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Executive Summary

Seagrasses have been repeatedly demonstrated to be highly valuable components of

coastal systems. They have high rates of primary productivity and support a diverse

assemblage of consumers as well as rapidly cycling ecologically important elements such as

carbon, nitrogen, phosphorus and sulphur. The high primary productivity of seagrass systems

supports many commercially and recreationally important species. In addition, they also act

to modify the deposition of sediments, remove nutrients, attenuatewave energy and reduce

currents. In general, seagrass ecosystems are a cornerstone of healthy, productive bays and

estuaries.

During the last 20 years, seagrass communities throughout the world have

experienced decreased productivity and distribution. These declines have often been

attributed to decreased water transparency as a result of turbidity or shading by epiphytic

algae. Epiphytic shading is often an indication of nutrient enrichment caused by

anthropogenic inputs. Although both epiphytes and turbidity occur as natural phenomena,

human activities can exacerbate existing natural conditions with adverse effects on seagrass

communities.

The objectives of this study were (a) to review the existing literature and data

available on the effect of natural and anthropogenic factors on the underwater light

environment; (b) to examine the relationship between light and seagrass distribution and

productivity; and (c) to make recommendations on how to protect seagrass habitats in Texas

bays and estuaries. To meet these goals, we have examined the available literature,



Table 1. list of all submerged aquatic plant species (in italics) cited in the text. Species
are listed by family and include the author who first described each species (not shown in

italics).
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Seagrasses

Cymodoceaceae

Amphibolis antarctica (Labill.) Sonder ex Aschers.

Cymodocea nodosa (Ucria) Aschers.

Halodule wrightii Aschers.

Syringodium filiforme Kutzing

Hydrocharitaceae
Enhalus acoroides (Linnaeus f.) Royle

HalophUa decipiem Ostenfeld

Halophila engelmannii Aschers.

HalophUa johnsonii Eisman

HalophUa stipulaceae (Forsk.) Aschers.

Thalassia testudinum Banks ex Konig

Posidoniaceae

Posidonia angustifolia Cambridge et Kuo

Posidonia australis Hook. F.

Posidonia oceanica (L.) Delile

Posidonia sinuosa Cambridge et Kuo

Zosteraceae

Heterozostera tasmanica (Martens ex Aschers.) den Hartog
Phyllospadix scouleri Hooker

Phyllospadix torreyi S. Watson

Zostera angustifolia (Hornem.) Reichb.

Zostera marina L.

Zostera muelleri Irmisch ex Aschers.

Freshwater and Estuarine Plants

Hydrocharitaceae
Elodea canadensis Michx.

Vallisneria americana Michx.

Potamogetonaceae

Potamogeton pectinatus L.

Potamogeton perfoliatus L.

Ruppia maritima L.
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emphasizing the physiological response of seagrasses to light and temperature. By using

data and observations collected on a variety of species (Table 1) from around the world we

may be better able to define the light requirements of Texas seagrasses. A knowledge of

the minimum annual light requirements for seagrass growth is necessary to maintain the

current distribution of Texas species. This information will also be required in the

development of a management plan that permits the expansion and establishment of new

seagrass habitat.

Five species of seagrasses from three families comprise the submerged

vascular flora of the Texas bays and estuaries, encompassing some 209,738 acres (Onuf

1993). Most of these species have tropical or sub-tropical affinities and are near the

northern end of their distribution in Texas. One species, Ruppia maritima
,

is considered

cosmopolitan and occurs as far north as New Hampshire, while Halodule wrightii occurs as

far north as North Carolina. Most seagrasses are perennial; however, Ruppia has been

reported as both an annual and a perennial in some Texas estuaries. Although flowering

in Thalassia testidinum has been documented only once in Texas (Phillips et aL, 1981), all

five seagrass species are known to flower and set seed.

Lunar tides seldom exceed 15 cm in Texas bays and estuaries, and therefore

are heavily influenced by local meteorology. Meterological events (particularly winds and

storms) also control the turbidity of the bays along the Texas coast. However,

anthropogenic factors can also influence turbidity. Dredging activities can increase light

attenuation and prevent the plants from receiving their daily minimum light requirements

for growth and survival. In Texas, increased turbidity as a result of dredging and
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construction appears to be the largest threat to seagrasses. Presently, other anthropogenic

influences such as eutrophication, which results from increased nutrient loading, occurs only

in a few localized areas (i.e. portions of the Galveston Bay System and Copano Bay).

However, as the human population of Texas coastal zone increases, so does the threat of

eutrophication.

Several recent publications have proposed a novel method for assessing water quality

in estuarine systems (Batuik et al, 1992; Dennison et al, 1993). The basic premise of the

technique is that plants will not grow in areas where their habitat requirements (i.e. light,

nutrients etc.) are not adequatly met. Thus, if the minimum habitat requirements are

known, the parts of the system that are not meeting the minimum requirements can be

inferred using mapping techniques. Some aspects of this technique may be appropriate for

use in Texas systems, but many are not. This is a result of the management history of each

estuarine system; Chesapeake Bay is highly impacted, and the goals are to restore and

conserve the remaining resources. Texas systems, with some exceptions, are relatively

pristine and preservation of the existing seagrass habitats is the major goal.

In general, lower irradiance results in reduced density and biomass of seagrasses.

Laboratory and field studies show that seagrasses may also respond to a drop in irradiance

by altering their morphology. The minimum light requirements of seagrasses can be

quantified through measurement of the daily minimum number of hours of saturating

irradiance needed to meet their respiratory demands. The H
ml

value for some

seagrasses (i.e. Zostera marina) may approach 6 h to maintain a positive carbon balance;

however, the requirements for most Texas species have not been determined. In Texas,
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Halodule wrightii has recently been shown to have an H
sat

of 3to 5 h (Dunton, submitted).

A review of the literature suggests that most seagrass species, including those along the

Texas coast, require 10 to 20% of surface irradiance as an absolute minimum during most

of the year.

Although light is a critical factor controlling seagrass growth and distribution,

temperature is also important. A light level that is photosynthetically saturating (Ik) at low

temperatures may be the compensating irradiance (I
c
) at a higher temperatures. As a result

of seasonal variation in temperature, most seagrasses exhibit seasonal patterns with respect

to productivity, P vs. I parameters and organic composition. The temporal dynamics of

seagrasses are such that the winter appears to be a period of low physiological activity, while

the extent of photosynthetic activity in spring, summer and fall determine the long-term

success of a species. We recommend that human disturbance be kept to a minimum during

critical periods of seagrass growth, which is greatest during spring and early summer.
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CHAPTER 1; INTRODUCTION

The Texas seagrass flora

Seagrasses are flowering plants which re-invaded the marine environment. The

earliest fossils of seagrasses date from the Cretaceous - about 140 million years ago (den

Hartog, 1970). Unlike the algae, which are in the Kingdom Protista, seagrasses are vascular

plants that have xylem and phloem elements for the transport of water and photosynthate

(Pedersen and Sand-Jensen 1993, Barnabas and Araott 1987, Barnabas 1989,1991). These

plants also differ from algae in the degree of cellular differentiation and organization;

seagrasses have true roots, stems, and leaves. Algae do not possess these organs.

As marine angiosperms (flowering plants), seagrasses complete their life-history

underwater. They reproduce sexually by flowering and vegetatively by rhizome branching.

Rhizome branches, formed by the initiation of axillary meristems, may become

physiologically independent and create new plants. In plants, sexual reproduction occurs via

flowering and pollen exchange. To exchange pollen in the aquatic environment, plants have

evolved three strategies (Fig. 1). These include (Cox, 1988) the transport of pollen above

the water surface (category I), pollen transported on the water surface (category II), and

pollen transported beneath the water surface (category III). Category I pollen transport has

been reported for only one species of seagrass (Enhalus acoroides ); however, it is common

in freshwater submerged aquatics. Most seagrasses exhibit either category II or 111 pollen

transfer.

Seed germination occurs underwater and is influenced by both temperature and
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Figure 1. Schematic diagrams of category 2 (top panel) and 3 (bottom panel) hydrophilly.

Category 2 hydrophilly exemplified by Halodule pinifolia (top panel). A. Erection of another

at low tide; B. Another dehiscence and assembly of search vehicles; C. Search vehicles

floating on water surface with insert showing dark field silhouette; D. Pollination by collision

of search vehicles with filamentous stigmas; E. Close-up of filiforme pollen. Category 3

hydrophilly exemplified by Thalassia testudinum (bottom panel). A. Male flowers; B.

Mucilage string containing pollen; C. Underwater dispersal of mucilage strand; D. Female

flowers with rigid stigmas; E. Pollination by collision. From Cox 1988.
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salinity. The details of seed and germling anatomy have been described for Zostera marina

(Taylor 1957a,b) and Thalassia testudinum (Orpurt and Boral 1964). In the early

development of the seedling, seagrasses exhibit a single cotyledon ("seed leaf'). Thus

seagrasses are monocots which have been placed in the class liliopsida, subclass Alismatidae

(Cronquist 1981).

C J.G. Petersen and colleagues were the first researchers to realize the importance

of seagrass communities to coastal ecosystems (Petersen 1891,1918; as cited in den Hartog

1980). They suggested that seagrass production (8 million dry tons/year) was the basis of

the food web for all marine fauna (Petersen and Boysen-Jensen 1911, Petersen 1913,1915,

1918, Boysen-Jensen 1914; as cited in Rasmussen 1977). However, they underestimated the

importance of phytoplankton, as reflected in the absence of finfishery failure with the onset

of the wasting disease of the 1930’s (Rasmussen 1977). Much of the other early work on

seagrasses was related to taxonomy (Ascherson 1907, Hutchinson 1934, Markgraf 1936; as

cited in den Hartog 1970), while much of the physiological and ecological research has been

conducted since the late 1960’5.

There are about 48 species of seagrasses that occur between the Arctic and Antarctic

Circles (Phillips and Menez 1988). Many of these species have a circumglobal distribution

(e.g. Zostera marina
,

which occurs on both sides of the Atlantic and the Pacific; den Hartog

1970). Almost all seagrass species display continuous areas of distribution (Phillips and

Menez 1988). However, some species have disjunct distributions, which may be due to the

movement of the continents during the geological epochs (den Hartog 1970). Because of

the time scales involved, inferential data (i.e. geological data and fossil foramanifera
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associated with seagrasses) have been used to account for the present day distribution of

seagrasses (Phillips and Menez, 1988). Like many other organisms, the areas of highest

species diversity are tropical and subtropical environments (den Hartog 1970). There are

seven genera that are considered characteristic of tropical areas and five genera that are

considered temperate in character (Table 2). Although the Pacific coast of South America

and the Caribbean have relatively high species diversity, they are not as diverse at the Indo-

West Pacific. The seagrass flora of most areas of the world is well documented, except for

the Atlantic Coast of South America, which remains relatively unexplored (den Hartog 1970,

Phillips and Menez 1988).

Strictly speaking, there are four seagrasses (Thalassia testudinum
, Syringodium

filiforme,
Halodule wrightii and Halophila engelmanni) and one euryhaline aquatic plant,

Ruppia maritima
,

that occur along the Texas coast. Because R. maritima is found in

freshwater, neither den Hartog (1970) nor Phillips and Menez (1988) consider R maritima

a seagrass. However, Ruppia does grow and complete its life history in many of the

hypersaline bays and estuaries of Texas (Dunton 1990) and for the purpose of this review

we will include Ruppia with the seagrasses (Table 3; Figure 2). With the exception of

Ruppia,
the Texas seagrasses have tropical or subtropical affinities. Ruppia is cosmopolitan

and occurs as far North as New Hampshire (J. Kaldy, pers. obs.), while Halodule wrightii

occurs as far north as North Carolina. The seagrasses also tend to be perennial (Table 4);

although, Ruppia in Texas has been reported as a perennial (Pulich 1985) and as a annual

(Dunton 1990). Texas seagrasses, except Thalassia
,

exhibit category II pollenation; it is

unclear whether Ruppia exhibits category II or 111 pollen transfer.



Table 2. The affinities of the major seagrass species. Some of the species with tropical
affinities overlap into subtropical or warm areas. From den Hartog 1970.
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Tropical Genera Temperate Genera

Enhalus Halodule

Thalassia Heterozostera

Halophila Phyllospadix

Cymodocea Posidonia

Syringodium Zostera

Thalassodendron



Table 3. A listing of Texas seagrass species.
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Family and Species Common Name

Cymodoceaceae

Halodule wrightii Aschers.

Syringodium filiforme Kiitzing

Shoal grass

Manatee grass

Hydrocharitaceae

Halophila engelmanni Aschers.

Thalassia testudinum Banks ex Konig

Clover grass

Turtle grass

Potamogetonaceae

Ruppia maritima L. Widgeon grass
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Figure 2. Schematic drawings of the seagrass flora of the Texas coast. Modified from

Zieman 1989.
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Table 4. Some of the characteristics of Texas seagrasses.

Common name Pollen category Biogeographic affinity Longevity

Clover grass II tropical perennial
Manatee grass II tropical perennial
Shoal grass II subtrop-trop. perennial
Turtle grass m tropical perennial

Widgeon grass ii, in cosmopolitan annual/perennial



17

Most seagrasses, including Texas species, grow in protected bays and estuaries, where

the root and rhizome structure of the plants permits the penetration and colonization of soft

bottom substrate (i.e. sand and mud). However, there is at least one genus that inhabits the

rocky intertidal along the high energy coasts of the Pacific (i.e. Phyllospadix). The species

ofPhyllospadix have special adaptations, such as extensive hypodermal fibers and root hair

development, thickened rhizomes and small lacunae to colonize the crevices of rocks

(Cooper and Mcßoy, 1988). With the exception of Phyllospadix ,
most seagrasses require

sediment depths between 5 and 25 cm for adequate anchoring (Zieman 1972). Sediments

are classified as either terrigenous (i.e., derived from terrestrial sources) or carbonate.

