figure 

D-6) for ionic strength ranging from 1 mM to 100 mM at pH ~7.  Furthermore, order of magnitude 

smaller sizes of the SWNTs provided with additional (by an approx. factor of 1.5) higher surface 

area for the AuNSs to attach (Table D-1 to D-3). 

  
FIGURE 5.3. Transport of AuNS- SWNT Hetero-dispersion a) Breakthrough b) Percent 
Transport 
 

Release curves of the co-deposited AuNSs in presence 30 and 100 mM NaCl are presented 

in Figure D-9.  No significant release has been observed for AuNSs deposited at 1 or 10 mM NaCl 

when hetero-dispersed.  The % release of AuNSs (Figure D-8) are found to be 59% and 55% for 

30 and 100 mM ionic strength, respectively.  Comparison of the amount of release of AuNS for 

hetero-dispersion case (Figure D-9) with the homo-dispersion (Figure D-7) suggests that presence 

of PA-SWNTs increases the irreversible attachment of the AuNSs at high ionic strength 

conditions.  Such reduced % release can also be attributed to facilitated removal of AuNS via 

physical filtration14 of PA-SWNTs, as described in the transport behavior of PA-SWNT homo-

dispersion earlier (Figure D-8).   
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FIGURE 5.4. Transport of AuNS Homo-dispersion through SWNT Coated Column a) 
Breakthrough b) Percent Transport 

 

5.3.6 Transport of AuNS through PA-SWNT Coated Sand 

The breakthrough curves of AuNS homo-dispersions through PA-SWNTs (0.02 % PA) coated 

sand columns are presented in Figure 4. Average eluted AuNS is found to be 94.4±4.5% and 

90.3±3.5% for 1 and 10 mM NaCl, respectively.  The mobility of the AuNSs deceases significantly 

at higher NaCl concentration, resulting in 63.6±1.6% and 10.6±6.1% elution under 30 and 100 

mM ionic strength, respectively. Comparing Figure 4 (i.e., pre-coated sand condition) with Figure 

1 (un-coated sand) reveals that the AuNS breakthrough is strongly influenced by the presence of 

PA-SWNTs on the sand grains. Average % elution is lower for the pre-coated surfaces, but such 

influence is minor at low ionic strength.  Differences between pre-coated and un-coated sand in 

terms of AuNS elution is also insignificant for 30 mM case; i.e., 63.6±1.6% for pre-coated 

condition vs. 67.7±5.7% for un-coated sand packed columns.  However, at 100 mM NaCl such 

differences are more profound, resulting only 10.6±6.1% of elution of the AuNSs through the pre-

coated sand compared to 40.0±2.3% through un-coated sand at an identical ionic strength.  

Increased filtration of AuNSs through PA-SWNT coated sand surfaces supports our earlier 

hypothesis regarding preferential attachment of the AuNS onto the PA-SWNTs. AuNS prefers the 
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PA-SWNT coated sand surfaces to the bare sand surfaces that results higher retention for the pre-

coated case. Contribution of similar mechanism, e.g., preferential binding of biological particles 

(i.e., E. coli) with the CNTs has been reported earlier59 in presence of high ionic strength. 

5.4 Environmental Implications  

Interaction of the ENMs (e.g., AuNSs) with the other nanoparticles (e.g., PA-SWNTs) upon 

environmental release and transport is highly likely.  Such interactions may occur while the 

secondary particles are in suspension (co-transport) or already deposited onto the porous media 

(pre-coating).  The study results show that although the presence of PA-SWNTs does not affect 

filtration of AuNS at low ionic strength (equivalent to fresh pore-water condition), AuNSs are 

significantly more mobile and thus will travel further in the porous media at elevated ionic 

strengths (e.g., in saline pore-water environment) when secondary particles (e.g., PA-SWNTs) are 

present.  On the contrary, the pre-deposited SWNTs on the porous media will likely enhance 

filtration of AuNS at both low and high ionic strength conditions.  

