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This dissertation studies the problem of optimal investment in a fund

charging high-water mark fees. We consider a market consisting of a riskless

money-market account and a fund charging high-water mark fees at rate λ,

with share price given exogenously as a geometric Brownian motion. A small

investor invests in this market on an infinite time horizon and seeks to maxi-

mize expected utility from consumption rate. Utility is taken to be constant

relative risk aversion (CRRA). In this setting, we study the asymptotic behav-

ior of the value function for small values of the fee rate λ. In particular, we

determine the first and second derivatives of the value function with respect

to λ. We then exhibit for each λ explicit sub-optimal feedback investment

and consumption strategies with payoffs that match the value function up to

second order in λ.
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Chapter 1

Introduction

Investment funds charge investors fees for their services. Common fee

structures include proportional fees, in which the investor pays a fixed per-

centage of the total investment on a yearly basis, and high-water mark fees

in which the investor pays a fixed proportion of any profit made from the in-

vestment. These fee structures are often combined; a typical fee structure for

hedge funds is the “2/20 rule”, a combination of a 2% proportional fee and a

20% high-water mark fee.

There is a growing subset of the finance literature examining how the

high-water mark fee structure affects the behavior of the fund manager, the

recipient of the fees. Panageas and Westerfield [22] consider a risk-neutral

manager who seeks to maximize the present value of her fee stream on an

infinite horizon. Although their payoff is convex in this setting, managers do

not put unbounded weights on risky assets in this setting; rather, risk-seeking

behavior occurs only when the fund manager is constrained to a finite time

horizon. Brown, Goetzmann, and Park [4] find empirically that excessively

risky investment on the part of the fund manager increases the likelihood of

termination for the hedge fund, and that the reputation costs associated with
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termination offset the incentive toward risky behavior posed by the high-water

mark fees. Goetzmann, Ingersoll Jr., and Ross [12] give a closed form descrip-

tion of the value of a high-water mark contract as a claim on the investor’s

wealth.

In the mathematical finance literature, Guasoni and Ob lój [14] study

the problem of fund manager who seeks to maximize his expected utility from

high-water mark fees on a large time horizon. In [16], on the other hand,

Janeček and Ŝırbu examine the high-water mark fee structure from the per-

spective of the investor. They introduce a continuous-time model for optimal

investment and consumption in a market consisting of a fund charging high-

water mark fee at rate λ and a riskless money-market account with zero interest

rate. Their model allows continuous trading in and out of the fund, and is

a modification of the classical optimal investment and consumption problem

of Merton introduced in the seminal papers [20], [21]. This model yields an

optimal control problem in which the state process is a two-dimensional re-

flected controlled diffusion. Assuming power utility, infinite time horizon, and

a market consisting of a riskless bond and the fund (with share price given ex-

ogenously as a geometric Brownian motion), they show that the value function

vλ of this problem is a classical solution of the corresponding HJB equation.

As a result, the optimal investment and consumption strategies are given in

feedback form in terms of the value function and its derivatives. This HJB

equation cannot be solved in closed form, however, so this result is of limited

use for making explicit quantitative statements about how the model param-
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eters, the high-water mark fee rate λ, and the current high-water mark (or

equivalently, the “distance to paying fees”) affect the investor’s behavior. For

this, we must rely on numerical approximations.

The problem of optimal investment in a fund charging high-water mark

fee is closely related to the problem of optimal investment with drawdown con-

straint. In the absence of consumption, investment strategies which satisfy a

drawdown constraint with proportion λ (with no fees imposed) are exactly

those which satisfy a no-bankruptcy constraint when used to invest in a fund

charging high-water mark fee at rate λ
1+λ

. In the mathematical finance lit-

erature, optimal investment with drawdown constraint was first studied by

Grossman and Zhou [13]; in their work, the payoff of an investment strategy

was given by the long-term growth rate of expected utility of wealth. Cvitanić

and Karatzas [7] then extended these results by approximating the long-term

growth with auxiliary finite horizon utility maximization problems without

drawdown constraint, which could then be solved using convex duality tech-

niques. More recently, Roche [23] and Elie and Touzi [9] explicitly solved the

infinite horizon investment/consumption problem with drawdown constraint.

The present work carries out an asymptotic analysis of the value func-

tion vλ for small λ in the framework of [16]. In particular, we characterize the

first and second derivatives v1 and v2 of vλ with respect to λ as solutions of lin-

ear PDE which can be explicitly solved. We are therefore able to quantify how

the “loss” due to high-water mark fees depends both on the the fee rate λ, the

model parameters, and the high-water mark itself. In addition, we use this
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asymptotic expansion to produce explicit feedback investment/consumption

strategies (θ̂λ, ĉλ) with the property that:

v̂λ = vλ + o(λ2) as λ→ 0

where v̂λ is the expected payoff corresponding to the feedback strategy (θ̂λ, ĉλ).

Conceptually, our work is analogous to a number of works in the litera-

ture of optimal investment in markets with frictions such as transaction costs.

Often in this literature, one can characterize the value function as a (possi-

bly smooth) solution of an HJB equation, but cannot solve the HJB equation

explicitly. For instance, in the context of the investment/consumption prob-

lem with proportional transaction costs introduced by Davis and Norman [8],

Shreve and Soner [24] show that the value function is a smooth solution of a

certain free boundary problem, and that the optimal investment/consumption

strategies are given in terms of the free boundaries. Neither the value function

nor the free boundaries can be determined explicitly, however. Whalley and

Wilmott [26] carry out a formal asymptotic analysis of the pricing and hedging

of European options with proportional transaction costs. Janeček and Shreve

[15] then exhibit a rigorous asymptotic expansion of the value function of the

problem of [24] in powers of ε1/3, where ε is the rate of proportional transaction

cost, and obtain asymptotic results on the location of the free boundary.

More recently, Altarovici, Muhle-Karbe, and Soner [1] obtained a simi-

lar expansion in powers of ε1/4 for the value function of the optimal investment

problem with fixed transaction costs. Again, this expansion also leads to an
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explicit sub-optimal strategy, the payoff of which matches the value function

upto order ε1/2.

At the technical level, our approach is perhaps most similar to that

of [1], in that it is uses the techniques introduced by Barles and Perthame

[3] and Evans [10]. First, we follow [3] in defining upper and lower relaxed

semilimits for the derivatives v1 and v2 of v with respect to λ. We then

show that the upper (resp. lower) relaxed semilimit is a viscosity subsolution

(resp. supersolution) of an appropriate differential equation by adapting the

perturbed test function method of [10]. Finally, we use a comparison principle

to conclude that the upper and lower relaxed semilimits coincide, so that the

first and second derivatives of vλ with respect to λ are well-defined.

The relaxed semilimit approach of [3] was intended to deal with the case

of discontinuous viscosity solutions and is in principle a more general approach

than is needed for our case; the value functions vλ at fixed λ are known to be

smooth, thanks to [16]. However, most of the technical effort of our approach

lies in checking the boundedness of the difference quotients

Q1,λ =
vλ − v0

λ
, Q2,λ =

vλ − (v0 + λv1)

λ

and their derivatives for small λ (and not in verifying the viscosity solution

property of the resulting relaxed semilimits, which is rather straightforward).

Some boundedness of this kind would be necessary for more classical ap-

proaches as well, so there is little additional cost to our more general method.

The works on proportional and fixed transaction costs cited above em-
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ploy the PDE-based methods of stochastic control theory. On the other hand,

there is a considerable literature treating the problem of optimal investment

with proportional transactions costs via martingale methods and convex dual-

ity techniques; see the seminal papers of Jouini and Kallal [17] and Cvitancić

and Karatzas [7]. In this spirit, Gerhold, Muhle-Karbe and W. Schachermayer

[11] use techniques of convex duality to generalize the work of [15], obtaining

fractional Taylor expansions of arbitrarily high order for the value function

and the location of free boundary. In our setting, the value function vλ is

concave, so it is natural to ask whether the problem for fixed λ can be solved

using convex duality techniques, and also whether duality can be applied to an

asymptotic expansion. The state process in the case of high-water mark fees

depends in a highly non-linear way on the strategies used, however, so it is not

obvious how to adapt the usual arguments of convex duality. In particular,

no analog of the classical martingale representation theorem or the optional

decomposition theorem of [19] used in other settings is available.
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Chapter 2

Asymptotics for optimal investment with

high-watermark fee

2.1 The optimal investment problem for fixed fee rate
λ

In this section, we introduce the model and principal results of [16].

2.1.1 A basic model for investment with high-water mark fees

To begin with, we present a model of investment without consumption

in a fund charging high-water mark fee. We consider a market consisting of a

riskless asset with zero interest rate and a risky fund with exogenously given

share price Ft dollars per share at time t. A small investor chooses between

these two assets and can freely and continuously rebalance his investment in

them. In the absence of fees, the investor’s accumulated profit from investment

in the fund has the dynamics

dPt = αt
dFt
Ft

P0 = 0

where αt is the dollar amount invested in the fund at time t. Since the in-

terest rate of the riskless asset is zero and the investor does not consume, the
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investor’s wealth is given by

Xt = x+ Pt

where x is the initial wealth endowment.

In order to assess the high-water mark fee, the fund manager keeps

track of the profits the investor has made from investment in the fund. That

is, the fund manager keeps track of the high-water mark

P ∗t
∆
= sup

0≤s≤t
Ps.

Whenever his profit P exceeds the historical high-water mark P ∗, the investor

pays the fund manager a proportion λ of the excess profit. The investor’s

profit under high-water mark fee thus evolves as

dPt = αt
dFt
Ft
− λd

(
sup

0≤s≤t
Ps

)
(2.1)

P0 = 0.

To work in the dynamic programming framework, we must also introduce the

notion of an initial high-water mark i ≥ 0, a profit level which the investor

must achieve before any fees are applied. This is a mathematical convenience;

in practice, one has i = 0. With initial high-water mark i, the investor’s profit

evolves according to

dPt = αt
dFt
Ft
− λd

(
sup

0≤s≤t
(Ps ∨ i)

)
(2.2)

P0 = 0.
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In this case, the high-water mark is

P ∗t = sup
0≤s≤t

(Ps ∨ i)

While equation (2.2) is implicit, it turns out that there is a unique solution

that has a closed form expression in terms of the process It =
∫ t

0
αt

dFt
Ft
dt. We

reproduce Proposition 2.1 of [16] below.

Proposition 2.1.1. Assume the share price process Ft is a continuous, strictly

positive semimartingale, and that the predictable process αt is chosen so that

It =

∫ t

0

αt
dFt
Ft

is well defined. Then equation (2.2) has the unique solution

Pt = It −
λ

1 + λ
max
0≤s≤t

[Is − i]+ (2.3)

P ∗t = i+
1

1 + λ
max
0≤s≤t

[Is − i]+. (2.4)

Remark 2.1.1. Recall the famous Skorohod equation (see [18], chapter 3, page

210 and following); given i ≥ 0 and a continuous function f : [0,∞)→ R with

f(0) = 0, there exists a unique continuous function k such that

1. g(t) = i+ f(t) + k(t) ≥ 0 for all t.

2. k is non-decreasing with k(0) = 0.

3.
∫ t

0
1[g(s)>0]dk(s) = 0 for all t.

9



Explicitly, the solution is given by

k(t) = max
0≤s≤t

[−f(s)− i]+.

Set ∆ = P ∗ − P . In other words, ∆ is the “distance to paying fees”. Note

that ∆ ≥ 0, and ∆ satisfies the equation

d∆t = −αt
dFt
Ft

+ (1 + λ)dP ∗t

∆0 = i.

We also have ∫ t

0

1[∆s>0]dP
∗
s = 0 for all t.

Therefore, (1 + λ)P ∗ is the solution k to the Skorohod equation above, with

f(t) = −
∫ t

0
αs

dFs
Fs

.

2.1.2 High-water mark fees with consumption

We are interested in modeling optimal investment and consumption

with a no-bankruptcy constraint. As in the previous section, let x denote the

investor’s initial wealth, i the initial high-water mark. As before, the market

consists of a riskless asset with interest rate zero and a fund with share price

Ft. Let γt denote the investor’s rate of consumption (as a dollar amount per

unit of time), and let Ct denote the accumulated consumption Ct =
∫ t

0
γsds.

The investor’s profit from investment now evolves according to

dPt = α
dFt
Ft
− λd

(
sup

0≤s≤t
(Ps ∨ i)

)
P0 = 0.
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Due to the presence of consumption, the investor’s wealth is given by

Xt = x+ Pt − Ct.

In this case, the high-water mark should track not the investor’s wealth, but

instead the profit P ; that is, the investor’s choice to consume some of his

wealth should not affect the fund manager’s record of the profit the investor

has made through investing in the fund. Setting n = x + i, the high-water

mark is therefore

P ∗t = sup
0≤s≤t

(Ps ∨ i)

= sup
0≤s≤t

[(Xs + Cs − n) ∨ i]+

Following [16], we take (X,N) as a state, where X is the investor’s wealth and

N = x+ P ∗ − C, so that the state process is given in differential notation by

dXt = αt
dFt
Ft
− γtdt− λdP ∗t

X0 = x, (2.5)

dNt = dP ∗t − γtdt

N0 = n ≥ x.

The rationale for this choice of state is as follows; as usual, the wealth X

should be a state. However, we cannot use (X,P ∗) as a state because this

choice does not encode information about past consumption. The choice of

state (X,N) also leads to a natural choice of domain for the problem; we

always have X ≤ N , and high-water mark fees are paid exactly when the
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state is on the boundary X = N of the domain. The equation (2.5) represents

a two-dimensional reflected diffusion on the domain

D = {(x, n) : 0 < x ≤ n)}

with reflection of size P ∗ along the line {x = n} in the oblique direction

(−λ, 1).

In our model, the fund price per share is given exogenously as a geo-

metric Brownian motion; that is,

dFt = Ft(µdt+ σdWt)

where (Wt)0≤t<∞ is a Brownian motion on a filtered probability space

(Ω,F, (Ft)0≤t<∞). The filtration (Ft)0≤t<∞ is assumed to satisfy the usual

conditions. We then have the following result on existence and uniqueness of

solutions of (2.5) (Proposition 2.2 of [16]).

Proposition 2.1.2. Suppose that the predictable processes αt and γt satisfy

the integrability condition

P
(∫ t

0

(
α2
u + γu

)
du <∞ for all t ∈ [0,∞)

)
= 1, (2.6)

and make the notation

It =

∫ t

0

αu
dFu
Fu

, Ct =

∫ t

0

γudu,

Then equation (2.5) has a unique solution, which can be written as

Xt = x+ It − Ct −
λ

1 + λ
max
0≤s≤t

[Is − i]+, (2.7)

Nt = n+
1

1 + λ
max
0≤s≤t

[Is − i]+ − Ct. (2.8)

12



The high-water mark is given by

P ∗t = Nt + Ct − x

= i+
1

1 + λ
max
0≤s≤y

[Is − i]+.

2.1.3 The optimal investment/consumption problem

Definition 2.1.1. A pair (α, γ) of predictable processes is called admissible

with respect to the initial conditions (x, n) if the integrability conditions of

Proposition 2.1.2 are satisfied, the consumption stream γt is non-negative for

all t, and Xt is strictly positive for all t. We denote by Aλ(x, n) the collection

of strategies which are admissible for fee level λ and initial condition (x, n).

The preferences of the investor are modeled using expected (discounted)

utility from consumption. Explicitly, for (x, n) ∈ D = {(x, n)|0 ≤ x ≤ n}, the

value function for the optimal investment problem with fee level λ is given by

vλ(x, n) = sup
(α,γ)∈Aλ(x,n)

E
[∫ ∞

0

e−βtU(γt)dt

]
(2.9)

Here β > 0 is a discount factor and utility is taken to be of constant relative

risk aversion (CRRA) with

U(x) =
x1−p

1− p
, p > 0, p 6= 1.

2.1.4 Homotheticity and one-dimensional notational conventions

The value function vλ has a homotheticity property which will be used

extensively.
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Proposition 2.1.3. We have

vλ(x, n) = x1−pvλ(1, n/x).

As a result, we can express vλx and vλxx in terms of vλ, vλn, and vλnn

vλx(x, n) =x−p
(

(1− p)vλ(1, n/x)−
(n
x

)
vλn(1, n/x)

)
vλxx(x, n) =x−1−p

(
− p(1− p)vλ(1, n/x) + 2p

(n
x

)
vλn(1, n/x)

+
(n
x

)2

vλnn(1, n/x)

)
vλn(x, n) =x−pvλn(1, n/x)

(2.10)

In light of the relations (2.10), we introduce the following one-dimensional

notation for the value function v and its derivatives.

wλ(y)
∆
= vλ(1, y)

wλx(y)
∆
= vλx(1, y)

= (1− p)wλ(y)− ywλy (y)

wλxx(y)
∆
= vλxx(1, y) (2.11)

= −p(1− p)wλ(y) + 2pywλy (y) + y2wλyy(y)

wλy (y)
∆
= wλn(y)

∇wλ(y)
∆
= (wλx , w

λ
n)

14



With y = n/x, we therefore have

vλ(x, n) = x1−pwλ(y)

vλx(x, n) = x−pwλx(y) (2.12)

vλxx(x, n) = x−1−pwλxx(y)

vλn(x, n) = x−pwλy (y)

This slight abuse of notation will eventually allow us to write various PDEs

for functions with homotheticity properties as one-dimensional ODEs, but in

a way that resembles the more recognizable two-dimensional equation. We

will always use y as the coordinate n/x on the line {(1, n/x) : n ≥ x}. On the

other hand, the letter z will be used as an abbreviated way of referring to a

point (x, n) in the two dimensional domain D = {(x, n) : 0 < x ≤ n}.

In general, the letter v (plus other additional decorations) will be used

to denote a two-dimensional function with the homotheticity property, and the

letter w (plus the same decorations) will be used to denote the one-dimensional

version of this function, evaluated along {(1, n/x) : n ≥ x}. The same conven-

tions (2.11) for the partial derivatives of w will hold. This abuse of notation

will apply to operators as well; in other words, if v : D → R has the homo-

theticity property and H is a differential operator defined for functions on D,

then we will make the notation

(Hw)(y) = (Hv)(1, y).

15



In the case that H has the structure

Hv = A(y)x1−p +B(y)v + C(y)xvx +D(y)x2vxx + E(y)xvn (2.13)

where y = n/x, then we have

Hv(x, n) = x1−pHw(n/x),

a fact that will later be used to reduce the HJB equation for vλ to an ODE

for wλ.

2.1.5 The HJB equation and the main results of [16]

We can formally derive an HJB equation for vλ by applying Itô’s lemma

to the process vλ(Xt, Nt), where (Xt, Nt) is a state process corresponding to

some strategy (α, γ). For convenience, we will write the strategy in terms of

proportions θt = αt/Xt and ct = γt/Xt. Define the process

Zt = e−βtvλ(Xt, Nt) +

∫ t

0

e−βuU(cuXu)du,

which we expect to be a supermartingale if (θ, c) is a suboptimal strategy, and

a martingale if (θ, c) is optimal. Then we have

dZt = e−βt
(
− βv(Xt, Nt) + µθtXtv

λ
x(Xt, Nt) +

1

2
(σθtXt)

2vλxx(Xt, Nt)

+U(ctXt)− ctXt(vx(Xt, Nt) + vn(Xt, Nt))

)
dt (2.14)

+e−βt (σθtXt) dWt + e−βt(vλn(x, n)− λvλx(x, n))dP ∗t

Now dP ∗t is supported on the set of times {t : Xt = Nt} so we expect dP ∗t

to be a singular measure. If Zt is to be a martingale, we expect the singular
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and absolutely continuous drift terms of (2.14) to be separately zero. We can

therefore formally derive the following HJB equation for vλ:

sup
θ∈R,c≥0

Lθ,cvλ = 0 on {(x, n) : 0 < x < n}

vλn(x, x)− λvλx(x, x) = 0 for x > 0 (2.15)

lim
n→∞

vλ(x, n) = v0(x)

where we have defined

Lθ,cu
∆
= −βu+ µθxux +

1

2
(σθx)2uλxx + U(cx)− cx(ux + un) (2.16)

Maximizing over c, we may write rewrite the interior condition in (2.15) as

−βu+ sup
θ∈R

[
µθxvλx +

1

2
(σθx)2vλxx

]
+ Ũ((vλx + vλn)x) = 0. (2.17)

Here Ũ is the Legendre transform of the utility function:

Ũ(x̃) = sup
x>0

[U(x)− xx̃]

= U(I(x̃))− x̃I(x̃)

where I = (U ′)−1 is the inverse of the marginal utility.

Remark 2.1.2. Note that the operators Lθ,c have the structure of (2.13). There-

fore, we have

Lθ,cvλ(x, n) = x1−pLθ,cwλ(n/x).
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A similar remark applies to the boundary condition of (2.15), and we therefore

have the one-dimensional version of the HJB equation:

sup
θ∈R,c≥0

Lθ,cwλ = 0 on (1,∞)

wλy (1)− λwλx(1) = 0 (2.18)

lim
y→∞

wλ(y) = w0

where, following our notational conventions, w0 = v0(1). If wλ is a classical

solution of (2.18), then it follows from the homotheticity properties that vλ is

a classical solution of (2.15).

We now give the principal result of [16].

