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Theory of biomineral Hydroxyapatite 

 

Alexander Slepko, Ph.D. 

The University of Texas at Austin, 2013 

 

Supervisor:  Alexander A. Demkov 

 

Hydroxyapatite [HA, Ca10(PO4)6(OH)2] is one of the most abundant materials in 

mammal bone. It crystallizes in an aqueous environment within spaces between 

tropocollagen protein chains. However, despite its abundance and possible usefulness in 

the medical field this complex physical system remains poorly understood to date. We 

present a theoretical study of the energetics of hydroxyapatite, its electronic, mechanical 

and thermodynamic properties. Our mechanical and thermodynamic properties from first 

principles are in excellent agreement with the rare available experimental data. The 

monoclinic and hexagonal phases are lowest in energy. A comparison of the phonon 

dispersions of these two phases reveals that a phase transition occurs due to a difference 

in vibrational free energy. The transition is of order-disorder type. Our calculated phase 

transition temperature is 680 K, in decent agreement with the experimentally determined 

470 K. An alternative theoretical model yields 882 K. The phase transition is mediated by 

OH libration modes. We also report for the first time on a peculiarity in the phonon 

spectrum of hexagonal and monoclinic HA. When studying the Lyddane-Sachs-Teller 

shifts in the spectrum close to the Γ-point we identify two vibration modes showing a 

systematically increasing Lyddane-Sachs-Teller shift in frequency with decreasing 

dielectric constant. In experiment, the dielectric constant varies between 5 and 20 

depending on the Ca/P ratio in the sample. The frequency shifts in the affected modes are 
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as large as 20 cm
-1

 as one spans the range of the dielectric constant. Thus, a simple 

spectroscopic analysis of a sample of bone may determine the quality of the sample in a 

physiological sense. We also identify the chemically stable low energy surface 

configurations as function of the OH, PO4 and Ca concentration. In the experimentally 

relevant OH-rich regime we find only two surfaces competing for lowest energy. The 

surface most stable over almost the entire OH-rich regime is OH-terminated, and is 

currently being investigated in the presence of water and atomic substitutions on the HA 

surface. 



 viii 

Table of Contents 

List of Tables ......................................................................................................... xi 

List of Figures ....................................................................................................... xii 

1. Introduction .....................................................................................................1 

1.1 hydroxyapatite in nature and technology ...............................................1 

1.2 Existing literature on hydroxyapatite .....................................................3 

1.3 Our work on hydroxyapatite ..................................................................6 

1.4 Other projects worked on .......................................................................7 

2. Theory and methodology ................................................................................9 

2.1 Density Functional Theory (DFT) .........................................................9 

2.1.1 Schrödinger Equation in a plane wave basis representation .........9 

2.1.2 Kohn-Sham-Equation .................................................................11 

2.1.3 Local Density Approximation (LDA) and Generalized Gradient 

Approximations (GGA) ..............................................................13 

2.1.4 Pseudopotentials .........................................................................13 

2.1.5 Self-consistency cycle .................................................................15 

2.1.6 VASP ..........................................................................................16 

2.2 Theory of phase transitions ..................................................................16 

2.2.1 Landau theory of phase transitions .............................................18 

2.2.2 Displacive and order-disorder phase transition ...........................20 

2.2.3 Minimum energy transition path .................................................23 

2.3 Dielectric properties of ionic crystals ..................................................24 

2.4 Lattice vibrations and thermodynamic quantities in the harmonic 

approximation ......................................................................................26 

2.5 Surface and interface energetics from first principles .........................28 

2.6 Work functions and band alignment at interfaces from first principles31 

2.7 Van der Waals interactions in DFT .....................................................33 

3. First principles study of the biomineral hydroxyapatite ...............................36 

3.1 Introduction ..........................................................................................36 



 ix 

3.2 Computational details ..........................................................................40 

3.3 Results ..................................................................................................41 

3.3.1 Ground state crystal structure .....................................................41 

3.3.2 Activation energy for the hexagonal to monoclinic transition....46 

3.3.3 Electronic structure .....................................................................51 

3.3.4 Phonon eigenmodes at the Γ-point ..............................................56 

3.3.5 Elastic constants of HA ...............................................................63 

3.4 Conclusions ..........................................................................................65 

3.5 Appendix ..............................................................................................66 

4. First principles study of hydroxyapatite surface ...........................................67 

4.1 Introduction ..........................................................................................67 

4.2 Computational details and surface models ..........................................69 

4.3 Surface energy .....................................................................................73 

4.4 OH-rich conditions...............................................................................78 

4.5 Work function ......................................................................................85 

4.6 Conclusions ..........................................................................................87 

5. Hydroxyapatite: Vibrational spectra and phase transition ............................89 

5.1 Introduction ..........................................................................................89 

5.2 Computational details ..........................................................................91 

5.3 Results ..................................................................................................92 

5.3.1 Simulation cells and notations ....................................................92 

5.3.2 Phonon dispersion .......................................................................94 

5.3.3 Lyddane-Sachs-Teller shift .......................................................100 

5.3.4 Vibrational free energy and phase transition ............................108 

5.3.5 Heat capacity CV .......................................................................115 

5.4 Conclusions ........................................................................................117 

6. TiO2/HA and HA/H2O interface .................................................................118 

6.1 Introduction ........................................................................................118 

6.2 TiO2/HA interface:  Wetting and electronic structure .......................119 



 x 

6.3 Wetting at the HA/H2O interface .......................................................124 

6.4 Summary ............................................................................................128 

References ............................................................................................................130 

Vita .....................................................................................................................139 



 xi 

List of Tables 

Table 3.1: Comparison of fully relaxed theoretical bond lengths and bond angles in 

HA with experimental values............................................................45 

Table 3.2: Born effective charge tensors for the different atomic sites. ................60 

Table 3.3: Calculated elastic constants and bulk modulus compared to other 

theoretical calculations and corresponding experimental values. The 

bulk modulus is related to the elastic constants by the formula 

 22 331312119
2 CCCCB  . ....................................................64 

Table 4.1: Chemical composition, ionic charge, the surface energy averaged over the 

entire chemical range and work function in our models. The ‘extra’ 

molecules indicate the deviation from HA bulk stoichiometry measured 

in numbers of OH, PO4 or Ca. The net ionic charge is simply the sum of 

the extra elements multiplied by -3e, -1e and +2e for PO4, OH and Ca, 

respectively. ......................................................................................72 

Table 5.1 104 

a) Fitting coefficients of the power law decay in Lyddane-Sachs-Teller frequency 

shift in hexagonal HA for increasing ε∞..........................................104 

Table 6.1: Energy calculated in the right hand side of equation (6.7). Negative energy 

means that H2O wets the (doped) HA substrate, positive energy indicates 

that the substrate repels water. We find both ionically charged surfaces 

to repel water while the neutral ones are hydrophilic. ....................127 



 xii 

List of Figures 

Fig. 1.1: Top-view on the hexagonal primitive cell. The z-axis is out of plane. We 

shifted the original primitive cell in the x and y directions such that the 

OH are in the center of the cell. The darker colored CaII atoms and PO4 

molecules are at z=0.25c, the lighter ones are at z=0.75c. The OHs in the 

center are also surrounded by six PO4 molecules. The CaI atoms are now 

in the corners of the cell. .....................................................................2 

Fig. 1.2: The artificial hip implant on the left can be regarded as a multi-layer 

interface where a Ti substrate surface is oxidized, and then covered with 

a HA layer before it is immerged in the biological environment. ......2 

Fig. 2.1: Flow-chart for the self-consistent DFT calculations. ..............................15 

Fig. 2.2: Simple microscopic model describing the coupling between particles 

residing in a particular configuration of either the first or second of the 

two minima in each well. The interaction between nearest neighbor 

wells is mediated via a spring with spring constant C. .....................21 

Fig. 2.3: Schematic of the NEBM method. The transition path from the initial position 

to the final position is guessed at first (dashed line). Relaxing the forces 

perpendicular to the transition path alters the path such that a lowest 

energy transition barrier is ensured when going from the initial to the 

final state. ..........................................................................................24 



 xiii 

Fig. 2.4: Schematic of a band alignment at the insulator/metal interface. χ is the 

semiconductor’s electron affinity, Egap its energy gap between the top of 

the valence band and the bottom of the conduction band, and Φm is the 

metal’s work function. The p-type Schottky barrier φp is the energy 

difference between the Fermi level of the combined system and the top 

of the valence band. ..........................................................................32 

Fig. 2.5: “Stairway to heaven” describing the step by step improvement in correcting 

functionals for dispersion interactions. .............................................35 

Fig. 3.1: Schematic of the HA crystallization during bone formation. Experiments 

suggest that the c-axes of both the tropocollagen and HA platelets are 

aligned [30]. The formation of bone tissue happens in several steps. 

After the tropocollagen helices are aligned, constituents of the HA 

crystal accumulate in the spaces between the tropocollagen and 

crystallize in the (001) orientation. The final HA mineral within the 

spaces consists of many separate HA platelets. ................................37 

Fig. 3.2: HA primitive cells as described in references 5 and 6. The cell dimensions 

are a=b=9.432Å, c=6.881Å. The main difference between the two 

structures is the location of the oxygen atoms from the OH pairs as 

indicated in the figure. Following our notation (see text) we call the 

shown orientation of the OH pairs the (↓↓) orientation. ...................38 



 xiv 

Fig. 3.3: Top-view on the hexagonal primitive cell. In the figure we shifted the 

original primitive cell in the x and y directions so that the OH column is 

in the center of the depicted cell. The darker colored CaII atoms and PO4 

molecules are centered at z=0.25c and the lighter ones are centered at 

z=0.75c. The OH column is surrounded by six CaII atoms and six PO4 

molecules. The CaI atoms are now in the corners of the cell. Below both 

of the two visible CaI atoms there is a second CaI atom at the distance 

0.5c. Here, the lighter CaI atom is close to the top face and the darker 

CaI atom is at ~0.5c. ..........................................................................43 

Fig. 3.4: The calculated structures are listed in ascending order according to the 

binding energy per single cell and the minimum energy is shifted to 

zero. We find the lowest binding energy for the monoclinic (↓↓)(↑↑) 

configuration followed by the hexagonal (↓↓) structure. The energy 

difference these two is ~22meV/cell. The binding energies of structures 

2-4 are identical. Structures with flipped OH pairs within the same 

column generally yield higher binding energy. ................................45 

Fig. 3.5: a) OH positions with respect to the surrounding CaII-triangles. b) Two 

transition paths for the hydrogen atoms to flip from (↓↓) to (↑↑). ....47 

Fig. 3.6: Top-view along the OH column surrounded by CaII and PO4. The dark Ca 

atoms are at z=1/4 and the light ones at z=3/4c. The OH pairs are in the 

center. There are three equivalent trajectories to flip the top OH-pair 

rotationally. One of them is indicated by projection 1. Once path 1 is 

selected there are 2 inequivalent ways to flip the bottom OH-pair as 

indicated by the dashed lines. ...........................................................48 



 xv 

Fig. 3.7: The energy barriers corresponding to the translational (1) and rotational (2 

and 3) hydrogen trajectories. The energy barrier for a translational 

displacement of the hydrogen atoms along the z-axis is approximately 3 

times higher than that of the rotational transition. ............................49 

Fig. 3.8: The total DOS (a) and site-projected DOS in the near-gap region (b) of 

hexagonal and monoclinic HA. The DOS is normalized to a hexagonal 

cell. The Fermi level is at zero energy. The band gap is 5.23 eV. ....52 

Fig. 3.9: The electronic band structure of hexagonal HA in the near gap region. The 

energy range in the gap region and is not shown for clarity. The band 

structure suggests that HA is an indirect band material. The lowest 

energy optical excitations are indicated. The dashed lines between M 

and K indicate nearly constant energy optical excitations. ...............54 

Fig. 3.10: The electronic band structure of hexagonal HA. ...................................55 

Fig. 3.11: The theoretical phonon density of states at the Γ-point compared with the 

experimental IR and Raman active modes. Our Ca and PO4 peaks are 

underestimated by ~10 %, while the OH modes are overestimated by 

~10 %. ...............................................................................................58 

Fig. 3.12 a): The phonon frequencies at the Γ-point with and without the long-range 

correction. When applying the long-range correction we consider 

approaching the Γ-point from the M-point, the K-point and the A-point, 

corresponding to the directions (100), (110) and (001). We use the 

experimental values from Fowler and Markovic [21,22]. The direction of 

approach has little influence on the eigenmodes. The deviation from the 

experimental values is about 10%.....................................................61 



 xvi 

Fig. 3.12 b): The change in the phonon frequency when applying the long-range 

correction. We find almost identical changes when approaching along 

the (100) and the (110) direction (M to Γ and K to Γ, respectively). The 

largest change occurs for the mode at 318 cm
-1

 which corresponds to a 

pure OH libration mode. In the (001) direction (A→Γ) this mode is 

nearly unaffected by the long-range correction. ...............................62 

Fig. 4.1: a)-c) From these three prototypes we create all of other model surfaces by 

continuously removing the numbered particles. In total, we construct 29 

surface models from the ones depicted. ............................................71 

Fig. 4.2: Surface energy averaged over the entire chemical range plotted as function 

of the surface net ionic charge. Models 2 and 19 are the stoichiometric 

(001) and (100) surfaces. Models 3 and 24 are the models with lowest 

surface energy under OH-rich conditions. ........................................74 

Fig. 4.3: Lowest surface energy ternary phase diagram. Only six of the surface 

models notably contribute to the energetic ground state. Thin lines 

indicate the phase boundaries between surfaces competing in energy. A 

thick dividing line indicates conditions under which the β-TCP 

formation is energetically possible. ..................................................76 

Fig. 4.4: Surface energy under OH-rich conditions. Main contributors are structures 3 

and 24. ...............................................................................................79 

Fig. 4.5: Side view of relaxed model 3. The surface is one of the low energy surfaces 

under OH-rich conditions. ................................................................79 



 xvii 

Fig. 4.6: The side (a) and top (b) views of relaxed model 24. This surface has the 

lowest energy over most of the chemical range under OH-rich 

conditions. It is terminated just above the hydroxyl layer and allows for 

major reconstruction in order to bind OH to the surface. For pictorial 

purpose we show a periodically extended cell.  c) OH-relaxation: Dark 

large balls are Ca ‘deeper’ in-plane than the light large Ca balls. In 

model 24 one of the Ca is missing, allowing OH to rotate. ..............80 

Fig. 4.7: a) P-O-P angle distribution in model 3. On the surface we find large 

deviation from the bulk P-O-P angles. Below 4.6 Å from the surface, 

however, the bulk distribution is restored. b) Layer decomposed density 

of states of model 3. We show the top of the valence band only. The 

Fermi level is at 0 eV. .......................................................................82 

Fig. 4.8: a) P-O-P angle distribution in model 24. Below 4.5 Å from the surface bulk 

angle distribution is restored. The largest deviation from the bulk angles 

is 9° in one of the surface PO4 molecules. b) Layer decomposed density 

of states of model 24. We show the top of the valence band only. The 

Fermi level is at 0 eV. .......................................................................84 

Fig. 4.9: Work function as a function of the net ionic surface charge. Surfaces with 

unbalanced PO4
3-

 and OH
1-

 molecules have negative net charge; surfaces 

with unbalanced Ca
2+

 atoms have positive net ionic charge. The work 

function strongly depends on the surface chemistry, ranging from 3 eV 

to 9.5 eV. The range of experimental work function is indicated by the 

shaded bar. ........................................................................................86 



 xviii 

Fig. 5.1: Top-view on the hexagonal primitive cell. We shifted the original primitive 

cell in the x and y directions so that the OH column is in the center of 

the depicted cell. The darker colored CaII atoms and PO4 molecules are 

centered at z=0.25c and the lighter ones are centered at z=0.75c. The OH 

column is surrounded by six CaII atoms and six PO4 molecules. The CaI 

atoms are now in the corners of the cell. Below both of the two visible 

CaI atoms there is a second CaI atom at the distance 0.5c. Here, the 

lighter CaI atom is close to the top face and the darker CaI atom is at 

~0.5c. .................................................................................................93 

Fig. 5.2: The plots show the restoring forces acting on displaced atoms in the force 

constant calculation. The forces decay quickly with distance from the 

displaced atom in both the hexagonal and monoclinic phase, and are 

well contained within our simulation cells. ......................................96 

Fig. 5.3 a): Phonon dispersion of the hexagonal phase of HA. The main molecular 

contributors to the vibrations are indicated in the plots. ...................97 

Fig. 5.3 b): Phonon dispersion of the monoclinic phase of HA. The main molecular 

contributors to the vibrations are indicated in the plots. ...................98 

Fig. 5.3 c): In the figure we highlight modes that deviate by at least 5 cm
-1

 between 

the hexagonal and monoclinic phonon dispersion. Indicated in the 

background is he hexagonal phonon dispersion for reference. The 

deviations mainly occur in the low frequency Ca and PO4 modes, and 

the OH stretch and libration modes. .................................................99 



 xix 

Fig. 5.4: Lyddane-Sachs-Teller frequency shift in hexagonal HA when approaching Γ 

along the (100) A→Γ and the (010) Y→Γ direction, shown in (a) and (b) 

respectively. For ε∞ = 5 the phonon density of states is indicated for 

reference. Two frequency shifts are highlighted at 619 cm
-1

 and at 1034 

cm
-1

. Those two shifts follow a power law decay with increasing ε∞.102 

Fig. 5.5: Lyddane-Sachs-Teller frequency shift in monoclinic HA when approaching 

Γ along the (100) A→Γ and the (010) Y→Γ direction, shown in (a) and 

(b) respectively. For ε∞ = 5 the phonon density of states is indicated for 

reference. Similarly to the hexagonal phase, two frequency shifts are 

highlighted at 607 cm
-1

 and at 1034 cm
-1

. Those two shifts follow a 

power law decay with increasing ε∞. ..............................................103 

Fig. 5.6: Lyddane-Sachs-Teller shift in frequency of the low-frequency vibration 

mode at 619 cm
-1

 (a) and the high-frequency mode at 1034 cm
-1

 (b) in 

hexagonal HA. The value of the shift when approaching Γ from a 

particular direction is just the length of the vector from the origin in the 

plot to a point on the mesh in that direction....................................106 

Fig. 5.7: Lyddane-Sachs-Teller shift in frequency of the low-frequency vibration 

mode at 607 cm
-1

 (a) and the high-frequency mode at 1034 cm
-1

 (b) in 

monoclinic HA. The value of the shift when approaching Γ from a 

particular direction is just the length of the vector from the origin in the 

plot to a point on the mesh in that direction....................................107 

Fig. 5.8: Phonon density of states for the hexagonal and monoclinic phase. The 

differences are subtle, and due to the deviations in the phonon dispersion 

as indicated in Figs. 5.3 a)-c). .........................................................108 



 xx 

Fig. 5.9: Plotted is the difference in vibrational free energy dF between monoclinic 

and hexagonal HA. The transition temperature is 680 K. ...............110 

Fig. 5.10: Initial displacement pattern during the phase transition 

monoclinichexagonal, obtained in Chapter 3 using the nudged elastic 

band method. Mainly hydrogen atoms are moving. .......................112 

Fig. 5.11: Shown are the projection coefficients of the monoclinic (a) and hexagonal 

(b) Γ-point modes. The linear expansion using the Γ modes as basis 

leads to the closest overlap with the structural transition path from 

monoclinic to hexagonal (a) phase and vice versa (b). ...................114 

Fig. 5.13: Difference in heat capacity Chex – Cmon. (a), and heat capacity of hexagonal 

and monoclinic HA (b). The agreement between theory and experiment 

is excellent, only at higher temperature we find slight deviation. The 

difference between hexagonal and monoclinic phase heat capacity is 

very subtle. ......................................................................................116 

Fig. 6.1: Schematic of the band alignment between rutile TiO2 substrate and HA. The 

energy values are given with respect to the vacuum energy. HA’s 

valence band top varies strongly in energy depending on the surface 

chemistry (Chapter 4). Some of the compositions can lead to unphysical 

charging of TiO2’s GGA conduction band. This charging occurs due to 

GGA’s inability to reproduce the correct energy gap between conduction 

and valence band. Instead, we use the GGA+U approach with U = 9 eV 

to increase TiO2’s band gap up to 3 eV (exp.: 3.06 eV), preventing 

unphysical charging of the TiO2 layer. ...........................................120 



 xxi 

Fig. 6.2: a) Charge neutral interface model between the TiO2 substrate and the HA 

layer. We find this interface to be non-wetting. However, when 

removing the oxygen and calcium (indicated by the arrows) at the 

interface we satisfy the wetting condition (b).  The interface in (b) 

remains charge neutral. In c) we show our relaxed (110)TiO2/(100)HA 

interface model. We apply -6.8 % × -5.9 % compressive strain on HA’s 

in-plane lattice constants. The TiO2 substrate is 15.7 Å thick, and the HA 

layer is 20.6 Å thick. We find the distance 0.8 Å between the two layers 

to minimize the energy....................................................................121 

Fig. 6.3: Shown are HA’s surface energy σHA for OH-rich conditions as a function of 

the chemical potential µCa, and - (σi – σTiO2) calculated in equation (6.4). 

HA surface terminations with σHA smaller than - (σi – σTiO2)  wet the 

TiO2 substrate. We find that over almost the entire chemical range a 

multitude of HA surface terminations satisfy the wetting condition!123 

Fig. 6.4: Layer projected electronic density of states in the TiO2/HA interface model. 

The Fermi level is pinned by HA’s valence band top, mainly contributed 

to by oxygen p-states. In the bulk regions the band offset between TiO2’s 

top of the valence band and HA’s top of the valence band is ~0.5 eV.124 

Fig. 6.5: HA/H2O interface model. We substitute the indicated atoms by Si, Na or Mg 

to simulate the doped HA surface’s interaction with water. The HA layer 

is ~20 Å thick. The HA surface is covered with a12 Å thick water layer, 

followed by vacuum. .......................................................................126 



 1 

1. Introduction 

1.1 HYDROXYAPATITE IN NATURE AND TECHNOLOGY 

A carbonated form of hydroxyapatite (HA, Fig. 1.1) [Ca10(PO4)6(OH)2] is one of 

the most abundant materials in human bone [1]. The bone matrix is a hierarchical 

structure composed of collagen fibers (large protein molecules) and HA crystallites. The 

HA crystallizes within small spaces between these proteins. While HA is brittle and the 

proteins soft, their combination gives bone its strength. However, with age this strength 

decreases as the mineral content in human bone decreases after reaching a maximum 

value, which leads to diseases such as osteomalacia (loss of bone mineral) [2]. Therefore, 

the obvious application of HA as a biomaterial is in the field of bone repair and bone 

replacement in form of orthopedic implants. HA’s biocompatibility makes it very 

attractive in the orthopedic field, as state of the art bone implants are made of Ti(O2) 

substrates which are coated with a thin HA layer on the surface [3]. While the metal 

offers excellent mechanical properties, the HA layer improves adhesion to the 

surrounding bone and provides a scaffold for bone growth. However, such implants have 

a serious short-coming as their life span typically only ranges from 5-10 years [3]. While 

attempts are made to increase the life span, the existing body of work on HA is mainly 

experimental and macroscopic in nature. However, to improve implants, such as the one 

displayed in Fig. 1.2, a thorough theoretical understanding on the microscopic level is 

needed as well. From the materials science point of view, the problems are associated 

with the molecular level interactions that govern the physics and chemistry of HA, 

HA/water, HA/metal and HA/organic interfaces (Fig. 1.2). And while HA has been 

studied previously (see next section), many of even its bulk properties – which should be 

the starting point before reaching out for the HA/metal or HA/water interfaces – remain 

poorly understood. In the following sections 1.2 and 1.3 I review the bulk of existing 
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literature on HA, and summarize the contribution of this dissertation to the understanding 

of HA. 