Carbonate sediments are usually biogenic in origin (Scoffin 1970). Seagrasses also obtain

at least part of their inorganic nutrients from the sediments (Thursby and Harlin 1982; Short

and Mcßoy 1984).

Seagrasses colonize a relatively broad range of depths (Figure 3), depending upon

available light and substrate type as well as the physiological requirements of the species.

In the relatively clear waters ofthe Mediterranean Sea, Posidonia has been reported to grow

at depths of 50 m (Gessner 1961). However, Zostera marine does not grow below about 1.5

min the turbid waters of San Francisco Bay, (Zimmerman et al., 1991). Meanwhile, Ruppia

maritima along the Texas Coast has been reported growing at 0.3 m above mean low water

(C. Belaire, 1993, pers. comm). Thus, the depth distribution of a species is variable and

depends upon several factors.

Although neither Posidonia nor Zostera occur along the Texas coast, they serve as

examples to show the extreme range of depths that these plants are able to colonize.
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Figure 3, The reported depth limits of 31 marine angiosperm species. Bars represent the

range of values encountered, while the solid square represents the average value for each

species. Number in right column indiciates the number of estimates. From Duarte 1991.



Several authors have examined the depth distribution of Thalassia testudinum within the

Gulf of Mexico. Buesa (1974) examined the population and biological parameters of

Thalassia testudinum on the Cuban shelf. He found that Thalassia had a biomass of

approximately 200 g m'
2

to a depth of 1 m, while the lowest biomass, less than 50 g nr
2

,

occurred at 14 m depth (Figure 4). The depth distribution of other species varies

considerably. For example, Halophila decipiens is found to a depth of 25 m (Figure 4).

Buesa (1974) also suggested that Thalassia would not grow in areas where irradiance at the

seabed was less than 25% of surface irradiance. Vicente and Rivera (1982) examined the

depth limits of Thalassia growing in Puerto Rico and found a statistically significant positive

correlation between mean Secchi depth and the lower limits of Thalassia (see chapter 2).

Thus, they suggest that where the water is clearer (deeper secchi depth) the plants will

colonize at lower depths. However, they also suggest that herbivory may limit the depth

distribution of Thalassia. Dawes and Tomasko (1988) investigated the depth distribution

of Thalassia in Florida. They found that plants collected from the deep edge of the bed had

lower shoot density, greater leaf area, and greater above :below ground biomass than plants

collected from the shallow areas, suggesting that deep plants were more light stressed than

shallow plants.

It is generally accepted that light availability is the factor that controls the depth

distribution of seagrasses. For example, Buesa (1974) concluded that light energy and

temperature were the factors that control the depth distribution of Thalassia. Vincente and

Rivera (1982) also suggested that Thalassia was limited to areas where irradiance at the

plant depth was adequate. Iverson and Bittaker (1986) proposed that the depth

19
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Figure 4. The depth distribution of four seagrass species on the northwest coast of Cuba.

1 = Thalassia testudinum
,

2 = Syringodium filiforme,
3 = Halophila decipiens

,
4 = H.

engelmanni. From Buesa 1974.
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distribution of Thalassia was light limited. Orth and Moore (1988) suggested that species

zonation was a physiological response to the interaction of light and temperature.

Importance of seagrasses

We are interested in defining the light requirements of seagrasses because they are

an important component of estuarine and coastal ecosystems (Zieman 1982; Phillips 1984;

Thayer et al., 1984; Zieman and Zieman 1989). There is a large body of literature

documenting the beneficial qualities of seagrass beds. The three-dimensional habitat that

seagrass beds create is important to many species of fish and shellfish including

commercially important species (Figure 5). There were two studies during the 1970’s that

documented the importance of seagrass beds. Thayer et aL (1975) found that eelgrass beds

support numerous types of macrofauna and epifauna, which may consume more than half

of the net production of the eelgrass-plankton-algal system. Rassmussen (1977) showed that

the species composition and abundance of invertebrate organisms changed with the loss of

eelgrass (Zostera marina) due to the 1930’s outbreak of the wasting disease.

During the 1980’s several other investigators documented the importance of seagrass

habitat. Orth et al (1984) compared unvegetated areas with seagrass meadows and found

that seagrass beds contained a dense and rich assemblage of vertebrates and invertebrates.

Species abundance was positively correlated with two aspects of plant morphology: 1) the

root-rhizome mat, and 2) the plant canopy. The increased species diversity and abundance

suggests that the three-dimensional habitat was beneficial to the
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Figure 5. Proposed food web for a seagrass bed, based on dominant organisms of Indian

River Lagoon, Fla. The grazing amphipod (Cymadusa comptd) is about to be preyed upon

by the shrimp (Palamonetes intermedins) which is to be preyed upon by the fish (Bairdiella

chrysoura ). From Virnstein 1987.
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secondary productivity of the system. Vimstein and Curran (1986) studied the colonization

of artificial seagrass habitat. They found rapid colonization of new substrate with maximum

diversity and abundance within 4-8 days, suggesting that new seagrass substrate may enhance

secondary productivity within an estuary. Eckman (1987) found that eelgrass (Zostera

marina) changed the hydrodynamics ofwater currents, facilitating the recruitment ofscallops

(Argopecten irradians) and the commonjingle (Anomia simplex). Eckman also suggested that

the hydrodynamic influence of seagrass was more important than predation in determining

the abundance of recruits to the system. Short (1988) found that scallops actively migrated

into transplanted seagrass beds.

During the 1990’s there have been several more investigations of the importance of

seagrass habitat. Pohle et aL (1991) found that juvenile scallops actively attached themselves

to eelgrass blades above the substrate as a refuge from predation. Sogard and Able (1991)

demonstrated that vegetated substrate (Zostera or Ulva) was superior in quality (based on

fish and decapod densities) to adjacent unvegetated substrate. Sites with Zostera as the

dominant plant had higher densities of most fish species than areas dominated by Ulva ;

however, they concluded that Ulva was important in areas lacking seagrass cover. Hoven

(1992) suggested that eelgrass (Zostera marina) meadows are of considerable importance as

sites for the settlement of blue mussel (Mytilus edulis) larvae. Although many of these

studies were concerned with commercially important species, other species also benefit from

seagrass habitat. In general, healthy seagrass systems help to create and foster secondary

production.

Seagrasses act as a substrate for the growth of algal epiphytes which contribute large
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amounts of fixed organic carbon to both the grazer and detrital food webs. Using <S
13
C

values, Fry (1984) suggested that algal epiphytes are a more important carbon source to

Florida estuarine communities than Syringodium filiforme. Kitting et al (1984) also found

that epiphytic algae may have an important trophic role. Stable carbon isotope evidence

showed that many invertebrates were assimilating algal epiphyte carbon rather than seagrass

carbon (Figure 6; Fry 1984), reflecting the high refractory nature of vascular plant material

(Fenchel 1977; Opsahl and Benner 1993).

Carbon derived from both seagrasses and their epiphytes is important to coastal

ecosystems. Rapid export of seagrass leaf material was suggested as a reason for the

relatively low importance of Syringodium to estuarine food webs in Florida (Fry 1984).

Recent work from Australia (Thresher et al, 1992) using a variety of techniques including

stable isotopes and gut analyses suggests that seagrass detritus advected offshore during

storms may be an important resource for larval fish.

Only a few marine animals (turtles and sea urchins) directly consume seagrasses;

however, water fowl rely heavily upon seagrasses as a food resource. Along the Atlantic

Coast the dramatic loss of waterfowl during the 1930’s was attributed to the decline of

eelgrass (Zostera marina ), the bird's food source, caused by the wasting disease and pollution

(Milne and Milne 1951). Widgeons (Anas americana ) have also been observed to consume

Zostera marina and Ruppia maritima as well as some freshwater macrophytes (Bellrose,

1976). McMahan (1970) found that rhizomes of Halodule wrightii comprised 84 and 88%

by volume of the diets of redhead (Aythya americana) and pintail ducks (Anas acuta)

respectively. Up to 78% of the redhead duck population winters on the
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Figure 6. A <S 13C histogram of the plants, sediments and fauna collected in Syringodiwn

filiforme seagrass meadows in the Indian River Lagoon (Florida). From Fry 1984.
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Texas coast, while 80% of pintail ducks that winter in the central flyway occur along the

Texas coast. McMahan (1970) found that the rhizomes of Halodule wrightii were the

preferred food, making up the bulk of the diet for these birds. In another study, Cornelius

(1977) found that 71% of the diet of redhead ducks {Aythya americana) consisted of

Halodule wrightii rhizomes. Using stable isotope techniques (<S
13

C), the carbon signature of

redhead ducks was shown to vary with their use of habitat. Parker et al. (1992) found that

the <S
13

C values of muscle tissue collected from ducks in South Dakota were closer to that

of C-3 plants (-22 to -28 %o) on which the ducks were feeding (Figure 7); in south Texas the

6 13 C values of the tissues changed to reflect a seagrass diet (-8 to -14 %o). Thus, seagrass

beds are an important food source for a variety of water fowl species, especially along the

Texas coast.

In addition to providing habitat and food to other organisms, seagrasses can

dramatically alter their immediate environment. Numerous authors have shown that

seagrasses act as a three-dimensional baffle, reducing currents and attenuating waves. Some

of the earliest work examining seagrass-sediment interactions was done by Ginsburg and

Lowenstam (1958) in Florida Bay. They found that seagrasses can modify sedimentation

in two ways: (1) by stabilizing the sediments and (2) by producing a layer of semi-

motionless water that allows fine particles to settle out. Ginsburg and Lowenstam (1958)

suggest that as a result of binding and trapping, seagrasses alter the pattern of sediment

deposition from what would be expected based on physical processes only. Similarly, it is

reported that kelp beds act as traps for sand and mud particles in southern California

(Ginsburg and Lowenstam 1958). Working in Bimini Lagoon in the
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Figure 7. Scatter plot of the <S
13

C values of leg muscle of redhead ducks. South Texas

ducks are isotopically heavier (closer to seagrass carbon) than ducks from South Dakota.

From Parker et al., 1992.
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Bahamas, Scoffin (1970) found that Rhizophora (mangroves) and Thalassia were the

strongest binders of sediments. As a result these areas formed deeper sediments (relative

to bedrock) than areas without plants. Scoffin (1970) also found that the distribution of

plants throughout the lagoon was related to the depth of sediment overlying the bedrock.

Other research has suggested that seagrass meadows preferentially concentrate small

sized particles (Burrell and Schubel 1977). Rasmussen (1977) documented the changes in

beach sediment texture from a fine sand-silt complex to a very coarse cobble and associated

these changes with the loss of Zostera to the wasting disease. Christiansen et aL (1981)

suggested that changes in the coastline at Kyhom, Denmark were related to the dieback of

eelgrass (.Zostera marina) presumably due to the wasting disease. The loss of seagrasses in

the area allowed the mobilization and redistribution of sediments in the harbor.

Scoffin (1970) presented a hierarchy of plants which attenuate current strength,

where Rhizophora prop roots > Thalassia > Thalassia with heavy epiphytes > Laurencia >

Polysiphonia. Mangroves (Rhizophora) and seagrass ( Thalassia ) were most efficient at

reducing current flow. The ability of Thalassia to reduce current velocity was directly

proportional to the density of seagrass blades; current velocities > 150 cm s'
1
were required

to erode sediments from dense Thalassia beds (Scoffin 1970). To experimentally assess the

impact of seagrass beds on currents, Fonseca et al (1982) used a salt water flume. They

found a predictable reduction in the apparent currentvelocity by seagrass and suggested that

current reduction properties may vary between species and sites, due to morphological and

hydrographical variation (Fonseca et al, 1982). Ward et al (1984), working in Chesapeake

Bay found that seagrasses attenuated wave energy and inhibited sediment resuspension. As
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a result, sedimentation rates were substantially higher in seagrass communities than in

unvegetated areas. Fonseca and Cahalan (1992) evaluated wave attenuation by four

seagrass species and found that broad, shallow seagrass meadows substantially attenuate up

to 40% of wave energy per meter of seagrass bed.

Recent research has also shown that seagrass communities act as a "biological

scrubber." Short and Short (1984) found that seagrasses, growing in mesocosms, rapidly

filtered out sediments that were added to the water column, resulting in increased light

penetration. Additionally, they found that seagrasses rapidly removed nutrients added to

the water column (Figure 8). Thus, the seagrasses filtered out both sediments and nutrients.

In general, research has shown that seagrasses are a cornerstone to the health and

productivity of estuarine communities (Zieman 1982; Phillips 1984; Thayer et at, 1984;

Zieman and Zieman 1989). They provide habitat and food to a wide variety of organisms.

Seagrasses also physically alter the environment they inhabit, by influencing water currents

and sedimentation processes. However, the long-term future of these communities is in

jeopardy.

Recently, there has been a world wide decline in seagrass habitat (Figure 9). For

example, Orth and Moore (1984) show that before the 1960’5, submerged aquatic vegetation

(SAV) was a widespread feature of the Chesapeake Bay System. However,
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Figure Ba. Percent of surface light extinction and coefficients in a Halodule wrightii tank,

a Syringodium filiforme tank and an unvegetated tank following addition of Indian River

sand-silt sediment (a), clay sediment (b), and organic-silt sediment (c). From Short and

Short 1984.

