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The amount of biological sequence data is increasing rapidly, a promis-

ing development that would transform biology if we can develop methods that

can analyze large-scale data efficiently and accurately. A fundamental ques-

tion in evolutionary biology is building the tree of life: a reconstruction of

relationships between organisms in evolutionary time. Reconstructing phy-

logenetic trees from molecular data is an optimization problem that involves

many steps. In this dissertation, we argue that to answer long-standing phylo-

genetic questions with large-scale data, several challenges need to be addressed

in various steps of the pipeline. One challenges is aligning large number of se-

quences so that evolutionarily related positions in all sequences are put in the

same column. Constructing alignments is necessary for phylogenetic recon-

struction, but also for many other types of evolutionary analyses. In response

to this challenge, we introduce PASTA, a scalable and accurate algorithm that
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can align datasets with up to a million sequences. A second challenge is re-

lated to the interesting fact that various parts of the genome can have different

evolutionary histories. Reconstructing a species tree from genome-scale data

needs to account for these differences. A main approach for species tree re-

construction is to first reconstruct a set of “gene trees” from different parts of

the genome, and to then summarize these gene trees into a single species tree.

We argue that this approach can suffer from two challenges: reconstruction of

individual gene trees from limited data can be plagued by estimation error,

which translates to errors in the species tree, and also, methods that sum-

marize gene trees are not scalable or accurate enough under some conditions.

To address the first challenge, we introduce statistical binning, a method that

re-estimates gene trees by grouping them into bins. We show that binning

improves gene tree accuracy, and consequently the species tree accuracy. To

address the second challenge, we introduce ASTRAL, a new summary method

that can run on a thousand genes and a thousand species in a day and has

outstanding accuracy. We show that the development of these methods has

enabled biological analyses that were otherwise not possible.
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Chapter 1

Introduction

Evolution is the mechanism that has generated the diversity of life we

observe today on earth [1, 2], likely starting from a single common ancestor

billions of years ago and generating new species through a branching pro-

cess [3, 4]. Evolutionary histories of organisms are studied using phylogenetic

trees [5]. A phylogeny is a tree that traces the evolution of a set of organisms, or

certain characters derived from those organisms, through evolutionary time.

The nodes of a phylogeny can represent entire populations of a species, in

which case the phylogeny is called a species tree and its branching structure

shows how new species have evolved from now-extinct species. Species can

split into two species for various reasons [6], but at the molecular level, the

driving force behind the evolution of new species is the constant process of

mutations accumulating in the DNA and across the genomes.

Since evolution happens at the genomic level, one can reconstruct the

evolutionary history from molecular sequences [5]. For example, DNA can be

represented as a sequence of A, C, G, and T letters for each species of interest.

Given these sequences, the goal is to find the phylogenetic tree that best ex-

plains the observed DNA sequences. Phylogeny reconstruction from molecular
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data has been studied as an optimization problem and particularly as a sta-

tistical inference problem for decades [5, 7–9]. Most problems in phylogenetics

are NP-hard, but nevertheless, heuristic and approximate approaches have

been developed to solve these optimization problems, and these approaches

have been extensively used to reconstruct various parts of the tree of life [10].

Recent drops in sequencing costs [11] have lead to a rapid growth in

the size of the datasets that we are interested in analyzing. The datasets used

for phylogenetic reconstruction are increasing in two dimensions: on the one

hand, we are gathering molecular sequence data from more species, and on the

other hand, we are sequencing larger parts of the genomes of these species. The

increase in the dataset size would ideally result in an increased ability to resolve

hard phylogenetic questions [12, 13], and for a large set of organisms. However,

the sheer size of the datasets creates many computational challenges [14, 15]

and prevents some types of analyses [16, 17]. More importantly, it is not clear

that methods developed for smaller datasets have good accuracy on larger

dataset, or that existing methods are able to use larger datasets effectively; we

will argue throughout this dissertation that analyzing large datasets requires

new methods.

The increase in the number of genomic regions analyzed is especially in-

teresting. Phylogenies can be reconstructed from various parts of the genome.

When a phylogenies reflects the evolutionary history of a particular part of the

genome, it is called a gene tree, as opposed to the species tree that reflects the

genome evolution as a whole. An interesting biological fact is that the evo-
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lutionary histories of different parts of the genome can be different from one

another [18–20]. Thus, gene trees need not agree with each other, or with the

species tree. As an example, the closest relatives of humans are chimpanzees

and gorillas, which each share with us about 95% of their genomes [21, 22]. At

the species level, chimpanzees and humans are closer to each other than either

is to gorilla [23]. However, for about 20% of the genome, gorillas are closer to

either human or chimpanzees than those two are to each other [23–25]. This

interesting opportunity for gene trees and species trees to be discordant can be

due to various biological mechanisms, as we will discuss in Chapter 2 (which

gives background information about various topics in this dissertation). How-

ever, it’s important to note that gene tree discordance has implications for

reconstructing the species tree. For situations where gene tree discordance is

likely, to be able to reconstruct the species tree, we need to analyze large parts

of the genome.

A phylogenetic analysis of sequence data from multiple genes requires

a series of steps, shown in Figure 1.1. Samples are gathered from species of

interest and various bioinformatic processing steps are used to generate the

sequence data for a collection of regions in the genome, each of which we

simply call a gene. Once these sequence data are gathered for all the genes of

interest, two basic steps are necessary.

Step 1: Multiple Sequence Alignment (MSA): Sequences belonging to

various species but the same gene can have different lengths, an issue we de-
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Step 1: MSA

Step 2: Species tree reconstruction

Gene tree estimation

Figure 1.1: Phylogenetic reconstruction from multiple genes. The
phylogenetic reconstruction pipeline starts by gathering samples from the
species of interest, and sequencing samples. Various bioinformatics tools are
used to assemble the sequence data and to extract sequence data for each gene.
Then, two basic steps are needed: Step 1: Sequence data for each gene need
to be aligned using a Multiple Sequence Alignment (MSA) tool. Step 2: A
species phylogeny is reconstructed from the aligned gene sequence data. To
build phylogenies from multiple genes, various approaches exist; two such ap-
proaches are shown here. In the concatenation approach, all gene data are
concatenated into one supermatrix, which is then analyzed using a phyloge-
netic reconstruction method of choice. In the summary method approach, first,
a separate tree is estimated for each gene, and then this set of estimated gene
trees is used as input to a method called a summary method that produces
a species tree. Phylogenies are shown as unrooted trees. See Chapter 2 for
details of all the steps.
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scribe in detail in Chapter 2. To be able to reconstruct phylogenies from these

unaligned data using most methods, we first need to align them so that they

all have the same length; the result is called a Multiple Sequence Alignment

(MSA) of the data. Constructing an MSA is formulated as various optimiza-

tion problems, and these problems are also NP-hard according to various for-

mulations of the problem [26, 27]; however, various tools exist for computing

MSAs heuristically [28, 29].

Step 2: Species tree reconstruction: Once alignments are obtained, a

species tree can be obtained using various techniques, which we describe in

detail in Chapter 2. Two of these approaches that can analyze large datasets

are concatenation and summary methods. Concatenation puts all the gene

data together in one “supermatrix” and infers a tree from this supermatrix

using a phylogenetic reconstruction method of choice. Using summary meth-

ods involves two steps: first we need to estimate a gene tree for each gene

separately using a phylogenetic reconstruction tool of choice, and then we

need to estimate the species tree by summarizing the collection of gene trees.

The summarization step requires a “summary method” that takes as input a

set of gene trees and outputs a species trees that best explains that collection

of gene trees. Thus, the input to summary methods is a set of estimated gene

trees, and these gene trees can have estimation error.

In this dissertation, we show that with increased dataset size, methods

that exist for both steps of the pipeline described above face substantial chal-
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lenges. To address these challenges, we develop new methods for both steps

of the pipeline, and we show that our methods enable accurate analyses of

datasets with large numbers of species and large numbers of genes.

When the number of sequences being analyzed increases to many thou-

sands or even a million sequences, MSA construction tools are either not able

to run, or have reduced accuracy when they do run [15]. Yet, such analyses

are being tried and analyzing many thousands of species is gradually becoming

the norm. In Chapter 3, we introduce a new multiple sequence alignment al-

gorithm called PASTA for co-estimation of alignments and trees using an iter-

ative approach (PASTA is an extension of an earlier tool called SATé [30, 31]).

PASTA can quickly and accurately analyze very large datasets, and achieves

this using divide-and-conquer in conjunction with a new approach we intro-

duce for merging a collection of sub-alignments. For a dataset with a million

sequences, PASTA is able to generate highly accurate alignments in about two

weeks using only 12 threads.

Once the alignments are obtained, concatenation or summary methods

can be used for estimating the species tree, and the relative advantages of these

two approaches are hotly debated [32–35]. Concatenation has the advantage

of using all the data in one analysis, but it ignores gene tree discordance.

Summary methods can take into account discordance, but since they have to

go through two steps (gene tree estimation and summarization), they can be

sensitive to errors introduced in the gene tree estimation step [36–38]. More-

over, summary methods are newer, and less research has focused on developing
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accurate and scalable summary methods. In this dissertation, we propose im-

provements to both steps of the summary method pipeline (i.e., gene tree

estimation, and summarization) and show that comparison between concate-

nation and summary methods depend on the summary method pipeline used,

in addition to other properties of the dataset being analyzed (e.g., its level of

gene tree discordance).

In Chapter 4, we introduce the statistical binning pipeline for re-estimating

gene trees with the goal of improving their accuracy. We first give evidence

that error in the gene tree estimation step can translate into error in the

species tree, and then present one potential solution: statistical binning. Our

proposed approach divides the set of genes into non-overlapping groups, called

bins, such that in each bin there is no strong evidence of discordance be-

tween pairs of gene trees. For each bin, we then concatenate sequences of all

genes put in that bin and estimate a tree based on this “supergene” matrix;

this produces a set of “supergene” trees, which we can then use as input to

the summary method. We show in extensive simulation and biological studies

that this approach can increase the accuracy of the summary method pipeline.

Interestingly, binning can make summary methods more accurate than con-

catenation under some conditions where concatenation is more accurate than

summary methods without binning. We introduce two variants of the sta-

tistical binning approach, with similar accuracy in experimental studies, but

different theoretical statistical properties, which we will prove.

In Chapter 5, we target the second part of the two step summary
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method approach, and show that existing summary methods have important

shortcomings in terms of analyzing large numbers of species. We propose a

new summary method called ASTRAL, which has statistical guarantees of

convergence to the correct species tree as the number of error-free input gene

trees are increased, assuming specific causes of gene tree discordance. AS-

TRAL is based on a likely NP-hard optimization problem and uses dynamic

programming to solve the problem exactly in exponential time, or for datasets

of moderate to large size, to solve a constrained version of the problem in

polynomial time. We introduce two version of ASTRAL, and show that the

second version, ASTRAL-II, can run on datasets with a thousand species and

a thousand genes in about 24 hours of running time, with only one thread.

No other summary method we tested could analyze datasets of this size given

reasonable running time limits. We show that ASTRAL has better accuracy

than competing summary methods on smaller dataset where these methods

can run.

The set of new methods we introduce in this dissertation, PASTA, sta-

tistical binning, and ASTRAL, enable accurate analyses of large datasets that

could not be analyzed without these methods. We were motivated to develop

these methods by our involvement in two large-scale phylogenetic projects

that used sequence data from across the gnomes of two different sets of organ-

isms (these studies are referred to as phylogenomics or phylotranscriptomics

depending on the technology used for extracting data): birds and plants.

The avian phylogenomics project obtained sequences for the entire
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genomes of 48 different bird species [39] with the goal of estimating the bird

phylogeny. Major challenges were presented to the team of scientists analyz-

ing this data, among them, the fact that gene tree discordance was rampant.

To account for gene tree discordance, it was clear that methods that take

it into account need to be used to analyze the data. However, in addition

to true biological gene tree discordance, gene tree estimation error was also

rampant in the dataset, and the rampant gene tree error limited the ability

of existing summary method pipelines for analyzing this dataset accurately.

The traditional summary method pipeline did not produce highly supported

or believable trees using the entire set of data, and could only accurately an-

alyze subsets of the data. In response to this shortcoming, we developed the

statistical binning pipeline, and were able to produce a highly resolved species

tree that accounted for gene tree discordance; the tree produced by the statis-

tical binning pipeline was presented as one of the two hypotheses of the bird

phylogeny in the final paper published on this dataset [39].

The one thousand plant transcriptomes (1KP) project, has the goal

of analyzing more than 1000 plant species, but focusing only on parts of the

genome that code for proteins (transcriptome). The initial phase of the project

included 103 plant species [40], which is still larger than similar multi-gene

datasets. Gene tree estimation error was less rampant on this dataset; but

the sheer size of the dataset and the evolutionary span (close to a billion year)

made application of existing summary methods challenging. Existing methods

could analyze only subsets of genes, and did not produce believable trees on
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the subsets of genes they could analyze. In response, we developed ASTRAL,

which was able to analyze the dataset and produce a highly supported and

believable tree. The ASTRAL tree is presented as one of the main hypotheses

of plant evolution in the respective paper [40]. Our new version, ASTRAL-II,

can handle the dataset that is currently being produced in the second phase of

1KP, which includes more than 1000 plant species and several hundred genes.

In summary, we show that phylogenetic analyses of large datasets re-

quires new methods because existing methods tend to be either unable to run

on large datasets, or when they run they do not show the accuracy that they

could obtain on smaller datasets. In this dissertation, we identify three re-

lated areas were large datasets cannot be accurately analyzed with existing

techniques and we develop new methods that enable analyzing these datasets

accurately, and with reasonable running times. We prove theoretical guaran-

tees of accuracy, give theoretical bounds for running time, and present exten-

sive experimental studies that evaluate our new methods.
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Chapter 2

Background

In this chapter, we first introduce phylogenies in more detail and de-

scribe their role in understanding evolutionary processes (Section 2.1). We

then discuss how phylogenies can be used to represent two related but dif-

ferent concepts: gene trees and species trees (Section 2.2). Because of its

relevance to the rest of this dissertation, we elaborate on one process that

relates species trees and the gene trees (the so-called coalescent process). In

doing so, we introduce the concept of Incomplete Lineage Sorting (ILS) and

describe statistical a model of coalescence that describe how ILS arises. In

Section 2.3, we describe a typical phylogenetic reconstruction pipeline, and go

into details of two aspects of the pipeline that are most relevant to this dis-

sertation: Multiple Sequence Alignment (MSA), and species tree estimation.

Finally, we explain various procedures and measures used for evaluating the

quality of reconstruction results in Section 2.4.

2.1 Phylogeny: an evolutionary tree

A phylogeny is a model of evolution represented most typically by a

tree, but more generally as a network (i.e., a graph). In this dissertation, we
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almost exclusively focus on phylogenetic trees. In a phylogenetic tree, leaves

represent present-day entities1 (e.g., species) and the tree structure shows how

various entities are related to each other through evolutionary time. Parent-

child relationships in the tree represent evolutionary relationships: the child

entity has evolved from the parent entity. Each internal node of this tree

represents an entity that has in evolutionary time evolved to produce new

entities. Thus, internal nodes typically represent entities that existed in the

past but do not exist anymore (i.e., are extinct). All present-day entities share

a common ancestor, namely the root of the tree. The branching structure of

a tree is called its topology.

Figure 2.1a shows an example of a phylogenetic tree that depicts the

evolutionary relationships between humans and our close relatives: chim-

panzees, gorillas, and orangutans. This tree shows that humans and chim-

panzees share a common ancestor that they don’t share with the other species,

and so are closer to each other than either is to gorilla or orangutan. The in-

ternal nodes represent species that existed in the past, but are extinct now.

2.1.1 Properties of a phylogenetic tree

Branch Length: The length of edges (also called branches) in an evolution-

ary tree can be drawn arbitrarily, or can reflect various quantities that can be

measured for a branch. For example, the branch length could show the amount

1We use the term “entity” instead of a more specific term such as “species”, because
phylogenies can be used to describe various concepts, as described in Section 2.2.
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OrangutanGorilla Chimpanzee Human

(a) A rooted phylogeny

OrangutanGorilla

ChimpanzeeHuman

root

(b) An unrooted phylogeny

Orangutan
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Chimpanzee

Human

(c) Deviation from ultrametricity

Orangutan
Gorilla Chimpanzee

Human

(d) An unresolved phylogeny

Figure 2.1: Examples of phylogenies. A phylogenetic tree, representing the
evolutionary relationships between four species of group Hominidae: human,
chimpanzee, gorilla, and orangutan. The same phylogeny is shown as both
(a) rooted and (b) unrooted trees. Rooting the unrooted tree at the branch
labelled as root would produce the rooted tree. When all leaves have the same
distance to the root, a tree is called ultrametric. Trees can be ultrametric
(a) or can deviate from ultrametricity (c). Trees can be fully binary (c) or
unresolved (d). Lack of resolution can signify lack of knowledge about the
right relationships, or a true evolutionary multifurcation.

of time between two nodes. If nodes represent species, as they often do, such

branch lengths would show the time between speciation events. Alternatively,

branch lengths could show the amount of change or the expected amount of

change in a character of interest between two nodes. Trees with branch lengths

can be ultrametric, meaning that all their leaves have equal distances to the

root, or can deviate from ultrametricity, as shown in Figure 2.1c.
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Rooting: A phylogenetic tree can be rooted or unrooted (see Fig. 2.1b).

Unrooted trees are used when the structure of the relationships between or-

ganisms can be inferred but the position of the root cannot. An unrooted tree

with b branches can be rooted at any of those branches, producing b different

rooted trees.

Multifurcations: Phylogenetic trees can be bifurcating, where all internal

nodes have a degree of three, or they can be multifurcating, where at least

one node has degree > 3; examples are shown in Figure 2.1d. An internal

node with degree greater than three is called a polytomy. Multifurcation in a

phylogenetic tree can signify two different scenarios: lack of knowledge about

the evolutionary history for a particular part of the tree (a so-called “soft”

polytomy), or the belief that the evolutionary history was in fact (close to)

a true multifurcation (a “hard” polytomy). For example, the relationship

between human, chimpanzee, and gorilla was for a long time represented as a

polytomy shown in Figure 2.1d, and it was not clear whether this was a soft

or a hard polytomy [41, 42]. More recently, molecular and genomic data has

been used to show that humans and chimpanzees are closer to each other than

either is to gorilla, and therefore the soft polytomy was resolved [23, 24, 43].