 

  

 

Fig. 1.1: Top-view on the hexagonal primitive cell. The z-axis is out of plane. We shifted 

the original primitive cell in the x and y directions such that the OH are in the 

center of the cell. The darker colored CaII atoms and PO4 molecules are at 

z=0.25c, the lighter ones are at z=0.75c. The OHs in the center are also 

surrounded by six PO4 molecules. The CaI atoms are now in the corners of the 

cell. 
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Fig. 1.2: The artificial hip implant on the left can be regarded as a multi-layer interface 

where a Ti substrate surface is oxidized, and then covered with a HA layer 

before it is immerged in the biological environment. 
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1.2 EXISTING LITERATURE ON HYDROXYAPATITE 

The earliest reported experimental work on HA dates back to 1936 [4]. In his 

work on dental enamel, Schmidt demonstrated that the crystallographic c-axes of the HA 

platelets within the collagen framework are well aligned with collagen fibrils indicating a 

preferred orientation in the crystal growth. The actual crystal structure and atomic 

positions of HA were only determined somewhat later by Posner et al. in 1958 using the 

X-ray diffraction [5], and refined by Kay and co-workers in 1964 [6]. At that time, HA 

was believed to only crystallize in the hexagonal P63/m structure until Young suggested a 

monoclinic variant of HA in 1967 [7], which was later described in more detail by Elliott 

and co-workers [8]. Young inferred that a HA crystal sufficiently free of impurities and 

vacancies could crystallize in the monoclinic phase analogous to the then already known 

monoclinic chlorapatite. The monoclinic variant of HA attracted some recent interest as 

the competition between two phases is not desirable in bone formation [e.g. 9-12]. In the 

1980s Weiner et al. did further experimental investigation on HA crystallites which they 

disaggregated from natural bone. They found that the crystallites possessed a rather 

uniform thickness, however, varied strongly in their widths and lengths [13]. Some 

experimental work on the dielectric [14-18], thermodynamic [19,20] and vibrational 

properties [21,22] of HA has also been reported sporadically throughout the years. 

Due to HA’s complexity, only recently computational investigation of HA became 

feasible. Using density functional theory (DFT), de Leeuw analyzed the HA crystal 

structure and specifically the position and orientation of hydroxyl molecules [23]. She 

suggested that the experimentally found average OH orientational disorder in the crystal 

is due to locally ordered domains with differently oriented OH molecules. In the simplest 

static case, this is achieved in a monoclinic cell in agreement with experiment. 

Monoclinic and hexagonal HA are found to be very close in energy indicating no 
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particular preference for crystallization in a specific structure [24]. The phase 

transformation itself was subject to several publications which, however, typically only 

focus on the transition path and energy barrier height, leaving out the mechanisms 

inducing the transition [11,25,26]. The bulk electronic structure was subject to several 

theoretical studies [23,24,27,28]. Using a classical shell-model Calderin et al. 

investigated the lattice dynamics, calculated thermal factors and simulated the infrared 

spectra of HA finding only good agreement with experiment for the low-frequency and 

high-frequency vibrational modes at the Γ-point [29]. 

With increasing use of HA in in the medical field, focus was also put on growth kinetics 

measurements and surface studies of HA. In [30] and [31] Kanzaki et al. and Kazuo et al. 

measured the growth rate of the HA (001) surface using Moire phase shift interferometry. 

Chappell et al. used NMR to probe the (100) HA surface [32]. Comparison between the 

calculated and measured chemical shifts of 
31

P can help modeling the surface observed in 

experiment. The 
31

P chemical shifts in the surface phosphorous are found to be different 

from the bulk caused by relaxation of the surface phosphate molecules. More recently, 

classical and quantum-mechanical molecular dynamics simulations have been used to 

study energetically preferred surface orientations and terminations [27,32-34,]. So far 

these studies have been limited to only few surface terminations due to the complexity of 

the crystal. These studies also include work that takes the effect of surface impurities on 

electronic and chemical properties into account. They are important when trying to 

understand and modulate bioactivity of HA with surface impurities. For example, in a 

recent work Bertinetti et al. studied the effect of Mg surface enrichment on the apatitic 

morphology, surface hydration and cationic environment [35]. Using the near-infrared 

and medium-infrared spectroscopy Bertinetti found that Mg-enriched HA surfaces adsorb 

more H2O molecules than the pure surfaces. Other ionic substitutions were also tried. For 
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example, de Leeuw analyzed the segregation of fluoride ions at the hydrated HA (001) 

surface using a combination of DFT methods for electronic structure calculations, shell 

models for larger systems and classical MD to simulate the uptake of fluoride and the 

interaction with water molecules [34,36,37]. She found that replacing surface OH by 

fluoride prevents the dissolution of the HA surface when facing water. Furthermore, 

Chappell and Bristowe have studied the influence of substituting phosphorus with silicon 

on the HA crystal and electronic structure [38]. The idea relates to experimental results 

dating back to 1970 when Carlisle found increased bioactivity in HA when it contains 

small amounts of silicon. However, while reporting on the energetic preference of Si 

doping, they did not answer the original question of why or how silicon affects HA’s 

bioactivity. The reasons for the increase in bioactivity remain not understood to date. 

Other recent theoretical studies of doping the HA surface include the introduction of 

carbonate ions ( 2

3CO ) to study physiologically found carbonated form of HA, and 

calcium substitution by titanium and strontium to induce structural modifications 

[34,39,40]. 

Even more sophisticated studies on the adsorption of small molecules such as amino 

acids on the HA surfaces covered with water also became tractable recently [27,34,37,41-

48]. That work can yield valuable information when trying to identify the growth kinetics 

of HA crystallites in the physiological environment. Kandori et al. for example studied 

the adsorption of proteins onto HA through ionic concentration measurements [42-44]. In 

another work de Leeuw et al. used an interatomic potential based MD simulation to 

analyze the adsorption of citric acid with the HA surfaces (001) and (010) in aqueous 

environment [45]. They found that citric acid prefers to adsorb to the (010) surface thus 

reducing the growth of this face and indicating that HA should grow faster in the (001) 

direction in the presence of citric acids. More extensive simulations were performed by 
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Almora-Barrios et al. who used DFT methods to analyze the interaction between Glycine, 

Proline and Hydroxyproline to the same (001) and (010) surfaces as used by de Leeuw 

[37,46]. 

While the existing body of both experimental and theoretical work demonstrates an 

increasing level of sophistication throughout the years, important questions even on HA 

bulk are typically left out. In this dissertation I will address some of them with the goal to 

create a more complete picture of HA. 

 

1.3 OUR WORK ON HYDROXYAPATITE 

In this dissertation I report our work on the HA bulk properties, the phase 

transformation between the two known hexagonal and monoclinic phases, and a study on 

the surface energetics of HA. I also present a preliminary discussion on the HA/water and 

the TiO2/HA interface that is relevant in orthopedic applications. The inter-atomic forces 

in HA span the entire range from strong metallic, covalent and ionic to weaker dispersive, 

hydrogen type bonds. This requires a theory that can accurately treat a wide range of 

inter-atomic forces and accurately predict materials properties. Thus, our method of 

choice in this work is DFT which has been used successfully throughout the years in 

materials studies. The rest of this dissertation is structured as follows. In Chapter 2 I 

establish a theoretical background of the methods used. In Chapter 3 I present our work 

on bulk HA. We identify the lowest energy bulk structures and compare their structural, 

electronic, and mechanical properties. We study the phase transition between the two 

lowest energy bulk structures. In Chapter 4 I summarize our work on the HA surface. We 

identify the surfaces most stable under given chemical conditions, putting particular focus 

on the energetically most stable surface under OH-rich conditions which closest mimics 
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the physiological environment. Our results are later used in Chapter 6. Chapter 5 

summarizes our work on the vibrational properties of HA’s hexagonal and monoclinic 

phase. We calculate the theoretical transition temperature, and identify the mechanisms 

responsible for the phase transition from monoclinic to hexagonal phase. We also identify 

and discuss a peculiarity in HA’s Lyddane-Sachs-Teller frequency shift in the phonon 

dispersion that might be of use in either preventive medical screenings to identify the 

condition of a bone sample, or in the quality control field of medical implants. From the 

vibrational data we deduce important thermodynamic properties of HA. In Chapter 6 I 

present a preliminary study of the TiO2/HA and the HA/H2O interface.  

 

1.4 OTHER PROJECTS WORKED ON 

Of my work during my studies at UT Austin only the part on HA is presented in 

this dissertation. However, I had been involved in several other projects besides the work 

on HA. Other projects I had been involved in: 

 

- Electrical resistivity in metals and metallic alloys from first principles, A. Slepko, 

J. Weber, A. A. Demkov, S. Shankar, in preparation. 

 

- Epitaxial Zintl aluminide SrAl4 on LaAlO3 substrate, L. Schlipf, A. Slepko, A. 

Posadas, H. Seinige, A. Dhamdhere, M. Tsoi, D. Smith and A. A. Demkov, 

submitted to Phys. Rev. B. 

 

- Theoretical investigation of zb AlN/metal interfaces, A. Slepko, A. A. Demkov, in 

J. Appl. Phys. 113, 013707 (2013). 
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- First principles study of SrAl2, A. Slepko, A. A. Demkov, Phys. Rev. B 85, 

195462 (2012). 

 

- Band engineering in silicide alloys, A. Slepko, A. A. Demkov, Phys. Rev. B 85, 

035311 (2012). 

 

- Work function engineering in silicides: chlorine doping in NiSi, A. Slepko, A. A. 

Demkov, W.-Y. Loh, P. Majhi and G. Bersuker, J. Appl. Phys. 109, 083703 

(2011). 

 

- Formation of single-orientation epitaxial island of TiSi2 on Si(001) using Sr 

passivation, A. Posadas, R. Dargis, M. R. Choi, A. Slepko, A. A. Demkov, J. J. 

Kim and D. J. Smith, J. Vac. Sci. Technol. B 29, 03C131 (2011). 
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2. Theory and methodology 

2.1 DENSITY FUNCTIONAL THEORY (DFT) 

DFT uses the key observation that for an interacting N-electron system in a 

general external potential  ( ⃑)  the total energy E of the ground state is a unique 

functional of the electronic density  ( ⃑). Hohenberg and Kohn showed that this total 

energy functional  [ ] is minimized by the true ground state density  ( ⃑) [49]. However, 

the energy functional is not known exactly and must be approximated in practice. Kohn 

and Sham suggested an ansatz for the case of a slowly varying density [50]. That leads to 

the local density approximation (LDA) and the generalized gradient approximation 

(GGA) and Kohn-Sham equations and is discussed in more detail in Chapter 2.1.3. In this 

work we use the VASP code where the Kohn-Sham equations are solved by using a set of 

plane waves, the LDA or the GGA in combination with pseudopotentials [51-55]. Thus, 

we briefly discuss the Schrödinger equation in a plane wave basis representation before 

we derive the Kohn-Sham equations and give an overview of the LDA/GGA and the 

concept of pseudopotentials. 

 

2.1.1 Schrödinger Equation in a plane wave basis representation 

In the single electron picture with a lattice periodic potential  ( ⃑) the 

Schrödinger equation is given by: 

 [ 
  

  
   ( ⃑)]   ( ⃑)      ( ⃑). (2.1) 

This equation can be solved using the Bloch’s theorem 

    ⃑⃑( ⃑   ⃑⃑)     ⃑⃑ ⃑⃑   ⃑⃑
( ⃑), (2.2) 
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where  ⃑⃑ is a translational vector of the Bravais lattice.  That implies the property 

    ⃑⃑
( ⃑)     ⃑⃑ ⃑   ⃑⃑

( ⃑), (2.3) 

where    ⃑⃑
( ⃑) is a periodic function with the same periodicity as the potential  ( ⃑). As 

   ⃑⃑
( ⃑) is a lattice periodic function it can be expanded into a lattice Fourier sum: 

    ⃑⃑
( ⃑)  ∑     ⃑⃑  ⃑ 

  ⃑ ⃑
 ⃑ . (2.4) 

To maintain the periodicity of the    ⃑⃑
( ⃑) the  ⃑-vectors in the expansion are chosen to be 

the reciprocal lattice vectors. 

Substituting equation (2.2) with the expansion (2.4) into equation (2.1), multiplying both 

sides by    ( ⃑⃑  ⃑ ) ⃑ and integrating over a primitive cell of the lattice yields: 

 ∫   ⃑  ∑ [
  

  
( ⃑⃑   ⃑)

 
  ( ⃑)]    ( ⃑  ⃑ ) ⃑      ⃑⃑  ⃑ ⃑     ⃑⃑            ⃑⃑  ⃑ . (2.5) 

 

Or equivalently: 

 ∑ [
  

  
( ⃑⃑   ⃑)

 
   ⃑  ⃑    ⃑  ⃑ ]      ⃑⃑  ⃑ ⃑     ⃑⃑      ⃑⃑  ⃑ . (2.6) 

Where the   ⃑  ⃑  are the Fourier coefficients of the potential  ( ⃑). In practical 

calculations the sum on the left side has to be limited by imposing a cutoff energy given 

by 

 
  

  
( ⃑⃑   ⃑)

 
     . (2.7) 
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In a total energy calculation equation (2.6) is solved at a finite set of k-points which are 

usually chosen to be uniformly distributed over the Brillouin Zone. Alternatively when 

the electronic spectrum is sought equation (2.6) can be solved only for k-points lying in a 

certain direction, e.g. a high symmetry direction of the system under consideration. The 

calculated eigenvalue spectrum then gives the band structure of the system along that 

particular direction. 

 

2.1.2 Kohn-Sham-Equation 

Starting with the many-body Schrödinger equation the total ground state energy 

of a system can be written as 

   ⟨ |(       )| ⟩. (2.8) 

where T is the kinetic energy operator,     the interaction energy operator of the N 

electrons,   the external potential operator and   a many electron wave function. 

We can rewrite equation (2.8) to 

   ( ⃑)[ ]  ∫ ( ⃑) ( ⃑)  ⃑   [ ( ⃑)], (2.9) 

where 

  [ ]  ⟨ [ ]|(     )| [ ]⟩ (2.10) 

is a functional of  ( ⃑) and represents the kinetic and interaction energies. We rewrite 

(2.10) to 

  [ ]    [ ]  
  

 
∫

 ( ⃑) ( ⃑ )

| ⃑  ⃑ |
  ⃑  ⃑     [ ]. (2.11) 
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In (2.11)   [ ] is the kinetic energy of non-interacting electrons of density  ( ⃑). The 

second part contains the electron-electron interaction energy of the system.    [ ] is the 

so-called exchange correlation energy and contains all the remaining energy not 

considered in the first two summands. Minimization of equation (2.9) with respect to the 

density  ( ⃑) using the variation principle yields the self-consistent Kohn-Sham 

equations: 

 [ 
  

  
   ( ⃑)  ∫

    ( ⃑ )

| ⃑  ⃑ |
  ⃑     ( ⃑)]  ( ⃑)      ( ⃑), (2.12) 

with 

    ( ⃑)  
    [ ( ⃑)]

  ( ⃑)
 (2.13) 

and 

  ( ⃑)  ∑ |  ( ⃑)|
  

   . (2.14) 

The total energy functional is then given by 

     [ ]  ∫ ( ⃑) ( ⃑)  ⃑  
  

 
∫

 ( ⃑) ( ⃑ )

| ⃑  ⃑ |
  ⃑  ⃑     [ ]. (2.15) 

It is worth noting that there are no simplifications done so far and equation (2.15) would 

in principle yield the correct energy if we knew the correct form of the exchange 

correlation energy term    [ ]! 
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2.1.3 Local Density Approximation (LDA) and Generalized Gradient 

Approximations (GGA) 

Unfortunately, the exact exchange correlation energy    [ ] in equations (2.12) 

and (2.15) is not known and has to be approximated in practice. The simplest 

approximation is the so called local density approximation (LDA) given by: 

    
   [ ]  ∫    [ ( ⃑)] ( ⃑)  ⃑. (2.16) 

In equation (2.16)     is the exchange-correlation energy per electron of a uniform 

electron gas of density n.     is very well known from independent studies of the uniform 

electron gas including e.g. Quantum Monte Carlo methods [56]. Within that 

approximation the Kohn-Sham equation is local both in the sense that it acts only on the 

wave function at  ⃑ and also in the sense that it depends only on the density at  ⃑. However, 

this choice for    [ ] is formally only justified for the case of small density gradients. 

Naturally, an improvement can be made by considering further gradient corrections to the 

   
   [ ] which is called the Generalized Gradient Approximation (GGA) [57]. 

Frequently used forms for the GGA approximation are introduced by Perdew and Wang 

and Perdew, Burke and Ernzerhof [58,59]. The GGA sometimes corrects and sometimes 

overcorrects the LDA approximation. 

 

2.1.4 Pseudopotentials 

As already mentioned before, the concept of pseudopotentials was first introduced 

by Phillips and Kleinman [60]. Their construction is based on the use of a pseudo wave 

function for the valence states given by 

 |  
  〉  |  〉  ∑ ⟨  |  

  ⟩|  〉 . (2.17) 
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In (2.17) the    denotes the true valence wave function and the   ’s the true core wave 

functions which are not known in practice and must be approximated. The sum runs over 

the core states. Applying the Hamiltonian of the system to |  〉 leads to 

  ̂|  〉   |  〉   ̂|  
  〉  ∑  |  〉⟨  |  

  ⟩

 

 (2.18) 

which can be rewritten into a Schrödinger-like equation 

 [    ∑(    )|  〉〈  |

 

] |  
  〉   |  

  〉 (2.19) 

where the original potential term   is replaced by the Phillips-Kleinman pseudopotential 

       ∑ (    )|  〉〈  |      . (2.20) 

In (2.20) the term V is still the original potential and    an additional contribution.    is 

repulsive as the core energies    are lower than the valence energies  . Moreover, as    

depends on the core wave functions it vanishes outside a certain core region so that the 

Phillips-Kleinman pseudopotential becomes equal to the original potential. Inside that 

core region the contribution of    makes the original potential much weaker so that e.g. 

plane wave expansions of the pseudo wave functions show a reasonable convergence. 

 In later work norm conserving pseudopotentials were introduced [61]. Those norm 

conserving pseudopotentials are constructed to be equal to the actual potential outside a 

core radius    and differ from it inside   . The pseudo wave functions are constrained to 

give the same norm as the correct wave functions inside   , e.g. 

 ∫          
   

 
    ∫           

 
 , (2.21) 

where the   is the correct wave function. Then an approach was suggested by Vanderbilt 

and co-workers where the concept of norm conservation was waived to give rise to the 

concept of ultrasoft pseudopotentials [62,63,64]. In ultrasoft pseudopotentials the pseudo 
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wave functions are equal to the correct all-electron wave functions outside    but are 

allowed to be as soft as possible inside    which conflicts with the concept of the norm 

conservation. The term “as soft as possible” means that the concept allows plane wave 

expansions for the pseudo-wave function using as few plane waves as possible. That 

concept can reduce the needed plane wave cutoff in calculations. 

 

2.1.5 Self-consistency cycle 

Together with the concept of pseudopotentials and the LDA/GGA approximations 

for the exchange correlation energy the Schrödinger-like Kohn-Sham equations can be 

solved self consistently using a plane wave set as a basis as described in Chapter 2.1.1. 

Fig. 2.1 gives a schematic overview of the procedure. 

 

 

Fig. 2.1: Flow-chart for the self-consistent DFT calculations. 

initial guess nin

calculate HKS [nin]

solve KS equation

{En(k)}, {cn,k+G}

calculate new nout

Converged? Done.

mix nin and nout

yesno
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2.1.6 VASP 

All calculations in this work are performed using the Vienna Ab-initio Simulation 

Package (VASP) written by Georg Kresse and Jürgen Furthmüller [51,52,53,54,55]. 

VASP was developed to calculate the Kohn-Sham ground states of metallic system. 

However, it also has been used very successfully in systems of liquid and amorphous 

semiconductors, liquid simple and transition metals, metallic and semiconducting 

surfaces, phonons in simple metals, transition metals and semiconductors. VASP uses 

pseudopotentials and plane waves as a basis as well as an efficient mixing scheme for the 

computed charge densities based on Pulay’s scheme [65]. 

 

2.2 THEORY OF PHASE TRANSITIONS 

Phase transitions are commonly observed phenomena in nature including for 

example liquid-solid, gas-liquid, metal-insulator, ferromagnetic, or structural phase 

transitions just to name a few. Phase transitions occur in both solids and liquids, in real 

space (structural transition) and momentum space (superconductivity), and they can span 

a large temperature range (ferro-/paramagnetism transition at 10s of Kelvin compared to 

superfluidity transition at very low temperature). In our work on HA we are concerned 

with the structural phase transition leading HA from the monoclinic to hexagonal phase. 

We will establish the type of transition occurring and calculate the transition temperature. 

In what follows I quickly summarize the most commonly used classification schemes for 

phase transitions, and establish a theoretical background for our work. 

A very commonly used scheme to classify phase transitions dates back to Ehrenfest who 

used the order of derivative at which a characteristic thermodynamical potential becomes 

discontinuous at a certain critical temperature Tc [e.g. 66].  In this scheme the most 

commonly known types of phase transitions are of first and second order, i.e. the first and 
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second order derivatives, respectively, become discontinuous. The first order derivative 

of a free energy yields physical quantities such as the volume, entropy or magnetic 

moment. Phase transitions of first order involve latent heat, i.e. the system either absorbs 

or releases a certain amount of energy during the transition. The second order derivative 

of a free energy gives information about the specific heat of the system, its 

compressibility or its magnetic susceptibility. The gas-liquid phase transition is of first 

order for example, and the ferromagnetic transition is an example for a second-order 

transition. Within this classification scheme variations in the solid phase transitions can 

occur, meaning that the mechanisms mediating the transition may vary from solid to 

solid. These variations lead to a difference in the nature of the transition [67, 68]: 

 

1) Displacive transition: Follows from small bond or rotational distortions. A 

displacive transition can be of first or second order. 