Theorem 2.1.4. 1) The function vλ(x, n) = x1−pwλ(n/x) is C2 on {(x, n) :

0 < x ≤ n} and a classical solution of (2.15). We also have

vλx(x, n) > 0, vλn(x, n) > 0, vλxx(x, n) > 0, for 0 < x ≤ n

and further,

lim
n→∞

nvλn(x, n) = lim
n→∞

n2vλnn(x, n) = 0 (2.19)

2) Define the feedback proportions

θλ(x, n) = − µ

σ2

vλx(x, n)

xvλxx(x, n)
(2.20)

cλ(x, n) =
I(vλx(x, n) + vλn(x, n))

x
(2.21)
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where I = (U ′)−1. Then the closed loop equation

dXλ
t = θλ(Xλ

t , N
λ
t )Xλ

t

dFt
Ft
− cλ(Xλ

t , N
λ
t )Xλdt− λ

(
dNλ

t + c(Xλ
t , N

λ
t )Xλ

t dt
)
,

Xλ
0 = x

Nt = sup
0≤s≤t

[(
Xλ
s +

∫ s

0

cλ(Xλ
u , N

λ
u )Xλ

udu

)
∨ n
]
−
∫ t

0

cλ(Xλ
u , N

λ
u )Xλ

udu

N0 = n

has a unique global strong solution (Xλ, Nλ) such that 0 < Xλ ≤ Nλ, and the

resulting payoff is optimal, i.e.

vλ(x, n) = E
[∫ ∞

0

e−βtU(cλ(Xλ
t , N

λ
t )Xλ

t )dt

]
Remark 2.1.3. Note that from the relations (2.10) and the fact that I(x̃) = x̃−p,

we actually have

θλ(x, n) = − µ

σ2

wλx(y)

wλxx(y)
(2.22)

cλ(x, n) = I(wλx(y) + wλn(y)) (2.23)

where y = n/x. In other words, the optimal strategy depends only on n/x,

and can be expressed solely in terms of w. We will therefore commit the slight

abuse of notation

θλ(y) = θλ(x, n)

cλ(y) = cλ(x, n). (2.24)

For reference, we recall the explicit solution to the optimal investment problem

without fees.
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Proposition 2.1.5. Let v0 denote the Merton value function. Then we have

v0 <∞ if and only if

β − 1

2

(
1− p
p

)
µ2

σ2
> 0 (2.25)

Suppose that (2.25) hold. Then the optimal feedback investment and consump-

tion proportions FOR λ = 0 are given by

θ0 =
µ

pσ2
, c0 =

β

p
− 1

2

(
1− p
p2

)
µ2

σ2
(2.26)

Moreover, v0 is a C2 solution of the HJB and is given in closed form by

v0(x, n) =
1

1− p
(c0)−px1−p, 0 < x ≤ n (2.27)

Finally, the concavity of the value function will be used throughout. To

simplify the proof of concavity, we will make use of the existence of optimal

strategies for each (x, n) proven in Theorem 2.1.4, though this result is not

strictly needed for the argument.

Proposition 2.1.6. The value function vλ is concave on D.

Proof. The argument relies on the convexity of the pathwise running maximum

which appears in the state equation. Pick points (x1, n1), (x2, n2) in D. Let

(αi, γi) be the optimal investment strategy for initial state (xi, ni), given in

dollar amounts. Let b ∈ [0, 1]. Since the utility function is concave, it will

suffice to show that

(α, γ)
∆
= (bα1 + (1− b)α2, bγ1 + (1− b)γ2) ∈ Aλ(x, n),
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where (x, n) = (bx1 + (1 − b)x2, bn1 + (1 − b)n2). In other words, we need to

show the wealth process X corresponding to the initial condition bx1 + (1 −

b)x2, bn1 + (1− b)n2 and strategy (α, γ) is non-negative. Let Y i
t =

∫ t
0
αi dFu

Fu
du

and Ci
t =

∫ t
0
γudu, and let X i denote the wealth process corresponding to

strategy (αi, γi) and initial condition (xi, ni). Then

Xt = b(x1 + Y 1
t − C1

t ) + (1− b)(x2 + Y 2
t − C2

t )

− λ

1 + λ
sup

0≤s≤t
b([Y 1

s − (n1 − x1)) + (1− b)(Y 2
s − (n2 − x2))]+

Then observe that since the map x 7→ x+ is convex,

sup
0≤s≤t

[bY 1
s + (1− b)Y 2

s − (n− x)]+ ≤ sup
0≤s≤t

(
b[Y 1

s − (n1 − x1)]
+

+(1− b)[Y 2
s − (n2 − x2)]

+
)

≤ b sup
0≤s≤t

[Y 1
s − (n1 − x1)]

+

+(1− b) sup
0≤s≤t

[Y 2
s − (n2 − x2)]

+

Therefore

Xt ≥ b

(
x1 + Y 1

t − C1
t −

λ

1 + λ
sup

0≤s≤t
[Y 1 − (n1 − x1)]+

)
+(1− b)

(
x1 + Y 1

t − C1
t −

λ

1 + λ
sup

0≤s≤t
[Y 1 − (n1 − x1)]+

)
= bX1

t + (1− b)X2
t > 0 (2.28)

which completes the proof.
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2.2 Heuristic derivation of the corrector equations

In this subsection, we give formal derivations of the PDEs which we

expect to characterize the derivatives of the value function with respect to λ:

v1(x, n) =
d

dλ
vλ(x, n)

∣∣∣∣
λ=0

v2(x, n) =
d2

dλ2
vλ(x, n)

∣∣∣∣
λ=0

We then construct feedback proportions θ̂λ, ĉλ given explicitly in terms of v1

for which we expect to have

v̂λ(x, n) = vλ(x, n) + o(λ2),

where v̂λ(x, n) is the payoff of investing and consuming at the feedback pro-

portions θ̂λ, ĉλ while facing fees at rate λ.

2.2.1 Derivation of the corrector equations and approximately op-
timal strategies

Typically in the literature on asymptotics, one identifies two different

sources of loss due to frictions. On one hand, there is the loss of wealth due to a

transaction cost itself. On the other, there is also a loss due to “displacement”

from the Merton proportion. In the case of proportional transaction costs, for

example, an investor cannot maintain the Merton proportion; the continuous

rebalancing of assets required to maintain the Merton proportion would result

in bankruptcy. Janecek and Shreve [15] give heuristics to quantify the trade-

off between loss due to transaction costs and loss due to displacement; if the
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investor faces transaction costs of size ε and keeps his state within a “no-

transaction region” of size εq around the Merton proportion, then loss due to

displacement should be of order ε2q, and loss due to transaction costs should

be of order ε1−q. The choice q = 1/3 balances these losses; the investor should

use a no transaction region of size ε1/3, leading to the minimal total loss of

order ε2/3 in the value function. From these heuristics, the authors assume a

formal expansion of the value function in powers of ε1/3 (where the coefficient

of ε1/3 is zero).

In our case, there is a loss of roughly order λ due to the fees themselves.

On the other hand, there is no analogous loss due to displacement; the Merton

proportion is an admissible strategy. For this reason, we suppose that the value

function has an expansion in powers of λ:

vλ = v0 + λv1 +
λ2

2
v2 + o(λ2).

To derive PDEs which characterize the derivatives vk of the value function

with respect to λ, we further assume formally that derivatives with respect to

the state variables (x, n) and the fee level λ commute, in the sense that

vλx = v0
x + λv1

x +
λ2

2
v2
x + o(λ2)

vλxx = v0
xx + λv1

xx +
λ2

2
v2
xx + o(λ2) (2.29)

vλn = v0
n + λv1

n +
λ2

2
v2
n + o(λ2)

. . .

We derive PDEs for v1 and v2 by plugging this expansion into the HJB equa-

tion for vλ and equating distinct powers of λ. To begin with, the boundary
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condition

vλn(x, x)− λvx(x, x) = 0

gives rise to the separate boundary conditions

v1
n(x, x)− v0

x(x, x) = 0 (2.30)

v2
n(x, x)− 2v1

x(x, x) = 0 (2.31)

On the interior, vλ satisfies

0 = −βvλ + sup
θ,c≥0

[
µθxvλx +

1

2
(σθx)2vλxx + Ũ(vλx + vλn)

]
= −βvλ + µθλ(x, n)xvλx +

1

2
(σθλ(x, n)x)2vλxx + Ũ(vλx + vλn). (2.32)

To determine which equations v1 and v2 should satisfy on the interior of the

domain, we expand θλ, cλ in terms of λ and separate the various powers of λ

in the resulting expression. Computing the derivatives of θλ, cλ with respect

to λ, we have the formal expansions

θλ(x, n) = θ0 + λθ1(x, n) + o(λ)

cλ(x, n) = c0 + λc1(x, n) + o(λ)

where θ0 and c0 are the optimal Merton investment/consumption proportions

and

θ1 = − µ

σ2

v0
xxv

1
x − v1

xxv
0
x

xv0
xx

(2.33)

c1 =
I ′(v0

x(x, n))(v1
x(x, n) + v1

n(x, n))

x
(2.34)

24



Plugging this into equation (2.32) and separating distinct powers of λ, we

obtain

0 = −βv0 + µθ0xv0 +
1

2
(σθ0x)2v0

xx + Ũ(v0
x)

+λ

(
−βv1 + µθ0xv1

x +
1

2
(σθ0x)2v1

xx + Ũ ′(v0
x)(v

1
x + v1

n)

)
+
λ2

2

(
−βv2 + µθ0v2

x +
1

2
(σθ0x)2v2

xx + Ũ ′(v0
x)(v

2
x + v2

n)

)
(2.35)

+λ2

(
µθ1xv1

x + σθx2v1
xx +

1

2
(σθ1x)2v0

xx +
1

2
Ũ ′′(v0

x)(v
1
x + v1

n)2

)
+o(λ2)

Now, the first line of (2.35) is equal to zero since v0 satisfies the usual friction-

less HJB equation. Separately equation of distinct powers of λ to zero, we can

now write down the first- and second-order corrector equations for v1 and v2,

Av1 = 0

v1
n(x, x)− v0

x(x, x) = 0 (2.36)

lim
n→∞

v1(x, n) = 0

and

Av2 + g = 0

v2
n(x, x)− v1

x(x, x) = 0 (2.37)

lim
n→∞

v2(x, n) = 0
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where

Au
∆
= −βu+ µθ0xux +

1

2
(σθ0x)2uxx + Ũ(v0

x)(ux + un)

g
∆
= 2

[
µθ1xv1

x + σθ0θ1x2v1
xx +

1

2
(σθ1x)2v0

xx +
1

2
Ũ ′′(v0

x)(v
1
x + v1

n)2

]

2.2.2 Approximately optimal strategies

Let v̂λ denote the payoff of the feedback investment/consumption pro-

portions θ̂λ = θ0 + λθ1, ĉλ = c0 + λc1 at fee level λ. In this section, we

discuss the reasoning behind the claim that v̂λ = vλ + o(λ2). For simplicity,

we will restrict our attention to the investment strategy θ, ignoring consump-

tion. Usually, one expects that if a parametric family of investment strategies

θ̄ε are within o(ε) of the optimal strategy, then the resulting payoffs are within

o(ε2) of the optimal payoff. Roughly speaking, this is because we expect the

payoff to be locally quadratic around its maximum. By construction, we do

have

|θ̂λ(x, n)− θλ(x, n)| = o(λ) (2.38)

In this section, we check formally that the path-by-path strategies (i.e. open-

loop controls) resulting from the feedback strategies θλ and θ̂λ match up to

first order as well. Let Θ(λ, x, n) = θλ(x, n), so that the optimal investment

strategy at fee level λ has the path-by-path expression Θ(λ,Xλ, Nλ), where

(Xλ, Nλ) is the trajectory of the optimal state process. Let (X̂λ, N̂λ) denote

the state process determined by the feedback strategy θ̂λ, ĉλ and fee level λ.

Then the path-by-path investment strategy determined by the feedback control
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θ̂λ, ĉλ is θ̂λ(X̂λ, N̂λ). We expect that

Θ(λ,Xλ, Nλ) = θ̂λ(X̂λ, N̂λ) + o(λ) (2.39)

Indeed, formally, we have

d

dλ
Θ(λ,Xλ, Nλ)

∣∣∣∣
λ=0

= Θλ(0, X
0, N0) (2.40)

+Θx(0, X
0, N0)

dXλ

dλ

∣∣∣∣
λ=0

+ Θn(0, X0, N0)
dNλ

dλ

∣∣∣∣
λ=0

= Θλ(0, X
0, N0) + Θx(0, X

0, N0)
dXλ

dλ

∣∣∣∣
λ=0

= θ1(X0, N0) + θ0
x(X

0)
dXλ

dλ

∣∣∣∣
λ=0

because Θ(0, x, n) is constant in n (in the case of power utility, Θ(0, x, n) is a

constant). So formally writing a Taylor expansion, we should have

Θ(λ,Xλ, Nλ) = θ0(X0) + λ

(
θ1(X0, N0) + θ0

x(X
0)
dXλ

dλ

∣∣∣∣
λ=0

)
+ o(λ)

On the other hand, we also formally compute that

d

dλ
θ̂λ(X̂λ, N̂λ)

∣∣∣∣
λ=0

=
d

dλ

(
θ0(X̂λ) + λθ1(X̂λ, N̂λ)

) ∣∣∣∣
λ=0

= θ0
x(X

0)
dX̂λ

dλ

∣∣∣∣
λ=0

+ θ1(X0, N0)

Therefore, we should have

θ̂λ(X̂λ, N̂λ) = θ0(X0)

+λ

(
θ0
x(X

0)
dX̂λ

dλ

∣∣∣∣
λ=0

+ θ1(X0, N0)

)
+ o(λ)
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As a result, we obtain

Θ(λ,Xλ, Nλ)− θ̂λ(X̂λ, N̂λ) = λθ0
x(X

0)
d

dλ

(
Xλ − X̂λ

) ∣∣∣∣
λ=0

+ o(λ) (2.41)

Heuristically, we expect to have

dXλ

dλ

∣∣∣∣
λ=0

=
dX̂λ

dλ

∣∣∣∣
λ=0

because Xλ and X̂λ are determined by feedback controls θλ and θ̂λ with

|θλ − θ̂λ| = o(λ).

In this case, the desired equality (2.39) should follow from (2.41). In the case

of power utility, this is even more straightforward; in that case θ0 is a constant,

so θ0
x = 0 and equation (2.41) does not actually involve derivatives of Xλ and

X̂λ with respect to λ.

2.2.3 Comparison with an iterative approach

Let ṽλ denote the payoff of using the Merton feedback proportions

while facing fee rate λ. Suppose that, as argued above, the optimal strategy

Θ(λ,Xλ, Nλ) is within O(λ) of the Merton proportion θ0. Then we expect

that vλ − ṽλ = O(λ2), since differences at first order in the choice of strategy

should result in differences at second order in the payoff. So, assuming that

ṽλ is concave in (x, n) for small λ, we can consider the suboptimal control

θ̃λ = arg max
θ∈R

[
µθxṽλx +

1

2
(σθx)2ṽλxx + Ũ(ṽλx(x, n) + ṽλn(x, n))

]
= − µ

σ2

ṽλx(x, n)

xṽλxx(x, n)
, (2.42)
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and similarly for c̃λ. If ṽλ = vλ + O(λ2) then, taking derivatives, it is easy

to see θ̃λ = θ̂λ + o(λ) as feedback expressions. We may therefore expect the

payoff of θ̃λ to match vλ up to second order in λ, and could take θ̃λ as an

approximately optimal strategy.

We choose not to pursue this approach, however, because it is more

difficult to make rigorous. For example, it is not easy to even show that ṽλ is

concave.

2.3 The first derivative

The goal of this section is find a closed form expression for v1, the first

derivative of the value function vλ with respect to λ. We will move between

one- and two-dimensional notation as needed, using the conventions of (2.11).

Recall that z will refer to a point (x, n) ∈ D, and y will be reserved for

one-dimensional notation, i.e. y = n/x ≥ 1.

Definition 2.3.1. Following [3], we begin by defining the upper and lower

relaxed semi-limits for v1.

v1(z0) = lim inf
z→z0,λ→0

vλ(z)− v0(z)

λ
, v1(z0) = lim sup

z→z0,λ→0

vλ(z)− v0(z)

λ
(2.43)

Obviously v1 ≤ v1. By construction, v1 is lower-semicontinuous and v1

is upper-semicontinuous.

Remark 2.3.1. The relaxed semilimits v1 and v1 are readily seen to inherit the
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homotheticity properties of vλ. For example,

v1(x0, n0) = lim inf
(x,n)→(x0,n0), λ→0

vλ(x, n)− v0(x)

λ

= lim inf
(x,n)→(x0,n0), λ→0

x1−p(vλ(1, n/x)− v0(1))

λ

= x1−p
0 lim inf

y→n0/x0, λ→0

wλ(y)− w0

λ

Recall here that w0 is a constant. Therefore, making the definition

w1(y0) = lim inf
y→y0,λ→0

wλ(y)− w0

λ
,

we have

v1(x0, n0) = x1−p
0 v1(1, n0/x0)

We therefore apply the notational conventions of (2.11) to w1. Obviously, the

same remarks apply to v1 and w1.

The argument then proceeds as follows:

1. We show that v1 and v1 (and in particular w1 and w1 ) are finite.

2. We then show that w1 (respectively w1) is a finite viscosity supersolution

(respectively subsolution) of a linear ODE which we call the first-order

corrector equation.

3. A comparison principle for the first-order corrector equation will then

imply

w1 = w1 = w1.
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4. Finally, we will find an explicit smooth solution to the first-order correc-

tor equation.

2.3.1 Bounds for v1

We now show that the relaxed semilimits v1, v1 are finite on the domain

D = {(x, n) : 0 < x ≤ n}. Obviously vλ ≤ v0, so we have

v1 ≤ v1 ≤ 0

It will therefore suffice to show that v1 > −∞.

Throughout this subsection, (Xλ,z, Nλ,z) will denote the state process

with initial condition z = (x, n) corresponding to investing the Merton pro-

portion θ0 in the fund and consuming at the Merton rate (as a proportion of

current wealth) c0 (in particular, X0,z
t will denote the optimal wealth process

for the λ = 0 investment problem). The accumulated consumption under this

strategy will be denoted Cλ,z. We begin by obtaining some path-by-path lower

bounds on the wealth process Xλ,z.

Lemma 2.3.1. We have the bounds

Xλ,z
t ≥ nλX0,z

t

[ec0tNλ,z
t ]λ

(2.44)

≥ X0,z
t

(ec0tHz
t )λ

where Hz = n−1 sup0≤s≤t [(X0,z
s + C0,z

s ) ∨ n]
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Proof. To lighten the notation, we suppress the initial condition z. Applying

Itô’s lemma, we see that

d(log(Xλ
t )) =

(
µθ0 − 1

2
(σθ0)2 − c0

)
dt+ σθ0dWt −

λ

Xt

d(Nλ
t + Cλ

t )

= d(logX0
t )− λ

Nλ
t

d(Nλ
t + Cλ

t )

= d(logX0
t )− λ

(
d log(Nλ

t ) +
c0Xλ

t

Nλ
t

dt

) (2.45)

From the above (and the initial condition X0 = x), we can conclude that

Xλ
t =

nλX0
t(

exp
[∫ t

0
c0X

λ
u

Nλ
u
du
]
Nλ
t

)λ
≥ nλX0

t(
ec0tNλ

t

)λ
(2.46)

To conclude, we just need to show that Nλ
t ≤ nλHt for all λ and all t. From

equation (2.45) and the fact that Nλ+Cλ is an increasing process, we see that

Xλ ≤ X0. Since the rate of consumption rate is proportional to wealth, we

then have Cλ ≤ C0 as well, so that Xλ +Cλ ≤ X0 +C0. Combining this with

(2.5), we conclude that

Nλ
t ≤ (Xλ

t + Cλ
t ) ∨ n

≤ (X0
t + C0

t ) ∨ n = Ht

which completes the proof.

Remark 2.3.2. There was nothing special about using the Merton feedback

proportions (θ0, c0) in Lemma 2.3.1. Using the same arguments, a similar
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result will hold for any feedback proportions (θ̄(x, n), c̄(x, n)) such that the

closed loop equation for the corresponding state process has a solution. Ex-

plicitly, let (X̄λ,z, N̄λ,z) be the state process determined by (θ̄(x, n), c̄(x, n))

at fee level λ , and let X̄0,z be the wealth process determined by the control

(θ̄(X̄λ,z, N̄λ,z), c̄(X̄λ,z, N̄λ,z)) at fee level 0 (note this is not a feedback strategy

in terms of X̄0,z). Then we have:

X̄t
λ,z ≥ nλX̄t

0,z(
exp[

∫ t
0
c̄(X̄λ,z

u , N̄λ,z
u )du]H̄t

)λ
H̄z
t

∆
= n−1[(X̄0,z + C̄0,z) ∨ n]∗, C̄0,z

t
∆
=

∫ t

0

c̄(X̄λ,z
u , N̄λ,z

u )X̄0,λ
u du

The following lemma will be used in this section and elsewhere. Since

it deals only with the frictionless optimal investment problem, we relegate its

proof to the Appendix.

Lemma 2.3.2. Let (θ̄t, c̄t) be an admissible strategy for fee level λ = 0 given

in proportions (though not necessarily in feedback form). Suppose that

|θ̄t − θ0|+ |c̄− c0| < ε dt× dP-almost surely.

Let X̄ be the wealth process with controls given by (θ̄t, c̄t) with initial wealth x

and with no high-watermark fees. There is a constant M depending on the

model parameters µ, σ, β, p such that for ε > 0 sufficiently small, we have

E
∫ ∞

0

e−βtU(c̄tX̄)dt ≥ (c0 −Mε)−1 (c0 − ε)1−px1−p

1− p

We are now ready for the principal result of this subsection:
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Proposition 2.3.3. Let (x0, n0) ∈ D. In the notation of Lemma 2.3.1, we

have

v1(x0, n0) ≥ −E
[∫ ∞

0

1[τz≤t]e
−βt(1− p)U(c0X0,z

t )(c0t+ log(Hz
t ))dt

]
> −∞

(2.47)

where z = (x, n) is an arbitrary point in D − ∂yD with x < x0, n < n0 and

n/x < n0/x0

τz = inf{t ≥ 0 : X0,z
t + C0,z

t ≥ n}

Proof. First we show the right-hand side of (2.47) is indeed finite. Pick q > 1

such that q(1− p) < 1, and let q′ denote the Holder conjugate of q. Applying

the Holder inequality on [0,∞)×Ω, it will suffice to show that that for small

δ > 0,

E
∫ ∞

0

e−β(1−δ)qt|U(c0X0
t )|qdt <∞, (2.48)

E
∫ ∞

0

e−βδq
′t(c0t+ log(Hz

t ))q
′
dt <∞. (2.49)

First suppose (1−p) > 0. Then the left hand side of (2.48) is non-negative and

bounded above by the value function of the Merton consumption/investment

problem with the modified utility function and discount factor given by

V (x) = (U(x))q,

ρ = β(1− δ)q.

We assume that U and the model parameters are chosen so that the well-

posedness condition (2.25) holds:

β >

(
1

2

)
1− p
p

µ2

σ2
.
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Choosing q > 1 and δ > 0 sufficiently small, the same condition does indeed

hold for the modified utility function V (x) and discount factor ρ, hence the

first inequality of (2.48) holds.

E
∫ ∞

0

sign(1− p)e−β(1−δ)qt|U(c0X0
t )|qdt <∞.

