Copyright
by
Andrew Kontaxis

2015



The Dissertation Committee for Andrew Kontaxis
certifies that this is the approved version of the following dissertation:

Asymptotics for optimal investment with high-water

mark fee

Committee:

Mihai Sirbu, Supervisor

Irene M. Gamba

Rafael Mendoza-Arriaga

Thaleia Zariphopoulou

Gordan Zitkovié



Asymptotics for optimal investment with high-water

mark fee

by

Andrew Kontaxis, B.A.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
August 2015



Dedicated to my family.



Acknowledgments

First, I would like to thank my advisor, Professor Mihai Sirbu, for his
guidance and advice over the years. Our frequent discussions not only molded
my understanding of the fields of stochastic control and mathematical finance,
but also introduced me to the process of mathematical research. He suggested
the topic of this work, and his input has been invaluable in simplifying, clari-
fying and expressing the results. More generally, I cannot imagine an advisor

more sympathetic to the challenges of completing a first research project.

I would like to acknowledge Professor Gordan Zitkovié for his teaching
in many topics courses on stochastic analysis; his intuitive lectures have helped
get my bearings in this vast field, and this has been indispensable for my
research. I am also very grateful to Professor Thaleia Zariphopoulou, whose
courses shaped much of my background in mathematical finance and gave me

a sense of the history and context of the discipline.

I want to thank Professor Irene Gamba for her teaching in graduate
prelim courses, which was essentially my first taste of applied math and has
provided me with perspective and tools that I use every day. I also greatly

appreciate Professor Rafael Mendoza-Arriaga’s comments on this work.

Finally, I would like to thank my family and friends for their support.



This research was supported in part by the National Science Founda-
tion under Grant DMS 1211988. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do

not necessarily reflect the views of the National Science Foundation.

vi



Asymptotics for optimal investment with high-water

mark fee

Publication No.

Andrew Kontaxis, Ph.D.
The University of Texas at Austin, 2015

Supervisor: Mihai Sirbu

This dissertation studies the problem of optimal investment in a fund
charging high-water mark fees. We consider a market consisting of a riskless
money-market account and a fund charging high-water mark fees at rate A,
with share price given exogenously as a geometric Brownian motion. A small
investor invests in this market on an infinite time horizon and seeks to maxi-
mize expected utility from consumption rate. Utility is taken to be constant
relative risk aversion (CRRA). In this setting, we study the asymptotic behav-
ior of the value function for small values of the fee rate X. In particular, we
determine the first and second derivatives of the value function with respect
to A\. We then exhibit for each A explicit sub-optimal feedback investment
and consumption strategies with payoffs that match the value function up to

second order in \.
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Chapter 1

Introduction

Investment funds charge investors fees for their services. Common fee
structures include proportional fees, in which the investor pays a fixed per-
centage of the total investment on a yearly basis, and high-water mark fees
in which the investor pays a fixed proportion of any profit made from the in-
vestment. These fee structures are often combined; a typical fee structure for
hedge funds is the “2/20 rule”, a combination of a 2% proportional fee and a

20% high-water mark fee.

There is a growing subset of the finance literature examining how the
high-water mark fee structure affects the behavior of the fund manager, the
recipient of the fees. Panageas and Westerfield [22] consider a risk-neutral
manager who seeks to maximize the present value of her fee stream on an
infinite horizon. Although their payoff is convex in this setting, managers do
not put unbounded weights on risky assets in this setting; rather, risk-seeking
behavior occurs only when the fund manager is constrained to a finite time
horizon. Brown, Goetzmann, and Park [4] find empirically that excessively
risky investment on the part of the fund manager increases the likelihood of

termination for the hedge fund, and that the reputation costs associated with



termination offset the incentive toward risky behavior posed by the high-water
mark fees. Goetzmann, Ingersoll Jr., and Ross [12] give a closed form descrip-
tion of the value of a high-water mark contract as a claim on the investor’s

wealth.

In the mathematical finance literature, Guasoni and Obt6j [14] study
the problem of fund manager who seeks to maximize his expected utility from
high-water mark fees on a large time horizon. In [16], on the other hand,
Janecek and Sirbu examine the high-water mark fee structure from the per-
spective of the investor. They introduce a continuous-time model for optimal
investment and consumption in a market consisting of a fund charging high-
water mark fee at rate A and a riskless money-market account with zero interest
rate. Their model allows continuous trading in and out of the fund, and is
a modification of the classical optimal investment and consumption problem
of Merton introduced in the seminal papers [20], [21]. This model yields an
optimal control problem in which the state process is a two-dimensional re-
flected controlled diffusion. Assuming power utility, infinite time horizon, and
a market consisting of a riskless bond and the fund (with share price given ex-
ogenously as a geometric Brownian motion), they show that the value function
v of this problem is a classical solution of the corresponding HJB equation.
As a result, the optimal investment and consumption strategies are given in
feedback form in terms of the value function and its derivatives. This HJB
equation cannot be solved in closed form, however, so this result is of limited

use for making explicit quantitative statements about how the model param-



eters, the high-water mark fee rate A\, and the current high-water mark (or
equivalently, the “distance to paying fees”) affect the investor’s behavior. For

this, we must rely on numerical approximations.

The problem of optimal investment in a fund charging high-water mark
fee is closely related to the problem of optimal investment with drawdown con-
straint. In the absence of consumption, investment strategies which satisfy a
drawdown constraint with proportion A (with no fees imposed) are exactly
those which satisfy a no-bankruptcy constraint when used to invest in a fund
charging high-water mark fee at rate 1%\ In the mathematical finance lit-
erature, optimal investment with drawdown constraint was first studied by
Grossman and Zhou [13]; in their work, the payoff of an investment strategy
was given by the long-term growth rate of expected utility of wealth. Cvitanié¢
and Karatzas [7] then extended these results by approximating the long-term
growth with auxiliary finite horizon utility maximization problems without
drawdown constraint, which could then be solved using convex duality tech-

niques. More recently, Roche [23] and Elie and Touzi [9] explicitly solved the

infinite horizon investment/consumption problem with drawdown constraint.

The present work carries out an asymptotic analysis of the value func-
tion v* for small X in the framework of [16]. In particular, we characterize the
first and second derivatives v' and v? of v* with respect to \ as solutions of lin-
ear PDE which can be explicitly solved. We are therefore able to quantify how
the “loss” due to high-water mark fees depends both on the the fee rate A, the

model parameters, and the high-water mark itself. In addition, we use this



asymptotic expansion to produce explicit feedback investment/consumption

strategies (9“, ¢*) with the property that:
o =0+ 0(N\?) as A — 0

where 9* is the expected payoff corresponding to the feedback strategy (9“, ).

Conceptually, our work is analogous to a number of works in the litera-
ture of optimal investment in markets with frictions such as transaction costs.
Often in this literature, one can characterize the value function as a (possi-
bly smooth) solution of an HJB equation, but cannot solve the HJB equation
explicitly. For instance, in the context of the investment/consumption prob-
lem with proportional transaction costs introduced by Davis and Norman [8],
Shreve and Soner [24] show that the value function is a smooth solution of a
certain free boundary problem, and that the optimal investment /consumption
strategies are given in terms of the free boundaries. Neither the value function
nor the free boundaries can be determined explicitly, however. Whalley and
Wilmott [26] carry out a formal asymptotic analysis of the pricing and hedging
of European options with proportional transaction costs. Janecek and Shreve
[15] then exhibit a rigorous asymptotic expansion of the value function of the

1/3

problem of [24] in powers of €'/°, where € is the rate of proportional transaction

cost, and obtain asymptotic results on the location of the free boundary.

More recently, Altarovici, Muhle-Karbe, and Soner [1] obtained a simi-
lar expansion in powers of €'/ for the value function of the optimal investment

problem with fixed transaction costs. Again, this expansion also leads to an



explicit sub-optimal strategy, the payoff of which matches the value function

upto order €!/2.

At the technical level, our approach is perhaps most similar to that
of [1], in that it is uses the techniques introduced by Barles and Perthame
[3] and Evans [10]. First, we follow [3] in defining upper and lower relaxed
semilimits for the derivatives v!' and v? of v with respect to A. We then
show that the upper (resp. lower) relaxed semilimit is a viscosity subsolution
(resp. supersolution) of an appropriate differential equation by adapting the
perturbed test function method of [10]. Finally, we use a comparison principle
to conclude that the upper and lower relaxed semilimits coincide, so that the

first and second derivatives of v* with respect to A are well-defined.

The relaxed semilimit approach of [3] was intended to deal with the case
of discontinuous viscosity solutions and is in principle a more general approach
than is needed for our case; the value functions v* at fixed A are known to be
smooth, thanks to [16]. However, most of the technical effort of our approach

lies in checking the boundedness of the difference quotients

v — 0 v — (00 + Aot)

LA _ 22
Q @ 5

and their derivatives for small A (and not in verifying the viscosity solution
property of the resulting relaxed semilimits, which is rather straightforward).
Some boundedness of this kind would be necessary for more classical ap-

proaches as well, so there is little additional cost to our more general method.

The works on proportional and fixed transaction costs cited above em-



ploy the PDE-based methods of stochastic control theory. On the other hand,
there is a considerable literature treating the problem of optimal investment
with proportional transactions costs via martingale methods and convex dual-
ity techniques; see the seminal papers of Jouini and Kallal [17] and Cvitanci¢
and Karatzas [7]. In this spirit, Gerhold, Muhle-Karbe and W. Schachermayer
[11] use techniques of convex duality to generalize the work of [15], obtaining
fractional Taylor expansions of arbitrarily high order for the value function
and the location of free boundary. In our setting, the value function v* is
concave, so it is natural to ask whether the problem for fixed A can be solved
using convex duality techniques, and also whether duality can be applied to an
asymptotic expansion. The state process in the case of high-water mark fees
depends in a highly non-linear way on the strategies used, however, so it is not
obvious how to adapt the usual arguments of convex duality. In particular,

no analog of the classical martingale representation theorem or the optional

decomposition theorem of [19] used in other settings is available.



Chapter 2

Asymptotics for optimal investment with
high-watermark fee

2.1 The optimal investment problem for fixed fee rate

A

In this section, we introduce the model and principal results of [16].

2.1.1 A basic model for investment with high-water mark fees

To begin with, we present a model of investment without consumption
in a fund charging high-water mark fee. We consider a market consisting of a
riskless asset with zero interest rate and a risky fund with exogenously given
share price F; dollars per share at time ¢. A small investor chooses between
these two assets and can freely and continuously rebalance his investment in
them. In the absence of fees, the investor’s accumulated profit from investment

in the fund has the dynamics

dPt = Op—

P():O

where oy is the dollar amount invested in the fund at time ¢. Since the in-

terest rate of the riskless asset is zero and the investor does not consume, the



investor’s wealth is given by
_X; = I‘+’}%

where z is the initial wealth endowment.

In order to assess the high-water mark fee, the fund manager keeps
track of the profits the investor has made from investment in the fund. That
is, the fund manager keeps track of the high-water mark

A 2 sup Ps.
0<s<t
Whenever his profit P exceeds the historical high-water mark P*, the investor
pays the fund manager a proportion A of the excess profit. The investor’s

profit under high-water mark fee thus evolves as

dF;
dP, = a;—' — M\ ( sup Ps> (2.1)

}Q 0<s<t

P, = 0.

To work in the dynamic programming framework, we must also introduce the
notion of an initial high-water mark ¢ > 0, a profit level which the investor
must achieve before any fees are applied. This is a mathematical convenience;
in practice, one has ¢ = 0. With initial high-water mark ¢, the investor’s profit

evolves according to

dF,
dP, = oy—-— M < sup (P, V i)) (2.2)

}Q 0<s<t

P, = 0.



In this case, the high-water mark is

P} = sup (Ps V1)

0<s<t

While equation (2.2) is implicit, it turns out that there is a unique solution
that has a closed form expression in terms of the process I, = fot at%dt. We

reproduce Proposition 2.1 of [16] below.

Proposition 2.1.1. Assume the share price process Fy is a continuous, strictly

positive semimartingale, and that the predictable process ay is chosen so that

LR
I:/a—
t 0 tFt

is well defined. Then equation (2.2) has the unique solution

A .
B = I— T %15%[—75 — 1] (2.3)
. 1 a4
P = i+ TN Orrglggt[fs — . (2.4)

Remark 2.1.1. Recall the famous Skorohod equation (see [18], chapter 3, page
210 and following); given ¢ > 0 and a continuous function f : [0, 00) — R with

f(0) = 0, there exists a unique continuous function k such that

1. g(t) =i+ f(t) + k(t) > 0 for all ¢.
2. k is non-decreasing with £(0) = 0.

3. [) Liges)s01dk(s) = 0 for all t.



Explicitly, the solution is given by

Set A = P* — P. In other words, A is the “distance to paying fees”. Note

that A > 0, and A satisfies the equation

dF,

t

AO = 1.
We also have
t
/ Lia,>qdP; =0 for all .
0

Therefore, (1 4+ A\)P* is the solution k to the Skorohod equation above, with

F(t) == [y o,

2.1.2 High-water mark fees with consumption

We are interested in modeling optimal investment and consumption
with a no-bankruptcy constraint. As in the previous section, let x denote the
investor’s initial wealth, ¢ the initial high-water mark. As before, the market
consists of a riskless asset with interest rate zero and a fund with share price
F,. Let 74 denote the investor’s rate of consumption (as a dollar amount per
unit of time), and let C} denote the accumulated consumption C; = fot ~sds.

The investor’s profit from investment now evolves according to

F
AP, = a& — A ( sup (PS\/Z'))

Ft 0<s<t

POZO.

10



Due to the presence of consumption, the investor’s wealth is given by
Xt =x+ Pt — Ot.

In this case, the high-water mark should track not the investor’s wealth, but
instead the profit P; that is, the investor’s choice to consume some of his
wealth should not affect the fund manager’s record of the profit the investor
has made through investing in the fund. Setting n = x + i, the high-water
mark is therefore

Py = sup (P Vi)

0<s<t
= sup [(Xs+Cs—n)Vi]"

0<s<t

Following [16], we take (X, N) as a state, where X is the investor’s wealth and

N =x+ P* — C, so that the state process is given in differential notation by

dF,
dX, = a— —ydt — AP}
F,
XO = , (25)
dNt = dpt*—’}/tdt

NO = n>ux

The rationale for this choice of state is as follows; as usual, the wealth X
should be a state. However, we cannot use (X, P*) as a state because this
choice does not encode information about past consumption. The choice of
state (X, N) also leads to a natural choice of domain for the problem; we

always have X < N, and high-water mark fees are paid exactly when the

11



state is on the boundary X = N of the domain. The equation (2.5) represents

a two-dimensional reflected diffusion on the domain
D={(z,n):0<x<n)}

with reflection of size P* along the line {z = n} in the oblique direction

<_)‘7 1)

In our model, the fund price per share is given exogenously as a geo-

metric Brownian motion; that is,
dF, = Fy(pdt + odW,)

where (W})o<t<oo is a Brownian motion on a filtered probability space
(2, F, (Ft)o<t<oo)- The filtration (F;)o<t<oo is assumed to satisfy the usual
conditions. We then have the following result on existence and uniqueness of

solutions of (2.5) (Proposition 2.2 of [16]).

Proposition 2.1.2. Suppose that the predictable processes oy and ~y; satisfy

the integrability condition

P(/t (a2 +7,) du < oo for all t € [0,00)) =1, (2.6)
0

and make the notation

t dFu t
It:/(; OZMTU, Ot:/[; 7udu,

Then equation (2.5) has a unique solution, which can be written as

A et
Xy = x+1t_0t_1+—)\§r§l?é[ls_z] , (2.7)
1
N, = n+——max[[, —i|t — C,. (2.8)

1+ X o<s<t

12



The high-water mark is given by

Pt* = Nt—i-ct—l'
— i+ —— max|[], —i|".

14+ X o<s<y

2.1.3 The optimal investment/consumption problem

Definition 2.1.1. A pair (a, ) of predictable processes is called admissible
with respect to the initial conditions (z,n) if the integrability conditions of
Proposition 2.1.2 are satisfied, the consumption stream -, is non-negative for
all t, and X; is strictly positive for all £. We denote by A*(x,n) the collection

of strategies which are admissible for fee level A and initial condition (z,n).

The preferences of the investor are modeled using expected (discounted)
utility from consumption. Explicitly, for (z,n) € D = {(z,n)|0 <z < n}, the

value function for the optimal investment problem with fee level A is given by

Mz, n) = wp E { /0 h e‘BtU(%)dt} (2.9)

(ayy)eAr

Here g > 0 is a discount factor and utility is taken to be of constant relative

risk aversion (CRRA) with

1-p

T
= 1.

2.1.4 Homotheticity and one-dimensional notational conventions

The value function v* has a homotheticity property which will be used

extensively.

13



Proposition 2.1.3. We have

vMx,n) = 2 7PoM1, n/x).

A

n?

vz =7 (1L =pp(Ln/2) = (5) vd(1n/a))

1
o () :( o1 = oA (Lnf) + 2 (2) (1)
)

A A A A
As a result, we can express v, and vy, in terms of v*, v}, and v,

(2.10)

In light of the relations (2.10), we introduce the following one-dimensional

notation for the value function v and its derivatives.

w(y) = 0M1y)

wi(y) = 0(1,y)
= (1-p)uwy) — ywy(y)

wye(y) = vp(1,y) (2.11)
= —p(1 = p)w(y) + 2pyw; (y) + v*w;,(y)

wy(y) = w(y)

Vury) = (wg,wp)

14



With y = n/x, we therefore have

vi(z,n) = 2 Pui(y)

vple,n) = a7 wp(y) (2.12)
ve(an) = a7 g, (y)

va(z,n) = a7 wy(y)

This slight abuse of notation will eventually allow us to write various PDEs
for functions with homotheticity properties as one-dimensional ODEs, but in
a way that resembles the more recognizable two-dimensional equation. We
will always use y as the coordinate n/z on the line {(1,n/x) : n > x}. On the
other hand, the letter z will be used as an abbreviated way of referring to a

point (z,n) in the two dimensional domain D = {(z,n) : 0 < x < n}.