2) Reconstructive transitions: These transitions are due to breaking bonds to nearest 

neighbor or second nearest neighbor atoms. 

3) Order-disorder transitions: Typical kinds of the transition are positional or 

orientational disordering of atoms, and disordering associated with electronic and 

nuclear spin states. We will be interested in the positional disordering in HA. 

Those transitions arise either when atoms occupy inappropriate sublattice 

positions, or when more energetically equivalent atomic positions are available 

than are necessary. 

 

We will show in our work that the HA monoclinic-hexagonal solid phase transition is of 

order-disorder type. In the following chapters I will provide the theoretical background 
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necessary to calculate and interpret the energy landscape of the transition, and to deduce 

the transition temperature. 

 

2.2.1 Landau theory of phase transitions 

The Landau theory is one of the most commonly and universally applied methods 

when describing the energy landscape of a system undergoing a second order phase 

transition [69]. The theory uses the fact that as a consequence of a phase transition the 

system changes macroscopically such that some of the original symmetry elements may 

vanish. This is referred to as the broken symmetry concept. The transformation from the 

higher to the lower symmetry phase and vice versa is described with help of a physical 

parameter η. The parameter is chosen such that it is zero in the high symmetry phase, and 

takes on a nonzero value in the low-symmetry phase. The parameter η is not well defined, 

it can for example describe an atomic position or bonding angle. It is clear, however, that 

a change in η must be accompanied by a change in some energy. Landau suggested using 

the Gibbs free energy G to describe the thermodynamic energy landscape as a function of 

the pressure p, temperature T, and the order parameter η. The order parameter must thus 

be a function of p and T. Such a system must allow for energy minima in order to have a 

stationary solution, therefore, the following conditions must apply: 

 0 G    and   022  G . (2.22) 

In spite of the continuity in G in a second order phase transition the order parameter η 

may take on arbitrarily small values. Thus, close to the transition temperature Tc the 

energy must be expandable in powers of η. For scalar η the Gibbs free energy becomes: 

      42

0
4

1

2

1
,,,  BATpGTpG . (2.23) 
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The term first order in η is not present due to the condition 0 G . For a second 

order transition it suffices to truncate the expansion after the quartic term. Then, B must 

be larger than zero as G must be an increasing function of η.  In thermal equilibrium we 

find 

 0 ,  
B

A
 . (2.24) 

For A>0 and B>0 0  is the only real solution representing the disordered state above 

Tc., For A<0 and B>0, equation  (2.24) gives a real solution representing the ordered state 

below Tc. The theory must allow for both, positive and negative A, depending on whether 

the system resides in the high or low symmetry phase. Landau suggested to write 

  cTTAA  ' ,  0' A . (2.25) 

The change in sign of A occurs at the transition temperature. From that it becomes clear 

that the quartic term in equation (2.23) is required since the quadratic term vanishes at Tc; 

however, the temperature dependence in B is typically ignored. At the critical 

temperature the entropy is given by: 
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which is continuous at T=Tc. However, using equations (2.26) we find a jump in the 

specific heat at the critical temperature 
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The S0 and C0 arise from G0 in equation (2.23). This jump in specific heat is characteristic 

for the second order phase transition. 

The Landau theory can be modified to also describe first order phase transitions by 

adding the cubic and secant expansion term into account in equation (2.23). This 

ultimately leads to other equilibrium positions which, however, are derived equivalently 

to the case of the second order transition. I leave out the discussion on the first order 

modifications to the Landau theory as it is of no relevance to our work on HA. 

 

2.2.2 Displacive and order-disorder phase transition 

An often used model Hamiltonian to differentiate between and describe displacive 

and order-disorder type phase transitions is given by [70-72]: 

 
 

        
',

2
2

'
22 lll

s

l

lulu
C

luV
m

lp
H , (2.28) 

where the u and p describe displacements and momenta of the displaced particle. In 

analogy to Landau’s approach these particles reside in a double-well single particle 

potential Vs given by 

   42

42
u

B
u

A
uVs  . (2.29) 

The coupling constant C in equation (2.28) takes into account whether two particles in 

neighboring wells prefer to be located on the symmetrically equivalent side of the 

potential well or rather prefer to align anti-parallel or in a more complicated mixed 

fashion as indicated in Fig. 2.2. 
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 The model (2.28) provides two important quantities, the depth of the potential Vs 

 
B

A
V

4

2

0  , (2.30) 

and the interaction energy of a pair of particles positioned at the energy minima ±u0: 

 
B

A
CW 2 , (2.31) 

where A and B are the expansion coefficients of the single particle potential well in 

(2.29). The parameter V0 is the barrier height for a particle to overcome when moving 

between the two minima of Vs, whereas the parameter W is the difference in energy when 

two neighboring particles reside on the symmetrically equivalent well-side or align anti-

parallel. The ratio W

V
s 0  between both is an indicator whether the transition is of order-

disorder type (s>>1) or displacive (s<<1) in nature. The model Hamiltonian in (2.28) 

allows for a phase transition, which is plausible from the following considerations. When 

neglecting the inter-well correlations at high temperature the average position of an atom 

 

Fig. 2.2: Simple microscopic model describing the coupling between particles residing 

in a particular configuration of either the first or second of the two minima 

in each well. The interaction between nearest neighbor wells is mediated 

via a spring with spring constant C. 

C
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in a double well <u(l)> must be zero. However, at zero temperature the atoms should 

arrange statically in only one of the two potential wells in an energetically preferred 

pattern. The only necessary condition is that the expansion coefficient A in (2.29) is 

larger than zero, i.e. Vs is indeed a double well potential. Sarbach has shown that this 

condition is also a sufficient condition for the existence of a phase transition in systems 

with dimension higher than 2 [73]. In the order-disorder limit the dominant energy barrier 

to overcome for an individual particle ensures that all particles reside close to the bottom 

of one of the two potential wells. In that case the critical temperature is given by [71,74] 

    
BB

c
k

W
dk

Bk

A
CddkT 24  , (2.32) 

where d is the dimensionality of the system. W can be calculated easily using first-

principles methods. The numerical factor k(d) has been tabulated in the work by Fischer 

[74]. For the displacive limit it can be shown that the transition temperature is given by 

[75]. 

 
  B

c
Bk

A
C

dqd
T

4
 . (2.33) 

Again, the numerical factor q(d) has been tabulated [75]. We will show later in this 

dissertation that the phase transition in HA is of order-disorder type, thus we will use 

equation (2.32) to evaluate the transition temperature. Note, that the temperature in (2.32) 

does not depend on the barrier height V0 or the potential expansion coefficients A and B, 

indicating that the actual transition path does not matter when calculating the transition 

temperature. Despite that fact, the actual transition path is often of practical importance 

as we stress in the next paragraph. 
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2.2.3 Minimum energy transition path 

In some studies it is instructional to know the transition path a system will take 

during its transition from phase A to phase B. It is key to understanding  the dynamics 

of a phase transition. In particular, accurately knowing the energy barrier to overcome 

can be used to estimate quantities such as reaction rates. In ab-initio calculations the 

method of choice to study such transition problems and identify reaction paths is the 

Nudged Elastic Band Method (NEBM) [76,77]. In the method the minimum energy path 

is guessed at first with a finite number of intermediate “images” in which the transiting 

atom for example changes position from its initial position to its final position. Next, the 

3N dimensional force acting on each image is defined: 

   ||||

0

ˆˆ  






  

s

iii FRVF , (2.34) 

with 

    111   iiiiii

s

i RRkRRkF . (2.35) 

Equation (2.34) replaces the force acting on the system parallel to the defined transition 

path by an effective spring force which acts between nearest neighbor images. The spring 

force only affects the distribution of the images within the transition path, thus the choice 

of ki is rather arbitrary. When the spring force is neglected, the interaction between 

nearest neighbor images leaves forces acting on each image only perpendicular to the 

transition path. It is this perpendicular component that allows the system to distort around 

the transition path ensuring that the transition barrier is the lowest in energy (Fig. 2.3 for 

clarification). Using the force defined by (2.34) to relax the images guarantees at least a 

local minimum of the transition path and thus the lowest possible energy barrier 

associated with the guessed transition path. 

 



 24 

 

 

2.3 DIELECTRIC PROPERTIES OF IONIC CRYSTALS 

HA is an ionic crystal, consisting of the building blocks (PO4)
3-

, Ca
2+

 and OH
-
. 

We will be using the Born effective charge tensors of these building blocks when 

studying HA’s vibration spectra and thus want to first establish the theoretical 

background. The modern description of the theory of the polarization of crystals was 

introduced in the 1990s [78]. The definition of polarization is 

  tj
dt

Pd
 , (2.36) 

where P  is the polarization density of a material, and j  the macroscopic current 

density. Integrating (2.36) yields the change in polarization density: 

  

T

dttjP
0

'' . (2.37) 

 

Fig. 2.3: Schematic of the NEBM method. The transition path from the initial position to 

the final position is guessed at first (dashed line). Relaxing the forces 

perpendicular to the transition path alters the path such that a lowest energy 

transition barrier is ensured when going from the initial to the final state. 
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That means that the polarization of a material at given time T is not obtained from only 

measuring it at that time but is rather a measurement over a time period [79]. Equation 

(2.37) can be rewritten when assuming an adiabatic change in time, starting at zero for 

the initial state of the system and running to one for the final state: 

 

1

0



d

Pd
dP . (2.38) 

Equation (2.38) can be reformulated with the help of the Berry curvature tensor [78]: 
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where f accounts for opposite spins, and n runs over energy bands. In (2.39) the Berry 

curvature tensor n

k ,
  is given by 

 ..|
,

ccuu
k

i
knkn

n

k












, (2.40) 

with 
knknkn

uEuH  . The 
kn

u  are lattice-periodic wave functions implicitly dependent 

on λ, and n the band index. Using (2.40) in (2.39) and integrating, the Berry phase 

formulation of the polarization is given by [78]: 
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Knowing the polarization one can calculate the Born effective charge tensor of an atom 

which we will use in our work when dealing with the vibrational properties of ionic 

crystals. Its definition is 
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 , (2.42) 

i.e. it describes the change in total polarization density of atom i in β-direction when 

displacing it in α-direction. The second dielectric quantity we use in our work on HA is 

the high frequency dielectric constant 


 . However, instead of calculating it, we use the 

tabulated values found in experiment. 
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2.4 LATTICE VIBRATIONS AND THERMODYNAMIC QUANTITIES IN THE HARMONIC 

APPROXIMATION 

Part of this dissertation is our work on HA’s vibrational spectrum to identify 

vibrational energy differences favoring the phase transition from monoclinic to hexagonal 

phase. Thus, I first establish the underlying theory in the following. The understanding of 

lattice vibrations is of direct use when studying a variety of physical properties of 

crystals, such as its spectroscopic properties (Raman, infrared), its thermal properties 

(specific heat, thermal expansion), or the crystal’s heat and electronic conduction 

properties [80-82]. Moreover, the phonon spectrum can reveal dynamical instabilities 

(soft-modes) that drive a crystal to change its crystal structure. In the harmonic 

approximation the assumption is that neighboring atoms in the lattice interact via springs. 

Depending on the distance between the atoms the spring constant is softer or stiffer. The 

energy for such a system can be written as 
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in the harmonic approximation. The first order derivative term drops out as in the 

equilibrium position the first derivative is zero. The second order energy derivatives are 

the interatomic force constants 
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Applying the classical equation of motion one obtains 
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Equation (2.45) is solved with the ansatz 
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Using the ansatz in (2.45) leads to the equation 
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The so-called dynamical matrix  ',D   in (2.47) is just the lattice Fourier transform of 

the real space force constant matrix  ',C . In practice the force constant matrix is 

deduced from the Hellman-Feynman forces acting on displaced atoms in first principles 

calculations which we obtain from VASP. Solving equation (2.47) on a q-vector grid in 

the momentum space provides the vibrational spectra of the system. This description is 

sufficient in the covalently bonded crystal. However, if ionic interactions are present the 

long-range nature of the Coulomb interaction between distant neighbors must be taken 

into account. Following the derivation of Maradudin [82] this long-range correction has 

the form  
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where the  *Z


 are Born effective charge tensors of atom ν, V the volume of the 

primitive cell, and 
  the high frequency dielectric constant. The parameter ρ controls 

the range of the long-range correction. The long-range contribution only affects phonon 

modes close to the Γ-point, and the Born effective charge tensors introduce a directional 

dependency in the phonon modes. The total dynamical matrix is now the sum of (2.47) 

and (2.48). The long-range correction can lead to Lyddane-Sachs-Teller (LST) shifts in 

the frequency of optical phonons close to Γ as the symmetry of some of the transversal 

and longitudinal atomic excitations breaks in the ionic crystal. In the simple cubic 

structure the LST frequency shifts are given by [82] 
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The vibrational spectrum can further be used to define other thermodynamic properties of 

materials such as the vibrational free energy [82]: 
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where r is the number of degrees of freedom, and g(ω) is the phonon density of states. 

From this the heat capacity is given by: 
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(2.51) 

We will use the vibrational free energy as one possible way to calculate the transition 

temperature of HA, and compare our theoretical heat capacity with experimental data. 

 

2.5 SURFACE AND INTERFACE ENERGETICS FROM FIRST PRINCIPLES 

Surface and interface energetics are important, for example when trying to 

identify structures appearing in experiment, or calculate wetting behavior of one material 

on another. While it is rather simple to compute both surface and interface energy from 

first principles when only having one (surface calculation) or two (interface calculation) 

atomic species in the system, it becomes rather in-transparent when dealing with 

multicomponent materials. The complication arises from the fact that the surface 

termination may be such that the bulk beneath the surfaces does not contain an integer 

number of the material’s primitive cell which makes the choice of reference energy 

complicated. In that case the method of choice to calculate surface energy is to use the 

Gibbs free energy approach [83]. The surface energy of a substrate is then given by 

 ANE
i

iislab 2/







   . (2.52) 



 29 

Eslab is the total energy of the substrate calculated from first principles in slab geometry 

(i.e. the cell configuration is of the form substrate/vacuum), and µi and Ni are the 

chemical potential and number of particles of the i-th element in the slab. A is the surface 

area of the slab. The factor 2 in the denominator arises from the fact that due to the 

periodicity of the system two rather than one surfaces face the vacuum. Thermodynamic 

equilibrium of the surface with the bulk material imposes the following condition on the 

chemical potentials: 

 bulk

i

iiN   . (2.53) 

The sum runs over the atomic species in the primitive cell from which the slab is built. 

The Ni are the number of atoms i in the primitive cell. µbulk is the bulk energy of the 

primitive cell calculated from first principles. When rewriting the chemical potential to 

bulkiii ,
~   , where µi,bulk is the bulk atomic energy of species i, equation (2.53) 

becomes: 

 f

i

ii EN  ~ , (2.54) 

where Ef  is the formation energy of the bulk primitive cell with respect to the bulk 

atomic energies. The range of 
i

~  is 

 0~  ifE  , (2.55) 

for the species i. 

Equation (2.52) can now be rewritten to  
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Condition (2.54) can be used to eliminate one of the 
i

~  variables in (2.56). Nevertheless, 

for an increasing number of atomic species in the slab equation (2.56) becomes 
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increasingly more complicated to display and typically needs to be evaluated in limiting 

cases (i.e. some of the 
i

~  are fixed to a specific value). 

The approach to calculate interface energy is equivalent, thus the same issues arise. 

However, when only being concerned whether a layer of another material deposited on 

the substrate is able to wet the substrate, I propose an alternative approach. Consider the 

simulation cell in an interface calculation to be of the form 

vacuum/layer/substrate/layer/vacuum. The interface energy is given by: 

 layer

bulk

layer

bulk

subtoti AEEEA  222  , (2.57) 

where σi is the interface energy, and σlayer the surface energy of the deposited layer. Etot is 

the total energy of the simulation cell, and bulk

subE  and 
bulk

layerE  the energy of the substrate and 

the deposited layer, respectively. The substrate energy in (2.57) can be rewritten as: 

 sub

surf

subsubsub

bulk

sub

bulk

sub AEAAEE  222  , (2.58) 

where σsub is the substrate’s surface energy. While bulk

subE  can be difficult to calculate in 

case the substrate does not consist of an integer number of the primitive cell (approach 

would be similar as in the surface energy calculation), the energy surf

subE  can be directly 

extracted as the total energy of the substrate’s surface calculation. Restructuring equation 

(2.57) and using (2.58) we get: 

   AEEE bulk

layer

surf

subtotsublayeri 22  . (2.59) 

Comparing (2.59) with the wetting condition 

 0 sublayeri   (2.60) 

shows that equation (2.59) unambiguously determines the wetting behavior of a layer on 

the substrate. The term 
bulk

layerE  still needs to be evaluated with help of chemical potentials; 
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however, the total number of degrees of freedom is significantly reduced compared to 

also using chemical potentials to evaluate bulk

subE  in equation (2.57). In our studies of the 

HA surface in Chapter 4 we mainly use equation (2.56). In Chapter 6 we will make use of 

equation (2.59) when studying the TiO2/HA and the HA/H2O interface. 

 

2.6 WORK FUNCTIONS AND BAND ALIGNMENT AT INTERFACES FROM FIRST 

PRINCIPLES 

Another important question from a materials science point of view is the work 

function of a material. The work function changes with both surface orientation and 

composition. In a complicated material such as HA the surface composition can vary 

strongly with cleavage, and thus the work function may span several eV. The work 

function is an easily accessible quantity in first principles calculations using slab 

geometry (i.e. a substrate/vacuum slab), where the substrate is approximately 15 Å thick, 

followed by ~10 Å vacuum. The electrostatic potential inside the slab as calculated from 

VASP saturates to a constant value in the vacuum region. By definition the work function 

of a material is the energy difference between the highest occupied energy (Fermi level) 

in the substrate and the vacuum energy, and thus can be directly extracted from the 

electrostatic potential in a slab calculation. 

While it is relatively simple to calculate the band structure of two materials, their band 

alignment at the interface is somewhat more complicated. Both materials have to be 

calculated within the same cell in order to guarantee the same point of reference in their 

energy levels, and to take interface dipole creation into account. This can be achieved in a 

superlattice structure. The two material layers have to be thick enough to ensure adequate 

separation between adjacent interfaces (due to periodic boundary conditions). Depending 

on the materials several scenarios are possible. Here, I limit the discussion to the case 
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where the substrate has an energy gap between the highest occupied energy level 

(valence band top) and the lowest unoccupied energy level (conduction band bottom), 

and the deposited top layer material is metallic (see schematic in Fig. 2.4). The 

characteristic quantity in the band alignment is the Schottky barrier height (p-type 

Schottky barrier height φp in Fig. 2.4). It is evaluated as follows. Deep inside the 

substrate the electrostatic potential (and thus the band structure) mimics that of the bulk 

phase of the substrate bulk. Thus, the top of the valence band and the bottom of the 

conduction band with respect to the electrostatic potential in the bulk phase calculation 

can be placed in the supercell calculation with respect to the electrostatic potential deep 

inside the substrate. The Schottky barrier height is then taken to be the difference 

between the supercell’s Fermi energy and the top of the valence band of the insulator.  

 

 

 

Fig. 2.4: Schematic of a band alignment at the insulator/metal interface. χ is the 

semiconductor’s electron affinity, Egap its energy gap between the top of 

the valence band and the bottom of the conduction band, and Φm is the 

metal’s work function. The p-type Schottky barrier φp is the energy 

difference between the Fermi level of the combined system and the top of 

the valence band. 
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2.7 VAN DER WAALS INTERACTIONS IN DFT 

Treating the long-range correlations (dispersion forces) adequately is a notorious 

short-coming of present DFT local and semi-local exchange-correlation functionals [84]. 

The net attractive interaction of the long-range correlations originates from the response 

of electrons in one region of a crystal to a sporadic charge density fluctuation in another 

region. Naturally, the effects of missing the dispersion forces are only noticeable when 

handling organic hydrogen-bonded molecules and their interactions. HA does include 

hydrogen bonds in between two neighboring OH pairs, however, their effect is negligible 

compared to the rest of the interactions in the crystal. Nevertheless, when simulating H2O 

on the HA surface one needs to be more careful. For hydrogen-bonded systems it was 

proposed [i.e. by 85] to modify current DFT methods in order to take into account long-

range interactions separately as function of the polarizability of the material. 

Mathematically, that results in adding correction terms ΔE to the total energy in the form 

of a multipole expansion [86,87]: 
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with the expansion coefficients 
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The correction term in (2.61) is per pair of atoms A and B. In (2.62) the A

l  are dynamic 

2
l
-pole electric polarizability of atom A. Equation (2.62) reduces the problem of long-

range corrections to knowing these polarizabilities accurately. In the long-range the R
6
-

term dominates the expansion (2.61) describing the characteristic van der Waals 

interaction at long distance, thus most work only focuses on calculating the C6 expansion 

coefficient. The correction terms (2.61) do not only shift the total energy of the system 
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statically, but take effect on the relaxation of the system through the interatomic distances 

R, thus leading to a different electronic ground state. 

Michaelides et al. characterized the ab-initio attempts made to date to correct for the 

missing long-range correlation by their sophistication and in terms of their accuracy in a 

so-called “stairway to functional heaven” scheme (Fig. 2.5) [88]. An accurate description 

of all methods goes beyond the scope of this dissertation, and I will mainly focus on their 

general ideas, and refer the interested reader to Klimes’ work [88] and the references 

made therein and in the following. 

The “step one” methods described in Fig. 2.5 consist of simply adding a correction term 

to the DFT total energy: 

 
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AB
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C
EEEE
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The sum runs over pairs of atoms A and B. The advantage of this method lies in its 

simplicity. The ABC6  coefficients are typically extracted from atomistic data. However, 

they are kept constant during a calculation. This short-coming is dealt with in the “step 

two” methods (DFT-D3, vdW(TS), BJ model, [89,90,91,92,93,94,95]). There, the 

dispersion coefficient of an atom in a molecule depends on the effective volume of the 

atom. The electron cloud of a “squeezed” atom is less polarizable, and the ABC6  

coefficient decreases. This change is simply interpolated from tabulated atomic 

polarizabilities as function of volume. A yet higher degree of sophistication can be 

achieved by also quantifying the XC-hole dipole moment which is dealt with by the work 

of Becke [91]. On the next level (vdW-DF) no external atomistic data is used anymore 

but the dispersion interaction is extracted from the electron density which in turn is 

calculated using non-local correlation functionals [96]. The advantage of this approach is 

that correlations of all ranges are included in the DFT total energy. Also importantly, the 
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computational cost is comparable to GGA calculations. However, the vdW-DF tends to 

overestimate the long range dispersion interactions, the error in the ABC6  coefficients can 

reach up to 30 % [97]. All these previous methods suffer of a major short-coming by not 

taking into account the medium separating the interacting atoms or molecules [98]. 