Figure Bb. Nutrient removal from the water column by the seagrass community. Changes
in phosphate (a) and ammonium (b) concentration for Halodule and a nonseagrass control

tank over time. From Short and Short 1984.
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Figure 9. Changes in seagrass cover over time in Australia. From Cambridge and McComb

1984.
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since the 1960’s there has been a dramatic loss of SAY communities. Livingston (1987)

reported that seagrasses have been virtually eliminated from Pensacola and Tampa Bays.

Eleuterius (1989) has documented the loss of about 70% of the seagrass habitat from

Mississippi Sound between 1969 and 1989. During the 1930’s up to 90% of the eelgrass

populations occurring along the Atlantic Coast were lost (Costa 1988). The decline of

eelgrass was due to infection by the "wasting disease" caused by a marine slime-mold

Labyrinthula zosterae (Muehlstein et al, 1991). The wasting disease was a natural

catastrophe, caused by the parasitic organism. Disease still plays a role in controlling

seagrass distribution (Short et al., 1991); however, the more recent declines in seagrass

habitat are due primarily to anthropogenic influences.

Aerial photography and ground truthing have been used to document changes in the

distribution and biomass of seagrasses. Merkord (1978) documented changes in seagrass

distribution of the Laguna Madre system between 1965 and 1976. In the Upper Laguna

Madre, Halophila and Halodule cover increased, while Ruppia cover decreased. In Lower

Laguna Madre, Syringodium cover increased, displacing Halodule in some areas while

Thalassia expanded its range northward. Additionally, significant portions of Port Isabel Bay

have become bare areas, devoid of seagrass cover. Merkord (1978) suggested that the

changes were a result of decreased salinity (over the long term) and increased turbidity.

Costa (1988) documented changes in the abundance of eelgrass related to anthropogenic

and natural disturbance using aerial photographs, charts, written reports, local residents and

sediment cores. He suggests that the wasting disease took a massive toll on eelgrass

populations, eliminating about 99% of the eelgrass in Buzzards Bay.
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Pulich and White (1991) have documented the decline of seagrass habitat in the Galveston

Bay System. They attribute various processes to the loss of specific seagrass habitat. For

example, the loss of Ruppia maritima was related to Hurricane Carla and a rise in relative

sea level due to subsidence. However, in the lower bay both Halodule wrightii and Ruppia

maritima disappeared between the 1950’s and the 1980’s. These declines may be due to

increased human activities such as urban development, wastewater discharges, chemical

spills and dredging activities. Quammen and Onuf (1993) documented an increase of 140

km
2

of bare bottom in Laguna Madre, Texas. They suspect that light reduction from

maintenance dredging has caused the loss of seagrass cover. Thus, historical data bases,

nautical charts, and aerial photography have proven useful in documenting changes in the

distribution of seagrasses.

Presently, declining water quality (both transparency and nutrients) is adversely

affecting seagrasses. In general, reduced light availability as a result of anthropogenic

influence is the greatest threat to seagrasses worldwide (Merkord 1978; Cambridge and

McComb, 1984; Costa 1988; Giesen et al, 1990; Pulich and White 1991; Short et aL, 1991;

Quammen and Onuf 1993). Thus, before seagrass can be expected to recolonize (either

with or without human intervention), water quality problems must be addressed.
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CHAPTER 2; LIGHT AND WATER TRANSPARENCY

Environmental influences on water clarity

Estuarine biologists and managers often refer to the concepts of "water quality" and

"water clarity" somewhat interchangeably. This is unfortunate, because there is a

fundamental difference between the two expressions. Water quality refers to the chemical

and physical parameters (i.e. nutrient concentrations, dissolved oxygen, salinity, temperature,

etc.) that characterize a parcel of water with respect to the effect of these parameters on

the health of aquatic organisms, in this case plants. Water clarity or transparency, on the

other hand, is a specific character of water quality. It is defined by the amount of light

transmitted through a body of water. Decreased water quality (e.g. increased nutrient

concentration) can stimulate phytoplankton blooms which reduce light transmittance (e.g.

water clarity). Thus, water clarity is related to and influenced by water quality, but these

terms are not the same. Throughout this document we will use the terms water quality and

water clarity in a manner consistent with the above definitions.

Light in the aquatic environment

Photosynthetically active radiation (PAR) is that portion of the electromagnetic

spectrum utilized by plants for photosynthesis. PAR extends from about 350 nm to about

700 nm wavelength and is roughly equivalent to the range of wavelengths to which the

human eye is sensitive (i.e. visible light). Seagrasses require light energy for the process

of photosynthesis. However, there are several factors that influence the amount of light they
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receive; three of these major factors are: (1) albedo; (2) scattering and (3) absorption. The

portion of light reflected back into space is referred to as the albedo of that surface (Figure

10). The albedo of the Atlantic Ocean at 30° North latitude is approximately 0.068 (Payne,

1972). Thus, approximately 6.8% of the light energy impinging on the ocean surface at this

latitude is reflected back to space and is unavailable to marine plants, light is also

scattered within the water column by suspended particles (Figure 11). In addition to albedo

and scattering, light is selectively absorbed as it passes through the water column (Figure

12).

Spherical quantum sensors are used to measure the light field underwater because

they measure both downwelling and scattered light. Flat cosine sensors underestimate light

availability because they account only for downwelling irradiance. Because of scattering and

selective wavelength attenuation, light penetration through water is modelled with an

exponential decay function (Kirk 1983):

I* = I» e
( -b)

where \ is the irradiance at depth z, I
Q

is the incident irradiance at the water-atmosphere

interface, and k is the light attenuation coeffecient.

Simulation models and field data have been used in the investigation of light

penetration through the water column of estuaries. Hogan (1983) used a simulation model

of light attenuation and found that maximum transmissivity occurred at about 465 nm in

clear water and at 550 nm in turbid water (Figure 12b). He concluded that the shift was
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Figure 10. Schematic diagram showing the different origins of light received from a remote

sensor above the water. The reflection of the direct solar beam at the surface is termed

albedo. From Kirk 1983.
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Figure 11. light availability underwater is determined by attenuating processes. Light
attenuation results from the absorption and scattering of light by particles in the water (i.e.,

suspended solids, phytoplankton, etc.) as well as the absorption of light by the water itself.

From Dennison et al
.,

1993.
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Figure 12a. The spectral range of underwater irradiance decreases with increasing depth
in clear oceanic water. At 10 m the spectrum is fairly broad while at 90 m about 70% of

the quanta is in the 450-500 run band. From Saffo 1987.

Figure 12b. Sectral changes of underwater irradiance with increasing water turbidity at 10

m depth. Moderate turbidity (3) results in maximal transmittance in green portion of

spectrum while under conditions of maximal turbidity (type 9) transmitted light is mostly

yellow. From Saffo 1987.
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due to suspended matter in the water, which absorbed and scattered shorter wavelengths

more than longer wavelengths. The ultimate result was that the maximum transmittance of

light occurred in the longer wavelengths in turbid coastal environments, while total

transmittance decreased. Pierce et al (1986) investigated how light transmittance

responded to changes in the turbidity of the Rhode River Estuary. light transmittance, both

spectral quality and intensity, varied with changes in the amount of dissolved and suspended

matter. High concentrations of suspended solids and dissolved materials were correlated

with increased attenuation in the upper water column; attenuation varied with wavelength

depending on the materials present. Regression analysis indicated that the concentration

of chlorophyll a and c, as well as mineral matter, accounted for most of the variation. These

investigations suggest that light transmittance in turbid estuarine waters is more complex

than clear oceanic water.

Recently, many authors have estimated attenuation coefficients from Secchi depths

as a means of calculating light availability (Chambers and Kalff 1985; Duarte 1991; Batuik

et al, 1992; Dennison et al, 1993 and others). Preisendorfer (1986) examined the theory

and mathematics behind the use of the Secchi disk. He suggested that use of the Secchi

disk to evaluate the attenuation coefficient, k, obliterates and abuses the primary function

of the Secchi disk. He concluded that transparency measurements made with a Secchi disk

do not yield valid information on the availability of light at depth. Therefore, long term in

situ electronic light measurements are required to estimate underwater light availability.

However, other investigators (Megard and Berman 1989) suggest that Secchi depth

(transparency measurements) is proportional to the attenuation coeffecient for the most
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penetrating waveband. However, the work of Megard and Berman (1989) was conducted

in oceanic waters and was not subject to the same scattering problems endemic to nearshore

and estuarine systems. Historically the Secchi depth has been taken as the 18% light level;

however, new calculations suggest that Secchi depth is the 22% light level (Megard and

Berman 1989). Due to the ongoing literature debate, the applicability of Secchi depth

measurements to estuarine environments is questionable. As a result, researchers are

starting to measure in situ light availability directly using photoelectric cells, such as

spherical quantum sensors (Tomasko and Dunton, 1991). A long term (four-year) data set

now exists for Upper Laguna Madre, Texas (Dunton, submitted).

Natural influences on water clarity

As mentioned previously, three factors control how much light reaches submerged

vegetation: albedo, scattering and absorption. Albedo varies with latitude and season due

to the declination of the earth with respect to the sun. However, scattering and absorption

of light within the water column are affected by a number of natural and anthropogenic

influences. Currents, tides and floods may increase the suspended solids, reducing the

amount of light reaching the plants. In a rather extreme case, the onshore movement of

coastal sand smothered a seagrass bed in Australia (Kirkman, 1978). Wind events have also

been cited as influencing light; wind waves can cause the resuspension of sediments resulting

in high light attenuation (Ward et aL, 1984). Severe wind events, in the form of hurricanes,

have been cited as having adverse effects on seagrasses and light in Florida (Zieman 1975a)

and in Mississippi Sound (Eleuterius 1989). In a recent manuscript Onuf (1993 in review).
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had to incorporate wind speed and direction into his statistical analysis to accurately model

the propagation of dredging effects in Laguna Madre, Texas.

Meteorological forcing in the form of wind waves, large-scale wind-driven gyres and

flushing due to frontal passage have been shown to strongly influence the hydrography of

Gulf estuaries (Ward and Armstrong 1980). The influence of meteorological forcing is a

consequence of large surface area to volume ratios as well as the intensity and variability

of meteorological events (Ward 1979). Wind driven waves are a result of meteorological

forcing; light to moderate winds over long fetches allow the development of intense surface

waves. The mixing action of these wind waves results in waters that are usually vertically

homogenous, except in the deeper dredged channels (Ward 1979; Ward and Armstrong

1980). The seasonality of winds may
also play a role in controlling light attenuation; for

example, Rice et al. (1983) found that sediment resuspension occurs year-round but that it

may be most active during winter storms. The seasonality of winds along the Texas coast

is governed by the intensity of the Bermuda High (Ward and Armstrong 1980). As a result,

light transmittance during certain times of the year may be affected more by sediment

suspension than during other parts of the year (Rice et aL, 1983; Ward et al
y

1984).

Water clarity in bays and estuaries along the Texas coast is mostly meteorologically

driven, but may also be influenced by biological substances dissolved in the water, such as

tannins, humic acids and chlorophylls, which increase light attenuation through the water

column. Gelbstoff (gilvin or ’yellow substance’) is a result of decomposition of organic

matter into a complex group of compounds called "humic substances". In general, humic

substances are large molecular weight compounds; for example, the average atomic
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composition of humic substance from the Okefenokee Swamp in Georgia was

These substances vary from a molecular weight of a few hundred to insoluble

macromolecular aggregates. Humic substances absorb light, especially at the blue end of

the spectrum, resulting in a shift in the maximum penetration of specific wavelengths of light

(Figure 12b; Kirk 1983). Pierce et al (1986) found that chlorophyll a,c and mineral

suspensate accounted for most of the attenuation of light through the water column in the

Rhode River Estuary. They suggested that the high attenuation of selected wavelengths in

the upper part of the water column may reduce the availability of PAR below that necessary

for benthic plants or shift community structure to favor species capable of using wavelengths

greater than 525 nm. Carter and Rybicki (1990) document a dramatic shift in the quality

of light reaching 1 m depth as a result of suspended solids.

Natural plankton blooms may also reduce the amount of light transmitted through

the water column. Cosper et al (1987) documented blooms of the chrysophyte Aureococcus

anophagefferens with cell counts greater than 10
9

cells L
l

.

The bloom of this alga reduced

light penetration through the water column and resulted in the loss of 55% of the eelgrass

habitat in Long Island bays (Cosper et al, 1987; Dennison et al, 1989). Texas has recently

been experiencing a similar "brown tide" that has been persistent in some portion of Laguna

Madre since July 1990. The brown tide organism (BTO) appears to be an undescribed type

HI aberrant chrysophyte related to Aureococcus anophagefferens and Pelagococcus subviridis.

The BTO is a 4-5 pm in diameter; maximum chlorophyll concentrations of 70 Mg L'
1

and

densities up to 10
9

cells L 1 have been reported (Stockwell et al, 1993). The BTO has also

had dramatic effects on both the micro and mesozooplankton populations (Buskey and
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Stockwell 1993). As a result of the high cell densities, light has been dramatically reduced

(by up to 60%) in Laguna Madre (Dunton submitted) and could contribute to the loss of

seagrass habitat.

Banks of drift algae may also influence seagrass communities (Cowper 1978; Benz

et al, 1979; Gilbert and Clark 1981; Kulczycki et al, 1981; Zimmerman and Montgomery

1984; Vimstein and Carbonara 1985). The development of the drift algal communities

reduce light availability to the seagrasses (Cowper 1978). Additionally, the decomposition

of drift algal banks may influence nutrient dynamics (Zimmerman and Montgomery 1984;

Vimstein and Carbonara 1985).