Bipartitions: Each branch in an unrooted tree defines a bipartition of taxa.

For example, in Figure 2.1b, we have one internal branch, and that internal

branch divides the set of taxa into the following bipartition:
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(human,chimpanzee | gorilla,orangutan). A bipartition that has a single-

ton (i.e. one leaf) as one of its two parts is trivial because such a bipartition

has to be present in any tree that includes that leaf.

2.1.2 Character evolution

Phylogenetic analyses are based on studying how characters evolve on

a tree. At its simplest form, a character is a quantity that can have one of

multiple possible discrete states (i.e., values) for each organism. Any character

has a particular state at the root, and through evolution, moves from one

state to another. Thus, each node in the tree (internal nodes and leaves) has

a value for that character. The values of the characters at the leaves are not

independent from each other; they are related through the evolutionary history

and therefore have information about the evolutionary past.

In a phylogenetic study, typically, values of characters are not known

for internal nodes, but we can observe (or measure) their values for the leaves

of the tree. Since these observed variables contain information about the

evolutionary history, given a large enough number of characters, we can hope

to recover the evolutionary past. For example, the fact that all birds fly

and almost none of the mammals fly gives us some evidence that birds are

all closer together than either is to (most) mammals. However, if we use

only this character, we would be mislead to think that bats are also grouped

with birds. Flight has developed multiple times through evolution, and the

fact that bats and birds both fly is not through common decent, but rather
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through parallel evolutions of a character (sharing a character due to factors

other than decent is called homoplasy). Only by looking at a larger set of

characters (e.g., lactation, body hair, number of ear bones, etc.) can we infer

that bats are closer to other mammals than to birds.

Traditionally, morphological characters were used in phylogenetic anal-

yses. With the discovery of DNA, it became clear that at the most basic level,

evolution operates on the genetic information encoded in DNA molecules. This

opened up the possibility of using molecular data in phylogenetic analyses [5].

DNA, and other molecules derived from it (e.g., RNA and proteins), can be

represented as sequences of letters, each corresponding to a unit in a long

chained molecule. For example, DNA can be represented as strings of four

different characters: A, C, G, and T, each corresponding to one of the four nu-

cleotides that encode genetic information. Similarly, proteins can be modeled

as sequences of 21 different amino acids residues. These discrete and well-

defined strings of letters provide a natural source of phylogenetic characters.

Now that we can read genomic data using various sequencing technologies [44],

and we can do it cheaply [11, 45], large databases of molecular character data

can be assembled for use in phylogenetics [9, 14, 46].

2.1.2.1 Substitutions

Evolution changes molecular sequences through mutations that can

have various types. The simplest form of mutation is when a character is

substituted with another character (e.g., a A could change to a C). Let’s con-
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sider a regime of evolution where substitution is the only allowed mutation. In

this regime, the root of the tree has a particular string of letters and through

mutations and a branching pattern, this single string gives rise to various

strings at the other nodes of the tree. The strings at the leaves are what we

can sequence and observe; sequences at the other nodes, and indeed the struc-

ture of the tree is not known and needs to be inferred. Figure 2.2a depicts

a hypothetical mutation process for one character. The particular character

shown here is A at the root, but throughout the phylogeny, two mutations

happen and this results in A, C, G, and G respectively for orangutan, gorilla,

human, and chimpanzee. If we zoom out and look a string of characters, we

can build data matrices that look like what is shown in Figure 2.2b. Each col-

umn in the matrix corresponds to a different character and all the characters

evolve on the same tree. For simplicity, we can further assume that character

evolution is independently and identically distributed (i.i.d). The process we

just described creates the basic block of statistical models of evolution.

GTR: Let’s consider one of the most commonly used models of evolution,

called Generalized Time-Reversible (GTR) model [47]. The generative model

is parameterized by a model rooted bifurcating tree, with branch lengths that

are real numbers, as well as a transition rate matrix that gives the rate of

transition between any two letters in the alphabet {A,C,G, T}. In addition,

GTR assumes stationarity, meaning the probability of observing any character

is the same for all nodes of the tree, and these equilibrium base frequencies are
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(a) Character evolution on a tree

AAGACACGCACGTC  
AGCACACGCTCAAA  
ATGGCACGCACGTA  
AGATACCCCCGGATOrangutan
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Character

(b) Examples of observed character data

deletion
Insertion
substitutions
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Gorilla Chimpanzee
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TACA

TCAG
TCGTCGA

TACG

TCG

TCG

(c) Insertions and deletions (indels)

TAC-A-
T-CAG-

T-C-G-
T-C-GA

Orangutan

Gorilla
Chimpanzee

Human
TACA
TCAG
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MSA

(d) Multiple Sequence Alignment (MSA)

Figure 2.2: Character evolution. (a) Characters evolve on a tree through a
mutation process guided by the branching structure of the tree. (b) Strings of
characters can be observed for leaves of the tree, creating matrices of character
data. (c) indels can change the sequence length and blur the character homol-
ogy. (d) Multiple sequence alignments can be used to build data matrices
where each site consists of homologous characters.
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also parameters of the model. In addition to stationarity, the GTR model as-

sumes time-reversibility (that is, the rate of transition between any two letters

is identical). Thus, there are only 6 transition rates and 4 equilibrium frequen-

cies. The transition rates can be normalized by factoring out the overall rate

of mutation, leaving 9 parameters plus this overall mutation rate parameter.

Moreover, we typically express the branch lengths in the number of mutations

instead of time, and hence overall mutation rate is simply 1, leaving us with 9

parameters and 8 degrees of freedom.

At the root, a random sequence is generated according to the base

frequencies. Then, sequences evolve i.i.d down the branches of the tree within

a Markovian process; thus, the sequence at the end of each branch depends

only on the sequence at the beginning of that branch. The probability of

observing any particular letter at the end of a branch is determined by the

value at the beginning, the length of the branch, and the rate matrix.

Given generative models such as GTR, one can also try to estimate a

phylogeny from sequence data, and we will discuss some of these approaches in

Section 2.3. However, we note that since the model is time-reversible, sequence

data cannot be used to find the direction of evolution. Thus, these models can

be used only to infer unrooted phylogenies.

2.1.2.2 Alignments

Mutations are not restricted to substitutions. Many others types of mu-

tations can also alter the molecular sequences in more complicated ways [48].
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Perhaps the most prevalent and important of these other mutation types are in-

sertions and deletions (indels for short), whereby genetic material are inserted

or deleted throughout evolution. Indels have the effect that they blur what

parts of sequences from various organism are related to each other. When two

letters in a sequence (or more broadly two characters) are both derived from a

common letter in an ancestor, they are called homologous and the relationship

is called homology.

Characters used in a phylogenetic analysis have to be homologous.

However, indels result in difficulty in deciding what characters are homolo-

gous. For example, in the scenario shown in Figure 2.2c, not all the leaves

have the same sequence length, and it cannot be assumed that two letters at

the same position are homologous. For example, the last A in orangutan is not

homologous to the last A in gorilla. In order to find the homology relationships

in sequence data we need to use sophisticated algorithms, further discussed in

Section 2.3.1. The result of these algorithms [28, 29, 49, 50] is a Multiple Se-

quence Alignment (MSA): a matrix where each site contains only homologous

letters. To produce a MSA, dashes are added to sequences so that each column

consists entirely of homologous characters. These dashes therefore correspond

to the indels. For example, in the multiple sequence alignment shown in Fig-

ure 2.2d, dashes in the second column correspond to the single deletion event

on the left branch of the root node, dashes in the fourth column correspond to

the insertion on the branch leading to humans, and dashes in the last column

correspond to the insertion in branch leading to gorilla.
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2.2 Gene trees and the species tree

2.2.1 Definitions and concepts

We mentioned that phylogenetic trees can be used to represent evolu-

tion for various types of entities. Two inter-related types of entities that can

be modeled by phylogenies are species and genes.

Species tree: In a species phylogeny, each leaf represents the entire popula-

tion of a particular species. The branching structure captures how speciation

events split populations of species into subsequent species through a diverse

host of mechanisms [6]. For example, in allopatric speciation, a population is

split into two geographically isolated populations, each of which continue to

evolve independently until they constitute two different species. The succes-

sion of these speciation events creates a tree, which we call the species tree.

The speciation history leaves its mark all over entire genomes of extant species.

Gene trees: A gene phylogeny is a tree that describes the evolution of par-

ticular parts of the genome across various species. Genome evolution involves

many processes that can result in differences between the evolutionary histo-

ries of various parts of the genome [18, 20]. These process include duplication

and loss of genes, recombination and coalescence, horizontal gene transfer, and

hybridization. The phylogenetic history of a particular part of the genome is

broadly referred to as a gene tree. Importantly, gene trees can be different

from each other and from the species tree. For example, in one part of the
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genome, human and chimpanzee might be closer to each other whereas in an-

other part, human might be closer to gorilla [24]. These differences between

gene phylogenies and their difference to the species phylogeny is referred to as

gene tree discordance or incongruence.

The exact meaning of a “gene”, and the exact ways in which gene trees

differ from one another depend on mechanisms that cause discordance. Some

of these mechanisms cause individual parts of the genome to have phylogenies

that do not agree with the species phylogeny, but do not contradict a tree-like

species phylogeny. In contrast, other biological processes result in complex

evolutionary histories that cannot be represented as trees at the species level.

Representing species phylogenies as trees is based on the underlying assump-

tion that each species has evolved from one other species. This assumption of

vertical evolution is accurate in many cases, but at least two genome evolution

mechanisms result in reticulate evolution and break the vertical structure: 1)

a new species can occasionally evolve as a result of hybridization between two

species [51], 2) organisms can pick up genetic material from their environ-

ment, a phenomenon known as Horizontal Gene Transfer (HGT) [52, 53]. In

such cases, gene phylogenies are still trees, but the species phylogeny is best

modeled as a network [54, 55].

For the rest of this section and the rest of this dissertation, we operate

under the assumption that the species phylogeny is a tree, and that only a

particular cause of discordance called Incomplete Lineage Sorting (ILS) causes

true biological gene tree discordance. We elaborate on ILS next, but it’s
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important to note that ILS is not the only source of true biological discordance

even when the species phylogeny is in fact tree-like.

With a tree-like species phylogeny, the major source of gene tree dis-

cordance other than ILS is duplication and loss [43, 56, 57]. Gene duplication

can create two copies of a gene and copies of a gene that have diverged from

each other through a duplication event are called paralogous. In contrast, two

genes in different species that diverged from each other during a speciation

event are called orthologous. When some pairs of genes analyzed in a phyloge-

netic study are paralogous, the resulting gene tree can be discordant from the

species tree even in the absence of other sources of discordance such as ILS.

In phylogenetic analyses that seek to reconstruct the species tree, researchers

try to find orthologous genes, and to the extent that they succeed in this po-

tentially difficult task, they eliminate duplications as a source of discordance.

However, undetected paralogy should always remains a possibility in practice.

Detection of orthology is an active field of research [58–61], and one that we

do not address here. Thus, we only focus on orthologous sets of genes and

ignore error in orthology detection.

2.2.2 Coalescence and Incomplete Lineage Sorting (ILS)

A major reason for discordance between gene trees and the species tree

is Incomplete Lineage Sorting (ILS), a population level processes that can spill

into species level phylogenies, as we will describe. Before describing ILS, we

need to briefly introduce some related concepts.
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Recombination: A major force in evolution of genomes is recombination [62,

63]. Let’s start by considering the population of a single diploid species (but

note that asexually reproducing organisms also have mechanisms for recom-

bination [64]). New generations of individuals in a diploid population have

genomes that recombine genomes of individuals in the previous generations.

Thus, moving across a particular chromosome of an individual, genetic mate-

rial are initially inherited from one ancestor but can switch in the middle of

the chromosome to be inherited from the other ancestors. If you now consider

the entire history of evolution for the chromosome since a particular common

ancestor (so consider parents, grandparents, and so on), it is easy to see that

these recombination events accumulate and divide the chromosome into mul-

tiple regions such that the history is shared for all the sites in the same region,

but can change from one region to another.

Coalescent genes: A consecutive part of a genome that has been transmit-

ted as a single unit without going through recombination across our organisms

of interest is called a coalescent gene, or a “c-gene” [34, 65, 66]. These c-genes

constitute the smallest part of the genome that can be analyzed phyloge-

netically as a unit without worrying about the possibility of having multiple

histories embedded in the data. Note that the term “gene” is commonly used

to refer something different: stretches inside the genome that code for proteins

and perform a certain function. A gene in this functional sense might span

multiple c-genes, and multiple c-genes might be present in a single gene [65].
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For the purposes of understanding evolutionary histories what matters is a

c-gene. For simplicity of terminology, in the rest of this dissertation, unless

otherwise stated, we use the term “gene” to refer to coalescent genes2. We

also use the term locus (loci) and gene(s) interchangeably.

2.2.2.1 Coalescence

Different c-genes can have different evolutionary histories, and under-

standing this at the population level is simple. Recombination creates diver-

gent evolutionary histories and each history corresponds to a different tree.

This phenomenon is mathematically modeled in what is called the coalescent

process [67]. The coalescent process starts with present day variants of a gene

(called alleles) and traces them back in time across successive generations by

following which alleles in the previous generation produced a given allele in

the current generation. As we move back in the time, we eventually reach a

point where the two alleles share a common ancestor. This point is where the

two alleles coalesce. The coalescent history creates a lineage tree, as shown

for example in Figure 2.3a. Kingman’s coalescent model makes assumptions

of non-overlapping generations, constant population size, random mating, and

a sufficiently large population size; given these assumptions, the time (mea-

sured as the number of generations) to coalescence for two randomly selected

alleles can be shown to be exponentially distributed [67]. Thus, if Ti is the

2Note that a “gene” is technically defined as a unit of heredity of a living organism, and
so calling a c-gene simply a gene is justified. However, since the term gene is more commonly
used to refer to functional genes, the distinction is clarified here.
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tracing alleles

coalescent 
event

generation

an individual

(a) Coalescence

sx sy

speciation 
event

(b) Multi-species Coalescence

OrangutanGorilla Chimpanzee Human

(c) Concordant gene tree

Deep coalescence 
results in ILS

OrangutanGorilla Chimpanzee Human

(d) Discordant gene tree due to ILS

Figure 2.3: Coalescence and multi-species coalescence. (a) The coales-
cent process for a single population. Each row is a generation and alleles are
traced back in time through generations; coalescence is when two lineages find
a common ancestor. Coalescent history creates a lineage tree, here shown for
three samples drawn from a population of 11 individuals. (b) Multi-species
coalescent for two leaf species sx and sy and their parent population. Here,
kx = 3 and ky = 2 individuals are sampled for sx and sy respectively; at the
speciation point, rx = 2 and ry = 1 lineages exist; these start a new coales-
cent process in the parent population with three lineages. (c) Multi-species
coalescence results in a gene tree inside a species tree; here, the gene tree is
concordant with the species tree in terms of the topology. (d) When lineages
coalesce deeper than their first ancestral population, they have a chance to
create gene trees that are different from the species tree, as shown here.
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waiting time for the coalescence of any two alleles from i sampled alleles, and

the population size is Ne, then:

T2(Ne) ∼ exp(t;λ =
1

Ne

) =
1

Ne

e−
t

Ne

And more broadly:

Ti(Ne) ∼ exp(t;λ =

(
i
2

)
Ne

) =

(
i
2

)
Ne

e−t
(i
2)

Ne

To simplify these equations, and sinceNe is in many cases unknown, one

can simply measure time in Ne generations, and state the waiting time in what

is known as “coalescent units”. Note that for diploid species (i.e., those with

two versions of each chromosome), a population of size 2Ne is equivalent of a

haploid (i.e., single chromosome) population of size Ne; therefore, coalescent

units are measured in 2Ne generations for diploids. With this formulation, Ti

simplifies to being an exponential random variable with rate
(
i
2

)
. To calculate

the time to most recent common ancestors of a set of n samples, we simply

need to sum up Ti random variables for 1 < i ≤ n. Similarly, we can compute

the probability that starting from u lineages at the current time and tracing

back, we have v lineages in t generations before present time [68]:

Puv(t) =
u∑
j=v

e−(j
2)t (2j − 1)(−1)j−v

v!(j − v)!(v + j − 1)

j−1∏
y=o

(v + y)(u− v)

u+ y
(2.1)
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2.2.2.2 Multi-Species Coalescent (MSC)

All the previous discussions were related to a single randomly mating

population. But the general framework can be extended to phylogenetic anal-

yses where multiple populations corresponding to multiple species are present

(see Fig. 2.3b). The extension of the coalescent process to multiple species

is known as the Multi-Species Coalescent (MSC) model [69]. The model tree

is a species tree with branch lengths in coalescent units and from each leaf

species si we have sampled ki different individuals. Each branch is modeled

using one instance of the Kingman coalescent process with a fixed population

size. At the speciation events (i.e., internal nodes), the lineages that have not

coalesced yet in the child populations are moved to the parent population and

a new identical process is initiated.

Tracing alleles back in time happens in the following way. Let’s con-

sider two sister species sy and sy and their parent population as shown in

Figure 2.3b. At the terminal branch leading to species sx, we start with kx

individuals at the bottom and trace back the Kingman coalescence for tx gen-

erations (where tx is the length of the branch); during this time, some but

not necessarily all alleles coalesce. When we reach the start of the branch, as-

sume rx ≤ kx branches remain (thus kx−rx coalescent events happened on this

branch). The probability of this scenario can be calculated using Equation 2.1.