On the other hand, if (1−p) < 0, we once again consider the Merton consump-

tion/investment problem with modified utility function and discount factor

V (x) = −|U(x)|q,

ρ = β(1− δ)q.

Let (θ
0
, c0) denote the optimal feedback proportions for the investment/consumption

problem with the modified utility function and discount factor V and ρ, as

given in Proposition 2.1.5. Then for any ε, we can choose q > 1 sufficiently

small that

|θ0 − θ0|+ |c0 − c0| < ε.

As a result, Lemma 2.3.2 implies that

E
∫ ∞

0

e−β(1−δ)qt|U(c0X0
t )|qdt > −∞.

To check (2.49), note that

C0,z
t =

∫ t

0

c0X0,z
u du ≤ c0t sup

0≤s ≤t
Xs,

and therefore

Hz
t = n−1 sup

0≤s≤t

[
(X0,z

s + C0,z
s ) ∨ n

]
≤ n−1(n ∨ (1 + c0t) sup

0≤s≤t
X0,z).
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So there is a constant K0(q′) > 0 such that

|c0t+ log(Hz
t )|q′ ≤ K0(q′)

(
1 + c0t

q′ +

∣∣∣∣ sup
0≤s≤t

log(X0,z
s )

∣∣∣∣q′
)

(2.50)

Note that log(X0,z) is a Brownian motion with drift:

log(X0,z
t ) =

(
µθ0 − c0 − (σθ0)2

2

)
t+ σθ0Wt

Now, Doob’s maximal inequality tells us that

E

[∣∣∣∣ sup
0≤s≤t

σθ0Wt

∣∣∣∣q′
]
≤ q′(σθ)q

′

q′ − 1
E[W q′

t ]

=
q′(σθt)q

′
/2

q′ − 1
E[χq

′
]

where χ is some N(0, 1) random variable. As a result, there are constants

K1, b with

E sup
0≤s≤t

| log(X0,z
t )| ≤ K(1 + tb)

From (2.50), we therefore have

E
[
|c0t+ log(Hz

t )|q′
]
≤ K(1 + tb)

after possibly enlarging K1, b. Putting everything together, we conclude

E
∫ ∞

0

e−βδq
′t(c0t+ log(Hz

t ))q
′
dt ≤

∫ ∞
0

e−βδq
′tK(1 + tb)dt <∞.

(2.51)

Now fix z0 = (x0, n0) ∈ D and pick zk → z0 and λk → 0 such that

v1(z0) = lim
k→∞

vλk(zk)− v0(z0)

λk
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Fix z = (x, n) ∈ D− ∂yD with n/x < n0/x0. Note that τz is increasing in the

ratio n/x, and that obviously Xλ,z = X0,z until τz. Applying Lemma 2.3.1,

we see that for k sufficiently large,

U(c0Xλk,zk
t )− U(c0X0,zk

t )

λkn
≥ 1[τzk≤t]U(c0X0,zk

t )

(
(ec

0tHzk
t )−(1−p)λk − 1

)
λk

≥ 1[τz≤t]U(c0X0,z
t )

(
(ec

0tHz
t )−(1−p)λk − 1

)
λk

By convexity of the function λ 7→ m−λ, we have the monotone convergence

1[τz≤t]U(c0X0,z
t )

(
(ec

0tHz
t )−(1−p)λk − 1

)
λk

↗ −1[τz≤t](1−p)U(c0X0,z
t )(c0t+log(Hz

t ))

(2.52)

which holds dt ⊗ dP−almost surely on the set [0,∞) × Ω. To conclude, we

apply the monotone convergence theorem:

v1(x0, n0) ≥ lim inf
k→∞

E
∫ ∞

0

e−βt
U(c0Xλk,zk

t )− U(c0X0,zk
t )

λk
dt

≥ lim
k→∞

E
∫ ∞

0

e−βt1[τz≤t]U(c0X0,z
t )

(
(ec

0tHz
t )−(1−p)λk − 1

)
λk

dt

= −(1− p)E
∫ ∞

0

e−βt
[
1[τz≤t]U(c0X0,z

t )(c0t+ log(Hz
t ))
]
dt

> −∞ (2.53)

Proposition 2.3.3 also allows us to determine the limiting behavior of v1 as

n→∞.
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Corollary 2.3.4. We have

lim
n→∞

v1(x, n) = 0

Proof. By Proposition 2.3.3, we have

v1(x0, n0) ≥ −(1− p)E
[∫ ∞

0

1[τz≤t]e
−βtU(c0X0,x

t )(c0t+ log(Hz
t ))dt

]
where z = (x, n) is an arbitrary point in D with x < x0, n < n0 and n/x <

n0/x0. Letting n0 → ∞ and choosing zk with n → ∞, while x, x0 remain

fixed, we see that

−1[τzk≤t]e
−βt(1− p)U(c0X0,x

t )(c0t+ log(Hzk
t ))↗ 0

because 1[τz≤t] and Hz are both decreasing in n, and τz →∞ as n→∞. From

Proposition 2.3.3, we also have

E
∫ ∞

0

1[τzk≤t]e
−βtU(c0X0,x

t )(c0t+ log(Hzk
t ))dt > −∞

We then apply the monotone convergence theorem on [0,∞)×Ω to conclude.

Remark 2.3.3. Let ṽλ(x, n) denote the payoff of using the Merton proportion

(θ0, c0) at fee level λ, with initial condition (x, n). Obviously we have

ṽλ(x, n) ≤ vλ(x, n)

Now define

ṽ1(z0) = lim inf
z→z0, λ→0

ṽλ(z)− v0(z)

λ
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Examining the proof of 2.3.3, we see that we have in fact proven the slightly

stronger result

ṽ1(x0, n0) ≥ −(1− p)E
[∫ ∞

0

1[τz≤t]e
−βtU(c0X0,z

t )(c0t+ log(Hz
t ))dt

]
> −∞

(2.54)

where z = (x, n) is an arbitrary point in D − ∂yD with x < x0, n < n0 and

n/x < n0/x0

τz = inf{t ≥ 0 : X0,z
t + C0,z

t ≥ n}

This fact will be used in the construction of approximately optimal strategies.

2.3.2 The first-order corrector equation

In this section we introduce the first-order corrector equation and show that

the relaxed semilimit w1 (respectively w1) is a viscosity supersolution (resp.

subsolution) of the first-order corrector equation. The following is just a one-

dimensional version of (2.36).

The first-order corrector equation. The one-dimensional first order cor-

rector equation for a C2 function w : [1,∞)→ R is given by

Aw
∆
= −βw + µθ0wx +

1

2
(σθ0)2wxx + Ũ ′(w0

x(1))(wx + wn) = 0

Bw
∆
= wy(1)− w0

x(1) = 0 (2.55)

lim
y→∞

w(y) = 0

where wx and wxx are as defined following the conventions of (2.11). If a

function w satisfies the one-dimensional first corrector equation, then u(x, n) =
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x1−pw(n) satisfies (2.36):

−βu+ µθ0xux +
1

2
(σθ0x)2uxx + Ũ ′(v0

x(x))(ux + un) = 0 on int(D)

un(x, x)− v0
x(x) = 0 for all x ≥ 0

lim
n→∞

u(x, n) = 0

For future reference, we record the coefficients of the first-order corrector equa-

tion in true one-dimensional notation.

Lemma 2.3.5. We have

(Aw)(y) =
1

2
(σθ0y)2wyy(y) + c0(y − 1)wy(y)− c0w(y) (2.56)

Proof. First note that

Ũ(ỹ) =
y−q

q
, q =

1− p
p

so that

Ũ ′(w0
x) = Ũ ′((c0)−p))

= −(c0)(1−p)+p = −c0 (2.57)
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Recalling the definitions of (2.11), we have

Aw = −βw + µθ0(1− p)w − µθ0ywy

+
1

2
(σθ0)2

(
−p(1− p)w + 2pywy + y2wyy

)
+c0((1− p)w + (y − 1)wy)

=

(
−β +

1

2

(1− p)µ2

pσ2
− (1− p)c0

)
w (2.58)

+

(
−µ

2y

pσ2
+
µ2y

pσ2
+ c0(y − 1)

)
wy

+
1

2
(σθ0y)2wyy

=
1

2
(σθ0y)2wyy + c0(y − 1)wy − c0w

where the second equality (2.56) follows the expressions for θ0 and c0 recorded

in Proposition 2.1.5.

Following [5], we introduce the notion of a viscosity subsolutions and

supersolutions of the first-order corrector equation.

Definition 2.3.2. Let w : [1,∞) → R be a lower semicontinuous function.

The inequality Aw ≤ 0 holds in the viscosity sense at y0 > 1 if, for every C2

function φ; [1,∞) → R such that w − φ has a local minimum of 0 at y0 (we

say φ touches w below at y0), we have

Aφ(y0) ≤ 0.

The inequality Aw ≤ 0 at y0 = 1 holds in the viscosity sense if, for all C2

functions φ : [1 − ε,∞) such that such that w − φ achieves a local minimum
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of 0 on [1,∞) at 1 (we say φ touches w below at 1), we have

Aφ(1) ≤ 0.

Finally, Bw ≤ 0 holds in the viscosity sense if for all C2 functions φ touching

w below at 1, we have

Bφ ≤ 0.

We say w is a viscosity supersolution of the first-order corrector equation if

lim inf
y→∞

w(y) ≥ 0

and the following set of inequalities hold in the viscosity sense:

Aw ≤ 0 on (1,∞)

Aw ∧Bw ≤ 0 at y = 1

Definition 2.3.3. Let w : [1,∞) → R be an upper semicontinuous function.

The inequality Aw ≥ 0 holds in the viscosity sense at y0 > 1 if, for every C2

function φ; [1,∞) → R such that w − φ has a local maximum of 0 at y0 (we

say φ touches w above at y0), we have

Aφ(y0) ≥ 0

The inequality Aw ≥ 0 holds at y0 = 1 in the viscosity sense if, for all C2

functions φ : [1 − ε,∞) such that such that w − φ achieves a local maximum

of 0 on [1,∞) at 1 (we say φ touches w above at 1), we have

Aφ(y0) ≥ 0
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Finally, Bw ≥ 0 holds in the viscosity sense if for all C2 functions φ touching

w above at 1, we have

Bφ ≥ 0

We say w is a viscosity subsolution of the first-order corrector equation if

lim sup
y→∞

w(y) ≤ 0

and the following set of inequalities hold in the viscosity sense:

Aw ≥ 0 on (1,∞)

Aw ∨Bw ≥ 0 at y = 1

Remark 2.3.4. In Definition 2.3.2 all instances of “local minimum” may equiv-

alently be replaced with “strict local minimum”, “global minimum on [1,∞)”,

or “strict global minimum on [1,∞)” (and similarly with all instances of “local

maximum” in Definition 2.3.3).

For reference, we include the following characterization of smooth vis-

cosity sub- and supersolutions of the first order corrector equation.

Lemma 2.3.6. Let w : [1,∞) → R be a C2 function on on (1,∞) such that

the right-hand derivatives

wy+(1)
∆
= lim

y→1+

w(y)− w(1)

y − 1

wyy+(1)
∆
= 2 lim

y→1+

w(y)− (w(1) + (y − 1)wy+(1)

(y−)2
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are well-defined and finite. The w is a viscosity subsolution of the first-order

corrector equation if and only if we have

Aw ≥ 0 on (1,∞)

wy+(1)− w0
x(1) ≥ 0

(2.59)

in the classical sense. Similarly, w is a viscosity supersolution if and only if

Aw ≤ 0 on (1,∞)

wy+(1)− w0
x(1) ≤ 0

(2.60)

Proof. We deal only with the subsolution case. The only part of the conclusion

which is not immediate is that if w is a smooth viscosity subsolution of the

first-order corrector equation, so that

Aw ∨Bw ≥ 0

in the viscosity sense at y = 1, then we must actually have wy+ − w0
x ≥ 0.

Suppose that wy+ − w0
x < 0. Pick a constant a with wy+(1) < a < w0

x and

define the function φ(y) = w(1) + a(y − 1) − b(y − 1)2 for some b > 0. By

(2.59) and the definition of wy+, we know w− φ achieves a local maximum of

0 at y = 1 for arbitrarily large choices of b. We then have φy(1) − w0
x(1) < 0

and for b sufficiently large

Aφ(1) = −1

2
(σθ0)2(2b)− c0w(1) < 0

contradicting the viscosity subsolution property of w at 1.
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Definition 2.3.4. For θ ∈ R and a function w : [1,∞) → R, define the

operator

Lθw
∆
= −βw + µθwx +

1

2
(σθ)2wxx + Ũ(wx + wn)

using the notational conventions of (2.11).

Remark 2.3.5. With the notation of 2.3.4, we have

sup
θ∈R

Lθwλ = sup
θ∈R,c>0

Lθ,cwλ

= 0 (2.61)

We also note that

Lθ
λ

wλ = 0,

where θλ is the optimal investment proportion for fee level λ.

Proposition 2.3.7. The lower relaxed semi-limit w1 is a viscosity supersolu-

tion of the one-dimensional first-order corrector equation.

Proof. Let φ be a C2 function such that w1− φ has a strict local minimum of

0 at y0. Make the notation

Q1,λ ∆
=
wλ − w0

λ
.

Pick a subsequence λk → 0 and yk → y0 such that Q1,λk(yk) → w1(y0). Let

ŷk be the minimizers of Q1,λk − φ on a small, closed ball around y0. We must

have ŷk → y0. If not, then there is a subsequence ŷki → y 6= y0. Then

0 < w1(y)− φ(y) ≤ lim inf
i→∞

Q1,λki (ŷki)− φ(ŷki)

≤ lim inf
i→∞

Q1,λki (yki)− φ(yki)

= w1(y0)− φ(y0) = 0
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a contradiction. We conclude ŷk → y0. Since φ is continuous and ŷk minimizes

w1 − φ on a ball around y0, we see that

w1(y0)− φ(y0) = lim
k→∞

(Q1,y(yk)− φ(yk))

≥ lim inf
k→∞

(Q1,y(ŷk)− φ(ŷk))

= lim inf
k→∞

Q1,y(ŷk)− φ(y0)

So after possibly extracting a subsequence of the ŷk, we have Q1,y(ŷk) →

w1(y0). In other words, we may take yk = ŷk. Now construct the smooth

functions

ψk(y) = wλk(yk) + λk(φ(y)− φ(yk)) (2.62)

We claim that ψk touches wλk below at yk. To see this, note that since w0 is

constant in yk, we have

(wλk − ψk)(y) = (wλk(y)− w0(y)− λkφ(y)) + (λkφ(yk) + wλk(yk) + w0(y))

= λk(Q
1,λk(y)− φ) + (λkφ(yk)− wλk(yk) + w0(y))

Since (λkφ(yk) − wλk(yk)) is a constant for fixed k and Q1,λk − φ has a local

minimum at yk, we conclude that wλk − ψk has a local minimum at yk. By

construction we have (wλk − ψk)(yk) = 0, so ψk touches wλk below at yk.

To begin with, we suppose that y0 > 1. Note that

ψkx(yk) = (1− p)wλk(yk)− λkykφy(yk)

ψky(yk) = λkφy(yk) (2.63)

ψkxx(yk) = −p(1− p)wλk(yk) + λk(2pykφy(yk) + y2
kφyy(yk))
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From Remark 2.3.5 and (2.63), we have at yk

0 = sup
θ∈R

Lθ
0

wλk(yk)

≥ Lθ
0

wλk(yk)

≥ Lθ
0

ψk(yk) (2.64)

= −βwλk + µθ0((1− p)wλk − λkykφy)

+
1

2
(σθ0)2(−p(1− p)wλk + λk(2pykφy + y2

kφyy))

+Ũ((1− p)wλkx + λk(φx + φn)).

Note that Lθ
0
w0 = 0 since w0 satisfies the λ = 0 HJB equation. Therefore, we

have at yk

Lθ
0

ψk = Lθ
0

ψk − Lθ0w0

= −β(wλk − w0) + µθ0((1− p)(wλk − w0)− λkykφy) (2.65)

+
1

2
(σθ0)2(−p(1− p)(wλk − w0) + λk(2pykφy + y2

kφyy))

+Ũ((1− p)wλkx + (1− yk)φy)− Ũ(w0
x).

We now plan to divide by λk in (2.64) and send k →∞ to see that Aφ(y0) ≤ 0.

First, recall that

Q1,λk(yk) =
wλk(yk)− w0(yk)

λk
→ w1(y0) = φ(y0).

Examining the terms of (2.65), we have

(1− p)(wλk − w0)− λkykφy
λk

→ φx(y0),

−p(1− p)(wλk − w0) + λk(2pykφy + y2
kφyy)

λk
→ φxx(y0).

(2.66)
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From Taylor’s theorem with remainder and the fact that w0
x = (1 − p)w0, we

have

Ũ((1− p)wλkx + (1− yk)φy) = Ũ(w0
x)

+Ũ ′(w0)
(
(1− p)(wλk − w0) + λk(1− yl)φy

)
+
λ2
k

2
Ũ ′′(ξ)

(
(1− p)(wλk − w0) + λk(1− yk)φy

)2

for ξ between w0
x(yk) and w0

x(yk) + λk(φx + φn)(yk). Since the yk are bounded

and w0, wλk , and φ are C2, we observe

Ũ((1− p)wλkx + (1− yk)φy)− Ũ((1− p)w0)

λk
→ Ũ ′(w0

x(y0))(∇φ · 1)

Combining the above and (2.66) with (2.65), we conclude that

0 ≤ Lθ0ψk(yk)

λk
→ Aφ(y0) (2.67)

so that the supersolution property for w1 holds at y0.

Now suppose that y0 = 1. If yk > 1 for infinitely many yk as above, then

we may apply the same argument to show that Aw1 ≤ 0 in the viscosity sense

at y0. Otherwise, we may assume yk = 1, so that wλky (yk)− λkwλkx (yk) ≤ 0 in

the viscosity sense. Touching wλk below by the same ψk at yk = 1, we see that

0 = wλky (yk)− λkwλkx (yk) = (1 + λk)w
λk
y (1)− λk(1− p)wλk(1)

≥ (1 + λk)ψ
k
y(1)− λk(1− p)ψk(1)

= (1 + λk)λkφn(1)− λk(1− p)(wλk(1) + λkφ(1))

Dividing by λk and letting k →∞, we conclude that

0 ≤ lim
k→∞

−λk(1− p)(wλk(1) + λkφ(1)) + (1 + λk)λkφn(1)

λk

= −(1− p)w0(1) + φy(1)
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Since v0(x, n) = (c0)−p x
1−p

1−p , we have w0
x(1) = v1

x(1, 1) = (1 − p)w0(1). We

conclude that φy(1)−w0
x(1) ≤ 0, so the boundary condition (Aw(1)∧Bw) ≤ 0

holds in the viscosity sense.

Proposition 2.3.8. The upper relaxed semi-limit w1 is a viscosity subsolution

of the one-dimensional first-order corrector equation.

Proof. First, suppose that y0 ∈ (1,∞). Construct λk → 0 and yk → y0 as in

the proof of Proposition 2.3.7. Let φ be a C2 function such that w1 − φ has

a strict local maximum at y0. Construct C2 functions ψk such that wλk has

a strict local maximum at yk, as was done in the proof of Proposition 2.3.7.

First suppose that yk > 1 for infinitely many k. In this case, we can repeat

the arguments of Proposition 2.3.7, (2.64) and following, to show that

lim
k→∞

Lθ
0
ψk(yk)

λk
= Aφ(y0).

On the other hand, since ψk touches wλk above at yk, we know that

sup
θ∈R

Lθψk(yk) ≥ 0

for all k. To verify the subsolution property for w1 at y0, it will therefore

suffice to show that

lim inf
k→∞

(Lθ
0
ψk)(yk)−

[
supθ∈R(Lθψk)(yk)

]
λk

≥ 0. (2.68)

Now, recall that

ψk(y) = wλk(yk) + λk(φ(y)− φ(yk))
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As in Proposition 2.3.7, we have

ψky(yk) = λkφy(yk)

ψkx(y) = (1− p)wλk(yk)− ykφy(yk)

ψkxx(y) = −p(1− p)wλk(yk) + 2pykφy(yk) + y2φyy(yk)

Since wλ is increasing in y and w0 is constant, Proposition 2.3.3 implies there

is a constant M > 0

0 ≥ wλk(yk)− w0(yk)

≥ wλk(1)− w0(1) ≥ −Mλk, (2.69)

for sufficiently large k. As a result, we have

sup
y∈[1,∞)

|ψk − w0|+ |ψky − w0
y||ψkx − w0

x|+ |ψkxx − w0
xx| ≤Mλk

for large k, after possibly enlarging M . For k sufficiently large that

ψkxx(yk) < 0,

we have

sup
θ∈R

Lθψk = −βψk + Ũ(ψkx + ψkn)− 1

2

(µ
σ

)2 (ψkx)2

ψkxx
≥ 0

Define the functions of (a, b) ∈ R2

Φ1(a, b) = −1

2

(µ
σ

)2 (w0
x + a)2

(w0
xx + b)

Φ2(a, b) = µθ0(w0
x + a) +

1

2
(σθ0)2(w0

xx + b)
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We will be done if we show

lim
k→∞

Φ1(φx − w0
x, φxx − w0

xx)− Φ2(φx − w0
x, φxx − w0

xx)

λk
= 0 (2.70)

because no other terms contribute to (2.68). Once can then check that

1. The definition of θ0 and the closed-form expression for w0 imply the

first-order derivatives of the Φi are equal at (a, b) = (0, 0); that is,

∇Φ1(0, 0) = ∇Φ2(0, 0).

2. The second-order derivatives of the Φi are bounded in a neighborhood

of (0, 0).

As a result, we obtain (2.70) from (2.69) by a Taylor expansion of Φ1 − Φ2

around (0, 0).

If yk = 1 for infinitely many k, we may repeat the arguments of Propo-

sition 2.3.7.

2.3.3 A general comparison principle for the corrector equations

In this subsection, we apply a comparison principle for the first-order

corrector equations to conclude that w1 is well-defined, and is indeed the first

derivative of wλ with respect to λ. This comparison principle will also be the

main tool for obtaining bounds on the relaxed semilimits corresponding to the

second derivative of wλ with respect to λ.

The following lemma provides explicit subsolutions and supersolutions

of the first-order corrector equation which will be useful both in the proof of the
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comparison principle and for obtaining later bounds for the second derivative

of wλ with respect to λ.