In general, the letter v (plus other additional decorations) will be used
to denote a two-dimensional function with the homotheticity property, and the
letter w (plus the same decorations) will be used to denote the one-dimensional
version of this function, evaluated along {(1,n/x) : n > x}. The same conven-
tions (2.11) for the partial derivatives of w will hold. This abuse of notation
will apply to operators as well; in other words, if v : D — R has the homo-
theticity property and H is a differential operator defined for functions on D,

then we will make the notation

(Hw)(y) = (Ho)(1,y).

15



In the case that H has the structure
Ho = A(y)x* P + B(y)v + C(y)av, + D(y)2* v, + E(y)zv, (2.13)
where y = n/x, then we have
Ho(z,n) = 2 PHw(n/z),

a fact that will later be used to reduce the HJB equation for v* to an ODE

for w?.

2.1.5 The HJB equation and the main results of [16]

We can formally derive an HJB equation for v* by applying It6’s lemma
to the process v*(Xy, Ny), where (X;, N;) is a state process corresponding to
some strategy («,7y). For convenience, we will write the strategy in terms of

proportions 0; = o,/ X; and ¢; = v/ X;. Define the process
t
7y = e PN Xy, Ny) + / e U (cyXy)du,
0

which we expect to be a supermartingale if (0, ¢) is a suboptimal strategy, and

a martingale if (0, c) is optimal. Then we have
1
dZt = 6_6t< — 6U(Xt7 Nt) + [IletXt'U;\(Xt, Nt) + §<O'QtXt)2U;\I(Xt, Nt)

FU (X)) — Xy (0s(Xy, N,) + vn( X, Nt))> dt (2.14)

+e7 P (00, X,) AW, + e P (v} (w,n) — Av)(z,n))dP;

Now dP; is supported on the set of times {t : X; = N,} so we expect dP;

to be a singular measure. If Z; is to be a martingale, we expect the singular

16



and absolutely continuous drift terms of (2.14) to be separately zero. We can

therefore formally derive the following HJB equation for v*:

sup L% = 0on {(z,n):0<z<n}
0eR,c>0
vz, z) — (z,x) = 0forx >0 (2.15)
A _ 0
nh_)rilov (x,n) = v'(z)

where we have defined

1
Loy 2 —pu + plru, + 5(00x)2u;\x + Ul(ex) — ca(uy + uy) (2.16)

Maximizing over ¢, we may write rewrite the interior condition in (2.15) as

1 ~
—Bu 4+ sup | pbrv) + 5(00x)2v;‘x +U((v) +v))z) = 0. (2.17)
9eR

Here U is the Legendre transform of the utility function:

U(z) = sup[U(x) — x7]

>0

= U(I(&)) - #(%)

where I = (U’)~! is the inverse of the marginal utility.

Remark 2.1.2. Note that the operators £%¢ have the structure of (2.13). There-

fore, we have

Loz, n) = 7PLwN(n/x).

17



A similar remark applies to the boundary condition of (2.15), and we therefore

have the one-dimensional version of the HJB equation:

sup L%uw* = 0on (1,00)
0eR,c>0
wy(1) = Adw)(1) = 0 (2.18)
lim wt(y) = w’
y—00
where, following our notational conventions, w® = v°(1). If w?* is a classical

solution of (2.18), then it follows from the homotheticity properties that v* is

a classical solution of (2.15).
We now give the principal result of [16].

Theorem 2.1.4. 1) The function v*(z,n) = z'"Pw*(n/x) is C? on {(z,n) :

0 <z <n} and a classical solution of (2.15). We also have

A

v (x,n) >0, vi(z,n) >0, v (z,n)>0, for0<x<n

and further,

lim nv)(z,n) = lim nv) (z,n) =0 (2.19)

n—oo n—0o0

2) Define the feedback proportions

A
povp(x,n)

c)‘(x,n) — I(vﬁ(w,n);vg(x,n)) (2.21)

18



where [ = (U')~Y. Then the closed loop equation

dF,
dx;} = 0NX}, NtA)XtA?: — NX) NOYX = X (AN} + o( XD, NN X))
X(;\ = x
s t
N, = sup KXSMr / cA(Xg,Nj)ngu> \/n} — / AMNXY, NN X du
0<s<t 0 0
N() = N

has a unique global strong solution (X*, N*) such that 0 < X* < N*, and the

resulting payoff is optimal, i.e.
vMz,n) =E [/ e AU (AMNX), N X)) dt
0

Remark 2.1.3. Note that from the relations (2.10) and the fact that [(z) = 7P,

we actually have

U))\
0 (x,n) = —%wf—% (2.22)
MNayn) = H(w;(y) +wy(y)) (2.23)

where y = n/x. In other words, the optimal strategy depends only on n/x,
and can be expressed solely in terms of w. We will therefore commit the slight

abuse of notation

*(y) = 0(x,n)

My) = NMa,n). (2.24)

For reference, we recall the explicit solution to the optimal investment problem

without fees.
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Proposition 2.1.5. Let v° denote the Merton value function. Then we have
v < oo if and only if

1/1- 2
B—= (—p> >0 (2.25)
Suppose that (2.25) hold. Then the optimal feedback investment and consump-
tion proportions FOR A = 0 are given by

1/1—p\ 12
oot oo b1 i el (2.26)
po? p 2

Moreover, 1° is a C? solution of the HJB and is given in closed form by

1

T p(co)_pa:l_p, O<z<n (2.27)

0 (x,n) =

Finally, the concavity of the value function will be used throughout. To
simplify the proof of concavity, we will make use of the existence of optimal
strategies for each (x,n) proven in Theorem 2.1.4, though this result is not

strictly needed for the argument.

A

Proposition 2.1.6. The value function v* is concave on D.

Proof. The argument relies on the convexity of the pathwise running maximum
which appears in the state equation. Pick points (z1,n1), (z2,n2) in D. Let
(a’,+") be the optimal investment strategy for initial state (z;,n;), given in
dollar amounts. Let b € [0,1]. Since the utility function is concave, it will

suffice to show that

(a,7) 2 (ba + (1 = b)a?, by + (1 — b)y?) € ANz, n),
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where (z,n) = (bx; + (1 — b)xg, bny + (1 — b)ny). In other words, we need to
show the wealth process X corresponding to the initial condition bx; + (1 —
b)aa, by + (1 — b)ny and strategy (o, 7) is non-negative. Let Y, = [ o @
and C) = fot Yudu, and let X* denote the wealth process corresponding to

strategy (a’,7") and initial condition (x;,n;). Then

Xe = b+ =)+ (1-b)(a? + Y7 - CF)

T Oiggtb([ysl — (m = 21)) + (1 = b) (Y7 = (n2 — x2))]

Then observe that since the map x — 2™ is convex,

sup BV + (1= b)Y2— (n—2)[* < sup (B[Y — (my — )]
0<s<t 0<s<t

+(1 = 0)[YZ — (n2 — x2)]7)

< b osup [Y) — (g —a)]*
0<s<t
+(1—10) sup [YS2 — (ng — x2)]"
0<s<t

Therefore

Xy > b (xl +Yv!-C} - sup [Y! — (n; — 351)]+)

14 X o<s<t

14+ X o<s<t
= X!+ (1-0)X?>0 (2.28)

+(1—b) (ml +Y,' - C} - A sup [Y! — (n; — xl)]+)

which completes the proof. ]
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2.2 Heuristic derivation of the corrector equations

In this subsection, we give formal derivations of the PDEs which we

expect to characterize the derivatives of the value function with respect to A:

d
vl(z,n) = —<v’Max,n)

dA A=0
2 &\
vi(z,n) = Fivh (x,n) -

We then construct feedback proportions é)‘, ¢ given explicitly in terms of v!

for which we expect to have
o*Mx,n) = v*(z,n) + o(\?),

where 9*(z,n) is the payoff of investing and consuming at the feedback pro-

portions 9“, ¢* while facing fees at rate .

2.2.1 Derivation of the corrector equations and approximately op-
timal strategies

Typically in the literature on asymptotics, one identifies two different
sources of loss due to frictions. On one hand, there is the loss of wealth due to a
transaction cost itself. On the other, there is also a loss due to “displacement”
from the Merton proportion. In the case of proportional transaction costs, for
example, an investor cannot maintain the Merton proportion; the continuous
rebalancing of assets required to maintain the Merton proportion would result
in bankruptcy. Janecek and Shreve [15] give heuristics to quantify the trade-

off between loss due to transaction costs and loss due to displacement; if the
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investor faces transaction costs of size € and keeps his state within a “no-
transaction region” of size €? around the Merton proportion, then loss due to
displacement should be of order €24, and loss due to transaction costs should
be of order e¢!~%. The choice ¢ = 1/3 balances these losses; the investor should
use a no transaction region of size €/, leading to the minimal total loss of
order €2/? in the value function. From these heuristics, the authors assume a
formal expansion of the value function in powers of €'/? (where the coefficient

1/3

of €'/° is zero).

In our case, there is a loss of roughly order A due to the fees themselves.
On the other hand, there is no analogous loss due to displacement; the Merton
proportion is an admissible strategy. For this reason, we suppose that the value

function has an expansion in powers of A:

)\2
vt =10 4+ Aot + ?U2 +0(N\?).

To derive PDEs which characterize the derivatives v of the value function

with respect to A\, we further assume formally that derivatives with respect to

the state variables (z,n) and the fee level A commute, in the sense that

)\2
vy = W4l + ?Uﬁ + 0(\?)
)\2
Vg = Vg Mgy + U, F 0(N) (2:29)
)\2
vy = W)+ + Evi +0(\?)

We derive PDEs for v! and v? by plugging this expansion into the HJB equa-

tion for v* and equating distinct powers of A. To begin with, the boundary
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condition

M@, 2) — Avg(2,2) = 0

gives rise to the separate boundary conditions

vz, 2) —0(z, 1) = 0 (2.30)

v2 (7, z) — 2vk(z,2) = 0 (2.31)

n xT

On the interior, v satisfies
1 .
0 = —pBv*+sup |ubzv) + 5(0’91‘>2U;\x + U@} +v))
0,c>0

1 8
= —Bv* + pb*(z,n)av) + 5(00A(:c, n)z)2v), + U(v) +v)). (2.32)

1

To determine which equations v! and v? should satisfy on the interior of the

domain, we expand #*,c* in terms of A and separate the various powers of A
in the resulting expression. Computing the derivatives of 6*, ¢* with respect

to A, we have the formal expansions

O Mx,n) = 6°+ N'(z,n) +o(\)

Mz,n) = &+ Al (z,n) +o(N)

where §° and ® are the optimal Merton investment/consumption proportions

and
0,1 1,0
MU, U, — U,V
gt — _H VaaVs ~ Vala 2.33
o2 xvd, ( )
o T n) (@, n) + vy, n)) (2.34)
T
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Plugging this into equation (2.32) and separating distinct powers of A, we

obtain
1 ~
0 = —Bv+ pfx0® + 5(‘7905’5)20295 + U(vY)

1 .
+A (—Bvl + pf%zv) + 5(09%)21};@ + U () (v} + vi))
2

A 1 N
o (—5@2 + p%v2 + 5(060x)2v§x + U (02) (v + 'Ui)) (2.35)

1 1~
+A? (/wlxvi + ofx*vl + 5(09%)21)21 + QU"(vg)(vi + vi)2>

+0()\?)

Now, the first line of (2.35) is equal to zero since v° satisfies the usual friction-
less HJB equation. Separately equation of distinct powers of A to zero, we can

now write down the first- and second-order corrector equations for v!' and v?,

Avt = 0
vl (2, 2) —0(z, 1) = 0 (2.36)
lim v'(z,n) = 0
n—yo0
and
Av?4+g = 0
v2(2,z) —vi(z, 1) = 0 (2.37)
lim v*(z,n) = 0
n—yo0
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where

1 3
Au 2 —Bu+ pb zu, + 5(0«90x)2um + U (0) (ug + uy)
1 1~
g 2 9 pftzol + 009 vl + 5(091$)202m + §U"(U2)(U; +vl)?

2.2.2 Approximately optimal strategies

Let ©* denote the payoff of the feedback investment /consumption pro-
portions 8% = 60 + M\, & = @ + Ac! at fee level A. In this section, we
discuss the reasoning behind the claim that ¢* = v* + o(\?). For simplicity,
we will restrict our attention to the investment strategy 6, ignoring consump-
tion. Usually, one expects that if a parametric family of investment strategies
6¢ are within o(e) of the optimal strategy, then the resulting payoffs are within
o(€?) of the optimal payoff. Roughly speaking, this is because we expect the
payoff to be locally quadratic around its maximum. By construction, we do

have

10X (2, n) — 0z, n)| = o(\) (2.38)

In this section, we check formally that the path-by-path strategies (i.e. open-
loop controls) resulting from the feedback strategies #* and 6* match up to
first order as well. Let O(\,z,n) = 6*(z,n), so that the optimal investment
strategy at fee level \ has the path-by-path expression ©()\, X* N?*), where
(X*, N*) is the trajectory of the optimal state process. Let (X*, N*) denote
the state process determined by the feedback strategy 6*,¢* and fee level \.

Then the path-by-path investment strategy determined by the feedback control
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0, & is é’\(f(’\, ]\AV) We expect that
O\, XA NY) = 0N X, NY) + o(N) (2.39)

Indeed, formally, we have

d
a@(A XM N = 0,(0,X° N (2.40)
A=0
dXx* dN?
X0 NO X0 NO
+0,.(0, )| 60, )
dx*
= 0,(0,X° N° +6,(0,X° NO) o
XA
= (X", 1\10)+9°(X°)OldA

because ©(0, z,n) is constant in n (in the case of power utility, ©(0,z,n) is a

constant). So formally writing a Taylor expansion, we should have

ax*
O\ XM NY = %X + A (91(X0 N +0%(X°)—— o ) +0(N)
On the other hand, we also formally compute that
ie“(f@ NY) _ (QO(XA) + A0 (X, NA)>
d\ ’ A=0 d\ A=0
XA
— 90()(0)ddA + 0'(X°, N?)

Therefore, we should have

0N XM NN = %X

dX?
NEMOE
+ ( 2 )dA

+ 61 (X°, N°)> +0o())
A=0
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As a result, we obtain

PO - d A
O\, XN, N — MK, NY) = A0 (X0) -~ (XA - XA> To(\) (2.41)
d\ o
Heuristically, we expect to have
x| dx*
A\ |,y A\ |

because X* and X* are determined by feedback controls 6* and 0* with
107 — 07 = o(N).

In this case, the desired equality (2.39) should follow from (2.41). In the case
of power utility, this is even more straightforward; in that case 6° is a constant,
s0 0% = 0 and equation (2.41) does not actually involve derivatives of X* and

X* with respect to .

2.2.3 Comparison with an iterative approach

Let ©* denote the payoff of using the Merton feedback proportions
while facing fee rate A. Suppose that, as argued above, the optimal strategy
O(\, X*, N*) is within O()) of the Merton proportion 6°. Then we expect
that v* — o = O()\?), since differences at first order in the choice of strategy

should result in differences at second order in the payoff. So, assuming that

©* is concave in (z,n) for small A, we can consider the suboptimal control
_ 1 .
0 = arg max phr + E(aéx)%gc\x + U (@) (x,n) + 9}z, n))
€
p 0w, n)

2.42
o2 x0),(x,n)’ (2.42)
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and similarly for ¢*. If 0% = v + O(A\?) then, taking derivatives, it is easy
to see 0 = 6* + o(A) as feedback expressions. We may therefore expect the
payoff of 6* to match v up to second order in A, and could take 6" as an

approximately optimal strategy.

We choose not to pursue this approach, however, because it is more
difficult to make rigorous. For example, it is not easy to even show that 7* is

concave.

2.3 The first derivative

The goal of this section is find a closed form expression for v!, the first
derivative of the value function v* with respect to A. We will move between
one- and two-dimensional notation as needed, using the conventions of (2.11).
Recall that z will refer to a point (z,n) € D, and y will be reserved for

one-dimensional notation, i.e. y =n/z > 1.

Definition 2.3.1. Following [3], we begin by defining the upper and lower

relaxed semi-limits for v!.

by .0 A .0
v'(20) = liminf M, 7' (2) = limsup vie) = vz) (2.43)
2—20,A—0 A z—20,A—0 A

Obviously v' < o!. By construction, v! is lower-semicontinuous and o*

is upper-semicontinuous.

Remark 2.3.1. The relaxed semilimits v! and o' are readily seen to inherit the
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homotheticity properties of v*. For example,

A _ .0
Ql(ﬂfoano) = lim inf vz, n) = v'(x)
(x,n)—=(x0,m0), A=0

= lim inf

(z,n)—(x0,n0), A—=0 A
A .0
= 237 liminf ) = w
y—no/xo, A—0 A

Recall here that w? is a constant. Therefore, making the definition

A 0
1 S w (y) —w
— liminf 29 "W
wi(yo) = liminf —=—,
we have
1 _ 1-p 1
v (zo,n0) = x5 "v (1,n0/20)

We therefore apply the notational conventions of (2.11) to w!. Obviously, the

same remarks apply to 7' and w'.

The argument then proceeds as follows:

1. We show that v! and ' (and in particular w! and w' ) are finite.

2. We then show that w! (respectively w') is a finite viscosity supersolution
(respectively subsolution) of a linear ODE which we call the first-order

corrector equation.

3. A comparison principle for the first-order corrector equation will then

imply



4. Finally, we will find an explicit smooth solution to the first-order correc-

tor equation.

2.3.1 Bounds for v!

We now show that the relaxed semilimits v*, o' are finite on the domain

D = {(z,n) : 0 < x <n}. Obviously v* < 1° so we have
v <T <0

It will therefore suffice to show that v' > —oco.

Throughout this subsection, (X*#, N**) will denote the state process
with initial condition z = (z,n) corresponding to investing the Merton pro-
portion #° in the fund and consuming at the Merton rate (as a proportion of
current wealth) ® (in particular, Xto “ will denote the optimal wealth process
for the A = 0 investment problem). The accumulated consumption under this
strategy will be denoted C**. We begin by obtaining some path-by-path lower

bounds on the wealth process X*?.