Several methods have been developed to account for that issue. For example the Many-

Body Dispersion (MBD) method where the many-body dispersion interaction is 

approximated in a model of coupled dipoles [99]. The atom-centered dipoles are 

represented as quantum harmonic oscillators with characteristic frequency. When turning 

on the interaction between the dipoles this frequency shifts yielding the dispersion 

interaction. Another approach receiving recent attention in the context of vdW interaction 

in DFT is the random phase approximation (RPA) [100-102]. While being successfully 

used for solids and molecules [103,104] it suffers of high computational cost. Besides the 

mentioned methods a variety of other approaches have been receiving some attention 

recently [e.g. 105,106]. I would like to refer the interested reader to these references. 

  

 

Fig. 2.5: “Stairway to heaven” describing the step by step improvement in correcting 

functionals for dispersion interactions. 

1: DFT-D

2: DFT-D3, vdW (TS)

3: vdW-DF

4: MBD, RPA

accuracy

cost

“functional heaven”
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3. First principles study of the biomineral hydroxyapatite 

The results of this Chapter have been published in the Physical Review: A. 

Slepko, A. A. Demkov, Phys. Rev. B 84, 134108 (2011). 

 

3.1 INTRODUCTION 

A carbonated form of hydroxyapatite [Ca10(PO4)6(OH)2] is one of the most 

abundant materials in mammal bone [107]. It crystallizes within the free space between 

tropocollagen protein chains (Fig. 3.1) and strengthens the bone tissue. The mineral 

content of a typical human bone increases with age and reaches a maximum value in 

males and females at different ages [2]. From this peak value the mineral content starts to 

decrease leading to diseases such as e.g., osteomalacia (softening of the bone caused by 

the loss of bone mineral). Some of the emergent applications of hydroxyapatite are, 

therefore, bone repair and replacement, and production of synthetic bone material [108]. 

Although by itself HA is too brittle to be used as a bone replacement directly, a variety of 

coating techniques have been developed in recent years to combine the strength of metals 

(such as titanium) with the natural bio-activity of HA [3]. The key property besides the 

bio-activity is therefore the HA adhesion to metals. The adhesion is governed by 

chemical bonding and thus the problem is that of the electronic properties of the 

interface.  Therefore, a thorough understanding of the electronic and mechanical 

properties of HA, its surface and interfaces to other substrates are of scientific interest. 
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A significant amount of experimental work on HA has been done, and in particular in the 

medical implant field, for an excellent review of this work we refer the interested reader 

to ref. [3]. Some of the first experimental reports of HA date back to 1936 [4]. In his 

work on dental enamel, Schmidt demonstrated that the crystallographic c-axes of the HA 

platelets within the collagen framework are well aligned with the collagen fibrils (Fig. 

3.1). The hexagonal crystal structure of HA with P63/m symmetry (#176 in the 

International X-Ray Tables, Fig. 3.2) and the atomic positions were determined in 1958 

by Posner et al. using the X-ray diffraction [5]. In 1964 Kay and co-workers refined the 

positions of the OH molecules using neutron diffraction [6]. Studies of the alignment of 

 
 

Fig. 3.1: Schematic of the HA crystallization during bone formation. Experiments 

suggest that the c-axes of both the tropocollagen and HA platelets are 

aligned [30]. The formation of bone tissue happens in several steps. After 

the tropocollagen helices are aligned, constituents of the HA crystal 

accumulate in the spaces between the tropocollagen and crystallize in the 

(001) orientation. The final HA mineral within the spaces consists of 

many separate HA platelets. 
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tropocollagen chains in mammal bone and alignment and growth of HA crystals were 

done by Weiner and co-workers [13]. In the 1970s [48] Carlisle showed that doping (in 

that study with Si) can play an important role in supporting the bone growth. A 

monoclinic variant of HA was suggested in 1967 by Young [7]. He inferred that a HA 

crystal sufficiently free of impurities and vacancies could crystallize in the monoclinic 

phase analogous to the known monoclinic chlorapatite. Prior to this work it was believed 

that HA only appeared in a hexagonal structure. Recently, the monoclinic variant of 

hydroxyapatite attracted significant interest [e.g. 9,10]. 

 

 

 

 

 
 

Fig. 3.2: HA primitive cells as described in references 5 and 6. The cell dimensions are 

a=b=9.432Å, c=6.881Å. The main difference between the two structures 

is the location of the oxygen atoms from the OH pairs as indicated in the 

figure. Following our notation (see text) we call the shown orientation of 

the OH pairs the (↓↓) orientation. 



 39 

From the theoretical point of view the HA crystal presents an interesting challenge due to 

its complexity and importance in biological and biophysical systems. Only with the 

recent increase in computational power a theoretical study on HA became feasible, and of 

late along with other calcium apatites HA has been subject to a number of first principles 

calculations. De Leeuw, using density functional theory (DFT), analyzed the HA crystal 

structure and specifically the position and orientation of hydroxyl molecules [23]. She 

suggests that the experimentally found OH disorder in the crystal is due to locally ordered 

domains with differently oriented OH molecules. In the simplest case, this is achieved in 

a monoclinic cell. Later, using DFT Calderin et al. [24] have analyzed the crystal 

structure and electronic density of states of stoichiometric and OH-deficient HA as well a 

variety of other calcium apatites. They found that monoclinic and hexagonal HA are very 

close in energy indicating no particular preference for crystallization in a specific 

structure. They also found that apatites permit exchanging the OH molecules with other 

anions. The electronic structure has been confirmed by Rulis and co-workers using the 

orthogonalized linear combination of atomic orbitals method [28]. More recently, studies 

have focused on altering the electronic and chemical properties of HA with doping. For 

example, Chappell and Bristowe have studied the influence of substituting phosphorus 

with silicon on the HA crystal and electronic structure [38]. Silicon incorporation is 

found to be energetically most favorable in combination with removing one of the two 

negatively charged OH pairs in the primitive cell to maintain the overall charge neutrality 

(the ionic charge of SiO4 is -4 vs. -3 of a PO4 unit). Other recent theoretical studies of 

doping include the substitution of OH by fluorine [34] (making the crystal a mixture of 

HA and flourapatite (FA)), introduction of carbonate ion ( 2

3CO ) to study physiologically 

found carbonated form of HA [34], and calcium substitution by titanium [39] and 

strontium [40] to induce structural modifications. Using a classical shell-model Calderin 
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at al. investigated the lattice dynamics, calculated thermal factors and simulated the 

infrared spectra of HA [29]. They find good agreement with experiment for the low-

frequency and high-frequency vibrational modes at the Γ-point, whereas in the 

intermediate frequency range the reported agreement is poor. More recently, classical and 

quantum-mechanical molecular dynamics simulations have been used to study preferred 

surface orientations and terminations of HA [27,32,34] and to study the water and amino 

acid adsorption on the HA surface [27,34,41,46,47]. 

Despite the recent progress, many questions remain. Little is known, for example about 

the transformation mechanisms between the hexagonal and monoclinic phases. The 

mechanical properties of HA remain virtually unstudied. HA is still a challenging subject 

for first principles calculations due to a large number of atoms in the unit cells and 

variation in nature of interatomic bonding. In this paper, using density functional theory 

we investigate both hexagonal and monoclinic forms of HA. We identify the monoclinic 

phase as the ground state and analyze possible pathways for the phase transition between 

the hexagonal and monoclinic phases. We carefully compare the electronic structure of 

both phases. For the hexagonal phase we calculate the phonon frequencies at the Γ-point 

and elastic constants. Both are in good agreement with available experiment. 

 

3.2 COMPUTATIONAL DETAILS 

All calculations are done using density functional theory as implemented in the 

VASP code [51-55]. We use the Perdew-Wang [109] (PW91) exchange correlation 

functional and projected augmented wave (PAW) pseudopotentials [110]. The valence 

configurations are 1s
1
 for hydrogen, 3s

2
3p

3
 for phosphorus, 4s

2
 for calcium and 2s

2
2p

4
 for 

oxygen. We use 700eV as the kinetic energy cut-off for bulk calculations. When 
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calculating the phonon frequencies we increase the energy cut-off to 950eV to obtain 

highly accurate forces. In all calculations - except for the elastic constant calculations - 

we allow for full relaxation of the cell including changing the volume, adjusting the 

atomic positions and cell shape. When calculating the elastic constants we only allow for 

the relaxation of ionic positions within the strained cells. Symmetry operations are 

switched off during relaxation. We use a 6×6×8 Monkhorst-Pack [111] k-point mesh for 

the Brillouin Zone (BZ) integration of hexagonal cells that ensures the convergence to 

1.8meV/cell. For the monoclinic primitive cells we use 6×4×6 Monkhorst-Pack k-point 

meshes. All structures are relaxed until the largest force on atoms in the cell is smaller 

than 20meV/Å. When calculating the vibrational modes, we relax the atomic positions 

until the largest force is smaller than 0.2meV/Å. 

 

3.3 RESULTS 

3.3.1 Ground state crystal structure 

To identify the theoretical ground state of HA we start from the experimental 

structure reported by Posner et al. and Kay and Young (as shown in Fig. 3.2) [5,6]. They 

report a hexagonal primitive cell of P63/m symmetry (#176 in the International X-Ray 

Tables, Fig. 3.2) that contains ten Ca atoms, six phosphate (PO4) groups and two 

hydroxyl (OH) molecules. In Fig. 3.3 we present a top view of the crystal. For pictorial 

purposes we shift the original primitive cell boundaries along the a and b axes in such a 

way that the OH column is now in the center of the cell. There are two types of Ca atoms 

in the cell. Ca atoms of one type are arranged in a hexagon around the OH molecules 

(Fig. 3.3). The darker and lighter color distinguishes two atomic planes. The darker balls 

are located at z=0.25c, and the lighter ones are at z=0.75c. The remaining four Ca atoms 
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are arranged in two columns at the corners of the cell in Fig 3.3. In the upper left column 

the two CaI atoms are located at z=0.999c and z=0.501c. In the lower right column the 

two remaining CaI atoms are located at z=0.499c and z=0.001c. Similarly to first type Ca, 

six phosphorus atoms of the PO4 molecules are arranged in two triangles around the OH 

channel, three are at z=0.25c and three at z=0.75c. Again, the darker and lighter color in 

Fig. 3.3 distinguishes between the two planes. While most of the atomic coordinates 

reported in 6 and 7 are almost exactly the same, the two structures differ in the position of 

the OH molecules. In ref. 6 the exact positions of hydrogen atoms could not be 

determined and the oxygen atoms are said to be located within the symmetry related 

planes at 0.25c and 0.75c. The later work [6] specifies the positions of hydrogen atoms 

and suggests that oxygen of the OH is shifted by ~0.3Å along the c-axis with respect to 

the previously reported positions as indicated in Fig. 3.2. The OH groups bring a 

structural ambiguity: two OH molecules do not have an energetic preference whether to 

point the hydrogen atom ‘upwards’ or ‘downwards’ along the c-axis. This is accounted 

for by introducing 0.5 occupancies in both possible arrangements. To simplify our 

discussion we introduce a notation where arrows (↑) and (↓) correspond to the z-

coordinate of the hydroxyl group oxygen being smaller and larger than the z-coordinate 

of hydrogen, respectively. The pair of hydroxyl groups per primitive cell is denoted by a 

pair of arrows. In the hexagonal primitive cell four different orientations 

(↑↑),(↑↓),(↓↑),(↓↓) are possible with (↑↑) and (↓↓) cells, and (↑↓) and (↓↑) cells being 

equivalent. 
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To identify the ground state we calculate the energy of both the (↓↓) and (↓↑) 

configurations. For later use, we also consider cells in which the hydroxyl molecules are 

slightly tilted away from the c-axis keeping the oxygen atoms on the c-axis and OH bond 

length fixed. These are indicated by (↘↙) if tilted from a (↓↓) configuration and by (↘↖) 

if tilted from a (↓↑) configuration. Additionally, we consider monoclinic cells created by 

doubling the hexagonal unit cell in the b direction. Here, each of the two contributing 

hexagonal cells is described by one pair of arrows for the OH-orientation, for example 

 
 

Fig. 3.3: Top-view on the hexagonal primitive cell. In the figure we shifted the original 

primitive cell in the x and y directions so that the OH column is in the 

center of the depicted cell. The darker colored CaII atoms and PO4 

molecules are centered at z=0.25c and the lighter ones are centered at 

z=0.75c. The OH column is surrounded by six CaII atoms and six PO4 

molecules. The CaI atoms are now in the corners of the cell. Below both of 

the two visible CaI atoms there is a second CaI atom at the distance 0.5c. 

Here, the lighter CaI atom is close to the top face and the darker CaI atom 

is at ~0.5c. 

CaI

CaII

OH

PO4

CaI
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(↓↓)(↓↓) or (↓↓)(↑↑) in the simplest cases. The (↓↓)(↓↓) configuration resembles a 

monoclinic cell which is reducible to a single hexagonal cell with a (↓↓) configuration. 

On the other hand, the (↓↓)(↑↑) configuration resembles a monoclinic cell that cannot be 

reduced further due to the alternating OH-orientation in subsequent OH columns.  

The binding energies of all models are compared in Fig. 3.4. The top line in the graph 

indicates which reference the unrelaxed cell is based on and arrows indicate the OH-

configuration before relaxation. The results per hexagonal cell are plotted in ascending 

energy order. The mixed configuration (↓↓)(↑↑) monoclinic structure suggested by Elliott 

[8], yields the lowest energy (structure 1) and is used as the reference energy. The lattice 

constants are a=9.53Å, b=2a and c=6.91Å. We find the second lowest energy for the 

hexagonal cell (structure 2) with the lattice constants a=b=9.53Å and c=6.91Å. The 

relaxed bond lengths of the hydroxyl and phosphate groups and bonding angles P-O-P of 

the phosphates in structure 2 are listed in Table 3.1. We find excellent agreement with 

experiment [5,6]. During the relaxation of structures 3 and 4 we find that the OH pairs 

realign with the c-axis ending up in structure 2. In structure 6 hydrogen atoms stay at the 

tilted positions during the relaxation yielding a binding energy which is ~269meV/cell 

higher than the hexagonal ground state structure 2. The (↓↑) type configurations where 

OH pairs flip within the same c-column are ~0.4eV higher in energy (per hexagonal cell) 

than the ground state making them unlikely. The energy difference between the 

monoclinic (structure 1) and hexagonal (structure 2) cells is only ~22meV per hexagonal 

cell suggesting that at room temperature HA can crystallize in a mixed phase with 

randomly distributed (↓↓) and (↑↑) domains. In the rest of the paper we will focus on 

these two structures.  
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Fig. 3.4: The calculated structures are listed in ascending order according to the binding 

energy per single cell and the minimum energy is shifted to zero. We find 

the lowest binding energy for the monoclinic (↓↓)(↑↑) configuration 

followed by the hexagonal (↓↓) structure. The energy difference these two 

is ~22meV/cell. The binding energies of structures 2-4 are identical. 

Structures with flipped OH pairs within the same column generally yield 

higher binding energy. 

Table 3.1: Comparison of fully relaxed theoretical bond lengths and bond angles in HA 

with experimental values. 

 

 theory Exp. [ref. 6] 

P-OI 1.56Å 1.54Å 

P-OII 1.57Å 1.55Å 

P-OIII 1.55Å 1.53Å 

O-H 0.977Å 0.957Å 

OI-P-OII 111.1° 111.0 ° 

OI-P-OIII 111.6° 111.5° 

OII-P-OIII 107.5° 107.5° 
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3.3.2 Activation energy for the hexagonal to monoclinic transition 

The monoclinic phase of HA was first described by Elliott et al. [8] who, 

following the work by Young [7], prepared a sample consisting of ~30% monoclinic HA 

and 70% hexagonal phases. They concluded that HA grown in a sufficiently clean 

experimental environment and having little impurities or vacancies can assume 

monoclinic symmetry under ambient conditions. Later, Hitmi et al. [25] found that while 

at ambient conditions both the hexagonal and monoclinic phases can occur. When heated 

above 470K HA always assumes the hexagonal structure, and the transformation is 

reversible. The overall structural similarity of the monoclinic and hexagonal phases and 

closeness of the calculated binding energy raise a question of the activation barrier and 

transition mechanism. To investigate theoretically possible pathways of the transition we 

use transition state theory and more specifically, the nudged elastic band method 

(NEBM) [76] as implemented in the VASP code.  

We start by calculating the energy barrier between two equivalent hexagonal structures 

(↓↓) and (↑↑), using hexagonal structure 2 described in section A. We assume that 

changing the OH-configuration from (↓↓) to (↓↑) is unlikely as we have found the latter 

to be 0.4eV higher in energy than the former. The transformation involves not only the 

hydrogen displacement but also that of oxygen (Fig. 3.5), because the equilibrium 

positions of oxygen are shifted from the mirror planes at ¼ and ¾ containing Ca 

triangles. One possible pathway for the transition is to move the hydrogen atoms of the 

OH molecules along the z-axis. This requires breaking the OH-bonds and re-bonding 

hydrogen with the oxygen atom of the adjacent OH molecule (Fig. 3.5). Simultaneously, 

the oxygen atoms of the OH are moved in the opposite direction to their new equilibrium 

positions. Another possible mechanism is rotating each hydrogen atom around its 

bonding oxygen while simultaneously translating the oxygen to its new equilibrium 
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position. The rotation and translation of the hydrogen atom Hi from configuration (↓) to 

(↑) is described using spherical coordinates as: 
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b) 

 
 

Fig. 3.5: a) OH positions with respect to the surrounding CaII-triangles. 

b) Two transition paths for the hydrogen atoms to flip from (↓↓) to (↑↑). 
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Note that  iHOr


 is not constant throughout the transition as the original oxygen atom has 

to move along the c-axis to its new equilibrium position. The  iHOr


 and the angle   are 

used to create the images for the NEBM to describe the transition pathway. The angle i  

is given with respect to the a


 lattice vector and is chosen to move the H atoms in 

between two Ca atoms (Fig. 3.6). This yields two choices: 

 

(i) Rotate hydrogen atom with angles 3/1   , 3/42    and move the 

oxygen atom 

(ii) Rotate hydrogen atom with angles  3/1   , 3/22    and move the 

oxygen atom 

 

 
 

Fig. 3.6: Top-view along the OH column surrounded by CaII and PO4. The dark Ca 

atoms are at z=1/4 and the light ones at z=3/4c. The OH pairs are in the 

center. There are three equivalent trajectories to flip the top OH-pair 

rotationally. One of them is indicated by projection 1. Once path 1 is 

selected there are 2 inequivalent ways to flip the bottom OH-pair as 

indicated by the dashed lines. 
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Figure 3.5 illustrates the linear and rotational transformations, and Fig. 3.7 shows the 

calculated energy along these transition paths. The energy barriers are 3.5eV for the 

linear transition, and 1.3eV and 1.4eV in the rotational transitions (i) and (ii), 

respectively. These result in the activation energy per OH of 1.75eV, 0.65eV and 0.7eV 

for the linear and spherical transitions, respectively. The large difference in energy is not 

surprising as the first mechanism requires breaking the OH-bonds. On the other hand, in 

the rotational flip no bonds are broken. The barriers for two rotational transitions are very 

similar and close in energy. In what follows we only consider the rotational 

transformation of type (i). 

Expanding the potential energy of the rotational transformation to second order around 

the minimum, we calculate the oscillation frequency of approximately 250cm
-1

 

 
 

Fig. 3.7: The energy barriers corresponding to the translational (1) and rotational (2 and 

3) hydrogen trajectories. The energy barrier for a translational 

displacement of the hydrogen atoms along the z-axis is approximately 3 

times higher than that of the rotational transition. 
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corresponding to the period of fs134 . The average time after which a spontaneous flip 

from (↓↓) to (↑↑) occurs is therefore 

   aTkENt BB 162/exp 0,)()(



 , (3.2) 

at room temperature. In equation (3.2), N is the number of attempts needed to 

simultaneously flip both OH molecules per unit cell if each attempt has the probability of 

success of  TkEp BB /exp 0, . We use EB,0=1.3eV for the activation energy. The 

average transition time between the two equivalent hexagonal structures (↓↓) and (↑↑) is 

one hundred sixty two years at room temperature. 

Now consider the monoclinic cell. Assuming that the OH molecules located along the 

neighboring columns do not interact, the energy barrier for rotational transitions in the 

monoclinic cell can be written as 

 
(↓↓)(↓↓) → (↑↑)(↑↑) : 

(↓↓)(↓↓) → (↓↓)(↑↑) : 

EB = 2EB,0 / 4 = EB,0 / 2 = 0.65eV. 

EB =  EB,0 / 4 = 0.33eV . 
(3.3) 

In equation (3.3) EB,0 is the previously calculated energy barrier of 1.3eV in the 

hexagonal cell, and EB is the activation energy per OH pair in the monoclinic cell. 

Transforming (↓↓)(↓↓) to (↑↑)(↑↑) requires the same energy per OH as flipping (↓↓) to 

(↑↑). However, the activation energy per OH to transform from (↓↓)(↓↓) to (↓↓)(↑↑) is 

reduced by a factor of two. The experimentally obtained range for the activation energy 

to change from hexagonal to monoclinic is 0.016-0.630 eV per OH and 0.84-0.89 eV per 

OH, reported by Hitmi and Nakamura [11,25], are in qualitative agreement with our 

results. Hitmi suspected a rotational transition, while Nakamura suspected a linear one 

explaining why the two ranges are so different. Using classical molecular dynamics 

Hochrein et. al. [26] find 0.52 eV per OH flip in good agreement with our results. Using 
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our calculated activation energy we write the probability of transformation from (↓↓)(↓↓) 

to (↓↓)(↑↑) as  

  TkEp BB 2/exp 0, . (3.4) 

Using the same oscillation period as for the hexagonal cell the average time for the 

spontaneous hexagonal-monoclinic transition is estimated as 

   msTkENt BB 262/exp 0,))(())((



 , (3.5) 

at room temperature. The short transition time suggests that the hexagonal phase would 

always flip to the monoclinic phase under ambient conditions. Further investigation is 

needed to explain why the transition from the monoclinic to hexagonal phase occurs at 

470K. 