Lemma 2.3.9. Let f(y) = y−q. Then for q > 0 sufficiently small we have

Af ≤ 0 on [1,∞)

Proof. Just note that

Af = y−q
(
−c0 − c0q(y − 1)

y
+
q(q + 1)

2
(σθ0)2

)
(2.71)

so that Af ≤ 0 for q small.

We now introduce a slight generalization of the first-order corrector

equation and state the comparison result; the proof will be given in the Ap-

pendix. We introduce this result to provide a unified proof of comparison for

both the first- and second-order corrector equations.

Generalized corrector equation: We say a function w : [1,∞) → R sat-

isfies the generalized corrector equation with non-homogeneity h : [1,∞)→ R

smooth, boundary condition η, and limit L if

Aw + h = 0

wy(1) = η (2.72)

lim
y→∞

w(y) = L

We define the notions of viscosity sub- and supersolutions to the gen-

eralized corrector equation as we did for the first-order corrector equation in

Definitions 2.3.3 and 2.3.2.
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Theorem 2.3.10. Suppose there exists a smooth solution W to the generalized

corrector equation (2.72) for some choice of h, η and L with h continuous. Fix

L ∈ R and let W− be an upper semicontinuous viscosity subsolution of (2.72),

with

lim sup
y→∞

W−(y) ≤ L.

Then we have W− ≤ W on [1,∞). Similarly, if W+ is a lower semicontinuous

viscosity supersolution of (2.72), with

lim inf
y→∞

W+(y) ≥ L.

then we have W ≥ W+.

We verify that the first-order corrector equation does indeed have an

explicit smooth solution. Again the proof is deferred to the Appendix.

Proposition 2.3.11. There exists a smooth solution W of the first-order cor-

rector equation, satisfying

(AW )(y) = 0 on [1,∞)

Wy(1)− w0
x = 0

lim
y→∞

W (y) = 0

Explicitly, W has the form

W (y) = C

(
(y − 1)

[
Γ

(
1

α
,

1

αy

)
− Γ

(
1

α

)]
+ (αy)1− 1

α e−
1
αy

)
(2.73)
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where α = (σθ0)2

2c0
and C is the unique constant such that the boundary condition

Wy−w0
x = 0 holds. Here Γ(s, y) is the upper incomplete gamma function, and

Γ(s) is the usual gamma function; that is,

Γ(s, y) =

∫ ∞
y

ts−1e−tdt

Γ(s) =

∫ ∞
0

ts−1e−tdt

Remark 2.3.6. The constant C (and hence the function W ) is given in terms

of the model parameters, exponential functions, and specific values of the

incomplete and usual gamma functions. The solution W is therefore explicit

up to the integration needed to determine these values of the gamma functions.

The following is an immediate consequence of the comparison principle Theo-

rem 2.3.10.

Theorem 2.3.12. The limit

w1(y) = lim
λ→0

vλ(1, y)− v0(1)

λ

is well-defined and finite for all y ∈ [1,∞). That is, w1 = w1 = w1 is equal to

the classical solution W of the first-order corrector equation given in Proposi-

tion 2.3.11.

Corollary 2.3.13. The function w1 is concave, and we have

yw1
y(y), y2w1

yy(y)→ 0 as y →∞
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Proof. Suppose t ∈ (0, 1) and y, y′ ∈ [1,∞) Then since wλ is concave and

w0(y) is constant, we have

tw1(y) + (1− t)w1(y′) = lim
λ→0

t(wλ(y)− w0(y)) + (1− t)(wλ(y′)− w0(y′))

λ

≤ lim
λ→0

wλ(ty + (1− t)y′)− w0(ty + (1− t)y′)
λ

= w1(ty + (1− t)y′) (2.74)

Now we know that w1 → 0 as y → ∞. This is a consequence of

Lemma 2.3.3 and was used implicitly in Theorem 2.3.12. Since w1 satisfies the

first-order corrector equation, we must also have

lim
y→∞

c0(y − 1)w1
y(y) +

1

2
y2(σθ0)2w1

yy(y) = 0 (2.75)

Note that w1
y(y) ≥ 0, since w1 is concave, w1(1) ≤ 0, w1

y(1) > 0, and

w1(y) → 0 as y → ∞. Now we show yw1
y(y) → 0 as y → ∞. Suppose for

contradiction that there exist yk → ∞ such that w1
y(yk) ≥ ε/yk. Assume

without loss of generality that yk/yk−1 > 1 + δ for some δ > 0. Since w1
y is
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decreasing in y, we then have

w1(yk) = −
∫ ∞
yk

w1
y(y)dy

= − lim
K→∞

K∑
i=k

∫ yi+1

yi

w1
y(y)dy

≤ − lim
K→∞

K∑
i=k

(yi+1 − yi)w1
y(yi+1) (2.76)

≤ − lim
K→∞

K∑
i=k

(
1− 1

1 + δ

)
yi+1w

1
y(yi+1)

= − lim
K→∞

K∑
i=k

(
1− 1

1 + δ

)
yi+1ε = −∞

a contradiction. So we have yw1
y(y)→ 0 as y →∞, and it follows from (2.75)

that y2w1
yy(y)→ 0 as well.

2.4 The second derivative

In this section, we characterize the second derivative v2 of the value

function vλ with respect to λ as the solution of a linear PDE, i.e. the second-

order corrector equation 2.37.

Definition 2.4.1. The relaxed semi-limits for v2 are given by

v2(z0) = 2 lim inf
z→z0,λ→0

vλ(z)− (v0(z) + λv1(z))

λ2
,

v2(z0) = 2 lim sup
z→z0,λ→0

vλ(z)− (v0(z) + λv1(z))

λ2
.

By construction v2 and v2 are lower- and upper-semicontinuous, respectively.
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We follow the same line of argument used to determine v1:

1. We show that v2 and v2 are finite, and that

lim
y→∞

v2 = lim
y→∞

v2 = 0.

2. We show that v2 (respectively v2) is a viscosity supersolution (respec-

tively subsolution) of the second-order corrector equation.

3. We find a smooth solution V of the second-order corrector equation.

4. A comparison principle will then imply that

v2 = v2 = v2

and v2 = V

Remark 2.4.1. The relaxed semilimits v2, v2 are readily seen to inherit the

homotheticity properties of vλ and v1. That is, by the same reasoning as

Remark 2.3.1, we see that if we define

w2(y) = 2 lim inf
y→y0, λ→0

wλ(y)− (w0 + λw1(y))

λ2
,

then we have

v2 = x1−pv2(1, n/x). (2.77)

As a result, we apply the notational conventions of (2.11) to w2. Obviously,

the same remarks apply to w2. Throughout this section, we will also use the
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following notation:

Q1,λ(y) =
wλ(y)− w0(y)

λ

Q2,λ(y) =
wλ(y)− (w0 + λw1)(y)

λ2
(2.78)

=
Q1,λ(y)− w1(y)

λ
(2.79)

and will use the notation of (2.11) for the Qi,λ.

2.4.1 Bounds for v2

Proposition 2.4.1. If 1− p > 0, then we have w2 ≥ 0. If 1− p < 0, then w2

is uniformly bounded below with

lim inf
y→∞

w2(y) ≥ 0.

Proof. We will use Theorem 2.3.10 to compare Q1,λ and w1. First we compute

that

AQ1,λ =
1

λ
(Awλ(y)−Aw0)

=
1

λ

(
Lθ

0

wλ + Ũ ′(w0
x(y))(wλx + wλn)(y)− Ũ(wλx + wλn)(y))

)
−1

λ

(
Lθ

0

w0 + Ũ ′(w0
x(y))w0

x(y)− Ũ(w0
x(y))

)
Since Ũ is convex, we have

Ũ((wλx + wλn)(y)) ≥ Ũ(w0
x(y)) + Ũ ′(w0

x(y))((wλx + wλn)(y)− w0
x(y)).

Recalling that Lθ
0
wλ ≤ 0 and Lθ

0
w0 = 0, we conclude that AQ1,λ ≤ 0.

To check the boundary supersolution condition of the first-order corrector
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equation, note that

Q1,λ
y (1) =

1

λ
wλy (1) = (1− p)wλ(1)− wλy (1)

≤ (1− p)wλ(1).

If 1 − p > 0, then (1 − p)wλ(1) ≤ (1 − p)w0(1) = w0
x(1), and therefore the

boundary supersolution condition of the first-order corrector equation:

Q1,λ
y (1)− w0

x(1) ≤ 0

is satisfied. Suppose instead that (1− p) < 0. Obviously we have

(1− p)wλ(1) = (1− p)w0(1) + (1− p)λw1(1) + o(λ).

Using Lemma 2.3.9, we can construct f : [1,∞) → R such that Af ≤ 0 and

fy(1) < −(1 − p)w1(1). For example, we may take f(y) = Cy−q for a large

constant C and q sufficiently small. Then Q1,λ + λf is a supersolution of the

first-order corrector equation for small λ, since

A(Q1,λ + λf) ≤ 0

Q1,λ
y (1) + λfy(1)− w0

x(1) ≤ (1− p)wλ(1) + λfy(1)− (1− p)w0(1)

= λfy(1) + λ(1− p)w1(1) + o(λ) ≤ 0 for small λ,

so Q1,λ
y +λf ≥ w1, for small λ. As a result, Q2,λ ≥ −f for small λ. Our choice

of f also implies that w2 is uniformly bounded below and

lim inf
y→∞

w2(y) ≥ 0
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The following series of lemmas will be used to show that w2 <∞ and w2(y)→

0 as y →∞.

Lemma 2.4.2. We have

0 ≤ vλn(x, n) ≤ λvλx(x, n)

for all (x, n) ∈ D. Equivalently,

0 ≤ wλy (y) ≤ λwλx(y)

for all y ∈ [1,∞).

Proof. Let (α, γ) be an investment/consumption policy given in dollar amounts

which is admissible for initial condition (x, n+ h). We will show that (α, γ) is

admissible for (x + λh, n), so that vλ(x, n+ h) ≤ vλ(x + λh, n). We can then

take derivatives with respect to h to conclude.

It will suffice to show

Xt
∆
= x+ λh+ Yt −

∫ t

0

γudu−
λ

1 + λ
sup

0≤s≤t
[Ys − (n− x− λh)]+ ≥ 0

where Yt =
∫ t

0
αdF
F

. By assumption, the wealth process corresponding to initial

condition (x, n+ h) is positive:

X ′t = x+ Yt −
∫ t

0

γudu−
λ

1 + λ
sup

0≤s≤t
[Ys − (n+ h− x)]+ ≥ 0.

Now observe that

Xt −X ′t ≥ λh− λ

1 + λ
sup

0≤s≤t
[Yt − (n− x− λh)]+

+
λ

1 + λ
sup

0≤s≤t
[Yt − (n+ h− x)]+

≥ λh− λ

1 + λ
(n+ h− x− (n− x− λh)) = 0
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Lemma 2.4.3. Let

Gλ(y) = |wλ(y)− w0(y)|+ |wλy (y)|+ |wλx(y)− w0
x(y)|+ |wλxx(y)− w0

xx(y)|

There is a constant M such that for sufficiently small λ, we have

sup
y∈[1,∞)

Gλ(y) ≤Mλ (2.80)

for all y.

Proof. To begin with, since wλ(y) is increasing in y and w0(y) is constant in

y with wλ(y) ≤ w0(y), we see that

|wλ(y)− w0(y)| ≤ |wλ(1)− w0(1)|.

Since

dwλ

dλ

∣∣∣∣
λ=0

= w1,

we have

|wλ(1)− w0(1)| ≤M0λ

for small λ as long as M0 > |w1(1)|. Therefore

|wλ(y)− w0(y)| ≤M0λ

for all y, for λ sufficiently small independent of y. Since w is concave, wλy (y) ≥

61



0, and w0
y = 0, we have

wλy (y)− w0
y(y) ≤ wy(1)

= λwλx(1)

= λ
(
(1− p)wλ(1)− wλy (1)

)
≤ λ(1− p)wλ(1)

Since wλ(1)→ w0(1) as λ→ 0, we have

sup
y∈[1,∞)

|wλy (y)− w0
y(y)| ≤M1λ

for λ sufficiently small , as long as we take M1 > |(1−p)w0(1)|. Next we argue

that there is a constant M̃ such that

sup
y∈[1,∞)

|ywλy (y)| ≤ M̃λ

for λ sufficiently small. Note that the existence of M̃ immediately implies the

existence of a M2 such that

sup
y∈[1,∞)

|wλx(y)− w0
x(y)| ≤M2λ (2.81)

for λ sufficiently small, because

wλx = (1− p)wλ − ywλy ,

Now, since w is concave, we have

wλy (y) ≤ wλ(y)− wλ(1)

y − 1
(2.82)

≤ w0(1)− wλ(1)

y − 1
(2.83)
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Therefore,

0 ≤ ywλy (y) ≤ y

y − 1

(
w0(1)− wλ(1)

)
(2.84)

As a result, we can easily find M̃0 such that

|ywλy (y)| ≤ M̃0λ

on the interval [1 + ε,∞) for λ sufficiently small. On the other hand, since wλy

is decreasing in y, we have the bound

0 ≤ ywλy (y) ≤ (1 + ε)wλy (1)

≤ (1 + ε)M1λ

so we conclude that there exists M̃ such that

sup
y∈[1,∞)

|ywλy (y)| ≤ M̃λ

for small λ.

It remains to show that there exists M3 such that

|wλxx(y)− w0
xx(y)| ≤M3λ

for all y, for λ sufficiently small. Writing down the HJB equation for w at

fixed λ, we have

wλxx(y) = F (wλ(y), wλx(y), wλy (y)), (2.85)

where

F (wλ(y), wλx(y), wλy (y))
∆
= 2

(
σ

µ

)2
(wλx)2

−βwλ + Ũ(wλx + wλy )
. (2.86)
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Note that F is a twice-differentiable function of (wλ(y), wλx(y), wλy (y)) in a

neighborhood of the point (w0(y), w0
x(y), 0). The first- and second-order deriva-

tives of F are bounded in a neighborhood of (w0(1), w0
x(1), 0), and we’ve shown

there is a constant M with

sup
y∈[1,∞)

|(wλ(y), wλx(y), wλy (y))− (w0(y), w0
x(y), 0)| ≤Mλ

for sufficiently small λ, which is enough to conclude there exists a constant

M3 such that

sup
y∈[1,∞)

|wλxx(y)− w0
xx(y)| ≤M3λ (2.87)

for λ sufficiently small.

Lemma 2.4.4. Derivatives in λ and the state variables commute. That is,

d

dλ
wλy (y)

∣∣∣∣
λ=0

= w1
y(y) (2.88)

d

dλ
wλyy(y)

∣∣∣∣
λ=0

= w1
yy(y) (2.89)

In fact, the convergence of the difference quotients

wλy (y)

λ
→ w1

y(y)

wλyy(y)

λ2
→ w1

yy

is locally uniform in y.

Proof. Define fλ(y) = w1(y) − Q1,λ(y). Then f is C2 and fλ → 0 pointwise

on [1,∞) as λ → 0. From the proof of Lemma 2.4.3 and Corollary 2.3.4, we
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know that fλy = w1
y(y) − 1

λ
wλy (y) and fλyy = w1

yy(y) − 1
λ
wλyy(y) are uniformly

bounded for small λ; say that we have

|fλy | ≤M1

|fλyy| ≤M2

for small λ. It is then easy to show fλ → 0 locally uniformly as λ→ 0; that is,

for any y0, there exists an open neighborhood of B(y0) containing y0 such that

f → 0 uniformly on B(y0). We claim that fλy → 0 locally uniformly. Suppose

for contradiction there exist λk → 0 and y0 ∈ [1,∞) such that |fλky (y0+εk)| > ρ

for εk → 0 and some ρ > 0. Pick ε′ sufficiently small that fλ → 0 uniformly

on a ball of radius ε′ around y0. Pick ε < ε′. By Taylor’s theorem, we have

fλk(y0 + ε) = fλk(y0 + εk) + (ε− εk)fλky (y0 + εk) + (ε− εk)2fλkyy (y0 + ε̃k)

where ε̃k is between 0 and εk. Since fλ → 0 uniformly on [y − ε′, y + ε′], we

have

|fλk(y0 + ε)| = |fλk(y0 + εk) + (ε− εk)fλky (y0 + εk) + (ε− εk)2fλkyy (y0 + ε̃k)|

≤ δ(λk) (2.90)

|fλk(y0)| ≤ δ(λk)

where δ(λk)→ 0 independent of the choice of ε < ε′. To obtain a contradiction,

we pick ε < max(ρ/M2, 1) and note that

|fλk(y0 + εk) + (ε− εk)2fλkyy (y0 + ε̃k)| ≤ δ(λk) + (ε− εk)2M2

< δ(λk) + (ε− εk)ρ

|(ε− εk)fλky (y0 + εk)| > (ε− εk)ρ
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which contradicts (2.90). As a result, we must have fλ(y0)→ 0 as λ→ 0, that

is (2.88) holds. The result (2.89) is then obtained using the relations between

w,λ wλy and wλyy given by the HJB equation, as well as the fact that w1 satisfies

the first-order corrector equation.

Lemma 2.4.5. As in Lemma 2.4.3, set

Gλ(y) = |wλ(y)− w0(y)|+ |wλy (y)|+ |wλx(y)− w0
x(y)|+ |wλxx(y)− w0

xx(y)|

Then we have

lim
y0→∞

lim sup
λ→0

sup
y∈[y0,∞)

Gλ(y)

λ
= 0 (2.91)

Proof. Since wλ is increasing in y with wλ(y)→ w0(y) as y →∞, we have

0 ≤ lim
y0→∞

lim sup
λ→0

sup
y∈[y0,∞)

wλ(y)− w0(1)

λ
= lim

y0→∞
lim sup
λ→0

wλ(y0)− w0(1)

λ

= lim
y0→∞

w1(y0) = 0

Let y ≥ y0. Then since wλ is concave

wλy (y) ≤ wλ(y)− wλ(y0)

y − y0

≤ w0(1)− wλ(y0)

y − y0

Therefore,

ywλy (y) ≤ y0w
λ
y (y) + w0(1)− wλy (y0)

≤ y0w
λ
y (y0) + w0(1)− wλ(y0)
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Combining the above with Lemma 2.4.4 and Corollary 2.3.4, we observe that

lim
y0→∞

lim sup
λ→0

sup
y∈[y0,∞)

ywλy (y)

λ
≤ lim

y0→∞
lim sup
λ→0

y0w
λ
y (y0) + w0(1)− wλ(y0)

λ

≤ lim
y0→∞

y0w
1
n(y0) + w1(y0) = 0

Since wλx(y) = (1 − p)wλ(y) − ywλx(y) and w0
x(1) = (1 − p)w0(1) it follows

immediately that

lim
y0→∞

lim sup
λ→0

sup
y∈[y0,∞)

|wλx(y)− w0
x(1)|

λ
= 0 (2.92)

We conclude by recalling the bound (2.87) on wλxx.

Proposition 2.4.6. We have w2(y) <∞ on [1,∞).

Proof. We will exhibit f : [1,∞)→ R such that Q1,λ − λf is a subsolution of

the first corrector equation for small λ, then apply Theorem 2.3.10 to conclude

that Q1,λ− λf ≤ w1, hence w2 ≤ 2f <∞. To begin with, we show that there

exists M > 0 such that

AQ1,λ ≥ −Mλ.

First observe that

AQ1,λ(y) =
1

λ

(
Awλ(y)−Aw0(y)

)
=

1

λ

(
Awλ(y)− Lθλwλ(y)−Aw0(y) + Lθ

0

w0(y)
)

=
1

λ

(
µθ0wλx(y) +

1

2
(σθ0)2wλxx(y) +

1

2

(µ
σ

)2 (wλx(y))2

wλxx(y)

)
+

1

λ

(
Ũ(w0

x(y)) + Ũ ′(w0
x(y))(∇wλ(y) · 1− w0

x(1))− Ũ(∇wλ · 1)
)

=
1

λ

(
µθ0wλx(y) +

1

2
(σθ0)2wλxx(y) +

1

2

(µ
σ

)2 (wλx(y))2

wλxx(y)

)
− 1

2λ
Ũ ′′(ξλ(y))(∇wλ · 1− w0

x(y))2 (2.93)
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where the third line follows from the usual HJB equation for wλ, and ξλ(y)

is some number between ∇wλ · 1 and w0
x(y). Note that there are constants

C1,M1 such that, for small λ

1

2
Ũ ′(ξλ(y))(∇wλ(y) · 1− w0

x(y))2 ≤ C1G
λ(y)2 ≤M1λ

2 (2.94)

where Gλ(y) is as defined in Lemma 2.4.2. A similar bound hold for the other

terms of (2.93). To see this, define

ρλ,y(θ) = µθwλx(y) +
1

2
(σθ)2wλxx(y) (2.95)

Since ρλ,y is quadratic in θ with maximum at θλ = − µ
σ2

wλx(y)
wλxx(y)

, we have

ρλ,y(θ
0)− ρλ,y(θλ) = σ2wλxx(y)(θ0 − θλ)2 (2.96)

Note that Lemma 2.4.3 readily implies there are constants C2,M2 such that

(θ0 − θλ)2 ≤ C2G
λ(y)2 ≤M2λ

2

for small λ. So applying (2.94) to (2.96) in the equality (2.97), we see there

are constants C,M such that

AQ1,λ(y) =
1

λ

(
ρλ,y(θ

0)− ρλ,y(θλ)− Ũ ′(ξλ(y))(∇wλ(y) · 1− w0
x(y))2

)
≥ −CG

λ(y)2

λ
(2.97)

≥ −Mλ

Now, we want to construct f : [1,∞)→ R such that

A(Q1,λ − λf) ≥ 0 (2.98)

Q1,λ
y (1)− λfy − w0

x(1) ≥ 0

lim sup
y→∞

f(y) ≥ 0 (2.99)
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We begin by addressing the boundary condition. Note that

Q1,λ
y (1) =

wλy (1)

λ

= wλx(1)

= (1− p)wλ(1)− wλy (1) = (1− p)wλ(1)− λQ1,λ
y (1).