The findings of this study indicate that the coexistence of the ENMs may significantly 

influence their fate and transport in the natural environment.  Using clean-bed filtration theory the 

estimated transport distances of 0.1% AuNS (i.e., C/C0= 0.001) at 100 mM NaCl in homo-

dispersion, hetero-dispersion, and pre-coated (with PA-SWNTs) were estimated as 0.6, 10.2, and 

0.2 m respectively (Table D-4).   In reality, however, the nature of such influences may become 

far more convoluted because of the additional complexity presented via the presence of multiple 

natural colloids and geo-macromolecules alongside with ENMs.  ENM surface coatings and 

subsequent ligand exchange will also influence the transport behavior significantly. This is one of 

the first studies reporting co-transport of ENMs through porous media and highlights the 

importance of further research on such binary particulate conditions.    
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Chapter 6 

 
 

Summary and Conclusions 
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6.1 Summary 

The research presented in this dissertation focused on four primary data gaps. 1) Influence of 

AuNMs’ shape on their aggregation and deposition; 2) Role of preliminary size on the aggregation 

behavior of AuNS; 3) Effect of presence of SWNT on the aggregation characteristics of AuNS 

(hetero-aggregation); and 4) Role of SWNT on the transport of AuNS (co-transport) in porous 

media.  Alongside with classical characterization techniques (e.g., electron microscopy, optical 

microscopy, Raman and UV-vis spectroscopy, electro-kinetic methods, light scattering, quartz 

crystal microbalance), this research developed novel methods and applied new approaches to 

assess hetero-aggregation and co-transport of AuNS.  

In an effort to address the first data gap, 12 nm diameter PAA coated AuNS and 12 × 60 

nm AuNRs were procured and characterized by HRTEM, electrokinetic measurement, and UV-

vis spectroscopy.  Shape-dependent aggregation kinetics was investigated for a series of NaCl and 

CaCl2 concentration.  Aggregation histories (hydrodynamic radii vs. time) were obtained using 

time resolved DLS technique coupled with auto-correlation function and was analyzed via 

cumulant analysis.  Attachment efficiencies were computed from the aggregation profiles followed 

by estimation of CCCs for the AuNSs and AuNRs using respective stability plots.  Shape-

dependent deposition behavior of the AuNMs onto a silica crystal was probed using a QCM-D 

setup in presence of a wide range of NaCl concentration.  Deposition rates were plotted against 

the ionic strength to elucidate the effect of particle geometry on the deposition behavior of the 

AuNMs.  

NIST reference materials, 30 nm and 60 nm diameter gold spheres, were used to address 

the second data gap. TEM and UV-vis spectroscopy were performed for the chemical and 

morphological analyses of both types of AuNSs.  Electrokinetic measurements were performed on 
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the AuNSs.  AuNSs were introduced into a biological culture media (RPMI solution with 1% 

streptomycin in presence of 10% fetal bovine serum, FBS) and their HR were continuously 

monitored in every 15 s for 24 h using DLS.  Moreover, time-dependent aggregate structure 

information, (i.e., fractal dimensions) was obtained using SLS technique in every 2 h for a period 

of 24 h.  

Hetero-aggregation kinetics of AuNS was probed using TEM and DLS in presence of PA-

modified SWNTs (mix ratio of PA-SWNT: AuNS = 1:20) in an effort to address the third data 

gap. PA modification of the SWNT was performed through ultrasonication followed by 

centrifugation and functionalization the SWNTs with PA was confirmed using Raman 

spectroscopy, which eliminated SWNT-SWNT aggregation (via steric interaction) for a wide 

range of ionic strength and allowed formation of only AuNS homo- (AuNS-AuNS) and hetero-

aggregates (AuNS-SWNT).  Confirmation of a stable PA-SWNT dispersion was obtained by 

monitoring their unchanged HR in highly saline conditions.  Electrokinetic measurements of the 

NMs, in presence of the chosen range of NaCl and CaCl2, were performed.  Homo- and hetero-

aggregation rates (nm/s) were computed from the linear regression of the initial aggregation 

portion (time takes to reach 1.3 times of the HR at t=0 s) of the aggregation history plots. 