Lemma 2.3.1. We have the bounds

n)‘XtO -
AT
0,
> Xt
> @y

X (2.44)

where H* = n~" supgc <, (X077 4+ CY?) V n]
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Proof. To lighten the notation, we suppress the initial condition z. Applying

[to’s lemma, we see that

1 A
d(log(X})) = <u90 — 5(090)2 — c") dt + o0°dW, — yd(NtA +CY)
¢
A
= d(log X?) — ﬁd(NtA +COD) (2.45)
¢
OXA
= d(log X}) — A (dlog(Nt)‘) + CN; dt)
i
From the above (and the initial condition X, = z), we can conclude that
A0
X = n* Xy .
t0Xd A
(eXp [fo N d“] Nt) (2.46)
n* X}
- (ecotNt)\)’\

To conclude, we just need to show that N} < n*H, for all A\ and all . From
equation (2.45) and the fact that N* 4+ C? is an increasing process, we see that
X* < X0 Since the rate of consumption rate is proportional to wealth, we
then have C* < C° as well, so that X* +C* < X"+ (C°. Combining this with

(2.5), we conclude that

IN

N (X} +CHvn

< (XP+CY)vn=H,

which completes the proof. ]

Remark 2.3.2. There was nothing special about using the Merton feedback

proportions (#°,c°) in Lemma 2.3.1. Using the same arguments, a similar
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result will hold for any feedback proportions (6(x,n),é(x,n)) such that the
closed loop equation for the corresponding state process has a solution. Ex-
plicitly, let (X*# N*#) be the state process determined by (f(z,n),c(x,n))
at fee level \ , and let X% be the wealth process determined by the control
(O(XA* NM) e(XM* NM2)) at fee level 0 (note this is not a feedback strategy
in terms of X%%). Then we have:

o .

Xt Z B
<exp[f0t E(Xﬁ"z, NQ’Z)du]P_[t)

t
Hf A nfl[(XO,z + 00,2) v nl*, C’to’z é/ E(XS’Z,NQ’Z)XS’AdU
0

The following lemma will be used in this section and elsewhere. Since
it deals only with the frictionless optimal investment problem, we relegate its

proof to the Appendix.

Lemma 2.3.2. Let (0,,¢) be an admissible strategy for fee level X = 0 given

in proportions (though not necessarily in feedback form). Suppose that
0, — 0°| + | — | < e dt x dP-almost surely.

Let X be the wealth process with controls given by (0, ¢) with initial wealth x
and with no high-watermark fees. There is a constant M depending on the
model parameters p, o, B,p such that for e > 0 sufficiently small, we have

& — )Pyl

I—p

E/ e PU(eX)dt > (& — ME)_1<
0
We are now ready for the principal result of this subsection:
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Proposition 2.3.3. Let (xg,n9) € D. In the notation of Lemma 2.5.1, we

have

v'(zg,n0) > —E l/ 1 <ge (1 — p)U(XP7) ("t + log(HF))dt
, s (2.47)

> —00
where z = (x,n) is an arbitrary point in D — Oy D with v < xy, n < ny and
n/x < ng/o

7, =inf{t > 0: X,?’Z—i—Cf’z >n}

Proof. First we show the right-hand side of (2.47) is indeed finite. Pick ¢ > 1
such that ¢(1 —p) < 1, and let ¢’ denote the Holder conjugate of ¢q. Applying
the Holder inequality on [0, 00) x €, it will suffice to show that that for small
6 >0,
E / N e A= 17 (L X 9dt < oo, (2.48)
0

E / e~ (Ot 4 og(HE))Y dt < oo. (2.49)
0

First suppose (1—p) > 0. Then the left hand side of (2.48) is non-negative and
bounded above by the value function of the Merton consumption/investment

problem with the modified utility function and discount factor given by
Viz) = (Ulx)),
p = B(l—4d)qg

We assume that U and the model parameters are chosen so that the well-

posedness condition (2.25) holds:



Choosing ¢ > 1 and ¢ > 0 sufficiently small, the same condition does indeed
hold for the modified utility function V(x) and discount factor p, hence the
first inequality of (2.48) holds.

E / sign(1 — p)e=P=D |17 (O X)[14t < oo,
0

On the other hand, if (1—p) < 0, we once again consider the Merton consump-

tion/investment problem with modified utility function and discount factor
Viz) = —|U@)],
p = B(l—-10d)
Let (50, ") denote the optimal feedback proportions for the investment /consumption
problem with the modified utility function and discount factor V and p, as
given in Proposition 2.1.5. Then for any €, we can choose ¢ > 1 sufficiently

small that

|§0 — 0+ - <
As a result, Lemma 2.3.2 implies that
E/Oo e U= 7 (LX) |9dt > —oo0.
0
To check (2.49), note that

t
cY? :/ X% du < Pt sup X,
0

0<s <t
and therefore

Hf = n~'sup [(X)7+CY%) Vn]
0<s<t

< n7 ' (nV (14 ct) sup XO%).

0<s<t
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So there is a constant Ky(q") > 0 such that

sup log(X )

0<s<t

|t + log(HP)|" < Ko(q') (1 + cot? +

' ) (2.50)

Note that log(X%#) is a Brownian motion with drift:
90 2
log(X*) = <u90 -’ - %) t+ o°W,

Now, Doob’s maximal inequality tells us that

q/ / 0 q/ ,
E || sup o6°W, ] < qEU " B
0<s<t ¢ —1
¢ (o0t)7 /2 /
HE q
71 [X]

where x is some N(0,1) random variable. As a result, there are constants
Kl, b with
E sup |log(X}?)| < K(1+1t%)

0<s<t

From (2.50), we therefore have
E |c0t+log(Hf)|q'] < K(1+1t)
after possibly enlarging K7, b. Putting everything together, we conclude

B[St logH) d < [ PR O < oo,
0 0

(2.51)

Now fix zy = (zg,n0) € D and pick 2z — 29 and Ay — 0 such that

A .0
QI(ZO) — lim v (Zk’) v (ZO)
k—o00 )\k
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Fix z = (z,n) € D — 9,D with n/x < ng/xy. Note that 7, is increasing in the
ratio n/x, and that obviously X** = X% until 7,. Applying Lemma 2.3.1,
we see that for k sufficiently large,
((ecothzk)—(l—p))\k _ 1)

Ak
((ec(’thz)—(l—p)Ak _ 1)

Ak

U(X) — U (X} ™)
)\kn

v

Lr. <gU (X))

> 1[TzSt]U(COXz?7Z)

By convexity of the function A — m~, we have the monotone convergence

((ecotﬁtzy(lfp)kk _ 1>

L. <qU("X}7) "

/1<y (1=p)U (X)) (Pt log (7))
(2.52)

which holds dt ® dP—almost surely on the set [0,00) x 2. To conclude, we

apply the monotone convergence theorem:

dt

U1($0 n(]) > lim lnf]E/oo e_ﬂt U(COXt)\ImZk) - U(COX?7zk)

Ak
(eCOthZ)—(l—p)/\k _ 1)
A
= —(1- p)E/ e Pt [l[ngt]U(coXto’z)(cot + log(Hf))} dt
0

dt

k—oo

> lim ]E/ eﬁtl[ngt]U(coX?’Z)<
0

> —00 (2.53)
0

Proposition 2.3.3 also allows us to determine the limiting behavior of v! as

n — 0.
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Corollary 2.3.4. We have

lim v'(z,n) =0
n—oo

Proof. By Proposition 2.3.3, we have
v (20,m0) > —(1 = p)E U L. <ie U (X)) (Ot + log(H7))dt
0

where z = (z,n) is an arbitrary point in D with < 29, n < ng and n/z <
no/xo. Letting ng — oo and choosing z, with n — oo, while z, xy remain

fixed, we see that
~Lpp <ge” (1= PU(ELX)) (Pt + log(H[*)) /0

because 1|, <y and H* are both decreasing in n, and 7, — oo as n — oo. From

Proposition 2.3.3, we also have
E [ L, coe MUXI) O+ log(HE))dt > —oc
0

We then apply the monotone convergence theorem on [0, 00) x 2 to conclude.

]

Remark 2.3.3. Let 9*(z,n) denote the payoff of using the Merton proportion

(6°, %) at fee level \, with initial condition (x,n). Obviously we have
(@) < v (@, )

Now define



Examining the proof of 2.3.3, we see that we have in fact proven the slightly

stronger result

' (w0, m0) > —(1 = p)E {/ Lir.<ne MU (XD (Pt + log (HF))dt
0 n (254)

> —00
where z = (x,n) is an arbitrary point in D — 0y D with x < zy, n < ny and
n/x < ng/o

T, =inf{t > 0: X" + C)* > n}

This fact will be used in the construction of approximately optimal strategies.

2.3.2 The first-order corrector equation

In this section we introduce the first-order corrector equation and show that
the relaxed semilimit w' (respectively w') is a viscosity supersolution (resp.
subsolution) of the first-order corrector equation. The following is just a one-
dimensional version of (2.36).

The first-order corrector equation. The one-dimensional first order cor-

rector equation for a C* function w : [1,00) — R is given by

1 ~
Aw 2 —puw + pbw, + 5 (00" wee + U (w (1)) (wy + wn) = 0
Bw = w,(1) —wl(1) =0 (2.55)
lim w(y) = 0
Y—00

where w, and w,, are as defined following the conventions of (2.11). If a

function w satisfies the one-dimensional first corrector equation, then u(z,n) =
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' 7Pw(n) satisfies (2.36):

1 .
—Bu + pbru, + 5(0«90x)2um + U (02(2))(ug +u,) = 0 on int(D)

Up(z,2) —0(z) = Oforallz>0
lim w(z,n) = 0
n—oo

For future reference, we record the coefficients of the first-order corrector equa-

tion in true one-dimensional notation.
Lemma 2.3.5. We have

(Aw)(y) = 5 (o8 2y () + <y~ Duyly) — Puly) (2560
Proof. First note that

y 4=

- y 1 l1—p
q p

so that

') = T()™))

= —(CO)(l_p)+p = (2.57)
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Recalling the definitions of (2.11), we have

Aw = —Bw+ pd°(1 — p)w — pb yw,
1
—1—5(080)2 (—p(l — p)w + 2pyw, + y2wyy)
+((1 = p)w + (y — Dw,)
1(1—p)p? 0
= (o ) u (259)
2 2
ny o uty 0
+(—W+W+C (y—l))wy
1
+§(090y)2wyy

1
= E(JGOy)zwyy + Py — Dw, — Cw

where the second equality (2.56) follows the expressions for #° and ¢” recorded

in Proposition 2.1.5. 0]

Following [5], we introduce the notion of a viscosity subsolutions and

supersolutions of the first-order corrector equation.

Definition 2.3.2. Let w : [1,00) — R be a lower semicontinuous function.
The inequality Aw < 0 holds in the viscosity sense at yo > 1 if, for every C?
function ¢;[1,00) — R such that w — ¢ has a local minimum of 0 at y, (we

say ¢ touches w below at yo), we have

Ao(yo) < 0.

The inequality Aw < 0 at 75 = 1 holds in the viscosity sense if, for all C?

functions ¢ : [1 — €, 00) such that such that w — ¢ achieves a local minimum
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of 0 on [1,00) at 1 (we say ¢ touches w below at 1), we have
Ap(1) <0.

Finally, Bw < 0 holds in the viscosity sense if for all C? functions ¢ touching
w below at 1, we have

B < 0.

We say w is a viscosity supersolution of the first-order corrector equation if

liminfw(y) > 0

Y—0o0

and the following set of inequalities hold in the viscosity sense:

Aw < 0on (1,00)

AwANBw < Oaty=1

Definition 2.3.3. Let w : [1,00) — R be an upper semicontinuous function.
The inequality Aw > 0 holds in the viscosity sense at yo > 1 if, for every C?
function ¢;[1,00) — R such that W — ¢ has a local maximum of 0 at y, (we

say ¢ touches w above at 1), we have

Ag(yo) > 0

The inequality Aw > 0 holds at yy = 1 in the viscosity sense if, for all C?
functions ¢ : [1 — €, 00) such that such that w — ¢ achieves a local maximum

of 0 on [1,00) at 1 (we say ¢ touches W above at 1), we have

Ag(yo) > 0
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Finally, Bw > 0 holds in the viscosity sense if for all C? functions ¢ touching
w above at 1, we have

B > 0

We say w is a viscosity subsolution of the first-order corrector equation if

limsup w(y) <0

Yy—00

and the following set of inequalities hold in the viscosity sense:

Aw > 0on (1,00)

AovVBw > Oaty=1

Remark 2.3.4. In Definition 2.3.2 all instances of “local minimum” may equiv-
alently be replaced with “strict local minimum”, “global minimum on [1, c0)”,
or “strict global minimum on [1,00)” (and similarly with all instances of “local

maximum” in Definition 2.3.3).

For reference, we include the following characterization of smooth vis-

cosity sub- and supersolutions of the first order corrector equation.

Lemma 2.3.6. Let w : [1,00) = R be a C? function on on (1,00) such that

the right-hand derivatives
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are well-defined and finite. The w is a wviscosity subsolution of the first-order

corrector equation if and only if we have

Aw >0 on (1,00)
(2.59)
wye (1) — wd(1) > 0

in the classical sense. Similarly, w is a viscosity supersolution if and only if
Aw <0 on (1,00)
(2.60)
wy+(1) —wg(1) <0
Proof. We deal only with the subsolution case. The only part of the conclusion

which is not immediate is that if w is a smooth viscosity subsolution of the

first-order corrector equation, so that
AwV Bw >0

in the viscosity sense at y = 1, then we must actually have w,,; — w2 > 0.
Suppose that w,; — w? < 0. Pick a constant a with wy,, (1) < a < w) and
define the function ¢(y) = w(1) + a(y — 1) — b(y — 1) for some b > 0. By
(2.59) and the definition of wy, we know w — ¢ achieves a local maximum of
0 at y = 1 for arbitrarily large choices of b. We then have ¢, (1) — w2(1) < 0

and for b sufficiently large
1
Agp(1) = —5(000)2(21;) —Pw(1) <0

contradicting the viscosity subsolution property of w at 1.
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Definition 2.3.4. For # € R and a function w : [1,00) — R, define the

operator
6, A 1 2 -
L’w = —pw + pbw, + 5(00) Wer + U(w, + wy,)

using the notational conventions of (2.11).

Remark 2.3.5. With the notation of 2.3.4, we have

sup L2vw* = sup L%w?
9eR 9ER,c>0
= 0 (2.61)
We also note that
LPw* =0

where #* is the optimal investment proportion for fee level \.

Proposition 2.3.7. The lower relazed semi-limit w' is a viscosity supersolu-

tion of the one-dimensional first-order corrector equation.

Proof. Let ¢ be a C? function such that w! — ¢ has a strict local minimum of

0 at yo. Make the notation
A w — wd

A
Pick a subsequence A\, — 0 and y, — yo such that Q' (yx) — w'(yo). Let

Q

U be the minimizers of Q"* — ¢ on a small, closed ball around y,. We must

have g, — yo. If not, then there is a subsequence 9y, — y # yo. Then
0<uw'(y)—oly) < liminf Q" (3) - o)

lim inf Ql’)"“i (Y,) — O(Yk,)

1—00

w'(yo) — d(yo) =0

IN
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a contradiction. We conclude g, — 0. Since ¢ is continuous and g, minimizes

w' — ¢ on a ball around 1y, we see that

w'(yo) = ¢(yo) = lim (Q""(yx) — d(u))
> liminf(Q"Y(gx) — ¢(J1))

k—oo

= liminf Q" () — é(vo)

k—oo

So after possibly extracting a subsequence of the ¢, we have QY (j,) —
w'(yp). In other words, we may take yr = 9. Now construct the smooth

functions

W (y) = wh () + Me(d(y) — d(yk)) (2.62)

We claim that ¥ touches w** below at y;. To see this, note that since w° is

constant in gy, we have

(W™ — M) (y) = (W™(y) — w(y) — Mo (y)) + Mo (yi) + w (yi) + w'(y))
= M(Q"™ () — &) + Mo (yr) — ™ (yi) + w°(y))

Since (A\pé(yr) — w(yz)) is a constant for fixed k and Q'* — ¢ has a local

Ak

minimum at gy, we conclude that w Y* has a local minimum at y;. By

construction we have (w** — ¢*)(y,.) = 0, so 1* touches w* below at yj.

To begin with, we suppose that yo, > 1. Note that

Vi(ye) = (1= p)w™ (ye) — Mty (yr)
Uilyr) = Any(ur) (2.63)

Folyk) = —p(1—p)w™ (yr) + MNo(2pyedy (ur) + Vi by (ur))
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From Remark 2.3.5 and (2.63), we have at y

0 = supLeow’\’“(yk)
0eR

L7 w™ (y,)

Lgowk(yk) (2.64)
—Buw™ + pf°((1 = p)w™ — Nyrdy)

%(090)2(—;9(1 — P + M2yt + Yibyy)

+U((1 = p)wpt + M(¢ + bn))-

AVARRNAV,

Note that L?"w® = 0 since w" satisfies the A = 0 HJB equation. Therefore, we
have at y
Leowk’ _ L90¢k 180
= —Bw™ —w") + pf°((1 = p)(w™ —w’) = Myrd,)  (2.65)
50 (=p(1 — )™ — ) + M2y + 1361
+U((1 = p)wgs + (L= yi)oy) — U (w}).

We now plan to divide by Ay in (2.64) and send k& — oo to see that Ag(yy) < 0.

First, recall that

QMM (yy) = w (ye) — w(yi)

" — w'(y0) = ¢(o)-

Examining the terms of (2.65), we have

(1 —p)(w™ —w°) — \eyrdy
Ak
—p(1 — p)(w* —w°) + M (2pyrdy + Vidyy)
Ak

— d)x(yO)v
(2.66)
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From Taylor’s theorem with remainder and the fact that w? = (1 — p)w®, we

have

U((L = pwy + (1= y)o,) = Ulwy)

+0 (%) (1 = p)(w™ = w®) + Mell = 1))
A2
FREGYE) (1 p) (™ — ) + Me(1 - 1))’
for & between w?(yx) and w2 (yx) + Ae(dz + ¢n)(ys)- Since the y; are bounded

M and ¢ are C?, we observe

U((1 = plwg* + (1 —y)d,) = U((1 = p)u°)
Ak
Combining the above and (2.66) with (2.65), we conclude that

0o, 1k
0<L°¢ (Ur)
S

and w°, w

= U'(wg(y0))(Ve - 1)

— Ao(yo) (2.67)

so that the supersolution property for w! holds at yq.