Thus we have

Q1,λ
y (1) =

1− p
1 + λ

wλ(1) = (1− p)w0(1) + λ(1− p)(w1(1)− w0(1)) + o(λ)

= w0
x(1) + λ(1− p)w1(1) + o(λ). (2.100)

Now define f(y) = K0+K1y
−q for q,K0, and K1 > 0 positive constants. Recall

from Lemma 2.3.9 that A(y−q) ≤ 0 for q sufficiently small. Choosing K0 large

and q sufficiently small, we therefore have Af ≤ −M for any M > 0. Further,

we may take K1 sufficiently large that−fy(1) > |(1−p)(w1(1)−w0(1))|, so that

(2.100) implies (Q1,λ
y −λfy)(1) ≥ w0

x for small λ. Finally, since Q1,λ(y)→ 0 as

y →∞, we have

lim sup
y→∞

Q1,λ − λf ≤ 0.

Altogether the conditions of Theorem 2.3.10 are satisfied, and we conclude

that for small λ, we have Q1,λ
y − λf ′ ≤ w1. As a result, Q2,λ ≤ f for small λ,

and so w2 <∞.

Lastly, we check that w2 has the appropriate limiting behavior.

Proposition 2.4.7. We have

lim sup
y→∞

w2(y) ≤ 0
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Proof. First, note that for any y ∈ (1,∞), we have

lim inf
λ→0

Q2,λ
y (y) > −∞

Once we’ve proven this, the argument resembles the proof of Proposition 2.4.6.

If y = 1, then this is clear from (2.100), since we have

Q2,λ
y =

Q1,λ
y − w1

y

λ

=
w0
x(1) + λ(1− p)(w1(1)− w0(1)) + o(λ)

λ
−
w1
y

λ

= (1− p)(w1(1)− w0(1)) + o(1)

Now take y > 1. Suppose for contradiction that there exist λk → 0 with

Q2,λk
y (y)→ −∞. By a simple Taylor expansion, we have

Q2,λ(y ± ε) = Q2,λ(y)± εQ2,λ
y (y) + ε2Q2,λ

yy (y + ε±,λ) (2.101)

for some ε±,λ between 0 and ±ε. At a point of inflection ỹk of Q2,λk , we have

AQ2,λ(ỹk) = −c0Q
2,λ(ỹk) + (ỹk − 1)c0Q

2,λ
y (ỹk) (2.102)

In particular, Q2,λk
y (ỹk) is bounded below for small λ, since both AQ2,λk

y and

Q2,λk are (this is a consequence of Proposition 2.4.1 and the proof of Propo-

sition 2.4.6). So for infinitely many k we must have Q2,λk
yy (y) 6= 0. We may

assume without loss of generality that Q2,λk
yy (y) < 0 or Q2,λk

yy (y) > 0 for all k;

to begin with, suppose Q2,λk
yy (y) < 0 for all k. If for infinitely many k there is

a point of inflection ỹε,k of Q2,λk on the half-interval [y, y + ε], then we would

have Q2,λk
y (ỹε,k) < Q2,λk

y (y)→ −∞ as k →∞, a contradiction. So we assume
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Q2,λk
yy < 0 on [y, y + ε]. In this case, Q2,λk(y + ε)→ −∞ as a result of (2.101),

contradicting Proposition 2.4.1. Similar arguments apply if we suppose that

Q2,λk
yy (y) > 0 for all k and consider the interval [y − ε, y].

Now we may proceed to use comparison arguments to show the desired

limiting behavior of w2. Recall from Lemma 2.3.9 that the function fK,q(y) =

−Ky−q satisfies

AfK,q ≥ 0

for q sufficiently small. Fix ŷk →∞ and pick Kk with

qKk > − lim inf
λ→0

Q2,λ
y (ŷk)

and Mk > 0 with

−Mk ≤ inf
y∈[ŷk,∞), λ≤λk

AQ2,λ

lim
k→∞

Mk = 0 (2.103)

where {λk} is some sequence with λk → 0 as k → ∞. To see that such a

choice of Mk is possible, note that

AQ2,λ =
AQ1,λ

λ

≥ C
Gλ(y)2

λ2
(2.104)

where the second line is just the bound (2.97) from the proof of Proposition

2.4.6. We then apply Lemma 2.4.5 to conclude that

lim
y0→∞

lim inf
λ→0

inf
y∈[y0,∞)

AQ2,λ = 0

71



which allows a choice of Mk as in (2.103). We then have for λ ≤ λk

A(Q2,λ −Mk + fKk,q) ≥ 0 on [ŷk,∞)

(Q2,λ −Mk + fKk,q)y(ŷk) > 0

lim sup
y→∞

(Q2,λ −Mk + fKk,q)(y) ≤ 0

We therefore use 2.3.10 to see that Q2,λ −Mk + fKk,q ≤ 0 on [ŷk,∞) for all k

for λ ≤ λk. Since fKk,q → 0 as y → ∞ and Mk → 0 as k → ∞, we conclude

that

lim
y0→∞

sup
y∈[y0,∞),λ≥λk

Q2,λ = 0 (2.105)

Now, if lim supy→∞w
2 > ε, then there exist yk → ∞ and λk arbitrarily small

such that Q2,λk(yk) > ε > 0 for all k, which is impossible by (2.105).

2.4.2 The second-order corrector equation

Definition 2.4.2. In order to define the second-order corrector equation, we

first recall the definitions of the leading-order corrections (θ1, c1) to the optimal

strategy as in (2.33):

θ1(x, n) = − µ

σ2

v0
xxv

1
x − v1

xxv
0
x

xv0
xx

c1(x, n) =
I ′(v0

x(x, n))(v1
x(x, n) + v1

n(x, n))

x

(2.106)

One can easily check that, due to the homotheticity properties of v0 and v1,

we have

θ1(x, n) = θ1(1, n/x)

c1(x, n) = c1(1, n/x)
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We therefore write θ1, c1 in one-dimensional notation, taking

θ1(y)
∆
= θ1(1, y)

c1(y)
∆
= c1(1, y)

Finally, we define the approximately optimal strategies (θ̂λ, ĉλ) as follows:

θ̂λ(y) = θ0 + λθ1(y)

ĉλ(y) = c0 + λc1(y)

Remark 2.4.2. Due to Lemma 2.4.3 and Lemma 2.4.5, it is easy to see that θ1

and c1 are uniformly bounded with

lim
y→∞

θ1(y) = lim
y→∞

c1(y) = 0

We now give the one-dimensional version of the second-order corrector

equation (2.37).

The second-order corrector equation. The one-dimensional second-order

corrector equation for a function w : [1,∞)→ R is given by

Aw + g = 0

Cw
∆
= wy(1)− 2w1

x(1) = 0

lim
y→∞

w(y) = 0

where

g
∆
= 2

[
µθ1w1

x + σ2(θ0θ1)w1
xx +

1

2
(σθ1)2w0

xx +
1

2
Ũ ′′(w0

x)(w
1
x + w1

y)
2

]
(2.107)
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The notions of viscosity subsolutions and viscosity supersolutions of the second-

order corrector equation are given in the same way as in Definitions 2.3.3 and

2.3.2.

Proposition 2.4.8. The lower relaxed semilimit w2 is a viscosity supersolution

of the second-order corrector equation.

Proof. The proof closely follows that of Proposition 2.3.7. Let φ be a C2

function such that w2 − φ has a strict local minimum of 0 at y0. We pick a

subsequence λk → 0 such that 2Q2,λk(yk)→ w2(y0) for some sequence yk → y0.

Let ŷk be the minimizers of 2Q2,λk − φ on a closed ball B around y0 taken

sufficiently small that y0 is the minimum of w2 − φ on B. We must have

ŷk → y0. If not, then there is a subsequence ŷki → y 6= y0. Then we have

0 < w2(y)− φ(y) ≤ lim inf
i→∞

2Q2,λki (ŷki)− φ(ŷki)

≤ lim inf
i→∞

2Q2,λki (yki)− φ(yki) = w2(y0)− φ(y0)

This contradicts the assumption that the strict minimum of w2 − φ on B is

achieved at y0. So ŷk → y0, and we readily see (by minimality of the ŷk and

continuity of φ) that 2Q2,λk(ŷk) → w2(y0). We may therefore take yk = ŷk.

Now construct the C2 functions

ψk(y) = wλk(yk) + (λkw
1(y)− λkw1(yk)) +

λ2
k

2
(φ(y)− φ(yk)) (2.108)

Observe that ψk touches wλk below at yk. To see this, note we clearly have
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ψk(yk) = wλk(yk). Since w0 is constant in y, we also have

wλk(y)− ψk(y) = wλk(y)− (w0(y) + λkw
1(y) +

λ2
k

2
)

+(w0(yk) + λkw
1(yk) +

λ2
k

2
φ(yk))

=
λ2

2
(2Q2,λk(yk)− φ) + (w0(yk) + λkw

1(yk) +
λ2
k

2
φ(yk))

By construction, 2Q2,λk − φ has a local minimum at yk, so wλk − ψk does as

well. For reference, we note that at yk, we have

ψky = λkw
1
y +

λ2
k

2
φy

ψkx = (1− p)wλk − yk(λkw1
y +

λ2
k

2
φy) (2.109)

ψkxx = −p(1− p)wλk + 2pyk(λkw
y
1 +

λ2
k

2
φy) + y2

k(λkw
1
y +

λ2
k

2
φy)

To begin with, suppose y0 > 1. We plug ψk into the HJB equation for

wλk at yk:

0 ≥ (sup
θ
Lθψk)(yk)

≥ Lθ̂
λ

ψk(yk) (2.110)

= Lθ
0

ψk(yk) + ηk

where

ηk
∆
= λkθ

1
(
µψkx + λkθ

0θ1σ2ψkxx
)

+
λ2
k

2
(θ1)2σ2ψkxx (2.111)

First, we show that

Lθ
0
ψk(yk)

λ2
k

→ 1

2
Aφ(y0) +

1

2
Ũ ′′(w0

x)(w
1
x + w1

y)
2 (2.112)
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where Lθ is the operator of Definition 2.3.4. Expanding each term of Lθ
0
ψk(yk)

using (2.109), we have

Lθ
0

ψk = −βwλk + µθ0

[
(1− p)wλk − yk

(
λkw

1
y +

λ2
k

2
φy

)]
+

1

2
(σθ0)2

[
− p(1− p)wλk + 2pyk

(
λkw

1
y +

λ2
k

2
φy

)
+y2

k

(
λkw

1
yy +

λ2
k

2
φyy

)]
(2.113)

+Ũ

(
(1− p)wλk − (1− yk)

(
λkw

1
y +

λ2
k

2
φy

))
.

Recalling that

Lθ
0

w0 = Aw1 = 0,

we subtract Lθ
0
w0(yk) + λkAw

1(yk) = 0 from (2.113). For brevity, we write

the result in terms of Q2,λk :

Lθ
0

ψk(yk) = −βλ2
kQ

2,λk + µθ0λ2
k

[
(1− p) Q2,λk − yk

2
φy

]
+
λ2
k

2
(σθ0)2

[
−p(1− p)Q2,λk +

1

2

(
2pykφy + y2

kφyy
)]

+Ũ

(
(1− p)wλk − (1− yk)(λkw1

y +
λ2
k

2
φy)

)
(2.114)

−
[
Ũ(w0

x) + λkŨ
′(w0

x)((1− p)w1 + (1− yk)w1
y)
]

Examining the first two lines of (2.114), we note that as k →∞, we have

−βQ2,λk → −β
2
φ(y0)

µθ0
[
(1− p) Q2,λk − yk

2
φy

]
→ 1

2
µθ0φx(y0) (2.115)

1

2
(σθ0)2

[
−p(1− p)Q2,λk +

1

2

(
2pykφy + y2

kφyy
)]
→ 1

4
(σθ0)2φxx(y0).
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We then treat the last two lines of (2.114) with the usual Taylor expansion

argument: We have

Ũ

(
(1− p)wλk − (1− yk)(λkw1

y +
λ2
k

2
φy)

)
= Ũ(w0

x)

+Ũ ′(w0
x)δ

k (2.116)

+
1

2
Ũ ′′(ξk)(δk)2

where

δk = (1− p)wλk − w0
x + (1− yk)

(
λkw

1
y +

λ2
k

2
φy

)
and ξk is some number between w0

x and w0
x + δk. Adding the first two terms

of the right-hand side of (2.116) and the last line of (2.114), then dividing by

λ2
k and sending yields the expression

Ũ ′(w0
x)((1− p)Q2,λk +

1− yk
2

φy) →
1

2
Ũ ′(w0

x)((1− p)φ(y0)− (1− y0)φy(y0))

=
1

2
Ũ ′(w0

x)(φx(y0) + φy(y0)) (2.117)

as k →∞. To take care of the last term of (2.116), note that

(δk)2

λ2
k

=

(
(1− p)wλk − (1− p)w0 − (1− yk)

(
λkw

1
y +

λ2k
2
φy

))2

λ2
k

→ (1− p)w1(y0) + (1− y0)w1(y0) = (w1
x + w1

y)(y0) (2.118)

as k →∞. As a result,

1
2
Ũ ′′(ξk)(δk)2

λ2
k

→ 1

2
(w1

x + w1
y)(y0) (2.119)

as k →∞. Combining (2.114) with (2.115), (2.116), and (2.119), we conclude

that (2.112) holds.
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We now claim

lim
k→∞

ηk

λ2
k

= µθ1w1
x(y0) + σ(θ0θ1)w1

xx(y0) +
1

2
(σθ1)2w0

xx(y0) (2.120)

On one hand, we have

lim
k→∞

1

2
(σθ1)2ψkxx =

1

2
(σθ1)2w0

xx(y0) (2.121)

so the last term of the right-hand side of (2.111) accounts for the last term of

the right hand side of (2.121). To treat the first two terms of (2.111), recall

that from Theorem 2.3.12 that

lim
k→∞

wλk(yk)− (w0(yk) + λkw
1(yk))

λk
= 0

Therefore, we have

λkθ
1
(
µψkx + σ2θ0ψkxx

)
= λkµθ

1((1− p)(w0 + λkw
1)− yk(λkw1

y +
λ2
k

2
φy))

+λkσ
2θ0θ1

(
− σp(1− p)(w0 + λkw

1)

+2pyk(λkw
1
y +

λ2
k

2
φy)

+y2
k(λkw

1
yy +

λ2
k

2
φyy)

)
+ o(λ2

k)

= λ2
k

(
µθ1w1

x + σ2θ0θ1w1
xx

)
+ o(λ2

k) (2.122)

where the w0 terms above cancel due to the explicit form of θ0. Combin-

ing (2.122) and (2.121) yields the desired limiting behavior (2.120) of the ηk.

Putting (2.110) together with (2.120) and (2.112), we conclude that

Aφ(y0) + g(y0) ≤ 0.
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That is, the interior supersolution property for the second-order corrector

equation holds for w2 at y0.

Suppose now that y0 = 1. Construct the yk and ψk as before. Then

either yk = 1 for infinitely many k or yk > 1 for infinitely many k. In the second

case, we may argue as above to show that (Aφ+ g)(y0) ≤ 0. If infinitely many

yk are equal to 1, for these k, we have

0 ≥ (ψky − λkψkx)(yk) =

(
λkw

1
y(1) +

λ2
k

2
φy(1)

)
−λk(1− p)wλk(1) +

(
λ2
kw

1
y(1) +

λ3
k

2
φy(1)

)
=

λ2
k

2
φy(1)− λk(1− p)

(
wλk(1)− w0(1)

)
− λ2

kw
1
y(1)

+
λ3
k

2
φy(1)

where the second line follows from the fact that w1
y(1) = w0

x(1) = (1−p)w0(1).

Dividing by λ2
k and sending k →∞ yields

0 ≥ 1

2
φy(1)−

(
(1− p)w1(1)− wy(1)

)
=

1

2
φy(1)− w1

x(1)

=
1

2
Cφ.

In other words, the boundary subsolution property of the second-order correc-

tor equation holds.

Lemma 2.4.9. We have

Lθ̂
λ
wλ

λ2
→ 0
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locally uniformly in y as λ→ 0.

Proof. Let θλ be the optimal control for fee level λ. Since θλ is given as a

continuous function of the derivatives of wλ, Lemma 2.4.4 implies that

θλ − (θ0 + λθ1)

λ
→ 0 (2.123)

locally uniformly in y. Now define ρλ,y(θ) as in (2.95). Recalling that ρλ,y(θ)

is quadratic in θ and is maximized at θλ(y), we have

Lθ̂
λ

wλ(y) =
(
Lθ̂

λ − Lθλ
)
wλ(y)

= ρλ,y(θ0 + λθ1)− ρλ,y(θλ)

= σ2wλxx(y)(θ0 + λθ1 − θλ)2

where the last line follows from equation (2.96). Combining this with (2.123),

we conclude.

Proposition 2.4.10. The upper relaxed semi-limit w2 is a viscosity subsolu-

tion of the second-order corrector equation.

Proof. Let φ be a C2 function such that w2−φ achieves a strict local maximum

of 0 at y0. To begin with, suppose that y0 > 1. Following Proposition 2.4.8,

we generate points yk → y0 such that 2Q2,λk(yk)→ wλk and smooth functions

ψk such that wλk −ψk has a local maximum of 0 at yk. To begin with, assume

y0 > 1. Since wλk − ψk has a local maximum of 0 at yk, we have

wλk(y0) = ψk(y0)

wλky (y0) = ψky(y0)

wλkyy (y0) ≤ ψkyy(y0)

80



As a result, we have

Lθ̂
λkψk(yk) ≥ Lθ̂

λkwλk(yk)

Combining this with Lemma 2.4.9, we see that

lim inf
k→∞

Lθ̂
λkψk(yk)

λ2
k

≥ 0 (2.124)

Note that the locally uniform convergence of Lemma 2.4.9 really was needed

above, since we can’t take the yk to be fixed. We may now repeat the arguments

of Proposition 2.4.8 to show that

lim
k→0

Lθ̂
λkψk

λ2
k

(yk) =
1

2
(Aφ(y0) + g(y0))

so that the interior subsolution property holds at y0. In the case where y0 = 1,

the argument is identical to that of Proposition 2.4.8.

The proof of the following result will be given in the appendix.

Proposition 2.4.11. There exists a smooth solution W of the second-order

corrector equation

AW + g = 0 on (1,∞)

Wy(1)− 2w1
x(1) = 0

lim
y→∞

W (y) = 0

We are now ready to prove the principal result of the section.

Theorem 2.4.12. We have w2 = w2, so that the limit

w2 = 2 lim
λ→0

wλ − (w0 + λw1)(y)

λ2
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is well-defined, finite, and continuous in y, with

lim
y→∞

w2(y) = 0

Further, w2 is the unique viscosity solution of the second-order corrector equa-

tion, and so w2 is equal to the W of Proposition 2.4.11.

Proof. In light of Proposition 2.4.11, we can simply apply Theorem 2.3.10 to

the viscosity sub- and supersolutions w2 and w2 of the second-order corrector

equation.

2.5 Approximately optimal strategies

In this section, we show that the payoff ŵλ of the strategy (θ̂λ, ĉλ)

matches the value function wλ up to second order in λ. We apply the same

approach of previous sections, checking that the derivatives

ŵ1 =
dŵλ

dλ

∣∣∣∣
λ=0

, ŵ2 =
d2ŵλ

dλ2

∣∣∣∣
λ=0

are finite and satisfy the first- and second-order corrector equations, respec-

tively. We will then have ŵ1 = w1 and ŵ2 = w2, so that

wλ − ŵλ

λ2
→ 0 as λ→ 0.

In order exhibit the bounds needed for this type of argument, it will be conve-

nient to first obtain the corresponding bounds for w̃λ, the payoff of the Merton

investment/consumption proportions (θ0, c0), and then to bound the difference

w̃λ − ŵλ. We begin by introducing some basic properties of w̃λ and ŵλ.
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Proposition 2.5.1. The feedback proportions (θ0, c0) result in an admissible

strategy with high-water mark fee at rate λ. Let ṽλ(x, n) be the payoff of this

strategy at fee rate λ; then ṽλ is a smooth solution of

Lθ0,c0 ṽλ = 0

ṽn(x, x)− λṽx(x, x) = 0 for all x > 0 (2.125)

lim
n→∞

ṽλ(x, n) = v0(x)

where the operator Lθ,c is defined in (2.15) and following. Moreover, we have

lim
n→∞

nṽλn(x, n) = lim
n→∞

n2ṽλnn(x, n) = 0 (2.126)

and

lim
λ→0

ṽλ(x, n) = v0(x) (2.127)

Similarly, the feedback proportions (θ̂λ, ĉλ) result in an admissible strategy with

high-water mark fee at rate λ. Let v̂λ(x, n) be the payoff of this strategy at fee

rate λ; then v̂λ is a smooth solution of

Lθ̂λ,ĉλ v̂λ = 0

v̂n(x, x)− λv̂x(x, x) = 0 for all x > 0 (2.128)

lim
n→∞

v̂λ(x, n) = v0(x)

and we have

lim
n→∞

nv̂λn(x, n) = lim
n→∞

n2v̂λnn(x, n) = 0 (2.129)

as well as

lim
λ→0

v̂λ(x, n) = v0(x) (2.130)
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Lastly, we have

ṽλ(x, n) = x1−pṽλ(1, n/x)

v̂λ(x, n) = x1−pv̂λ(1, n/x)

Therefore we define

w̃λ(y) = w̃λ(1, y)

ŵλ(y) = ŵλ(1, y)

and use the notational conventions of (2.11).

Proof. See Appendix.

Definition 2.5.1. We define the relaxed lower semilimits

w̃1(y0) = lim inf
y→y0

w̃λ(y)− w0(y)

λ

ŵ1(y0) = lim inf
y→y0

ŵλ(y)− w0(y)

λ

w̃2(y0) = 2 lim inf
y→y0

w̃λ(y)− (w0 + λw1)(y)

λ2

ŵ2(y0) = 2 lim inf
y→y0

ŵλ(y)− (w0 + λw1)(y)

λ2

As usual, these inherit the homotheticity properties of w̃λ, ŵλ, and we will

apply the notational conventions of (2.11) to these functions as well.

Remark 2.5.1. Since ŵλ ≤ wλ, it is obvious that

ŵ1 ≤ w1

ŵ2 ≤ w2
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Therefore, we only show that ŵ1 ≥ w1 and ŵ2 ≥ w2. It is then immediate

that the derivatives

ŵ1 =
dŵλ

dλ

∣∣∣∣
λ=0

ŵ2 =
d2ŵλ

dλ2

∣∣∣∣
λ=0

are well-defined and equal to w1 and w2, respectively. In other words, there is

no need to work with the upper relaxed semilimits for w1 and w2.