Mechanistic understanding of AuNS hetero-aggregation was facilitated by HRTEM imaging of 

the hetero-dispersions at high and low electrolyte conditions.  

Final data gap was addressed by performing column experiments that involved injection of 

AuNS and PA-SWNTs through a saturated porous media.  Ottawa sand (600-700 µm) packed glass 

columns were configured in up-flow condition and the eluent AuNSs were detected by a UV-vis 

spectrophotometer.  Breakthrough curves (time or PV vs. normalized eluent concentration, C/C0) 

were generated for AuNSs in presence of 1, 10, 30, and 100 mM NaCl.  PA modification of the 
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SWNTs for a series of PA concentrations was performed and transport experiments were carried 

out to determine the role of PA percentages on SWNT mobility through the packed column under 

a range of ionic strength (1-100 mM).  This allowed to determine the role of PA concentration on 

SWNT deposition and aided in selection of appropriate PA conditions to perform co-transport of 

collector pre-coating. AuNSs were transported under a range of ionic strength conditions in single-

particle systems (i.e., AuNS) and on presence of secondary PA-SWNTs (either in hetero-

dispersion or through pre-coated collectors).  Effects of NOM on AuNS transport was also 

investigated. 

6.2 Conclusions 

The major conclusions of this research are summarized below: 

6.2.1 Spheres vs. Rods: The Shape of Gold Nanoparticles Influences Aggregation and 

Deposition Behavior 

 Uniform sized and shaped AuNSs showed higher aggregation propensity compared to 

AuNRs for the same surface coating; i.e., PAA. 

 Attachment efficiencies of the AuNS at a certain ionic strength in presence of CaCl2 was 

higher than that in presence of NaCl.  

 Reaction limited and diffusion limited regimes were more pronounced for the AuNS than 

that for the AuNRs. 

 CCCs for AuNS were found to be 50 mM for NaCl and 1.8 mM for CaCl2 

 CCCs for AuNR were found to be 250 mM for NaCl and 7 mM for CaCl2 

 The higher stability of the AuNRs has likely resulted from steric interaction of PAA 

polyelectrolyte coatings with extended conformation compared to the AuNSs. 
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 AuNRs also showed less deposition propensity compared to AuNSs, particularly in low 

electrolyte conditions.  

 AuNMs can manifest shape-dependent fate, transport, and biological interaction. 

6.2.2 Aggregate size and structure determination of nanomaterials in physiological media: 

Importance of dynamic evolution 

 Both of the AuNS (i.e., 30 nm and 60 nm) showed significant aggregation over time in the 

culture media.  

 Although AuNS particles’ aggregation was gradual up to 6 h period, beyond 6 h time DLS 

detected multi-micron sized particles.  

 Multi-micron sized particle could possibly be attributed to a snapshot of a large particle 

network formed by facilitated nucleation. 

 There were significant differences between the aggregate structures of the 30 nm and 60 

nm particles, more likely resulted from their preliminary size 

 Although Df in both particles demonstrated time dependent variation, experimental data 

lacked a defined trend of Df over time.  

 Continuous measurement of the aggregate size and aggregate structures of the 

nanoparticles is necessary for accurate interpretation of the nanotoxicity data and effective 

dose calculation in toxicity assays. 

6.2.3 Mechanistic Hetero-aggregation of Gold Nanoparticles in a Wide Range of Solution 

Chemistry 

 Presence of PA-SWNT influenced AuNS aggregation kinetics under a wide range of NaCl 

and CaCl2 concentration.  

 AuNS demonstrated slower hetero-aggregation at low electrolyte conditions compared to 
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their homo-aggregation rate under identical ionic strength  

 At high electrolyte concentration, AuNS demonstrated enhanced aggregation in presence 

of SWNT compared to their homo-aggregation rates. 

 In addition to being function of the ionic strength, homo- and hetero-aggregation rates of 

the AuNS depends on the valence of the electrolyte in suspension.  