Now suppose that yp = 1. If y, > 1 for infinitely many vy, as above, then
we may apply the same argument to show that Aw! < 0 in the viscosity sense
at yo. Otherwise, we may assume 1y, = 1, so that w;\k (yr) — Mpw (yx) < 0 in

the viscosity sense. Touching w™* below by the same ¥/* at 1, = 1, we see that
0=wy*(y) = ewy(yn) = (14 AJwy*(1) = A(1 = p)w(1)

> (1+ Ak)lﬁl;(l) — M(1 = p)*(1)

= (14 M) Mdn(1) — Ae(1 = p)(w* (1) + \ed(1))

Dividing by A, and letting & — oo, we conclude that
_ _ A
0 <t 2= PEMD) + M6(1) + (1+ M) (1)

k—o0 /\k‘

= —(1=p)u'(1) + ,(1)
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Since v°(z,n) = (co)_p“ll_z, we have w?(1) = v1(1,1) = (1 — p)w®(1). We

conclude that ¢, (1) —w2(1) < 0, so the boundary condition (Aw(1) ABw) < 0

holds in the viscosity sense. [

Proposition 2.3.8. The upper relazed semi-limit W' is a viscosity subsolution

of the one-dimensional first-order corrector equation.

Proof. First, suppose that yy € (1,00). Construct A\, — 0 and yr — o as in
the proof of Proposition 2.3.7. Let ¢ be a C? function such that w! — ¢ has
a strict local maximum at 1. Construct C? functions 1* such that w** has
a strict local maximum at v, as was done in the proof of Proposition 2.3.7.
First suppose that y, > 1 for infinitely many k. In this case, we can repeat
the arguments of Proposition 2.3.7, (2.64) and following, to show that

LGU k
i 2Y (Ur)

k—o0 /\k - A¢(y0>

On the other hand, since 1* touches w** above at y;, we know that

sup L74* (yz) > 0

feR
for all k. To verify the subsolution property for w' at yo, it will therefore
suffice to show that

foing (LY*) (yx) — [supper (LO9*) (yx)]

> 0. .
i e =0 (2.68)

Now, recall that



As in Proposition 2.3.7, we have

Vi (ye) = Medby(yr)
UEy) = (L—p)w™ () — yrdy(ur)

VE(y) = —p(1—p)w™ (ye) + 20yedy (Yi) + Y Dyy (yr)

A

Since w? is increasing in y and w" is constant, Proposition 2.3.3 implies there

is a constant M > 0

o
v

w™ (ye) — w° (yr)

> w (1) —w’(1) > =M, (2.69)
for sufficiently large k. As a result, we have

sup [0 — | + [y — wyl |y — wgl + [y, — wiy| < Mg
ye|l,00

for large k, after possibly enlarging M. For k sufficiently large that

we have
- L2 (Up)?
0,k _ _ gk ko oky L (H 2)” S
it = g+ Dot =5 () T 0
Define the functions of (a,b) € R?
1 N2 (w+a)?
Ola,h) = — (H) Wata)S
(a,5) 2<0) (w0, +b)
1
®*(a,0) = pb°(wy+a) + 5(00°) (wl, +b)
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We will be done if we show

1 .0 0 _ H2 0 0

k—o0 )\k

=0 (2.70)
because no other terms contribute to (2.68). Once can then check that

1. The definition of #° and the closed-form expression for w® imply the

first-order derivatives of the ®* are equal at (a,b) = (0,0); that is,

Ve(0,0) = VO*(0,0).

2. The second-order derivatives of the ®* are bounded in a neighborhood

of (0,0).

As a result, we obtain (2.70) from (2.69) by a Taylor expansion of ®! — @2
around (0, 0).
If y, = 1 for infinitely many k, we may repeat the arguments of Propo-

sition 2.3.7. ]

2.3.3 A general comparison principle for the corrector equations

In this subsection, we apply a comparison principle for the first-order
corrector equations to conclude that w! is well-defined, and is indeed the first
derivative of w* with respect to A. This comparison principle will also be the
main tool for obtaining bounds on the relaxed semilimits corresponding to the

second derivative of w* with respect to \.

The following lemma provides explicit subsolutions and supersolutions

of the first-order corrector equation which will be useful both in the proof of the
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comparison principle and for obtaining later bounds for the second derivative

of w* with respect to \.
Lemma 2.3.9. Let f(y) =y~ % Then for q > 0 sufficiently small we have

Af <0 on[l,o00)

Proof. Just note that

Af = y4 <—CO— + (090)2> (2.71)

so that Af < 0 for ¢ small. O

We now introduce a slight generalization of the first-order corrector
equation and state the comparison result; the proof will be given in the Ap-
pendix. We introduce this result to provide a unified proof of comparison for

both the first- and second-order corrector equations.

Generalized corrector equation: We say a function w : [1,00) — R sat-
isfies the generalized corrector equation with non-homogeneity h : [1,00) — R

smooth, boundary condition 7, and limit L if

Aw+h = 0
wy(l) = n (2.72)
lim w(y) = L

We define the notions of viscosity sub- and supersolutions to the gen-
eralized corrector equation as we did for the first-order corrector equation in

Definitions 2.3.3 and 2.3.2.
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Theorem 2.3.10. Suppose there exists a smooth solution W to the generalized
corrector equation (2.72) for some choice of h,n and L with h continuous. Fizx
L € R and let W~ be an upper semicontinuous viscosity subsolution of (2.72),
with

limsup W~ (y) < L.

Yy—0o0

Then we have W= < W on [1,00). Similarly, if W is a lower semicontinuous

viscosity supersolution of (2.72), with

liminf W*(y) > L.

Y—00

then we have W > W+,

We verify that the first-order corrector equation does indeed have an

explicit smooth solution. Again the proof is deferred to the Appendix.

Proposition 2.3.11. There exists a smooth solution W of the first-order cor-

rector equation, satisfying

(AW)(y) = 0 on[l,00)
W,(1) —w) = 0

lim W(y) = 0

Yy—00

Explicitly, W has the form

W(y) = C ((y ~1) {r (é aiy) T (é)} + (ay)lclve_aly) (2.73)
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(00°)?

2c0

where o = and C' is the unique constant such that the boundary condition
W, —w? =0 holds. Here I'(s,y) is the upper incomplete gamma function, and

['(s) is the usual gamma function; that is,

L(s,y) = / t e tdt
Yy

['(s) = / t5 e tdt
0

Remark 2.3.6. The constant C' (and hence the function W) is given in terms
of the model parameters, exponential functions, and specific values of the
incomplete and usual gamma functions. The solution W is therefore explicit

up to the integration needed to determine these values of the gamma functions.

The following is an immediate consequence of the comparison principle Theo-

rem 2.3.10.

Theorem 2.3.12. The limit

A 0
1y e O (LY) =07 (1)
') = iy

is well-defined and finite for all y € [1,00). That is, w' = w' = w" is equal to
the classical solution W of the first-order corrector equation given in Proposi-

tion 2.3.11.

Corollary 2.3.13. The function wy is concave, and we have

1 2.1
yw,(y), Yy wy,(y) = 0 asy — oo
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A

Proof. Suppose t € (0,1) and y,y’ € [1,00) Then since w* is concave and

w(y) is constant, we have

tw(y) —w(y) + (1 = ) (W) — v’ (Y))

tw'(y) + (1 - tw'(y’) = lim

A—0 A
by - N _ .,,0 _ /
< fim Y (ty + (1 —t)y') —w’(ty + (1 = t)y')
A—0 )\
= w'(ty+ (1 —1)y) (2.74)

Now we know that w! — 0 as y — oo. This is a consequence of
Lemma 2.3.3 and was used implicitly in Theorem 2.3.12. Since w' satisfies the

first-order corrector equation, we must also have

lim co(y — 1)w;(y) + 1y2(000)2w;y(y) =0 (2.75)

Y—00 2

Note that w,(y) > 0, since w' is concave, w'(1) < 0, wy(1) > 0, and
w'(y) = 0 as y — oo. Now we show yw](y) — 0 as y — oo. Suppose for
contradiction that there exist y, — oo such that w;(yk) > €/yr. Assume

without loss of generality that yy/yx—1 > 1+ d for some § > 0. Since w; is
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decreasing in y, we then have

K

) ~ - | "l (y)dy

. Yit+1 1
= g 3 [ oy
K
< - [}EI;OZ@H — i) w, (Yir1) (2.76)

1=

= 1
< — lim <1 - > Yir1wy (Yis1)

. 1

a contradiction. So we have yw,(y) — 0 as y — oo, and it follows from (2.75)

that y*w,, (y) — 0 as well. O

2.4 The second derivative

In this section, we characterize the second derivative v? of the value
function v* with respect to A as the solution of a linear PDE, i.e. the second-

order corrector equation 2.37.

Definition 2.4.1. The relaxed semi-limits for v? are given by

A 0 1
2 e 0(2) = (07(2) + A (2))
Uleo) = 2 I, » 7
. M 2) — (00(2) + \ol(z
52(20) — ZZIEZS;IBO ( ) ( ;2) ())

By construction v? and 72 are lower- and upper-semicontinuous, respectively.
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We follow the same line of argument used to determine v':

1. We show that v? and ©? are finite, and that

lim v? = lim 7° = 0.
y-}OO y-)OO

2. We show that v? (respectively 72) is a viscosity supersolution (respec-

tively subsolution) of the second-order corrector equation.
3. We find a smooth solution V' of the second-order corrector equation.

4. A comparison principle will then imply that

IS
I

<
I

S

and v2 =V

Remark 2.4.1. The relaxed semilimits v?,7? are readily seen to inherit the
homotheticity properties of v* and v!. That is, by the same reasoning as
Remark 2.3.1, we see that if we define

A 0 1
2 B e wNy) = (w4 Awt(y))
= (y> a 2y££1§\1£0 A2 ’

then we have

2= 2'"P?(1,n/x). (2.77)

IS

As a result, we apply the notational conventions of (2.11) to w?. Obviously,

the same remarks apply to w?. Throughout this section, we will also use the
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following notation:

Ql,)\(y) ’LU)\(y) — ,w(](y)

A
@) = P 278)
_ Ql)\(y))\_wl(y) (279)

and will use the notation of (2.11) for the Q.

2.4.1 Bounds for v?

Proposition 2.4.1. If 1 —p > 0, then we have w?> > 0. If 1 —p < 0, then w?

1s uniformly bounded below with

lim inf w?(y) > 0.

y—>00
Proof. We will use Theorem 2.3.10 to compare Q'* and w'. First we compute
that

AQW = L(AuA(y) - Au)

—_

= 5 (£ + 0 d ) () + wd) () = U +w))(v))
5 (100 + T @) uly) ~ T
Since U is convex, we have
U((w) +wp)(y) = U(wi(y)) + U'(wd(y))((w) + wh)(y) — wi(y)).

Recalling that Lw* < 0 and Lw® = 0, we conclude that AQ™ < 0.

To check the boundary supersolution condition of the first-order corrector
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equation, note that

Q1) = gwd(1) = (1= phur(1) —w)()

< (L=puw(D).
If 1 —p >0, then (1 — p)w*(1) < (1 — p)w’(1) = wl(1), and therefore the
boundary supersolution condition of the first-order corrector equation:
Q,(1) —wg(1) <0
is satisfied. Suppose instead that (1 — p) < 0. Obviously we have
(1= p)w(1) = (1 = p)uw’(1) + (1 = p)Aw' (1) + o(A).

Using Lemma 2.3.9, we can construct f : [1,00) — R such that Af < 0 and
fy(1) < =(1 = p)w'(1). For example, we may take f(y) = Cy~? for a large
constant C' and ¢ sufficiently small. Then Q'* + \f is a supersolution of the

first-order corrector equation for small A, since

AW +Af) < 0
Q1) + A fy(1) —wi(1) < (1—=plw(1) +Afy(1) = (1 = p)u’(1)

M,(1) + A1 = p)w'(1) + o(A) < 0 for small ),

IN

s0 QLA+ Af > w!, for small . As a result, Q** > — f for small A. Our choice

of f also implies that w? is uniformly bounded below and

lim inf w?(y) > 0

Yy—00
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The following series of lemmas will be used to show that w? < co and w?(y) —

0 as y — oo.
Lemma 2.4.2. We have

0 < vz, n) < Av(z,n)
for all (x,n) € D. Equivalently,

0 < wy(y) < dwg(y)

for ally € [1,00).
Proof. Let (a,7) be an investment /consumption policy given in dollar amounts
which is admissible for initial condition (z,n + h). We will show that («, ) is
admissible for (z + Ah,n), so that v*(x,n + h) < v*x + Ah,n). We can then

take derivatives with respect to A to conclude.

It will suffice to show

t
Xtéx+xh+Yt—/%du— sup [Ys — (n —x — Ah)]" >0
0

1+ Ao<s<t
where Y, = [fa%E. B assumption, the wealth process corresponding to initial
0o ¥F - BY

condition (x,n + h) is positive:

t
X{—x—l—Yt—/%du— sup [Y; — (n+h —2)]" > 0.
0

14+ X o<s<t

Now observe that

X,— X! > M- Yi— (n— 2 — AR
' . > Ah 1+)\Os§1£t[t (n —ax — Ah)]
A
Y, — h—x)"
T e (ot b))
> _ o — r— =
> A\h 1+)\(n+h r—(n—x—Ah)=0
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Lemma 2.4.3. Let

GMy) = [wy) — w’ ()| + [wy ()] + [wi (y) — wi(y)| + [y, (y) — wi,(y)]
There is a constant M such that for sufficiently small A, we have

sup GA(y) < M (2.80)

y€[l,00)

for all y.

Proof. To begin with, since w*(y) is increasing in y and w°(y) is constant in

y with w*(y) < w°(y), we see that
wi(y) —w’(y)] < (1) —w’(1)].

Since

dw? 1
R :w7

d\ |,_,

we have

(1) — w’(1)] < Mo

for small A as long as My > |w'(1)|. Therefore
[ (y) — w’(y)| < MoA

for all y, for A sufficiently small independent of y. Since w is concave, w?(y) >
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0, and wj) = 0, we have

wy (y) —wy(y) < wy(1)
= (1)

= A1 =pu(1)

A1 = p)w(1)

IN

Since w*(1) — w°(1) as A — 0, we have

A
Wy

sup |w)(y) — wh(y)| < MyA

y€[1,00)

(1)

for \ sufficiently small , as long as we take M; > |(1—p)w®(1)|. Next we argue

that there is a constant M such that

sup [yw) (y)| < MA
y€[1,00)

for A sufficiently small. Note that the existence of M immediately implies the

existence of a M, such that

sup [wy (y) — wy(y)] < Mok

y€[1,00)

for A\ sufficiently small, because

A

w/\ = (1 —p)'UJ)\ - yw,,

Now, since w is concave, we have

w(y) — wi(1)

wy(y) < =
< w®(1) — w(1)
< y—1
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Therefore,

0 yly) < 2 (w'(1) = () (2.84)

As a result, we can easily find M, such that

lyw, (y)| < Mo

A

on the interval [1 + ¢, 00) for A sufficiently small. On the other hand, since w;

is decreasing in y, we have the bound

0 <yuwiy) < (1+6)w2(1)
< (1+4e€e)MA

so we conclude that there exists M such that

sup |yw, (y)| < MA
y€[1,00)

for small \.

It remains to show that there exists M3 such that
w3 (y) — wi,(y)| < M

for all y, for A\ sufficiently small. Writing down the HJB equation for w at

fixed A\, we have

wi,(y) = Fw(y), w)(y), w) (1)), (2.85)
where
Pt o)) 22(7) -l e



Note that F is a twice-differentiable function of (w*(y),w}(y), w;(y)) in a

neighborhood of the point (w®(y), wl(y),0). The first- and second-order deriva-

T

0

tives of F' are bounded in a neighborhood of (w°(1), w?

(1),0), and we’ve shown
there is a constant M with
up. [(w* (), w (y), wy (y)) — (W’ (y), wi(y), 0)] < MA
ye|l,00
for sufficiently small A\, which is enough to conclude there exists a constant
M5 such that

y€(1,00)

for A sufficiently small. O

Lemma 2.4.4. Deriwatives in A and the state variables commute. That is,

| =) (2.89)
) =) (2.80)

In fact, the convergence of the difference quotients

1
N w, (y)
w), (y) .
y;/\Q - wyy

18 locally uniform in y.

Proof. Define fA(y) = w'(y) — Q"*(y). Then f is C? and f* — 0 pointwise

on [1,00) as A — 0. From the proof of Lemma 2.4.3 and Corollary 2.3.4, we
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know that f = w,(y) — sw,(y) and [, = w} (y) —

W, w? (y) are uniformly

bounded for small \; say that we have

[f3] < My
| < My

for small \. It is then easy to show f* — 0 locally uniformly as A — 0; that is,
for any yo, there exists an open neighborhood of B(y,) containing y, such that
f — 0 uniformly on B(y,). We claim that f;\ — 0 locally uniformly. Suppose
for contradiction there exist Ay — 0 and yo € [1, 00) such that | £ (yo+ex)| > p

for €, — 0 and some p > 0. Pick ¢ sufficiently small that f* — 0 uniformly

on a ball of radius € around yy. Pick € < €. By Taylor’s theorem, we have

oo+ €)= f*(yo + en) + (e — ) f* (Yo + €x) + (e — ) ok (yo + €x)
where €, is between 0 and €. Since f* — 0 uniformly on [y — €,y + €], we
have
(o + )l = [/ (yo+ ex) + (e — ) [ (o + ) + (e — ex)* [k (wo + &)
d(Ax) (2.90)

o)l < 5()

IA

where §(\;) — 0 independent of the choice of € < €. To obtain a contradiction,

we pick € < max(p/Ms, 1) and note that
| (o + €x) + (e — &) [k (yo + €)| < 0(Ak) + (e — ) * Mo
< (M) F (e—er)p

(e — ) f" (yo + )| > (e—ex)p
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which contradicts (2.90). As a result, we must have f*(yy) — 0 as A — 0, that
is (2.88) holds. The result (2.89) is then obtained using the relations between
w, w;‘ and w;\y given by the HJB equation, as well as the fact that w! satisfies

the first-order corrector equation.