We now begin with the argument that w̃1 > ∞ and w̃2 > ∞, which

will then be used to show that ŵ1 >∞ and ŵ2 >∞

Proposition 2.5.2. Define

G̃λ(y) = |w̃λ(y)− w0(y)|+ |w̃λx(y)− w0
x(y)|+ |w̃λxx(y)− w0

xx(y)|+ |w̃λy (y)|

Then for λ sufficiently small there is a constant M̃ such that

sup
y∈[1,∞)

G̃λ(y) ≤ M̃λ

Proof. First note that there is a constant M0 such that

sup
y∈[1,∞)

|w̃λ(y)− w0(y)| ≤M0λ

for λ sufficiently small (we say that |w̃λ(y)−w0(y)| is uniformly O(λ)). This is

a consequence of Remark 2.3.3 and the fact that the right hand side of (2.47)

is uniformly bounded below for all choices of z = (1, y).

Suppose that |yw̃y| is not uniformly O(λ). Then for any α, the function

fα,λ(y) = yw̃y(y) + α(w̃λ(y) − w0(1)) also fails to be uniformly O(λ). In this
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case, there must be λk → 0 such that fα,λk achieves its global extrema on

(1,∞) for small λk, because

w̃λy (1) = λw̃λx(1)

= λ
(
(1− p)w̃λ(1)− wλy (1)

)
and therefore

w̃λy (1) =
λ

1 + λ
(1− p)w̃λ(1) (2.131)

lim
y→∞

yw̃y = 0

so that ywλy is O(λ) at y = 1. Now suppose |fα,λk | achieves its global maximum

at yk, so that

fα,λy (yk) = (1 + α)w̃y(yk) + ykw̃yy(yk) = 0 (2.132)

Plugging w̃ into the equation Lθ0,c0w̃λk = 0 at yk and using the relation (2.132),

we see that

0 = U(c0) +

(
−β − c0(1− p) + µθ0(1− p)− 1

2
(σθ0)2p(1− p)

)
w̃λk(yk)

+c0(yk − 1)w̃λky +
(
−µθ0 + p(σθ0)2

)
ykw̃

λk
y +

1

2
(σθ0yk)

2wλk(yk)

= U(c0) +

(
−β − c0(1− p) + µθ0(1− p)− 1

2
(σθ0)2p(1− p)

)
w̃λk(yk)

+

(
c0

(
1− 1

yk

)
− 1 + α

2
(σθ0)2

)
ykw̃

λ
y (2.133)

Because w0 satisfies the λ = 0 HJB equation, we know that

U(c0) +

(
−β − c0(1− p) + µθ0(1− p)− 1

2
(σθ0)2p(1− p)

)
w0 = 0(

−β − c0(1− p) + µθ0(1− p)− 1

2
(σθ0)2p(1− p)

)
< 0
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Since |w̃λ − w0| is uniformly O(λ) and w̃λ ≤ w0, we conclude that there is a

constant M1 such that

0 ≤ U(c0) +

(
−β − c0(1− p) + µθ0(1− p)− 1

2
(σθ0)2p(1− p)

)
w̃λ(yk)

= −
(
c0

(
1− 1

yλ

)
− 1 + α

2
(σθ0)2

)
yλw̃λy (yk) ≤M1λ (2.134)

Choose α sufficiently negative that

c0

(
1− 1

yλ

)
− 1 + α

2
(σθ0)2 > ε > 0

for λ small. Then, since |fλ,α(yk)|/λ → ∞ as λ → 0 and αw̃λ is uniformly

O(λ), we must actually have |ykw̃λy (yk)|/λ→∞ as λ→ 0. Since c0(1− 1
yk

)−
1+α

2
(σθ0)2 is uniformly bounded away from 0, this contradicts (2.134).

We conclude that yw̃λy is uniformly O(λ). Since w̃λx = (1 − p)w̃λ − yw̃λy , it

follows immediately that |w̃λx − w0
x| is uniformly O(λ) as well. As a result,

the PDE (2.125) implies that y2w̃λyy (and hence w̃λxx) are uniformly O(λ) as

well.

Proposition 2.5.3. We have

w̃2(y0) > −∞

lim inf
y→∞

w̃2 ≥ 0.

for all y0 ∈ [1,∞)

Proof. Define

Q̃1,λ(y) =
w̃λ(y)− w0(1)

λ

87



As in Proposition 2.4.1, the goal is to exhibit a function f : [1,∞) → R such

that f(y)→ 0 as y →∞ and Q̃1,λ(y) + λf is a supersolution of the first-order

corrector equation, allowing us to conclude

w̃2 ≥ −2f > −∞

First, note that:

AQ̃1,λ =
1

λ

(
Lθ0,c0w̃λ + Ũ ′(w0

x)(∇w̃λ · 1)− (U(c0)− c0∇w̃λ · 1)
)

−1

λ

(
Lθ0,c0w0 + Ũ ′(w0

x)w
0
x − (U(c0)− c0w0

x)
)

= 0 (2.135)

where the last line follows from the fact that Ũ ′(w0
x(1)) = −c0 and

Lθ0,c0w0 = Lθ0,c0w̃λ = 0

Using the usual homotheticity properties, the boundary condition for w̃ and

the computations of (2.100), there is a constant M̃ such that for sufficiently

small λ

Q̃1,λ
y (1) =

1

λ
w̃λy (1)

=
(1− p)
1 + λ

w̃λ(1)

≤ (1− p)w0(1) + M̃λ

≤ w0
x(1) + M̃λ

where the third equality follows from the bound of Proposition 2.5.2. There-

fore, we take f to be a supersolution to the first corrector equation such
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that f ′(1) is sufficiently large and negative. From Lemma 2.3.9, we can take

f(y) = Ky−q for K large and q sufficiently small (both independent of λ).

Then, noting that Q̃1,λ + λf is a supersolution of the first corrector equation

with

lim
y→0

Q̃1,λ + λf = 0

we conclude that Q̃1,λ + λf ≤ w1, hence

Q̃1,λ − w1

λ
≥ −f

for λ sufficiently small.

Corollary 2.5.4. We have

w̃1 = w1

As a result, the limit

w̃1 ∆
= lim

λ→0

w̃λ − w0

λ

is well defined, and w̃1 = w1.

Proof. Since w̃λ ≤ wλ, we obviously have w̃1 ≤ w1. On the other hand, if

w̃1(y0) < w1(y0), then

w̃2 ≤ 2 lim inf
λ→0

w̃λ(y0)− (w0 + λw1)(y0)

λ2

= 2 lim
λ→0

w̃1(y0)− w1(y0)

λ
= −∞ (2.136)

which contradicts Proposition 2.5.2.
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We now wish to use the boundedness results

w̃2 > −∞

lim inf
y→∞

w̃2 ≥ 0

to show that

ŵ2 > −∞

lim inf
y→∞

ŵ2 ≥ 0.

We may then use arguments similar to Proposition 2.4.8 to show that ŵ2 is a

supersolution of the second-order corrector equation, so that ŵ2 = w2. The

argument will proceed in the following steps:

1. We have ŵ1 = w̃1 = w1.

2. There is a constant M2 > 0 such that

ŵλ − w̃
λ2

≥M2.

Since w̃2 > −∞, this implies that ŵ2 > −∞.

3. Modifying the arguments of Proposition 2.4.8, we see ŵ2 is a superso-

lution of the second-order corrector equation, so that ŵ2 ≥ w2. By the

discussion of Remark 2.5.1, this completes the argument.

Steps 1 and 2 above will make use of the following easy lemma.
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Lemma 2.5.5. There is a constant M̃ such that

sup
y∈[1,∞)

|Lθ̂λ,ĉλw̃λ(y)| ≤ M̃λ2

for λ sufficiently small. More strongly, we have

lim
y0→∞

lim sup
λ→0

sup
[y0,∞)

|Lθ̂λ,ĉλw̃λ(y)|
λ2

= 0 (2.137)

Proof. Observe that

Lθ̂λ,ĉλw̃λ = Lθ0,c0w̃λ + U(c0 + λc1)− U(c0)− λc1(∇w̃λ · 1)

+λθ1
(
µw̃λx + (σθ0)w̃λxx

)
+
λ2

2
(σθ1)2w̃λxx (2.138)

We know Lθ0,c0w̃λ = 0. Recalling that U ′(c0) = w0
x and applying Taylor’s

Theorem, we see that

U(c0+λc1)−U(c0)−λc1(∇w̃λ·1) = U ′′(ξλ)(λc1)2−λc1((∇w̃λ·1)−w0
x) (2.139)

where ξλ is some number between c0 and c0 + λc1. Recall from Remark 2.4.2

that c1 is uniformly bounded. From Proposition 2.5.2, ((∇w̃λ · 1) − w0
x)/λ is

uniformly bounded as well. Therefore, there is a constant M̃0 such that

|U(c0 + λc1)− U(c0)− λc1(∇w̃λ · 1)| ≤ M̃0λ
2 (2.140)

Recalling that c1 → 0 as y →∞, we see from (2.139) that for any ε̃0 > 0, we

may in fact choose y0 such that

sup
y∈[y0,∞)

|U(c0 + λc1)− U(c0)− λc1(∇w̃λ · 1)| ≤ ε̃0λ
2
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for sufficiently small λ. For a similar bound on the second line of (2.138), note

that for small λ we have∣∣∣∣λθ1
(
µw̃λx + (σ2θ0)w̃λxx

) ∣∣∣∣ =

∣∣∣∣λθ1µ

(
w̃λx +

1

p
w̃λxx

) ∣∣∣∣
=

∣∣∣∣λθ1µ

(
w̃λx − w0

x −
1

p

(
w̃λxx − w0

xx

)) ∣∣∣∣
≤ M̃1λ

2 (2.141)

where the last line follows from Proposition 2.5.2. Since θ1 → 0 as y → ∞,

we see that for ε̃1 > 0 arbitrarily small we may choose y0 such that

sup
y∈[y0,∞)

∣∣∣∣λθ1
(
µw̃λx + (σ2θ0)w̃λxx

) ∣∣∣∣ ≤ ε̃1λ2

for small λ. Finally, since θ1 is uniformly bounded, Proposition 2.5.2 also

readily implies that there is a constant M̃2 such that∣∣∣∣λ2

2
(σθ1)2w̃λxx

∣∣∣∣ ≤ M̃2λ
2

for small λ. Again, since θ1 → 0, we for any ε̃2 > 0, we may choose y0 such

that

sup
y∈[y0,∞)

∣∣∣∣λ2

2
(σθ1)2w̃λxx

∣∣∣∣ ≤ ε̃2λ
2

for λ small. This completes the proof.

Proposition 2.5.6. We have ŵ1 = w1

Proof. Since ŵλ ≤ wλ, we know that ŵ1 ≤ w1. On the other hand, we will

show that for arbitrarily small ε > 0, we have

sup
y∈[1,∞)

w̃λ − ŵλ

λ
< ε (2.142)
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for λ sufficiently small. Corollary 2.5.4 then immediately implies that we have

ŵ1 = w̃1 = w1

As usual, we will obtain the bound (2.142) via a comparison argument. First,

note that for sufficiently small λ, the zero-order coefficient of the operator

Lθ̂λ,ĉλ is negative; in other words, if M0 > 0 is a constant, then Lθ̂λ,ĉλM0 < 0

for small λ. Explicitly, we can compute that

Lθ̂λ,ĉλM0 = Aλ0M0 + U(c0 + λc1)

where

Aλ0 = −β + (1− p)
[
µ(θ0 + λθ1)− 1

2
p(σ(θ0 + θ1)2)− (c0 + λc1)

]
= −β + (1− p)

[
µθ0 − 1

2
p(σθ0)2 − c0

]
+λ(1− p)

[
θ1(µ− pσ2θ0 − c1)−

(
λ2

2

)
p(σθ1)2

]
Recalling that

c0 =
β

p
−
(

1

2

)
1− p
p2

µ2

σ2
= −1

p

(
−β + (1− p)

[
µθ0 − 1

2
p(σθ0)2

])
> 0

we conclude that

Aλ0 = −c0 + (1− p)
[
λθ1(µ− pσ2θ0 − c1)− λ2

2
p(σθ1)2

]
(2.143)

From Lemma 2.5.5, there is a constant M̃ such that

|Lθ̂,ĉw̃λ| ≤ M̃λ2
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As a result, for arbitrarily small ε0 > 0, there is a constant C > 0 such that

Lθ̂λ,ĉλ(w̃λ − ε0λ) = Lθ̂λ,ĉλw̃λ + Aλ0ε0λ ≥ −M̃λ2 + Aλ0ε0λ ≥ Cλ (2.144)

for λ small. for some C ′ > 0 and λ small. Now, the boundary conditions for

ŵλ and w̃λ may be written as

w̃λy (1) =
λ(1− p)

1 + λ
w̃λ(1) (2.145)

ŵλy (1) =
λ(1− p)

1 + λ
ŵλ(1)

Recalling (2.127) and (2.130), we see that for any ε > 0, we have

|w̃λy (1)− ŵλy (1)| = λ(1− p)
1 + λ

|w̃λ(1)− ŵλ(1)| ≤ ελ

for λ small. Now let f(y) = ε1y
−q for q > 0. It is easy to see that we can

choose ε1 sufficiently small that

|Lθ̂λ,ĉλ(−λf)− U(c0 + λc1)| ≤ Cλ

for λ sufficiently small. Therefore, we have

Lθ̂λ,ĉλ(w̃λ − ε0λ− λf) > 0

(w̃λ − ε0λ− λf)y(1) > ŵλy (1) (2.146)

lim
y→∞

w̃λ − ŵλ − ε0λ− λf ≤ 0

for λ sufficiently small. We now make a standard comparison argument. Sup-

pose for contradiction that there is a point ŷ such that

(w̃λ − ŵλ − ε0λ− λf)(ŷ) > 0
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By (2.146), we may assume that ŷ is a global maximum of w̃λ− ŵλ− ε0λ−λf

with ŷ > 1. We must then have

(w̃λ − ε0λ− λf)y(ŷ) = ŵλ(ŷ)

(w̃λ − ε0λ− λf)yy(ŷ) < ŵλyy(ŷ)
(2.147)

On the other hand, we have

0 = Lθ̂λ,ĉλŵλ(ŷ) < Lθ̂λ,ĉλ(w̃λ − ε0λ− λf)(ŷ) (2.148)

a contradiction, since at ŷ we have

Lθ̂λ,ĉλ(w̃λ − ε0λ− λf)− Lθ̂λ,ĉλŵλ = A0(w̃λ − ε0λ− λf − ŵλ)

+
1

2
(σ2θ̂λ)2(w̃λ − ε0λ− λf − ŵλ)yy

< 0 (2.149)

where the last line of (2.149) follows from (2.147). We therefore conclude that

(w̃λ − ŵλ − ε0λ− λf)(ŷ) ≤ 0

for λ sufficiently small. Since |f | ≤ ε1, we have

w̃λ − ŵλ

λ
≤ ε0 + ε1

for small λ, so that (2.142) holds.

Proposition 2.5.7. We have

ŵ2 > −∞

lim inf
y→∞

ŵ2 ≥ 0
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Proof. The proof closely follows that of Proposition 2.5.6. We show that there

is a constant M such that

sup
y∈[1,∞)

w̃λ − ŵλ ≤Mλ2 (2.150)

It then follows from Proposition 2.5.3 that ŵ2 > −∞. Once again, we obtain

2.150 by a comparison argument. From Lemma 2.5.5, there is a constant M̃

such that

|Lθ̂λ,ĉλw̃λ| ≤ M̃λ2

Arguing as in Proposition 2.5.3, we may choose M0 such that

|Lθ̂λ,ĉλw̃λ −M0λ
2| ≤ Cλ2

for some C > 0 and λ sufficiently small. We may write the boundary conditions

for w̃λ, ŵλ as

w̃λy (1) =
λ(1− p)

1 + λ
w̃λ(1)

=
λ(1− p)

1 + λ

(
w0(1) + λw1(1) + R̃λ

)
ŵλy (1) =

λ(1− p)
1 + λ

ŵλ(1)

=
λ(1− p)

1 + λ

(
w0(1) + λw1(1) + R̂λ

)
where R̃λ, R̂λ are numbers with

lim
λ→0

R̃λ

λ
= lim

λ→0

R̂λ

λ
= 0

So for arbitrarily small ε > 0, we have

|w̃λy (1)− ŵλy (1)| ≤ ελ2 (2.151)
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for small λ.

Now set f(y) = K1y
−q for K1 chosen so that

|Lθ̂λ,ĉλ(−λ2f)| < K0λ
2

As in the proof of Proposition 2.5.6, it is easy to show that such a choice of

K1 is possible. Then we have

Lθ̂λ,ĉλ(w̃λ −K0λ
2 − λ2f) > 0

(w̃λ −K0λ
2 − λ2f)y(1) > ŵλy (1) (2.152)

lim
y→∞

w̃λ − ŵλ −K0λ
2 − λ2f ≤ 0

We may then make a comparison argument identical to that of Proposition

2.5.6 to conclude that

w̃λ − ŵλ

λ2
≤ K0 + f. (2.153)

This completes the proof that ŵ2 > −∞. To see that

lim inf
y→∞

ŵ2(y) ≥ 0

we adapt the arguments of Proposition 2.4.7 to our setting. The differences

are as follows;

1. We check that

lim inf
λ→0

w̃λy − ŵλy
λ2

> −∞

using similar arguments to those applied to show

lim inf
λ→0

Q2,λ
y > −∞

in Proposition 2.4.7.
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2. We apply the comparison argument given above on the interval [yk,∞)

for yk →∞. We use the fact (proven in Lemma 2.5.5) that

lim
y0→∞

lim sup
λ→0

sup
[y0,∞)

|Lθ̂λ,ĉλw̃λ|
λ2

= 0

to show that if we work on the interval [yk,∞), the K0 of equation (2.153)

can be chosen arbitrarily small for large yk. This is analogous to the use

of Lemma 2.4.5 in Proposition 2.4.7. Since we have shown that

lim inf
y→∞

w̃2 ≥ 0,

we then obtain

lim inf
y→∞

ŵ2 ≥ 0

as a result.

Theorem 2.5.8. We have

ŵ2 = w2

As a result,

dŵλ

dλ

∣∣∣∣
λ=0

= w1

d2ŵλ

dλ2

∣∣∣∣
λ=0

= w2

In other words, the payoff of the approximately optimal strategies (θ̂λ, ĉλ) at

fee level λ matches the value function up to second order in λ.
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Proof. : From the reasoning of Remark 2.5.1, it will suffice to show that ŵ2 is

a viscosity supersolution of the second-order corrector equation. Let φ be a C2

function such that ŵ2 − φ has a strict local minimum at y0. Choose λk → 0,

points yk → y0 and functions

ψk
∆
= ŵλk(yk) + λk

(
w1(y)− w1(yk)

)
+
λ2
k

2
(φ(y)− φ(yk))

touching wλk below at yk, just as we did in Proposition 2.4.8. First suppose

we have

Lθ̂λ,ĉλψk(yk) ≤ 0

for infinitely many k. We can repeat the arguments of Proposition 2.4.8 to

show that

lim
k→∞

Lθ̂
λkψk(yk)

λ2
k

=
1

2
(A + g) (2.154)

Therefore, to verify the interior supersolution property of the second-order

corrector equation, it will suffice to show that

lim sup
k→∞

Lθ̂
λkψk(yk)− Lθ̂λ,ĉλψk(y0)

λ2
k

≤ 0 (2.155)

Make the notation

κk
∆
= Lθ̂

λkψk(yk)− Lθ̂λ,ĉλψk(yk) (2.156)

and note that

κk = Ũ(∇ψk · 1)− νk(ĉλk)

where as usual all functions are implicitly evaluated at yk, and

νk(ỹ) = U(ỹ)− ỹ(∇ψk · 1)
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and note that νk has a maximum of Ũ(∇ψk · 1) at I(∇ψk · 1) (recall that

I = (U ′)−1). Therefore, by a Taylor expansion, we have

κk =
1

2
(νk)′′(ξk)(∇ψk · 1− ĉλk)2

where ξk is some number between ∇ψk · 1 and ĉλk . As a result, we will be

done with the interior supersolution if we can show that

lim
k→∞

∇ψk · 1− ĉλk
λk

= 0 (2.157)

so that

lim
k→∞

κk
λ2
k

= 0.

To verify (2.157), observe that

I(∇ψk · 1) = I(w0
x) + I ′(w0

x)(∇ψk · 1− w0
x) +

1

2
I ′′(ξk)(∇ψk · 1− w0

x)
2

= c0 + I ′(w0
x)

(
(1− p)(ŵλk − w0)− (1− yk)(λkw1

y +
λ2
k

2
φy)

)
1

2
I ′′(ξk)(∇ψk · 1− w0

x)
2 (2.158)

for some ξk between w0
x and ∇ψk · 1. On the other hand, using the definition

of c1, we have

ĉλk = c0 + λkI
′(w0

x)
(
(1− p)w1 − (1− yk)w1

y

)
(2.159)

So we have

lim
k→∞

|I(∇ψk · 1)− ĉλk |
λk

= lim
k→∞

(1− p)I ′(w0
x)(ŵ

λk − w0)

λk
− w1(yk)

= 0, (2.160)
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where the second line follows from Proposition 2.5.6 (it is easy to check that the

second-order remainder terms of (2.158) make no contribution). We conclude

that (2.157), and hence (2.155), holds.

If yk = 1 for infinitely many k, we may argue as in Proposition 2.4.8,

incorporating the result of Proposition 2.5.6 as needed.
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Chapter 3

Numerics

The paper [16] gives numerical results for the investment/consumption

problem with high-water mark fee. Specifically, the authors numerically solve

the HJB equation for the value function for fixed λ, then use the results to

describe the optimal investment/consumption proportions, as well as the cer-

tainty equivalent wealth and the certainty equivalent excess return (which we

will define below). In this section we will

1. compare these “exact” numerical approximations of the optimal strategy

with our closed form, approximately optimal strategies.

2. numerically solve for v̂λ, the payoff of the approximately optimal strat-

egy, and compare it to the “exact” numerical solution of [16] for vλ (recall

we showed in Chapter 2 that vλ and v̂λ are equal up to second order).