A similar process also happens at sy and let’s assume ry alleles remain once we

reach the ancestral node (i.e., ry alleles have not coalesced). These remaining

alleles go back to the ancestral population. Therefore, on the branch above sx
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and sy, we start a new Kingman coalescent process with rx + ry alleles at the

bottom. We repeat this process on all branches until all the alleles coalesce

in the root branch. This model, therefore, assumes independence between co-

alescent histories in different branches of the species tree, given the number

of lineages that go in an out of a branch. The coalescent history represents a

gene tree that evolves inside the species tree. Since the coalescent process is

random, it can lead to various gene trees, some of which can be different from

the species tree, as we next show.

Incomplete Lineage Sorting (ILS): Tracing a lineage through the multi-

species coalescent process can result in various gene trees, as depicted in Fig-

ures 2.3c and 2.3d. When two lineages from sister populations reach the parent

population (in the backwards coalescence tracing) they may or may not co-

alesce in that first ancestral population. When they don’t coalesce, the two

lineages go further back in time to a deeper ancestral populations. At that

more ancestral population, other lineages from other species are also present.

Since mating is random, lineages from these other species have a chance of

coalescing with lineages from one of the two sister species before those two

lineages coalesce with each other. When this happens, gene trees become dis-

cordant with the species tree, and this scenario is called Incomplete Lineage

Sorting (ILS).

Figure 2.3d shows one example of ILS. Here, the lineages from hu-

man and chimpanzee do not coalesce in their ancestral population and go
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further back to the population ancestral to human, chimpanzee, and gorilla.

In that deep ancestral population, the gorilla lineage and the chimpanzee lin-

eage happen to coalesce first and only then this lineage coalesces with the

linage from human. This creates a gene tree where gorilla and chimpanzee are

sister species, unlike the species tree where human and chimpanzee are sisters.

Gene trees inside the species tree: Under the MSC model, each species

tree defines a unique distribution on the gene trees [70]. Thus, for each gene

tree topology, one can compute the probability of observing that topology

among a random sample of gene trees. Moreover, the species tree is uniquely

identifiable from the true distribution of gene trees [70, 71]. Thus, despite the

possibility of having high levels of gene tree discordance, one can still hope

to recover the true species tree given a large enough number of true gene

trees. This task however is not trivial. For example, it has been shown that

for certain shapes and lengths of branches, the most likely gene tree can be

different from the species tree [72] (the so-called anomaly zone). Thus, simply

taking the most frequent gene tree as an estimate of the species tree is not

sufficient. We come back to the question of estimating a species tree given

gene trees in Section 2.3.3.

Species radiations: It is constructive to think about the scenarios that

result in high levels ILS. To produce discordance due to deep coalescence, it is

required that two lineages fail to coalesce in their ancestral population. Recall
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that the time to coalescence is exponentially distributed, with an expected time

equal to the size of the population. Consequently, for two branches to be likely

to not coalesce, we either need to have branches that are short or population

sizes that are large. Population sizes depend on biological organisms of interest

and are in fact in many cases hard to estimate for extinct species. The time

between speciation events depends on the tempo of evolution [73]. Sometimes

speciation events happen quickly and in succession and other times long times

are passed between successive speciation. When many new species evolve

in short spans of time, the chance of ILS increases [74]. For example, such

radiation scenarios have been postulated to have happened for birds [39, 75, 76]

and mammals [77], among other organisms.

Summary: To summarize, gene trees can be discordant with the species

tree for various biological reason. A major biological process that creates

discordance is incomplete lineage sorting, modeled by multi-species coalescent

model. The MSC model defines a unique distribution on gene trees, and a true

gene tree distribution defines a unique species tree. ILS is most likely for short

successive branches in the species tree, commonly found in rapid radiations.

2.3 Phylogenetic reconstruction

Building phylogenies from sequence data has been the subject of much

research in the past few decades [5, 8, 9]. Methods of reconstructing phyloge-

nies are varied in many aspects, including the sources of character data they
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use (morphology [78], sequence data [5], sequence repeat abundance [79], etc.),

biological processes they seek to model (substitutions, indels, ILS, duplication

and loss, etc.), and the methods they use (maximum parsimony, distance-

based reconstruction, Bayesian or maximum likelihood statistical inference,

etc.). While we cannot hope to cover all these diverse methodologies, we cover

the most standard pipeline and we elaborate on parts of the pipeline that are

most closely related to the rest of this dissertation.

Multiple 
Sequence 
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(MSA)

Tree 
reconstruction

81%
TACAATGGCGTTT
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Figure 2.4: Single gene phylogenetic reconstruction pipeline. The
traditional pipeline used for phylogenetic reconstruction is shown. After sam-
ples are gathered from organisms of interest, DNA, RNA, or protein of gene(s)
of interest are sequenced. Results of the sequencing technologies go through
bioinformatic post-processing and sequence data are obtained for genes of in-
terest. The traditional pipeline for phylogenetic reconstruction consists of first
aligning the sequences and then estimating a phylogeny based on the align-
ments. More recently, a new approach has emerged where sequence alignments
and trees are co-estimated.
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Gathering data: The process starts by gathering samples from organisms

of interest, a potentially difficult process that we can willfully ignore as com-

puter scientists. With samples at hand, we need to gather character data.

Modern phylogenetics is mostly based on molecular sequence data, but se-

quencing technologies are varied and sequence data can be gathered in many

different ways. Most commonly, DNA or RNA molecules are sequenced. When

sequencing RNA, we can only gather data from the protein sequencing por-

tions of the genome, and it needs to be understood that protein coding genes

are only a small portion of the genome. To sequence data, we might use tech-

nologies that target specific “marker” genes believed apriori to be particularly

useful for phylogenetic reconstruction. Or, as is becoming more common, we

can try to sequence the entire genome using various next generation sequenc-

ing technologies [44, 45]. These high throughput technologies target the entire

genome or transcriptome (protein-coding regions of the genome) and produce

short error-prone fragments of data that are then bioinformatically assembled

into longer sequences [80]. Error and incompleteness should be expected in

data produced by these technologies.

Pipeline for analyzing a single gene: We describe the pipeline for analyz-

ing a single gene here, and then in Section 2.3.3, discuss how this pipeline can

be extended for analyzing multiple genes. A traditional pipeline has two steps

(see Fig. 2.4): sequences are first aligned to produce a MSA, and then the MSA

is analyzed using a phylogenetic reconstruction tool to create a tree. As we will
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discuss in the next section, this traditional two-step pipeline, like all pipelines

of data analysis, has an important drawback: the quality of alignment can

impact the tree building [15, 81–84]. To address this issue, and a fundamental

dependency between alignment and tree estimation problems [30, 85, 86], re-

searchers have also developed an alternative approach where alignments and

trees are co-estimated in a single analysis.

We next provide some background information about MSA methods

and tree reconstruction methods, and then move on to describe how multiple

genes can be used for phylogenetic reconstruction.

2.3.1 Multiple Sequence Alignment (MSA)

Reconstructing multiple sequence alignments is one of the most basic

tasks in computational biology, with application to predicting the structure

and function of RNAs and proteins and estimating phylogenies. Many methods

have been developed for aligning multiple sequences (see [28, 29, 50]), and some

such as ClustalW [87], Muscle [88], and MAFFT [89, 90] are in widespread use.

The goal of MSA is to add gaps to sequences such that all letters in the same

column are homologous; i.e., have evolved from a common ancestor through

substitution processes.

MSA tools are generalizations of the simpler problem of pairwise align-

ment [91, 92]. Pairwise alignment algorithms use dynamic programming to

optimize a score that rewards sequence similarity and penalizes gaps. Opti-

mizing such a score for more than two sequences becomes NP-hard [27], even
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when a fixed phylogenetic tree is used to guide the alignment [26], and so

heuristic approaches are required. The tools mentioned before are all heuris-

tics for solving the MSA problem. Many other heuristics also exist, including

OPAL [93], T-Coffee [94], FSA [95], and ProbCons [96].

Multiple sequence alignment tools typically use a guide tree that they

somehow compute from the sequence data, and use the guide tree to compute

an alignment of all sequences. For example, progressive alignment methods

use the tree as a guide to progressively add sequences to a growing alignment,

each time using pairwise alignments for adding sequences. Iterative alignment

tools use a similar approach, but they also update the alignments of already

added sequences as they progress.

Alignment and tree co-estimation: A main concern in multiple sequence

alignment is the interdependency between alignments and trees. Methods of

reconstructing phylogenetic trees require alignments. But at the same time, an

alignment is an evolutionary statement of homology, and therefore can be done

well only when the phylogeny is known [84]. Considering this dependency, a

method called PRANK [97] and its newer version, PAGAN [98], assume that

the phylogeny is known and make sure that the insertions and deletions added

to sequences are compatible with the phylogeny. For example, they do not

allow two phylogenetically independent insertions at the same site. These

methods, however, assume the correct phylogeny is known and they can be

sensitive to the quality of the tree used. This limits their applicability to
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phylogenetic reconstruction.

More recently, co-estimation methods have been developed to esti-

mate alignments and trees simultaneously. Some of these methods use sta-

tistical models of evolution that incorporate both indels and substitutions

(e.g., [99–102]). Most of these methods use Bayesian Markov Chain Monte-

Carlo (MCMC) [103] to find the probability distribution of alignment/tree

pairs according to those models [85, 101, 104]. Some of these methods, such as

Bali-Phy [105], are implemented in available software programs that have been

optimized to be able to handle datasets with moderate size (tens of sequences,

and perhaps even more).

SATé: The extremely large space of alignment/tree pairs makes Bayesian co-

estimation methods limited in the size of the dataset they can analyze. More

recently, a tree/alignment co-estimation method called SATé was developed

with the goal of being able to accurately analyze very large datasets [30, 31].

SATé and its newer version SATé-II iterate between tree estimation using

Maximum Likelihood (ML), described in Section 2.3.2, and alignment estima-

tion using divide-and-conquer. The current tree is used in each iteration to

divide the set of sequences into smaller subsets of sequences that are likely

to be close together in the true tree. Each subset is then aligned using the

best available method that can handle these smaller datasets with high accu-

racy (e.g., MAFFT). Alignments obtained on these subsets are then merged

together using methods for aligning two alignments (e.g., OPAL [93]). The
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exact strategy for dividing the dataset into sub-alignments and for merging

subsets is different between SATé and SATé-II. Since SATé is heavily used

in our next chapter, we defer a more detailed description of its algorithm to

Chapter 3.

2.3.2 Tree reconstruction

Tree reconstruction techniques can be divided into four categories:

distance-based methods, Maximum Parsimony (MP), Maximum Likelihood

(ML), and Bayesian methods. In their most standard form, these methods

take into account the substitution process but ignore other biological processes

such as indels. In other words, the standard forms of these methods treat gaps

as missing data. However, it should be noted that most of these method can

be potentially extended to consider more complex scenarios of evolution.

In the rest of this section, we provide more details about each of these

classes of methods, but before doing that, it is constructive to first introduce

the concept of statistical consistency.

Statistical consistency: A method designed to estimate a particular value

from data is called statistically consistent when as the number of data points

increases, the estimates converge to the “true” value. When data are generated

using a statistical generative model, then statistical consistency of a method

of inference means that its estimates of parameters of the model converge in

probability to the true parameters as the amount of data is increased.
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2.3.2.1 Maximum parsimony

MP seeks to find a tree that explains the observed data with the fewest

possible substitutions. Given a tree and character data, one can in time that is

polynomial in the number of species assign character states to ancestral nodes

such that fewest number of substitutions are required along the branches of

the tree. The problem of finding the MP tree is NP-hard [106], but various

heuristic solutions for finding an approximate solution have been developed

and implemented in available software [107–110]. The justification of finding

the maximum parsimony criteria for reconstructing trees is that absent of any

other information, we try to invoke fewest possible character changes along

the branches of the tree. When characters of interest change very rapidly, one

expects to see many character changes along the tree, and thus seeking the

maximum parsimonious tree is not easily justifiable [111].

2.3.2.2 Maximum likelihood

As mentioned earlier, various models of sequence evolution have been

developed through the past decades [47, 112–114] (see for example our discus-

sion of GTR under Section 2.1.2). These models provide a way of calculating

the probability of observing character data given a model tree (i.e., the likeli-

hood of the tree) [7]. Assuming a model of sequence evolution has generated

the data, a natural way to reconstruct phylogenetic trees is to find the tree that

has the maximum likelihood (ML) (i.e., data have the highest probability if we

assume that tree has generated them). Finding the ML tree is NP-hard [115],
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but if it could be solved, the result is statistically consistent assuming the data

is generated under the model is used for ML. In contrast, MP is not statis-

tically consistent data is generated under one of common models of sequence

evolution such as GTR [111].

Solving ML has been the subject of extensive research and many heuris-

tic approaches have been developed to find an approximate ML tree [7, 116–

119]. ML tools perform a heuristic search, usually using hill-climbing methods:

they start from an initial tree, calculate its likelihood by optimizing free pa-

rameters, perturb the tree in small ways and recalculate likelihood, and accept

changes that improve the likelihood until they reach some local optima. Some

of the most widely used tools for ML tree estimation include RAxML [120],

GARLI [117], PhyML [121], and FastTree-II [119]. Some ML methods tools

are optimized to be fast and scalable; in particular, RAxML can use paral-

lelism efficiently, and FastTree has been successfully used to estimate very

large trees with many thousands or even a million sequences [119, 122]. There

is some evidence that FastTree might be as accurate as RAxML while running

in a fraction of time [123].

2.3.2.3 Bayesian estimation

Bayesian methods, just like ML, use models of sequence evolution,

but instead of finding a single tree, they estimate a probability distribu-

tion on trees. Bayesian methods are typically based on MCMC searches in

the tree space, and some widely used Bayesian tools include MrBayes [124],
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RevBayes [125], and BEAST [126]. Bayesian methods tend to be slower than

ML, as convergence to the correct probability distribution can require a long

running time.

2.3.2.4 Distance-based

A fourth category of tree reconstruction techniques relies on first com-

puting a distance between all pairs of leaves, and then using these distances

to compute a tree. Many different methods (e.g., Neighbor-Joining [127]) and

many ways of calculating distances have been developed. Some combinations

of distance measurement and distance-based algorithms have been shown to

be statistically consistent under statistical models of sequence evolution [128].

2.3.2.5 Branch support

Inferring evolutionary histories is not easy and except in experimental

settings where the evolutionary history is known [129], we cannot ever have

full confidence in a phylogenetic tree. Some level of error should be expected in

the trees produced by any tree reconstruction method. It is therefore desirable

to not only estimate a tree, but also compute a measure of confidence for the

tree produced and individual branches of the tree. Bayesian methods readily

provide such measures of support as they produce a distribution of trees. For

other methods, the most commonly used technique for estimating support is

bootstrapping [130, 131].

The most typical bootstrapping procedure (non-parametric bootstrap-
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ping) creates a large number of replicate datasets, each consisting of randomly

resampled columns of the original character data, with as many columns as

the original data (resampling is with replacement). Each bootstrap replicate is

analyzed separately, and the idea is that these bootstrap replicates provide a

sample of the possible universe of the data we could have seen. The frequency

of seeing each branch of the estimated tree in the set of bootstrap replicates

is then taken as a measure of support for that branch.

2.3.3 Analyzing multiple genes

Analyzing various genes enables us to infer potentially discordant his-

tories specific to individual genes, which might be of biological interest for

various reasons such as inferring gene function [132]. However, estimating the

species tree also often requires analyzing multiple genes for two fundamental

reasons. On the one hand, any particular gene would include a limited num-

ber of sites, and therefore can provide only limited phylogenetic signal. Using

multiple genes increases the amount of data and increases statistical power.

On the other hand, since gene trees can be different from the species tree,

we cannot be confident that even a completely correct reconstruction of the

gene tree matches the species tree. In fact, under conditions conducive to high

levels of gene tree discordance, any random gene tree can be very different

from the species tree. To be able to infer the species tree, one has to be able

to analyze many genes and take into account their overall distribution.

Pipelines for multi-gene phylogenetic reconstruction are varied, but
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broadly fall into three categories: concatenation, summary methods, and co-

estimation, as shown in Figure 2.5. As emphasized before, here we are con-

cerned only with pipelines that treat ILS as a source of incongruence and we

assume that our data consist only of orthologous genes.
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CTGAGCATCG  
CTGAGC-TCG  
ATGAGC-TC-  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Figure 2.5: Multi-gene phylogenetic reconstruction pipelines. Con-
catenation: all gene data are concatenated into one supermatrix which is then
analyzed using the phylogenetic reconstruction method of choice, such as ML.
Summary methods: gene trees are estimated for all each genes separately (e.g.,
using ML) and then the set of these estimated gene trees is used as input to a
summary method to produce the species tree. Co-estimation: gene trees and
the species tree are all co-estimated in one statistical inference.

2.3.3.1 Concatenation

In the most basic pipeline, researchers simply concatenate all the data

into one large supermatrix of data, and analyze the supermatrix in one in-

ference. Such a concatenation approach takes full advantage of the statistical

power that a larger dataset can provide, and some authors initially argued
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that it can be successfully utilized to solve longstanding difficult phylogenetic

problems [12]. A major drawback of this approach is that it completely ignores

gene tree discordance.

As noted before, here, we assume true gene trees (as opposed to inferred

gene trees that are reconstructed with some error) can be different from the

species tree only due to ILS. Under this assumption, it has been shown in

simulation studies that concatenation can reconstruct the incorrect species

tree (e.g., see [32, 133, 134]), even with high support [135]. An intuitive way

to see why concatenation can result in wrong species trees is to recall that

in anomaly zone, the most likely gene tree is different from the species tree.

Thus, the idea that the dominant signal across various genes should give the

species tree is not justified. Recently, it has been mathematically proved that

concatenation using ML (CA-ML) is statistically inconsistent and in fact can

be positively misleading [136]; thus, it can produce the wrong tree, and as the

amount of data is increased, it can converge to the incorrect tree with high

probability. It’s worth noting that these proofs of inconsistency are for the case

where a single set of branch lengths and model parameters are allowed to be

inferred in the ML analysis (i.e., an unpartitioned analysis). The consistency

of CA-ML is unknown when ML analysis is partitioned such that one topology

is estimated but branch lengths and other model parameters are allowed to be

estimated separately for each gene (i.e., a partitioned analysis)
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2.3.3.2 Summary methods

Coalescent-based species tree estimation: Under the MSC model, a

probability distribution on gene trees defines a unique species tree, as explained

earlier. This basic observation opens up the path to a different approach to

species estimation [137]. When a large enough number of genes have been

sequenced, one can try to estimate the gene tree distribution and use this

distribution to estimate the species tree under the MSC model. The true

gene tree distribution gives the probability of observing each gene tree when

the species tree is known. The empirical gene tree distribution is simply the

percentage of times a particular gene tree has been observed. With a large

number of genes, and if we are able to reconstruct the gene trees correctly,

the law of large numbers can be invoked to argue that the empirical gene

tree distribution converges in probability to the true species tree estimation.