 

3.3.3 Electronic structure 

The total electronic density of states (DOS) for both the hexagonal and 

monoclinic structures is shown in Fig. 3.8 a). For comparison we normalize the DOS to 

the hexagonal cell. The DOS of both structures are very similar, and the following 

description applies to both phases. Note that we distinguish between the oxygen atoms 

from the phosphate molecules (O(P)) and oxygen atoms from the OH molecules (O(H)). 

The states between -20eV and -17eV mainly consist of O(P), O(H) and phosphorous 2s and 

3s states, respectively. At -17eV the hydrogen 1s states are mixed in. In an ideal PO4 

tetrahedron the phosphorus sp
3
 hybridized orbitals form σ and π bonds with the 

surrounding oxygen. The σ-type electronic states appear in two peaks within the energy 

window -8eV to -4eV. In an ideal PO4 tetrahedron these σ-states would be closer to each 

other in energy. However, in the HA crystal the PO4 tetrahedron is slightly distorted from  
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a) 

 
 

b) 

 
 

Fig. 3.8: The total DOS (a) and site-projected DOS in the near-gap region (b) of 

hexagonal and monoclinic HA. The DOS is normalized to a hexagonal 

cell. The Fermi level is at zero energy. The band gap is 5.23 eV. 
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the ideal 109.5° bonding angle leading to a split in the energy levels. We find the σ* 

electronic states in the conduction band between 6eV and 9eV. The remaining O(P) and 

O(H) p-states are the main contributors to the DOS between -3eV and the top of the 

valence band. Calcium 4s-states contribute mainly between -3eV and the top of the 

valence band at zero. In Fig. 3.8 b) we show the partial DOS projected on the different 

atomic species in the hexagonal and monoclinic cells in the near gap region. At the 

bottom of the conduction band the main contribution is from the s-like states of Ca atoms. 

The conduction band between 6eV and 8eV is almost entirely made up by unoccupied Ca 

states with l=2. In both crystals the GGA band gap is 5.23eV in good agreement with the 

previously reported LDA band gap of 5.40eV [24]. Thr reported experimental values of 

the band gap range from 3.95eV [112] to more than 6eV [113]. Our calculations suggest 

a large band gap considering that GGA underestimates the gap. Since the DOS of the 

hexagonal and monoclinic phase appear very similar, we only calculate the band structure 

for the smaller hexagonal cell. In Fig. 3.9 we show the calculated band structure along the 

high-symmetry directions in the Brillouin zone in the near gap region. First, we notice 

that HA is an indirect gap material. The valence band top shows little dispersion 

indicating heavy localized holes. We find two energy maxima in the valence band 

separated by only 8meV. The top of the valence band (shifted to 0eV) occurs along the Γ 

to K line. The bottom of the conduction band is at the Γ-point, and shows a free electron 

character with the anisotropic effective mass. Fitting the bottom of the conduction band at 

Γ to a second order polynomial we calculate the effective electron mass tensor 
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The principal values are 0.48, 0.60 and 0.62 in units of the electron mass. The indirect 

band gap is 5.23 eV. The direct transitions at the top of the valence band and at the Γ 

point are at 5.46 eV and 5.28 eV, respectively. Another interesting feature is the flat 

region in both the valence and conduction bands along the M to K line. With the 

excitation energy of 5.75 eV this feature should noticeable in optical adsorption. 

Unfortunately, no experimental data is available. Our band structure is shown in Fig. 

 
 

Fig. 3.9: The electronic band structure of hexagonal HA in the near gap region. The 

energy range in the gap region and is not shown for clarity. The band 

structure suggests that HA is an indirect band material. The lowest energy 

optical excitations are indicated. The dashed lines between M and K 

indicate nearly constant energy optical excitations. 
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3.10. We notice slight differences when comparing it with the band structure calculated 

by Rulis et. al. [28]. The most notable one is the energy gap. Rulis calculates 4.5eV 

versus our 5.3eV. We attribute the discrepancy to a different basis (Rulis uses the linear 

combination of atomic orbitals). The overall band structure, and near parabolic dispersion 

at the bottom of the conduction band agree well with their results. 

 

 

 

 
 

Fig. 3.10: The electronic band structure of hexagonal HA.  
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3.3.4 Phonon eigenmodes at the Γ-point 

Experimental studies of hydroxyapatite vibrational properties remain scarce. The 

most recent papers are those of Fowler et al. [21] and Markovic et al. [22] reporting the 

infrared (IR) and Raman active vibrational modes, respectively. Theoretical studies of the 

HA vibrational spectra are quite difficult due to the crystal’s complexity, and are 

typically limited to classical shell models [29]. However, the results strongly depend on 

the model potentials that have to be fitted to match the experimental data (a comparison 

of different sets of parameters is given by Calderin [29]). Therefore, a more general and 

transferrable approach of calculating the phonon spectrum is desirable. We use DFT to 

calculate the vibrational eigenmodes of hexagonal HA at the Γ-point. We analyze the 

influence of the ionic nature (long range Coulomb interactions) of the crystal on the 

eigenmodes and identify the vibrational modes mostly affected by the long range effects. 

To calculate the short-range force constant matrix we take the numerical derivative of the 

Hellmann-Feynman forces with respect to small ionic displacements [e.g. 80]. The lattice 

Fourier transform of the force constant matrix yields the dynamical matrix [80,81]: 

           
m

m,RRkim,B
MM

kD 

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,02exp,;0

1
,; . (3.7) 

The  ,0R


 is the position of atom μ in the 0-th primitive cell within the supercell. 

 m,R


 is the position of atom ν in the m-th unit cell.   ,;0 m,B


 are the force 

constants relating atoms  ,0  and  m, . M  and M  are the masses of atoms ν and μ. 

In 3-dimensional space the dimension of the dynamical matrix is 3N×3N, where N is the 

number of atoms in the primitive cell. Since we are interested in phonons at the Γ-point 

we only calculate the forces in a single hexagonal primitive cell. In covalent systems the 

range of interaction is assumed to be finite and the dynamical matrix can be directly 

calculated using the Hellmann-Feynman forces acting on the ions in the supercell when 



 57 

displacing one atom from its equilibrium position. In the ionic system one has to worry 

about long-ranged dipole-dipole interactions. This is accomplished by adding a long-

range correction to the dynamical matrix given by [80] 
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here we use SI units.  *Z


 is the Born effective charge tensor of atom μ, and V is the 

volume of the primitive cell. The long-range contribution only affects the phonon modes 

close to the Γ–point. The Born effective charge tensors introduce a directional 

dependence in equation (3.8). The total dynamical matrix is given by a sum of (3.7) and 

(3.8).  

First, we calculate the phonon eigenmodes in HA at the Γ–point without the long-range 

correction. We use a single primitive hexagonal cell. There are 132 eigenmodes including 

Raman and IR active vibrations. We use our calculated eigenmodes to approximate the 

phonon density of states (PDOS) at the Γ–point given by 

    fNff
f i

i 



Eigenmodesof#

, (3.9) 

The DOS is a sum of delta-functions positioned at the calculated eigenmodes at each k-

point. We represent these peaks by a Gaussian, and apply a Gauss broadening of σ = 

15cm
-1

. In Fig. 3.11 we compare our results with the DOS constructed using experimental 

IR and Raman active modes as reported by Fowler [21] and Markovic [22]. The calcium 

ions contribute predominantly to the low frequency modes. In the ranges from 350cm
-1

 to 

650cm
-1

 and from 850cm
-1

 to 1100cm
-1

 mainly the PO4 molecules contribute to the 

spectrum. The OH-modes are at 693cm
-1

 and 3660cm
-1

 corresponding to the OH’s 

libration and stretching modes, respectively. Comparing with the experimental work we 

find good qualitative agreement. The frequencies corresponding to the phosphate 
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eigenmodes are underestimated by ~5-10 %. This is consistent with the observation that 

the theoretical PO bond length is 0.02-0.03 Å longer than the experimental value. On the 

other hand, theoretical eigenmodes of the OH groups at 693 cm
-1

 (libration mode in x and 

y directions) and 3660 cm
-1

 (OH stretching mode) are overestimated by ~5-10% 

compared with experiment. 

 

Having found reasonable agreement with experiment without considering the long-range 

interactions, we now include the long-range correction (8). We approach the Γ point 

along the M to Γ, K to Γ and A to Γ directions. These directions correspond to 

approaching Γ from the face center, corner and top of the hexagonal Brillouin zone. 

Experimentally, the high frequency dielectric constant is sensitive to the Ca/P ratio of the 

 
 

Fig. 3.11: The theoretical phonon density of states at the Γ-point compared with the 

experimental IR and Raman active modes. Our Ca and PO4 peaks are 

underestimated by ~10 %, while the OH modes are overestimated by ~10 %. 
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crystal [e.g. 14]. The values for ε∞ in the literature for stoichiometric HA with the Ca/P 

ratio 1.67 vary between ε∞=5 and ε∞=20 [14,15,16,17,18]. This is in part to the variation 

in porosity, and water content of the samples, and in part to too low a frequency of 

measurement. In this work we use ε∞=5 and cross-check with ε∞=7 to see the qualitative 

dependency of the eigenmodes on ε∞. The calculated Born effective charge tensors are 

summarized in Table 3.2. For the Gaussian smearing in (8) we use ρ=0.02Å
-2

. We plot 

our results in Fig. 3.12 a) along with the experimentally measured modes. We find that 

including the long-range correction has little effect on most of the vibration modes in 

good agreement with Calderin’s work [29] where a shell-model was used to calculate the 

phonons when approaching the Γ-point from the (100) and the (001) direction. In Fig. 

3.12 b) we show the difference between the long-range corrected spectrum and un-

corrected spectrum below 1200cm
-1

 at the Γ-point. Positive Δf means the long-range 

corrected modes are higher in frequency. The frequency shifts are very similar when 

approaching along the (100) direction and the (110) direction (M to Γ and K to Γ) ranging 

from 1cm
-1

 to 25cm
-1

. When approaching along the (001) direction (A to Γ) somewhat 

different eigenmodes shift compared to approaching along (100) and (110), and the peak 

at 318cm
-1

 virtually disappears. While in the modes between 97cm
-1

 and 318cm
-1

 all 

atoms in the cell are vibrating, the 318cm
-1

 mode is a pure OH libration mode in the x-y-

plane. The remaining shifted modes close to 600cm
-1

 and around 1000cm
-1

 are pure PO4 

vibration modes. The change in frequency due to the long-range correction is most 

notable for the OH mode at 318cm
-1

 which moves up to 343cm
-1

 when approaching Γ 

from the M point. Using ε∞=7 in the long-range correction, this OH mode moves up to 

335cm
-1

, being the only mode substantially affected by using ε∞=5. Overall, we find good 

agreement between our phonon spectra and experimental results. 
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Table 3.2: Born effective charge tensors for the different atomic sites. 

 
Born effective charge 

H 














 

28.000

037.001.0

001.037.0

 

  

P 

















08.300

017.301.0

004.017.3

 

 

CaI 













 

51.200

041.208.0

008.041.2

 

 

CaII 


















46.200

045.201.0

002.045.2

 

  

OI 






















41.100

093.102.0

003.093.1

 

  

OII 





















30.100

091.10

0092.1

 

 

OIII 





















13.200

047.102.0

002.047.1

 

 

OH 






















94.000

071.104.0

004.071.1
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Fig. 3.12 a): The phonon frequencies at the Γ-point with and without the long-range 

correction. When applying the long-range correction we consider 

approaching the Γ-point from the M-point, the K-point and the A-point, 

corresponding to the directions (100), (110) and (001). We use the 

experimental values from Fowler and Markovic [21,22]. The direction of 

approach has little influence on the eigenmodes. The deviation from the 

experimental values is about 10%. 
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Fig. 3.12 b): The change in the phonon frequency when applying the long-range 

correction. We find almost identical changes when approaching along 

the (100) and the (110) direction (M to Γ and K to Γ, respectively). The 

largest change occurs for the mode at 318 cm
-1

 which corresponds to a 

pure OH libration mode. In the (001) direction (A→Γ) this mode is 

nearly unaffected by the long-range correction. 
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3.3.5 Elastic constants of HA 

The anisotropy of the elastic properties of bones is governed by their main 

constituents, HA, the collagen chains and water. The theoretical determination of the 

elastic properties of composite materials is often done by averaging the elastic properties 

of the separate materials. Although, the quality of the results fluctuates depending on the 

material in question, upper and lower bounds of the effective moduli of composites can 

be found rigorously [114]. Previously, Katz and Ukraincik [115] calculated a set of 

pseudo-single crystal elastic constants extracted from the measured elastic constants of 

fluorapatite. The validity of such a calculation is somewhat justified by a strong similarity 

of the crystal structures of these two materials. Mustafa et. al. use a force field approach 

to obtain the elastic constants of HA [116]. Here, we calculate the elastic constants of 

hexagonal HA from first-principles. 

Generally, the energy of a strained system can be written as a second order Taylor 

expansion in the distortion parameters αi,j: 

     
dcba

cdababcdC
V

VEVE
,,,

0

0
2

0,,  . (3.10) 

The first order term drops out as the expansion is about the ground state. The second 

order term is described by the adiabatic elastic constants Cabcd. However, the Cabcd and αab 

are not all independent, and using the Voigt notation, equation (3.10) can be written as 

     
ji

jjiiij
C

V
VEVE

,

0

0

2
0,,  . (3.11) 

The introduced factors    account for the symmetry of the α‘s, αab=αba , i.e. for b a both 

αab and αba are labeled with the same Voigt index. Therefore, we get 1i  if the Voigt 

index is 1, 2 or 3 and 2i  if the Voigt index is 4, 5 or 6 [117]. 

There are five independent elastic constants in a hexagonal crystal: C11, C12, C13, C33, 

C44=C55. In order to determine these constants, five independent stresses must be applied 
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to the system (see appendix). Distortions (I), (III) and (V) keep hexagonal symmetry in 

the strained cell. Distortion (II) creates a monoclinic cell and distortion (IV) creates a cell 

with triclinic symmetry. Equation (2) is valid for small distortions. To have a measure of 

“small” we compare the volume changes after applying a specific distortion. Distortions 

(I) and (V) yield the largest change in volume. Thus, for (I) we use the parameters α = -

0.01, -0.005, 0.00, 0.005, 0.01 and for (V) we apply α = -0.005, -0.0025, 0.00, 0.0025, 

0.005. For distortions (II)-(IV) we use α = -0.02, -0.01, 0.00, 0.01, 0.02. These choices of 

α ensure that the change in volume relative to the equilibrium volume V0 is smaller than 

15Å
3
 or ~2.8% of V0. For all distortions we use a quadratic fit to extract the elastic 

constants Cij. Our results are summarized in Table 3.3. For C11, C33 and the bulk modulus 

B we find agreement within ~6% of the values previously reported by Katz and Mostafa 

[115,116]. Our C12, C13 and C44 are within ~21% of Katz’s and Mostafa’s results 

indicating overall good qualitative agreement. 

 

Table 3.3: Calculated elastic constants and bulk modulus compared to other theoretical 

calculations and corresponding experimental values. The bulk modulus is 

related to the elastic constants by the formula 

 22 331312119
2 CCCCB  . 

 

constant 

[10
11

 dyn/cm
2
] 

this work Ref. [116] pseudo-exp. [115] 

C11 12.90 15.75 13.70 

C12 3.70 5.74 4.25 

C13 6.70 5.97 5.49 

C33 17.30 14.73 17.20 

C44 4.40 4.39 3.96 

B 8.60 9.07 8.90 
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3.4 CONCLUSIONS 

Using density functional theory we find that the ground state of hydroxyapatite is 

monoclinic in agreement with previous calculations [23] and recent experiments [11,25]. 

The hexagonal phase is only 22 meV higher in energy than the monoclinic ground state. 

The structural transition path from the monoclinic to the hexagonal crystal phase and vice 

versa most likely involves the rotation of hydroxyl groups as suggested by Hitmi [25]. 

The activation energy for such a transition is 0.33eV per OH molecule and the transition 

time at room temperature is ~26ms. We find close similarity in the electronic structure of 

both phases suggesting similar chemical properties. For the hexagonal phase in 

agreement with previous theoretical results we find the indirect band gap 5.23eV. The 

bottom of the conduction band mainly consists of Ca s-states and shows free electron like 

behavior with the anisotropic mass at the Γ–point. Our results for the vibrational 

eigenmodes at the Γ point are within ±10% of available experiment [21,22], and 

calculated elastic constants agree well with the experimental results reported by Katz 

[115] and Mostafa [116]. 
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3.5 APPENDIX 

Following the approach described by Fast et. al [118], we use five independent 

distortions to obtain the elastic constants of the hexagonal cell. Their action on the crystal 

structure and symmetry are explained in the section 3.3.5. The small parameter α 

describes the deviation of the distorted crystal from the original one. 
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4. First principles study of hydroxyapatite surface 

The results of this Chapter have been submitted to Chemical Physics Review. 

 

4.1 INTRODUCTION 

Mammalian bone owes its remarkable strength and stability to hydroxyapatite 

Ca10(PO4)6(OH)2 (HA), that is its main mineral component [107]. HA crystallizes within 

the spaces between the tropocollagen chains forming bone’s structure. This combination 

of HA and tropocollagen demonstrates impressive elastic properties [120]. An emergent 

application of HA is bone repair. Despite being biocompatible, due to its brittleness, HA 

does not meet the mechanical requirements of a bone replacement [121] and must in 

practice be reinforced with other materials such as titanium and its alloys [122], thus 

combining the metals’ mechanical strength and HA’s bio-compatibility. A promising 

approach is to deposit thin layers of HA on the implant’s surface [123-129]. The 

compositional similarity of HA to bone tissue, results in bone growth over the implant’s 

surface thus improving implant’s adhesion to the bone [3]. Using a HA coating layer, is 

expected to significantly extend the lifespan of orthopedic and other implants [3]. The 

key element of this strategy is strong adhesion of HA to Ti surface, which typically 

involves a thin interlayer of TiO2 [3]. Thus a better understanding of bonding at the 

HA/Ti and HA/TiO2 interface at the microscopic level is necessary. Modeling 

oxide/oxide and oxide/metal interfaces with density functional theory has been very 

successful [130-135], therefore a detailed theoretical analysis of HA/Ti and HA/TiO2 

junction will be of significant interest. The salient feature of this problem is the 

complexity of HA’s crystal structure and the lack of detailed materials characterization 

data. The large number of ways a HA surface can be prepared, presents a major difficulty 
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for such a study. Therefore, as a starting point, one may consider modeling the surface of 

HA first. Understanding the thermodynamics stability of the HA surface under the Ca, 

PO4, or the OH rich environment, and the knowledge of the surface electronic structure 

will be useful in modeling and understanding of the complex interfaces involving HA. A 

similar strategy has been used in the case of the SrTiO3/LaAlO3 interface, where the 

surface analysis [136] has helped shedding light on the interface problem [137,138]. 

Current experimental studies of the HA surface are mostly concerned with analyzing the 

growth kinetics of the HA surface, ionic substitutions at the surface or the adsorption of 

water and small molecules on it [30-32,35,42-44,139]. Theoretically, both classical and 

quantum-mechanical molecular dynamics simulations have been used to calculate the 

surface energy [33,41], preferred surface orientation for interactions with small molecules 

[36,37,41,45,46] and ionic substitutions at the surface [36,37]. An excellent overview of 

the field is given in an article by Corno et al. [27]. Despite this effort, however, most 

theoretical studies investigate only a rather limited range of surface compositions while 

the complexity of the crystal structure allows for a variety of surface terminations even 

for the two most common (001) and (100) orientations.  

In this paper, we present a comprehensive picture of the surface energetics. Using density 

functional theory, we investigate theoretically twenty nine surface structures with (001) 

and (100) orientations. We calculate the ground state surface phase diagram for various 

chemical environments. For the physiologically relevant OH-rich conditions we identify 

the most stable surface terminations and study their electronic properties. We calculate 

the work function of HA and establish its relation to the surface composition. The rest of 

the paper is organized as follows. First, we briefly summarize the computational 

methodology and the construction of the atomistic surface models used in this study in 

section II. Next, in section III we discuss the surface energy of HA under different 
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chemical conditions. We describe our calculations of the work function and compare 

theoretical results with the available photoemission data, and in section V we summarize 

our results. 

 

4.2 COMPUTATIONAL DETAILS AND SURFACE MODELS 

All calculations are done using density functional theory, as implemented in the 

VASP code [51-55]. We use the Perdew-Wang (PW91) [109] exchange correlation 

functional and projected augmented wave (PAW) pseudopotentials [110]. The valence 

configurations of the pseudopotentials are 1s
1
 for hydrogen, 3s

2
3p

3
 for phosphorus, 4s

2
 

for calcium and 2s
2
2p

4
 for oxygen. Our simulation cells are on average of the size 10 Å × 

10 Å × 40 Å. We use the kinetic energy cutoff of 650 eV in all calculations. The Brillouin 

zone integration is done using a 4 × 4 × 2 Monkhorst-Pack [111] k-point mesh. This 

choice of energy cutoff and k-point mesh ensures the energy convergence better than 5 

meV/atom. We relax the ionic positions using the conjugate gradient method while 

keeping the cell shape and volume constant. Symmetry operations are switched off 

during the relaxation. After relaxation the largest forces acting on ions are less than 20 

meV/Å. 

HA has a rather large primitive cell consisting of forty four atoms in the hexagonal phase 

and eighty eight atoms in the monoclinic phase. Previously, we found that two phases are 

very close in energy, with the monoclinic structure being slightly more stable [140]. 