Although microalgal epiphytes do not decrease water clarity per se, they can

influence the amount of light that a macrophyte receives. Numerous studies have

documented decreased light availability to macrophytes as a result of epiphyte growth.

Some of the earliest work (Sand-Jensen 1977) suggested that diatomaceous epiphytes act as

a barrier to carbon uptake and reduce light availability. Bothwell (1989) found that the

nutrient supply to the inner periphyton layers was diffusion limited. Additionally,

Meulemans (1987) found that light is strongly and selectively absorbed in the upper layers

of periphyton communities. Thus, recent studies have confirmed the findings of Sand-

Jensen. Other studies have shown that microalgal epiphytes can attenuate 58-94% of light

incident on the leaf surface (Batuik et al
., 1992; Staver 1985; Twilley et al, 1985).

Anthropogenic influences on water quality and clarity

Human activities tend to cause a decrease in overall water quality. For example,
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nutrient enrichment (decreased water quality) in bays and estuaries often results in

eutrophication. Eutrophication is another term that has been used and abused by estuarine

biologists and managers. Eutrophication is a process of environmental and community

change caused by the interaction of three components: (1) excessive nutrient availability; (2)

reduced illumination and (3) a shift in the species composition as a result of altered light

and nutrient regimes (Kaldy, 1992). There are numerous investigations from around the

world that have shown or suggested that increased nutrient loading stimulate the growth of

algal competitors (epiphytes or phytoplankton) which shade out seagrasses (Zieman 1975a;

Sand-Jensen 1977; Zieman 1982; Cambridge and McComb 1984; Cambridge et aL, 1986;

Zieman and Zieman 1989; Giesen et aL, 1990; Short et aL, 1991; Kaldy 1992; Short et aL,

in review). This sequence of events has also been shown to affect perennial macroalgae like

Focus (Kautsky 1991) and freshwater submerged macrophytes like Elodea canadensis and

Potamogeton pectinatus (Ozimek et aL, 1991). Several conceptual models (Phillips et aL,

1978, Short et aL, 1991, Vogt and Schramm 1991) have been developed to examine the

process of eutrophication (Figure 13; Kaldy 1992, Short et aL, submitted, Kaldy et aL, in

prep.).

Presently, eutrophication problems appear to be confined to a few localized areas

in Texas, including portions of the Galveston Bay System (Pulich and White 1991).

However, other areas are not immune to eutrophication. Most of the watershed that drains

into Copano Bay is subjected to agricultural fertilizer application that influences the nutrient

regime of the bay (Shormann 1992). Additionally, a significant amount of the nutrient input

to Copano Bay is from point source sewage outfalls from urban areas within the watershed.
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Figure 13. Chemical loading hypothesis suggests that under low nutrient levels seagrasses

are dominant with some algae present As nutrient loading increases seagrass density
decreases and phytoplankton and epiphytes become more prevalent Under conditions of

excessive nutrient loading seagrass density and biomass becomes low, and one of three algal
forms (phytoplankton, microalgal epiphytes or macroalgal epiphytes) becomes dominant.

From Short et al
.,

1991.
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Thus, Shormann (1992) suggests that Copano Bay can be considered eutrophic. In addition,

recent research suggests that a considerable amount of the nitrogen input to Texas bays and

estuaries comes from rain falling directly into the bays (Shormann 1992, T. Whitledge pers.

comm.). The potential for eutrophication problems along the Texas coast cannot be

ignored. Reports on population growth rates indicate that the Texas Gulf coast is one of

the most rapidly developing areas of the country (NOAA 1988, 1990a,b). As a result, most

of the bays and estuaries along the coast are highly susceptible to pollution, including

excessive nutrient loading (NOAA 1990b).

Decreased water clarity, due to increased suspended solids, also occurs as a result

of dredging, construction, erosion, runoff and disturbance (Zieman and Zieman 1989).

Odum (1963) showed that silt from dredging activities in the Gulf Intracoastal Waterway

may have caused an imbalance in respiration and photosynthesis resulting in decreased

productivity. Zieman (1975a) suggested that dredging was responsible for the destruction

of seagrass as a result of direct physical damage, reduced light and hypoxia associated with

the high oxygen demand of decomposing material. He also suggested that clam dredges

were just as damaging as dredging navigational channels. Pulich and White (1991) suggested

that construction, dredging and suspended solids all contributed to the decline of seagrasses

in the Galveston Bay system. Giesen et al (1990) suggested that recent large losses of

eelgrass from the Dutch Wadden Sea are the result of increased turbidity from both

progressive eutrophication and dredging activities. Onuf (1993, in review) found that light

attenuation near the dredge spoil site remained elevated 15 months after dredging had

occurred. Increased light attenuation near the edge of a seagrass beds was evident for 10
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months after dredging. Thus, human construction activities often have a destructive

influence on seagrass habitat.

Anthropogenic physical disruption of the environment may also exacerbate water

quality problems. Bulthuis et aL (1984) found that the concentrations of suspended solids,

phosphorus and silicate were higher in water ebbing from denuded mudflats than from

seagrass covered mudflats. The efflux of nitrogen from the sediments was light mediated

as a result of demand by photosynthetic organisms, and was not different between denuded

and covered areas. Bulthuis et al. (1984) suggested that denudation of seagrass-covered tidal

mudflats would lead to increased efflux of suspended solids and nutrients from the

sediments to the overlying water.

While not generally decreasing water quality, boating activities have deleterious

effects on seagrasses. There are several reports of motorboat propeller scars in Thalassia

beds (Zieman 1975a, 1976; Dunton pers. comm. 1993). These scars do not recover rapidly

after disturbance, and persist for 2-5 years even in healthy, thriving beds (Zieman 1976).

In addition to physical damage to the plants the sediment microhabitat is impacted. For

example, changes in the grain size, pH and eH of the disturbed sediments have been

observed (Zieman 1976). Walker et aL (1989) used aerial and underwater photography to

assess the adverse effects of boat moorings on seagrass beds. Moorings scoured circular

patches ranging in size from 3to 300 m
2. Although less than 2% of the seagrass area was

lost to moorings the increased edge effect makes more of the beds susceptible to erosion

and "blowouts". In general, the mechanical disturbance of seagrass beds is a worldwide

problem typified by localized impacts associated with construction activity (Short et al..
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1991).

Thermal and toxic pollution also have adverse effects on water quality. Zieman and

Wood (1975) have shown that thermal pollution reduces the diversity and abundance of

algae and animals near effluent canals. They also suggested that several estuarine plant

groups were likely to respond topollution; seagrasses, macroalgae, phytoplankton, epiphytic

microalgae and benthic microalgae (Wood and Zieman 1969). However, seagrasses were

relatively more resistant to thermal stress than algae (Zieman 1975a). Tropical seagrasses

live close to their thermal tolerance, (e.g. Thalassia testudinum has an optimal temperature

range of 28-30 °C); therefore, raising the temperature regime can be deleterious to tropical

and subtropical estuaries (Zieman 1975a).

Toxic pollution has also been implicated in the loss of seagrass habitat. Pulich and

White (1991) suggest that pollution, including chemical spills, may have contributed to the

decline of seagrasses in the Galveston Bay System. Livingston (1987) suggested that

seagrass losses in Florida estuaries were mainly the result of decreased water quality from

a variety of urban and industrial sources. Eleuterius (1989) also suggested that spills of toxic

substances have contributed to the decline of seagrasses in Mississippi Sound.

The consensus among researchers is that light is the environmental factor that has

the greatest influence on the depth distribution of seagrasses. Albedo affects the amount

of light that actually enters the water and is influenced by latitude and declination of the

Earth with respect to the sun. Natural and anthropogenic factors can dramatically alter the

amount of light reaching seagrasses by increasing scattering and absorption. Humans have

very little, if any, control over natural weather phenomena; however, we have the capability

to minimize the adverse effects of human activity (Table 5).
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From Livingston 1987.
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StudyArea Location Status of Seagrass Meadows Information Source

Indian River Southeast Florida

Atlantic Ocean

Historic declines in number and coverage of

seagrass meadows. Declines in Veto Beach area,

Fort Pierce Inlet (25%) and Sebastian Inlet

(38%) from 1951 through 1984.

Goodwin and Goodwin, 1976;

Florida Department of

Natural Resources, unpub-
lished data.

Biscayne Bay Southeast Florida

Atlantic Ocean

Undetermined deterioration in northern Biscayne

Bay. Some damage to Thalassia-Halodule beds

near power plant (heatedeffluents) in south

Biscayne Bay. Card Sound unaffected by power

plant discharge.

McNulty, 1961; Roessler and

Zieman, 1969; Thorhaug

et al., 1973; Zieman, 1970,

1982.

Florida Keys South Florida

Atlantic Ocean

Few data found. Little effect of Key West

desalination plant.

Chcshcr, 1971

Florida Bay South Florida Postulated altered species relationships due

to increased salinity caused by redirection

of freshwater runoff.

Zieman, 1982

Tampa Bay system Southwest Florida

Gulf of Mexico

Almost forty percent reduction in Boca Cicga

Bay due to dredging, filling, and associated

activity from 1950 through 1968. Multiple

sources (urbanization, storm water runoff,

sewage discharge, industrialization, toxic

substances). Reduction of seagrass meadows

in Tampa Bay system from 30,970 ha to 5,750 ha.

Lewis and Phillips, 1980;

Simon, 1974; Lewis et al.,

1985; Taylor and Saloman, 1968

Charlotte Harbor Southwest Florida

Gulf of Mexico

Decline of 29 percent of seagrass beds from

1943 through 1984.

Harris et al., 1983

Pensacola Bay system Northwest Florida

Gulf of Mexico

Complete loss of seagrass beds in Escambia Bay,
East Bay, and Pensacola Bay from 1949-1979.

Some fresh-brackish water species extant in delta

areas. Some Thalassia-Halodule beds still alive

in Santa Rosa Sound. Losses due to urbanization,

industrial waste discharge, dredgingand filling,
cultural eutrophication.

Livingston, 1979; Livingston

et al., 1972; Olingcr et al.,

1975

Choctawhatchee Bay Northwest Florida

Gulf of Mexico

Historical deterioration of seagrass beds from

1949 through 1983. Causes unknown.

Burch, 1983

St. Andrews Bay Northwest Florida

Gulf of Mexico

No data found: Presumed impact cue to

urbanization, industrialization

St. Joseph Bay Northwest Florida

Gulf of Mexico

Extensive coverage unchangedfrom 1972

through 1983. Relatively unpopulatedarea.

McNulty et al., 1972;

Savastano et al., 1984.

Apalachicola Bay

system

4

North Florida

Gulf of Mexico

Generally healthy assemblages ofseagrasses.

Local impact due to dredged opening in associated

barrier island. Introduced species spreading in

delta areaswith as yet undetermined impact.
Area under increased pressure from urganization.

Livingston, 1980c, 1983

Apalachee Bay North Florida

Gulf of Mexico

Impacts due to disposal of pulp mill wastes

(Fcnholloway estuary) from 1954 to the present.
Slow recovery noted in outer portions of impact
area (associated with pollution abatement

program). Area now threatened by proposed
inshore navigation channel and possible off-

shore oil drilling operations.

Heck, 1976; Hooks et al.,

1976; Livingston, 1975,

1982a, 1984a; Zimmerman

and Livingston, 1976a,b.
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CHAPTER 3: THE CHESAPEAKE BAY APPROACH

Approaches to assessing habitat requirements of seagrasses

Recently, several documents have been published which present a novel approach

to the management of seagrass habitat (Batuik et aL, 1992; Dennison et aL, 1993). Dennison

et aL (1993) presents the major findings of a comprehensive technical synthesis conducted

by Batuik et aL (1992). Both Batuik et al (1992) and Dennison et al. (1993) advocate the

measurement of physical and chemical water column parameters in existing seagrass beds

as a means of identifying impacted systems. The premise is that by knowing the conditions

required for plant growth, we can determine the water quality of a specific area through

examination of seagrass presence or absence. Thus, areas where plants do not grow indicate

that some water quality parameter(s) do not meet the minimum requirements of the plant.

Water quality parameter requirements would be specific for each plant species and estuarine

habitat. Chesapeake Bay parameter requirements were developed by monitoring water

quality gradients within the system over time (Batuik et aL, 1992). The habitat requirements

developed in this manner represent the absolute minimal water quality characteristics

necessary to sustain plants in shallow water (Dennison 1993).

The growth, survival and depth distribution of submerged aquatic vegetation (SAY),

including seagrasses, is related to underwater light availabilty (Chapter 4). The parameters

examined to determine habitat requirements were total suspended solids, chlorophyll a

levels, dissolved inorganic nitrogen and phosphorus and the light attenuation coefficient

(Batuik et aL, 1992; Dennison et aL, 1993). These parameters affect light availability in a
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variety of ways, either by directly absorbing and scattering light or by stimulating the growth

of phytoplankton (see Chapter 2 for further discussion). The habitat requirement approach

does not rely on understanding the interactions of water quality and light but relies on

empirical water quality data and SAY survival (Dennison et aL, 1993).

