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Abstract 

 
 Selective laser melting (SLM) has rapidly developed in the past decade. High 
precision-complex ceramics parts can be directly fabricated using this technology. To study 
the thermal behavior of molten pools in the selective laser melting of alumina （Al2O3）, we 
established a three-dimensional model based on ANSYS. Then, combined with simulation 
results, the physical phenomena during the rapid solidification process were discussed. The 
simulation results showed that the laser power and scanning speed exerts a marked influence 
on the maximum temperature, liquid lifetime, dimensions, and temperature gradient of the 
molten pool. Owing to the different temperature gradients in the molten pool, the thermal 
capillary force on the free surface varies. As a result, a slight difference exists between the 
stripy solidification structures. Different orientations of columnar crystals can be obtained. 
The underlying mechanism controls the direction of the temperature gradient with suitable 
processing routes, such as decreasing the scanning speed.  
 

Introduction 
 

Selective laser melting is an additive manufacturing technique that has rapidly developed 
over the past decade [1, 2]. This manufacturing technology can fabricate complex parts 
without the time-consuming mold design process [3]. In terms of materials, metal and 
nylon/plastic have already been widely studied and applied commercially [4–6]. In recent 
years, the SLM of ceramics has garnered the interest of many researchers [7, 8]. 

Shishkovsky and Bertrand performed SLM on alumina–zirconium and zirconia to 
produce ceramic parts [9, 10]. Deckers investigated the electrophoretic deposition (EPD) layer 
of a sub-micrometer Al2O3 ceramic slurry and SLM at a high preheating temperature (800℃) 
[11]. Wilkes and Hagedorn investigated the SLM of Al2O3–ZrO2 powder mixtures and 
demonstrated that crack-free ceramic objects can be manufactured by high-temperature 
(1600 °C) preheating [12–14]. Liu et al. studied the effect of high-temperature preheating on 
crack distribution [15, 16]. Owing to the high melting point and brittleness of ceramic, it is 
comparatively difficult to manufacture crack-free specimens by SLM. Therefore, further 
understanding of cracks needs to be developed. In fact, the temperature field has an important 
effect on the formation of cracks. However, it is difficult to directly measure the temperature 
field and the thermal behavior during SLM since it involves a rapid heating and cooling (up to 
106K/s). Numerical simulation is considered effective for studying thermal behavior during 
SLM [17, 18].  
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In the past, many researchers have established heat conduction models to investigate the 
temperature distribution characteristics of molten pool during the process of SLM. Gusarov et 
al. studied the temperature field of stainless steel during SLM and found that scanning speed, 
powder thickness, and material thermal properties highly affect the stability of the process 
[19]. Gu et al. developed a finite element model to study the influences of laser power and 
scanning speed on the thermal behavior of commercially pure titanium and aluminum alloys 
during SLM [20, 21]. Verhaeghe presented a pragmatic engineering model to study the 
influence of incorporating or neglecting the effects of evaporation of Ti6Al4V during SLM 
and found that evaporation cannot be neglected [22]. Recently, Protasov showed that 
numerical modeling can predict the thermal behavior of fused silica during SLM [23]. 
Although certain numerical simulations had been conducted to investigate the temperature 
filed during SLM of metal powders, studies on ceramics are limited.  

In this paper, the influences of laser power and scanning speed on temperature field of 
Al2O3 during SLM are first studied, because these two processing parameters are the most 
important factors which can directly control the thermal behavior. Then, combined with 
simulation results, directional solidification and thermocapillary convection which is induced 
by high temperature gradient during the rapid solidification process are discussed. 
 

Model building 
 
Basic equation of temperature 
 

During SLM, the temperature gradient is large and the thermophysical properties of the 
materials are inconsistent. Therefore, the temperature field analysis of SLM belongs to the 
typical nonlinear transient thermal analysis problem, which can be expressed as: 
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Where ρ is the material density, c is the specific heat capacity, T is the temperature, t is 
the interaction time, k is the thermal conductivity, and Q=(x, y, z) is the heat dissipation per 
unit volume. 

The original state of the temperature field distribution at time t=0 can be expressed as 
follows: 
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where T0 is the preheating temperature, which was set to 400 K. 
The boundary condition fits the follow equation: 
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where Ta is the initial power bed temperature, Ts is the environment temperature, h is the 
heat convection coefficient, ε is the heat radiation coefficient, σ is Stefan–Boltzmann constant, 
and Q is the rate of heat flow. 
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Basic setting and assumptions 
 

The SOLID70 heat unit was used to generate a mesh. With the accuracy and calculative 
rate of the temperature field analysis results simultaneously considered, this study used a 
small model as the analysis object. The size of the sample model was 1 mm × 1 mm × 0.05 
mm, and the size of the mesh was 0.025 mm × 0.025 mm × 0.025 mm. The baseplate was 
fabricated from Al2O3, with a similar coefficient of thermal expansion as the Al2O3 parts 
manufactured by SLM, and the size of the baseplate was 1.4 mm × 1.4 mm × 0.5 mm. The 
baseplate was not the main analysis object; therefore, different volumes of mesh were selected 
for the baseplate. The upper part of the substrate was divided into 0.2 mm tetrahedron meshes, 
whereas the lower part of the substrate was divided into 0.4 mm hexahedron meshes. The 
entire model was composed of 6,172 nodes and 12,867 units, as shown in Fig. 1. 