Besides the need to have a large number of genes, the two major challenges

are estimating gene trees correctly and summarizing them accurately. Two

coalescent-based pipelines have emerged for reconstructing species trees from

gene tree distributions, and their main difference is their approach to gene tree

estimation.

In the simpler pipeline, which we call summary methods (others have

used other terms such as shortcut coalescent methods [34]), gene trees are first

reconstructed independently from one another. This produces a collection

of gene trees, which are then summarized to produce the species tree. The

summarization step requires a technique that takes as input a set of gene trees
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and produces a species tree.

Many summary methods have been developed to estimate a species tree

from gene trees. The oldest approach, minimizing deep coalescence (MDC) [18,

138–140], was based on the parsimony principal, but is not statistically consis-

tent [141]. Various statistically consistent methods have also been developed.

Some of these consistent methods use only gene tree topologies, and they

mostly use simple distance-based techniques with distances computed from

gene tree distributions (e.g., STAR [142], STELLS [143]). More recently, a

more sophisticated approach called MP-EST has been developed that finds

the maximum pseudo-likelihood species tree given the rooted gene trees [134].

Another class of methods (e.g., GLASS [144] and STEM [145]) uses both gene

tree topologies and branch lengths to estimate the species tree. Most of these

methods use rooted gene trees, but statistically consistent methods that can

use unrooted gene trees have also been developed (e.g., NJst [146] and the

population tree from BUCKy [133]).

All these summary methods (except for Bucky-pop) get as input one

tree per gene, and they all provide statistical guarantees of consistency un-

der the MSC model only when the input collection of gene trees converges in

probability to the true gene tree distribution in limit. Since the gene trees

provided to these methods are all inferred, these statistical guarantees can-

not predict what happens in practice where gene tree estimation introduces

error [147]. Moreover, the gene trees are all inferred independently, and this

independent inference means that each gene tree inference is done using rather
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limited amounts of data. As a result, high levels of gene tree error are to be

expected in many cases [34]. As we will argue in this dissertation, this is a

major shortcoming that needs to be addressed.

2.3.3.3 Co-estimation of gene trees and species trees

basic limitation of summary methods is the independent estimation of

gene trees. A more justified approach is to co-estimate gene trees and the

species tree. To see this, it is helpful to think about the model that we are

assuming generates the data. The data are generated in two steps. First, the

species tree generates a set of gene trees according to the MSC model and

then each gene tree independently generates sequence data according to some

model of sequence evolution, such as GTR. In this generative process, all the

gene trees are conditionally independent given the species tree but they are

not completely independent. In other words, knowledge about one gene tree

does have an impact on our belief about what other gene trees might look like.

Thus, ideally gene trees have to be all co-estimated.

Co-estimation methods use statistical frameworks to infer gene trees

and the species tree produced under the two-step model described above; thus,

they co-estimate all gene trees and the species tree in one statistical inference.

Co-estimating gene trees has the advantage that the estimation of each gene

tree is affected by more than just limited data available from that gene. Sim-

ulation studies have demonstrated that co-estimation methods can estimate

gene trees with much better accuracy than independent estimation of gene
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trees [148, 149]. However, this approach also faces limitations. Because all the

gene trees, and the species tree, are inferred in one analysis, the parameter

space that needs to be explored becomes extremely large and so co-estimation

approaches are computationally demanding.

Two main co-estimation methods are BEST [150] and *BEAST [151].

These methods are both based on a Bayesian MCMC search that simulta-

neously samples the probability distributions of all gene trees. Despite their

high accuracy [36, 152], these methods have serious limitations in terms of the

dataset size they can analyze. For example, researchers have reported diffi-

culty in running these methods on biological datasets (e.g., [16]) or to run

them to convergence for relatively small simulated datasets (e.g., 11 species

and 100 genes [17]). Thus, the application of these methods in practice re-

mains limited, although some recent works (including some by us [153]) have

tried to increase their applicability in practice.

BUCKy [133, 154] is a method that does not neatly fit into our two

categories of summary methods or co-estimation. BUCKy takes as input a

distribution for each gene tree, and these distributions are estimated indepen-

dently. But instead of using these distributions directly, BUCKy estimates

what it calls concordance factors for various genes and uses these to estimate

the species tree. This process can be viewed as using all gene tree distributions

collectively to “correct” gene tree distributions. In that sense, BUCKy can be

viewed as co-estimating gene trees and the species tree. Like co-estimation

methods, BUCKy has been shown to be robust to estimation error in indi-
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vidual genes [148, 155] but it also is computationally intensive [148]. Note

that after concordance factors are computed BUCKy has two ways of summa-

rizing them into the species tree, and only one of these two approaches (the

population tree) is statistically consistent under MSC.

In addition to these two commonly used coalescent-based pipelines,

various new pipelines have been developed in the past few years, but these

are less commonly used. For example, some methods (e.g., SNAPP [156] and

SVDquartets [157]) seek to estimate the species tree directly from the data,

without computing gene trees. These methods are promising, but they are in

their infancy, and are not the subject of our focus in this dissertation.

2.4 Method evaluation

Throughout this dissertation, we use experimental studies to evaluate

various methods. Our reported results will be based on both simulated and

biological datasets. In simulation experiments, we generate synthetic data

using models of sequence evolution with various procedures that we will ex-

plain. The data are then analyzed using various methods that estimate the

MSA and reconstruct the phylogeny. In these experiments, since the ground

truth is known, we can easily measure the error in our reconstructions using

the metrics we describe below. For biological datasets, the truth is usually

not known, but we use various hand curated reference alignments and trees or

knowledge from the literature to judge the quality of the results produced by

various methods.
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2.4.1 Comparing two phylogenies

Given two phylogenies, there are various ways to compare them to get a

score of their similarity. Some of the most standard measures of tree similarity,

used throughout this dissertation, are defined here. Not all measures of tree

similarity are symmetric. In the definitions below, we compare a reference tree

to an estimated tree, both on the same exact set of leaves.

False Negative (FN) rate: The FN rate is the proportion of bipartitions in

the reference tree that are not found in the estimated tree. For example,

two binary trees on 15 species each have 12 nontrivial bipartitions. If 9 of

those 12 bipartitions are present in both trees, the FN rate is 3
12

= 25%.

This metric is also known as the missing branch rate.

False Positive (FP) rate: The FP rate is the proportion of bipartitions in

the estimated tree that are not in the reference tree.

Robinson-Foulds (RF) distance: This is the total number of branches that

are different between the two trees [158]. Normalized RF (or RF rate)

is the proportion of branches that are different between the two trees,

and is simply the mean of FN and FP rates. When both trees are fully

bifurcating, FN rate, FP rate, and RF rate are all equal. RF is the most

commonly used metric for comparing trees; however, this metric is not

appropriate when the reference tree is not fully bifurcating.
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When the two trees are not on the same exact set of leaves, other

measures of similarity can be used (e.g., compatibility [159]) and we define

these metrics where we use them.

2.4.2 Comparing two alignments

The following standard metrics are used for comparing two alignments.

The comparisons are between a reference alignment and an estimated align-

ment.

The SP-score: the percentage of all pairwise homologies in the reference

alignment recovered in the estimated alignment.

The modeler score: the percentage of all pairwise homologies in the esti-

mated alignment that are found in the reference tree.

Pairs score: average of the SP-score and the modeler score (averaging these

two scores amounts to penalizing false positive and false negative ho-

mologies equally).

TC score: the number of columns that are recovered entirely correctly in the

estimated alignment.

Alignment accuracy is measured using a software we developed called

FastSP [160].
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Summary: To summarize, when data from many genes are available, one

can concatenate the data and ignore gene tree discordance, or can try to

reconstruct the species tree using the multi-species coalescent (MSC) model.

Two coalescent-based pipelines are in common usage: summary methods and

co-estimation methods. Summary-based methods first estimate gene trees

separately and then summarize them, and co-estimation methods reconstruct

all gene trees and the species tree in a single statistical inference.
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Chapter 3

PASTA1

Multiple sequence alignment (MSA) is a basic part of bioinformatics,

used in many analyses such as predicting the structure and function of RNAs

and proteins and estimating phylogenies. As described in Section 2.3.1, an

MSA is an evolutionary statement of homology (i.e., similarity due to common

decent) and is created by adding gaps to sequences such that all the sequences

have the same length. The goal is to add these gaps where insertions and

deletions have happened, such that letters in each column are all homologous.

In this chapter, we introduce PASTA, a new multiple sequence align-

ment algorithm. PASTA is an extension of SATé [30, 31], but is more scalable

and accurate. We evaluate PASTA on biological and simulated data with up

1 Parts of this chapter have appeared in the following papers:

• Siavash Mirarab, Nam Nguyen, and Tandy Warnow. PASTA: ultra-large multiple
sequence alignment. In Proceedings of the International Conference on Research in
Computational Molecular Biology, pages 177–191. Springer International Publishing,
2014

• Siavash Mirarab, Nam Nguyen, Sheng Guo, Li-San Wang, Junhyong Kim, and Tandy
Warnow. PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and
Amino-Acid Sequences. Journal of Computational Biology, 22(05):377–386, 2015

In both paper, SM and his supervisor, TM, designed the method, designed the studies,
and wrote the papers (with comments from the other authors), and SM implemented the
methods. SM and NN ran experiments. SG, LW, and JK produced the RNASim datasets
and contributed to writing.
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to a million sequences, and show that PASTA produces highly accurate align-

ments, improving on the accuracy and scalability of the leading alignment

methods. Trees estimated on PASTA alignments are also highly accurate –

slightly better than SATé trees, but with substantial improvements relative to

other methods. Finally, PASTA is highly parallelizable and requires relatively

little memory.

We start by giving motivations for developing a new method in Sec-

tion 3.1 and then present background information about SATé in Section 3.2.

We next describe the algorithmic details of PASTA in Section 3.3. We present

the experimental setup in Section 3.4 and results in Section 3.5, and finish

with summary and directions for future research in Section 3.6.

3.1 Motivation

Despite the large number of multiple sequence alignment tools (see Sec-

tion 2.3.1), only a handful of the many MSA methods are able to analyze large

datasets with 10,000 or more sequences [15]. Some of these scalable methods

have focused on relatively slow evolving sequence datasets and have shown

in performance studies that they can provide good accuracy, as measured by

traditional alignment scoring criteria (sum-of-pairs or column scores). For ex-

ample, Clustal-Omega has been recently developed and used for aligning large

protein family databases [162]). Other methods that can analyze datasets

with 10,000 sequences or more include Muscle [88, 163], Mafft-Parttree [164],

Mafft-profile [165], and SATé-II [31]. SATé and SATé-II, in particular, focus
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on phylogeny estimation and datasets with high rates of evolution. SATé-II

was able to produce sufficiently accurate alignments of sequence datasets that

evolve under relatively high rates of evolution with up to 28,000 sequences [31].

Little is known about alignment accuracy and its impact on tree ac-

curacy for datasets with more than few tens of thousands of sequences. Yet,

phylogenetic analyses of very large datasets are necessary and important for

answering many downstream biological questions. For example, new methods

of studying co-evolution of sites in a protein alignment assume that accurate

alignments of tens of thousands of sequences can be constructed [166].

Phylogenetic analyses of datasets containing more than 100,000 se-

quences are also being attempted. One important reason for reconstruct-

ing phylogenies of very large datasets is increasing taxon sampling, a well-

established factor that impacts phylogenetic accuracy [13, 167–169]. For ex-

ample, the iPTOL project [170] intends to produce trees with hundreds of

thousands of plant species. A second situation where estimating trees with

hundreds of thousands of leaves is necessary is analyzing genes that evolve

with duplications (called “gene families”). Gene duplication is very common

in some organisms, such as plants; genes with more than a hundred differ-

ent copies per species are not uncommon among plants. For this reasons,

studying the evolution of large “gene families”, as attempted by the Thou-

sand Transcriptome project (1KP) [40], requires estimating very large gene

trees, sometimes with more than 100,000 leaves even when only a thousand

species are sequenced.
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3.2 Background: SATé-II

Since PASTA uses many of the algorithmic ideas of SATé and SATé-

II, we start by describing the SATé-II algorithm. SATé-II uses an iterative

strategy, and each iteration involves many steps. The first iteration begins

with a starting tree, and subsequent iterations begin with the tree estimated

in the previous iteration. Each iteration has the following steps:

1. The guide tree is used to divide the set of sequences into smaller subsets.

In SATé-II, this decomposition is based on one of two strategies, both

operating on an unrooted tree, and both parameterized by a maximum

subset size M :

Centroid edge decomposition: The branch that breaks the tree in

two equal halves (or comes closes to breaking the tree into two

equal halves) is the centroid branch. The centroid edge decompo-

sition finds the centroid branch, divides the tree into two subsets

by removing that branch, and then recurses on each half. The

recursion stops when a subset has fewer leaves than M . Centroid

decompositions makes subsets that are all roughly equal in size, and

each subset consist of sequences that are close in the phylogenetic

tree.

Longest edge decomposition: This decomposition strategy is similar

to the centroid decomposition, except, in each step, the longest

branch is removed from the tree. This decomposition can result in
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varied subset sizes, but makes sure that each subset consists entirely

of sequences that are evolutionary close to each other.

One of these two decomposition strategies is used to divide the set of

sequences into subsets, each with at most M sequences.

2. MSAs are independently estimated for every sequence subset using an

external method of choice. By default, SATé-II uses Mafft [89] with

the L-INS-i settings, which is based on the iterative refinement method

incorporating local pairwise alignment information. This step produces

an MSA for each subset of sequences.

3. Subset alignments are merged together hierarchically and according to

the reverse order of edge removals in the decomposition step (see Fig. 3.1a).

For aligning two alignments, various tools exist, and SATé-II uses OPAL [93]

(or Muscle [88] if the dataset is very large).

4. Once the alignment is estimated, a new ML tree is estimated using

RAxML, and this tree is used as the guide tree for the next step.

3.3 PASTA’s algorithm

PASTA is an extension of SATé-II that uses the same iterative strategy.

PASTA differs from SATé-II mainly in how it merges the subsets, but also in

how the starting tree is computed, and some other minor design changes. As

in SATé, PASTA uses the centroid edge dataset decomposition technique and
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Figure 3.1: Merge step of SATé-II and PASTA. (a) The centroid edge
decomposition used in SATé-II first divides taxa to two subsets: A ∪ B ∪ C
and D∪E, and then each subset is divided further until the dataset is divided
into subsets A,B,C,D, and E. The order of centroid edge removals defines
the hierarchy shown on the right, which is used for merging alignments. (b)
In PASTA, a spanning tree is first computed from the guide tree such that
each node of the spanning tree is a subset. On each branch of the spanning
tree OPAL is used to merge two alignments and produce an alignment on the
union of two subsets (we call these Type 2 sub-alignments). These type 2 sub-
alignments are then merged together using transitivity to produce an MSA on
all sequences.
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computes MAFFT-L-INS-i [89] alignments on the subsets. While SATé uses

Opal to hierarchically merge all the subset alignments into a single alignment,

PASTA uses Opal only to merge pairs of adjacent subset alignments, produc-

ing overlapping alignments. The resulting collection of MSAs overlap with

each other and have also other properties (described below) that enable us to

merge these overlapping MSAs using transitivity. Thus, PASTA treats each

resultant alignment as an equivalence relation and uses transitivity to merge

these overlapping alignments (see Fig. 3.1b). We start by describing what we

mean by transitivity and how it can be used to merge two alignments. We

then describe the algorithmic steps of each iteration of PASTA, and finally

show running time analyses of PASTA’s merging step.

3.3.1 Transitivity merge of two alignments

Each MSA defines an equivalence relation on the letters within its se-

quences, so that two letters are in the same equivalence class if and only if they

are in the same column [160]. For example, in Figure 3.2 (middle box in the

bottom row), letters A, A, T, and T in the same column are considered equiv-

alent, and the alignment creates an equivalence class. Given two overlapping

alignments A1 and A2, we say they are compatible, if they induce identical

equivalence classes on their shared sequences. For example, the two align-

ments shown in the last box of the bottom row of Figure 3.2 induce identical

alignments for the shared sequences (in blue) and therefore are compatible.

Given two overlapping compatible alignments, we define their transi-
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tivity merge, as follows. We say that a and b are in the same equivalence class

for the merged alignment if one of the following is true: (1) they are in the

same equivalence class in either A1 or A2, or (2) there is some letter c such

that a and c are in the same equivalence class in one alignment, and b and c

are in the same equivalence class in the other alignment. In other words, we

use transitivity to define the merger of two alignments (Fig. 3.2; bottom right

corner). The resulting equivalence relation defines an MSA on A1 ∪ A2, and

is by construction compatible with both original alignments. We call this the

transitivity merger and we can show that:

Corollary 3.3.1. If we extract two overlapping sub-alignments A1 and A2

from an alignment A, then the transitivity merger of A1 and A2 will not include

any false positive homologies (i.e., homologies not found in A) but can include

false negative homologies (i.e., homologies in A that are not in the merger).