Notation. Throughout this chapter, we will use the notation developed in

Chapter 2.
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3.1 Certainty equivalent analysis

The values of the function vλ are given in abstract units of utility, so it is

difficult interpret the impact of fees by examining vλ itself. Instead we consider

the zero fee certainty equivalent wealth and zero fee certainty equivalent excess

return. The zero fee certainty equivalent wealth is the quantity x̃ such that

the investor would be indifferent between initial wealth x̃ when paying no fees

and initial state (x, n) when paying high-water mark fee λ. Note that since

v0(x) = (c0)−p
x1−p

1− p
vλ(x, n) = x1−pvλ(1, n/x)

= x1−pwλ(n/x)

it will suffice to take y = n/x and consider x̃(y) such that the investor is in-

different between initial wealth x̃(y) and paying no fees and initial wealth 1

when paying high watermark fee λ with initial high watermark y; the certainty

equivalent for initial state (x, n) is then equal to x · x̃(n/x). We will there-

fore use the one-dimensional notation of Chapter 2 as convenient. Equating

v0(x̃(y)) and wλ(y), we have

x̃(y) =
[
(c0)p(1− p)wλ(y)

] 1
1−p (3.1)

The zero fee certainty equivalent excess return µ̃(y) is defined similarly.

Let w0,µ̃ be the Merton value function with initial wealth 1, for the modified
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excess return µ̃. In other words,

w0,µ̃ =
(c0,µ̃)−p

1− p

c0,µ̃ =
β

p
−
(

1− p
2p2

)
µ̃2

σ2
. (3.2)

The certainty equivalent excess rate of return µ̃(y) is a solution to the equation

w̃0,µ̃(y) = wλ(y)

From (3.2), we can write certainty equivalent rate of excess return (relative to

the original rate µ) as

µ̃(y)

µ
=

√
2σp

µ

(
β

p
− ((1− p)wλ(y))−

1
p

) 1
2

(3.3)

Analogously, we can define the certainty equivalent wealth x̂(y) and rate of

return µ̂(y) for the payoff ŵλ of the suboptimal strategy (θ̂λ, ĉλ). Explicitly,

these are given by

x̂(y) =
[
(c0)p(1− p)ŵλ(y)

] 1
1−p

µ̂(y)

µ
=

√
2σp

µ

(
β

p
− ((1− p)ŵλ(y))−

1
p

) 1
2

We present four graphs below:

• The optimal and approximately optimal investment proportions relative

to the Merton investment proportion θλ(y)/θ0 and θ̂λ(y)/θ0 respectively.

• The optimal and approximately optimal consumption proportions rel-

ative to the Merton consumption proportion cλ(y)/c0 and ĉλ(y)/c0 re-

spectively.
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• The relative zero-fee certainty equivalent wealth levels x̃(y) and x̂(y).

• The relative zero-fee certainty equivalent excess return rates µ̃(y)/µ and

µ̂(y)/µ

To obtain these graphs, we follow [16] in fixing σ = 30% and choosing

the benchmark parameters

p = 3, β = 5%, µ = 10%, λ = 20%.

We then vary the parameters p, β, µ and λ around the benchmark parameters.

Note that the choice to fix σ = 30% is not restrictive, since the value function

of a model with some choice of µ and σ results in the same value function

as a model with scaled rate of return and standard deviation kµ and kσ (in

addition, the optimal investment proportion is scaled by 1/k).

Examining the resulting graphs, we have the following observations.

1. Most importantly, the certainty equivalent wealth and rate of return for

the payoffs ŵλ of the approximately optimal strategies (θ̂λ, ĉλ) closely

track those for the true value function wλ, but are slightly lower. The

difference between the two does appear to decay faster than linearly as

λ→ 0, reflecting the fact that ŵλ matches wλ up to second order in λ.

2. The approximately optimal strategies share some qualitative features

with the optimal strategies. In particular, both investment proportions

are greater than the Merton proportion when y is near 1. As noted
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Figure 3.1: Relative certainty equivalent zero-fee initial wealth for the payoffs
of the true optimal strategy (θλ, cλ) and the approximately-optimal strategy
(θ̂λ, ĉλ). For each choice of model parameters, we take σ = 30%.

in [16], once the investor is near the high-water mark, she is willing to

sacrifice a small amount of wealth to drive up the high-water mark by

over-investing in the short term; she then benefits from the increased

high-water mark in the future.

3. On the other hand, the approximately optimal investment and consump-

tion proportion are both typically greater than the optimal proportions.

In particular, the approximately optimal consumption strategy ĉλ(y) is

typically greater than the Merton proportion for large values of y, but

the optimal consumption strategy cλ(y) is not.
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Figure 3.2: Relative certainty equivalent zero-fee rate of return for the payoffs
of the true optimal strategy (θλ, cλ) and the approximately-optimal strategy
(θ̂λ, ĉλ).

Figure 3.3: Investment proportion relative to the Merton proportion for true
optimal strategy (θλ, cλ) and the approximately-optimal strategy (θ̂λ, ĉλ).
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Figure 3.4: Consumption proportion relative to the Merton consumption pro-
portion for the true optimal strategy (θλ, cλ) and the approximately-optimal
strategy (θ̂λ, ĉλ).
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Appendix 1

Appendix

1.1 Proof of Lemma 2.3.2

Lemma. Let (θ̄t, c̄t) be an admissible strategy for fee level λ = 0 given in

proportions (though not necessarily in feedback form). Suppose that

|θ̄t − θ0|+ |c̄− c0| < ε dt× dP-almost surely.

Let X̄ be the wealth process with controls given by (θ̄t, c̄t) and initial wealth x

and with no high-watermark fees. There is a constant M depending on the

model parameters µ, σ, β, p such that for ε > 0 sufficiently small, we have

E
∫ ∞

0

e−βtU(c̄tX̄t)dt ≥ (c0 −Mε)−1 (c0 − ε)1−px1−p

1− p

Proof. Let Y = U(X̄), and use E to denote the usual stochastic exponential.

We readily compute that

Yt =
x1−p

1− p
E(L)tAt,

Lt
∆
= (1− p)

∫ t

0

σθ̄tdWu
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where

At = exp

[
(1− p)

∫ t

0

µθ̄u − c̄u −
p

2
(σθ̄u)

2du

]
= exp

[
(1− p)

∫ t

0

µθ0 − c0 − p

2
(σθ0)2du

]
· exp

[
(1− p)

∫ t

0

µ(θ̄u − θ0)− c̄u + c0 − p

2
σ2
(
θ̂2
u − (θ0)2

)
du

]
We compute that

(1− p)(µθ0 − c0 − p

2
(σθ)2) = −c0 + β

so that there exists a constant M > 0 depending only on the model parameters

such that

e(−c0+β−Mε)t ≤ At ≤ e(−c0+β+Mε)t.

Note that the boundedness conditions on θ̄ imply that Z
∆
= E(L) is martingale.

Since Y is either non-negative or non-positive, we apply Fubini’s theorem to

see that:

E
∫ ∞

0

e−βtc̄1−p
t Ytdt ≥

∫ ∞
0

e−βtx1−p (c0 − ε)1−p

1− p
E[AtZt]dt

≥ (c0 − ε)1−px1−p

1− p

∫ ∞
0

e−βtE[e(−c0+β∓Mε)tZt]dt

=
(c0 − ε)1−px1−p

1− p

∫ ∞
0

e(−c0∓Mε)tdt

= (c0 ∓Mε)−1 (c0 − ε)1−px1−p

1− p

for ε sufficiently small. Here the − holds in ∓ if (1− p) > 0, and the + holds

if (1− p) < 0.
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1.2 Proof of Theorem 2.3.10, the comparison theorem

In this section we prove a general comparison principle that covers the

first- and second-order corrector equations, as well as some other cases arising

in the proofs of the boundedness of the relaxed semilimits.

Generalized corrector equation: We say a function w : [1,∞) → R sat-

isfies the generalized corrector equation with inhomogeneity h : [1,∞) → R,

boundary condition η, and limit L if

Aw + h = 0

wy(1) = η (1.1)

lim inf
y→∞

w(y) = L

We define the notions of viscosity sub- and supersolutions to the generalized

corrector equation as we did for the first-order corrector equation in Definitions

2.3.3 and 2.3.2. The statement of the comparison result, Theorem 2.3.10, is

reproduced below.

Theorem. Suppose there exists a smooth solution W to the generalized cor-

rector equation for some choice of h, η and L with h continuous. Fix L ∈ R

and let W− be an upper semicontinuous viscosity subsolution of the generalized

corrector equation with

lim sup
y→∞

W−(y) ≤ L

Then we have W− ≤ W on [1,∞). Similarly, if W+ is a lower semicontinuous
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viscosity supersolution of the first-order corrector equation with

lim inf
y→∞

W+(y) ≥ L

then we have W ≤ W+.

Remark 1.2.1. Because we assume the existence of a smooth solution W of

the generalized corrector equation, the proof of the comparison principle is el-

ementary; in particular, it does not involve the “doubling argument” typically

used in viscosity comparison results.

Proof. Suppose for contradiction that W−−W is positive at some point. Let

f(y) = y−q for q > 0 small. Since

lim sup
y→∞

W−(y) ≤ lim
y→∞

W (y),

the function W− −W must attain a finite, positive global maximum. Choose

ε > 0 with

ε < max
y∈[1,∞)

W−(y)−W (y).

Then the function W− −W − εf must attain a positive global maximum at

some ỹ, and the test function

φε(y) = W + εf + (W−(ỹ)−W (ỹ)− εf(ỹ))

then touches W− strictly above at ỹ. First suppose ỹ > 1. Recall from Lemma

2.3.9 that Af ≤ 0, so we have

Aφε(ỹ) + h(ỹ) ≤ AW (ỹ) + h(ỹ)− c0(W−(ỹ)−W (ỹ)− εf(ỹ))

< 0 (1.2)
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contradicting the subsolution property of W−. Now suppose ỹ = 1. The

boundary subsolution property ofW− implies that we must have either φεy(1) ≥

η (impossible because Wy(1) = η and fy(1) < 0) or Aφε(1) +h(1) ≥ 0 (impos-

sible for the same reasons as when ỹ > 1). So we must have W−−W − εf ≤ 0

on [1,∞), and taking ε arbitrarily small, we conclude that we must have

W− ≤ W .

1.3 Solution of the first-order corrector equation

The goal of this section is to find an explicit, smooth solution to the

first-order corrector equation, proving Proposition 2.3.11.

Lemma 1.3.1. For a function f : [1,∞)→ R, define the operator Aα by

(Aαf) (y) = αy2f ′′(y) + (y − 1)f ′(y)− f(y) (1.3)

Then Aαf = 0 has the general solution:

f(y) = c1(y − 1) + c2

(
(y − 1)Γ

(
1

α
,

1

αy

)
+ (αy)1− 1

α e
−1
αy

)
(1.4)

Here Γ(s, y) denotes the upper incomplete gamma function and the usual gamma

function:

Γ(s, y) =

∫ ∞
y

ts−1e−tdt

The solution of Lemma 1.3.1 was obtained using Mathematica, and

can easily be checked by hand. To prove Proposition 2.3.11, we now need

only choose the constants c1, c2 of (1.4) so that the boundary conditions and

limiting behavior of the first-order corrector equation are satisfied.
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Proof. (of Proposition 2.3.11) We begin with a solution W of the general

form of (1.4):

W (y) = c1(y − 1) + c2

(
(y − 1)Γ

(
1

α
,

1

αy

)
+ (αy)1− 1

α e
−1
αy

)
In order for W to satisfy the limiting behavior

lim
y→∞

W (y) = 0

we expect that we should have c1 = −CΓ(1/α) and c2 = C, for some constant

C. We therefore set

W (y) = C

(
(y − 1)

[
Γ

(
1

α
,

1

αy

)
− Γ

(
1

α

)]
+ (αy)1− 1

α e−
1
αy

)
. (1.5)

First we check that we indeed have W (y) → 0 as y → ∞. We consider two

cases. If α < 1, then clearly (αy)1− 1
α e−

1
αy → 0 as y →∞. Also,

(y − 1)

[
Γ

(
1

α
,

1

αy

)
− Γ

(
1

α

)]
= −(y − 1)

∫ 1
αy

0

t
1
α
−1e−tdt

≥ −(y − 1)
[
αt

1
α

] 1
αy

0
(1.6)

= −α1− 1
α (y − 1)y−

1
α

so we conclude that W (y)→ 0 as y →∞. In the case that α = 1, we have

(y − 1)

[
Γ

(
1

α
,

1

αy

)
− Γ

(
1

α

)]
= −(y − 1)

∫ 1
y

0

e−tdt

= −(y − 1)(1− e−
1
y )

Note that

lim
y→∞

(y − 1)(1− e−
1
y ) = 1,
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so that

W (y) = C
[
−(y − 1)(1− e−

1
y ) + e−

1
y

]
→ 0 as y →∞.

Now suppose α > 1. As in (1.6), we have the lower bound

(y − 1)

[
Γ

(
1

α
,

1

αy

)
− Γ

(
1

α

)]
≥ −α1− 1

α (y − 1)y−
1
α

On the other hand,

(y − 1)

[
Γ

(
1

α
,

1

αy

)
− Γ

(
1

α

)]
= −(y − 1)

∫ 1
αy

0

t
1
α
−1e−tdt

< −(y − 1)e−
1
αy

[
αt

1
α

] 1
αy

0
(1.7)

= −α1− 1
α e−

1
αy (y − 1)y−

1
α

→ 0 as y →∞

As a result,

|W (y)| ≤ Cα1− 1
α

(
|(y − 1)y−

1
α − y1− 1

α e−
1
αy |+ |(y − 1)y−

1
α e−

1
αy − y1− 1

α e−
1
αy |
)

Another straightforward application of l’Hôpital’s rule shows that both terms

on the right hand side go to 0 as y →∞.

It remains to show that Wy(1) 6= 0 if C 6= 0, so that we may choose

C such that W satisfies the boundary condition of the first-order corrector

equation. If α = 1, we can compute directly that

Wy(1)/C = 1 + 2e−1 < 0
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Now suppose that α 6= 1. We compute that

Wy(1)/C = −
∫ 1

α

0

t
1
α
−1e−tdt+ α1− 1

α e−
1
α

< −e−
1
α

∫ 1
α

0

t
1
α
−1dt+ α1− 1

α e−
1
α

= −α1− 1
α e−

1
α + α1− 1

α e−
1
α = 0

where the bound is the same used in (1.7).

Recall from Theorem 2.3.12 that we then have w1 = w1 = w1, and

w1 is equal to the W of Proposition 2.3.11. The following lemma concerning

the decay of w1 will be used to exhibit a smooth solution of the second-order

corrector equation.

Lemma 1.3.2. Fix ε > 0. Let g be as in (2.107). Then the limits

lim
y→∞

yεw1(y), lim
y→∞

y2εg(y) (1.8)

are well-defined, and are finite exactly when ε ≤ 1/α and nonzero exactly when

ε = 1/α.

Proof. Fix ε > 0. We’ll show that

lim
y→∞

(y − 1)εw1(y)

is finite exactly when ε ≤ 1/α. Now, as a consequence of Theorem 2.3.12 and

Proposition 2.3.11, we have

w1(y) = C

(
(y − 1)

[
Γ

(
1

α
,

1

αy

)
− Γ

(
1

α

)]
+ (αy)1− 1

α e−
1
αy

)
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It will suffice to show the limit

lim
y→∞

(y − 1)1+ε

[
w1(y)

(y − 1)

]
well-defined and is finite exactly when ε ≤ 1/α. We have

lim
y→∞

(y − 1)1+ε

(
y1− 1

α e−
1
αy

y − 1
− y−

1
α e−

1
αy

)
= 0 (1.9)

Therefore, it is enough to show the limit

lim
y→∞

(y − 1)1+ε

([
Γ

(
1

α
,

1

αy

)
− Γ

(
1

α

)]
+ α1− 1

αy−
1
α e−

1
αy

)
is well-defined and is finite exactly when ε < 1/α. Applying l’Hôpital’s rule,

we instead consider

lim
y→∞

(y − 1)2+ε d

dy

([
Γ

(
1

α
,

1

αy

)
− Γ

(
1

α

)]
+ (αy)−

1
α e−

1
αy

)
(1.10)

Computing derivatives, we have

(1.10) = lim
y→∞

(y − 1)2+ε
(
α−1y−1− 1

α + α−1− 1
αy−2− 1

α − α−1y−1− 1
α

)
e−

1
αy

= lim
y→∞

(y − 1)2+ε
(
α−

1
αy−2− 1

α

)
e−

1
αy ,

which is well-defined, is finite exactly when ε ≤ 1/α, and is equal to 0 if

ε < 1/α.

To see that the limit

lim
y→∞

y2εg(y)

is well-defined and finite exactly when ε ≤ 1/α, note that g is linear combina-

tion of two-fold products of w1, yw1
y and y2w1

yy – that is, of (w1)2, w1yw1
y, w

1y2wyy, . . ..

In light of the relation

αy2w1
yy + (y − 1)w1

y − w1 = 0
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coming from the first-order corrector equation, it will suffice to show that the

limit

L = lim
y→∞

y1+εw1
y(y)

is well-defined and is finite exactly when ε ≤ 1/α. Equivalently, we prove

L′ = lim
y→∞

y1+εh(y)

is well-defined and is finite exactly when ε ≤ 1/α, where h(y) = δyεw1(y) +

y1+εw1
y(y). First we claim that L is well-defined. If not, then there exist

yk → ∞ such that h has a local maximum or minimum at yk and the h(yk)

are bounded away from 0. Then we have

ykhy(yk) = δεyεw1(yk) + (1 + ε+ δ)y1+ε
k w1

y(yk) + y2+ε
k w1

yy(yk)

= 0

Since Aαw1 = 0, we have

0 = αykhy(yk) = αykhy(yk)− yεkAw1(yk)

= (αδε+ 1)yεkw
1(yk) + (α(1 + ε+ δ)− 1) y1+ε

k εw1
y(yk)

+yεkw
1
y(yk).

Choosing δ so that α(1+ε+δ)−1 6= 0 and recalling that yεw1(y)→ 0 as y →∞,

we conclude that y1+ε
k w1

y(yk) → 0 as k → ∞, a contradiction. Therefore, the

limits L and L′ are well-defined. By l’Hôpital’s rule, we therefore have

lim
y→∞

yεw1 = lim
y→∞
−εy1+εw1

y.

In particular, L and L′ are finite (resp. equal to 0) exactly when limy→∞ y
εw1

y

is finite (resp. equal to 0). This completes the proof.
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1.4 Solution of the second-order corrector equation

We now give the proof of Proposition 2.4.11, which we reproduce below.

Proposition. There is a smooth solution W : [1,∞)→ R of the second-order

corrector equation

AW + g = 0 on (1,∞)

Wy(1)− 2w1
x(1) = 0

lim
y→∞

W (y) = 0

has a smooth solution.

Proof. Suppose without loss of generality that c0 = 1 and set α = 1
2
(σθ0)2.

It will suffice to exhibit a smooth solution f to the inhomogeneous equation

Aαf + g = 0 with the appropriate limiting behavior; we may then take W =

f + C2w
1 where C2 = 2w1

x(1)−fy(1)

w1
y(1)

. Suppose that f(y) = w1(y)ν(y). Applying

A, we must have:

αy2w1ηy + (2αy2w1
y + (y − 1)w1)η = −g (1.11)

where η = νy. Solving formally, we guess that

η(y) = −e−
∫
ψdy

∫
e
∫
ψdy g(y)

αy2w1
dy.

where

ψ =
(2αy2w1

y + (y − 1)w1)

αy2w1
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We therefore try the solution

ν(y) =

∫ ∞
y

e−
∫ t
1 ψ(s)ds

(∫ ∞
t

e
∫ s
1 ψ(u)du g(s)

αs2w1(s)
ds

)
dt. (1.12)

First we check that the inner integral is finite. Observe that

ψ = 2
w1
y

w1
+

(
1

α

)
y − 1

y2

= 2
d

dy
log(−w1) +

(
1

α

)
y − 1

y2

≤ 2
d

dy
log(−w1) +

1

αy
(1.13)

We therefore have

e
∫ s
1 ψ(u)du ≤ e2 log(−w1(s))−2 log(−w1(1))+ 1

α
log(s)

≤
(
w1(s)

w1(1)

)2

s
1
α

≤ K0s
− 1
α (1.14)

for some large constant K0, by Lemma 1.3.2. So to bound the inner integral

of (1.12), we note that∫ ∞
t

∣∣∣∣e∫ s1 ψ(u)du g(s)

αs2w1

∣∣∣∣ds ≤ K0

∫ ∞
t

∣∣∣∣ g(s)

αs2+ 1
αw1(s)

∣∣∣∣ds
≤ K0

∫ ∞
t

s−2− 2
αds (1.15)

= K0t
−1− 2

α ,

where (1.15) follows from Lemma 1.3.2 after possibly enlarging the constant

K0. To see that ν is finite and

lim
y→∞
|w1(y)ν(y)| = 0,
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first note that, by similar arguments to those of (1.14), we have also have the

reverse bound

e−
∫ t
1 ψ(u)du ≤ K0t

1
α

after again possibly enlarging K0. Therefore, we have

|w1(y)ν(y)| ≤ K2
0

∣∣∣∣w1(y)

∫ ∞
y

t
1
α t−1− 2

αdt

∣∣∣∣
≤ K2

0 |w1(y)y−
1
α |

≤ K2
0y
−2
α

where the last line Lemma 1.3.2, again after possibly enlarging K0. By con-

struction, f = w1ν is C2 and satisfies Aαf + g = 0, which completes the

proof.

Proposition 2.4.11, combined with the general comparison result The-

orem 1.2, allows us to conclude that there is a well-defined second-derivative

w2 = w2 = w2. Moreover, w2 is equal to the W of the proof of Proposition

2.4.11.

1.5 Proof of Proposition 2.5.1

The goal of this section is to show that the payoffs w̃λ and ŵλ of the

suboptimal strategies (θ0, c0) and (θ̂λ, ĉλ) are smooth solutions of appropriate

PDEs and satisfy certain growth conditions. We will only prove the results

concerning ŵλ, since the analogous results for w̃λ can be obtained by simpler

versions of the same arguments. To begin with, we recall the following result

on admissibility of feedback strategies (see Propositions 5.2 and 5.3 of [16]).
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Proposition 1.5.1. Let θ and c be two functions on [1,∞) with the property

that

Θ(x, n) = xθ(x, n)

γ(x, n) = xc(x, n)

are globally Lipschitz functions on D. Then the feedback strategy (Θ(x, n), γ(x, n))

given in dollar amounts gives rise to an admissible strategy for any initial con-

dition (x, n) ∈ D. Equivalently, the feedback proportions (θ(x, n), c(x, n)) give

rise to an admissible strategy for any (x, n) ∈ D.