 
Fig. 1. Finite element model. 

Basic assumptions of the model: 
(1) The material is isotropic; 
(2) The influence of the flow of molten pool to the temperature field is ignored; 
(3) The absorptivity of Al2O3 powder to the laser energy is constant; 
(4) The latent heat is negligible for the phase change; 
(5) The effect of residual water on the thermal physical parameters and experimental 

process of the alumina powder is neglected. (Alumina slurry was used for experimental 
verification. Prior to laser processing, the slurry is preheated to approximately 400 K to 
remove excess water.) 
 
Heat source model 
 

The energy output distribution of the laser followed a nearly Gaussian distribution and 
can be described as follows: 
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where A is the absorbance of the powder system, P is the laser power, ω is the radius of 
the laser beam, and r is the distance between the point with the calculation of energy density 
and the beam center. 

During the SLM process, the laser moved continuously along a specific path (without 
contour scanning), as shown in Fig. 2. During the simulation process, the continuous 
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movement was replaced by a discontinuous step, and every step was composed of two grids 
(50 μm), as shown in Fig. 3. The loading time of every step was determined by laser scanning 
speed, as follows: 

 sizetime inc
V

=                                                              (5) 

 
Fig. 2. Laser scanning pattern during SLM process 

The laser spot action area was approximately circular, with the radius being twice the 
length of the grid (50 μm). The energy of the laser at each step affected 16 grids. After the 
current step was completed, the heat source was removed, and the current result of 
temperature was used as the initial condition of the next step. This process was cycled until 
the simulation was complete. 

 
Fig. 3. Movement mode of the laser heat source. 

 
Material properties 
 

In this paper, the processing material is Al2O3. Its thermal physical parameters are in Tab. 
1: 

Tab. 1. Thermal physical parameters of Al2O3. 

Temperature, T(K) 300 600 1000 1700 2200 
Thermal conductivity, k(W/mK) 35 15.8 7.85 5.54 5.5 
Specific heat capacity, cp(J/kgK) 779 838 1224 1320 1330 

 
Parameters of simulation process 
 

The simulation process parameters are in Table 2. Laser power and scan speed are based 
on the previous experimental results [26]. The absorptivity of alumina is about 1.8% [28], but 
due to the influence of preheating temperature [29], so we assumption it is about 2.8%. 

1811



Tab. 2. Simulation parameters. 

Parameter Value 
Absorptivity 0.028 

Laser spot size, μm 100 
Preheating temperature, K 400 

Hatching spacing, μm 50 
Layer thickness, μm 50 

Laser power, W 100, 120, 140, 160, 180, 200 
Scanning speed, mm/s 60, 70, 80, 90, 100, 110, 120 

 
Experimental conditions 

 
A laboratory-scale SLM system for ceramic was designed and built for the investigations. 

The SLM system is shown in Fig. 7. The machine was equipped with an IPG YLR-500 fiber 
laser, which produced a laser beam with a wavelength of 1070 nm and can reach a maximum 
power of 500 W in continuous mode. The laser was led through a scanner (intelliSCAN 20, 
SCANLAB, Germany). The spot size of the focused laser beam was approximately 60 μm. 
Moreover, the system was integrated with a 20 kW induction heating system (Shanghai 
Bamac, China). An Al2O3 baseplate (17.5 mm × 17.5 mm × 5 mm) was utilized in this 
experiment. 

 
Fig. 4. Laboratory-scale SLM system. 

Al2O3 slurry was prepared using an electromagnetic mixer at a mass ratio of 1:1 of 
Al2O3 powders (CT3000 SG, ALMTIS, China) and deionized water because this slurry 
presented good flow ability during layer deposition. A rubber scraper was used to layer the 
Al2O3 slurry. Finally, the substrate was preheated to approximately 110 °C to vaporize the 
water before SLM. 

An infrared thermal imager (A615, FLIR, USA) was used to detect the temperature of 
Al2O3 during SLM. 

 
Results 

 
Comparison of simulation temperature and actual temperature 
 

Figure 5 shows the maximum simulation temperatures and the maximum actual 
temperatures with time at 100 W and 90 mm/s. The results showed that the temperature of 
infrared thermal imager was virtually consistent with the temperature of the numerical 
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simulation. Moreover, the temperature changed cyclically and increased gradually during the 
SLM process because heat produced from the previous point or track affected the next point 
or track, thereby resulting heat accumulation during SLM.  