Proof. It’s easy to see that transitivity merger does not produce false positives

(all relationships in the merger are either in the two sub alignments and hence

true, or are mathematically inferred through transitivity). To see the possibil-

ity of false negatives, imagine that two letters are homologous in A, but one

of them is in A1 only and the other in A2 only, and the remaining letters in

that column are gaps (e.g., see the second column of the alignment in Fig. 3.2,

bottom row middle box). Since the shared sequences between A1 and A2 have

only gaps, transitivity cannot infer this homology, and therefore, the merger

will have a false negative (e.g., see Fig. 3.2; bottom right corner).
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Computing the transitivity merger of two alignments is easy. We sweep

the columns of both alignments simultaneously from left to right. If the two

columns in A1 and A2 share a common letter (e.g., the ith character of the jth

sequence) we simply merge the two columns into one column in the output;

otherwise, the two columns have to have only gaps for the shared sequences,

and these columns are added to the output alignment separately as two dif-

ferent columns (adding gaps where necessary).

3.3.2 Steps of a PASTA iteration

In the remaining of this section, we use the following notation:

S: The input set of sequences

si: A sequence in S (i.e., si ∈ S)

Si: A subset of sequences in S (i.e., Si ⊂ S); S1, . . . , Sm partition S.

M : Maximum subset size (user input); thus, |Si| ≤M for 1 ≤ i ≤ m

A or Ai: an alignment on S or Si, respectively

T : A tree on the input set of sequences S

T ∗: A spanning tree with nodes representing subsets (i.e., nodes labelled Si)

3.3.2.1 Six PASTA Steps

In PASTA, each iteration involves six steps (see Fig. 3.2). We provide a

description of these steps in their default settings, in addition to a description
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of how the starting alignment is built. All the numeric parameters mentioned

below are just defaults and can be changed as desired by the user.

Step 0 - Default starting tree: First, we compute an alignment AB of a

random subset SB of 100 sequences from S. We use HMMER [171, 172] to

compute an Hidden Markov Model (HMM) that represents AB, and use this

model and the hmmalign tool to align all sequences in S − SB one by one to

AB. This approach, which is the equivalent of a new alignment tool called

UPP [173] with no decomposition, generates an alignment on S. We use this

alignment and construct an ML tree using FastTree-II [119]. If the alignment

step fails to produce an alignment on the full set of sequences (which can

happen if HMMER considers some sequences unalignable), we randomly add

the unaligned sequences into the tree.

Step 1 - Decompostion: We divide the set of sequences S into disjoint

sets, S1, . . . , Sm, each with at most 200 sequences, using the current guide tree

T and the centroid decomposition technique described above. The centroid de-

composition procedure divides the set of leaves into subsets by a successive set

of branch removal operations. Each time a branch is removed, the remaining

leaves that go into the same set are connected to each other, but disconnected

from the other leaves. When we stop dividing, each subset corresponds to

a subtree of T that connects all leaves in that subset but includes no other

leaves. The following corollary follows:
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Corollary 3.3.2. Let T be the guide tree and let S1, S2, . . . Sk be the subsets

of taxa formed as a result of the centroid or longest edge decomposition. Then,

if a node v in the guide tree is on the path between two nodes from the same

subset (i.e., between sa ∈ Si and sb ∈ Si), then it cannot also be on the path

between any two nodes belonging to a different subset.

Step 2 - Spanning tree: Given the current tree T , we compute a spanning

tree T ∗ on the subsets S1, S2, . . . , Sm as follows. First we label every leaf sx of

T by the name of the subset it belongs to (i.e., sx is labelled Sy iff sx ∈ Sy).

For every node v in T that is on a path between two leaves labelled Sy, we

label v by Sy as well. Note that by Corollary 3.3.2, each node can be assigned

only one label by this procedure because it can be only on one path between

two leaves of the same label. However, it is possible for some nodes to be

on no such path, and these will be left unlabelled. To label these remaining

nodes, we propagate labels from nodes to unlabelled neighbors (breaking ties

by using the closest neighbor according to branch lengths in the guide tree)

until all nodes are labelled. We then collapse edges that have the same label

at the endpoints. The result is a spanning tree on S1, S2, . . . , Sm.

Step 3 - Subset alignment: We compute an MSA for each Si using an

existing MSA tool and refer to each such alignment as a Type 1 sub-alignment.

By default, we use Mafft [89] with the L-INS-i algorithm to produce these

alignments. L-INS-i is the most extensive version of Mafft and is based on
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an iterative refinement method incorporating local pairwise alignment infor-

mation in its iterations. Experiments on SATé and SATé-II have found this

version of Mafft to work better than alternative alignment methods for small

datasets [30, 31].

Step 4 - Pairwise merge: Every node in T ∗ is labelled by an alignment

subset for which we have a Type 1 sub-alignment from Step 3. For every

edge (v, w) in T ∗, we use OPAL [93] to align the Type 1 sub-alignments at

v and w; this produces a new set of alignments, each containing at most 400

(more generally twice the maximum subset size) sequences, which are called

Type 2 sub-alignments. We require that the merger technique used to compute

Type 2 sub-alignments should not change the alignments on the Type 1 sub-

alignments; therefore,

Corollary 3.3.3. Type 2 sub-alignments induce the Type 1 sub-alignments

computed in Step 2, and are all compatible with each other and with Type 1

sub-alignments.

In other words, Type 2 sub-alignments retain all homologies in each of

the two Type 1 sub-alignments and only add homologies between two Type 1

sub-alignments. More formally, when we merge two Type 1 sub-alignments Ai

and Aj, we require that every homology in Ai and Aj be present in the Type 2

sub-alignment produced, and also require that every homology in the resulting

Type 2 sub-alignment is either defined by Ai or by Aj, or is a homology between

a letter si ∈ Ai and a letter sj ∈ Aj.
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Step 5 - Transitivity Merge: Here we briefly describe how this step works,

but complete details are given in Section 3.3.2.2. We use the spanning tree to

merge all the Type 2 sub-alignments through a sequence of pairwise transitivity

mergers into a multiple sequence alignment on the entire set of sequences. Note

that each subset is part of at least one Type 2 alignment and each Type 2

alignment overlaps with at least one other Type 2 alignment (the adjacent

edge in the spanning tree); thus, the final transitivity merger produces an

alignment that includes all the sequences.

Step 6 - Tree estimation: If an additional iteration (or a tree on the

alignment) is desired, we run FastTree-II to estimate a maximum likelihood

tree on the MSA produced in the previous step. We remove all columns that

have more than 99.9% gaps in the alignment obtained in Step 5; this filtering

is used to improve the running time of the tree estimation step and has little

impact on the eventual tree estimated from the data.

The six steps described above create one iteration of PASTA. The tree

produced at the end is used as the guide tree for the next step. By default,

PASTA runs for three iterations, but users can choose other stopping criteria.

3.3.2.2 Computing the transitivity merge

Recall that every node v in the spanning tree T ∗ computed in Step

2 is labelled by a subset Sv (i.e., a subset of the input sequence dataset on

which we have a Type 1 sub-alignment Av). In addition, during Step 4, we
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computed Type 2 sub-alignments for every pair of Type 1 sub-alignments

whose alignment subsets are adjacent in the spanning tree T ∗. We now define

a label LV(v) for every vertex v and LE(e) for every edge e, as follows. For

a node v in T ∗, we define its label to be a set of subsets, and initially we set

LV(v) = {Sv} where Sv is the subset that node v corresponds to. For edge

e = (v, w) in T ∗, we define its label to be a Type 2 sub-alignment and we set

LE(e) = Avw where Avw is the Type 2 sub-alignment we calculated in step 4

on Sv ∪ Sw. For each node v, we also always keep an alignment Av on the

union of all the subsets in LV(v).

We use T ∗ to guide a sequence of pairwise transitivity mergers, result-

ing finally in an MSA for the full set of sequences. The high-level algorithm

is shown in Algorithm 3.1.

Algorithm 3.1 - Transitivity merge by spanning tree.
ContractTreeEdge contracts and edge in the tree and return the new
node created through edge contraction. mergeAlignments is defined below.

function merge(T ∗)
while |Nodes(T ∗)| > 1 do

e = (v, w)← an arbitrary edge in T ∗

u← ContractTreeEdge(T ∗, e)
Au ← mergeAlignments(Av, Aw, LE(e))
LV(u)← LV(v) ∪ LV(w)

We contract branches of the spanning tree one by one until there is

only one vertex left (see Fig. 3.2, step 5). Contracting an edge e = (v, w)

creates a new vertex u with a new label LV(u) = LV(v)∪LV(w), but does not
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modify the labels at the edges. The alignment associated with u is a merger

of overlapping compatible alignments defined by e and its two endpoints (as

computed by the mergeAlignments function defined below). Thus, the series

of edge contractions corresponds to a series of transitivity merge operations.

Since the results of applying multiple transitivity mergers does not depend

on the order, the resulting alignment does not depend on the order in which

branches are processed.

The following Invariants are maintained throughout Algorithm 3.1:

Invariant 1: EveryAv induces identical alignments as the Type 2 sub-alignments

on pairs of subsets in LV(v) and contains no homologies between se-

quences of two different subsets that cannot be inferred by transitivity

Invariant 2: For every edge e = (v, w) with the label LE(e) = (Si, Sj), we

can assert Si ∈ LV(v) and Sj ∈ LV(w), and we have a Type 2 sub-

alignment Aij for Si ∪ Sj

Invariant 3: For every alignment subset Si, there exists exactly one node v

such that Si ∈ LV(v).

Note that initially these Invariants hold, since all vertices are labelled by

only one alignment subset. Since the label of a new node u is set to the union of

the labels of the two nodes removed, Invariant (3) always holds. Similarly, after

we contract e, we ensure LV(v) ⊂ LV(u), and therefore, if before contraction

Si ∈ LV(v), then after contraction Si ∈ LV(u); it follows that Invariant (2)
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also always holds. To show that Invariant (1) always holds and to finish

the description of the algorithm, we need to describe the mergeAlignments

operation.

mergeAlignments(Av, Aw, LE(e)): By Invariant (2), LE(e) is a Type 2 sub-

alignment Aij on Si ∪ Sj, and by Invariant (3), LV(v) ∩ LV(w) = ∅. Two

scenarios are possible:

• LV(v) and LV(w) are singletons: In this case, mergeAlignments sim-

ply returns LE(e) = Aij, which is a Type 2 sub-alignment on Sv ∪ Sw.

Invariant (1) follows from the requirement formalized in Corollary 3.3.3.

• |LV(v)| > 1 or |LV(w)| > 1: By Invariant (1) and (2), the alignments

Av and Aij are overlapping compatible alignments, as are Aw and Aij.

Therefore, the three alignments Aij, Av, and Aw are all compatible, and

so we can use transitivity merger described in Section 3.3.1 to merge

them. To compute this transitivity merge, we first merge Av and Aij,

and then we merge the resulting alignment with Aw (each step involves

merging two overlapping compatible alignments using the approach de-

scribed in Section 3.3.1, and the order of performing these two mergers

does not matter). In each of these two steps, the two alignments overlap

in a single alignment subset, and induce the same Type 1 sub-alignment

on that subset. The result of each merger of these three MSAs creates a

alignment on LV(v)∪LV(w), which mergeAlignments returns. Invariant
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(3) still holds, as the only mechanisms used for merging alignments is

transitivity.

Since the only mechanism used for merging Type 2 sub-alignments is

the transitivity merge, from Corollary 3.3.1, we can infer that:

Corollary 3.3.4. If all the Type 1 sub-alignments and Type 2 sub-alignments

in PASTA are correct, then the final PASTA alignment has no false positive

homologies, but can include false negative homologies.

In other words, all the false positive homologies in the final PASTA

alignment result either from running Mafft to produce Type 1 sub-alignments,

or running OPAL to produce Type 2 sub-alignments, and not the transitiv-

ity merge steps. However, the false negatives can be introduced during the

transitivity merge.

3.3.3 Running time

The order of traversing the spanning tree determines the order of a

series of transitivity merge operations. The result of a series of transitivity

mergers does not depend on the order of the operations. Thus, the final

output of Step 5 (transitivity merge) does not depend on the order in which

edges of the spanning tree are processed (i.e., an arbitrary order is shown in

Algorithm 3.1). However, the order can impact the running time. An arbitrary

order of edge contractions can result in a worst case O(qm2 + Lm) running
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time. However, if we merge sub-alignments using the reverse order of the

centroid edge deletions, then the running time can be bounded, as follows.

Theorem 3.3.5. Given m Type 1 alignments and m−1 Type 2 alignments, the

algorithm to compute the transitivity merge of these alignments uses O(qm logm+

Lm) time, where q is the maximum length of any sequence (not counting gaps)

in any Type 1 alignment, and L is the length of the output alignment.

Proof. We start by proving a lemma:

Lemma 3.3.6. Let X, Y, and Z be disjoint sequence datasets, and alignments

A and A′ be compatible alignments on X ∪Z and Y ∪Z, respectively (thus, A

and A′ induce identical alignments on Z). Let q be the length of the longest

sequence in X, Y, and Z, and L be the total number of sites in A and A′.

Then, we can merge alignments A and A′ using transitivity in O(L+ q (|X|+

|Y |+ |Z|)).

Proof. To represent an alignment, we use a data structure with two elements:

1) the unaligned sequence and 2) a list of integers giving the position of each

letter in the aligned sequences. Assume A has k columns, and A′ has k′

columns. We start by finding the sequences that belong to Z. For each shared

sequence in Z, we find the columns that are non-gap in at least one shared

sequence in A, and do the same thing for A′ (we call these shared columns).

Calculating shared columns can be done in O(q|Z|), because our data structure
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for representing alignments has the list of column positions for each character

of each sequence of Z.

Let ks denote the number of shared columns. After computing shared

columns we know that the final alignment will have k + k′ − ks columns. We

simultaneously iterate through the k columns in A and k′ columns in A′, and

map these numbers to position numbers in the output alignment. We start at

the leftmost position of both alignments, and keep a position in A (denoted

by p), a position in A′ (dented by p′), and a position in the output alignment

(denoted by r). If both p and p′ correspond to a shared column, we map both

to r and increment all three. Otherwise, w.l.o.g. assume p is not a shared

column; we map p to r and increment only p and r. At the end of this process,

we have a mapping from columns of both input alignments to the columns of

the output alignment, and this procedure takes O(k + k′ − ks) = O(L) time.

Finally, we build the output alignment by adding sequences from the original

alignments, and by mapping their column indices using the mapping computed

above. This step takes O(q(|X| + |Y | + |Z|)). Thus, the final running time

is O(L+ q(|X|+ |Y |+ |Z|)). Note that for a single gene alignment, typically

L << q(|X|+ |Y |+ |Z|), and therefore can be omitted from the analysis.

We now continue with proof of Theorem 3.3.5. Let our dataset consist

of N sequences, with each sequence of length at most q, and for the sake of

simplicity, assume that our decomposition produces m subsets, all with equal

sizes (note that centroid decomposition produces balanced subsets, so this

assumption is justified). As described before, in Step 5, we chose an edge
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e = (v, w) from the spanning tree, contract that edge, and perform at most

two transitivity merges: one between Av and LE(e), and another between the

result of the first merger and Aw.

Based on the above lemma, the first transitivity merge will have a

running time of O(q(|LV(v)|+ 2) + L), and the second merge will have a cost

of O(q(|LV(v)|+ 2 + |LV(w)|) +L), and thus the cost of each edge contraction

is O(q(2 ∗ |LV(v)| + |LV(w)|) + L). Note that each subset in the PASTA

decomposition has at most M sequences and we don’t increase M with the

size of the dataset; therefore, the size of individual subsets can be replaced by

a constant O(1). Now, imagine the case where the spanning tree is a path. If

we start merging from one end to the other end, we get the total running time

of O(q(3 + 4 + . . .+m) +mL) = O(qm2 +mL); however, we can improve on

that. The important observation is that the spanning tree should be traversed

such that transitivity mergers are between alignments with balanced number

of sequences on each side.

The order in which edges are processed in PASTA is obtained by a

recursive approach. Given the spanning tree, we divide it into two halves on

the centroid edge, and thus obtain two roughly equal size subtrees. We process

each half recursively using the same strategy, and thus get two single leaves at

the endpoints of the centroid edge. Each leaf would represent the merger of all

alignments in each half, and by construction they would have roughly equal

size. We then contract the centroid edge, merge the two sides, and obtain

the full alignment. If each half has roughly x sequences, the cost of the final
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edge contraction is O(q(2x+ x) +L) = O(3qx+L) (as shown before). If f(x)

denotes the cost of applying our transitivity merger on a spanning tree with x

nodes, we have

f(2x) = 2f(x) +O(qx) +O(L)

which has an O(x log(x) + xL) solution. Therefore, our particular order of

traversing the spanning tree results in a total cost of O(qm log(m) +mL).

Note that we fix maximum subset size q, and if we assume fixed align-

ment length (reasonable for a single gene dataset), then the running time of

PASTA becomes O(n log n) for n sequences.

3.4 Experimental setup

We describe the datasets used, the methods that we compare to PASTA,

our criteria of evaluation, and the computational resources used.

3.4.1 Datasets

We explore performance on both simulated and biological datasets and

based on both nucleotide and amino acid sequences2. We explore performance

on nucleotide datasets on both simulated and biological datasets. In simu-

lations, we start by trees that are generated using a process (such as Yule

process [174]) and then sequence data are simulated down each tree randomly

but according to models of sequence evolution that include both indels and

2Datasets are available at http://www.cs.utexas.edu/users/phylo/software/pasta
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substitutions. In simulations, the ground truth is known, and therefore true

alignment and true (model) trees are used for evaluation.

3.4.1.1 Nucleotide

To explore performance on moderate-sized datasets, we used the 1000-

sequence nucleotide datasets with average length 1000-1023 from the original

paper studying SATé [30] that were generated using ROSE [175].

To explore performance on larger datasets, we simulated 10,000-sequence

datasets using Indelible v. 1.03 [176] under three different rates of evolution

(10 replicates each), with average sequence length 1000 (see Appendix A.1.2

for exact commands and parameters). These data are simulated with similar

empirical statistics as the 1000-taxon 1000M2, 1000M3, and 1000M4 model

conditions used in [30], and so we label these model conditions as 10000M2,

10000M3, and 10000M4. Empirical statistics of these model conditions are

given in Table 3.1. 10000M2 has the highest rate of evolution (with a tree

depth of 5 measured in the number of expected mutations per site); average

hamming distance between pairs of sequences (p-distance) is 0.68, meaning

that two sequences in average differed in 68% of their homologous sequences.