Measurements of the water quality parameters were made monthly through the

growing season, although longer databases (up to 10 years) do exist for some portions of the

Chesapeake Bay System. Minimum habitat requirements for SAY in polyhaline areas

(salinity greater than 18%o) was a light attenuation coefficient of 1.5 (m'
1

), total suspended

solids of 15 mg L
l

,
chlorophyll aof 15 /xg L 1 and dissolved inorganic nitrogen and

phosphorous of 10 and 0.67 /xM, respectively. Other minimum requirements were developed

for other salinity regimes (Table 6). In areas where the water quality parameters do not

exceed these values one would expect to find SAY.

Although the habitat requirement approach is unique and potentially very useful,

there are some drawbacks. Measurements were carried out monthly during the growing

season. Due to the immense spatial and temporal variability of marine systems, monthly

sampling of water quality parameters is not adequate to characterize a system. Monthly

sampling is also likely to underestimate parameter levels experienced by SAY due to the

fact that most field programs avoid sampling during inclement weather. Also, while

sampling during the growing season may be appropriate for plant species that overwinter

as a tuber or seed, it may not be appropriate for species that grow throughout the year (i.e.

Zostera marina). In addition, estimates of the light attenuation coefficient are derived from

Secchi depths (Batuik et aL, 1992; Dennison et aL, 1993). In view of the problems related
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Table 6. Chesapeake Bay submersed aquatic vegetation habitat requirements. For each

parameter, the maximal growing season median value that correlated with plant survival is

given for each salinity regime. Growing season defined as April-October, except for

polyhaline (March-November). Salinity regime defined as tidal fresh = 0.05%0, oligohaline
= 0.0-5%0, mesohaline = 5-18%0, polyhaline more than 18%0. From Dennison et al

.,
1993.

Salinity regime

Light
attenuation

coefficient

Total

suspended
solids

(mg/l)

Chlorophyll

a (Mg/l)

Dissolved

inorganic

nitrogen

(mM)

Dissolved

inorganic

phosphorus

(mM)

Tidal freshwater 2.0 15 15 _ 0.67

Oligohaline 2.0 15 15 — 0.67

Mesohaline 1.5 15 15 10 0.33

Polyhaline 1.5 15 15 10 0.67
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to the use of Secchi depth to measure attenuation (see Chapter 2) it seems that direct

measurement of light availability is more appropriate.

The habitat requirement approach may be a useful tool to estuarine managers in

developing water quality standards to prevent the loss of SAV, including seagrasses. It

should be pointed out that there is a fundamental difference between the Chesapeake Bay

and the bays and estuaries in Texas. The Chesapeake Bay program is using water quality

criteria for the reestablishment and restoration of a highly perturbed system. In Texas, the

goal is to establish water quality criteria to prevent the destruction of seagrass habitats.

Consequently, a different approach and strategy may be appropriate for preserving seagrass

habitats in Texas.
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CHAPTER 4; SEAGRASS PHOTOSYNTHETIC PHYSIOLOGY

Historically, much of the work on the photosynthetic physiology of marine plants has

been done with phytoplankton, as they are at the base of the oceanic food web. Based on

these studies, the euphotic zone was defined as the depth to which 1% of surface PAR

penetrates (Bougis 1976; Raymont 1980). The 1% light level is not appropriate for defining

the depth limits of seagrasses due to the higher respiratory demands of the below ground

tissues (Kenworthy and Haunert 1991). Until recently, it was generally accepted that 10%

of surface PAR was required to sustain seagrass populations. More recent studies suggest

that most seagrass species require 15-25% of surface irradiance (Table 7; Kenworthy and

Haunert 1991; Dennison et aL, 1993). Numerical models of seagrass depth limits have been

developed and used to predict the depth distribution of submerged macrophytes. Many of

the models are regression models of field data using least squares methodology. Chambers

and Kalff (1985) developed regression models for a variety of fresh water macrophytes from

Canada (Table 8). They used attenuation coefficients developed from mean summer Secchi

depth to estimate light availability. In general, approximately 20% of surface PAR was

required to sustain freshwater macrophyte species. Duarte (1991) developed a regression

model (Table 8) that predicts depth distribution for a variety of seagrass species. According

to his model, most seagrasses require about 11% of surface PAR (Duarte 1991).

Many of the species used in Duarte’s (1991) model occur in very clear waters and

thus may underestimate the minimum light requirement for seagrasses. In addition to this

problem, both Chambers and Kalff (1985) and Duarte (1991) rely on attenuation coefficients



Table 7. Maximal depth limits and minimal light requirements ofvarious seagrass species. Minimal light requirements were calculated

as percent light at maximal depth. Rante of maximal depth limit and mean t SE of minimal light requirements given for locations with

multiple data points. From Dennison et al., 1993.
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Genus and species Location

Maximal

depth limit (m)

Minimal light

requirement (%)

Amphibolis antarctic a* Waterloo Bay (Australia 7.0 24.7

Cymodocea nodosa Ebro Delta (Spain) 4.0 10.2

C. nodosa Malta 38.5 7.3

Halodule wrighdi
+

Florida (US) 1.9 17.2

Halophila decipiens^ St. Croix (US) 40.0 4.4

H. decipiens Northwest Cuba 24.3 8.8

Halophila engelmanni Northwest Duba 14.4 23.7

Heterozostera tasmanica Victoria (Australia) 3.8-9.S 5.0±0.6

H. tasmanica Chile 7.0 17.4

H. tasmanica Spencer Gulf (Australia) 39.0 4.4

H. tasmanica Waterloo Bay (Australia) 8.0 20.2

Poisdonia angustifolia Waterloo Bay (Australia) 7.0 24.7

Poisdonia oceanica Medas Island (Spain) 15.0 7.8

P. oceanica Malta 35.0 9.2

Poisdonia ostenfeldii Waterloo Bay (Australia) 7.0 24.7

Poisdonia sinuosa Waterloo Bay (Australia) 7.0 24.7

Ruppia maritima Brazil 0.7 8.2

Syringodium filiforme Northwest Cuba 16.5 19.2

S. filiforme* Florida (US) 6.8 18.3

S. filiforme
+

Florida (US) 1.9 17.2

Thalassia testudinum Northwest Cuba 14.5 233

T. testudinum Puerto Rico 1.0-5.0 24.4±4.2

T. testudinum Florida (US) 73 15.3

Zostera marina Kattegat (Denmark) 3.7-10.1 20.1±2.1

Z marina* Roskildc (Denmark) 2.0-5.0 19.4±1.3

Z marina Denmark 13-9.0 20.6H3.0

Z marina Woods Hole (US) 6.0 18.6

Z marina Netherlands 23 29.4

Z marina Japan 2.0-5.0 18.2±43

*Duartc 1991

+
WJ. Kenworthy, personal communication, 1990

and Dennison 1990

S
Ostenfcld 1908

#Borum 1983



Table 8. Regression equations used to predict the depth distribution of different aquatic

plants.
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Group Equation

Freshwater

Angiosperms (ZJ-
3

= 1.33 log(D) + 1.40

Bryophytes ( Z
c
y

s
= -0.48 log(D) + 0.81

Charophytes log(Z
c
) = 0.87 log(D) + 0.31

Marine Seagrasses

general log (Z
c
) = 0.26 - 1.07 log(k)

Thalassia Z
c

= 0.27 - 0.93 log(k)

Zostera Z
c

= 0.27 - 0.84 log(k)

Chambers and Kalff 1985

2
From Duarte 1991

Z
c

= colonization depth
D = mean summer Secchi depth
k = diffuse light attenuation coefficient
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developed from Secchi depth measurements. Priesendorfer (1986) suggests that it is

notappropriate to derive attenuation coefficients from Secchi depth (see Chapter 2).

Computer modelling

Computer simulation models of seagrass growth and productivity in relation to light

and nutrients have been developed. The development of mathematical models provide a

mechanism for synthesizing the information available in the literature (Short 1980). Models

have become predictive tools for management, but can also provide insight to the dynamic

response of seagrass ecosystems (Short 1980). One of the first mathematical models of

seagrass ecosystems investigated how nutrients affected eelgrass growth; however, to

realistically model the system it was necessary to incorporate light limitation (Short 1980).

Short utilized Steele’s equation for phytoplankton photosynthesis, which describes production

as increasing with increased light up to an optimum light intensity. Beyond the optimum,

production decreases as a result of photoinhibition (Short 1980). The model was run using

data from Charlestown Pond, R.I. The simulation yielded a good representation of the

seasonal trends and a reasonable fit to the observed data (Short 1980). Wetzel and Neckles

(1986) developed a model of photosynthesis and growth for Zostera marina in relation to

selected physical-chemical variables. They found that physical parameters such as light and

temperature controlled growth and photosynthesis. Small changes in submarine irradiance

or temperature resulted in decreased plant productivity and the eventual loss of the seagrass

community. These simulations suggest small changes in light (or temperature) may cause

the complete loss of seagrass communities on the edge of their physiological tolerance (e.g.,
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the deep edge of the seagrass bed). Wetzel and Heckles (1986) concluded that ambient

light was a principle factor controlling the longevity and survival of seagrass beds.

Zimmerman et al (1987) modelled nitrogen budgets and light availability using field and

experimental data from numerous investigations, and the model predictions were tested

against other field data. They found that light had a significant effect on the rate and site

of nitrogen uptake in Z. marina. The model predicts that for eelgrass exposed to H
sat

greater than 6 h (i.e., "normal" conditions) most of the nitrogen uptake will occur through

the roots. However, in low light environments (short there is an increase in the

importance of nitrogen uptake and assimilation by the leaves. Thus, the site of nutrient

uptake appears to be partially dependent on the light environment the plant experiences.

As a general approach to seagrass ecology, simulation models are invaluable. They

can be used to synthesize the available data and point out new directions for research.

Short (1980) showed that mathematical simulations could be used to adequately predict

seagrass productivity as a function of several parameters including nutrients, light and

temperature. Wetzel and Heckles (1986) suggested that small changes in the diffuse

attenuation coefficient could result in the elimination of seagrass habitat. Zimmerman et

al (1987) suggest that the site of nutrient acquisition is dependent, at least in part, on the

light environment the plant experiences. In general, simulation models can be very

interesting and provide useful information to seagrass biologists and estuarine managers.

Effects of in situ light reduction

Although computer simulations are informative, researchers also need to
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quantitatively evaluate the effect of model parameters on in situ populations. During the

late 1960’s and 1970’s numerous studies were conducted to examine the effects of reduced

light on seagrass growth, production and morphology. Some of the earliest work involving

seagrass shading was done by Burkholder and Doheny (1968), who used cages to reduce

available light to 100, 60, 20, 10 and 1.6 % of surface irradiance (SI). Eelgrass (Zostera

marina) growing in these cages became noticeably stunted and did not survive at light levels

less than 20% SI. In an attempt to validate a model, Short et al (1974) investigated how

the hydrodynamics of the Charlestown Pond R.I. were influenced by eelgrass. They

examined the influence of light on seagrasses (and in turn the hydrodynamic model) by

shading eelgrass with cages, which resulted in shorter plants as well as reduced biomass and

density. Backman and Barlotti (1976) reduced 63% of the light reaching Z. marina in a

coastal lagoon in California for a period of nine months. They found reduced biomass,

shoot density and incidence of flowering. Congdon and McComb (1979) examined the

productivity of Ruppia maritima in response to reduced light in an Australian estuary. They

used seven light levels in the study: 100, 60, 41, 28, 19, 15, and 7.5% SI. However, they

made no in situ measurements of irradiance. They reported a general seasonal pattern of

low standing crop during winter with a rapid increase in the spring. As the duration of

shading increased, the plants required higher light levels to persist. At least 20% SI was

required to maintain 50% of initial standing crop for up to 100 days, while greater than 60%

SI was required to maintain 50% of initial biomass for more than 200 days. They concluded

that a reduction in light intensity may result in the loss of considerable quantities of Ruppia.

During the 1980’s several other investigations examined the influence of reduced light
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on various seagrass species. For example, Bulthuis (1983a) examined the response of

Heterozostera tasmanica to in situ light reduction in Victoria, Australia. The light levels

below the screens were approximately 18, 13, 4.7 and 1% SI. Light levels less than 4.7%

SI resulted in the death of all shoots within 2to 10 months. Light levels of 18 and 13% SI

caused reduced shoot density relative to the controls, suggesting the plants were unable to

survive indefinitely at these light levels. Some changes in shoot morphology were also

noted; however, leaf growth rate and leaf width remained the same. Bulthuis (1983a) data

indicate that H. tasmanica may have a higher light requirement at summer temperatures

than at winter temperatures and thus may be more sensitive to reduced irradiance during

summer than in winter (Bulthuis 1983a). Carter and Rybicki (1985), found that both light

penetration and grazing pressure effected the survival of transplanted Vallisneria americana

in the tidal Potomac River, Maryland. Odum (1985) examined the response of Thalassia

testudinum to shading by epiphytes. She did an in situ shading experiment during the winter

where light intensity was reduced to 2-10% SI. Shoot density decreased under the reduced

light treatments and after eight months all the plants were dead. It was suggested that

during summer the demise of the seagrasses would have occurred more quickly.

Neverauskus (1988) examined the response of Posidonia sinuosa and P. angustifolia in

Australia to chronic long-term light reduction (Figure 14). He constructed a canopy of 50%

shade cloth, which was placed over the community. During the first six months of treatment,

shoot density was unchanged but leaf density and standing crop had declined; during the

second six months shoot density decreased dramatically. However, although Neverauskus

(1988) documented changes in plant canopy structure, the study itself was very poorly



Figure 14. Changes in standing crop, leaf density and dry weight of epiphytes of Posidonia

in response to 50% reduction in ambient light. Error bars represent standard deviation, n

= 4. From Neverauskas 1988.
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designed. There was no control plot, no statistical analysis nor was there any estimate of

the actual amount of light received by the plants.