 
Fig. 5. The maximum simulation temperatures and the maximum actual temperatures with 

time at 100 W and 90 mm/s. 
 
Basic temperature characteristics of molten pool  
 

Figure 6 shows the maximum temperature and lifetime of the molten pool at the point (0, 
0) with different laser powers (a) and scanning speeds (b). When the scanning speed is 90 
mm/s and the laser power increased from 100 W to 200 W, the maximum temperature of the 
molten pool increased monotonously from 1619.02 K to 3276.79 K. The results indicated that 
Al2O3 melted with the laser power of 160, 180, and 200W. The liquid lifetimes of the molten 
pool were 0.13 ms, 0.27 ms and 0.4 ms. When the scanning speed increased from 60 mm/s to 
100 mm/s, the maximum temperature of the molten pool decreased from 2754.45 K to 
1980.59 K. This finding indicated that Al2O3 can be melted by reducing the scanning speed, 
such as decreasing the scanning speed to 80, 70, or 60 mm/s and fixing the laser power at 140 
W. Moreover, the liquid lifetimes of the molten pool were 0.04 ms, 0.14 ms and 0.26 ms. 

 
Fig. 6. Maximum temperature and lifetime of the molten pool at the point (0, 0) with different 

laser powers (a) and scanning speeds (b). 
Figure 7 depicts the effect of laser powers and scanning speeds on the length and width 

of molten pool during SLM of Al2O3 powder. The experimental results clearly show that the 
dimensions of the molten pool increased as the laser power increased or scanning speed 
decreased. With increasing laser power from 160 W to 200 W, the length of the molten pool 
increased from 38.8 μm to 74.44 μm. Meantime, the width of the molten pool increased from 
21.44 μm to 53.73 μm. As the scanning speed increased from 60 mm/s to 80 mm/s, the length 
of the molten pool increased from 13.06 μm to 43.66 μm, and the width of the molten pool 
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increased from 7.19 μm to 30.88 μm. 

 
Fig. 7. The effect of laser powers and scanning speeds on the length and width of molten pool 
as the laser beam reached the point (0, 0) during SLM of Al2O3 powder. 160 W and 90 mm/s 
(a), 180 W and 90 mm/s (b), 200 W and 90 mm/s (c), 140 W and 60 mm/s (d), 140 W and 70 

mm/s (e) and 140 W and 80 mm/s (f). 
 
Basic characteristics of temperature gradient 
 

Figure 8 shows the influence of laser powers and scanning speeds on the temperature 
gradient of the point (−25, 0) μm, which is close to the solidification edge of the molten pool, 
as the laser beam reached the point (0, 0) μm. When the laser power increased from 100 W to 
200 W, the temperature gradient in the molten pool along the x, y, and z directions increased 
from 1.7922×107, 3.6545×106, and 2.2096×107 K/m to 4.3912×107, 1.2519×106, and 
5.8942×107 K/m. When the scanning speed increased from 60 mm/s to 120 mm/s, the 
temperature gradient in the molten pool along the x, y, and z directions decreased from 
3.5278×107, 8.4993×106, and 4.5608×107 K/m to 2.3739×107, 6.2608×106, and 
3.0849×107 K/m. Comparison of the data in Figs. 8(a) and 8(b) revealed that the laser power 
exerted a higher effect than the scanning speed on the temperature gradient along the x and z 
directions. 

· 
Fig. 8. Influence of laser powers and scanning speeds on the temperature gradient of the point 

(−25, 0) μm, which is close to the solidification edge of the molten pool, as the laser beam 
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reached the point (0, 0) μm. 
Figure 9 shows the temperature gradient along the x-direction path at y = 0 μm. 

Apparently, the temperature gradient can be divided into three parts (A, B, and C). In region A, 
the temperature gradient in the x direction is larger than that in the z direction; in regions B 
and C, the temperature gradient in the z direction are larger than those in the x and y 
directions.  

 
Fig. 9. Temperature gradient along the x-direction path at y=0 μm. 

Figure 10 shows the ratio of the x and y directions of temperature gradients at the front of 
the solidification interface (the edge of molten pool) and at different scanning speeds (the 
precise coordinate locations of the solidification front are based on the data in Fig. 7). The 
figure shows that the temperature gradient in the x direction gradually strengthens with the 
decrease in scanning speed. At a scanning speed of 60 mm/s, the growth power at x direction 
became stronger than that in the z direction, and the columnar grains grew along the x 
direction.  

 
Fig. 10. Ratio of the x and y directions of the temperature gradient at the front of the 

solidification interface with different scanning speeds. 
 