10000M3 and 10000M4 had lower rates of evolution (tree depth of 2.5 and

1, and average p-distance of 63% and 51%, respectively). The alignments

had enough phylogenetic signal and trees estimated using true alignments had

relatively high accuracy, as we will show.

To explore performance on ultra-large datasets (up to 1 million se-
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quences), we used the million-sequence RNASim [177] dataset3, with average

sequence length 1556. RNASim is a simulator for RNA sequence evolution

that was designed to simulate a complex molecular evolution process using a

non-parametric population genetic model that generates long-range statistical

dependence and heterogeneous rates. The simulated dataset using RNASim

displays many of the properties of naturally observed RNA molecules in terms

of both morphological variation and optimization difficulty. We randomly sub-

sampled the million-sequence RNASim dataset to create datasets with 10k,

50k, 100k, and 200k sequences. For the 10k RNASim dataset we made 10 ran-

domly subsampled replicates, but due to computational requirements, made

only one replicate for the larger datasets.

In addition to the simulated data, we include three large biological

datasets from the Comparative Ribosomal Website (CRW) [178]: the 16S.3

dataset (6,323 sequences of average length 1557, spanning three phylogenetic

domains), the 16S.T dataset (7,350 sequences of average length 1492, spanning

three phylogenetic domains), and the 16S.B.ALL dataset (27,643 sequences of

average length 1371.9, spanning the bacteria domain). These datasets have

curated reference alignments based on secondary and tertiary structures. Ref-

erence trees for the biological datasets were computed using RAxML [120] on

the reference alignments and all edges with bootstrap support less than 75%

were contracted; we also show results for other thresholds.

3available at http://kim.bio.upenn.edu/software/csd.shtml
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3.4.1.2 Amino-acid

We used two different benchmark with real biological sequences for

evaluation on amino acid sequences. One benchmark consisted of ten mod-

erately large datasets (AA-10) which had curated MSAs (the eight largest

BAliBASE datasets from [179] and IGADBL 100 and coli epi 100 from [180]);

These range in size between 320 to 807 sequences, and have average sequence

lengths between 56.7 to 886.3. For these datasets, the curated alignment was

used as the reference alignment.

We also used the 20 largest HomFam datasets that have between 10,099

to 93,681 sequences, but we omitted the “rhv” gene family due to the warn-

ing on the Pfam website4 that the alignment is very weak5 (thus retaining 19

datasets). The HomFam dataset were used previously to evaluate protein MSA

methods on large datasets [181]. For this dataset, no global reference align-

ment was available; instead, Homstrad [182] reference alignments are available

on very small subsets (5-20 sequences, median 7) of their sequences. These

reference alignments are created based on structural properties, and are con-

sidered reliable. We used the alignment induced by these 5-20 sequences for

evaluation.

4http://pfam.xfam.org/family/Rhv
5The exact warning as of 5/17/2015: “CAUTION: This alignment is very weak. It can

not be generated by clustalw. If a representative set is used for a seed, many so-called mem-
bers are not recognised. The family should probably be split up into sub-families. Capsid
proteins of picornaviruses. Picornaviruses are non-enveloped plus-strand ssRNA animal
viruses with icosahedral capsids. They include rhinovirus (common cold) and poliovirus.
Common structure is an 8-stranded beta sandwich. Variations (one or two extra strands)
occur.”
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Table 3.1: Empirical statistics of reference alignments. Columns show
number of sequences, number of sites, percentage of gap characters, maximum
and average p-distance. For 10k RNASim and Indelible, average over 10 repli-
cates is shown. For 100k and 200k RNASim, we approximate p-distances. For
HomFam, we also show number of sequences in the seed alignment.

Dataset # Sequences # Sites % gap Max p-dist Avg p-dist

CRW 16S.B.ALL 27,643 6,857 80 0.769 0.210
CRW 16S.T 7,350 11,856 87 0.900 0.345
CRW 16S.3 6,323 8,716 82 0.832 0.315
RNASim 10,000 10,000 8,637 82 0.616 0.410
RNASim 50,000 50,000 12,400 87 0.620 0.410
RNASim 100,000 100,000 14,316 89 ≈ 0.62 ≈ 0.410
RNASim 200,000 200,000 16,365 91 ≈ 0.62 ≈ 0.410
Indelible M2 10,000 5,109 80 0.75 0.68
Indelible M3 10,000 3,088 68 0.70 0.63
Indelible M4 10,000 1,831 45 0.59 0.51
AA (10) 1GADBL 100 561 490 34 0.71 0.46
AA (10) coli epi 100 320 150 11 0.87 0.58
AA (10) RV100 BBA0039 807 2,696 85 1.00 0.42
AA (10) RV100 BBA0067 410 1,092 58 0.92 0.78
AA (10) RV100 BBA0081 353 1,693 65 1.00 0.86
AA (10) RV100 BBA0101 509 4,214 88 1.00 0.78
AA (10) RV100 BBA0117 460 110 48 1.00 0.75
AA (10) RV100 BBA0134 717 3,186 85 1.00 0.73
AA (10) RV100 BBA0154 303 1,275 59 0.85 0.66
AA (10) RV100 BBA0190 397 2,547 65 1.00 0.69
HomFam aat 10 (25,100) 476 15 0.87 0.71
HomFam Acetyltransf 6 (46,285) 229 29 0.87 0.75
HomFam adh 5 (21,331) 375 0 0.47 0.36
HomFam aldosered 7 (13,277) 386 19 0.79 0.57
HomFam biotin lipoyl 7 (11,833) 112 26 0.84 0.71
HomFam blmb 6 (17,200) 344 30 0.90 0.79
HomFam ghf13 10 (12,607) 626 25 0.84 0.72
HomFam gluts 14 (10,099) 235 8 0.81 0.60
HomFam hla 5 (13,465) 178 0 0.33 0.24
HomFam hom 8 (12,037) 98 35 0.84 0.64
HomFam myb DNA-binding 5 (10,398) 61 12 0.77 0.59
HomFam p450 12 (21,013) 512 20 0.87 0.79
HomFam PDZ 6 (14,950) 110 15 0.84 0.69
HomFam Rhodanese 6 (14,049) 216 31 0.89 0.76
HomFam rrm 20 (27,610) 157 45 0.91 0.77
HomFam rvp 6 (93,681) 132 19 0.76 0.63
HomFam sdr 13 (50,157) 361 28 0.89 0.77
HomFam tRNA-synt 2b 5 (11,293) 467 34 0.88 0.81
HomFam zf-CCHH 15 (88,345) 39 25 0.85 0.65
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Table 3.1 gives number of sequences, number of sites, percentage of

gap characters, and maximum and average p-distance for all the biological

and simulated datasets.

3.4.2 Methods

We show PASTA results based on the default settings and with three

iterations. We compare PASTA to:

1. SATé-II version 2.2.7: We ran SATé-II for three iterations and with

identical starting trees as PASTA. Due to the high computational costs of

running OPAL on large datasets, we used Muscle for merging alignments

inside SATé-II for datasets with 5,000 sequences or more, and otherwise

we used the default settings in SATé-II.

2. Muscle version 3.8.31: run in default settings

3. Mafft version 7.143b [89]: default settings wherever it could run, and oth-

erwise Mafft-PartTree (for RNASim 100K dataset, three replicates from

the Indelible 10K 10000M3 dataset, and the CRW 16S.B.ALL dataset).

4. Clustal-Omega version 1.2.0 [181]: default settings

5. Staring tree/alignments: we also included the starting alignment and

tree of PASTA as a separate method

We used FastTree-II version 2.1.5 to compute ML trees on each align-

ment. See Appendix A.1 in supplementary material for the exact commands.

78



3.4.3 Criteria

We measure the alignment accuracy, tree error, and running time.

Alignment accuracy is measured the pairs score, as defined in Section 2.4.2. As

noted before, for HomFam datasets, we measure the alignment error with re-

spect to a very small number of reference “seed” sequences for which a reliable

alignment is provided. To measure tree error, we report the False Negative

(FN) rate (see Section 2.4.1). For AA datasets, since the seed alignments in-

clude only a handful of sequences, we measure only alignment accuracy and

not tree error.

3.4.4 Computational platform

We ran (almost) all analyses on the Lonestar Linux cluster at TACC [183],

and each run was given one node with 12 cores and 24 GB of memory. Since

running time on Lonestar is limited to 24 hours, we were only able to run

techniques that could finish in 24 hours (see below). However, PASTA and

SATé-II are iterative techniques, and we allowed them to perform as many

iterations (but no more than three) as they could complete within 24 hours.

We report the wall clock time in all cases. For experiments on the million-

sequence RNASim dataset, as well as for running SATé-II on RNASim 50k,

we ran the methods on a dedicated machine with 256 GB of main memory

and 12 cores and ran until an alignment was generated or the method failed.
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3.5 Results

We start by reporting which methods could finish analyzing our datasets

in the allotted time. We then report tree and alignment accuracy on nucleotide

and amino acid datasets produced in the restricted time. We next show results

for two cases where we relaxed the 24 hour time constraint. Running time re-

sults are presented next. We then move on to provide a series of experiments

on varying parameters of PASTA. We next show results where a threshold

other than 75% is used for building the reference biological trees. We end

by showing results comparing PASTA to a new method called UPP [173],

developed after we published PASTA.

3.5.1 Ability to complete analyses

We report which methods completed analyses within 24 hrs using 12

cores and 24 GB of memory. The technique for producing an starting tree failed

to produce a full alignment on the 16S.T dataset, because HMMER considered

one of the sequences unalignable. We added the missing taxon randomly

into the tree obtained on the partial alignment produced by HMMER for

that dataset. All methods completed on all datasets with at most 30,000

sequences, with the exception of Clustal-Omega, which was not able to run on

the Indelible 10,000 M2 dataset. However,

• Clustal-Omega, Muscle, and SATé-II failed to complete on the RNASim

datasets with 50,000 sequences or more.
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• Mafft failed to complete on the RNASim dataset with 200k sequences.

• On 100k RNASim, PASTA finished two iterations in 24 hours, and

on 200k, PASTA was able to complete one iteration and was the only

method that could run (besides its starting tree).

• On the RNASim dataset with one million sequences, PASTA and its

starting tree were the only methods that could run (see Section 3.5.8).

3.5.2 Results on nucleotide datasets

Indelible 10K dataset Tree error for ML trees on reference and estimated

alignments for the all the large nucleotide datasets are shown in Figure 3.3.

Unsurprisingly, ML trees computed on the true or reference alignments had the

best accuracy in all cases. On the Indelible dataset with low rates of evolution

(M4), all methods had accuracy close to what could be achieved using the true

alignment. As the rate increased, the error for Crustal-Omega, Muscle, and

eventually for Mafft increased. However, the starting tree approach, SATé-II

and PATA continued to have low error. PASTA had the lowest tree error and

was in fact very close to the tree obtained on the reference alignment even at

the highest rate of evolution.

Table 3.2 shows alignment accuracy according to both the TC and pairs

scores. On the Indelible datasets, PASTA had the most accurate alignments

according to both measures of accuracy, and the difference between PASTA

and other methods increased as the rate of evolution increased.
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Figure 3.3: Tree error rates on nucleotide datasets. We show missing
branch (also known as false negative or FN) rates for maximum likelihood trees
estimated using FastTree-II, on the reference alignment as well as alignments
computed using PASTA and other methods; results not shown indicate failure
to complete within 24 hours using 12 cores on the datasets. Error bars show
standard error over 10 replicates for all model conditions of the Indelible and
the 10,000-sequence RNASim datasets.
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Table 3.2: Alignment accuracy on nucleotide datasets. We show the
number of correctly aligned sites (top) and the average of the SP-score and
modeler score (bottom). X indicates that a method failed to run on a par-
ticular dataset given the computational constraints. “Initial” corresponds to
the alignment approach used to obtain the starting tree of PASTA (HMMER
failed to align one sequence in the 16S.T dataset) and Clustal-O stands for
Clustal-Omega.

Indelible - 10,000 RNASim CRW (16S)
M4 M3 M2 10k 50k 100k 200k .3 .T .B.ALL

Column (TC) score

Clustal-O 160 10 X 13 X X X 12 0 1
Muscle 803 7 0 0 X X X 34 21 81
Mafft 337 13 0 28 30 26 X 75 85 15
Initial 422 106 18 11 15 5 4 33 X 24
SATé-II 977 758 792 35 X X X 89 60 87
PASTA 987 920 1151 152 311 492 823 71 121 102

Pairs score (Mean of SP score and modeler score)

Clustal-O 0.97 0.34 X 0.65 X X X 0.57 0.53 0.60
Muscle 1.00 0.12 0.01 0.35 X X X 0.74 0.67 0.66
Mafft 1.00 0.76 0.02 0.72 0.73 0.72 X 0.75 0.70 0.71
Initial 0.99 0.98 0.91 0.87 0.88 0.87 0.88 0.86 X 0.95
SATé-II 1.00 0.93 0.72 0.56 X X X 0.76 0.65 0.66
PASTA 1.00 1.00 0.99 0.85 0.85 0.87 0.86 0.87 0.83 0.94

RNASim datasets: PASTA trees had the best accuracy of all methods and

had error that was really close to what could be achieved with the reference

alignment (Fig 3.3). Interestingly, this experiment shows the effects of taxon

sampling on tree estimation error. As the taxon sampling is increased, the tree

error is reduced for all methods. For example, the starting tree had 14% error

with 10K sequences, but as the taxon sampling improved, its error gradually

dropped to 8% with 200K sequences. Similarly, PASTA started with 11%

error for 10K sequences, but had only 6.4% error with 200K sequences. Thus,
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by producing highly accurate alignments of larger datasets, PASTA enables

analyses that benefit from improved taxon sampling, which has been shown to

be tremendously important in estimating accurate phylogenies [13, 167–169].

In terms of alignment accuracy (Table 3.2), for RNASim datasets,

PASTA had by far the most accurate alignments of all methods tested ac-

cording to TC, and its pairs scores were better than all other methods except

for the starting alignment. The PASTA alignment had surprisingly high ac-

curacy for datasets of this size: on the 200k dataset, its pairs score was 88%

and more than 800 columns were recovered entirely correctly.

16S Biological data: On these biological datasets, Crustal-Omega had the

highest tree error among all the methods, followed by the starting tree for

two datasets and Mafft on the third dataset (Fig 3.3). On 16S.T and 16S.3,

Mafft could be run in its default mode and had good accuracy; however,

on 16S.B.ALL, the dataset size required that we use the PartTree command

within Mafft and it had high error. Muscle, SATé-II, and PASTA had compa-

rable accuracy on these data, with slight advantage for PASTA on 16S.B.ALL.

The gap between reference alignment and estimated alignments is not

as small for these datasets as it was for the simulated datasets. However, here

the reference tree is the ML tree estimated on the reference alignment; thus,

to the extent that the tree on reference alignment has any error, it is simply

due to the fact that FastTree is used here but RAxML is used for estimating

the “reference tree” (and branches below 75% support are collapsed). While
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in simulated datasets the error of the RAXML ML tree on the true align-

ment was capturing the error introduced by ML reconstruction, here the error

on reference alignments is simply measuring the difference between RAxML

and FastTree. Thus, one expects very low error for the FastTree tree on the

reference alignment.

On the 16S biological data, alignment accuracy generally favored PASTA

(Table 3.2). Besides the 16S.T dataset, the starting alignment also had good

alignment scores on these datasets but the other methods were generally less

accurate. With respect to TC scores, on 16S.B.ALL and 16S.T, PASTA had

the highest accuracy, but on 16S.3, SATé-II had the highest accuracy (followed

by Mafft and PASTA).

1000-sequence datasets: Tree error and alignment accuracy on the 1000-

sequence datasets are shown in Figure 3.4. The model conditions are labelled

by the gap length distribution (M for medium length, S for short, and L

for long), and increase in difficulty (higher rates of indels and substitutions)

from left to right. Note that ML on the true alignment is the most accurate

method in terms of tree accuracy, but that PASTA and SATé-II have almost

indistinguishable accuracy on these data and both come very close to the ML

tree on the true alignment. Both SATé-II and PASTA also have higher pairs

score accuracy compared to other methods.
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Figure 3.4: Tree error and alignment accuracy on 1000-taxon datasets.
We report the pairs score (top) and missing branch rate (bottom) of alignments
and trees estimated by FastTree-2 on the true alignment, and on alignments es-
timated using PASTA, SATé-II, and other alignment methods, on challenging
1000-taxon datasets from [30].
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Table 3.3: Alignment accuracy on AA datasets. We show TC (the
number of correctly aligned sites, left) and the pairs score (the average of
the SP-score and modeler score, right). X indicates that a method failed to
run on a particular dataset given the computational constraints. “Initial”
corresponds to the alignment approach used to obtain the starting tree of
PASTA (HMMER failed to align one sequence in the 16S.T dataset). All
values shown are averages over all datasets in each category.

Column (TC) score Pairs score

method AA-10 HomFam-17 HomFam-2 AA-10 HomFam-17 HomFam-2

Clustal-O 78 88 29 0.76 0.72 0.71
Muscle 48 51 X 0.70 0.52 X
Mafft 81 103 32 0.76 0.75 0.79
Initial 54 95 16 0.75 0.71 0.81
SATé-II 83 73 X 0.75 0.64 X
PASTA 80 102 36 0.76 0.78 0.83

3.5.3 Alignment accuracy on AA datasets

Table 3.3 shows alignment accuracy on the AA datasets. Due to dataset

sizes, Muscle and SATé-II failed to complete on two of the HomFam datasets,

so we separate out the results for these two datasets from the remaining 17

HomFam datasets.

PASTA had the best pairs score or was tied for the best pairs score for

both HomFam and AA-10 datasets. The difference between PASTA and other

methods was more substantial for HomFam datasets. Mafft had the best TC

score for HomFam(17), but PASTA was very close (103 versus 102 columns).

For HomFam(2), PASTA had the best TC score and Mafft was a close second.