O
Lemma 2.4.5. As in Lemma 2.4.3, set
G y) = [w(y) = w’W)] + [wy )] + w2 (y) — wi ()] + [we, () — Wi, (y)]
Then we have
lim limsup sup ) =0 (2.91)

Yo A0 ye[yo,00) A

A is increasing in y with w*(y) — w®(y) as y — oo, we have

A —w' 1 A _ a0 1
0 < lim limsup sup wi(y) —w'(1) —  lim lim supw (yo) — w"(1)
Y0700 A=0  ye[yo,00) A Yo—00  \_s0 by

Proof. Since w

= lim w'(yo) =0

Yo—r o0

A

Let y > yo. Then since w” is concave

w(y) — w(yo)

wy(y) <

v) Y — Yo
< w®(1) — w(yo)
o Y — Yo

Therefore,

ywy(y) < yow,(y) +w’(1) — w) (o)

< yow, (yo) + w’(1) — w*(yo)
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Combining the above with Lemma 2.4.4 and Corollary 2.3.4, we observe that
L yw; () L yow; (yo) +w (1) — w(yo)
lim limsup sup ——— < lim limsup
YO A50 0 yelyo,o) A Y0 N0 A

< lim yow, (yo) + w'(yo) =0
Yo—00

Since w)(y) = (1 — p)wr(y) — yw)(y) and wl(1) = (1 — p)w°(1) it follows

xT

immediately that

A 0
— 1
lim limsup sup [wy) = wo(1) =0 (2.92)
Y0700 A0 y€lyo,00) A
We conclude by recalling the bound (2.87) on w2, O

Proposition 2.4.6. We have wy(y) < co on [1,00).

Proof. We will exhibit f : [1,00) — R such that Q%" — \f is a subsolution of
the first corrector equation for small A, then apply Theorem 2.3.10 to conclude
that Q' — A\f < wy, hence Wy, < 2f < 0o. To begin with, we show that there
exists M > 0 such that

AQM > — M.

First observe that

AQW (y) = % (Aw(y) — Aw’(y))
= (AP) - 17w y) — Au(y) + IPu0(y))
= 3 (w20 + S + 5 (£) 200
1 (T20) + T )(Vu(y) - 1 ul(1)) ~ T(Ta - 1)
= 5 (w20 + ot + 5 (£) L0
=07 (6(0) (Ve 1~ ul(y)) (299)

|
>
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where the third line follows from the usual HJB equation for w?, and &,(y)
is some number between Vuw? - 1 and w?(y). Note that there are constants

Ch, M, such that, for small A
1
2
where G*(y) is as defined in Lemma 2.4.2. A similar bound hold for the other

U'(6()(Vur(y) - 1 = wi(y))* < G (y)* < MiX? (2.94)

terms of (2.93). To see this, define

1
Pry(0) = powz(y) + 5 (06)*ws, () (2.95)
Since py , is quadratic in 6 with maximum at 6> = —%qf:’f ((y;), we have
Pru(0°) = P2y (0%) = *wi, (y)(0° — 07)? (2.96)

Note that Lemma 2.4.3 readily implies there are constants Cs, M5 such that
(0° = 07)? < CoGM (y)? < MpA?

for small A. So applying (2.94) to (2.96) in the equality (2.97), we see there

are constants C, M such that

AQM(y) = ; (£2(67) = r0(0) = T () (VP () - 1 = w())?)
> oG W’ (2.97)
A
> —MA\
Now, we want to construct f : [1,00) — R such that
AQM=2f) > 0 (2.98)
Qy (1) = Afy —wp(1) > 0
limsup f(y) > 0 (2.99)
Yy—r00
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We begin by addressing the boundary condition. Note that

Q) = =

Thus we have

QP = TR 1) = (1= p)ul(1) + AL = p)(w'(1) — (1)) + o)

= wl(1) + A1 —p)w'(1) +o(N). (2.100)
Now define f(y) = Ko+ Ky~ 9 for ¢, Ky, and K; > 0 positive constants. Recall
from Lemma 2.3.9 that A(y~?) < 0 for ¢ sufficiently small. Choosing K large
and ¢ sufficiently small, we therefore have Af < —M for any M > 0. Further,
we may take K sufficiently large that — f, (1) > |(1—p)(w'(1)—w(1))], so that
(2.100) implies (Q,* — Af,)(1) > w) for small A. Finally, since Q"*(y) — 0 as
y — 00, we have

limsup Q% — Af < 0.

Y—00

Altogether the conditions of Theorem 2.3.10 are satisfied, and we conclude
that for small A, we have Qllj’\ — \f' <w'. As aresult, Q>* < f for small ),

and so W? < 0. O

Lastly, we check that w? has the appropriate limiting behavior.

Proposition 2.4.7. We have

lim sup w>(y) < 0

Yy—00
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Proof. First, note that for any y € (1, 00), we have

2.\ _
hr)\n_}(l)qu (y) > —o0

Once we’ve proven this, the argument resembles the proof of Proposition 2.4.6.

If y = 1, then this is clear from (2.100), since we have

QP = Q" —w,

wo(1) + AL = p)(w' (1) —w’(1) +o(X) w,
A A

= (1-p)(w'(1) —w'(1)) +o(1)

Now take y > 1. Suppose for contradiction that there exist A\, — 0 with

QZ”\k(y) — —oo. By a simple Taylor expansion, we have

Q*MNy +€) = Q*MNy) £ eQMy) + €Q2) (Y + exn) (2.101)

for some e+, between 0 and +e. At a point of inflection g of Q**, we have

AQ* (i) = —co@* (k) + (k. — 1)o@ () (2.102)

In particular, Qz’Ak(gjk) is bounded below for small A, since both AQg’Ak and
Q** are (this is a consequence of Proposition 2.4.1 and the proof of Propo-
sition 2.4.6). So for infinitely many k£ we must have QQ”\k (y) # 0. We may
assume without loss of generality that Q2 Ak( ) <0or @} A’“( ) > 0 for all k;
to begin with, suppose Q2 Ak( ) < 0 for all k. If for infinitely many k there is
a point of inflection g of @** on the half-interval [y, y + €], then we would

have Q2™ () < QoM (y) — —oo as k — oo, a contradiction. So we assume
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Q2 < 0 on [y,y + €. In this case, Q> (y +€) — —o0 as a result of (2.101),
contradicting Proposition 2.4.1. Similar arguments apply if we suppose that

Q2 (y) > 0 for all k and consider the interval [y — e, y].

Now we may proceed to use comparison arguments to show the desired
limiting behavior of w?. Recall from Lemma 2.3.9 that the function f%9(y) =
— Ky~ satisfies

AfEa>0

for ¢ sufficiently small. Fix g, — oo and pick K} with
R T 2N/
gKy > —liminf Q) (g)
and M, > 0 with

M, < inf AQ*

YE[Jr,00), A<
lim M, = 0 (2.103)

k—o0

where {\;} is some sequence with \y — 0 as k — oco. To see that such a

choice of M, is possible, note that

AQI,A

A

GMy)®
)\2

AQQ,A —

> C (2.104)

where the second line is just the bound (2.97) from the proof of Proposition

2.4.6. We then apply Lemma 2.4.5 to conclude that

lim liminf inf AQ*=0

Yyo—oo A—=0  y€lyo,00)
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which allows a choice of M}, as in (2.103). We then have for A < A

A(Q = My + f17) = 0 on [jy. 00)
(Q* = My + f5)y () > 0

lim sup(QQ”\ — M, + fK’“q)(y) < 0

y—o00
We therefore use 2.3.10 to see that Q** — My + frx, 4 < 0 on [g, 00) for all k
for A < \;. Since fE#% - 0 as y — oo and M;, — 0 as k — oo, we conclude
that
lim sup Q* =0 (2.105)

Y070 yeyo,00),A> Mg

Now, if limsup,,_, ., w? > ¢, then there exist y, — oo and \; arbitrarily small

such that Q** (y;) > € > 0 for all k, which is impossible by (2.105). O

2.4.2 The second-order corrector equation

Definition 2.4.2. In order to define the second-order corrector equation, we
first recall the definitions of the leading-order corrections (6, ¢') to the optimal

strategy as in (2.33):

o,1_,1,0
91(9’5, TL) — _%szvm OU:EJJU.I
I’?vo(x 7,5;%51(33 n) + vk (x,n)) (2.106)
cl(x,n) — T\ T\ n\*"»
Xz

One can easily check that, due to the homotheticity properties of v° and v!,

we have

0 (z,n) = 0'(1,n/x)

cx,n) = c(1,n/x)



We therefore write 6!, ¢! in one-dimensional notation, taking

0'y) = 6'(L,y)

¢'(1,y)

o
—
—~
<
~—
>

Finally, we define the approximately optimal strategies (éA, &) as follows:

P(y) = 6"+ 20'(y)
My) = L+ (y)

Remark 2.4.2. Due to Lemma 2.4.3 and Lemma 2.4.5, it is easy to see that 01

and ¢! are uniformly bounded with

lim 6'(y) = lim c¢'(y) =0

Yy—00 Yy—00

We now give the one-dimensional version of the second-order corrector

equation (2.37).

The second-order corrector equation. The one-dimensional second-order

corrector equation for a function w : [1,00) — R is given by

Av+g = 0
Co £ wy(1)—2w'(1) =0

xT

lim w(y) = 0

Y—0o0

where

1 1~
922 | ubtw! + o2(0°0 !, + 5(091)211123& - §U”(w2)(wi +w,)*| (2.107)
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The notions of viscosity subsolutions and viscosity supersolutions of the second-
order corrector equation are given in the same way as in Definitions 2.3.3 and

2.3.2.

Proposition 2.4.8. The lower relazed semilimit w? is a viscosity supersolution

of the second-order corrector equation.

Proof. The proof closely follows that of Proposition 2.3.7. Let ¢ be a C?
function such that w? — ¢ has a strict local minimum of 0 at y,. We pick a
subsequence A, — 0 such that 2Q%**(y,,) — w?(yo) for some sequence y, — Yo.
Let ¢ be the minimizers of 2Q** — ¢ on a closed ball B around y, taken
sufficiently small that y, is the minimum of w? — ¢ on B. We must have

Ur — Yo. If not, then there is a subsequence 9, — v # yo. Then we have

0<w’(y)—o(y) < lminf2Q*™(gy,) — o(Jr,)

1—>00
< liminf 207 (yy,) = (k) = w(yo) — B(v0)
This contradicts the assumption that the strict minimum of w? — ¢ on B is
achieved at yy. So yr — 7o, and we readily see (by minimality of the g, and

continuity of ¢) that 2Q%**(g) — w?(ys). We may therefore take y, = .

Now construct the C? functions

V) = 0 () + (et () = Mook ()) + 22 (00) — o) (2.108)

Observe that 1% touches w** below at y;. To see this, note we clearly have
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VE(y) = w(yp,). Since w

My) — ) = M) — () + A ) + 2F)

0 is constant in y, we also have

2

2
2

() + M () + 26 (0)

:'§@Q“%%»—@+@w@w+m@%%w#§wm»

By construction, 2Q** — ¢ has a local minimum at y;, so w™ — ¥* does as

well. For reference, we note that at y,, we have

¢k
¢k

k

xrx

o
Aty 7 O
)\2
(1= p)w™ = ye(Nw, + Z76,) (2.109)

A2 bY:
_p<1 — p)wkk —+ prk(/\kwi/ + 7k¢y) + yi()\kw; + ?kgby)

To begin with, suppose yo > 1. We plug ¥* into the HJB equation for

WMk at

where

0 > (sgpLW“)(yk)
> 1) (2.110)

First, we show that

2
7 20" (g + MO0 k) + %(91)202 k (2.111)
LIk 1 1-
B0 L o) + S0 @t (wh + wl? (2.112)
k
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where £ is the operator of Definition 2.3.4. Expanding each term of L% " (y;)

using (2.109), we have

)\2
LYF = —Bu 4 ub° {(1 — p)wt — yp ()\kw; + ?kqﬁy)}
L o0y 1 M4 \ow! Ak
+§(U )7| = p(1 = p)w™ + 2py; | Mew, + 7%
A
+i (Akw;y + 7%) } (2.113)
: X LA
Recalling that
LW = Aw' = 0,
we subtract L w®(y;) + ApAw' (yx) = 0 from (2.113). For brevity, we write
the result in terms of Q?**:
Y
LR () = —BAQ™ + w2t [(1 - p) @ — o |

)\2
+5 (00°)” [—p(l —p)Q*M + % (2pyrsdy, + yi%y)]

2

+U (1 —p)w™ — (1 — yp)(Msw) + A—zcby)) (2.114)
— |0 @) + MU @)(1 = pyw' + (1 = gy

Examining the first two lines of (2.114), we note that as kK — oo, we have

5 = Do)
p (1) @ g, 5 20, (un) (2115)

%(090)2 {—p(l —p)Q*M + % (2pyrdy + yicbyy)} — 3(090)2%(%).
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We then treat the last two lines of (2.114) with the usual Taylor expansion

argument: We have

A7 ~

U ((1 —p)w — (1 — yk)()\kw; + 7’“%)) = U(w?)

+U'(w)e*  (2.116)

1~

—|—§U”(£k)(5k)2

where
/\2
5k = (1-— p)wkk — wg + (1 — yx) ()\kw; + 7k¢y)

and &* is some number between w? and w? + §%. Adding the first two terms

of the right-hand side of (2.116) and the last line of (2.114), then dividing by

A? and sending yields the expression

. 1— 1 -
U'(@)((1 = p)Q>™ + —26,) = ST @)((L=p)dlyo) — (1= y0)oy (v0))
= ST + o) (2117)
as k — oo. To take care of the last term of (2.116), note that
<5k)2 ((1 — p)w>‘k~ — (1 —p)wo — (1 — yk) ()\kw; + %igby))Q
N A2
k k

= (1=pw'(yo) + (1 = yo)w' (yo) = (w} + w}) (o) (2.118)

as k — 0o. As a result,

(O 1
2SOl + ) (2119)
k
as k — co. Combining (2.114) with (2.115), (2.116), and (2.119), we conclude

that (2.112) holds.
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We now claim

k
. 1
lim 5 = 8w} (yo) + o(6°0" )l (o) + 5 (08"l (o) (2.120)
o0 Ak

On one hand, we have

1 1
lim 5(091)2 k= é(aﬁl)zng(yo) (2.121)

k—o00

so the last term of the right-hand side of (2.111) accounts for the last term of
the right hand side of (2.121). To treat the first two terms of (2.111), recall

that from Theorem 2.3.12 that

lim w (i) — (wO(Ayk) + Aw' (yr))
—00 k

=0

Therefore, we have
1 k 200, .k 1 1 Y
+A:020°0" ( —op(1 —p)(w® 4+ Agw?)
Ak
+2pye(Mew,, + E%)

)\2
i (M, + 7’“%)) +0(X0)

= A (u@lwi + 02906’110;1;) + 0(A}) (2.122)

where the w° terms above cancel due to the explicit form of #°. Combin-
ing (2.122) and (2.121) yields the desired limiting behavior (2.120) of the n*.
Putting (2.110) together with (2.120) and (2.112), we conclude that

Ad(yo) + g(yo) < 0.
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That is, the interior supersolution property for the second-order corrector

equation holds for w? at .

Suppose now that yo = 1. Construct the y;, and ¥* as before. Then
either y, = 1 for infinitely many £ or y; > 1 for infinitely many k. In the second
case, we may argue as above to show that (A¢+ g)(yo) < 0. If infinitely many

yr are equal to 1, for these k, we have
k k 1 Y
02 (- b)) = (o) + Fo,0)

M=) + (Kl + Fa,m)
= 20, (1) = ML= p) (1) — uP(D) = k(1)
A,
where the second line follows from the fact that w, (1) = w2 (1) = (1—p)w’(1).
Dividing by A2 and sending k — oo yields
0 2 Soy(1) — (1 ph' (1) — wy(1)
= 20y(1) —wl()

1
= -Co.
5C¢

In other words, the boundary subsolution property of the second-order correc-

tor equation holds.

Lemma 2.4.9. We have




locally uniformly iny as A\ — 0.

Proof. Let 0* be the optimal control for fee level X. Since 6* is given as a

continuous function of the derivatives of w*, Lemma 2.4.4 implies that
0> — (0° + \0Y)

A
locally uniformly in y. Now define p™¥(6) as in (2.95). Recalling that p*(6)

—0 (2.123)

is quadratic in @ and is maximized at 6*(y), we have
LuwMy) = (Lm - Lm) w(y)
= PO A8 — ()
= Ul ()0 + 20— 0
where the last line follows from equation (2.96). Combining this with (2.123),
we conclude. O

Proposition 2.4.10. The upper relaxed semi-limit W* is a viscosity subsolu-

tion of the second-order corrector equation.

Proof. Let ¢ be a C? function such that w? — ¢ achieves a strict local maximum
of 0 at yg. To begin with, suppose that yy > 1. Following Proposition 2.4.8,
we generate points y, — o such that 2Q**(y,) — w™* and smooth functions
Y* such that w** — ¥ has a local maximum of 0 at y;. To begin with, assume

Yo > 1. Since w* — ¥ has a local maximum of 0 at g, we have
w (vo) = ¥*(wo)
w;’“ (o) = ¢§ (%0)

wyk(yo) < Uy, (o)



As a result, we have

Lé*kd}k(yk) > Lékk wk (yk)
Combining this with Lemma 2.4.9, we see that

L0A>‘k k
lim inf —¢ ()

min 3 >0 (2.124)

Note that the locally uniform convergence of Lemma 2.4.9 really was needed
above, since we can’t take the y; to be fixed. We may now repeat the arguments

of Proposition 2.4.8 to show that

L9A>‘k k
lim
k—0 )\i

(94) = 5 (A0(un) + 9(un)

so that the interior subsolution property holds at y,. In the case where yy = 1,

the argument is identical to that of Proposition 2.4.8. [

The proof of the following result will be given in the appendix.

Proposition 2.4.11. There exists a smooth solution W of the second-order

corrector equation

AW +g = 0 on (1,00)
Wy(1) = 2w, (1) = 0

lim W(y) = 0

Y—00
We are now ready to prove the principal result of the section.

Theorem 2.4.12. We have w? = w?, so that the limit

A 0 1
2 op W — (w” + Aw')(y)
=2 i e
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is well-defined, finite, and continuous in y, with

lim w?(y) =0

Y—00

Further, w? is the unique viscosity solution of the second-order corrector equa-

tion, and so w? is equal to the W of Proposition 2.4.11.