 Presence of NOM increases, in both homo- and hetero-dispersion state, the aggregation 

rate of the AuNS at environmentally relevant condition. 

 It has been hypothesised from the TEM images that the decrease of the hetero-rates could 

be associated with obstruction of the AuNS aggregation induced by the suspended PA-

SWNTs. 

 Enhanced hetero-aggregation rates at favourable aggregation regime was assumed to be a 

result of facilitated attachment of AuNS on the PA-SWNT surfaces. 

 DLS technique can be used in combination of SPR to investigate hetero-aggregation 

behaviour of the ENMs. 

6.2.4 Co-transport of Gold Nanospheres with Single-walled Carbon Nanotubes in Saturated 

Porous Media 

 Transport of AuNS through a sand packed column was strongly dependent on the 

background ionic strength 

  Almost perfect mobility of the AuNS at 1 mM condition and substantial release at higher 

ionic strengths suggested that straining didn’t affect AuNS transport through porous media. 

 Amount of PA used to disperse a certain mass of SWNTs influence PA-SWNTs mobility: 

mobility increases with increasing PA amount. 

 AuNS demonstrated increased transport behaviour in presence of PA-SWNT in the 
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suspension.  

 Coating of the sand grains by PA-SWNTs decreased the mobility of the AuNS through the 

column.  

 Co-transport of AuNS in presence of PA-SWNTs and the transport of AuNS through PA-

SWNT coated sand column, both were influenced by the background ionic strengths.  

  Increased mobility of the AuNS in presence of PA-SWNT can be attributed to facilitated 

transport, where highly mobile PA-SWNTs act as a courier of the AuNS  

 Increased retention of the AuNS onto the PA-SWNT coated sand surfaces can be attributed 

to the facilitated deposition in presence of additional attachment sites. 

6.3 Environmental Implications of the Research 

Use of anisotropic ENMs in various applications makes their environmental releases very likely, 

and literature bears evidence of their significant antimicrobial and toxic potential alongside with 

proportionate human health concerns.  Understanding the fate and transport of the anisotropic 

ENMs in the environment is a key to evaluate their risk and safety.  This research assessed the 

aggregation and deposition of rod shaped AuNM, and demonstrated that the interfacial interaction 

of the anisotropic ENMs may significantly vary from the fate and transport behavior of their 

spherical counterpart.  Experimental results indicates that PAA coated AuNR will show higher 

stability, thereby high mobility, at both low (equivalent to freshwater condition) and high (marine 

or estuarine environment) ionic strength conditions.  Such shape dependent behavior of the ENMs 

also implies unique interaction of the anisotropic nanomaterials with the biological entities in the 

typical background chemistries.  

In vitro toxicity assays are surrogates in evaluating ENMs’ interaction in the biological 

environment, and such interactions greatly depend on the effective ENM dose of administered to 
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cells. ENMs’ aggregation propensity is exacerbated by cellular exposure media (with elevated 

ionic strength) and thus is known to influence the effective dose of these ENMs.  Along with the 

unique shape dependent interaction, size of the ENMs may significantly influence the effective 

dosage.  This research delineated the importance of time-dependent characterization of the ENM 

hydrodynamic radii and aggregate structure in a cell culture media.  The key findings indicated 

that evolution of the ENMs’ aggregate size and shape should be taken into consideration in 

interpreting any size dependent toxicity data.  The effect of size may diminish over time (during 

the exposure duration) as aggregation of the nano-scale entities surpasses the preliminary 

differences in size.  Results of this research will likely improve the design of nano-toxicity assays. 

This research not only evaluates the role of material attribute in their fate and transport but 

also extends to assess the role of environmental complexities on the same.  Presence of secondary 

particles in the form of natural colloids, geo-macro molecules or pre-existing ENMs (i.e., PA-

SWNTs) are very likely in the natural environment, and their presence may invalidate the fate and 

transport data obtained from controlled experiments in singular system.  Influence of secondary 

particulate matter in the aggregation of AuNS is also systematically evaluated.  The experimental 

findings indicate that hetero-aggregation of the AuNSs would be slower at low electrolyte 

conditions (e.g., surface water bodies; ~3-10 mM) compared to their homo-aggregation rates.  