Stable carbon isotope ratios have been used recently to examine the effects of

reduced light on seagrasses (Durako and Hall 1992). The <S
13

C values of shaded Thalassia

leaves were significantly lower than those of unshaded plants. Changes in the £I3C values

were correlated with the relative amount of light reaching the plants. The increasing

isotopic fractionation with light reduction may reflect decreasing carbon demand associated

with lower photosynthetic rates. Thus, at low irradiances there may be greater relative

carbon availability. As light is reduced to levels that limit photosynthetic rates, carbon

appears to become non-limiting.

There have been many studies describing the effects of reduced irradiance on

seagrasses. Although the experiments have been carried out in many different parts of the

world on a variety of seagrass species, there are some common observations that can be

made. First, the standing crop and density of shoots decreases with decreasing light.

Second, there are often changes in the morphology of seagrass shoots (i.e., longer and

thinner blades) with reduced irradiance. Third, several studies suggest there are seasonal

differences in the light requirements of seagrasses. Fourth, it appears that light availability

may influence the <S
13

C signature of seagrasses. Fifth, there is a lack of consistency in the

experimental design of these studies with respect to light reduction techniques or

measurements of light availability.
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Experimental changes In daily light period

Several field studies have examined the effects of changes in daily light period length

on seagrasses. However, before examining the findings of these studies it is necessary to

define H
comp

and H
sat (Figure 15). H

comp
refers to the daily number of hours at which PAR

is at or above a plant’s compensation irradiance. H
sat

refers to the daily number of hours

at which PAR equals or exceeds a plant’s saturation irradiance. Dennison and Alberte

(1982) found that both H
sat

and H
comp

may be manipulated in situ by using light reflectors

and shading screens to study the effects of changing the daily light period (Table 9). They

concluded that during short-term experiments, eelgrass responded to changes in the light

environment by changing leaf production rates. Dennison and Alberte (1985) examined the

role of the daily light period on the depth distribution of Zostera marina. The length of the

photoperiod was increased by suspending underwater lights over an eelgrass bed and

shortened using shade screens (Table 10). Based on these manipulations, Dennison and

Albert (1985) determined that eelgrass required a minimum of about 6 hrs to maintain

a positive carbon balance. They concluded that was a better predictor of plant

productivity than absolute PPFD (photosynthetic photon flux density). Dennison and

Alberte (1986) examined photoadaptation and growth along a depth gradient for Z. marina.

Zostera transplanted from deep water to shallow water survived well, while transplants from

shallow water to deep water did not survive. Daily quantum flux varied with depth from

38.8 to 4.4 E m'
2

day'
1

at 0.8 and 7 m water depths, respectively. In addition varied

from 12.7 to 5.8 h for 0.8 and 7 m depths, respectively. These studies suggest that in

addition to the actual PFFD that plants experience, the photoperiod and particularly H^
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Figure 15. Generalized diurnal light curve in which the light saturation point (Ik) and light

compensation point (I
c
) for photosynthesis are used to determine periods of saturating

and compensating (H
comp

) quantum irradiance. From Dennison 1987.



Table 9. Changes in the H
comp

and H
sat parameters for eelgrass as a result of reflectors and

shading. From Dennison and Alberte 1982.
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Station percent change

Shallow (1.3 m)
Reflectors 35% increase of light

H
comp

+2%

H^+1%

Shades 55% decrease of light
H

comp
-4%

H^-1%

Deep (5.5 m)
Reflectors 40% increase of light

Hemp*4%

H
sat

+14%

Shades 55% decrease of light

Vn*

H„-52%



Table 10. Changes in as a result of lights and shading. From Dennison and Alberte,

1985.
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Station Change in H
M

Shallow

Lights + 4 hours

Shades - 4 hours

Deep

Lights + 5 hours

Shades - 3 hours



67

also influence the depth distribution of seagrasses. Dennison (1987) examined the effects

of light on seagrass photosynthesis, growth and depth distribution. The longest periods of

light centered around the summer solstice; increased respiration due to higher temperatures

effectively decreased both H
comp

and There was an exponential relationship between

light extinction coeffecients and maximum depth limits; thus, Dennison (1987) suggests that

Secchi disc depths averaged throughout the year can be used to predict the maximum depth

of Z. marina (see chapter 2 and Zimmerman et aL, 1991). He concluded that the perennial

nature of most seagrasses represents a year-round integration of environmental factors that

influence the compensation depth.

Although they did not manipulate H
sat,

Zimmerman et al (1991) found the length of

had a pronounced impact on the survival and depth distribution of Zostera marina in

San Francisco Bay. They estimated that an H
sat

of between 3 and 5 h was required to meet

the respiratory demands of the plants. H
sat requirements at the more turbid sites were

longer, limiting plants to shallower depths than those predicted from estimates of carbon

budgets and mean H
sat availability. Zimmerman et al (1991) suggested that the mean

diffuse attenuation of the water column is not a good predictor of the depth limit of eelgrass

particularly in locations where transient and/or seasonal periods of high turbidity may be

common. These findings may be applicable to the meteorologically driven systems of Texas.

Recent work in Texas (Dunton and Tomasko, submitted; Dunton submitted) have

examined the light requirements of Halodule wrightii in Laguna Madre. They have

determined that H. wrightii growing near the lower limit of depth penetration had an

requirement of 3to 5 h and an H
comp

of Bto9 h. These and H
comp

values represent an
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annual quantum budget of 5100-5700 mol m
1

(Dunton, submitted).

The relationship between mean light availability and depth distribution of eelgrass

in San Francisco Bay appears to be more complicated than simple models based on mean

diffuse attenuation coefficients would suggest (Zimmerman et al> 1991). Carbohydrate

reserves may act as a buffer during periods when H
ml

is less than that required by the

plants; however, the reserves are limited in nature. Plants at the lower edge of the beds

may not be able to build up adequate reserves to sustain them through periods of low light.

Thus, brief periods of extreme turbidity may be more critical than the mean turbidity in

controlling the depth distribution of existing populations and the establishment of seedlings

or propagules. The average length of the daily H
sat

period is important, as well as the

number of "critical days" per month or season when H
sat requirements are not met. The

number of extreme attenuation days (BAD) when diffuse attenuation values prevent net

carbon gain or adequate root oxygenation may provide a quantitative measure of habitat

suitability that may prove to be a sensitive predictor of eelgrass growth and survival in

different habitats (Zimmerman et aL, 1991).

Laboratoiy studies of reduced light on seagrasses

In addition to in situ studies of reduced irradiance and photoperiod there have been

two in vivo studies examining the response of submerged aquatics to reduced light.

Goldsborough and Kemp (1988) examined the response of Potamogeton perfoliatus to

changes in total irradiance. Plant populations were grown in aquaria and the light

environment was manipulated using neutral density screens which alter light intensity but
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not spectral quality. The treatment levels were 11, 32 and 100% SI. After three days,

shaded plants showed an increase in photosynthetic efficiency and chlorophyll a

concentrations. Following ten days of treatment there were significant changes in the

morphological characteristics of the plants including elongation of stems, thinning of lower

leaves, and canopy formation at the water surface. Golsborough and Kemp (1988)

concluded that the physiological and morphological responses of the plants conferred

improvements in plant fitness under the treatment conditions. Tomasko (1992) examined

changes in the morphology of Halodule wrightii due to changes in the spectral composition

of light. Halodule was grown
under a canopy of Thalassia testudinum that changed the ratio

of red;far red light. Other plants were grown under neutral density screens of equivalent

light reduction that did not alter the redifar red ratio. Plants grown under Thalassia

testudinum had longer internode lengths, while plants under neutral density screens showed

reduced growth rates compared to controls. Tomasko (1992) suggested that Halodule

minimizes competitive interaction with Thalassia by varying its morphology.

Studies of reduced irradiance and daily light period suggest that when seagrasses are

light stressed they change their morphology (within limits) to optimize photon capture.

Thus, it appears that morphological plasticity may confer some advantage to submerged

macrophytes, allowing them to survive periods of reduced irradiance. The work examining

of eelgrass and the laboratory studies of Potamogeton also suggest these plants may

physiologically adapt to reduced light.
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Photosynthesis irradiance curves

Photosynthesis irradiance (P vs. I) curves are a means of quantifying the

photosynthetic rate on an area, weight or chlorophyll basis (Kirk 1983). Blade tissue is

placed in a chamber with an oxygen electrode and a light sensor. Oxygen evolution or

consumption is measured as a function of light intensity striking the plant (Figure 16). In

the dark there is no photosynthesis and plants exhibit net consumption of 0
2

as a result of

respiration. As light intensity is increased, some O
z production occurs; however, this shows

up as a diminution of the 0
2

consumed by the blade tissue (respiration exceeds

photosynthesis). The irradiance at which photosynthetic 0
2 production equals the 0

2

consumed in respiration is the compensation irradiance (/
c
). At light intensities greater than

I
c

the plants exhibit net photosynthetic production. Maximum photosynthetic production

(P
max

) is achieved when increases in PAR no longer result in an increase in oxygen

evolution; the light saturation point (Ik ) can be estimated from the intersection of the initial

slope with Pmax or is more accurately calculated as P
max

/0.. Alpha (a) is represented by the

initial slope of the P vs. I curve and is a measure of the efficiency with which the plant

biomass utilized light (Kirk 1983). It represents the efficiency with which light quanta are

absorbed and used to transfer electrons through photosystems I and 11. reflects the

dark reactions of photosynthesis and is regulated by recycling of the various metabolic

intermediates (ATP and NADPH).

Although there have been numerous studies of the P vs. I parameters of seagrasses,

few have been carried out in situ. Wetzel and Penhale, (1983) examined in situ the P vs. I

characters that allow populations of SAY in Chesapeake Bay to survive in a very stochastic
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Figure 16. light saturation curve for photosynthesis. P, photosynthesis; P
max,

maximum

photosynthesis; gross photosynthesis; P
n,

net photosynthesis; R, respiration; incident

PAR; I
k, saturating PAR; compensation PAR. From South and Whittick 1987.
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environment. They found that submarine PAR and temperature act both singularly and

interactively to control the biomass and distribution of seagrasses in Chesapeake Bay. For

Ruppia maritima
,

P
max

was correlated with temperature and there was no sign of

photoinhibition. P
max

for Zostera marina was not correlated with temperature, although

Zostera appears to have a temperature optima below 28 °C. Wetzel and Penhale (1983)

found that the two species were therefore physiologically distinct, allowing them to coexist

in the same niche. The authors suggested that changes in the distribution of seagrasses in

Chesapeake Bay may be related to changes in light availability. Libes (1986) examined the

P vs. I relationship of Posidonia oceanica in situ using Cl 4 techniques. Photosynthetic

efficiency was greatest in winter and least in summer. Additionally, productivity was greatest

in the morning and least in the evening. Libes also found evidence of seasonal

photoinhibition and suggested that Posidonia may have a seasonal endogenous rhythm with

regard to photosynthetic capacity. I
c

and I
k were similar for both the seagrass and its

epiphytes. Dunton and Tomasko (submitted) made in situ measurements of the

photosynthetic performance of Halodule wrightii in Texas. They documented seasonal

variation in all of the parameters that describe the P vs. I curve.

Laboratory studies of P vs. I characters are easier to perform than field studies, and

as a result, numerous laboratory studies of seagrass P vs. I characteristics have been

completed. Drew (1978) investigated the factors affecting photosynthesis and its seasonal

variation in Cymodocea nodosa and Posidonia oceanica. He measured photosynthesis, dark

respiration and leaf chlorophyll content on plants from shallow (1-5 m) and deep (25-33 m)

sites. Cymodocea had similar spring and summer light saturated photosynthetic rates, while
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Posidonia had higher photosynthetic rates in spring than in summer (Figure 17). The

temperature optima for photosynthesis was about 30 °C for both species and dark

respirationwas similar during both the spring and summer. Drew (1979) examined the

physiological aspects of primary production in Cymodocea nodosa, Posidonia oceanica,

Halophila stipulacea , Phyllospadix torreyi, Zostera angustifolia and Zostera marina. P vs. I

curves were developed for each species (Figure 18) as were plots of photosynthesis versus

temperature. All species showed similar P vs. I curves that usually shows light saturation

around 2-3 mW/cm
2

(~138 pmol m'
2

s'
1

). Halophila was the only species that showed

evidence of photoinhibition. Despite a wide range of P
max

(8.1 to 26.0 /ig C cm'
2

h'
1

) all of

the I
k

values were about 10% of full sunlight and all of the I
c

values were about 1% SI

(Table 11).

Williams and Mcßoy (1982) examined the effects of light on carbon uptake in six

seagrass species: Thalassia testudinum
, Syringodium filiforme, Halodule wrightii, Halophila

engelmanni , Phyllospadix scouleri and Ruppia maritima. Seagrasses from Texas became light

saturated at high irradiances, between 64-85% SI. The five species had similar half-

saturation constants ranging from 49-56% SI. Williams and Mcßoy (1982) suggested that

Thalassia and Syringodium are "climax species" and that the other species are "colonizers".

Kerr and Strother (1985) examined how photosynthesis in Zostera muelleri responded to

irradiance, temperature and salinity (Figure 19). Photosynthesis increased with increasing

light (from 17 to 185 fimol m'
2

s*
1
) at 16 °C, with no indication of photoinhibition at the

highest light levels used in the experiment.