However, we found very similar electronic properties in both phases, suggesting similar 

behavior. Therefore, here we only consider hexagonal HA. We study the surfaces with 

(001) and (100) crystallographic orientations, allowing for both stoichiometric and non-

stoichiometric models. By stoichiometric model we mean that the model slab contains an 
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integer number of HA formula units. We only consider surface terminations that keep the 

OH and PO4 groups intact. In total, we construct twenty nine distinct atomic level surface 

models. Three of them are depicted in Fig. 4.1. The numbers in Fig. 4.1 indicate how to 

deduce our other models from the ones depicted. For example, removing particle “1” in 

Fig. 4.1 a) yields model four, removing particles “1” and “2” yields model five, removing 

“1”-“3” model six, and so on. In Table 4.1 we indicate by how many OH, Ca and PO4 

formula units our models deviate from the HA bulk stoichiometry and the bulk ionic 

charge per cell for each model. The bulk ionic charge is calculated by assigning formal 

charges -3e, -1e and +2e to the PO4, OH and Ca chemical units, respectively. Overall, the 

models are charge neutral. We consider a variety of Ca-rich and Ca-poor models to 

account for the large Ca/P range of 1.3-1.9 found in natural bone [141]. We have two 

stoichiometric models, one with the (001) and one with (100) orientation. We have three 

more surfaces with zero bulk ionic charge. In addition, we allow for a wide range of ionic 

charge between -16e and +12e. As a consequence of our cleaving procedure, we only 

consider one surface with the positive ionic charge with the (001) orientation. For 

example, in Fig. 4.1 b) we successively remove three top Ca atoms before removing the 

phosphates to obtain the next surface model. This way the surface gets increasingly 

negatively charged due to the -3e charge of PO4 groups. Experimentally, surfaces with 

net ionic charges are found to drive the HA platelets growth kinetics [142] but are 

typically neglected in surface studies of HA. We apply the periodic boundary conditions 

and fully relax the atomic positions. All our models consist of 15-20 Å thick slabs 

separated by a 20 Å thick vacuum region in the c-direction to suppress interactions 

between neighboring cells. Because of low symmetry, the surface models are built in a 

quasi-symmetric fashion to prevent the macroscopic electric fields across the slab. By 

quasi-symmetric we mean that on average, the atomic compositions of the top and bottom 
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surfaces are the same. The PO4 groups and Ca atoms at the two surfaces can be rotated 

and translated in the surface planes with respect to each other as a consequence of crystal 

symmetry. In the (001) models, we allow for a deviation from this rule as there the OH 

groups have hydrogen pointing towards the bottom surface and oxygen pointing towards 

the top surface (Fig. 4.1 a). In these models the top and the bottom surface of each model 

differ in the orientation of OH groups. 

a)                                                                  b) 

         
 

   c)  

 

Fig. 4.1: a)-c) From these three prototypes we create all of other model surfaces by 

continuously removing the numbered particles. In total, we construct 29 

surface models from the ones depicted. 
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Table 4.1: Chemical composition, ionic charge, the surface energy averaged over the entire 

chemical range and work function in our models. The ‘extra’ molecules indicate 

the deviation from HA bulk stoichiometry measured in numbers of OH, PO4 or 

Ca. The net ionic charge is simply the sum of the extra elements multiplied by -

3e, -1e and +2e for PO4, OH and Ca, respectively. 

model # # extra OH # extra Ca # extra PO4 
ionic charge 

[e] 

av. σ 

[eV/Å
2
] 

Φ [eV] 

1 0 2 0 4 0.09 3.1 

2 0 0 0 0 0.06 5.5 

3 1 3 3 -4 0.10 7.5 

4 1 1 3 -8 0.20 9.0 

5 2 4 6 -12 0.28 8.6 

6 2 2 6 -16 0.38 9.1 

7 0 8 6 -2 -0.09 7.3 

8 0 6 6 -6 -0.02 7.8 

9 0 4 6 -10 0.06 8.5 

10 0 2 6 -14 0.14 9.1 

11 0 2 4 -8 0.31 8.0 

12 0 2 2 -2 0.03 7.2 

13 0 8 4 4 -0.05 3.0 

14 0 6 4 0 -0.09 5.7 

15 0 4 4 -4 0.00 7.2 

16 0 2 4 -8 0.09 7.7 

17 0 0 4 -12 0.18 8.6 

18 0 0 2 -6 0.13 8.8 

19 0 0 0 0 0.08 7.1 

20 1 5 1 6 0.23 4.4 

21 2 10 2 12 0.37 3.3 

22 2 8 2 8 0.31 3.1 

23 2 6 2 4 0.25 3.3 

24 2 4 2 0 0.20 5.1 

25 2 2 2 -4 0.62 9.7 

26 0 12 8 0 -0.23 6.7 

27 0 10 8 -4 -0.14 7.6 

28 0 8 8 -8 -0.05 8.8 

29 0 8 6 -2 -0.12 7.6 

 

 



 73 

4.3 SURFACE ENERGY 

The primitive unit cell of HA consists of four atomic species that form two OH, 

six PO4 groups, and ten Ca atoms per cell. Thus, to simplify the description, we consider 

the crystal to be composed of these three building elements. To estimate the surface 

energy we use the Gibbs free energy formalism [83]. This approach allows for 

comparisons of structures with different stoichiometry. The surface energy is given by 

 ANE
i

iislab 2/







   . (4.1) 

Here Eslab is the energy of the slab computed from first principles and µi and Ni are the 

chemical potential and number of the i-th building element, respectively. A is the surface 

area of the slab, the factor of two accounts for two surfaces per slab. Assuming 

thermodynamic equilibrium of the surface with the HA bulk imposes the following 

condition: 

 ,HA

i

iiN    (4.2) 

where HA  is the chemical potential of the HA bulk phase, which we take equal to the 

bulk energy. Referencing chemical potentials of building elements to the corresponding 

bulk phases bulkiii ,
~   , equation (4.2) can be rewritten as: 

 f

i

ii EN  ~ . (4.3) 

Here Ef is the formation energy. We reference the chemical potential of Ca to bulk 

metallic Ca. For OH and PO4 molecules we use the energy per corresponding isolated 

molecule as a reference. The calculated formation energy of -111.7 eV per 

Ca10(PO4)6(OH)2 molecular unit is in qualitative agreement with the experimental heat of 

formation of -138.9 eV [143]. The surface energy is then estimated as:  

        AENENENE POPOPOOHOHOHCaCaCaslab 2/~~~
444

  . (4.4) 
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The range of chemical potentials is determined by: 

 fPOOHCa E
4

~6~2~10  ,    0~  ifE  . (4.5) 

With these boundary conditions we calculate the surface energy. In Table 4.1 we list the 

surface energy of each model averaged over the entire chemical range. In Fig. 4.2 we plot 

the averaged surface energy as a function of bulk ionic charge.  

 

 
 

Fig. 4.2: Surface energy averaged over the entire chemical range plotted as function of 

the surface net ionic charge. Models 2 and 19 are the stoichiometric (001) 

and (100) surfaces. Models 3 and 24 are the models with lowest surface 

energy under OH-rich conditions. 
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With increasing ionic charge the surface energy increases. Large ionic charge indicates 

that the surface strongly deviates from the HA stoichiometry. This leads to under-

coordinated functional groups Ca, OH and PO4. Overall our models are charge neutral; 

however, and under-coordinated functional groups on the surface create surface dipoles 

that in turn increase the slab energy. The surface energy ranges between -0.23 eV/Å
2
 and 

0.62 eV/Å
2
. To interpret the data we assume that this is the relative energy rather than its 

absolute value (this reflects the arbitrary choice of thermodynamic references). 

Alternatively, the negative energy may be interpreted as the surface being more stable 

than the bulk, and therefore unstable under given conditions. Our stoichiometric (001) 

and (100) surfaces (models 2 and 19) have energy 0.055 eV/Å
2
 and 0.076 eV/Å

2
, 

respectively, in good agreement with the 0.075 eV/Å
2
 and 0.105 eV/Å

2
 reported by 

Astala et al. [41], and the 0.054 eV/Å
2
 reported by Rulis et al. for the (001) orientation 

[33]. Furthermore, our models 14 and 24 correspond to Astala’s PO4-rich and Ca-rich 

surfaces, respectively. Astala calculates the surface energy with respect to the β-

tricalcium phosphate with the formula unit Ca3(PO4)2, and Ca(OH)2. These two 

references are reasonable choices; however, in practice they greatly reduce the number of 

allowed surface terminations. Astala’s surface energy is 0.11 eV/Å
2
 and 0.10 eV/Å

2
 for 

the PO4-rich and Ca-rich surfaces, respectively, averaged over the allowed chemical 

potential range. We find the average values 0.05 eV/Å
2
 and 0.06 eV/Å

2
 for these two 

surfaces with respect to Ca3(PO4)2 and Ca(OH)2. We attribute the deviation from Astala’s 

work to their method of constructing the surface. While our surface models are 

constructed in a quasi-symmetric way as described earlier to suppress macroscopic 

electric fields across the slab, Astala’s surface models are terminated stoichiometrically 

on one side and with the termination of interest on the other side. This inevitably creates 

an electric field across the slab and modifies the surface energy. Note, that all these 
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models have zero bulk ionic charge as we have pointed out earlier. The surface energy 

phase diagram is shown in Fig. 4.3. We show surface models with the lowest surface 

energy under given chemical conditions as captured by the chemical potentials. In the 

following discussion we will refer to this lowest surface energy as the ground state 

surface energy. The black lines are phase boundaries where two or more surfaces have 

the same energy. It is worth noting that despite the complex crystal structure, surface 

model 26 has the lowest surface energy over almost the entire chemical range. However, 

despite this domination, in the experimentally relevant regime of OH-rich conditions 

surface model 26 plays no role and will not be discussed.  

 

 

Fig. 4.3: Lowest surface energy ternary phase diagram. Only six of the surface models 

notably contribute to the energetic ground state. Thin lines indicate the 

phase boundaries between surfaces competing in energy. A thick dividing 

line indicates conditions under which the β-TCP formation is energetically 

possible. 
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The phase diagram becomes more complicated under the OH-rich conditions. We find a 

series of phase boundaries even for the slightest changes in chemical environment. This 

might account for the experimentally observed complicated surface structures when 

growing HA in solution. Under the OH-rich conditions, our models 3, 23, 24, and 27-28 

have the lowest surface energy. Note, that of these, only model 3 has the (001) 

orientation. Model 3 differs from the stoichiometric model 2 only by having one less Ca 

atom at the surface. Models 23 and 24 are also relatively similar, the only difference 

again being one less Ca at the surface of model 24. As will be discussed in the next 

section, this one Ca atom stabilizes geometry in which the OH groups are aligned in 

channels parallel to the surface. Models 26-28 also are rather similar to each having the 

OH channel deep inside the bulk region and a rather high surface roughness, resembling a 

β-tricalcium phosphate (β-TCP) surface. Indeed, a comparison can be drawn at this point. 

In equation (5) we require that the sum of chemical potentials of the building blocks Ca, 

OH and PO4 must equal the heat of formation of HA with respect to these building 

blocks. One can consider an additional constraint set by 

 TCPPOCa  
4

~2~3 . (4.6) 

The formula unit of β-TCP is Ca3(PO4)2,  and as long as inequality (4.6) holds, β-TCP 

formation is impossible. Violating inequality (4.6) means that β-TCP-like surface layers 

may appear if not enough OH is present in the environment. The condition is “soft” as 

(4.6) does not indicate how the remaining OH groups influence the β-TCP formation. In 

Fig. 4.3 the corresponding transition line is indicated. Note in Table 4.1, that while the 

bulk region of model 26 has HA stoichiometry, its surface stoichiometry is that of β-

TCP! In the following we shall focus on the OH-rich conditions as more biologically 

relevant. 
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4.4 OH-RICH CONDITIONS 

For the OH-rich conditions we set 0~ OH  in equations (4.3) and (4.4). Then, 

using (4.3), we rewrite equation (4.4) as: 

 
ANNHENENENE POCaCafPOPOOHOHCaCaslab 2/

3

5~

6

1
444 
























 

. 

(4.7) 

Equation (4.7) is solely a function of 
Ca~ , that  ranges from –Ef/10 for Ca-poor 

conditions to zero for Ca-rich conditions. The surface energy is shown in Fig. 4.4. Note 

that the stoichiometric (001) surface termination (0.055 eV/Å
2
) is never the ground state. 

Consistent with the previous discussion, we find that the surface models 3 (Fig. 4.5) and 

24 (Fig. 4.6) have the lowest energy over the majority of the chemical range. For Ca-rich 

conditions, surface models 23, 22 and 21 are stabilized, while for Ca-poor conditions five 

structures compete with model 3. Models 3, and 21-24 all have OH molecules very close 

to the surface (Fig. 4.2). In Fig. 4.5 we show the relaxed surface geometry of model 3. In 

Fig. 4.7 a) we plot the bond angle distribution of the PO4 groups close to the surface. In 

bulk HA, the angle distribution has two distinct peaks at 107.5° and at 111.5°. In the slab 

the relaxed angles of the surface PO4 are more evenly distributed between ~104° and 

113.5°. The OH bond lengths are 0.97 Å - 0.98 Å, and are similar to 0.977 Å in the bulk 

[140]. However, 4.6 Å below the surface the PO4 groups already closely resemble the 

bulk. 

In Fig. 4.7 b) we show the layer resolved electronic density of states (DOS). Each layer is 

approximately 1.7 Å thick. We only show the upper valence band region. The projections 

on the very left and the one on the very right show the DOS at the surface. The energy 

gap between the Fermi level and the bottom of the conduction band is 5.2 eV. The 

vacuum energy is at 7.5 eV, and the zero energy is set at the Fermi level. The Fermi level 

is pinned at the surface by both O(P) and O(H) p-states and Ca states, reaching deep in the 
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bulk region. The bottom of the conduction band mainly consists of l = 2 projected states 

of the Ca atoms. The valence band of the bulk region resembles that of bulk HA [140]. 

For bulk HA we found the band gap of 5.2 eV [140]. 

 

 

 

Fig. 4.5: Side view of relaxed model 3. The surface is one of the low energy surfaces under 

OH-rich conditions.  

 

Fig. 4.4: Surface energy under OH-rich conditions. Main contributors are structures 3 and 24. 
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a) 

 
 

 

b) 

 
 

 

c) 

 
 

Fig. 4.6: The side (a) and top (b) views of relaxed model 24. This surface has the lowest 

energy over most of the chemical range under OH-rich conditions. It is 

terminated just above the hydroxyl layer and allows for major reconstruction 

in order to bind OH to the surface. For pictorial purpose we show a 

periodically extended cell.  

c) OH-relaxation: Dark large balls are Ca ‘deeper’ in-plane than the light large 

Ca balls. In model 24 one of the Ca is missing, allowing OH to rotate. 
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Of particular interest is surface model 24 as it contains OH groups right at the surface 

which is related to work of Sato et al. [139] who first described the OH terminated HA 

surface. In Fig. 4.6 a) and b) we show the relaxed surface of hydroxylated model 24. This 

surface has the most significant surface reconstruction among those studied. It is stepped 

on the Angstrom scale, and has a negative surface energy under Ca-rich conditions.  One 

of the OH groups is tilted 90° from its original position, breaking its bond to the 

neighboring OH group and instead re-bonding with neighboring oxygen of a phosphate 

group as shown in Fig. 4.6 b). This rotation occurs for the following reason. In bulk HA 

each OH is centered within an equilateral triangle made up by calcium [140] as indicated 

in Fig. 4.6 c). The large dark and light green balls indicate calcium atoms in two atomic 

layers. In the figure, the darker balls are ‘deeper’ and the lighter green balls are ‘higher’. 

The empty circle indicates missing Ca. We indicate one OH in the figure whose hydrogen 

atom is beneath the visible oxygen. While the deeper OH is still surrounded by three Ca 

atoms, in the upper Ca-triangle one Ca is missing and the OH gruop is free to adjust. It is 

this OH group that rotates 90° with respect to the original alignment as indicated in Fig. 

4.6 c). The triangles in the figure mark the original positions of Ca before relaxation. The 

surface allows for major relaxation to compensate for missing Ca. In Fig. 4.6 b) all OH 

were vertically aligned before relaxation.  

Interestingly, removing Ca closest to vacuum in model 24, exposes the second OH group 

and results in model 25 that is very high in energy. In Fig. 4.8 a) we plot the angle 

distribution of the PO4 groups close to the surface. In the slab the relaxed angles of the 

surface PO4 spread from ~105.5° to ~120°. The distortion is still large in a PO4 group 4.3 

Å beneath the surface. The largest change in bond angle is ~9° as indicated in Fig. 4.6 c). 

In Fig. 4.6 b) this angle is formed between oxygen atom 1, the phosphorus within the PO4 

group and oxygen atom 2 as indicated in the figure. Phosphate groups more than 4.5 Å  
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a) 

 
 

 

b) 

 
 

Fig. 4.7: a) P-O-P angle distribution in model 3. On the surface we find large deviation 

from the bulk P-O-P angles. Below 4.6 Å from the surface, however, the 

bulk distribution is restored. 

b) Layer decomposed density of states of model 3. We show the top of the 

valence band only. The Fermi level is at 0 eV. 
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beneath the surface are nearly undistorted compared to bulk HA. The PO4 bond lengths 

are on average comparable with the ones in bulk HA. The bond lengths of the OH range 

between 0.98 Å and 0.99 Å, in excellent agreement with the bulk value. In Fig. 4.8 b) we 

show the layer projected DOS. Again, we only show the top of the valence band. The 

Fermi level is at 0 eV, the vacuum energy level is at 5.13 eV (not shown). Only 4 Å away 

from the surface, the DOS of bulk HA is restored. The top of the valence band is pinned 

by the surface Ca-centered l = 2 sate and surface O(P) p-states The GGA band gap of this 

slab model is 3.5 eV.  

The unusual rotation of one of the surface hydroxyl groups suggests a change in 

vibrational properties. We compute the frequency of the OH vibrational modes at the 

surface and, for comparison, deep inside the bulk region of the slab by calculating the 

eigenvalues of a reduced dynamical matrix, built only from the OH force constants. The 

force constants are deduced from the Hellman-Feynman forces. For the rotated OH 

molecule the vibrational frequencies are 3571 cm
-1 

for the stretch mode, and 835 cm
-1

 and 

560 cm
-1

 for the libration modes. For the second surface OH we find 3666 cm
-1

, 708 cm
-1

 

and 649 cm
-1

 for the stretch and the two libration modes, respectively. For the OH 

vibrations in the bulk region of the slab, we find 3662 cm
-1

, and 699 cm
-1

 and 677 cm
-1

 

for the stretch and libration modes. For comparison, in the bulk HA study we found 3660  

cm
-1

 for the stretch mode and 693 cm
-1

 for the two-fold degenerate libration mode [140]. 

This is in agreement with the structural relaxation decaying within 4 Å below the surface. 

At the surface, however, while the stretch mode of the regularly aligned OH molecule is 

similar to the bulk value, the stretch mode of the rotated OH molecule is red-shifted by 

89 cm
-1

. The red-shift may be attributed to a decrease in the force constant: In bulk HA, 

the two OH-groups in the primitive cell are aligned, with the distance of approximately 

2.50 Å between neighboring OH. The rotated OH, however, binds to a  
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a) 

 
 

 

b) 

 
 

Fig. 4.8: a) P-O-P angle distribution in model 24. Below 4.5 Å from the surface bulk 

angle distribution is restored. The largest deviation from the bulk angles is 

9° in one of the surface PO4 molecules. 

b) Layer decomposed density of states of model 24. We show the top of 

the valence band only. The Fermi level is at 0 eV. 
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phosphate oxygen (as shown in Fig. 4.6 b)) with the bond length of 2.24 Å. This O(P)-H 

bond weakens the O(H)-H covalent bond, effectively reducing the force constant of the 

OH stretch, lowering the frequency. The libration modes also deviate from the bulk 

values mostly for the rotated OH group. The degeneracy is lifted, resulting in a blue-shift 

by 142 cm
-1

 of one mode and a red-shift by 133 cm
-1

 of the second mode. Changes for the 

librational modes of the un-rotated OH are significantly smaller. These shifts in the 

vibration modes should be observable in a spectroscopic analysis. 

 

4.5 WORK FUNCTION 

Another important question is how the surface structure and composition 

influence the work function of HA. The work function is one of several key parameters 

determining charge transfer at the material’s interface.  In photoelectron emission 

measurements, the work function is found to range between 4.7 eV and 5.1 eV [119], and 

to correlate with the size of the HA particles used for the measurement and with 

concentration of hydrogen atoms at the surface [119]. However, as the exact structure and 

composition of the surface are not known, the physical origins of these correlations are 

unclear. Therefore, a theoretical analysis of the work function is of both fundamental and 

practical interest. We calculate the work function using the local electrostatic potential 

method. The microscopic local potential across the simulation slab is calculated as a 

function of distance in the direction normal to the surface (the z axis) by averaging over 

the x-y plane. The value of this plane-averaged potential in the vacuum region is taken as 

the vacuum level. The work function is then computed as the difference between the 

Fermi energy of the slab and the vacuum level. Our results for the work function are  
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summarized in Table 4.1. Surprisingly, the work function ranges between 10 and 3 eV, 

depending on the specific model.  To gain further insight, in Fig. 4.9 we plot the work  

function as a function of the bulk ionic charge in the surface slab. A negative ionic charge 

indicates that the model contains unbalanced PO4
3-

 and OH
1-

 groups. Positive net ionic 

charge means that the surface contains unbalanced Ca
2+

. The plot reveals that mostly 

 
 

 

Fig. 4.9: Work function as a function of the net ionic surface charge. Surfaces with 

unbalanced PO4
3-

 and OH
1-

 molecules have negative net charge; surfaces 

with unbalanced Ca
2+

 atoms have positive net ionic charge. The work 

function strongly depends on the surface chemistry, ranging from 3 eV to 

9.5 eV. The range of experimental work function is indicated by the 

shaded bar. 
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responsible for the large variation in the work function are the two functional groups PO4 

and Ca, whose concentration varies significantly at the surface. The energy levels of 

valence 4s electrons in Ca are relatively close to vacuum, leading to the low work 

function of 2.9 eV for bulk Ca metal. On the other hand, the occupied orbitals of the 

covalently bonded PO4 group have very low energy. Thus, in the Ca-rich surface models 

the work function tends to be close to that of bulk Ca, while in the PO4-rich models it 

varies between 7 eV and 10 eV. This is what one would expect for the anti-bonding states 

of PO4 groups (the energy of the sp
3
-hybryd in phosphorus is -10.5 eV and the p-orbital 

of oxygen is at -14.3 eV, with respect to vacuum). The stoichiometric (001) surface has 

work function 5.5 eV, and (100) stoichiometric surface has work function 7.1 eV as 

indicated in Fig. 4.9. The work function of the two surface models most stable under OH-

rich conditions (model 3 and 24) is pointed out by the large circles in Fig. 4.9. For model 

3 we find 7.5 eV. Interestingly, for model 24 we find 5.1 eV in the closest agreement 

with the experimental value. This again suggests that it may be a good model for the OH-

terminated HA surface described by Sato et al. [139]. 

 

4.6 CONCLUSIONS 

Using density functional theory, we carried out a comprehensive study of the 

vacuum-cleaved surface of important biomineral HA. The study is a first step in 

considering interfaces of HA with Ti and TiO2 which are important in biomedical 

applications. Considering a wide range of surface compositions and orientations, we 

identified the ionic surface charge, caused by deviation of bulk stoichiometry, as the main 

origin of the increase in the vacuum-cleaved surface energy. For the biologically relevant 

OH-rich environment we found two dominant surface structures, one with the (001) 
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orientation, and one with the (100) orientation. The (100) surface has OH groups directly 

facing vacuum. The surface undergoes major reconstruction to stabilize the OH groups. 