However, in presence of elevated electrolyte conditions (e.g., groundwater, marine and estuarine 

environments; 100-700 mM), hetero-aggregation will be faster, potentially indicating to lesser 

mobility in such environmental systems compared to AuNS homo-dispersons.  Additionally, 

increased aggregation rates in presence of NOM, indicates slower mobility of the AuNSs in the 

typical natural aquatic conditions.  The method developed in this study can be extended to a wider 
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set of ENMs, and will likely serve as the first step to systematically evaluate hetero-aggregation 

behavior in a wide range of environmental conditions. 

Finally, the co-transport study of the AuNS in presence of PA-SWNTs presented in this 

dissertation complements the findings concerning the effects of coexistence of ENMs in their fate 

and transport.  This is the first study that investigates the transport behavior of the AuNSs in 

presence of PA-SWNTs under a wide range of ionic strength.  The findings of this study show that 

presence of secondary particles will enhance AuNS mobility while in hetero-dispersions via 

facilitated transport, thus indicating to longer travel distances through sediments and aquifers. 

However, pre-coating of the natural soil media by secondary particles (i.e., PA-SWNTs) will likely 

reduce AuNS mobility by providing increased number of favorable attachment sites for deposition 

to occur on the coated collectors.  These result indicate that the order of addition of the secondary 

particles in the aquatic system will have a strong influence on their transport through porous media.   

6.4 Recommendations for Future Research  

The research presented in the dissertation focused on assessing the roles of the anisotropy and 

environmental complexity on fate and transport of ENMs.  The future research recommendations 

are laid out in two sections; i.e., research needs to evaluate (a) the effects of shape and (b) the role 

of environmental complexity.  

6.4.1 Effect of Shape and Size of the ENMs on Aggregation and Deposition of the ENMs 

Differences between the fate and transport of AuNS and AuNR as presented in this study, poses 

further questions to better understand the role of aspect ratio of the rod-shaped ENMs on their 

aggregation behavior.  ENM fate and transport literature lacks in a detailed data set in regard to 

the effects of length of the metallic nano-rods on their aggregation and deposition in 

environmentally relevant solution chemistries.  Moreover, theoretical interpretation of the 
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observed behavior in terms of mathematical modelling has not been addressed in the current 

research.  Therefore, investigating the efficacy of DLVO theory on the anisotropic ENMs and 

developing appropriate modification to the classical model is highly important.  

The research concerning the time evolution of AuNS size in RPMI media needs to be 

extended to investigate the effect of various common biological culture media (i.e., DMEM, EMB, 

MSA).  As described in the chapter 3, such time evolution would likely affect the effective dose 

of the ENMs to the cells during in vitro studies.  Further studies are needed to develop a way to 

accurately estimate effective dosage in a bioassay from the size and shape evolution of the ENMs 

in the culture media. 

6.4.2 Role of Environmental Complexity on Aggregation and Deposition of the ENMs 

Hetero-aggregation of AuNSs in presence of PA-SWNTs, as presented in chapter 4, provides 

evidence of altered aggregation behavior compared to homo-aggregation scenario.  However, 

further studies and development of novel experimental techniques are needed that could 

distinguish between homo- and hetero-aggregates formed during the hetero-aggregation process. 

PA modification of the SWNTs followed by DLS measurements though confirms elimination of 

the homo-aggregation of the secondary particles, cannot differentiate between AuNS-AuNS and 

AuNS-PA-SWNT aggregates. Such differentiation could potentially lead to better mechanistic 

understanding of the hetero-aggregation process.  Moreover, the reasoning of the absence of a 

favourable region for hetero-aggregation requires theoretical validation by theoretical modelling.  

Additionally, effects of % PA used in dispersing SWNTs and the ratio of the AuNS/PA-SWNT on 

hetero-aggregation of the AuNS is worth investigating.  New techniques are desired to assess 

hetero-aggregation in presence of natural colloids (e.g., clay, bio-colloids).  The zwitterionic nature 

of clay particles and heterogeneity in natural bio-colloids present complexities, which the 
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controlled hetero-aggregation studies developed here cannot address.  