On AA-10 datasets, SATé-II had the best TC score and was closely trailed by

Mafft and PASTA.
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3.5.4 Comparisons on larger datasets

In the previous section we reported the results on runs that could finish

in 24 hours given 12 cores. Here, we report two extra analyses where we allowed

methods to run on dedicated machines for longer times.

Comparison to SATé-II on 50,000-taxon dataset. SATé-II could not

finish even one iteration on the RNASim with 50,000 sequences running for 24

hours and given 12 cores on TACC. However, we were able to run two iterations

of SATé-II on a separate machine with no running time limits (12 Quad-Core

AMD Opteron(tm) processors, 256GB of RAM memory). On this machine,

two iterations of SATé-II took 137 hours, compared to 10 hours for PASTA.

However, the resulting SATé-II alignment recovered only 30 columns entirely

correctly while PASTA recovered 311 columns. The pairs score of SATé-II was

extremely poor (38.2%), while PASTA was quite accurate (81.0%). The tree

produced by SATé-II had higher error than PASTA (12.6% versus 8.2% FN).

Results on 1M sequences We also attempted to run PASTA on the full

1,000,000-sequence RNASim dataset on the same dedicated machine with 12

cores and 256 GB of memory. PASTA completed one iteration in 15 days, and

produced an alignment with 81.5% pairs score error and a tree that had only

6.0% tree error; this was only 0.4% more than the tree error for FastTree-II

run on the known true alignment. The PASTA starting tree, for comparison,

had 8.4% tree error.
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Figure 3.5: Alignment running time (hours). Note that PASTA was
run for three iterations everywhere, except on the 100,000-sequence RNASim
dataset where it was run for two iterations, and on the 200,000-sequence
RNASim dataset where it was run for one iteration. Mafft was run in de-
fault mode, except for the 100,000-sequences where PartTree was used.

3.5.5 Running Time

Figure 3.5 compares the running time (in hours) of different alignment

methods. Note that PASTA was faster than SATé-II in all cases, and could

analyze datasets that SATé-II could not (i.e., the RNASim datasets with 50k

or more sequences). Comparisons to other methods show that PASTA was

not always faster than other methods, but was able to complete its analyses

of all datasets within the 24hr time limit, whereas other methods (except the

starting tree) were unable to complete analyses on the largest datasets.

Figure 3.6a presents a detailed running time comparison of PASTA

and SATé-II on two specific model conditions of RNASim dataset. Note that

PASTA and SATé use similar iterative divide-and-conquer techniques, but

differ in how the subset alignments (each on only 200 sequences) are merged
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Figure 3.6: Running time comparison of PASTA and SATé-II. (a)
Running time profiling on one iteration for RNASim datasets with 10k and 50k
sequences (the dotted region indicates the last pairwise merge), (b) Running
time for one iteration of PASTA with 12 CPUs as a function of the number of
sequences (the solid line is fitted to the first two points), and (c) Scalability
for PASTA and SATé-II with increased number of CPUs.

together into an alignment on the full set of sequences. Merging subset align-

ments (and the last pairwise merge, shown in the dotted area) was the ma-

jority of the time used by SATé-II to analyze the 50k RNASim dataset, but a

very small fraction of the time used by PASTA. PASTA uses transitivity for

all but the initial pairwise mergers, and therefore scales well with increased

dataset size, as shown in Figure 3.6b (the sub-linear scaling is due to a better

use of parallelism with increased number of sequences). Finally, Figure 3.6c

shows that PASTA is highly parallelizable, and has a much better speed-up

with increasing number of threads than SATé does. While PASTA has much

improved parallelization, its parallelization does not quite scale up linearly,

because FastTree-II does not scale up well beyond 3 threads.
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Table 3.4: Effect of the starting tree on final PASTA alignments and
trees. Alignment accuracy and tree error are shown for PASTA with various
starting trees, after one iteration (top) and three iterations (bottom) for one
replicate of the 10k RNASim dataset. The error for starting tree is also shown.

Initial Tree Alignment Accuracy Tree Error
method Error (FN) Pairs score TC FN

After One Iteration

Random 100.0% 79.9% 2 52.3%
Mafft-PartTree 28.7% 87.0% 126 11.7%
Starting Tree 12.4% 86.8% 138 10.5%
True Tree 0% 86.1% 133 10.5%

After Three Iterations

Random 100.0% 90.4% 138 11.0%
Mafft-PartTree 28.7% 83.9% 144 10.7%
Starting Tree 12.4% 88.8% 145 10.7%
True Tree 0% 90.8% 150 10.5%

3.5.6 Impact of varying algorithmic parameters.

3.5.6.1 Starting tree

We compared results obtained using four different starting trees: a

random tree, the ML tree on the Mafft-PartTree alignment, PASTA’s default

starting tree, and the true (model) tree. Table 3.4 shows results of PASTA

starting from one of these trees and after one or three iterations. After one

iteration, PASTA alignments and trees based on our starting tree or true tree

had roughly the same accuracy, and the starting tree based on Mafft-PartTree

resulted in only a slightly worse tree (1% higher FN rate) despite the fact that

the starting tree had substantial error (28.7%). However, using a random tree

resulted in much higher tree error rates (52.3% error), and alignments that were

also considerably less accurate (about 7% according to pairs score). Only two
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Table 3.5: Impact of alignment subset size. We report tree error and
alignment accuracy on one replicate of the 10k RNASim dataset and also on
the 16S.T dataset, using three iterations of PASTA in which we explore the
impact of changing the subset size from 200 (the default) to 100 and 50; other
parameters use default values. Boldface indicates the best performance.

Dataset Subset Size Tree Error Alignment Accuracy Running Time
FN Pairs score TC (Seconds)

RNASim 10k 200 10.7% 88.8 % 145 13,478
RNASim 10k 100 10.4% 87.4 % 185 8,235
RNASim 10k 50 10.7% 88.6% 210 6,015

16S.T 200 8.2% 82.7 % 121 9,120
16S.T 100 8.1% 82.0 % 125 7,086
16S.T 50 7.9% 79.0% 129 5,780

columns were aligned correctly when starting from a random tree, whereas with

estimated starting trees between 126 to 138 columns were recovered correctly.

Interestingly, after three iterations of PASTA, no noticeable difference

could be detected between results from various starting trees. The tree error

was only very slightly higher for the random tree (0.3%) compared to starting

from the default starting tree, and alignment accuracy was identical according

to pairs score and very close according to TC. Thus, PASTA is robust to the

choice of the starting tree and even a random starting tree results in high

accuracy in the final tree as long as enough iterations are used.

3.5.6.2 Subset size

We also evaluated the impact of changing the alignment subset size

and using smaller subsets (50 or 100). Table 3.5 shows the results of these
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Table 3.6: Impact of using Muscle versus Opal as the alignment
merger technique.. We report results on one replicate of the 10K RNASim
dataset, using three iteration of PASTA using all default settings for other
algorithmic parameters. We report the missing branch rate for the tree error,
and two accuracy measures for alignments: the Total Column (TC) score, and
the pairs score. Boldface indicates the best performance on this data.

Parameters Tree Error Pairs Score TC score Run Time (sec)
Opal Type 2 merger 10.7% 88.8% 145 13,478
Muscle Type 2 merger 11.2% 73.9% 136 14,884

analyses for two datasets. Results are consistent across both datasets; these

analyses showed that using alignment subsets of only 50 sequences improved

the TC score and running time substantially, and only slightly changed the

pairs score or tree error score. Although these analyses were performed only

for two datasets, they suggest the possibility that improved results might be

obtained through smaller alignment subsets. A more thorough study of this

factor is left for future research.

3.5.6.3 Choice of tool for merging alignments

We also explored the difference between PASTA using Opal (the default

merger) or Muscle for merging Type 1 alignments into Type 2 alignments; see

Table 3.6. This comparison showed that OPAL can result in better final align-

ments and trees compared to Muscle. For example, on the 10,000 RNASim

dataset, PASTA with OPAL and with MUSCLE had tree errors of 10.7% and

11.2%, a slight improvement, but that alignment accuracy changed substan-

tially, especially when considering the average of the SP and modeler scores.
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Figure 3.7: Tree error (FN) rates on biological datasets as a function of boot-
strap threshold chosen to define the reference tree.

3.5.7 Varying the bootstrap threshold for reference tree

Performance on biological datasets is challenging to evaluate because

the true phylogeny cannot be known with certainty. We used a set of reference

alignments estimated based on secondary structures (available from the CRW

website [178]), and estimated a ML tree on each dataset using RAxML with

bootstrapping. We then contracted all branches with low support to obtain the

reference tree. We have so far reported results based on contracting branches

with less than 75% support; here, we show results with other thresholds. Note

that the higher the thresholds, the more branches will be collapsed.

Figure 3.7 reports results only for Muscle, SATé-II, and PASTA, the
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three methods with the best performance on these biological datasets for

thresholds ranging from 33% to 99%. Note that the difference in perfor-

mance is small in most cases, and that relative performance generally does

not change much as a function of threshold. Typically PASTA has slightly

better tree accuracy than both SATé and Muscle, but there are a few cases

where the relative performance changes. However, there are a few thresholds

and datasets where the relative ordering between SATé, PASTA, and Muscle

changes, so that Muscle is tied for best, or PASTA is less accurate than SATé.

3.5.8 Comparisons to UPP

A new method called UPP that was developed after we performed these

experiments was also able to analyze the datasets analyzed here with high ac-

curacy [173]. UPP, which algorithmically has some similarities to the PASTA

starting tree, tends to estimate alignments that have better pairs score com-

pared to PASTA, but PASTA has much better TC score and lower tree er-

ror [173]. For example, PASTA had 86% pairs score on 200K RNASim dataset

whereas UPP had 87.5% accuracy. However, PASTA recovered 823 columns

correctly, whereas UPP recovered only 5 columns correctly. The PASTA tree

had 6.4% error whereas UPP had 8.5% tree error. Like PASTA, UPP was also

able to complete on the 1M RNASim dataset, and it took 12 days (compared

to 15 days for PASTA). On this dataset, UPP resulted in a better alignment

pairs score compared to PASTA (87.2% versus 81.5% pairs score) but a tree

that had 7.6% tree error (PASTA had 6.0% error).
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3.6 Summary and discussion

The key algorithmic contribution in PASTA is the use of transitivity to

align sequences on a guide tree. PASTA uses the centroid edge decomposition

strategy of SATé to produce non-overlapping subset alignments, but creates

overlapping alignments using a spanning tree, and completes the alignment

using transitivity applied to these overlapping alignments. The new merging

technique addresses computational limitations in SATé and also improves the

accuracy of the alignments generated. PASTA is fast and scales well with

the number of threads, so that datasets with even 200,000 sequences can be

analyzed in less than a day with 12 threads. PASTA was able to align a dataset

with a million sequences in 15 days.

PASTA is implemented in Python and the code is publicly available in

open source form at https://github.com/smirarab/pasta. Since its pub-

lication, PASTA has gained a user base, and currently we are using PASTA

for aligning the new 1KP dataset [40] with more than 1000 species6 and some

gene families that have hundreds of thousands of sequences.

While PASTA has excellent accuracy in the experiments we performed,

there are datasets that PASTA is not designed to handle. A new study has

shown that the accuracy of PASTA degrades if the dataset includes fragmen-

tary data [173]. This finding is not surprising, because alignment of frag-

mentary sequences requires the use of local alignment techniques, where the

6list of species available at http://www.onekp.com/samples/list.php
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assumption is that a sequence will align only partially to other sequences.

All the techniques used inside PASTA, and specifically the technique used for

aligning subsets are global alignment techniques; i.e., they assume that all the

sequences align to each other from beginning to end. For PASTA to work well

with fragmentary sequences, we need to make sure that fragmentary sequences

are dealt with differently from the remaining sequences. For example, PASTA

could initially align only full-length sequences and only then add fragmentary

sequences to this “backbone” alignment using local alignment; this strategy is

similar to what has been used in some new alignment tools [173, 184].

Another shortcoming of PASTA is that it can produce long and gappy

alignments. This is related to the results presented in Corollary 3.3.4. Thus,

while typical alignment tools tend to over-align [15, 31, 160], PASTA tends to

under-align. For practical purposes, it suffices to remove columns from PASTA

that are extremely gappy (e.g., those with more than 99.9% gaps). Packaged

with PASTA are scripts that help the user with these kinds of alignment post-

processing tasks. PASTA also introduces a new format for saving alignments

on disk, so that very long and gappy alignments only take a fraction of the

space they would take using traditional formats.
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Chapter 4

Statistical Binning1

Species trees are important tools for understanding evolution, and have

applications to comparative genomics [185], orthology detection [58–61], study-

ing biodiversity analysis [186], and many other areas of biological study. Gene

trees can be different from the species tree and a major cause of such discor-

dance is incomplete lineage sorting [18, 137] (see Section 2.2.2). Estimation of

species trees taking into account ILS can require a large number of genes [20].

Analyses of whole genomes for estimating the species tree are becoming feasi-

ble [12, 187–189], and arguably are necessary for resolving phylogenies of rapid

species radiations, where very high levels of ILS are expected [39, 77].

1Parts of this chapter have appeared in the following papers:

1. Siavash Mirarab, Md. Shamsuzzoha Bayzid, Bastien Boussau, and Tandy Warnow.
Statistical binning enables an accurate coalescent-based estimation of the avian tree.
Science, 346(6215), 2014

2. Md. Shamsuzzoha Bayzid, Siavash Mirarab, Bastien Boussau, and Tandy Warnow.
Weighted Statistical Binning: enabling statistically consistent genome-scale phyloge-
netic analyses. PLoS ONE, 10(6):e0129183, 2015

3. Siavash Mirarab, Md. Shamsuzzoha Bayzid, and Tandy Warnow. Evaluating sum-
mary methods for multi-locus species tree estimation in the presence of incomplete
lineage sorting. Systematic Biology, page syu063, 2014

In all three cases, SM and his supervisor, TM, designed the method, designed the studies,
and wrote the papers (with comments from the other authors), and SM implemented the
methods. SM and MSB ran experiments (SM lead 1 and 3, and MSB lead 2). BB generated
the simulated data, and all authors helped analyze results.
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ILS can reduce accuracy of concatenation-based estimations of species

trees where all the data are put together in one supermatrix and analyzed with-

out modeling discordance [32, 133–135]. Coalescent-based species tree estima-

tion methods have been developed to estimate a species tree given data gath-

ered from multiple genes (see Section 2.3.3). The most widely used coalescent-

based methods, called summary methods (see Section 2.3.3.2), are based on a

two step pipeline: first each gene tree is estimated separately from the gene

sequence data, and then, the species tree is reconstructed by summarizing

these estimated gene trees. The method used in the second step can be sta-

tistically consistent under the multi-species coalescent (MSC) model [69] (see

Section 2.2.2.2), and this two step pipeline can have good accuracy when gene

trees have good accuracy. However, as we demonstrate in this chapter, this

pipeline is sensitive to gene tree estimation error in the first step.

In this chapter, we propose a new method for improving the quality of

the estimated gene trees. Our proposed pipeline, called statistical binning [190,

191], uses bootstrapping (see Section 2.3.2.5) to evaluate whether two genes

are likely to have the same true tree topology, then groups genes into bins

using these pairwise comparisons and a minimum vertex coloring optimization

problem. It then estimates a tree on each bin by concatenating the data

in that bin, and uses these trees as input to the preferred coalescent-based

summary method. We evaluate statistical binning on a large set of simulated

and biological data and show that it improves the accuracy of gene trees and

the species tree measured in various ways.
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We start this chapter by discussing effects of gene tree error on species

tree estimation, specifically in the context of the avian phylogenomics project

(Section 4.1). We then describe the statistical binning pipeline and present

some theoretical results about its statistical consistency in Section 4.2. In

Section 4.3, we describe the experimental setup used for evaluating binning,

and then show results of evaluating statistical binning using simulated (Sec-

tion 4.4) and real biological data (Section 4.5). We then finish by a discussion

of results and directions for future research in Section 4.6.

4.1 Sensitivity of summary methods to gene tree error

A phylogenomic pipeline that uses a coalescent-based summary method

begins with sequence alignments on different loci, estimates gene trees on each

locus, and then combines the estimated gene trees into an estimated species

tree using the summary method. Summary methods are by far the most

frequently used method for species tree estimation, and have been used to an-

alyze various biological datasets [16, 77, 150, 189, 192–194]; however, for some

datasets, the summary methods have not been able to produce highly sup-

ported trees [195], even with a large quantity of data [16]. Simulation studies

show that species trees estimated with summary methods can be less accurate

than species trees estimated with concatenation, even in the presence of sub-

stantial ILS [17, 38, 135, 196]. A main reason for this disparity in performance

is poor phylogenetic signal in individual genes, which is a potential problem

for coalescent-based summary methods [17, 37]. Moreover, many realistic bi-
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ological conditions (including short branches in gene trees) make completely

accurate gene tree estimation from limited sequence data highly unlikely [197].

Phylogenomic analyses can utilize very large numbers of genomic loci to

estimate the species tree, but genome-scale datasets can contain loci that have

reduced phylogenetic signal so that their estimated gene trees have reduced

bootstrap support (BS) [39]. While it is not known how summary methods are

impacted when only some of the loci have low signal, some studies have showed

that coalescent-based summary methods have reduced accuracy on datasets

where all the gene sequence alignments are short [17, 37]. This challenge con-

fronted the avian phylogenomics project [39] (which included us), where a

large number of genes (14,446) were available for coalescent-based analyses,

but these genes did not have enough signal for accurate gene tree estimation.

The challenges faced on the avian dataset, in addition to our observations on

simulation studies, motivated us to develop the statistical binning pipeline.

In the rest of this chapter, we first present simulation results that high-

light the impact of gene tree estimation error on species tree error. We then

further motivate the problem of gene tree estimation error by describing chal-

lenges faced on the avian project.

4.1.1 Gene tree error in simulations

In Section 4.3, we will provide extensive simulation results that show

the impact of gene tree error and how our proposed pipeline reduces it. Here,

just to motivate the development of statistical binning pipeline, we report on
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a separate simulation study that we have performed and showed the impact of

gene tree error on species tree estimation [38]. The simulation procedure used

in this study is similar to what we will describe in detail in Section 4.3.1. To

avoid repetition, we don’t explain the same procedure here in detail, and only

describe the high-level procedure.