The reconstruction results in a red shift of the surface OH vibrational mode at 3660 cm
-1

 

by 89 cm
-1

 and lifts the degeneracy of the libration modes at 693 cm
-1

 by 275 cm
-1

. Such 

changes in the absorption spectrum should be observable in spectroscopic experiments 

and would help determining surface composition. The work function of HA is found to 

range from 3.0 eV for the Ca-rich termination to 9.7 eV for Ca-poor surfaces. The work 

function of the OH-terminated surface, similar to one suggested in Ref. 26, is 5.1 eV, in 

very good agreement with the experimentally reported values that range from 4.7 eV to 

5.1 eV [119]. 
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5. Hydroxyapatite: Vibrational spectra and phase transition 

The results of this Chapter are submitted to the Physics Review. 

 

5.1 INTRODUCTION 

Hydroxyapatite [HA, Ca10(PO4)6(OH)2] oxides have attracted considerable 

interest owing to their role in human bone to which they give its remarkable mechanical 

strength [144]. The apatite structure is significantly more complex both in terms of size 

and diverse chemical bonding, than that of many other oxides such as perovskites or 

spinels, making it rather difficult to study. On the other hand, HA’s biocompatibility is 

widely exploited in biomedical applications. For example, it is used as a coating layer on 

a titanium body of a bone implant in order to adapt it to the physiological environment 

and possibly increase the implant life span. Such applications, however, require detailed 

physical insight in the thermodynamics of HA due to the complex physical environment 

it is used in. In particular, understanding HA’s thermodynamic stability including phase 

transitions, growth, and decomposition with aging [2] is needed both experimentally and 

theoretically to ensure further technical development.  

The crystal structure and atomic positions of HA were first determined in 1958 by Posner 

et al. using the X-ray diffraction [5]. In 1964, Kay and co-workers refined the positions 

of the OH molecules using neutron diffraction [6]. HA was believed to only crystallize in 

the hexagonal P63/m structure until Young suggested a monoclinic variant of HA in 1967 

[7]. He inferred that a HA crystal sufficiently free of impurities and vacancies could 

crystallize in the monoclinic phase analogous to monoclinic chlorapatite. The monoclinic 

phase has attracted interest recently as it could potentially alter the physical mechanisms 

leading to the formation of HA nano-crystals in bone due to slight differences in its 
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dielectric properties [11,12]. A considerable amount of experimental work on HA exists 

in particular in the medical implant field. For an excellent review of this work we refer 

the interested reader to [3]. 

Theoretically, HA crystal presents a formidable challenge due to its complexity and 

importance in biophysical systems with potential applications. Only with the recent 

increase in computational power a theoretical study of HA became feasible. And HA 

along with other calcium apatites HA have been subject to a number of recent studies 

using first principles calculations. The work includes ground state bulk electronic 

properties studies [23,24, 27,140], studies on ion substitutions and their influence on bulk 

and electronic properties [24,29,34,38,39,40], studies on altering the electronic and 

chemical properties of HA through doping [38], surface studies [27,32,34,145] and 

studies on the adsorption of small molecules on HA surfaces [27,34,41,46].  

Interestingly, despite providing direct access to important thermodynamic quantities such 

as heat capacity, the vibrational spectrum of HA remains only marginally studied. The 

most recent work on the HA’s vibrational properties are two experimental studies by 

Fowler et al. and Markovic et al., who report the infrared and Raman active modes of the 

material, respectively [21, 22]. Existing theoretical work on HA’s vibrations mainly 

employs classical shell models and is often limited to studying the long wave length limit 

[e.g. 29]. A practical difficulty of using classical shell models is that the model potentials 

fitted to reference data are in general not transferable [29]. 

In this paper we present a density functional theory (DFT) study of HA’s vibrational 

properties and phase transformation of HA from a hexagonal to a monoclinic phase. The 

previous theoretical work [e.g. 140 and references therein] on the phase transition mainly 

focuses on the transition barriers and transition paths. Our previous studies of HA 

[140,145] suggest that DFT provides a surprisingly reliable description of this complex 
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material. The rest of the paper is organized as follows. We first summarize computational 

details and describe various simulation cells used in this work. We then describe 

theoretical phonon dispersions of the monoclinic and hexagonal phases and their 

thermodynamic properties within the harmonic approximation. We discuss the Lyddane-

Sachs-Teller frequency shifts due to the long-range Coulomb effects, and report on a 

peculiarity in the phonon dispersion that might lead to useful applications. Based on our 

calculations, we suggest a phase transition mechanism and estimate the transition 

temperature. We also use a phase transition model to calculate the transition temperature 

for comparison. We conclude with calculating the heat capacity and the Debye 

temperature. 

 

5.2 COMPUTATIONAL DETAILS 

We use a plane wave code VASP to solve the Kohn-Sham problem [51-55]. To 

estimate the exchange-correlation energy contribution to the total energy we use the 

Perdew-Wang (PW91) generalized gradient approximation functional [109]. We use 

projected augmented wave (PAW) pseudopotentials as implemented in VASP [110]. The 

valence configurations of the pseudopotentials are 1s
1
 for hydrogen, 3s

2
3p

3
 for 

phosphorus, 4s
2
 for calcium and 2s

2
2p

4
 for oxygen. For both, the monoclinic and 

hexagonal phases we use a primitive cell with lattice constants 9.535 Å × 19.07 Å × 6.91 

Å. That choice corresponds to one regular monoclinic primitive cell and a hexagonal cell 

doubled in the b-direction. We use the energy cutoff of 500 eV along with a 4×2×4 

Monkhorst-Pack k-point mesh for the Brillouin zone integration [111] when calculating 

the phonon dispersion. To compute the dynamical matrix we use a 2×1×2 supercell with 

dimensions 19.07 Å × 19.07 Å × 13.82 Å, containing a total of 352 atoms. We use a 
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2×2×2 Monkhorst-Pack k-point mesh for the Brillouin zone integration of that cell. The 

energy is converged to less than 10 meV/atom. In the primitive cell we relax the ionic 

positions, the cell shape and volume until the residual forces acting on ions are smaller 

than 5 meV/Å. Symmetry operations are switched off during the relaxation. Comparing 

the eigenmodes at the Γ-point with our previous results [140], where a denser k-point 

mesh and a 950 eV energy cutoff were used with a smaller cell, we find excellent 

agreement. 

 

5.3 RESULTS 

5.3.1 Simulation cells and notations 

The chemical formula of hexagonal HA is Ca10(PO4)6(OH)2, and for monoclinic 

HA it is [Ca10(PO4)6(OH)2]2. In Fig. 5.1 we show the top-view on the primitive hexagonal 

cell. For pictorial purposes we shift the original primitive cell boundaries along the a and 

b axes in such a way that the OH group is at the center of the cell and points with the 

hydrogen atom into the plane (in the picture it is the -z direction). There are two OH 

groups in the center, one visible in Fig. 5.1, and one “hidden” underneath. For a more 

detailed description of the hexagonal and monoclinic primitive cells we refer the reader 

to reference [140]. In order to differentiate between the hexagonal and monoclinic 

phases, we use a pair of arrows to describe the orientation of two OH groups in the 

hexagonal cell. The arrows point either in +z direction (the hydrogen atom is above the 

oxygen atom) or in –z direction (the hydrogen atom is below the oxygen atom). We can 

represent the hexagonal primitive cell by (↓↑) or (↓↓), i.e. the OH molecules are either 

aligned parallel or antiparallel to each other. The former has symmetry P63/m (#176 in 

the International X-Ray Tables, with center-symmetry) and is the one reported by Kay 
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and Young [6]. The latter cell has symmetry P63 (#173 in the International X-Ray Tables, 

non-centrosymmetric) and is the lowest energy structure. Through the remainder of this 

paper we consider the hexagonal structure (↓↓)(↓↓), where we doubled the original 

primitive cell in b-direction. The monoclinic phase consists of two hexagonal primitive 

cells connected in b-direction. Here a number of different OH orientations are possible. 

Previously [140], we have found the (↓↓)(↑↑) monoclinic cell with P21 symmetry (#4 in 

the International X-Ray Tables, non-centrosymmetric) to have the lowest energy. Within 

the given theoretical setup it also is 50 meV per cell lower in energy than the hexagonal 

(↓↓)(↓↓) phase and thus is the ground state crystal structure under the ambient conditions. 

In the following we will refer to the (↓↓)(↑↑) structure when talking about the monoclinic 

phase. 

 

 
 

Fig. 5.1: Top-view on the hexagonal primitive cell. We shifted the original primitive 

cell in the x and y directions so that the OH column is in the center of the 

depicted cell. The darker colored CaII atoms and PO4 molecules are 

centered at z=0.25c and the lighter ones are centered at z=0.75c. The OH 

column is surrounded by six CaII atoms and six PO4 molecules. The CaI 

atoms are now in the corners of the cell. Below both of the two visible CaI 

atoms there is a second CaI atom at the distance 0.5c. Here, the lighter CaI 

atom is close to the top face and the darker CaI atom is at ~0.5c. 
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5.3.2 Phonon dispersion 

We have recently reported the phonon frequencies at the Γ point along with the 

approximate phonon density of states for hexagonal HA [140]. Here, we calculate from 

first principles the phonon dispersion along high-symmetry directions in the entire 

Brillouin zone for both hexagonal and monoclinic HA. Our primitive cells (↓↓)(↓↓) and 

(↓↓)(↑↑) contain 88 atoms each. In each cell we calculate the Hellman-Feynman restoring 

forces for 2×3×88 atomic displacements in order to obtain the short range force constant 

matrix [80]. The factor of 2 is due to displacing each atom in +/- {x, y, z} directions 

around the equilibrium position when numerically evaluating the second derivative to 

eliminate the odd power anharmonicity. The lattice Fourier transform of the force 

constant matrix yields the dynamical matrix [80]: 

 
          

m

m,RRkim,B
MM

kD 

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,02exp,;0

1
,; . 

(5.1) 

The  ,0R


 is the position of atom μ in the 0-th primitive cell within the supercell.  m,R


 

is the position of atom ν in the m-th primitive cell. We use simulation cells of size 19.07 

Å × 19.07 Å × 13.82 Å consisting of four primitive cells.   ,;0 m,B


 are the force 

constants relating atoms  ,0  and  m, , and 
M  and 


M  are their masses. In practice, one 

has to truncate the infinite lattice sum in (5.1), which is justified if the short-range 

restoring forces decay rapidly with increasing distance. In Fig. 5.2 we show all restoring 

forces as function of distance between the displaced and responding atoms. As can be 

seen, the forces are negligible after a distance of 4 Å – 6 Å, and are well contained within 

our simulation cell. In addition to these short-ranged forces, in the ionic system one has 

to consider the long-ranged dipole-dipole interactions. We do that by adding a long-range 

correction to the dynamical matrix given by [80] 
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where we use SI units.  *Z


 is the Born effective charge tensor of atom μ in the 

primitive cell, and V is the volume of the primitive cell.  *Zk


 is a vector, and α and β 

are its {x,y,z} components. The Born effective charge tensors introduce a directional 

dependence in equation (5.2). We use the Born effective charge tensors we reported in 

ref. 140. The ρ parameter controls the range of the long-range correction term in the 

reciprocal space. We choose ρ = 0.02 Å
-1

. The long-range correction is inversely 

proportional to the dielectric constant ε∞ and 
2

k


, and only affects the optical modes in 

the vicinity of the Γ point. In the literature, the values of ε∞ for HA vary between ε∞ = 5 

and ε∞ = 20 [14-18,146,147]. This is in part due to the variation in porosity and water 

content of the samples, and in part to too low a frequency of measurement in some of the 

experiments. We will start with the dielectric constant ε∞ = 5, and later study the 

implications of having different values for the dielectric constant.  

The phonon dispersion for both the hexagonal and monoclinic phase is shown in Fig. 5.3 

a) and b). They are very similar, and the following description applies to both. In total, 

we have 264 modes, including Raman and IR active modes. The modes below 400 cm
-1

 

are mainly due to Ca and PO4 vibrations. Between 400 cm
-1

 and 600 cm
-1

, and between 

900 cm
-1

 and 1100 cm
-1

 the main contributions are from the PO4 vibrations. Between 600 

cm
-1

 and 700 cm
-1

 we find the OH libration modes, and above 3650 cm
-1

 the OH stretch 

modes. There are no vibrational modes between 1200 cm
-1

 and 3600 cm
-1

. At the Γ-point 

we find good qualitative agreement with the experimental IR and Raman active modes as 

reported by Fowler [21] and Markovic [22]. 
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Fig. 5.2: The plots show the restoring forces acting on displaced atoms in the force 

constant calculation. The forces decay quickly with distance from the 

displaced atom in both the hexagonal and monoclinic phase, and are well 

contained within our simulation cells. 
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Fig. 5.3 a): Phonon dispersion of the hexagonal phase of HA. The main molecular 

contributors to the vibrations are indicated in the plots.  
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Fig. 5.3 b): Phonon dispersion of the monoclinic phase of HA. The main molecular 

contributors to the vibrations are indicated in the plots. 
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Fig. 5.3 c): In the figure we highlight modes that deviate by at least 5 cm
-1

 between the 

hexagonal and monoclinic phonon dispersion. Indicated in the 

background is he hexagonal phonon dispersion for reference. The 

deviations mainly occur in the low frequency Ca and PO4 modes, and the 

OH stretch and libration modes. 
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We also find excellent agreement with our previous calculation of the eigenmodes at the 

Γ point where we have used a larger energy cut-off and denser k-mesh along with a 

smaller simulation cell [140]. Frequencies of our PO4 eigenmodes are underestimated by 

~5-10% compared to the experimental data for the long wave length vibrations [140]. 

This is consistent with the theoretical PO bond length being 0.02 Å - 0.03 Å longer than 

the experimental value [140]. Our OH libration and stretching modes are overestimated 

by ~5-10% compared to experiment. In Fig. 5.3 c) we compare phonon dispersions of the 

monoclinic and hexagonal phases. We show only the largest differences between the two, 

the shaded areas indicate where they are different by at least 5 cm
-1

. The dispersion of the 

hexagonal phase is shown in light grey for clarity. The most striking feature is that OH 

libration and stretch modes at 690 cm
-1

 and 3660 cm
-1

 deviate strongly between the 

monoclinic and hexagonal phases. We also find deviations in the low frequency range 

between 100 cm
-1

 and 125 cm
-1

 and around 250 cm
-1

 mainly corresponding to Ca and 

PO4 vibrations. In particular the low-frequency differences are due to slight rotations of 

the PO4 molecules in the monoclinic structure compared to the hexagonal structure. 

These differences in the vibrational spectra play an important role in the hexagonal to 

monoclinic phase transition as we will show in greater detail later. 

 

5.3.3 Lyddane-Sachs-Teller shift 

The ideal HA crystal with the chemical formula Ca10(PO4)6(OH)2 has the Ca/P 

ratio of 1.67. However, in practice, HA is rarely stoichiometric but instead shows a wide 

range in the Ca/P ratio while still being referred to as HA. Recently, the Ca/P ratio was 

linked to the dielectric properties of HA by Quilitz and co-workers, and Silva and co-

workers [14,146]. They showed that the dielectric constant of HA varies strongly with the 
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crystal composition. Other work established the ε-dependence on the porosity and H2O 

coverage of the HA crystallites [18,147]. The reported data suggests that the dielectric 

constant varies between approximately 5 and 20. Incidentally, the Ca/P ratio can be 

viewed as a critical measure for the condition of bones and can vary strongly, depending 

on the specific function of a bone in the human body. In teeth, for example, the Ca/P ratio 

can exceed 2.0 [148,149]. The dielectric constant enters the phonon dispersion through 

the long-range Coulomb correction (5.2) which only takes effect close to the Γ point. To 

elucidate the effect of the dielectric constant we consider the dielectric constant values of 

5, 7, 10 and 15 to cover the experimentally observed range of ε∞. As a consequence of 

including the long-range correction the degeneracy of the optical modes at the Γ point is 

lifted, which is often referred to as the Lyddane-Sachs-Teller (LST) splitting. The shifts 

are generally directionally dependent. In Fig. 5.4 a) we plot the shifts in frequency when 

approaching the Γ point along the (100) direction (A→Γ in the (↓↓)(↓↓) cell) and in Fig. 

5.4 b) along  the (010) direction (Y→Γ in the (↓↓)(↓↓) cell) for the hexagonal phase, in 

Figs. 5.5 we plot the shifts along the same directions in the monoclinic phase. The 

following applies to all plots in Figs. 5.4 and 5.5. In all the plots for ε∞ = 5 we also show 

the corresponding PDOS in arbitrary units as a reference. The shifts are largest for ε∞ = 5 

getting progressively smaller for larger ε∞. We find shifts up to 18 cm
-1

 in the hexagonal 

and monoclinic phases with ε∞ = 5. The PO4 modes between 400 cm
-1

 and 500 cm
-1

 are 

completely unaffected, and those between 500 cm
-1

 and 700 cm
-1

 are nearly insensitive to 

the long-range correction. The PO4 modes at ~900 cm
-1

 are also nearly independent of ε∞, 

whereas the PO4 modes between 950 cm
-1

 and 1100 cm
-1

 show strong ε∞-dependence. 

Interestingly, only a few of the shifts decrease systematically with the increasing 

dielectric constant. We are going to pay closer attention to these modes. Two of them we 

point out in Figs. 5.4 and 5.5.  
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a) 

 
 

b) 

 

Fig. 5.4: Lyddane-Sachs-Teller frequency shift in hexagonal HA when approaching Γ 

along the (100) A→Γ and the (010) Y→Γ direction, shown in (a) and (b) 

respectively. For ε∞ = 5 the phonon density of states is indicated for 

reference. Two frequency shifts are highlighted at 619 cm
-1

 and at 1034 

cm
-1

. Those two shifts follow a power law decay with increasing ε∞. 
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a) 

 
 

b) 

 

Fig. 5.5: Lyddane-Sachs-Teller frequency shift in monoclinic HA when approaching Γ along 

the (100) A→Γ and the (010) Y→Γ direction, shown in (a) and (b) respectively. 

For ε∞ = 5 the phonon density of states is indicated for reference. Similarly to the 

hexagonal phase, two frequency shifts are highlighted at 607 cm
-1

 and at 1034 

cm
-1

. Those two shifts follow a power law decay with increasing ε∞. 
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The low-frequency mode (hexagonal: 619 cm
-1

, monoclinic: 607.0 cm
-1

) corresponds to 

pure OH librations. In the high-frequency mode (hexagonal and monoclinic: 1034 cm
-1

) 

all atoms except for calcium are moving. We fit the LST shifts for these two modes with 

a power law: 

    

 Af . (5.3) 

The fitting parameters are listed in Tables 5.1 a) and b). 

 

Table 5.1 

a) Fitting coefficients of the power law decay in Lyddane-Sachs-Teller frequency shift 

in hexagonal HA for increasing ε∞. 

 

 

 

(1 0 0) hex (0 1 0) hex 

619 cm
-1

 1034 cm
-1

 619 cm
-1

 1034 cm
-1

 

A [cm
-1

] 49.1 1426.8 104.4 153.6 

α 1.3 3.2 1.9 1.8 

R
2
 1 0.99 1 0.99 

 

 

 

b) Fitting coefficients of the power law decay in Lyddane-Sachs-Teller frequency shift 

in monoclinic HA for increasing ε∞. 

 

(1 0 0) mono (0 1 0) mono 

607 cm
-1

 1034 cm
-1

 607 cm
-1

 1034 cm
-1

 

A [cm
-1

] 109.7 83.0 6232.8 6068.5 

α 1.7 1.6 4.6 4.4 

R
2
 1 0.99 0.99 0.99 
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The α-values are the power law decay exponents. They vary between 1.3 and 4.6. We 

also tried approaching the Γ point from the (001) direction finding no LST shift in these 

two modes at all. To further explore this anisotropy, we calculate the LST shift in these 

two modes when approaching Γ from an arbitrary direction in k-space, and using ε∞ = 5. 

We show the shifts in Figs. 5.6 and 5.7 for the hexagonal and monoclinic phases, 

respectively. The reciprocal lattice vectors are shown in the figures for reference with the 

Γ point at the origin. The distance between Γ and a point on the surface mesh corresponds 

to the LST shift when approaching Γ along that direction. The shift dispersion has a 

unique torus shape for both modes. The two modes don’t shift when approaching Γ along 

the (001) direction. This might have applications in the medical field providing a simple 

spectroscopic measurement to identify the Ca/P ratio in a HA sample non-destructively to 

preventively indicate bone mineral degradation.  
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a) 

 
 

 

b) 

 

Fig. 5.6: Lyddane-Sachs-Teller shift in frequency of the low-frequency vibration mode 

at 619 cm
-1

 (a) and the high-frequency mode at 1034 cm
-1

 (b) in hexagonal 

HA. The value of the shift when approaching Γ from a particular direction 

is just the length of the vector from the origin in the plot to a point on the 

mesh in that direction. 
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a) 

 
 

 

b) 

 
 

Fig. 5.7: Lyddane-Sachs-Teller shift in frequency of the low-frequency vibration mode 

at 607 cm
-1

 (a) and the high-frequency mode at 1034 cm
-1

 (b) in 

monoclinic HA. The value of the shift when approaching Γ from a 

particular direction is just the length of the vector from the origin in the 

plot to a point on the mesh in that direction. 
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5.3.4 Vibrational free energy and phase transition 

We connect the theoretical phonon dispersion and experimentally accessible 

thermodynamics by computing and analyzing the phonon density of states (DOS). To 

achieve a good resolution of the DOS we calculate the vibrational eigenmodes on a dense 

k-point grid. Overall, we calculate the eigenmodes at 1728 k-points in the Brillouin zone. 

The DOS is given by 

      
k

kg  , (5.4) 

 

 

 
 

Fig. 5.8: Phonon density of states for the hexagonal and monoclinic phase. The 

differences are subtle, and due to the deviations in the phonon dispersion 

as indicated in Figs. 5.3 a)-c). 
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The DOS is a sum of delta-functions positioned at the eigenmodes for each k-point. We 

approximate the delta function by a Gaussian with broadening σ = 8 cm
-1

. We tried 

slightly smaller and larger broadenings without significant changes in the computed 

thermodynamic quantities. The DOS of the hexagonal and monoclinic phases are shown 

in Fig. 5.8. The main differences between the two lie between 100 cm
-1

 and 125 cm
-1

, 

around 250 cm
-1

 and 650 cm
-1

, and at the high frequency OH stretch mode. The 

differences reflect the shifts in modes between hexagonal and monoclinic phase as we 

point out in Fig. 5.3 c). We use the phonon DOS to calculate the Gibbs free energy 

including the vibrational contribution: 

 vibgGibbs FpVETSpVEF  . (5.5) 

Eg is the internal energy we obtain from ab initio calculations. In solids, the pV term is 

typically small under ambient pressure and can be neglected. In the harmonic 

approximation the vibrational contribution to the free energy is [82]: 
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where r is the number of degrees of freedom and g(ω) is the DOS. We use equation (5.5) 

to compare the free energy of the monoclinic and hexagonal phases. The condition for the 

monoclinic phase to be more stable than the hexagonal phase is 

     mono

g

hex

g

h

vib

m

vibvib EEFFTF  . (5.7) 

At the transition temperature Tc the difference in the vibrational entropy cancels the 

difference in their binding energy.  For ε∞ = 5 we plot Fvib in Fig. 5.9. The theoretical 

transition temperature is 680 K vs. the experimentally found 470K. Considering the use 

of the harmonic approximation agreement with experiment is excellent. The transition 

temperature varies only by ±5 K when increasing or reducing the Gaussian broadening σ 
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to 10 cm
-1

 or 4 cm
-1

 when calculating the DOS, respectively, and is independent of the 

dielectric constant. That is not too surprising as the long-range correction only affects 

vibrations close to the Γ-point. Thus, their effect on the DOS is barely measurable. 