Lemma 1.5.2. The feedback proportions (θ̂λ(x, n), ĉλ(x, n)) give rise to an

admissible strategy for any initial condition (x, n) ∈ D .

Proof. By Proposition 1.5.1, it will suffice to show that the functions

Θ(x, n) = xθ̂λ(x, n)

γ(x, n) = xĉλ(x, n)

are globally Lipschitz functions on D. Recalling the expressions for θ1 and c1

of (2.106), we have

θ̂λ(x, n) = θ0 + λθ1(y)

ĉλ(x, n) = c0 + λc1(y)

where y = n/x. Therefore,

Θx(x, n) = θ0 + λ
(
θ1(y)− yθ1(y)

)
Θn(x, n) = λθ1

y (1.16)
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and similarly for γ. As a result, it is enough to show that yθ1
y(y) and yc1

y(y) are

bounded on [1,∞). Recall from Corollary 2.3.4 that w1(y), yw1
y(y), and y2w1

yy(y)

are bounded. Taking derivatives with respect to y of the equation Aw1 = 0,

we see that y3w1
yyy is bounded as well. We may then differentiate the explicit

expressions

θ1 = −
( µ
σ2

) w0
xxw

1
x − w0

xw
1
xx

(w0
xx)

2

c1 = I ′(w0
x)(w

1
x + w1

y)

to conclude that yθ1
y and yc1

y are bounded as well.

Lemma 1.5.3. For λ sufficiently small, we have:

v̂λ(x, n) > −∞, n ≥ x > 0

lim
n→∞

v̂λ(x, n) = v0(x)

Proof. Recall from Remark 2.4.2 that θ1 and c1 are bounded. We repeat the

arguments of Proposition 2.3.3. Let (X̂λ.z, N̂λ,z) be the state process deter-

mined by the feedback proportions (θ̂λ, ĉλ) and the initial condition z = (x, n).

We apply the bounds of Remark 2.3.2 to see that

X̂λ,z
t ≥ nλX̂0,z(

exp[
∫ t

0
c̄(X̂λ,z

u , N̂λ,z
u )du]Ĥz

t

)λ

Ĥz
t

∆
= n−1[(X̂0,z + Ĉ0,z) ∨ n]∗, Ĉ0,z

t
∆
=

∫ t

0

ĉλ(X̂λ,z
u , N̂λ,z

u )X̂0,z
u du
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where (X̂0,z, N̂0,z) denotes the state process determined by the controls

(θ
λ

t , c
λ
t )

∆
= (θ̂λ(X̂λ.z, N̂λ,z), ĉλ(X̂λ.z, N̂λ,z))

at fee level 0. Therefore,

v̂(x, n) ≥ E

∫ ∞
0

e−βtU

 nλc̄λt X̂
0,z
t(

exp[
∫ t

0
c̄λudu]Ĥz

t

)λ
 dt

 (1.17)

Let ε0 > 0. Since θ1 and c1 are bounded, we have

|θ̄λt − θ0|+ |c̄λt − c0| < ε0

for all t, for λ sufficiently small. We now apply a Hölder argument to check

that the right-hand side of (1.17) is finite. Pick q > 1, and let q′ be its Hölder

conjugate. For q sufficiently close to 1 and δ > 0 sufficiently small, we can

apply Lemma 2.3.2 and arguments similar to the proof of Proposition 2.3.3 to

check that for all λ sufficiently small, we have

E
∫ ∞

0

e−β(1−δ)qt|U(c̄λt X̂
0,z
t )|qdt < u0(x)− ε(β, δ, µ, σ, λ, q′) > −∞

where u0 is the value function of the Merton optimal investment/consumption

problem with modified utility function V (x) = sign(1−p)|U(x)|q and modified

discount factor β(1− δ)q′, and we have ε→ 0 as λ→ 0. Note that this bound

(along with the choice of sufficiently small λ) is independent of n for fixed x.

It remains to show that for λ sufficiently small, the quantity

Aλ,z
∆
= E

∫ ∞
0

e−βδq
′t
∣∣∣U (e∫ t0 c̄λt duĤz

t

)∣∣∣−λq′ dt
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is finite (in fact, we will show Aλ,z is uniformly bounded for all n ≥ x, for λ

sufficiently small). Recalling that |c̄λ− c0| ≤ ε0 for λ small, we argue as in the

proof of Proposition 2.3.3 to obtain the bound

Ĥz
t ≤ n−1 sup

0≤s≤t
[(1 + (c0 + ε))sX̂0,z

s ∨ n] (1.18)

Now recalling the boundedness of θ̄λ and c̄λ, we have

(1 + (c0 + ε))tX̂0,z
t = xE (L)t

Lt =

∫ t

0

aλudu+ bλudWu

where aλ and bλ are predictable processes uniformly bounded in (t, ω) for small

λ. Then for ρ = −(1− p)q′λ/2 we have∣∣∣(1− p)U (e∫ t0 c̄λuduĤz
t

)∣∣∣−λq′ =
∣∣∣e∫ t0 c̄λuduĤz

t

∣∣∣2ρ
≤ n−1e2ρ

∫ t
0 c̄

λ
udu sup

0≤s≤t
[n ∨ xE(L)s]

2ρ

≤ e(|ρ|+ρ2)āt sup
0≤s≤t

[
1 ∨ (x/n)ρE(L̄)2

s

]
where ā is a large constant independent of ρ and n, and L̄t = ρ

∫ t
0
b̄udWu for

some uniformly bounded, predictable process b̄. By Doob’s maximal inequality,

E
[

sup
0≤s≤t

E(L̄)2
s

]
≤ 4E

[
E(L̄)2

t

]
≤ 4E

[
e(|ρ|+ρ2)āt

]
after possibly enlarging ā. We conclude that there exists a large constant K

independent of n and λ such that, for λ (and hence ρ) sufficiently small, we

have ∣∣∣(1− p)U (e∫ t0 c̄λuduĤz
t

)∣∣∣−λq′ ≤ Keā(|ρ|+ρ2)t (1.19)
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Therefore, for λ sufficiently small that ā(|ρ|+ ρ2) < −βδq′, we have

0 ≤ Aλ,z ≤ K

βδq′ − ā(|ρ|+ ρ2)
.

We conclude that v̂λ(x, n) is uniformly bounded below for all n ≥ x.

We now show

lim
n→∞

v̂λ(x, n) = v0(x) (1.20)

We’ll assume without loss of generality that x = 1 and fix λ small. Now the

above arguments can be repeated to show that the family

Xλ = {U(c̄λt X̂
λ,z
t ) : z = (1, n), n ∈ [1,∞)}

is bounded in L1+κ([0,∞)×Ω, βe−βtdt×dP) for κ sufficiently small. To see this,

note that we have already shown Xλ is bounded in L1([0,∞)×Ω, βe−βtdt×dP);

this is just another way of saying that ŵλ(1, n) is uniformly bounded above (by

v0(1)) and below (as a result of the arguments given above). For κ sufficiently

small, we may simply repeat the same arguments after possibly modifying

q′. Since Xλ is bounded in L1+κ([0,∞) × Ω, βe−βtdt × dP), it is uniformly

integrable on ([0,∞)× Ω, βe−βtdt× dP). We now claim that

U(ĉλ(X̂λ,z
· , N̂λ,z

· )X̂λ,z
· )→ U(c0X0,z

· )

in measure (with respect to the product measure βe−βtdt × dP) as n → ∞.

Since the family Xλ is uniformly integrable, this will imply (1.20). Because

ĉλ → c0 uniformly, it will suffice to show that

|X̂λ,z
· −X0,z

· | → 0
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in measure as n → ∞ with respect to the product measure βe−βtdt × dP. In

fact, it will be enough to show that there is an increasing sequence of stopping

times τk →∞ such that

|X̂λ,z
·∧τk −X

0,z
·∧τk | → 0

in measure on [0, τk)× Ω as n→∞. Pick any sequence nk →∞. Let

τk = inf{t : X̂
λ,(1,nk)
t =

√
nk}

Of course, before time τk, we have X̂
λ,(1,nk)
t = X̂

0,(1,nk)
t as no fees have been

incurred. Note also that if l ≥ k, then X̂
λ,(1,nl)
t = X̂

λ,(1,nk)
t before time τk. We

have τk →∞ as k →∞, and upto time τk, we have

N̂
λ,(1,nk)
t /X̂

λ,(1,nk)
t ≥

√
nk

Recalling that

lim
n→∞

θ1(x, n) = lim
n→∞

c1(x, n) = 0,

we have

|θ̂λ(X̂λ,(1,nk)
·∧τk , N̂

λ,(1,nk)
·∧τk )− θ0|+ |ĉλ(X̂λ,(1,nk)

·∧τk , N̂
λ,(1,nk)
·∧τk )− c0| < εk

where εk → 0. It is therefore easy to see that for any fixed k0, we have∣∣∣X̂λ,(1,nk)
·∧τk0 −X0,(1,nk)

·∧τk0

∣∣∣→ 0 as k →∞

in measure on [0, τk0)×Ω (the strategies which determine X̂
(λ,nk)
·∧τk0 converge to

uniformly to the Merton proportions on [0, τk0) × Ω as k → ∞, and fees are

not present in the dynamics of X̂
(λ,nk)
·∧τk0 ), which completes the proof.
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In order to show that ŵλ is the solution of the appropriate PDE, we

will need the following analogue of the dynamic programming principle; since

the controls corresponding to ŵλ are in feedback form, a rigorous proof is

tractable, and amounts to the strong Markov property for reflected diffusions.

Proposition 1.5.4. Let (X̂, N̂) = (X̂λ,z, N̂λ,z) be the state process correspond-

ing to using the feedback control (θ̂λ, ĉλ) with initial condition z = (x, n) and

fee level λ. Set Ŷ = N̂/X̂, and define

Zz
t =

∫ t

0

e−βuU(ĉλ(X̂u, N̂u)X̂u)du+ e−βtX1−p
t ŵλ(Ŷt) (1.21)

Then Zz is a local martingale.

Proof. We’ve seen that for any initial condition z, the equation defining (X̂, N̂)

has a pathwise unique strong solution (this follows from Lemma 1.5.2). Be-

cause the control (θ̂λ, ĉλ) is in feedback form, we may adapt the arguments

of Stroock and Varadhan [25] to see that a corresponding martingale problem

for the reflected diffusion (X̂, N̂) is well-posed, and that as a result, a strong

Markov property holds for (X̂, N̂). It then follows by standard arguments that

Zz is a local martingale. Note that the arguments of [25] do not deal with

reflection and therefore cannot be applied directly.

Lemma 1.5.5. Fix a ∈ [1,∞). For b > a arbitrarily large, there is a C2
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solution sa,b to the scale equation

Lθ̂λ,ĉλsa,b = 0

sa,b(a) = ŵλ(a) (1.22)

sa,b(b) = ŵλ(b).

Proof. Let L̄ be the homogeneous version of the operator Lθ̂λ,ĉλ ; obtained from

Lθ̂λ,ĉλ by subtracting an appropriate constant. The coefficients of both L̄ and

Lθ̂λ,ĉλ are continuous, From general results on second-order, linear ODEs, for

any b there is a solution sb to

Lθ̂λ,ĉλsb = 0 on [a, b]

sb(a) = ŵλ(a)
(1.23)

Let h be a solution of the initial value problem

L̄hb = 0 on [a, b]

h(a) = 0 (1.24)

hy(a) = η

for some η 6= 0. Note that there are b arbitrarily large such that h(b) 6= 0;

if not, then there exists a b such that h(b) = hy(b) = 0, and uniqueness for

problem

L̄h = 0 on [a, b]

h(b) = 0

hy(b) = 0

130



implies that h = 0 on [a, b], contradicting hy(a) = 0. For those b at which

h(b) 6= 0, we may therefore take

sa,b = sb +Kbh

for an appropriate choice of constant Kb.

Lemma 1.5.6. Let X̂, N̂ , Ŷ be as in Proposition 1.5.4. Pick a, b ∈ [1,∞) such

that n/x ∈ [a, b] and there exists sa,b as in Lemma 1.5.5. Define the stopping

time

τ = inf{t > 0|Yt /∈ [a, b]}.

Then τ is almost-surely finite, and the process

Szt =

∫ t

0

e−βuU(ĉλ(X̂u, N̂u)X̂u)du+ e−βtX̂1−p
t sa,b(Ŷt) (1.25)

is a bounded martingale up to time τ .

Proof. Recall that fees are paid exactly when Ŷ = 1. Therefore, no fees have

been incurred up to time τ , and the state process has the form

X̂ = xE(I)t

N̂ = n−
∫ t

0

ĉλ(X̂u, N̂u)X̂udu

where

It =

∫ t

0

θ̂λ(X̂u, N̂u)
dFu
Fu
− ĉλ(X̂u, N̂u)du
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Applying Itô’s Lemma, we then have

dŶt =
1

X̂t

dNt +Nt

(
− 1

X̂2
t

dXt +
1

X̂3
t

d〈X〉t
)

= −ĉλ(X̂t, N̂t)dt+ Ŷt(−dIt + d〈I〉t)

= (Ŷt − 1)ĉλ(X̂t, N̂t)dt+ Ŷt

(
1

2
θ̂λ(X̂t, N̂t)

2 − µθ̂λ(X̂t, N̂t)

)
dt

−Ŷtσθ̂λ(X̂t, N̂t)dWt

Recall that ĉλ → c0 and θ̂λ → θ0 uniformly as λ→ 0. Therefore, we may take

λ sufficiently small that Ŷ admits a decomposition

dŶt = aλt dt+ bλt dWt (1.26)

up to time τ , where aλ, bλ are uniformly bounded, predictable, pathwise con-

tinuous processes, and bλ is uniformly bounded away from 0. Applying the

Girsanov theorem, there is a measure Q equivalent to P with respect to which

Ŷ is a local martingale up to time τ . Since the volatility bλ of Ŷ is bounded

uniformly away from 0 before time τ , it follows that Ŷ exits the interval [a, b]

in finite time Q-almost surely (hence P-almost surely). In other words, τ is

P-almost surely finite.

To see that Sz is a local martingale up to time τ , simply apply Itô’s

Lemma to obtain a semi-martingale decomposition of Sz; the resulting drift

term is exactly X̂1−p
(
Lθ̂λ,ĉλsa,b

)
(Ŷt∧τ )dt, and by definition Lθ̂λ,ĉλsa,b = 0. To

see that Szt is uniformly integrable up to time τ , note that before time τ , we

have 0 ≤ X̂ ≤ N̂ ≤ n. As a result,

|Szt∧τ | ≤
∣∣∣∣ ∫ t∧τ

0

e−βuU(ĉλ(X̂u, N̂u)X̂u))du

∣∣∣∣+
∣∣ne−β(t∧τ)sa,b(Ŷt∧τ )

∣∣
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Since sa,b is bounded, the term
∣∣ne−β(t∧τ)sa,b(Ŷt∧τ )

∣∣ is uniformly bounded over

all t. On the other hand, the term |
∫ t∧τ

0
e−βuU(ĉλ(X̂u, N̂u)X̂u))du| is increasing

in t, and from the definition of ŵ, we have

0 ≤ E
∣∣∣∣ ∫ τ

0

e−βuU(ĉλ(X̂u, N̂u)X̂u))du

∣∣∣∣ ≤ x1−pŵλ(1, y).

We conclude that Szt∧τ is bounded, and in particular a true martingale.

Proposition 1.5.7. With sa,b as in Lemma 1.5.5, we have

ŵλ = sa,b

on [a, b]. In particular, ŵλ is C2 on [1,∞) and

Lθ̂λ,ĉλŵλ = 0 on [1,∞).

Proof. Fix y ∈ (a, b) and set z = (1, y). Let X̂, N̂ , Ŷ and Z be as in Proposition

1.5.4, and τ, S as in Lemma 1.5.6. Note that Sz0 = sa,b(y) and Zz
0 = ŵλ(y).

Since τ is almost surely finite, P[Ŷτ = a] + P[Ŷτ = b] = 1. From Lemma 1.5.6,

we also know that Sz is a uniformly integrable martingale up to time τ , so we

conclude that

sa,b(y) = E[Sz0 ] = E[Szτ ]

= E
[∫ τ

0

e−βuU(ĉλ(X̂u, N̂u)X̂u)du

]
(1.27)

+sa,b(a)E
[
1[Ŷτ=a]X̂

1−p
τ

]
+ sa,b(b)E

[
1[Ŷτ=b]X̂

1−p
τ

]
On the other hand, the local martingale Zz is uniformly integrable martin-

gale up to time τ ; to see this, one can use an argument identical to that of
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Proposition 1.5.6. Therefore, we have

ŵλ(y) = E[Zz
0 ] = E[Zz

τ ]

= E
[∫ τ

0

e−βuU(ĉλ(X̂u, N̂u)X̂u)du

]
(1.28)

+ŵλ(a)E
[
1[Ŷτ=a]X̂

1−p
τ

]
+ ŵλ(b)E

[
1[Ŷτ=b]X̂

1−p
τ

]
From (1.27) and (1.28), we conclude that ŵλ(y) = sa,b(y)

Proposition 1.5.8. The function ŵλ is a C2solution of

Lθ̂λ,ĉλŵλ = 0 on [1,∞)

ŵλy (1)− λŵλx(1) = 0 (1.29)

lim
y→∞

ŵλ(y) = w0

Proof. By Proposition 1.5.7 and Lemma 1.5.3, it remains only to check the

second line of (1.29). Note that since we’ve shown ŵλ is C2 on [1,∞) in

Proposition 1.5.7, we already know ŵλy is well-defined and continuous at y = 1.

Set z = (1, 1) and define X̂, N̂ , Ŷ , and Z as in Proposition 1.5.4. Suppose for

contradiction that

ŵλy (1)− λŵλ(1) < 0

For some ε > 0, define the stopping time

τ = inf{t : Ŷ ≥ 1 + ε}.

From Proposition 1.5.4 and the arguments of Lemma 1.5.6, we see Z is a

bounded martingale up to time τ . On the other hand, applying Itô’s lemma
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to X̂1−pŵλ(Ŷ ) and combining the results of Propositions 2.1.2 and 1.5.7, we

obtain a decomposition

Zt = Z̃t + At (1.30)

where Z̃t is a local martingale (and a bounded martingale up to time τ) and

dAt = e−βtX̂1−p
t (ŵλy (Ŷt)− λŵλx(Ŷt))dM̂t

A0 = 0

M̂t = max
0≤s≤t

[∫ s

0

θ̂λ(X̂u, N̂u)(µdu+ σdWu)

]
The measure dM̂t is supported on the set of times {t : Ŷt = 1}, so that

dAt = e−βtX̂1−p
t (ŵλy (1)− λŵλx(1))dM̂t.

Since θ̂λ is bounded away from 0, it is easy to see that

inf{t > 0 : Mt > 0} = 0 P− almost surely.

As a result, we have Aτ < 0 almost surely, contradicting the martingale prop-

erty of Ẑ up to time τ and the decomposition 1.30.

Lemma 1.5.9. We have

lim
y→∞

yŵλy = lim
y→∞

y2ŵλyy(y) = 0

Proof. Recall that θ1 and c1 are smooth and bounded with

lim
y→∞

c1(y) = lim
y→∞

θ1(y) = 0.
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As a result, we can rewrite the equation Lθ̂λ,ĉλŵλ = 0 as

a2(y)ŵλyy + a1(y)ŵλy + a0(y)âλ + b(y) = 0 (1.31)

where ai(y)/yi has a finite, well-defined limit as y → ∞ for i = 0, 1, 2, which

is nonzero for i = 2, and b(y)→ 0.

First, we claim that the limit L = limy→∞ yŵ
λ(y) is well defined. If so, then

l’Hôpital’s rule gives

lim
y→∞

ŵλ = lim
y→∞

yŵλ(y)

y

= lim
y→∞

(yŵλy (y) + ŵλ)

so that L = 0. From (1.31), we immediately see

lim
y→∞

y2ŵλyy = 0

as well. To see that L is well-defined, set h(y) = δŵλ + yŵλy − w0 for some

constant δ. If L is not well-defined, then there must be infinitely many local

maxima and minima yk of h such that h(yk) is bounded away from 0. We then

have

0 = hy(yk) = (1 + δ)ŵλy (yk) + ykŵ
λ
yyyk (1.32)

Combining this with equation (1.31), we see that

−a2(y)(1 + δ)
ŵλy (yk)

yk
+ a1(yk)ŵ

λ
y (yk) + a0(yk)w

λ
( yk) + b(yk) = 0 (1.33)

We know that a0(yk)w
λ(yk) + b(yk)→ 0 as k →∞. On the other hand, since

a2(yk)/y
2
k has a finite, nonzero limit, we can choose δ so that the remaining

piece −a2(y)(1+δ)
ŵλy (yk)

yk
+a1(yk)ŵ

λ
y (yk) is bounded away from 0, contradicting

the fact that Lθ̂λ,ĉλŵλ = 0.
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[7] J. Cvitanić and I. Karatzas. On portfolio optimization under drawdown

constraints. IMA Lecture Notes in Mathematics and Applications, 65:77–

88, 1995.

[8] M. H. A. Davis and A. R. Norman. Portfolio selection with transaction

costs. Mathematics of Operations Research, 15(5):676 – 713, 1990.

[9] R. Elie and N. Touzi. Optimal lifetime consumption and investment

under a drawdown constraint. Finance and Stochastics, 12:299 – 330,

2008.

[10] L. C. Evans. The perturbed test function method for viscosity solutions

of nonlinear PDE. Proceedings of the Royal Society of Edinburgh: Section

A, 111(3):359–375, 1989.

[11] S. Gerhold, J. Muhle-Karbe, and W. Schachermayer. Asymptotics and

duality for the Davis and Norman problem. Stochasics, 84:625–641, 2012.

[12] W. N. Goetzmann, J. E. Ingersoll Jr., and S. A. Ross. High-water marks

and hedge fund management contracts. Journal of Finance, 58:1685

–1718, 2003.

[13] S. Grossman and Z. Zhou. Optimal investment strategies for controlling

drawdowns. Mathematical Finance, 3:241 = 276, 1993.
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