Proof. In light of Proposition 2.4.11, we can simply apply Theorem 2.3.10 to
the viscosity sub- and supersolutions w? and w? of the second-order corrector

equation. O

2.5 Approximately optimal strategies

In this section, we show that the payoff @* of the strategy (6*,¢")
matches the value function w” up to second order in A\. We apply the same

approach of previous sections, checking that the derivatives

o, da? o dP?
= —_— w- =
? 2
aX |,_, dr\* |,_,

are finite and satisfy the first- and second-order corrector equations, respec-

U= w! and w? = w?, so that

tively. We will then have w
A A
Tw —0as A — 0.

In order exhibit the bounds needed for this type of argument, it will be conve-
nient to first obtain the corresponding bounds for @*, the payoff of the Merton
investment /consumption proportions (0%, c°), and then to bound the difference

w* — . We begin by introducing some basic properties of @ and ™.
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Proposition 2.5.1. The feedback proportions (6°,c°) result in an admissible
strategy with high-water mark fee at rate \. Let 9*(z,n) be the payoff of this

strateqy at fee rate \; then 9> is a smooth solution of

L = 0
Up(z,2) — MNog(x,2) = 0 forallxz >0 (2.125)
lim o*(z,n) = °(z)

n—o0

where the operator £L%¢ is defined in (2.15) and following. Moreover, we have

lim no)(z,n) = lim n?d), (z,n) =0 (2.126)
n—oo n— o0
and
lim 7*(z,n) = v°(z) (2.127)
A—0

Similarly, the feedback proportions (é’\, &) result in an admissible strategy with
high-water mark fee at rate . Let ©*(x,n) be the payoff of this strategy at fee

rate \; then ©* is a smooth solution of

LS =0
Up(x,2) — Nog(x,2) = 0 for allz >0 (2.128)
S _ 0
nh_)rgov (x,n) = v'(z)
and we have
lim no)(z,n) = lim n%*d), (z,n) =0 (2.129)
n—oo n—oo
as well as
lim % (z,n) = v°(z) (2.130)
A—=0
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Lastly, we have

*Ma,n) = 2'7PMN1,n/x)
Ma,n) = 2'7PoM1,n/x)

Therefore we define

My) = @*(1,y)

Wi(y) = w(1y)
and use the notational conventions of (2.11).

Proof. See Appendix. ]

Definition 2.5.1. We define the relaxed lower semilimits

* (y) — w(y)

@' (yo) = liminf
Y=o A

X . uMy) —
wl(yo) —_ hﬁ?l}(}f <y>)\ (y)

=2 0 1
o e W) = (0 + At (y)
) = 2R %

WM y) — (W’ + dw')(y)

2 . .
= 21 f
(10) m in %

59

As usual, these inherit the homotheticity properties of @*,w”, and we will

apply the notational conventions of (2.11) to these functions as well.

Remark 2.5.1. Since w* < w?, it is obvious that

1

&>
IA
S»—A

=
IA
Sl\’)



Therefore, we only show that @' > w' and @w* > w?. It is then immediate

that the derivatives

o dd?
X |\,
o
|,

are well-defined and equal to w! and w?, respectively. In other words, there is

no need to work with the upper relazed semilimits for w' and w?.

We now begin with the argument that @' > oo and @? > oo, which

will then be used to show that @' > oo and ©? > oo

Proposition 2.5.2. Define

My) = [0(y) — w(y)] + [0 (y) — wy)] + @3, (y) — i, (v)] + @) (y)]
Then for \ sufficiently small there is a constant M such that

sup GMy) < M

y€[1,00)

Proof. First note that there is a constant M, such that

sup [0’ (y) — w’(y)| < MoA
y€[1,00)

for A sufficiently small (we say that [@0*(y) —w®(y)| is uniformly O(\)). This is
a consequence of Remark 2.3.3 and the fact that the right hand side of (2.47)

is uniformly bounded below for all choices of z = (1, y).

Suppose that |yw,| is not uniformly O(X). Then for any «, the function
f9My) =y, (y) + a(w*(y) — w(1)) also fails to be uniformly O(X). In this
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case, there must be \;, — 0 such that f®* achieves its global extrema on

(1, 00) for small A, because

and therefore

A
M1 = ———(1—p)*1 2.131
a1 = =) (2.131)
lim yw, = 0
Yy—00

so that yw; is O(A) at y = 1. Now suppose | f***| achieves its global maximum

at yg, so that
Fi M ) = (14 @)y (yx) + sty (ye) = 0 (2.132)

Plugging @ into the equation £’ @™ = 0 at y;, and using the relation (2.132),

we see that
0 0 0 1 0\2 ~\
0 = U@+ (-5 )+ 1 p) - 5(0@ o1 =) ) @ )
+eo(yn — 1))t + (—pb° + p(ad°)?) yrai)* + = (090%)2 A (yy,)
= U+ (=5 E -4 p) - %(ae())?p(l ) i)
+ (co (1 — 1) _ L O‘(aeo)2> Y, (2.133)

Yk 2

Because w? satisfies the A = 0 HJB equation, we know that
1
) + (=0 0= p) 4 00— ) (08Pl - >) ' =0

(<6 0=p) 41 =) = o0 -1)) <
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Since |@* — w°| is uniformly O()\) and @* < w?, we conclude that there is a

constant M; such that

0 < U@+ (8- (1= ) = 50V pl1 ) ) M)

_ <00 (1 B 5) B 14;04(090)2) y oy (yr) < My (2.134)

Choose « sufficiently negative that

1 1+«
coll——)— g0*)? >€e>0
0( Z/A) 2 ( )

for A\ small. Then, since |f**(y)|/\ — 0o as A — 0 and aw? is uniformly
O(A), we must actually have |ykd}2(yk)|/)\ — 0o as A — 0. Since ¢o(1 — i) —
22(06°)? is uniformly bounded away from 0, this contradicts (2.134).

We conclude that yw; is uniformly O(X). Since w) = (1 — p)u*

— vaJ:,j‘, it
follows immediately that |@) — w?| is uniformly O()\) as well. As a result,
the PDE (2.125) implies that y*w;, (and hence @},) are uniformly O()) as

rx

well. O]

Proposition 2.5.3. We have

w*(yo) > —o0

lim inf @?* > 0.
Y—r0o0

for all yo € [1,00)

Proof. Define
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As in Proposition 2.4.1, the goal is to exhibit a function f : [1,00) — R such
that f(y) — 0 as y — oo and Q" (y) + \f is a supersolution of the first-order

corrector equation, allowing us to conclude

First, note that:

AOW = % (£ i + 0" (w) (Vi - 1) = (U() = Vit - 1)
1 0 .0
Y (La “w? 4+ U (w)w? — (U() — cow2)>
= 0 (2.135)

where the last line follows from the fact that U’(w?(1)) = —c” and
LHO,COwO — LGO,cow)\ -0

Using the usual homotheticity properties, the boundary condition for w and

the computations of (2.100), there is a constant M such that for sufficiently

small A

Q1) = wa(l)
(1 _p) ~)\(1)

T+ A
(1 —p)u’(1) + M

IN

< wd(1) + M

where the third equality follows from the bound of Proposition 2.5.2. There-

fore, we take f to be a supersolution to the first corrector equation such
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that f/(1) is sufficiently large and negative. From Lemma 2.3.9, we can take
fly) = Ky 7 for K large and ¢ sufficiently small (both independent of \).
Then, noting that Q'* + \f is a supersolution of the first corrector equation
with

lim Q"+ Af =0

we conclude that Q' + \f < w!, hence

AL wl
O s
for A sufficiently small. ]
Corollary 2.5.4. We have
@' = !
As a result, the limit
=2 0
@2 i

is well defined, and W' = w!.

Proof. Since w* < w?*, we obviously have @' < w!. On the other hand, if

W' (o) < w'(yo), then

w0 (yo) — (w” 4+ Aw")(yo)

w? < 2liminf

A—0 A2
~1 ol
P ) Rl €10 (2.136)
A—0 A
which contradicts Proposition 2.5.2. [
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We now wish to use the boundedness results

@2

> —0
liminfw? > 0
Y—00
to show that
w > —o00

liminf@w? > 0.
Yy—r00

We may then use arguments similar to Proposition 2.4.8 to show that %? is a
supersolution of the second-order corrector equation, so that w?
argument will proceed in the following steps:

= w?. The
1. We have &' =@

1 b

2. There is a constant My > 0 such that

2 Mo

Since w? > —o0, this implies that w? > —oo
3. Modifying the arguments of Proposition 2.4.8, we see w

2
lution of the second-order corrector equation, so that w? > w?. By the

is a superso-
discussion of Remark 2.5.1, this completes the argument.

Steps 1 and 2 above will make use of the following easy lemma.
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Lemma 2.5.5. There is a constant M such that
Or 8N~ “ry\ 2
sup |£ wMy)| < M
y€[1,00)

for X sufficiently small. More strongly, we have

Lé*,é* ~ A
lim limsup sup w
Y070 A0 [yo,00) A

=0 (2.137)
Proof. Observe that

L2 = L9 4 U(P + Ac') — U() — A (Vi - 1)
)\2
A" () + (060)),) + 3(091)27Jﬂ (2.138)

xrx

We know £%<"¢* = 0. Recalling that U’ (") = w? and applying Taylor’s

Theorem, we see that

U+ —U(P) =M (Vr-1) = U" (€M (M) = At ((Var-1)—w?) (2.139)

xT

where £* is some number between ¢® and ® + Ac¢!. Recall from Remark 2.4.2
that ¢! is uniformly bounded. From Proposition 2.5.2, ((Va?* - 1) — w?)/\ is

uniformly bounded as well. Therefore, there is a constant My such that
U (< + Aeh) = U(P) = AVt - 1)| < M)? (2.140)

Recalling that ¢! — 0 as y — oo, we see from (2.139) that for any €, > 0, we

may in fact choose yq such that

sup |U( + Ac') = U(P) = Al (Vat - 1)] < &\

Y€[yo,00)
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for sufficiently small A. For a similar bound on the second line of (2.138), note

that for small A we have

A0 (painy + (020°)w),)

< MN (2.141)

where the last line follows from Proposition 2.5.2. Since ! — 0 as y — oo,

we see that for € > 0 arbitrarily small we may choose y, such that

sup ’)\91 () + (0*6°)@y,) | < e'N?

yE[yo,oo)

for small X\. Finally, since #' is uniformly bounded, Proposition 2.5.2 also
readily implies that there is a constant M, such that

/\2

(00120, | < Mo)?

for small X\. Again, since §* — 0, we for any € > 0, we may choose 7, such

that
)\2
sup ‘—(001)211721 < &N
velyo,o0) | 2
for A small. This completes the proof. ]

Proposition 2.5.6. We have ' = w'

Proof. Since W < w?, we know that w! < w'. On the other hand, we will

show that for arbitrarily small € > 0, we have

sup < ¢ (2.142)
yelloo) A



for X sufficiently small. Corollary 2.5.4 then immediately implies that we have

1 1 1

W =w =w

As usual, we will obtain the bound (2.142) via a comparison argument. First,
note that for sufficiently small )\, the zero-order coefficient of the operator
L0 g negative; in other words, if My > 0 is a constant, then Léx’éAMo <0

for small A. Explicitly, we can compute that
L0 Ny = AYMy + U (" + Act)
where
A = =5 (1) [l + 30— o6+ 0 - (43
= —B+(1-p) [WO - %p(aeo)2 - CO]
\2
FAL= ) |01 u— o8 — ) = () oo’
Recalling that
I (%) 1p—2p§_z = —% (—5+ (1-p) [MHO — %p(aeo)QD >0

we conclude that

2
A = =) [N - ) = o] 218

From Lemma 2.5.5, there is a constant M such that
|Lé,éwA| < M}\Q
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As a result, for arbitrarily small ¢y > 0, there is a constant C' > 0 such that
L0 (A — o)) = L9 + Adegh > —MA2 + Adegh > CA (2.144)

for A small. for some C" > 0 and A small. Now, the boundary conditions for

w» and @* may be written as

wy(1) = %wm) (2.145)
0y = APy

Recalling (2.127) and (2.130), we see that for any € > 0, we have

1)~ @) = ) —aro) < o

for A small. Now let f(y) = ey~? for ¢ > 0. It is easy to see that we can

choose €; sufficiently small that
1L (N f) = U + )| < CA
for X\ sufficiently small. Therefore, we have
LOP (@ — A= Af) > 0

(@ — oA — Af), (1) > @) (1) (2.146)

lim @ — @ —eA—Af < 0

Y—00

for X\ sufficiently small. We now make a standard comparison argument. Sup-

pose for contradiction that there is a point g such that
(™ — 0 — egh — Af)(g) >0
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By (2.146), we may assume that § is a global maximum of @* — w* — eg\ — A f
with § > 1. We must then have

(0% — eod — Af)y(§) =

9)
(2.147)
(’JJ}‘ — €A — )\f)yy(g) < yy(ﬁ)
On the other hand, we have

0= L0 g) < £

- €0A — )\f)(ﬁ)

a contradiction, since at y we have

(2.148)

LO (3 — eoh — Af) — L7

Ao(’LZ)/\ — 60/\ — )\f - ZZ))\)
1 N
+§(0'2€>\)2<1I1)\ - 60)\ - )\f - @A)yy
<0

(2.149)
where the last line of (2.149) follows from (2.147). We therefore conclude that

(™ — ™ — oA — Af)(H) <0
for A sufficiently small. Since |f| < €, we have

ot — ? <ot
N > € T€1
for small A, so that (2.142) holds.

Proposition 2.5.7. We have

w > —o0

liminfw? > 0
Yy—00
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Proof. The proof closely follows that of Proposition 2.5.6. We show that there

is a constant M such that

sup @t — it < MA? (2.150)

y€e[l,00)
It then follows from Proposition 2.5.3 that @? > —oco. Once again, we obtain
2.150 by a comparison argument. From Lemma 2.5.5, there is a constant M
such that
1L < M2

Arguing as in Proposition 2.5.3, we may choose M, such that
1L — MoA2| < ON2

for some C' > 0 and A sufficiently small. We may write the boundary conditions

A A

for @, @ as
wy (1) = %wm)

- % (wo(l) Fwl(1) + }3&>
Wy (1) = %m(n

— % (w°(1) + M (1) + R*)

where R*, R* are numbers with

R R
im = im =0

So for arbitrarily small € > 0, we have
@) (1) — ;) (1)] < eN? (2.151)
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for small \.

Now set f(y) = K1y~ 7 for K; chosen so that
1L (A2f)] < Ko\

As in the proof of Proposition 2.5.6, it is easy to show that such a choice of

K is possible. Then we have

L0 (@ — KgA2 — A%f) > 0
(0 — KoA? — A2f), (1) > @) (1) (2.152)

lim @ — @t — KgA\2 = A2f < 0

Y—r00
We may then make a comparison argument identical to that of Proposition

2.5.6 to conclude that
QI})‘ _ w)\

22
This completes the proof that w? > —oo. To see that

<Ko+ f. (2.153)

lim inf @*(y) > 0

yHOO
we adapt the arguments of Proposition 2.4.7 to our setting. The differences

are as follows;

1. We check that

using similar arguments to those applied to show
lim inf Q;A > —00

A—0

in Proposition 2.4.7.
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2. We apply the comparison argument given above on the interval [y, 0o)

for y, — oco. We use the fact (proven in Lemma 2.5.5) that

LOA)‘,@ ~\
lim limsup sup | ] =0

Y A50 [ooo) A
to show that if we work on the interval [y, 00), the Ky of equation (2.153)
can be chosen arbitrarily small for large y,. This is analogous to the use

of Lemma 2.4.5 in Proposition 2.4.7. Since we have shown that

lim inf @2 > 0,

Yy—00

we then obtain

lim inf @? > 0

Y—>00
as a result.
O
Theorem 2.5.8. We have
/IIJZ — w2
As a result,
du? 1
- — w
dX |\_o
RINE _ 2
dX? |, _,

In other words, the payoff of the approximately optimal strategies (é’\,é’\) at

fee level X matches the value function up to second order in .
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Proof. : From the reasoning of Remark 2.5.1, it will suffice to show that @? is
a viscosity supersolution of the second-order corrector equation. Let ¢ be a C?
function such that @? — ¢ has a strict local minimum at yy. Choose A\ — 0,
points y, — Yo and functions

U2 0 ) 4 e (01(0) — () + 2 (000) — 9(w)

touching w™ below at y, just as we did in Proposition 2.4.8. First suppose

we have

L () <0

for infinitely many k. We can repeat the arguments of Proposition 2.4.8 to

show that

LRy 1

Therefore, to verify the interior supersolution property of the second-order

corrector equation, it will suffice to show that

L7k () — L2584 (o)

lim sup 5 <0 (2.155)
k—o00 )\k
Make the notation
KF 2 LR () — L0 R (y) (2.156)

and note that
kEo= U(VYF- 1) — vk (M)
where as usual all functions are implicitly evaluated at y,, and
v (g) = U(g) — 9(Ve*- 1)
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and note that v* has a maximum of U(Vy* - 1) at I(Ve* - 1) (recall that

I = (U')~!). Therefore, by a Taylor expansion, we have
1 A
W = LAY (Vi 1 o

where ¢F is some number between V¥ - 1 and é*. As a result, we will be

done with the interior supersolution if we can show that

VYR 1 =M
lim — 0 (2.157)
so that
. Rk
a5z =0

To verify (2.157), observe that
HVOH 1) = T+ T'@d)(T0F 1~ ul) + L1 (T -1~ ul)?
2
- + I’(wg) ((1 — p)(w)\k — wo) — (1 — yk)()\kw; + %qﬁy))
1

1€ (VEh -1 —wl)? (2.158)

for some £* between w? and V¢* - 1. On the other hand, using the definition

of ¢!, we have
M= NI (W?) (1= p)w' — (1= yp)w,) (2.159)

So we have

[I(Vy* - 1) — |

. . . o1
T = > v
= 0, (2.160)
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where the second line follows from Proposition 2.5.6 (it is easy to check that the
second-order remainder terms of (2.158) make no contribution). We conclude

that (2.157), and hence (2.155), holds.

If y, = 1 for infinitely many k, we may argue as in Proposition 2.4.8,

incorporating the result of Proposition 2.5.6 as needed.
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Chapter 3

Numerics

The paper [16] gives numerical results for the investment/consumption
problem with high-water mark fee. Specifically, the authors numerically solve
the HJB equation for the value function for fized A\, then use the results to
describe the optimal investment/consumption proportions, as well as the cer-
tainty equivalent wealth and the certainty equivalent excess return (which we

will define below). In this section we will

1. compare these “exact” numerical approximations of the optimal strategy

with our closed form, approximately optimal strategies.