In addition to the study presented in Chapter 5, it is necessary to understand the effect of 

the ratio of the secondary/primary ENMs on their co-transport behavior; as the ratio of the co-

existing ENMs may widely vary in the sediment/porewater in natural environment.  Chapter 5 also 

lacks assessment of the efficacy of classical CFT model in capturing comparison behavior of 

AuNSs.  Moreover, construction of individual depth profile for the secondary and primary ENMs 

in their co-transport studies may potentially help in better understanding of the filtration 

mechanisms.  Methods to assess co-transport in presence of natural colloids are also desired.   

Altered interfacial interaction of ENMs in presence of secondary entities also calls for 

evaluation of ENMs toxicity in similar binary system. Physico-chemical interaction of ENMs are 

widely reported to have significant effect on their toxic response.  Therefore, toxic potential of a 

certain nanomaterial may be influenced by the presence of other colloids/ENMs in suspension. 

Systematic evaluation of the toxicity of ENMs hetero-dispersion may reveal the exact nature of 

such influences.   
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Appendix A: Supplemental Information for 
Chapter 2  

 
 

Spheres vs. Rods: The Shape of Gold Nanoparticles Influences 
Aggregation and Deposition Behavior 
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A-1. Detailed Aggregation Kinetics Study Protocol 
 
The aggregation kinetics data was analyzed using classical colloidal approach.  Measured 

hydrodynamic radii of the AuNM were plotted with time as aggregation profiles.  Analyses of the 

data were performed by estimation of initial aggregation rate; i.e. aggregation of AuNM up to ~1.3 

times the initial hydrodynamic radius (R0).  The rate of aggregation is known to be proportional to 

the rate of change of R0 with time and can be expressed as equation 1 as follows.  

݇ ∝ ଵ
ே
ቂௗோబ(௧)

ௗ௧
ቃ {௧⇾଴}……………………………………………… (1) 

where, k is the initial aggregation rate, and N is the AuNM particle concentration. 

To eliminate influence of particle concentration that can vary between samples, a normalized unit 

less quantity, known as attachment efficiency or ‘’, was determined from the ratio of initial 

aggregation rate at each electrolyte condition with that of the favorable aggregation condition.  

Attachment efficiency ‘’ is represented using equation 2 as follows.  

ߙ =  
ቂ೏ೃబ(೟)

೏೟ ቃ
{೟ ⇾ బ}

ቂ೏ೃబ(೟)
೏೟ ቃ

{೟ ⇾ బ,೑ೌೡ}

……………………………………………….(2) 

where, α is the attachment efficiency, and t is the time of aggregation.  
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FIGURE A-1: Aggregation profile in presence of mono-valent NaCl of (a) AuNS and (b) AuNR.  
Measurements were carried out at 20 °C. 
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FIGURE A-2: Aggregation profile in presence of di-valent CaCl2 of (a) AuNS and (b) AuNR.  
Measurements were carried out at 20 °C. 
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FIGURE A-3: Frequency profiles of (a) AuNS and (b) AuNR onto a silica coated quartz crystal 
as a function of NaCl concentrations. Changes in normalized frequency shift at the third overtone 
(F3) reflect on AuNM attachment on quartz crystal surfaces. Measurements were carried out at 
200 C 
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Appendix B: Supplemental Information for 
Chapter 3 

 
 

Aggregate size and Structure Determination of Nanomaterials in 
Physiological Media: Importance of Dynamic Evolution 
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FIGURE B-1: Hydrodynamic radii of 2 different gold nanoparticles sample in DI water. 
Measurement was carried out at 37 °C 
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FIGURE B-2: UV-Vis spectra of Au NSs.  a) 30 nm sample, b) 60 nm sample. Characteristic 
peak maxima for each spectra shift is based upon primary AuNS size; 524nm to 532nm for 30nm 
and 60nm Au NSs, respectively 
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FIGURE B-3: Electrokinetic surface properties of gold nanoparticles in different solution 
chemistry 
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FIGURE B-4: Static light scattering (SLS) plot for gold nanoparticles in relevant physiological 
condition. a) 30 nm sample, b) 60 nm sample 
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Two-way (two-factor) ANOVA model fitting 
 