Because the dark reactions of the photosynthetic process are enzymatically mediated.
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Figure 17. Effect of temperature on net photosynthesis and dark respiration in shallow-

growing leaves of Cymodocea and Posidonia in spring and summer; photosynthesis measured

at 20 mW cm'
2

.
From Drew 1978.
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Figure 18. P vs. I curves for six seagrass species at ambient environmental temperatures

From Drew 1979.
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Table 11. Photosynthetic rates, respiration rates, saturation and compensation irradiance

at ambient environmental temperatures in six seagrass species. From Drew 1979.

Ymax \ Ic R
i

R
c Temp. (*C)

Phyllospadix torreyi 26.0 3.6 0.5 -3.8 -5.3 15

Cymodocea nodosa 21.8 3.8 0.4 -2.5 -3.5 25

Zostera angustifolia 18.i 3.2 0.3 -1.8 -2.1 10

Zostera marina 14.2 5.0 0.6 -1.7 -1.4 15

Halophila stipulacea 9.0 2.0 0.2 -1.2 -1.1 25

Posidonia oceanica 8.1 2.6 0.4 -1.3 -1.5 17

*y
max* Mg C cm'

2
h

1

; Itt
and 7

C,

mW cm'
2

PAR; R
} - and R

d, /xg C cm'
2 ]h-

1

.
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Figure 19a. Relationship between apparent photosynthesis and irradiance (PAR) in Zostera

muelleri at 16 °C. From Kerr and Strother 1985.

Figure 19b. Relationship between apparent photosynthesis and temperature in Zostera

muelleri at an irradiance of 47 ± 2 /xmol m‘
2

s'
1
.

From Kerr and Strother 1985.
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temperature can have a pronounced effect on the (Bulthuis 1987). Several

investigations have examined the response of P vs. I characters to changes in temperature.

As part of his study, Drew (1979) examined the effects of temperature on the rates of

photosynthesis and respiration. Measurements of photosynthesis and respiration were made

at six temperatures between 10 and 40 °C (Figure 20). Photosynthesis increased linearly

with increased temperature {r
2
= 0.99 to 1.00). For some species (Posidonia and

Cymodocea) temperatures greater than 30 °C caused thermal damage and resulted in

decreased photosynthesis. At temperatures lower than normally encountered in their natural

habitat, all species maintained a moderately low rate of respiration. Bulthuis (1983b)

examined the effects of temperature on the P vs. I curve of Heterozostera tasmamca. He

measured the P vs. I parameters at 8 temperatures ranging from 5 to 40° C (Figure 21). At

25 and 30 ° C photosynthesis was not light saturated even at the highest intensities (955 /xmol

m*
2

s'
1

). P
nmx

increased by a factor of 2.5 between 5 and 30 °C and decreased sharply

between 30 and 35 °C. The rate of dark respiration increased by a factor of 2 between 5

and 20 °C with small increases above 20 °C. Evans (1984) examined the physiological

response of Chesapeake Bay populations of Zostera marina and Ruppia maritima to

temperature. For both species the lowest P
max

was at 8° C. The highest occurred for

Zostera at 19 ° C and for Ruppia at 26 and 30 °C. At temperatures between 8 and 19 ° C

Zostera had a higher P
max

than Ruppia. I
k

for Zostera ranged from 46 pmol m'
2

s'
1
at 26 ° C

to 28 pmol m’
2

s’
1
at 30 °C, while forRuppia the range at the same temperatures was greater

(39-72 pmol m 2 s'
1

). In general, Ruppia had a higher I
k

than Zostera at all temperatures.

Evans (1984) suggested that at lower temperatures Zostera has the competitive edge over
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Figure 20. Effect of temperatures both above and below ambient on the rates of gross

photosynthesis in four seagrasses. Horizontal bar is the range of environmental

temperatures normally encountered by the plant; open circles reflect the incubation. From

Drew 1979.
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Figure 21. Temperature vs. apparent photosynthesis in Heterozostera tasmanica at three

irradiance levels. Mean ± 1 SE (n = 3-9) for plants collected from Crib Point, Australia.

From Bulthuis 1987.
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Ruppia,

while at higher temperatures Ruppia has the advantage. Thus temporal resource

partitioning may allow the coexistence of these species. Kerr and Strother (1985) examined

the photosynthetic rate of Z. muelleri at light levels of 47 fimol m 2 s'
1

and a range

oftemperatures. Photosynthesis increased with temperature from 5 to 30 °C and showed a

marked decrease at temperatures greater than 30 °C (Figure 19).

Marsh et aL (1986) examined the effects of temperature on photosynthesis and

respiration in Zostera marina. They developed P vs. I curves for plants grown at 20-22 ° C

and subjected to various temperatures between 0° C and 35 ° C (Figure 22). Light saturated

net photosynthesis increased with temperature to an optimum around 25-30 °C and

decreased at 35 °C. The initial slopes of the P vs. I curve (a) were greatest at 0° C and least

at 35 °C. Kerr and Strother (1985) suggest that in winter, low temperatures and low light

conditions enable the plants to maintain a positive carbon balance; however, high

temperatures (>3O°C) and low light would result in a negative carbon balance. Bulthuis

(1987) reviewed the effects of temperature on seagrasses. He found compensation

irradiance increases with temperature; therefore, to maintain a positive carbon balance,

seagrass plants require a greater irradiance during summer than during winter. The

literature indicates temperature optima for light saturation of photosynthesis is generally

between 25 and 35 ° C; however, there tends to be a rapid loss of photosynthetic capacity at

temperatures above the optimum. Bulthuis (1987) suggests that the seasonality of I
c may

have important implications for seagrasses living at or near their minimum light

requirements. Madsen and Adams (1989) found that Potamogeton pectinatus exhibited

optimal photosynthetic production at 30 ° C and that photosynthesis at 10 ° C was 63% lower



Figure 22. P vs. I relationships of Zostera marina leaf segments measured at different

temperatures. Leaf tissue was grown at 20-22 °C in the field was incubated at the given

temperatures for 15 minutes prior to measurement; a, photosynthesis expressed per mg

Chlor.' 1 min'1
; b, photosynthesis expressed per dm*2 min' 1

.

From Marsh et al
.,

1986.

82
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than that at 30 °C. Perez and Romero (1992) examined the photosynthetic response of

Cymodocea nodosa to light and temperature. The P vs. I curves showed seasonal variation,

with and I
k higher during summer than during winter(Figure 23). I

c

did not exhibit any

seasonality. Cymodocea showed no indication of photoinhibition at light levels up to 2500

nmo\ m'
2

s'
1
.

Rates of light saturated photosynthesis and dark respiration increased

significantly with increasing temperature. Perez and Romero (1992) also suggested the

control of seagrass seasonality may be more complex than previously thought.

As with most other fields of science there are some controversies with regard to

seagrasses and photosynthesis. One of the biggest difficulties is standardizing units of light

energy. Through the years a bewildering variety of units have been used to measure light

energy, everything from Langleys (Williams and Mcßoy 1982) to milliWatts cm'
2

(Drew

1979) to /xEinsteins (Kerr and Strother 1985, Perez and Romero 1992). Although there are

numerous conversion factors in the literature, most do not take into account the selective

absorption of specific wavelengths of light by water (Liming 1990; Megard and Berman,

1989). Thus, most calculations that employ conversion factors between units are relatively

poor estimates of light energy at depth. The best method for estimating underwater light

availability is to measure it in situ (Dunton, submitted).

One of the other controversies in the literature is the validity and/or usefulness of

carbon budgets based on P vs. I curves developed from leaf segments (Fourqurean and

Zieman 1991a). The I
c

value developed for leaf tissue does not take into account the large

respiratory demands of the below-ground tissue. Thus, whole plant carbon budgets based

on leaf tissue probably underestimate the true carbon budget of the whole plant
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Figure 23a. Seasonal trends in P vs. I curves in Cymodocea nodosa for November (boxes),

June (triangles), and August (circles). From Perez and Romero 1992.

Figure 23b. Response of both net photosynthesis (open symbols) and dark respiration

(black symbols) to temperature in August (triangles) and February (circles). From Perez

and Romero 1992.
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(Fourqurean and Zieman 1991 b). Fourqurean and Zieman (1991a) used a P vs. I chamber

that allowed them to develop P vs. I curves for whole plants in a more natural orientation

to the light field. They found that leaves account for less than 50% of the total plant

respiration. Knowledge of the above- to below-ground apportionment and the factors that

control this ratio are critical to modelling carbon budgets of seagrasses. In addition, the

question of using whole plant vs leaf tissue P versus I data in models of plant carbon

budgets must still be addressed.

Measurements of photosynthesis in seagrasses suggest that light and temperature are

the factors that control the rateof photosynthesis and respiration. In general, photosynthesis

at a given light level increases until the optimum temperature is reached. At temperatures

above the optimum, photosynthesis decreases. Compensation irradiance also varies with

increased temperature as a result of increased respiration. Thus, at elevated temperatures

plants require greater irradiance to maintain a net carbon balance. The observed seasonal

pattern in P vs. I parameters is probably a result of seasonal temperature changes.

Seasonal changes in seagrasses

Seagrasses, like most plants, exhibit seasonal changes in production, P vs. I

parameters and organic constituents. Odum (1963) examined the productivity of Texas

Thalassia testudinum and reported a marked seasonal cycle in productivity with considerable

interannual variation (Figure 24). Zieman (1975b) examined the seasonal variation of

Florida Thalassia with reference to temperature and salinity. Maximum productivity,

standing crop, leaf length and blade density occurred by early summer. He found that
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Figure 24. Record of salinity, gross photosynthesis and total respiration 1957-1961 for

Thalassia testidinum in Texas. From Odum 1963.
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although Thalassia undergoes marked seasonal variation, blade density during winter was

about 50% of maximum blade density during summer. Maximum blade density occurred

during late April and May and leaves were carried until October. Minimum blade densities

occurred from December through March. Zieman (1975b) concluded that temperature and

salinity were the major factors controlling the seasonal variation of Thalassia in Florida.

Walker and McComb (1988) examined the seasonal variation oiAmphibolis antarctica and

Posidonia australis in Shark Bay, Western Australia. Posidonia showed no clear seasonal

pattern of production or standing stock for the duration of the study (1982-1983).

Amphibolis had maximum production during summer, coincident with highest light and

temperatures. Although seasonal variation was evident for Amphibolis,

it was not very

pronounced, while Posidonia did not exhibit a seasonal pattern. In general, it appears that

seagrass biomass and density increase with increasing light and temperature during late

spring and early summer (Figure 25). Dunton (1990) examined the production ecology of

Ruppia maritima and Halodule wrightii in two estuaries along the Texas coast. The species

differed with respect to seasonality of growth, time of flowering and persistence of

overwintering populations. In both estuaries Ruppia was a strict opportunist colonizing bare

areas yearly (i.e. no overwintering populations) and completing its growth cycle in four

months. Halodule was absent from the Guadalupe Estuary (San Antonio Bay), but in the

Nueces Estuary (Corpus Christi Bay) it produced overwintering populations with year-round

growth. Dunton (1990) concluded that in some Texas estuaries Ruppia grows as an annual

weed, whereas Halodule grows as a perennial (Dunton 1990). However, other investigators

have documented perennial populations of Ruppia maritima in Upper Laguna Madre and
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Figure 25a. Some seasonal environmental features of an Australian study site: total

irradiance (squares, Wm’
2
), PAR photon flux density (triangles, fimol m'

2
s’

1

) and

temperature ( ° C, circles). Values are monthly averages. From Perez and Romero 1992.

Figure 25b. Seasonal pattern of above-ground biomass. Standard errors are indicated by
vertical bars. From Perez and Romero 1992.
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Redfish Bay (Pulich 1985). Thus, both annual and perennial stocks of Ruppia occur along

the Texas coast.

Many investigators have noted that the P vs. I parameters of seagrasses exhibit a

seasonal pattern. Drew (1978) examined factors affecting the seasonal variation in

photosynthesis of Posidonia and Cymodocea in the Mediterranean. Cymodocea had

comparable photosynthetic rates during both spring and summer, while Posidonia had higher

photosynthetic rates during spring than during summer (Figure 17). Calculation of a carbon

balance based on the experimental P vs. I numbers shows that a shallow Posidonia

community may have a positive carbon balance during spring and a negative carbon balance

(due to higher respiratory demands) during summer (Drew 1978). However, it should be

noted that the carbon budget calculations based on leaf P vs. I curves do not take into

account the respiratory demands of the below-ground tissues. Congdon and McComb (1979)

found that Ruppia exhibits seasonal changes in above and below-ground biomass, with low

crops occurring during late autumn and winter. Although they did not investigate seasonal

changes in the P vs. I curves per se
, they inferred changes in the light requirements based

on changes in standing crop (Congdon and McComb 1979). Ott (1979) presented evidence

for an annual rhythm in the growth cycle of Posidonia oceanica. After two years of growth

in vivo under conditions of constant light and temperature, the seagrass P. oceanica still

exhibited a pronounced seasonal growth rhythm. However, changes in photosynthetic

capabilities were not examined in this study. Bulthuis (1983b) reported that temperature

dramatically influenced the P vs. I curve ofHeterozostera tasmanica, Bulthuis suggested that

Heterozostera has higher light requirements during summer than during winter due to



increased respiration associated with high summer temperatures. Thus, this species exhibits

seasonal changes in its light requirements due to changes in the rate of respiration. It was

also suggested that these plants are more susceptible to decreased light availability during

summer than during winter (Bulthuis 1983b). Macauley et al (1988) examined seasonal

changes in standing crop and chlorophyll content of Thalassia testudinum in the Northern

Gulf of Mexico. Thalassia exhibited seasonal variation in standing crop and chlorophyll

content; standing crop was strongly correlated with temperature and moderately correlated

with incident irradiance. They suggested that temperature was the controlling factor for

Thalassia productivity along the Northern Gulf of Mexico (Macauley et al, 1988). Perez and

Romero (1992) found that Cymodocea nodosa exhibits some photoadaptation to the yearly

light cycle. During summer, when there is high irradiance, the plants have high I
k

and P
max

values and do not exhibit photoinhibition; however, during the winter these plants shift

toward shade-adapted characters (Table 12). It is suggested that winter photosynthetic rates

may be limited by low temperatures rather than low light. The mechanisms causing these

adaptations are not well understood and may involve short-term light adaptation and

internal rhythms keyed to changes of the seasons.