2. numerically solve for ©*, the payoff of the approximately optimal strat-
egy, and compare it to the “exact” numerical solution of [16] for v* (recall

we showed in Chapter 2 that v* and 9 are equal up to second order).

Notation. Throughout this chapter, we will use the notation developed in

Chapter 2.
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3.1 Certainty equivalent analysis

The values of the function v*

are given in abstract units of utility, so it is
difficult interpret the impact of fees by examining v* itself. Instead we consider
the zero fee certainty equivalent wealth and zero fee certainty equivalent excess
return. The zero fee certainty equivalent wealth is the quantity & such that

the investor would be indifferent between initial wealth £ when paying no fees

and initial state (z,n) when paying high-water mark fee A. Note that since

Pa) = (O
v Mx,n) = 2'"Po(1,n/x)

it will suffice to take y = n/x and consider Z(y) such that the investor is in-

different between initial wealth Z(y) and paying no fees and initial wealth 1

when paying high watermark fee A with initial high watermark y; the certainty

equivalent for initial state (x,n) is then equal to z - &(n/z). We will there-

fore use the one-dimensional notation of Chapter 2 as convenient. Equating
v2(Z(y)) and w*(y), we have

_1
iy) = (PO -puwily)] (3.1)
The zero fee certainty equivalent excess return fi(y) is defined similarly.

Let w%" be the Merton value function with initial wealth 1, for the modified
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excess return fi. In other words,

0,i\ —
Wi ()P
IL—p
0.i B I—p IaQ

The certainty equivalent excess rate of return fi(y) is a solution to the equation
wWOAlY) — wA(y)

From (3.2), we can write certainty equivalent rate of excess return (relative to

the original rate u) as
(y

iy) _ V200 (g—«l—p)ww)rif (3.3)

[t 1t

Analogously, we can define the certainty equivalent wealth Z(y) and rate of

return /i(y) for the payoff @* of the suboptimal strategy (6*,¢). Explicitly,

these are given by

i) = [P0 —pate)]™
py) _ N2 (B Y
) _ 2 (p (1 - pyi(y)) )

We present four graphs below:

e The optimal and approximately optimal investment proportions relative

to the Merton investment proportion 8*(y)/6° and 6*(y)/6° respectively.

e The optimal and approximately optimal consumption proportions rel-
ative to the Merton consumption proportion c*(y)/c® and ¢*(y)/c° re-

spectively.
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e The relative zero-fee certainty equivalent wealth levels Z(y) and Z(y).

e The relative zero-fee certainty equivalent excess return rates ji(y)/u and

(y)/

To obtain these graphs, we follow [16] in fixing o = 30% and choosing

the benchmark parameters

We then vary the parameters p, 5, 1 and A around the benchmark parameters.
Note that the choice to fix o = 30% is not restrictive, since the value function
of a model with some choice of 4 and o results in the same value function
as a model with scaled rate of return and standard deviation ku and ko (in
addition, the optimal investment proportion is scaled by 1/k).

Examining the resulting graphs, we have the following observations.

1. Most importantly, the certainty equivalent wealth and rate of return for
the payoffs 1* of the approximately optimal strategies (é)‘,é’\) closely
track those for the true value function w?, but are slightly lower. The
difference between the two does appear to decay faster than linearly as

A — 0, reflecting the fact that @* matches w* up to second order in \.

2. The approximately optimal strategies share some qualitative features
with the optimal strategies. In particular, both investment proportions

are greater than the Merton proportion when y is near 1. As noted
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Relative certainty equivalent wealth for optimal and approximately optimal strategies

Strategy type

Model Parameters.
[, beta, mu, lambda)

“ ™
\\ - S — 10, 5%, 10%, 20%
—— 3, 10%, 10%, 20%
. — 3, 5%, 10%, 10%

SN — 3, 8%, 10%, 20%

Certainty equivalent wealth
s

X —— 3, 5%, 10%, 40%
RN 3, 5%, 10%, 5%

N, = 3, 5%, 30%, 20%

0.50
Ratio of xton

Figure 3.1: Relative certainty equivalent zero-fee initial wealth for the payoffs
of the true optimal strategy (6*,¢*) and the approximately-optimal strategy
(62, ¢"). For each choice of model parameters, we take o = 30%.

in [16], once the investor is near the high-water mark, she is willing to
sacrifice a small amount of wealth to drive up the high-water mark by
over-investing in the short term; she then benefits from the increased

high-water mark in the future.

3. On the other hand, the approximately optimal investment and consump-
tion proportion are both typically greater than the optimal proportions.
In particular, the approximately optimal consumption strategy ¢é*(y) is
typically greater than the Merton proportion for large values of y, but

the optimal consumption strategy ¢*(y) is not.
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Relative certainty equivalent return for optimal and approximately optimal strategies

Strategy type

&

Model Parameters.
[, beta, mu, lambda)

— 10, 5%, 10%, 20%
—— 3, 10%, 10%, 20%
— 3, 5%, 10%, 10%

— 3, 5%, 10%, 20%

Certainty equivalent wealth

— 3, 5%, 10%, 40%
—— 3,5%, 0%, 5%

— 3, 5%, 30%, 20%

050
Ratio of xto n

Figure 3.2: Relative certainty equivalent zero-fee rate of return for the payoffs

of the true optimal strategy (6*,¢*) and the approximately-optimal strategy
(6%, ¢%).

Investment proportion relative to Merton Proportion

Strategy type
— Optimal
<< Approximate
P Model Parameters.
27 - 1 i, beta, mu, lambda)
" — 10,5%, 10%, 20%

—— 3, 10%, 10%, 20%

— 3, 5%, 10%, 10%

Investment proportion

— 3, 5%, 10%, 20%
— 3, 5%, 10%, 40%
—— 3,5%, 0%, 5%

— 3, 5%, 30%, 20%

050
Ratioofxton

Figure 3.3: Investment proportion relative to the Merton proportion for true
optimal strategy (6%, ¢) and the approximately-optimal strategy (6*,¢").
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Consumption proportion relative to Merton Proportion

Strategy type
— Optimal

<-== Approximate

Model parameters
p. beta, mu, lambda

— 10, 5%, 10%, 20%
—— 3, 10%, 10%, 20%
— 3, 5%, 10%, 10%

— 3, 5%, 10%, 20%

Consumplion proportion

— 3, 5%, 10%, 40%
—— 3,5%, 0%, 5%

— 3, 5%, 30%, 20%

Figure 3.4: Consumption proportion relative to the Merton consumption pro-

portion for the true optimal strategy (6*,¢*) and the approximately-optimal
strategy (6, ).
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Appendix 1

Appendix

1.1 Proof of Lemma 2.3.2

Lemma. Let (0;,¢) be an admissible strategqy for fee level X\ = 0 given in

proportions (though not necessarily in feedback form). Suppose that
0, — 6°| +|c — | < e dt x dP-almost surely.

Let X be the wealth process with controls given by (0;,¢) and initial wealth x
and with no high-watermark fees. There is a constant M depending on the
model parameters u, o, B,p such that for e > 0 sufficiently small, we have

CO _ G)l—pml—p

I—p

]E/ e PU (e, X)) dt > (& — Me)_l(
0

Proof. Let Y = U(X), and use € to denote the usual stochastic exponential.
We readily compute that

xlP
Vo= g el

t
(1 —p)/ a0, dW,
0

>

Ly
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where
t b
A= e |-p) [0 - e~ Botpau)
0 .
= exp {(1—]))/ MQO—CO—5(000)2CZU}
0

ew|0-p) [ (B~ 8%) — e & Do (32— (6°) a

We compute that
(L=p) (b = = S (06)?) =~ + 3

so that there exists a constant M > 0 depending only on the model parameters

such that

p(—c"+B—Me)t A, < e(—O+B+Me)t

Note that the boundedness conditions on @ imply that Z 2 E(L) is martingale.
Since Y is either non-negative or non-positive, we apply Fubini’s theorem to
see that:
00 0 0_ \l-p
E / e PlE, MY, dt > / e‘ﬁtxl_puE[AtZt]dt
0 0 l—p
/ e—ﬁtE[e(—co—i—ﬂ:FMe)tZt]dt
0

(CO _ E)lfpxlfp

= 1—p

_ (CO 6)l—pxl—p /oo 6(700$M6)tdt
1—-p 0

= (F Me)™ (2=

L—=p
for e sufficiently small. Here the — holds in F if (1 — p) > 0, and the + holds
if (1—p) < 0. 0
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1.2 Proof of Theorem 2.3.10, the comparison theorem

In this section we prove a general comparison principle that covers the
first- and second-order corrector equations, as well as some other cases arising

in the proofs of the boundedness of the relaxed semilimits.

Generalized corrector equation: We say a function w : [1,00) — R sat-
isfies the generalized corrector equation with inhomogeneity h : [1,00) — R,

boundary condition 7, and limit L if

Avw+h = 0

wy(1) = 1 (1.1)

liminfw(y) = L

Yy—00

We define the notions of viscosity sub- and supersolutions to the generalized
corrector equation as we did for the first-order corrector equation in Definitions
2.3.3 and 2.3.2. The statement of the comparison result, Theorem 2.3.10, is

reproduced below.

Theorem. Suppose there exists a smooth solution W to the generalized cor-
rector equation for some choice of h,n and L with h continuous. Fix L € R
and let W~ be an upper semicontinuous viscosity subsolution of the generalized
corrector equation with

limsup W™ (y) < L

Y—00

Then we have W= < W on [1,00). Similarly, if W is a lower semicontinuous
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viscosity supersolution of the first-order corrector equation with

liminf W*(y) > L

Y—00

then we have W < W,

Remark 1.2.1. Because we assume the existence of a smooth solution W of
the generalized corrector equation, the proof of the comparison principle is el-
ementary; in particular, it does not involve the “doubling argument” typically

used in viscosity comparison results.

Proof. Suppose for contradiction that W~ — W is positive at some point. Let

f(y) =y~ for ¢ > 0 small. Since

limsup W~ (y) < lim W(y),

Yy—00 y—o0

the function W~ — W must attain a finite, positive global maximum. Choose

e > 0 with
e < max W~ (y) — W(y).
y€[l,00)
Then the function W~ — W — ef must attain a positive global maximum at

some 7, and the test function
P(y) =Wef+ (W () - W(@) —ef (@)

then touches W™ strictly above at §. First suppose y > 1. Recall from Lemma

2.3.9 that Af <0, so we have

A¢(§) +h(G) < AW(G) + h(§) — (W (§) = W(G) — ef (7))

< 0 (1.2)
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contradicting the subsolution property of W~. Now suppose § = 1. The
boundary subsolution property of W~ implies that we must have either ¢ (1) >
n (impossible because W, (1) = n and f,(1) < 0) or A¢(1) +h(1) > 0 (impos-
sible for the same reasons as when § > 1). So we must have W~ —W —¢f <0
on [1,00), and taking e arbitrarily small, we conclude that we must have

W= <W. ]

1.3 Solution of the first-order corrector equation

The goal of this section is to find an explicit, smooth solution to the

first-order corrector equation, proving Proposition 2.3.11.

Lemma 1.3.1. For a function f: [1,00) — R, define the operator A* by

(Af) () = ay®f" () + (y — D (v) — f(v) (1.3)

Then A*f = 0 has the general solution:

s =at-v+a(@-0r (5o ) e e ) )

a’ oy

HereT'(s,y) denotes the upper incomplete gamma function and the usual gamma

function:
[(s,y) = / t e tdt
y

The solution of Lemma 1.3.1 was obtained using Mathematica, and
can easily be checked by hand. To prove Proposition 2.3.11, we now need
only choose the constants ¢, ¢y of (1.4) so that the boundary conditions and

limiting behavior of the first-order corrector equation are satisfied.
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Proof. (of Proposition 2.3.11) We begin with a solution W of the general
form of (1.4):

1 1 =1
W(y) =aly—1)+c <(y - r (E’ a—y) + (Oéy)l‘ieay)
In order for W to satisfy the limiting behavior
lim W(y) =0
Y—00
we expect that we should have ¢; = —CT'(1/a) and ¢y = C, for some constant

C. We therefore set

W(y) = C ((y — ) {r (é aiy) T (é)} + (ay)l—ieo?y) s

First we check that we indeed have W (y) — 0 as y — oo. We consider two

cases. If o < 1, then clearly (ay)l_ie_a% — 0 as y — oo. Also,

11 1 el
o[ (L) e ()] = oon [Froe
a oy a 0
1]
> —(y—1) |ata 1.6
> —(y—1) |at7] (1.6)
= ey -y =
so we conclude that W (y) — 0 as y — oo. In the case that o = 1, we have
11 1 v
ooy o 0

= —(y-1—e)

=

Note that
lim (y — 1)(1 — e v) = 1,

Y—00
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so that
Wy = C [—(y - 1)(1 - e_%) + e_%] — 0 as y — oo.
Now suppose a > 1. As in (1.6), we have the lower bound

=1 {F (i aiy> -T (é)} > ol (y -y =

On the other hand,

=1 {F G aiy) - (é)} = —(y- 1)/0;yti—1e—tdt

< —(y—1)e [até]o“y (1.7)

As a result,

W) < a5 (= 1y~s —y' v a |+ |y = Dy vem —y'~me 7))

Another straightforward application of I’'Hopital’s rule shows that both terms

on the right hand side go to 0 as y — oo.

It remains to show that W, (1) # 0 if C' # 0, so that we may choose
C such that W satisfies the boundary condition of the first-order corrector

equation. If o = 1, we can compute directly that

W,(1)/C=1+2""<0
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Now suppose that oo # 1. We compute that

1

wW,(1)/C = —/atiletdtmliei
0

where the bound is the same used in (1.7). O

1

Recall from Theorem 2.3.12 that we then have w! = w! = w'

, and

w! is equal to the W of Proposition 2.3.11. The following lemma concerning

the decay of w! will be used to exhibit a smooth solution of the second-order

corrector equation.

Lemma 1.3.2. Fiz e > 0. Let g be as in (2.107). Then the limits

lim y“w'(y), Jim y*q(y) (1.8)

Y—00

are well-defined, and are finite exactly when ¢ < 1/a and nonzero exactly when

e=1/a.
Proof. Fix € > 0. We’ll show that

lim (y — 1)w'(y)

Yy—00

is finite exactly when € < 1/a. Now, as a consequence of Theorem 2.3.12 and

Proposition 2.3.11, we have

S (R (o Y ) e
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It will suffice to show the limit

1
lim (y — 1) Rt/ )
y—o0 (y—1)
well-defined and is finite exactly when € < 1/a. We have
1-2 _o%y 1
lim (y — 1) (u - y_clveay> =0 (1.9)
Y—00

Therefore, it is enough to show the limit

11 1 )
it 0 (|1 (3oy) = ()] i)
y—00 a’ oy o

is well-defined and is finite exactly when ¢ < 1/a. Applying 'Hopital’s rule,

we instead consider

Jim (y - 1)2+6% <[P (é O%y) -T (é)} + (ay)—ée—iy) (1.10)

Computing derivatives, we have

) = lim (y — “la 'y~ _é—l—oz_l_é 25 _ oyl e_aiy
(1.10) lim (y — 1)** (a7 'y} y y
Y—r00
U G

which is well-defined, is finite exactly when ¢ < 1/a, and is equal to 0 if

e<1/a.
To see that the limit
: 2e
lim y 9(y)

is well-defined and finite exactly when ¢ < 1/«, note that ¢ is linear combina-

tion of two-fold products of w', yw, and y*w,, — that is, of (w')?, w'yw}, w'y*wy,, . . ..

In light of the relation

ayw,, + (y — w, —w' =0
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coming from the first-order corrector equation, it will suffice to show that the
limit

L = lim y'"*w, (y)

Yy—0o0

is well-defined and is finite exactly when e < 1/a. Equivalently, we prove

is well-defined and is finite exactly when ¢ < 1/, where h(y) = dy“w*(y) +

y”fw;(y). First we claim that L is well-defined. If not, then there exist
yr — oo such that h has a local maximum or minimum at y; and the h(yy)

are bounded away from 0. Then we have

yrhy(yr) = ey w' (yp) + (1 + e+ 8)yw, (k) + yi wy, (Yr)
=0

Since A%w! = 0, we have

0= ayrhy(ys) = ayrhy(ye) — ypAw' (yr)
= (ade+ Dypw' (ye) + (L + €+ 8) — 1)y ew, (ye)
Yy (Ur)-
Choosing ¢ so that a(14+€+6)—1 # 0 and recalling that y°w!(y) — 0 asy — oo,
1+

we conclude that y, w;(yk) — 0 as k — o0, a contradiction. Therefore, the

limits L and L' are well-defined. By I’Hopital’s rule, we therefore have

lim y“w' = lim —eyHew;.
Yy—00 Yy—00

In particular, L and L’ are finite (resp. equal to 0) exactly when lim,_,., yew;

is finite (resp. equal to 0). This completes the proof. ]
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1.4 Solution of the second-order corrector equation

We now give the proof of Proposition 2.4.11, which we reproduce below.

Proposition. There is a smooth solution W : [1,00) — R of the second-order

corrector equation

AW +g = 0 on (1,00)

has a smooth solution.

Proof. Suppose without loss of generality that ¢® = 1 and set a = 3(c6")2.
It will suffice to exhibit a smooth solution f to the inhomogeneous equation
A%f 4+ g = 0 with the appropriate limiting behavior; we may then take W =
f + Cow' where Cy = W Suppose that f(y) = w'(y)v(y). Applying

A, we must have:
ay*w'ny, + 2ay*w, + (y — Dw')n = —g (1.11)

where 77 = v,. Solving formally, we guess that

n(y) = _efwdy/efwdyﬂdy_

ayw!
where

(20w, + (y — Dw')
ay?w!

Y o=
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We therefore try the solution

= - — J{ ¥(s)ds > I3 W (u)du 9(s)
v(y) /y e (/t e —&82w1(5>d3 dt.