 

Table B-1: Fractal Dimension Data for 30 nm Particle 
 

Time 
(hrs) 

Df 
Run 1 

Df 
 
Run 2 

Df 
 
Run 3 

Average  
Df 
 

Standard 
Deviation  

0 2.78 2.78 2.8 2.786667 0.011547 
6 2.61 2.6 2.69 2.633333 0.049329 

12 2.59 2.61 2.65 2.616667 0.030551 
24 2.72 2.69 2.75 2.72 0.03 

 
Table B-2: Fractal Dimension Data for 60 nm Particle 

 
Time 
(hrs) 

Df 
Run 1 

Df 
 
Run 2 

Df 
 
Run 3 

Average  
Df 
 

Standard 
Deviation  

0 2.01 1.86 2.11 1.993333 0.125831 
6 2.51 2.19 2.64 2.446667 0.231589 

12 1.48 1.44 1.59 1.503333 0.077675 
24 2.61 2.61 2.64 2.62 0.017321 

 
 
Assuming, The level of significance, α =0.05 (95% confidence level) 

 
Table B-3: Effect of Time and Size Factor on Df 

 
 
Source Degrees of 

Freedom 
Type I 
Sum of 
Square 

Mean 
Square 

F-distribution 
Value 

p 
Value 

Time 
Points  

3 1.24380000 0.41460000 6.42 0.0035 

Particle 
size 

1 1.80401667 1.80401667 27.94 <.0001 

 
 
Hypothesis testing for the factor,Size: 
We are testing 
  H0: μ1 = μ2 
  Ha: μ1 ≠ μ2 
 
Where μ1 = mean measurements for 30nm particles 

μ2 = mean measurements for metal 60nm particles 
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Decision: reject the null hypothesis, because p-value (<.0001) is less than α. 
Conclusion: The factor, particle size, has significant effects on measurements. That is, the 30nm 
particles differ significantly from the 60nm particle in terms of the mean measurements.  
 
 
Hypothesis testing for the factor, Time:  we are testing 
  H0: μ1 = … = μ4 
  Ha: at least one mean is different from the rest 
 
Where μ1 = mean measurements at time ‘0’ and so on……. 
 
Decision: reject the null hypothesis, because p-value is 0.0035, which is less than α. 
Conclusion: The factor, time of the measurement, has significant effects on the mean 
measurements  
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Appendix C: Supplemental Information for 
Chapter 4 

 
 

Mechanistic Hetero-aggregation of Gold Nanoparticles for a Wide 
Range of Solution Chemistries 
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FIGURE C-1: Representative (a) UV-vis spectrum of AuNS and (b) Raman spectra of pristine 
and PA modified SWNTs.   
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FIGURE C-2: Attachment efficiencies of AuNS as a function of (a) NaCl and (b) CaCl2.  
Measurements were carried out at pH of ~6.5 and a temperature of 20 C. 
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FIGURE C-3: Homo-aggregation profiles of AuNS in presence of (a) NaCl and (b) CaCl2.  
Measurements were carried out at a temperature of 20°C. 
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FIGURE C-4: Hetero-aggregation profiles of AuNS in presence of (a) NaCl and (b) CaCl2.  
Measurements were carried out at a temperature of 20°C. 
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FIGURE C-5: Average hydrodynamic radii of PA-SWNTs in DI water and with high NaCl and 
CaCl2 concentrations. 
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FIGURE C-6: Cryo-TEM images of AuNS and PA-SWNT heterodispersion under 10 mM NaCl.  
 