An alternate evaluation of the transition temperature follows from the theory of phase 

transitions [71]. For HA the phase transition is of the order-disorder type as we’ll show 

later. Every two OH molecules in one c-column can be in either the (↓↓) orientation or 

the (↑↑) orientation separated by the energy barrier of EB = 1.26 eV [140]. Additionally, 

the two OH pairs couple to the OHs in the neighboring c-column making the monoclinic 

(↓↓)(↑↑) configuration more favorable than (↓↓)(↓↓). This inter-column interaction can be 

described by an effective coupling constant (similar to a force constant). It is this 

 
 

Fig. 5.9: Plotted is the difference in vibrational free energy dF between monoclinic and 

hexagonal HA. The transition temperature is 680 K. 
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coupling that prefers the antiparallel (↓↓)(↑↑) configuration over the parallel (↓↓)(↓↓) 

configuration below the transition temperature. This type of a system can be described by 

an effective Hamiltonian [71,72]: 

 

 
        
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lulu
C

luV
m
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H , (5.8) 

where the u and p describe generalized displacements and momenta of the OH group. 

The “atoms” reside in a double-well single particle potential Vs given by 

   42

42
u

B
u

A
uVs  . (5.9) 

The model (5.8) provides two important quantities, the depth of the potential Vs  

 
B

A
V

4

2

0  , (5.10) 

and the interaction energy of a pair of particles positioned at the energy minima u0 and –

u0.  

 B

A
CW 2 . (5.11) 

The ratio 
W

V
s 0  between the two characteristic energies is an indicator whether the 

transition is order-disorder type (s>>1) or displacive (s<<1) [71]. Using the values V0 = 

1.26 eV [140], and W = 0.05 eV we get s = 25.2 indicating an order-disorder type phase. 

In the order-disorder case the potential barrier between neighboring wells is well larger 

than their interaction even at temperature above the transition temperature. Thus, the 

transition occurs solely due to the inter-well coupling. The transition temperature in this 

case is given by [71] 
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where the numerical factor k(3)=0.76 has been tabulated in previous work [71,74]. Using 

this value we deduce the transition temperature 882 K in good agreement with the 

previously calculated 680 K. 

To gain further understanding of the transition mechanism, next we analyze the initial 

atomic displacement pattern when transiting from monoclinic to hexagonal phase. We 

obtain the displacement pattern from a separate calculation in our previous work using 

the nudged elastic band method (Chapter 3) [140]. The pattern is just the spatial 

difference of the atomic positions between the first “image” in the rotational transition 

(hydrogen atom moves around the oxygen) and the monoclinic phase. The displacements 

are indicated in Fig. 5.10. Mainly the hydrogen atoms are moving. We expand the 

displacement pattern vector in the basis of the vibration eigenvectors. The eigenmodes 

mediating the phase transition must be zone-center (Γ-point) modes because the transition 

displacement is contained within each monoclinic primitive cell and, therefore, there is 

no phase factor. The expansion coefficients in our projection are shown in Fig. 5.11 a).  

 

 
 

Fig. 5.10: Initial displacement pattern during the phase transition monoclinichexagonal, 

obtained in Chapter 3 using the nudged elastic band method. Mainly 

hydrogen atoms are moving. 

OH

Ca
PO4

displacement
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For comparison, in Fig. 5.11 b) we show the expansion coefficients in the hexagonal-

monoclinic transition (we extract the corresponding displacement pattern from the 

nudged elastic band calculation in Chapter 3). A mode at 669 cm
-1

 has largest projection 

on the monoclinichexagonal transition pattern. In the hexagonalmonoclinic phase 

transition the main projections are at 688 cm
-1

 and 690 cm
-1

. The eigenvectors of all these 

modes only displace the hydrogen atoms. However, the difference in vibrational entropy 

from these modes does not suffice to induce a phase transition; the cross-over in Free 

energy occurs due to the modes between 100 cm
-1

 and 125 cm
-1

. Thus, while the 

difference in vibrational free energy stabilizes the monoclinic over the hexagonal phase 

below the transition temperature, the modes found earlier mediate it. 
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a) 

 

 
b) 

 

Fig. 5.11: Shown are the projection coefficients of the monoclinic (a) and hexagonal (b) Γ-

point modes. The linear expansion using the Γ modes as basis leads to the 

closest overlap with the structural transition path from monoclinic to 

hexagonal (a) phase and vice versa (b).  
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5.3.5 Heat capacity CV 

The experimentally measured heat capacity of HA has been reported in the 

literature. In 150 and 151 Egan et al. report the heat capacity of synthetic HA in the 

temperature range from 15 K to 1500 K. . Palkin and co-workers have reported the heat 

capacity at low temperature [19]. More recently, Suda and co-workers investigated the 

monoclinic-hexagonal phase transition of HA using differential scanning calorimeter 

techniques (DSC) [20]. While in some of the earlier work the reasoning for studying the 

heat capacity of HA was the lack of thermodynamic data on calcium phosphates and 

related materials used in phosphatic fertilizers, the focus of the more recent work has 

shifted to studying biochemical systems and their interactions. We calculate the heat 

capacity of HA from the first principles, and compare it with the available experimental 

data to benchmark our calculations. We calculate CV from using the standard expression:  
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(5.13) 

where  g  is the phonon DOS as calculated before for the original hexagonal and 

monoclinic phonon spectrum [82]. As the heat capacity is almost unchanged going from 

the hexagonal to monoclinic phase, we plot only their difference in Fig. 5.13 a). In Fig. 

5.13 b), we plot the experimental heat capacity as measured by Egan and our theoretical 

results. We find excellent agreement for temperatures up to ~400 K. For higher 

temperatures theory deviates slightly signaling the breakdown of the harmonic 

approximation in accordance with the calculated Debye temperature of 389 K. We are 

unaware of any experimentally determined value of the Debye temperature to compare 

with. The heat capacity of hexagonal HA is always smaller than that of monoclinic HA 
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above ~150 K with the maximal deviation at ~275 K. Compared to the absolute value of 

CV the difference is small, however. 

 

a) 

 
 

b) 

 

Fig. 5.13: Difference in heat capacity Chex – Cmon. (a), and heat capacity of hexagonal and 

monoclinic HA (b). The agreement between theory and experiment is 

excellent, only at higher temperature we find slight deviation. The difference 

between hexagonal and monoclinic phase heat capacity is very subtle. 
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5.4 CONCLUSIONS 

We have studied the vibrational spectra of hexagonal and monoclinic 

hydroxyapatite from first-principles. In the hexagonal phase two modes at 619 cm
-1

 

(monoclinic: 607 cm
-1

) and at 1034 cm
-1

 (monoclinic: 1034 cm
-1

) show a systematic 

Lyddane-Sachs-Teller shift with increasing ε∞ when approaching the Γ-point. Measuring 

these modes might allow for non-destructive determination of the crystal composition 

which may be useful for dental and orthopedic applications. We find that the differences 

between the hexagonal and monoclinic phonon spectra cause a cross-over in vibrational 

Free energy leading to a phase transition at 680 K. Using the phase transition theory we 

identify the phase transition to be the order-disorder type and occur at 882 K. Both values 

are in good agreement with the experimental 470 K. Upon heating or cooling, the phase 

transition is mediated by Γ-point modes at 669 cm
-1

 (monoclinichexagonal), and 688 

cm
-1

 and 690 cm
-1

 (hexagonalmonoclinic). The calculated heat capacity is in excellent 

agreement with available experimental data up to the transition temperature. 
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6. TiO2/HA and HA/H2O interface 

6.1 INTRODUCTION 

Having studied the bulk, electronic, structural and surface properties of 

hydroxyapatite I now summarize our work on its interfaces to TiO2 and H2O. These two 

interfaces are important when thinking of applications of HA in orthopedic implants. 

State of the art orthopedic implants are made of a titanium (and its oxide) substrate with a 

thin HA coating on the surface [3]. The metal offers excellent mechanical properties, 

while the HA layer improves adhesion to the bone and provides a scaffold for bone 

growth. Such implants have a serious short-coming as their life span typically only ranges 

from 5-10 years [3]. To improve that lifespan a thorough theoretical understanding of the 

two relevant TiO2/HA and HA/H2O interfaces is needed. While strong adhesion of HA to 

the TiO2 substrate is necessary to prevent premature deterioration of the implant’s 

surface, water is the main medium that can possibly affect its ability to connect to 

biological tissue once it is immersed into the human body. We develop models for both 

interfaces, paying particular interest to the doped HA surface facing water as some 

dopants are found to increase HA’s bioactivity (e.g. Na and Si [152,153]) while others 

inhibit HA crystallization (e.g. Mg [35,153,157,158]). Using the VASP code [51-55], we 

run total energy calculations to model the TiO2/HA interface, and molecular dynamics to 

study the doped and clean HA surface facing water. Our results are preliminary; however, 

we are able to identify Si and Na to make the HA surface water repelling while the Mg-

doped or clean surface attracts water. Both findings could justify using the wetting 

properties of HA as a measure for bioactivity. 
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6.2 TiO2/HA INTERFACE:  WETTING AND ELECTRONIC STRUCTURE 

To model the interface between TiO2 and HA we terminate the rutile TiO2 

substrate with the reported low energy (110) surface [154]. From separate surface and 

bulk calculations we find that in the Schottky limit within the GGA the band alignment 

between TiO2 and HA can be such that HA charges TiO2’s conduction band (see 

schematic of the band alignment in Fig. 6.1). Within GGA the energy band gap of TiO2 is 

1.76 eV, while the experimental energy gap of rutile TiO2 is 3.06 eV [155]. In the band 

schematic in Fig. 6.1 we also indicate TiO2‘s experimental conduction band level which 

is higher in energy than HA’s valence band top. Thus, the GGA can lead to an unphysical 

charging of the TiO2 bulk. To correct for that by increasing the conduction band level of 

TiO2 we apply the on-site Coulomb repulsion U = 9 eV on Ti d-states. Using that value 

reproduces the experimental band gap while leaving TiO2’s top of the valence band 

nearly unchanged. Applying U to Ti d-states has been successfully done in earlier first-

principles work on TiO2 [156]. 

When constructing the interface model we minimize the strain applied to HA in order to 

maintain the unperturbed crystal structure.  The (110) surface of TiO2 has in-plane lattice 

constants 2.967 Å and 6.497 Å. A 3×1 supercell of the substrate matches with the HA 

(100) surface when applying -6.8 % × -5.9 % compressive strain on HA’s in-plane lattice 

constants. Our TiO2 substrate is 15.7 Å thick, the HA layer is 20.6 Å thick. The reason 

for the HA layer being thicker than the substrate is simply due to the larger lattice 

constants of HA. Our model is shown in Fig. 6.2 c).  We tried two interface 

compositions, shown in Fig. 6.2 a) and b). Both are nominally charge neutral. However, 

while in model a) both the TiO2 and the HA are ionically charge neutral, in model b) 

TiO2’s surface charge is compensated by HA’s surface charge. Only in model b) we find 

HA to wet the TiO2 surface, and will only focus on that interface in the remainder of this 
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Chapter. The distance between the TiO2 and HA layers is 0.8 Å. We extrapolate this 

distance from a quadratic energy plot for several distances tried. 

 

 

 

 

 

 

 
 

Fig. 6.1: Schematic of the band alignment between rutile TiO2 substrate and HA. The 

energy values are given with respect to the vacuum energy. HA’s valence 

band top varies strongly in energy depending on the surface chemistry 

(Chapter 4). Some of the compositions can lead to unphysical charging of 

TiO2’s GGA conduction band. This charging occurs due to GGA’s 

inability to reproduce the correct energy gap between conduction and 

valence band. Instead, we use the GGA+U approach with U = 9 eV to 

increase TiO2’s band gap up to 3 eV (exp.: 3.06 eV), preventing 

unphysical charging of the TiO2 layer. 
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a)            b)  

 

 

 

c)  

 

Fig. 6.2: a) Charge neutral interface model between the TiO2 substrate and the HA 

layer. We find this interface to be non-wetting. However, when removing 

the oxygen and calcium (indicated by the arrows) at the interface we 

satisfy the wetting condition (b).  The interface in (b) remains charge 

neutral. In c) we show our relaxed (110)TiO2/(100)HA interface model. 

We apply -6.8 % × -5.9 % compressive strain on HA’s in-plane lattice 

constants. The TiO2 substrate is 15.7 Å thick, and the HA layer is 20.6 Å 

thick. We find the distance 0.8 Å between the two layers to minimize the 

energy. 

TiO2, 15.7 Å HA, 20.6 Å

z
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Strong adhesion between the TiO2 substrate and HA is important for orthopedic implants. 

Thus, the goal is to minimize the interface energy. The interface energy can be computed 

using the following expression: 

 
bulk

HA

bulk

TiOtoti EEEA 
2

2  , (6.1) 

where σi is the interface energy, A the interfacial area,  Etot is the energy computed for the 

super cell, 
bulk

TiOE
2
 is the bulk energy of the TiO2 substrate and bulk

HAE  is the bulk energy of 

the HA layer. The factor 2 is due to periodic boundaries. We rewrite the TiO2 energy in 

(6.1) as: 

 
222222

222 TiO

surf

TiOTiOTiO

bulk

TiO

bulk

TiO AEAAEE   . (6.2) 

We calculate 
surf

TiOE
2
 in a separate surface calculation for the TiO2 substrate. Using (6.2) in 

(6.1) and restructuring yields: 

   AEEE bulk

HA

surf

TiOtotTiOi 2
22
 . (6.3) 

Equation (6.3) is still complicated due to the 
bulk

HAE  energy. We use the Gibbs free energy 

approach as in the HA surface study to evaluate this term with the help of chemical 

potentials (see Chapter 4), assuming OH rich conditions (i.e. µOH = 0). Then, equation 

(6.3) can be rewritten: 

ANNHNENENENEE
POCaCa

HA

fPOPOPOCaCaOHOH

surf

TiOtotTiOi
2
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1
444422


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
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

















  . (6.4) 

The right hand side of equation (6.4) is now solely a function of the chemical potential 

µCa. The energy condition for HA to wet the TiO2 surface is: 

 0
2
 TiOHAi  . (6.5) 

Comparing equations (6.4) and (6.5) it follows that HA wets the TiO2 surface whenever 

the negative right hand side of equation (6.4) is larger than HA . We plot both in Fig. 6.3. 



 123 

We find a multitude of HA surfaces satisfying the wetting condition over almost the 

entire chemical range of µCa. In particular, the OH-terminated HA surface we found most 

stable under OH-rich conditions and over most of the range of µCa. 

 

 

 

The band alignment at the TiO2/HA interface extracted from the layer projected 

electronic DOS is shown in Fig. 6.4. The Fermi level in the super cell is pinned by HA’s 

top of the valence band. The energy offset between the top of the valence band in the HA 

bulk region and TiO2 bulk region is only 0.5 eV. The band offset is related to HA’s work 

 

Fig. 6.3: Shown are HA’s surface energy σHA for OH-rich conditions as a function of the 

chemical potential µCa, and - (σi – σTiO2) calculated in equation (6.4). HA 

surface terminations with σHA smaller than - (σi – σTiO2)  wet the TiO2 

substrate. We find that over almost the entire chemical range a multitude of 

HA surface terminations satisfy the wetting condition! 
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function which we found to depend strongly on its surface chemistry in Chapter 4. Thus, 

it may be strongly tunable. This observation might be applicable in photocatalysis. 

 

 

6.3 WETTING AT THE HA/H2O INTERFACE 

We consider the HA surface most stable under OH-rich conditions (as identified 

in Chapter 4) facing a water layer which represents the natural physiological environment 

of HA. We will focus on the doped surface and attempt to make a connection to HA’s 

bioactivity. The bioactivity of a material is a qualitative measure of how well biological 

 

Fig. 6.4: Layer projected electronic density of states in the TiO2/HA interface model. The 

Fermi level is pinned by HA’s valence band top, mainly contributed to by 

oxygen p-states. In the bulk regions the band offset between TiO2’s top of 

the valence band and HA’s top of the valence band is ~0.5 eV. 
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materials, such as proteins, can physically attach to it. Medical implants for example, 

need to show high bioactivity, i.e. the implants surface must support immediate natural 

bone growth to encapsulate the implant in the human bone network. A theoretical 

definition of bioactivity is not obvious, however, making an optimal design of the 

implant’s surface difficult. Ideally, the surface design must always be accompanied by 

experimental investigation. Nevertheless, some measures can be thought of. For example, 

it is reasonable to assume that the surface of a biologically active substrate should repel 

water in order to initiate natural bone formation that connects to the implant. In the 

following we test this idea and compare with available experiments. 

Firstly, we require the HA surface to be stable under H2O-rich conditions. Since we do 

not know the energetically most stable surface under H2O-rich conditions we assume 

OH-rich conditions instead. Then, the most stable surface is our model 24 as described in 

Chapter 4. We also consider doping Na, Mg and Si at the HA surface (Fig. 6.5). These 

dopants have been tested experimentally and we will compare experiment with 

theoretical data [e.g. 152,153]. We substitute Na and Mg on the Ca-site, and Si on the P-

site. The Na and Si substitutions nominally create surfaces with -1e net ionic charge, the 

Mg substitution leaves the surface nominally uncharged. We use slab geometry, i.e. in 

order to satisfy periodic boundary conditions our simulation cells are of the form 

vacuum/H2O/HA/H2O/vacuum. On each side of the HA surface we deposit 24 H2O 

molecules. We run molecular dynamics simulations (as implemented in the VASP code) 

on the structure with the time-step 0.5 fs, at temperature 300 K, for a total of ~ 1200 fs to 

equilibrate the water molecules. 
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The macroscopic wetting properties of the HA surface with H2O can be studied straight 

forwardly using the Gibbs free energy approach (see description in Chapter 2). The 

interface energy is given by 

 OHHAOHtoti AEEEA
22

22   , (6.5) 

where σi is the interface energy, Etot is the total energy computed for the entire system, 

EH2O is the energy contribution from the water molecules, and σH2O is water’s surface 

energy. The last term σH2O in (6.5) is introduced as the water in the simulation cell is 

facing vacuum. We substitute the substrate energy as follows: 

 HA

vac

HAHAHAsubHA AEAAEE  222  . (6.6) 

 

Fig. 6.5: HA/H2O interface model. We substitute the indicated atoms by Si, Na or Mg to 

simulate the doped HA surface’s interaction with water. The HA layer is 

~20 Å thick. The HA surface is covered with a12 Å thick water layer, 

followed by vacuum. 
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We can calculate vac

HAE  in a separate slab calculation. Next, we take the surface and 

interface energy to the left of equation (6.5): 

   AEEE vac

HAOHtotHAOHi 2
22
  . (6.7) 

Every value on the right hand side of equation (6.7) we can calculate from first 

principles. The wetting condition for H2O to wet HA is: 

 HAOHi  
2

. (6.8) 

Comparison with equation (6.7) shows that we can predict the wetting behavior of the 

doped HA surface using (6.7). Instead of Etot we use the time averaged total energy totE  

for each interface model: 

 



N

i

itottot E
N

E
1

,

1
. (6.9) 

The sum runs over all N time steps in the molecular dynamics simulation. For the H2O 

energy we simply use 1

22 OHOH
EnE  , where 

1

2OHE  is the total energy per single H2O 

molecule, and n is the number of H2O molecules in the cell. We calculate vac

subE  in a 

separate slab calculation with vacuum, just removing the H2O molecules and relaxing the 

total energy. Our results are summarized in Table 1.  

Table 6.1: Energy calculated in the right hand side of equation (6.7). Negative energy 

means that H2O wets the (doped) HA substrate, positive energy indicates 

that the substrate repels water. We find both ionically charged surfaces to 

repel water while the neutral ones are hydrophilic. 

element Na Si Mg HA 

 nominal interface charge [C] -1 -1 0 0 

σi + σH2O - σsub [eV] 0.54 0.20 -0.06 -0.06 
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To satisfy the wetting condition (6.8) the right hand side in (6.7) must take on negative 

values. We find that Na and Si substitutions repel water! We are unaware of any other 

explicit theoretical evidence of this behavior in previous literature. Repelling water 

molecules might be the first step necessary to initialize the biomineralization as it creates 

space for other elements such as Ca or phosphates to deposit. In fact, both Na and Si 

substitutions are found to improve HA’s bioactivity [152, 153]. On the other hand, the 

bare HA surface and Mg mixed surface lead to a hydrophilic behavior which could be 

regarded as reducing HA’s bioactivity as the water layer on the surface is more difficult 

to penetrate for crystal formation. Accordingly, reported experimental studies point out 

that the Mg doped HA surface inhibits further HA crystal growth of the apatite in 

solution and even destabilizes the crystal’s structure, converting it to β-TCP 

[35,153,157,158]. It is worth noting that both hydrophobic surfaces have a net ionic 

charge -1e, whereas the hydrophilic surfaces have zero net ionic charge. That might give 

a hint for the water repelling property of the doped HA surface and might in the same 

time be the first step to a clear theoretical understanding of HA’s bioactivity. 

 

6.4 SUMMARY 

In summary, we find a low energy interface between HA and TiO2. Our interface 

model indicates strong adhesion between HA and the TiO2 substrate. Based on that model 

more adhesive interfaces can be created. The band alignment between TiO2 and HA in 

our model is such that their valence band tops are 0.5 eV apart. We also describe the 

bioactivity of HA in a theoretically graspable quantity, in this case the water repelling 

property of the HA surface. We find the substitutes Na and Si to make the HA substrate 

hydrophobic, while the bare HA surface and the Mg doped surface are hydrophilic. 
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Indeed, it was reported that the Na and Si doped HA shows improved bioactivity 

compared to the bare HA surface, and the Mg doping to even lower the bioactivity of the 

HA surface suggesting a possible connection between bioactivity and waters wetting 

behavior on HA. 
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