First we check that the inner integral is finite. Observe that
w; 1Yy—1

v =2t ()%

w al vy

d 1Yy—1
= 2— log(—w' -
dy o8 wH(a) y?

d 1
< 2% log(—uw') + —
< 2y og( w>+ay

We therefore have

plivdn < 2log(—w! (s))~2log(—w! (1)) + L log(s)

(s63)

_1
KDS a

IN

IA

IN

(1.12)

(1.13)

(1.14)

for some large constant Ky, by Lemma 1.3.2. So to bound the inner integral

of (1.12), we note that

r

(1.15)

where (1.15) follows from Lemma 1.3.2 after possibly enlarging the constant

K. To see that v is finite and

lim |w'(y)v(y)| =0,

Y—00
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first note that, by similar arguments to those of (1.14), we have also have the

reverse bound

e~ i w(w)du < Koti
after again possibly enlarging K. Therefore, we have
wl(y)/ tit—l—idt‘
y

Kglw' (y)y =

w'(y)v(y)| < K§

IN

< Kgy=
where the last line Lemma 1.3.2, again after possibly enlarging K. By con-

struction, f = w'v is C? and satisfies A“f + g = 0, which completes the

proof. ]

Proposition 2.4.11, combined with the general comparison result The-
orem 1.2, allows us to conclude that there is a well-defined second-derivative

2 2

w* = w = w?

2

. Moreover, w* is equal to the W of the proof of Proposition

2.4.11.

1.5 Proof of Proposition 2.5.1

The goal of this section is to show that the payoffs w* and w* of the
suboptimal strategies (6%, %) and (é’\, &) are smooth solutions of appropriate
PDEs and satisfy certain growth conditions. We will only prove the results
concerning %, since the analogous results for @* can be obtained by simpler
versions of the same arguments. To begin with, we recall the following result

on admissibility of feedback strategies (see Propositions 5.2 and 5.3 of [16]).
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Proposition 1.5.1. Let 0 and ¢ be two functions on [1,00) with the property
that

O(z,n) = z6(x,n)

y(xz,n) = xc(x,n)

are globally Lipschitz functions on D. Then the feedback strategy (©(x,n),y(x,n))
given in dollar amounts gives rise to an admissible strategy for any initial con-
dition (x,n) € D. Equivalently, the feedback proportions (6(x,n),c(xz,n)) give
rise to an admissible strategy for any (x,n) € D.

Lemma 1.5.2. The feedback proportions (0*(x,n),é(z,n)) give rise to an

admissible strategy for any initial condition (x,n) € D .

Proof. By Proposition 1.5.1, it will suffice to show that the functions

O(z,n) = 26*(z,n)

v(z,n) = xéMz,n)

are globally Lipschitz functions on D. Recalling the expressions for #' and c!

of (2.106), we have

P x,n) = 6°+ N0 (y)
Ma,n) = A+t (y)
where y = n/x. Therefore,

Ou(z,m) = 0"+ X(0'(y) —y0' ()

On(z,n) = N} (1.16)

Y
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and similarly for 7. As a result, it is enough to show that y6,(y) and yc, (y) are
bounded on [1, 00). Recall from Corollary 2.3.4 that w!(y), yw;(y), and yzw;y(y)

are bounded. Taking derivatives with respect to y of the equation Aw! = 0,

1

we see that y2w?, —is bounded as well. We may then differentiate the explicit

yyy
expressions
o’ (wds)?
1 0y/, 1 1
c = I'(w)(w, +w,)
to conclude that y6, and yc, are bounded as well. O

Lemma 1.5.3. For A sufficiently small, we have:

Ma,n) > —o0, n>x>0
A _ 0
nll_)I{)lOU (x,n) = v (z)

Proof. Recall from Remark 2.4.2 that 6! and ¢! are bounded. We repeat the
arguments of Proposition 2.3.3. Let ()A(’\'Z,N’\’Z) be the state process deter-
mined by the feedback proportions (#*, ") and the initial condition z = (z, n).
We apply the bounds of Remark 2.3.2 to see that

n Xo,z

t _rxANz ATAz T A
<exp[f0 e(Xa®, Ny )du]Ht>

X >

124



where (X 0z N 0.2) denotes the state process determined by the controls

ik A WVAZ ATAZ
(0,,2) = (0} (XN, N49), 6N (X2, W)

at fee level 0. Therefore,

0,
e X0*

(exp fo crdul HZ>

d(x,n) > E / e U dt (1.17)
0

Let €g > 0. Since 0! and ¢! are bounded, we have
0} — 0% + |2} — ] < e

for all ¢, for A sufficiently small. We now apply a Holder argument to check
that the right-hand side of (1.17) is finite. Pick ¢ > 1, and let ¢’ be its Holder
conjugate. For ¢ sufficiently close to 1 and § > 0 sufficiently small, we can
apply Lemma 2.3.2 and arguments similar to the proof of Proposition 2.3.3 to

check that for all A\ sufficiently small, we have
B[ e MU 1t < oa) - (3.5, ,0,0,0) > —o
0

where " is the value function of the Merton optimal investment/consumption
problem with modified utility function V(x) = sign(1—p)|U(x)|? and modified
discount factor 5(1 —0)q’, and we have ¢ — 0 as A — 0. Note that this bound

(along with the choice of sufficiently small \) is independent of n for fixed x.

It remains to show that for A\ sufficiently small, the quantity

00
A/\,z é ]E/ efﬁéq/t
0

-2
dt

U (efot a?mﬁ;)
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is finite (in fact, we will show A*# is uniformly bounded for all n > z, for A
sufficiently small). Recalling that |¢* — c°| < ¢ for A small, we argue as in the

proof of Proposition 2.3.3 to obtain the bound
H? <n™' sup [(1+ (< + €)sX%* v n] (1.18)
0<s<t

Now recalling the boundedness of #* and &', we have

(1+ (< +eNtX)™ = z&(L),
t
L = / aydu + bydW,
0
where a* and b* are predictable processes uniformly bounded in (¢,w) for small

A. Then for p = —(1 — p)¢g’\/2 we have

—Aq’ 2p

‘(1 —p)U <€f5 Eide)

o ftEAdu Tz
__‘e 0 “u Eﬂ

<nle o gup v z€(L))*
0<s<t

< Pt gup (1 (2/n) € (L)?]
0<s<t

where @ is a large constant independent of p and n, and L, = p fot b, dW,, for

some uniformly bounded, predictable process b. By Doob’s maximal inequality,

E[sup s(mz] < 4E [E(D)]

0<s<t

< 4E [e<|p|+p2>at}

after possibly enlarging a. We conclude that there exists a large constant K
independent of n and A such that, for A (and hence p) sufficiently small, we

have

’(1 U <ef5 éﬁdUﬁ;> < Kealel+o (1.19)
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Therefore, for A sufficiently small that a(|p| + p?) < —Bd¢’, we have

K
0< AN <
- ~ Béq —a(lpl + p?)

We conclude that 9*(z,n) is uniformly bounded below for all n > z.

We now show

lim o*(x,n) = v%(x) (1.20)

n—oo
We’'ll assume without loss of generality that x = 1 and fix A small. Now the

above arguments can be repeated to show that the family
Xt = {U(GX]) - 2= (1,n),n € [1,00)}

is bounded in L1*#([0, 00) x 2, Be~Ptdt x dP) for k sufficiently small. To see this,
note that we have already shown X* is bounded in L1 ([0, 00) x 2, Be=Pdt x dPP);
this is just another way of saying that @*(1,n) is uniformly bounded above (by
v%(1)) and below (as a result of the arguments given above). For  sufficiently
small, we may simply repeat the same arguments after possibly modifying
q'. Since X* is bounded in L**([0,00) x Q, Be Pldt x dP), it is uniformly

integrable on ([0, 00) x Q, Be=Ptdt x dP). We now claim that
U(E (M, B0 - U(@X)

in measure (with respect to the product measure Se ?!dt x dP) as n — oo.
Since the family X?* is uniformly integrable, this will imply (1.20). Because

¢ — ¢ uniformly, it will suffice to show that
| X7 = X% =0
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in measure as n — oo with respect to the product measure Be~?*dt x dP. In
fact, it will be enough to show that there is an increasing sequence of stopping
times 7, — 0o such that

XOZ

|X/\Tk /\Tkl 0

in measure on [0, 7;) x 2 as n — oo. Pick any sequence n, — oo. Let

7 = inf{t : X} = /ng)

(1 50,1,
(L) — XO0(Lm) a9 no fees have been

Of course, before time 73, we have X
incurred. Note also that if { > k, then X" = X" before time ;.. We

have 7, — 00 as k — oo, and upto time 73, we have

Nt)\,(l,nk)/Xt/\,(l,nk) Z \/n_k

Recalling that

gl — T ol _
ggoe (x,n) = nh_}n(gloc (x,n) =0,

we have

1 nk) N}\,(l,nk)

r A, (1, N
|0)\( /\7'1 nk) N/\7(')1 nk ) 90‘ + ‘ )\( /\Tk ATk ) - CO‘ < €k

k
where €, — 0. It is therefore easy to see that for any fixed kg, we have
X5 — X80 = 0 as k — oo
in measure on [0, 7%,) X € (the strategies which determine X (/\Tk &) converge to
uniformly to the Merton proportions on [0, 7,) X  as k — oo, and fees are

not present in the dynamics of xQ /\m ) which completes the proof.
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In order to show that w?” is the solution of the appropriate PDE, we
will need the following analogue of the dynamic programming principle; since
the controls corresponding to @ are in feedback form, a rigorous proof is

tractable, and amounts to the strong Markov property for reflected diffusions.

Proposition 1.5.4. Let (X, N) = (X2, N*?) be the state process correspond-
ing to using the feedback control (8*,¢) with initial condition z = (z,n) and

fee level \. SetY = N/X', and define
t
7 = / PN Koy M) Ko ) + P X P9 (V) (1.21)
0
Then Z% is a local martingale.

Proof. We’ve seen that for any initial condition z, the equation defining (X, N)
has a pathwise unique strong solution (this follows from Lemma 1.5.2). Be-
cause the control (QA’\,é’\) is in feedback form, we may adapt the arguments
of Stroock and Varadhan [25] to see that a corresponding martingale problem
for the reflected diffusion (X , N ) is well-posed, and that as a result, a strong
Markov property holds for (X, N). It then follows by standard arguments that
Z* is a local martingale. Note that the arguments of [25] do not deal with

reflection and therefore cannot be applied directly.

]

Lemma 1.5.5. Fiz a € [1,00). For b > a arbitrarily large, there is a C?
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solution s** to the scale equation
’Cé/\,é* PRI
s(a) = 0 (a) (1.22)

s (b) = wM(b).

Proof. Let L be the homogeneous version of the operator Lék’ék; obtained from
L0 by subtracting an appropriate constant. The coefficients of both £ and
£ are continuous, From general results on second-order, linear ODEs, for

any b there is a solution s’ to

L7 =0 on [a, b]

(1.23)
s'(a) = wM(a)
Let h be a solution of the initial value problem
Lh* = 0on [a,b]
h(a) = 0 (1.24)

hy(a) = 7

for some n # 0. Note that there are b arbitrarily large such that h(b) # 0;
if not, then there exists a b such that h(b) = h,(b) = 0, and uniqueness for

problem

Lh = 0on |a,b]



implies that h = 0 on [a, b], contradicting h,(a) = 0. For those b at which
h(b) # 0, we may therefore take

¥ = b + K
for an appropriate choice of constant K. ]

Lemma 1.5.6. Let X, N,Y be as in Proposition 1.5.4. Picka,b € [1,00) such
that n/x € [a,b] and there exists s** as in Lemma 1.5.5. Define the stopping
time

7 = inf{t > 0|Y; ¢ [a, b]}.

Then T is almost-surely finite, and the process
t A A A A A
Sz = / e U (N Xy, Ny Xo)du + e PLX [ P50 (V) (1.25)
0
1 a bounded martingale up to time 7.

Proof. Recall that fees are paid exactly when Y =1. Therefore, no fees have

been incurred up to time 7, and the state process has the form

X = z&
n

=
I
| ~
o\é Prad
O
e
£
3>
S~—
:i><j>
IS
IS

where
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Applying [t6’s Lemma, we then have

. 1 1 1
Wy = dN,+ N, (— AtdetJr Z d(X)t>

3
t
= —NXy, N)dt + Yi(—dL, + d(I),)

A A 1 Ay A A SO
= (Vi — DMK, Ndt + Y, (ﬁgk(xt,jvty — pbM (X, Nt)) dt
—}/};UéA<Xt,Nt)th

Recall that ¢* — ® and 6* — 6° uniformly as A — 0. Therefore, we may take

A sufficiently small that Y admits a decomposition

dY; = a}dt + b)dW, (1.26)

up to time 7, where a*, b* are uniformly bounded, predictable, pathwise con-
tinuous processes, and b* is uniformly bounded away from 0. Applying the
Girsanov theorem, there is a measure Q equivalent to P with respect to which
Y is a local martingale up to time 7. Since the volatility b* of Y is bounded
uniformly away from 0 before time 7, it follows that ¥ exits the interval [a, b]
in finite time Q-almost surely (hence P-almost surely). In other words, 7 is
P-almost surely finite.

To see that S* is a local martingale up to time 7, simply apply 1to’s
Lemma to obtain a semi-martingale decomposition of S%; the resulting drift
term is exactly X1~P ([JéA’éA s‘”’) (Yirr)dt, and by definition £ %0 = 0. To
see that S7 is uniformly integrable up to time 7, note that before time 7, we

have 0 < X < N < n. As a result,

tAT
ISin.] < ‘/ e U (M Xy, Nu) X)) du +‘ne_ﬁ(t”)3“7b(Y}/\T)‘
0
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Since s*? is bounded, the term ’ne‘ﬂ(“\ﬂ s“’b(fftm)‘ is uniformly bounded over
all t. On the other hand, the term | fJAT e U (N Xy, Nu)X,))dul is increasing

in ¢, and from the definition of w, we have
0< E‘ / e PU (N Xy, No) X)) du| < 27PN (1, y).
0
We conclude that S7, . is bounded, and in particular a true martingale. ]

Proposition 1.5.7. With s** as in Lemma 1.5.5, we have

UA)A — Sa,b

on [a,b]. In particular, ©* is C* on [1,00) and

L7 =0 on [1,00).

Proof. Fixy € (a,b) andset z = (1,y). Let X, N.,Y and Z be as in Proposition
1.5.4, and 7,5 as in Lemma 1.5.6. Note that S§ = s**(y) and Z¢ = w*(y).

~ ~

Since 7 is almost surely finite, P[Y; = a] +P[Y; = b] = 1. From Lemma 1.5.6,
we also know that S* is a uniformly integrable martingale up to time 7, so we
conclude that
s"*(y) =E[S§] = E[S]]
- E { / e U (NX,, Nu)f(u)du] (1.27)
0
+Sa,b(a)E |:1[Y/-r:a]X71-7pi| + Sa,b(b)E |:1[YT:b]X7%7pi|

On the other hand, the local martingale Z* is uniformly integrable martin-

gale up to time 7; to see this, one can use an argument identical to that of
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Proposition 1.5.6. Therefore, we have

wMy) =E[Z5] = E[Z]
_E [ / P (X, Nu)f(u)du} (1.28)
0
i (@)E [1[3?7:@])2;—?} M (D)E [1[&:@)271—1’}
From (1.27) and (1.28), we conclude that w*(y) = s**(y) O

A

Proposition 1.5.8. The function v is a C?solution of

LOP 9 = 0 on [1,00)
Wy (1) — Ay(1) = 0 (1.29)
lim @*(y) = o

Proof. By Proposition 1.5.7 and Lemma 1.5.3, it remains only to check the

second line of (1.29). Note that since we've shown @ is C? on [1,00) in

A

, 1s well-defined and continuous at y = 1.

Proposition 1.5.7, we already know w
Set z = (1,1) and define X, N,Y, and Z as in Proposition 1.5.4. Suppose for
contradiction that

Wy (1) — A1) < 0

For some € > 0, define the stopping time
T=inf{t: YV >1+e€}.

From Proposition 1.5.4 and the arguments of Lemma 1.5.6, we see Z is a

bounded martingale up to time 7. On the other hand, applying It6’s lemma
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to X'~ (Y) and combining the results of Propositions 2.1.2 and 1.5.7, we
obtain a decomposition

Z, =7, + A, (1.30)

where Z, is a local martingale (and a bounded martingale up to time 7) and

dA, = e X} TP(w)(Y;) — Mid(Yr))dM,

140 — O

M, = max [/ 0N Xy, No) (pdu + odW,,)
0

0<s<t

The measure dM, is supported on the set of times {t: Y, = 1}, so that
dA; = e P X} 7P () (1) — Mdd(1))dM,.
Since 6* is bounded away from 0, it is easy to see that
inf{t > 0: M; >0} =0 P — almost surely.

As a result, we have A, < 0 almost surely, contradicting the martingale prop-

erty of 7 up to time 7 and the decomposition 1.30. O]

Lemma 1.5.9. We have
. ISUET 2 A\ .
yliglo Y, = yh_{(r)loy Wy, (y) =0

Proof. Recall that ' and ¢! are smooth and bounded with

lim c'(y) = lim 6'(y) = 0.

Y—00 Y—00
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As a result, we can rewrite the equation £ * = 0 as

a2(y)w2y + al(y)w;\ +a®(y)a* + bly) =0 (1.31)

where a’(y)/y’ has a finite, well-defined limit as y — oo for 4 = 0,1, 2, which

is nonzero for i = 2, and b(y) — 0.

First, we claim that the limit L = lim, , y10*(y) is well defined. If so, then

I’Hopital’s rule gives

AN
lim ©* = lim yw iy (y)
Y—r0o0 Y—r00 ’y
= lim (y) (y) + @)
y—)OO Y

so that L = 0. From (1.31), we immediately see

lim 72 w =0
Y—00

as well. To see that L is well-defined, set h(y) = d0* + yu?;\ — w? for some
constant 0. If L is not well-defined, then there must be infinitely many local
maxima and minima gy of h such that h(y) is bounded away from 0. We then

have
0 = hy(ye) = (1+ 8)dy (yr) + yry, i (1.32)
Combining this with equation (1.31), we see that

_a(y)(1+ ) ;j’“)m(yk) M) + o ()udy) +bu) =0 (139

We know that a®(yx)w*(yx) + b(yx) — 0 as k — oo. On the other hand, since
a*(yx)/y? has a finite, nonzero limit, we can choose ¢ so that the remaining

piece —a?(y)(1+4§) L= y(yk a' (Y)W, (yx) is bounded away from 0, contradicting
the fact that £ *w = 0. [
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