 
Imaging Method: Cryo-TEM imaging of the vitrified sample of hetero-dispersion was performed 

utilizing a Jeol Jem 2100-TEM (Peabody, MA) in a specially cooled stage (Gatan Inc, Pleasanton, 

CA).  The vitrification of the sample was accomplished with the help of a vitrobot (FEI, Hillsboro, 

OR) at a controlled temperature (25 C) and humidity (100%) under desired solution chemistry. A 

Quantifoil grids carbon on copper mesh (Electron Microscopy Center, Hartfield, CA) was plunged 

into the dispersion and blotted to have a thin TEM specimen. Resulting specimen was vitrified 

first using liquid ethane and then with the help of liquid nitrogen.  



 

134 
 

 
 
FIGURE C-7: Electrophoretic mobilities (EPM) of AuNS and PA-SWNTs under 7 mM NaCl 
and 1 mM CaCl2 electrolyte mixture with and without the presence of Suwannee River humic 
acid (SRHA). Measurements were carried out at a pH of ~6.5 and a temperature of 20 C. 
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Appendix D: Supplemental Information for 

Chapter 5 
 
 

Gold Nanoparticles’ Transport Through Saturated Porous Media in 
Presence of Single-walled Carbon Nanotubes  
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FIGURE D-1: Setup of the column experiments a) Schematic b) Picture  
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FIGURE D-2: Calibration curves obtained for the nanoparticles using linear regression  
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FIGURE D-3: Transmission electron microscopy images of a) AuNS b) PA-SWNT  
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FIGURE D-4: a) UV-Vis spectra for AuNS b) Raman spectra for PA-SWNT 
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FIGURE D-5: Hydrodynamic radii of the nanoparticle suspensions in DI 
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FIGURE D-6. Electrophoretic mobility of the nanoparticles under 1-100 mM of NaCl 
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FIGURE D-7: Release of the AuNS homo-dispersion deposited under 10, 30, and 100 mM of 
NaCl 
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FIGURE D-8: Transport of PA-SWNT homo-dispersion at 1 mM NaCl a) Breakthrough b) 
Percent transport 
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Table D-1: Total Surface Area of Sand 
 

 
 

Table D-2: Total Exposed Surface Area of Sand for Deposition 
 
 
 
 
 
 
 
 
 
 

 
 

Table D-3: Surface Area of Hipco SWNT 
 
 

Material Concentration 
mg/L 

Volume Injected 
mL 

Mass 
gm 

Average 
Surface 
Area  
m2/gm 

Total Surface 
Area in 
column 
m2 

SWNT 2.5 44 0.000005 900 0.099 
 
 
 

 
 
 
 

Radius 
m 

Volume per 
Particle 
m3 

Density 
kg/m3 

Mass 
per 
Particle 
kg 

Number 
of 
Grains 
per 
Gram 

Total 
Number 
of 
Grains 

Surface 
Area/particle 
 
m2 

Total 
Surface 
Area in 
Column 
 m2 

0.000325 1.43684E-10 2650 4E-07 2626 131315 1.3267E-06 0.17420901 

Porosity, 
n 

Grain 
Diameter, 
dp  
m 

Specific 
Surface 
Area,  
As = ଺∗(ଵି௡)

ௗ೛
 

(m2/m3) 

Volume of 
Sand in the 
Column 
 m3 

Total Surface Area 
Available for 
Deposition 
 m2 

0.38 0.00065 5723.076923 2.94375E-05 0.168473077 
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FIGURE D-9: Release of the AuNS deposited under 30 and 100 mM of NaCl 
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Table D-4: Computation of Travel Distances 

 

Suspension Kd  
(1/s) 

U/f 
(m/s) 

Estimated 
Travel Length 
(m) 

AuNS Only 0.0010586 9E-05 0.581013 
Co-transport 6.058E-05 9E-05 10.15299 
AuNS Only through SWNT 
Coated Sand 

0.0031463 9E-05 0.195478 

 
Assumed, 

Solution Chemistry = 100 mM NaCl 

Velocity, U = 3.38E-05 ms-1 

Column Length, L= 0.06 m 

Porosity, f = 0.38 

(C/C0) = 0.01 
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