Discussion 
 
Thermocapillary Convection 
 

As seen in Fig. 11, a stripy solidification structure formed on the free surface along the 
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scanning direction of the laser. Careful observation revealed that the stripy solidification 
structure can be divided into three parts (A′, B′, and C′). Region A′ presented the most evident 
stripy solidification structure, followed by the region B′, and the structure virtually 
disappeared in the region C′. The Bernard flower model can explain the above phenomenon in 
detail [27]. In region C′, the vertical Marangoni effect was larger than the horizontal 
Marangoni effect; thereby resulting in a strong horizontal Marangoni effect driving the fluid 
toward the cold end. Moreover, the fluid stacking at the cold end induced deformation in the 
free surface. The molten pool existed for a short time (approximately 0.4 ms) and the 
deformation was too late to be restored; ultimately, a special surface coagulation tissue 
formed. In region B′, the temperature gradient in the z-direction was larger than that in the x 
and y directions (Fig. 9 region B) and a weak horizontal Marangoni effect drove the fluid 
toward the cold end, thereby resulting in small deformation and unseen stripy solidification 
structure. In region A′, the temperature gradient in the x direction was larger than that in the z 
direction (Fig. 9 region A), therefore, the upward convection vanished on the free surface. 

 
Fig. 11. Stripy solidification structure on the surface of a Al2O3 SLM specimen at 200 W 

and 90 mm/s. 
 
Directional solidification 
 

The crystallographic texture and solidification microstructure in SLM for metal have 
been studied by numerous scholars [24, 25]. The theoretical model of typical solidification 
microstructure of the molten pool in the process of SLM is shown in Fig. 12(a). Moreover, 
this typical solidification microstructure of the molten pool could be seen in SLM of Al2O3, 
as shown in Fig. 12(b). The figure shows two different directional solidification 
microstructures, namely, Zones I and II. This phenomenon may be associated with the change 
in temperature gradient at the front of the solidification interface (see Fig. 9) that induced the 
transformation of columnar grain growth. Crystal growth took place in the preferred direction 
closest to the heat flow direction. In Zone I, the temperature gradient mainly resided along the 
z direction; therefore, the solidification microstructure grew along the z direction from the 
bottom of the molten pool. However, in Zone II, the direction of the temperature gradient was 
shifted to the x direction, as shown in Fig. 9. The figure indicates that the direction of the 
solidification microstructure can be controlled with suitable processing routes. 

Figure 13 shows the microstructure of the cross section of slurry deposition samples at 
different scanning speeds. At a lower scanning speed of 60 mm/s, the columnar grains mainly 
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grew along the x direction (Fig. 13(a)). Upon increasing the scanning speed to 120 mm/s, the 
columnar grains grew along the z direction (Fig. 13(b)). This result may be caused by the 
changing of temperature gradient. As shown in Fig. 10, the temperature gradient along the x 
direction was increased by the decreasing scanning speed. The direction of the solidification 
microstructure could be fully changed at the scanning speed of 60 mm/s. Therefore, the 
growth direction of the columnar grains could be adjusted by changing the scanning speed. 

 
Fig. 12. Theoretical model of typical solidification microstructure of the molten pool in the 

SLM process (a) and the same solidification microstructure in the SLM of Al2O3 (b). 

 
Fig. 13. Microstructure of the cross-section SEM images of SLM-processed Al2O3 samples 
showing the microstructure for a fixed laser power of 140 W and scanning speeds of 60 (a) 

and 120 mm/s (b). 
 

Conclusion 
 

A finite element model was built to investigate the effects of laser power and scanning 
speed on the temperature field of Al2O3 during SLM. Combined with the experiment, the 
simulation results were investigated, and thermocapillary convection and grain growth 
direction were discussed. The mainly conclusions were summarized: 
(1) The temperature of infrared thermal imager was almost consistent with the temperature of 

the numerical simulation. Moreover, the temperature gradually increased during the SLM 
process because of the heat accumulation effect. 

(2) The slight difference between stripy solidification structures can be explained by the 
different thermal capillary forces induced by the different temperature gradients. With a 
higher temperature gradient in the X-direction, the enhanced horizontal Marangoni effect 
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and the increasingly evident stripy solidification structure were observed. 
(3) At a low scanning speed of 60 mm/s, the columnar grains of Al2O3 produced through 

SLM mainly grew along the x direction (perpendicular to the building direction). This 
finding indicated that the direction of the solidification microstructure can be controlled 
with suitable processing routes, such as decreasing the scanning speed. 
The model is relatively simple and contains certain limiting assumptions; however, the 

model, when combined with experiments, still yielded conclusions with a certain degree of 
credibility. In the future, the model will be optimized to study the accurately thermal behavior 
of ceramics in the SLM process. 
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