Researchers have also investigated seasonal changes in the organic constituents of

seagrasses. Dawes and Lawrence (1979) investigated how blade removal influenced the

proximate composition of the rhizome of Thalassia testudinum. They concluded that the

rhizome acts as a storage organ which supports blade regeneration as well as seasonal

growth. Soluble carbohydrate was the primary reserve and was actively mobilized through

the rhizome. Rhizomes had the largest carbohydrate reserves exhibiting a seasonal rise

90



Table 12. Seasonal variation in the P-I parameters of Cymodocea nodosa. P
max

and R

expressed in mg 0
2 per d dry h'

1

; I
Mt

and expressed as fimo\ m'
2

s'
1
.

From Perez and

Romero 1992.
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Month P
max

R

February 2.31 0.41 69 10

April 2.64 0.14 238 12

June 5.48 0.47 398 31

August 4.37 0.56 88 10

November 2.51 0.73 160 36

December 3.22 1.00 127 30
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during late spring and summer and a decrease during winter. Carbohydrate levels in the

rhizome were lowest in early spring. Dawes and Lawrence (1980) made a seasonal

examination of the proximate constituents of Thalassia testudinum
,

Halodule wrightii and

Syringodium filiforme (Table 13). They found that in the rhizomes soluble carbohydrate

levels were highest during the fall and lowest during spring. They suggest that soluble

carbohydrates sustained the plants through the winter when productivity was low. Calorific

levels were similar between species with the highest levels occurring in the rhizomes. Of

the three species, the rhizomes of Thalassia had the highest level of organic material,

suggesting that this species may be more tolerant of adverse conditions. Dawes and

Lawrence (1983) suggest that Thalassia is better adapted to year round growth, while the

other species (Halodule and Syringodium) are more opportunistic.

Pirc (1985) examined the growth dynamics of Posidonia oceanica with respect to the

seasonal changes of soluble carbohydrates, starch and other organic compounds in different

parts of the plant. He concluded that winter leaf growth was supported by the mobilization

of starch from the rhizomes. Pirc (1985) hypothesized that subsidized winter leaf growth

enabled the plant to take maximal advantage of increased light during the spring. During

summer and autumn large quantities of carbohydrates were found in both the leaves and

the rhizomes. Plants utilize summer and fall energy influx to compensate for low production

during winter and spring. Ralph et al. (1992) examined the distribution of extractable

carbohydrate reserves in the rhizome of Posidonia australis. Carbohydrate levels were

significantly higher in the stele tissue than in the cortex. Lower carbohydrate reserves were

found in juvenile tissue and near the apical meristem, while unexpanded internodes had
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Table 13. Seasonal variation of protein, soluble carbohydrate and kilocalories for blades

and rhizomes of three seagrass species. From Dawes 1987.

January April July October

Thalassia testudinum

Blades Protein 8 9 22 13

Carbohydrate 6 9 9 7

Kilocalories 2.4 3.0 3.1 2.6

Rhizome Protein 9 8 16 7

Carbohydrate 12 21 24 36

Kilocalories 3.2 3.4 3.0 2.8

Syringodium filiforme v

Blades Protein 9 8 13 13

Carbohydrate 22 16 18 20

Kilocalories 3.1 2.4 3.2 3.1

Rhozome Protein 9 5 12 16

Carbohydrate 36 38 50 46

Kilocalories 3.6 3.7 3.6 3.5

Halodule wrightii
Blades Protein 19 18 19 14

Carbohydrate 14 19 15 13

Kilocalories 3.1 3.5 3.3 3.3

Rhizome Protein 9 7 8 8

Carbohydrate 43 40 43 54

Kilocalories 3.7 3.7 3.4 3.6

Percent dry weight
2
Per gram dry weight
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relatively large carbohydrate reserves. It was suggested that stored carbohydrates are used

for winter maintenance and support early spring blade growth.

Seagrasses can also adjust the concentration and distribution of chlorophyll within

their tissues. Mazzella et aL (1979) concluded that the photosynthetic activity of Zostera

marina leaves was regulated by four factors: age of tissue, light intensity, exposure and

presence of epiphytes. For young parts of leaves, light intensity and tissue maturity were

most important. For older leaves, the presence of epiphytes was more important than the

other factors. Wiginton and McMillan (1979) examined the chlorophyll composition of

seagrasses under controlled light conditions. Chlorophyll concentrations in both Thalassia

and Halodule were correlated with chlorophyll content increased with decreasing light in

both the field and lab. Chlorophyll a:b ratios were correlated with different depth ranges

and may affect depth distribution of seagrasses. The similarities in light levels at the

maximum depth of seagrasses in both St. Croix and Texas suggests that the seagrass

populations were restricted by similar light relationships at each locale. In general,

seagrasses are responding mainly to changes in light quantity, not light quality (Wiginton and

McMillan 1979). Mazzella et al (1980) found that Zostera had a gradient of leaf

pigmentation and photosynthetic activity. The initial slope of the P vs. I curve increased

from leaf base to leaf tip. Light saturation occurred at 100-150 /nmol m 2 s'
1
for all leaf

types. Czeczuga (1986) examined the effect of light quality on the photosynthetic pigments

of the green alga Chora. In freshwater Chora forms meadows that may have the same

functions as seagrasses in estuarine waters. Highest chlorophyll a,b and carotenoids were

found when green and yellow filters were placed over the light source, while the lowest
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pigment concentrations occurred when blue and red filters were used. Enriquez et al (1992)

examined how light was absorbed by Posidonia oceanica. Their results indicate the amount

of light absorbed increases linearly with increased pigment packaging in the leaves. Thus,

increasing chlorophyll results in increased light absorption per unit leaf weight. The

increasing absorption per unit weight should increase the photosynthetic and growth rates

of a light-limited plant.

Changes in the chlorophyll concentration may allow a species to survive in a

particular habitat. Several studies have investigated the physiological ecology of seagrasses

in relation to light and photosynthesis. Dennison et aL (1981) concluded, based on shading

and reflecting studies, that Zostera marina adjusts to light conditions by changes in leaf area

production. Under low light the plants increase their leaf area to intercept more photons.

Jimenez et aL (1987) examined the response of Zostera noltii and Z. marina to high light

under stressed conditions. Zostera marina had higher chlorophyll levels at low light, with

maximum chlorophyll concentrations occurring at 150 pmol m'
2

s’
1
.

Zostera noltii chlorophyll

increased with light intensity and were constant at light levels above 150 pmol m’
2

s’
1
.

Zostera noltii was light saturated at 3600 pmol m’
2

s’
1

showing no evidence of

photoinhibition, while Z. marina was light saturated at 1100 nmol m’
2

s’
1

with significant

photoinhibition above this light intensity. For both species I
c

was 30-35 /imol m’
2

s’
1
. They

concluded that Z. noltii was more photosynthetically efficient, especially at high irradiances.

Dawes et al (1989) compared the physiological ecology of Halophila dedpiens and H.

johnsonii from Florida. With respect to P vs. I characters, H. dedpiens was strongly

photoinhibited at irradiances above 300 /xmol m’
2

s’
1

while H. johnsonii was photoinhibited
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at irradiances above 1000 pmol m'
2

s'
1
. Halophila decipiens had an I

c
value of 29 pmol m'

2

s'
1

compared to about 50 /imol m'
2

s'
1 for H. johnsonii.

Although interannual variation may be large, most seagrass species exhibit very

pronounced seasonal trends. In general, plant biomass increases rapidly during spring and

early summer and is maintained through the summer. During fall, biomass decreases as the

blades senesce and slough off of the plant. The P vs. I characters of most seagrass species

follow a similar trend. The plants appear to be "sun adapted" during the summer and "shade

adapted" during the winter. Generally, P
max

is lower during the winter than during the

summer; presumably, this is due to reduced enzymatic activity at lower temperatures. The

concentration of organic constituents also varies seasonally. During summer, when

production is greatest, the plants store large amounts of carbohydrate in the rhizomes.

During the fall and winter, when light levels are low, the plants draw upon these reserves.

During late winter (very early spring) the plants put forth a new crop of leaves, supported

at least in part by stored carbohydrate. During this time the plants are probably most

susceptible to prolonged periods of reduced irradiance.
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CHAPTER 5: RECOMMENDATIONS FOR FURTHER RESEARCH

Texas estuarine systems are remarkably diverse, as examplified from the hypersaline

Laguna Madre to the freshwater dominated estuaries of the northern Texas coast. As a

consequence, the potential problems faced by resource managers with respect to water

quality and water clarity (transparency) is unique to each estuary. Estuarine systems

dominated by freshwater inflow are more likely to experience the effects of eutrophication

than estuaries where evaporation exceeds inflow (e.g., Laguna Madre). Conversely, systems

that are flushed frequently are less likely to experience the long-term effects of chronic

phytoplankton blooms, as is now occurring in Laguna Madre (the brown tide). Setting water

quality criteria to maintain the current level of productivity in these systems will therefore

be estuary specific. The immediate challenge is to thoroughly define hydrographic

characteristics common to each system before they begin to respond negatively to

anthropogenic inputs. The goal will then be to use this database to establish water quality

standards to maintain the health of each system. With very few exceptions, Texas is

fundamentally different than most other East Coast and Gulf Coast states which have lost

much of their valuable coastal habitat; in Texas the goal is still to preserve the natural

habitat, not to restore or create what has been lost.

The extensive development of submerged aquatic vegetation in south Texas bays and

estuaries is primarily related to reduced freshwater inflows and lower levels of inorganic

nutrients. light attenuation is the major problem that must be addressed in these systems.

Although increasing urban and agricultural development do present an alarming potential
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for eutrophication, dredging and other construction activities clearly present the greatest

immediate danger to seagrass beds. These activities significantly increase turbidity which

reduces the amount of light reaching the bottom.

Our failure to largely prevent the loss of seagrass beds now and in the past has

largely resulted from an inadequate knowledge of:

(1) the minimum light requirements needed to maintain a positive carbon balance

and net growth for the various species,

(2) the amount of light actually reaching the plants on the seabed.

Although some effort has been made to address the photosynthetic light

requirements of seagrasses through laboratory experiments, these measurements often

cannot be extrapolated into the field. In situ measurements using entire plants are thus

highly recommended and potentially the most useful for management purposes.

Currently, we have information on the light requirements and underwater light fields

for only one of five Texas seagrasses ( Halodule wrightii). In situ photosynthetic parameters

need to be measured for both Syringodium filiforme and Thalassia testudinum
,

which along

with Halodule
,

constitute the majority of the approximate 850 km
2

of seagrass meadows in

Texas. Without the knowledge of the minimum light requirements for growth and

photosynthesis of these plants, the development of water quality and water transparency

standards will be extremely difficult.

Compilation of published nutrient and water chemistry data for each estuary with

information on the in situ light requirements and underwater light fields of Texas seagrasses
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can be used to develop water quality criteria to preserve seagrasses in Texas estuaries. The

contributions of suspended solids, chlorophyll a and dissolved inorganic nitrogen to the

diffuse light attenuation coefficient (k) for each estuary can then be used in carbon budget

models for seagrasses within each estuary to maintain the current productivity and

distribution of seagrasses. This approach is similar to that used in Chesapeake Bay (Batuik

et al
.,

1992; Dennison et al
., 1993) but incorporates quantitative data on underwater light

fields and the light requirements of the plants. Recent studies suggest that the physiological

light requirements of the seagrass Halodule wrightii in Texas is similar among estuaries

(Dunton, submitted and unpub. data); if this is true for other species then the strategy

described above is not unnecessarily complex, and our goal of establishing water quality

standards to protect seagrasses in Texas coastal environments is attainable.

Based on the arguments presented above, our recommendations for further work to

achieve this goal are:

1. Determine the in situ photosynthetic requirements of Texas seagrasses, including

(by priority): Thalassia testudinum, Syringodium filiforme, Halophila engelmanni

and Ruppia maritima (this work on Halodule wrightii is complete).

2. Collect in situ continuous measurements of underwater PAR in conjunction with

nutrient and chlorophyll measurements in Texas estuaries containing seagrasses

for calculation of diffuse light attenuation coefficients (k). (This work has been

in progress in both Upper Laguna Madre and Corpus Christi Bay since

1990/1991; see Dunton, submitted).
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3. Evaluate the contributions of suspended solids, water column chlorophyll a,

inorganic nitrogen and dissolved matter to the diffuse light attenuation

coefficient (k) for specific Texas estuaries based on available data and field

sampling.

4, Develop seasonal and annual carbon budgets for predominant Texas seagrasses.

This information can be used to: (a) assess the impacts of chronic light

reduction, (b) minimize loss of habitat by temporal or seasonal restriction of

construction activities and, (c) determine the feasibility of mitigation (creation

or restoration) projects.
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