In our simulations, we generated sequence data under a procedure anal-

ogous to the GTR+MSC model, defined in detail under Section 4.2.2. Gene

trees were generated from a fixed species tree under the MSC model, and

sequence data were simulated under the GTR model of sequence evolution

(see Section 2.1.2.1). Sequence data were then either analyzed directly using

concatenation, or were used to estimate the gene trees, which were then used

as input to summary methods. We show results for two summary methods:

MP-EST [134] and greedy (both described more under Section 4.3.2), but we

see similar trends with other summary methods (see [38]). We vary the gene

sequence length from 250bp to 1500bp to generate model conditions with vary-

ing levels of phylogenetic signal per gene; this is to control the level of gene

tree estimation error, which we measure as the average RF distance between

true gene trees and the estimated gene tree. Using this procedure, we ob-

tain five model conditions, distinguished by their average gene tree error: 0%

error (using true simulated gene trees), 12% error (1500bp sequences), 16%

error (1000bp sequences), 27% error (500bp sequences), and finally 42% error

(250bp sequences). For each model condition, we simulated 20 replicates.

In Figure 4.1(a) we show the species tree error as a function of the
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Figure 4.1: Impact of the gene tree error on species tree estimation.
(a) Lines show average species tree error over 20 replicates for different number
of genes (boxes) and for the five different model conditions characterized by
average gene tree error (x-axis). (b) We show the correlation between gene
tree error (x-axis) and species tree estimation error. Each box includes 100
dots, corresponding to 20 replicates of 5 model conditions. Linear correlations
are shown over all 100 points. 103



average gene tree error, and the number of genes. The patterns are clear: for

both summary methods, with true gene trees, or with gene trees that have low

error, the species tree also has high accuracy; as the gene tree error increases,

the species tree error also increases. For example, with 800 genes, true gene

trees analyzed using MP-EST result in recovering the true species tree in all

replicates. However, if gene trees have in average 42% error, the species tree

has close to 7% error. Interestingly, concatenation analyses seem less sensitive

to the variations in sequence length per gene (the only factor we use to vary

gene tree error). Figure 4.1(b) shows the correlation between average gene tree

error of each replicate and the species tree. There is clear correlation between

the gene tree error and the species tree error, and interestingly, the correlation

seems higher for large number of genes. Correlations seem also stronger for

MP-EST, which is the only statistically consistent summary method studied

here. Overall, these observations point to the vulnerability of species tree

estimation methods to gene tree estimation error.

4.1.2 Genet tree estimation on the avian phylogenomics project

The avian phylogenomics consortium obtained whole genome sequences

for 48 different bird species. A major goal was to estimate the species tree

for the major lineages of birds (roughly corresponding to bird orders). Birds

are believed to have gone through a rapid radiation [39, 75, 76] (see also Sec-

tion 2.2.2.2), a condition that results in high levels of incomplete lineage sorting

(we will provide more evidence for this in Section 4.5.1). Because of the high
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levels of ILS, a major goal of the project was to use ILS-aware methods to

estimate a species tree that takes into account coalescence.

In the avian project, we used rigorous pipelines of orthology (defined

in Section 2.2) detection, using collinearity of genomic regions (i.e., syntenic

blocks [198]) and other criteria (see supplementary document S2 of [39] for

details). This procedure identified 14,446 genomic regions (referred to as loci

or genes henceforth) that could be used for phylogenetic reconstruction. These

loci came in three types of genomic markers: exons (regions of the genome that

code for proteins and are relatively slowly evolving) from 8251 genes2, introns

(regions in the genome that do not code for proteins and tend to be fast evolv-

ing) from 2516 genes, and 3679 UCEs (ultra-conserved elements that can be

dispersed throughout the genome). We estimated gene trees using maximum

likelihood (implemented in RAxML) from all 14,446 loci, and observed that

no two gene trees had identical topologies [39].

Most loci had low phylogenetic signal, resulting in average bootstrap

support (BS) of only 32% for the bifurcating ML trees estimated on these

loci, and many branches that had extremely low bootstrap support in the gene

trees (Fig. 4.2(a)). We estimated a species tree with a concatenated maximum

likelihood analysis on these 14,446 loci. This tree (which we use here as an

approximate estimate of the species tree) had a succession of short branches

2Here, we use the term gene in the function sense; the use of functional genes in the avian
study as proxy for the c-genes (see Section 2.2.2) is based on the hope that a functional
gene would include only one c-gene, but see for [34] for an in-depth discussion of this issue.
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(a) Branch BS in gene trees of the avian datasets.
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Figure 4.2: Discordance and BS in the avian dataset. (a) Branch BS in
gene trees of the avian datasets. Histograms show the distribution of bootstrap
support values across all branches of all 14,446 gene trees. Blue portions of a
bar show the branches at a certain support level that have been recovered in
the concatenation tree on the avian dataset; red portions show those that are
not in the concatenation tree. Note that highly supported branches tend to be
in the concatenation tree while moderately or poorly supported branches tend
to be missing. (b) The normalized RF distance between the concatenation
tree and all 14,446 gene trees, divided into three maker types.
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suggestive of a radiation, and conflicted with all estimated gene trees. The

most similar gene trees to this tree still missed more than 20% of its branches,

as shown in Figure 4.2(b). However, while most of branches with low BS in

the gene trees did not appear in the concatenation tree, branches with high

BS were mostly present in that tree (Fig. 4.2(a)). This pattern suggests that

while gene trees can have high levels of incongruence, most of the discordance

may be due to gene tree estimation error (reflected in lack of support).

Among our data, exons had the least phylogenetic signal (average BS

24%), the introns had the most (average BS 48%), and the UCEs were inter-

mediate in support (average BS 39%). All these markers had levels of BS that

can be characterized as low or moderately low. The longest introns in terms

of sequence length (defined as those with at least 10,000bp) have the highest

average BS (59%), but these represent a very small fraction of the total set of

gene trees examined (only 638 of more than 14k markers). Consistent with the

observation that most gene tree conflict was due to gene tree error, introns,

which had the highest average BS, also had the lowest distance to the concate-

nation tree, while exons, which had the lowest average BS, had the highest

distance (Fig. 4.2(b)).

As we report in Section 4.5.1, our attempt to use summary methods

on the collection of 144,446 loci produced trees that were not satisfactory

because they had low support, and they failed to recover key clades that

much smaller datasets had consistently recovered. Restricting the set of genes

to only introns did produce trees that did not have obvious flaws. Several
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authors have suggested using loci with high support in phylogenomics analyses

(e.g., [188]). However, restricting loci is problematic for statistically consistent

coalescent-based summary methods, because the conditions under which they

are guaranteed to be accurate (with high probability) require a large enough

random sample of true gene trees; removing loci can violate this condition and

potentially bias the analysis.

To summarize, the two step approach to species tree estimation was

not able to analyze the complete avian phylogenomic dataset with high ac-

curacy, and the size of the dataset prevented us from using more extensive

co-estimation methods. This shortcoming was a major motivation for devel-

oping the statistical binning approach.

4.2 Statistical binning pipeline

The statistical binning pipeline is based on the idea that subsets of

genes can be grouped together for the purpose of gene tree estimation. Even

in the presence of high levels of ILS, some pairs of genes will have identical or

very similar gene trees. If we could find those sets of similar genes, by putting

their data together we could increase phylogenetic signal per unit of analysis.

Finding combinable sets of data is what we strive for in statistical binning.

Once we find combinable subsets of genes, we combine their data, and use

these “bins” of data to produce a different set of estimated gene trees that can

be used with the summary method. We call the use of binning with a given

summary method the binned version of the summary method.
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Traditional pipeline (unbinned)

Statistical Binning pipeline

Incompatibility Graph Binned supergene alignments
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Sequence data
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Figure 4.3: Statistical binning pipeline. In traditional two-step pipelines,
gene trees are estimated from input sequence alignments separately, and then
combined into a species tree using a coalescent-based summary method. Sta-
tistical binning takes estimated gene trees with branch support (e.g., from
bootstrapping) and builds an incompatibility graph. In this graph, each node
represents a gene and an edge between two genes represents a detected in-
compatibility between the estimated trees for those two genes at the specified
statistical support threshold, or higher. We use an extension of Brélaz heuris-
tic [199] to color the nodes of the graph so that no two adjacent vertices have
the same color, and so that the color classes are of similar sizes. This color-
ing of the vertices defines a division of genes into bins and ensures that no
two genes with strongly supported conflict are put in the same bin. We con-
catenate individual gene alignments of each bin to get a supergene alignment,
and estimate a supergene tree from these supergene alignments using ML. A
summary method of choice is run on supergene trees to produce an estimated
species tree. Two versions of the pipeline are developed. In the unweighted
version, each supergene appears once in the input to the species tree. In the
weighted version, each supergene tree is repeated once for each gene put in
that bin; thus, in the weighted version bins are weighted by their size and the
number of trees analyzed by the summary method is the same as the number
of genes.
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Figure 4.3 shows how the statistical binning pipeline operates, given

an input set of loci with their estimated sequence alignments and trees. We

use bootstrap support values on branches of the estimated gene trees to divide

the set of loci into bins of roughly equal sizes, so that each bin consists of

a set of loci where differences in the estimated gene trees can be explained

by gene tree estimation error. We concatenate the alignments of loci in each

bin into a large alignment (called a supergene alignment) and compute trees

on each supergene alignment using Maximum Likelihood (ML); this produces

a set of trees (called supergene trees), with one supergene tree for each bin.

We then construct a species tree from the set of supergene trees using the

desired summary method. Thus, the difference between the unbinned and

binned versions of a summary method is the set of trees it uses to compute

the species tree: the unbinned summary method uses the original set of gene

trees, and the binned summary method uses the set of supergene trees.

The pipeline has two versions: unweighted and weighted. In the un-

weighted statistical binning, each supergene tree is present only once in the

input provided to the summary method. In the weighted statistical binning,

each supergene tree is repeated as many times in the input to the summary

method as the number of genes put in its corresponding bin. Thus, in the

weighted approach, the number of supergene trees provided to the summary

method is exactly the same as the number of genes. Weighing has no effect

when bins are all the same size, but when bin sizes are different, it helps pre-

serving the gene tree distribution, and enables some theoretical guarantees for
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statistical binning, as we show later in this section.

4.2.1 Details of statistical binning

The statistical binning technique is parameterized with a bootstrap

support threshold, S < 1. The input is a set of multiple sequence alignments,

one for each of k given genes. Binning uses a simple statistical heuristic to

determine which pairs of genes can be put into the same bin; this test is based

on the BS of gene tree branches, and will prevent two genes from being in the

same bin if their ML gene trees have conflicting branches, each with BS of at

least S. As we will discuss, supergene trees can be estimated using partitioned

concatenated analyses, which would allow the branch lengths and other model

parameters to be re-estimated for each gene within a bin. For this reason, we

only need to consider topological incongruence and not branch length, thus,

allowing genes whose estimated trees share the same topology but differ with

respect to other model parameters to be placed in the same bin. Statistical

binning pipeline includes the following steps.

Step 1 - initial gene trees: We use ML with bootstrapping to estimate

gene trees with branch support values.

Step 2 - pairwise conflict: We compare all pairs of gene trees and note

whether they conflict at the support threshold S. This step requires
(
k
2

)
com-

parisons, and therefore, it is important that each comparison is fast. We say
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that a given pair of trees exhibit conflict at threshold S if there is a pair of

incompatible branches, one in each of the two gene trees and both with BS of

at least S. Two branches are incompatible when no tree can be constructed

that has both of these branches [159]. More specifically, if two branches are

incompatible, no tree exists with branches that induce the bipartitions defined

by these two branches.

To test two trees for incompatibility at threshold S or higher, we first

collapse all branches in both trees with support below S and also restrict

them to their common set of leaves. We then ask whether a tree exists that

is a common refinement of these two collapsed trees. This can be done by

comparing each bipartition in the first tree against each bipartition in the

second tree and asking whether the two bipartitions are compatible. Two

bipartitions are compatible when (after restricting to their shared set of leaves)

one part of one bipartition is a subset of one part of the other bipartition.

Testing for compatibility of two trees can be performed in linear time [159];

hence, this calculation is fast.

Step 3 - bin formation: This step uses a graph-based optimization to

divide the set of genes into bins. We build a graph in which each gene is

represented by a node and an edge is present between two nodes (i.e., genes)

if the estimated trees on that pair of genes exhibit conflict at threshold S,

as calculated in the previous step. By definition, the graph depends on the

parameter S: larger values for S will generally consider more genes to be
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combinable than smaller values.

The graph created in this step is called an incompatibility graph. To

create bins from this graph, we color the vertices of the graph so that no two

vertices with the same color are adjacent, and put all vertices with the same

color into a common bin. This is the classic vertex coloring problem in graph

theory [200] and each bin constructed using such a vertex coloring constitutes

an independent set: a set where no two nodes are connected and therefore no

pairwise incompatibility between genes has support of S or greater. Any vertex

coloring would maintain our desired guarantee, but a natural optimization

problem is to minimize the number of bins, so that bins have as many genes

as possible given the constraints (more genes in a bin result in increased data

and therefore increased signal). Moreover, among solutions that minimize (or

come close to minimizing) the number of bins, we would like to choose a vertex

coloring in which the different color classes have approximately the same size

(i.e., are balanced). We seek this because we want to avoid some bins that are

very large (and so are close to concatenation) and others that are very small

(and do not benefit from binning).

Finding a minimum vertex coloring (regardless of whether bins are bal-

anced) is NP-hard [199–201] but algorithms for solving the problem heuris-

tically have been developed. One of the main heuristics for minimum vertex

coloring is the Brélaz heuristic [199]. The Brélaz heuristic first finds a large

clique in the graph and assigns a different color to each node in the clique.

Then, in a greedy stage, nodes are processed in turn (according to an order
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described below), and each node is given the “first” color that can be legally

assigned to that node (i.e., there is no edge from any of the nodes with that

color to this new node). If no such color exists, a new color is created and the

node is assigned this new color. The order of processing nodes is dynamically

changing: the next selected node is always the one that conflicts with the

largest number of existing colors (breaking ties arbitrarily).

When each node is being processed, the order of checking colors is fixed

in the Brélaz heuristic (arbitrarily for the clique and then each color is added

to the end of the order). This means that if a node can be assigned one of

multiple colors, the first color is going to be chosen, and so, the arbitrary order

of colors determines the size of bins. Our simple modification to the Brélaz

heuristic is that in the greedy stage, each node is assigned to the smallest

bin that is compatible with it (i.e., instead of ordering colors arbitrarily, we

dynamically order them based on their size). When two or more bins have

the same smallest size, the algorithm breaks the ties arbitrarily. This simple

modification ensures that the bin sizes become as balanced as possible given the

constraints of the graph and the limitations of the Brélaz greedy mechanism.

Figure 4.4 shows an example of running unbalanced and balanced versions of

the Brélaz heuristic.

Step 4 - supergene tree estimation: Once bins are formed, alignments

of genes in the same bin are concatenated into a supergene alignment, and

supergene trees are estimated on these alignments using ML. Concatenated
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Figure 4.4: Bin sizes using Brélaz heuristic and our balanced vertex
coloring.. We show bin sizes on the simulated dataset produced by the
original Brélaz heuristic (“unbalanced”) and our modification (“balanced”).
Results are shown for the first 10 replicates of the avian simulated UCE-like
dataset with 1000 genes and S = 50%. Each dot represents a bin, with vertical
axis showing the bins size, and horizontal axis showing the bin index.
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analyses of alignments from different loci can be performed in different ways.

In an unpartitioned analysis, all the sites in the concatenated alignment are

assumed to evolve down a single model tree with a fixed topology and fixed

numeric parameters. In contrast, fully partitioned analyses of concatenated

alignments assume that the different loci all evolve down the same tree topol-

ogy, but allow the different parts within the concatenated alignment to have

different values for all of the numeric parameters of the model, including the

branch lengths. Fully partitioned and unpartitioned ML analyses can result in

different trees, and these analyses have different theoretical properties as we

discuss below. To accommodate differences between branch lengths in genes

put in the same bin (and also other model parameters), we strongly recom-

mend using a fully partitioned analysis where each gene is assigned a separate

partition, and all model parameters are allowed to differ between partitions.

We will show in Section 4.2.2 that weighted statistical binning has theoretical

guarantees of statistical consistency under certain conditions, and unweighted

binning is not consistent under those conditions.

Step 5 - species tree estimation: The supergene trees are used as input

to the summary method of choice. In the unweighted pipeline, each supergene

tree appears only once in the input to the species tree. If all the bins are

fully balanced, this procedure is fine. However, if there are some remaining

imbalances between the bin sizes, this can distort the distribution of the gene

trees, as genes put inside larger bins contribute less to the overall gene tree
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distribution. Solving this issue is simple. For each bin, we weight its supergene

tree by it size. This ensures that the distribution of gene trees is not distorted

by patterns of bin size distribution. This weighted statistical binning pipeline

has better theoretical guarantees as we show below.

4.2.2 Theoretical properties of statistical binning

Here we describe theoretical statistical properties of statistical binning.

We use the following notation throughout:

S: The input BS threshold

{g1, . . . , gk}: the set of k input genes

si: sequence alignment for gene gi

ti: true tree for gene i

t̂i: tree estimated based on si using ML under the GTR model

T : the true species tree

T̂ : an estimated species tree

L: length of gene sequences. We clarify in context whether length of a single

gene, the maximum length, or the minimum length is intended.

We will assume that the input sequences are generated under a two-step

process:
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GTR+MSC: gene trees t1, . . . , tk evolve within a species tree T under the

MSC model (see Section 2.2.2.2), and then sequence alignments s1, . . . , sk

evolve down each gene tree under the General Time Reversible (GTR)

model (see Section 2.1.2.1). Each gene tree has its own GTR model

parameters, and so the tree topologies, substitution matrices, base fre-

quencies, and gene tree branch lengths can differ across genes.

Throughout this chapter, we discuss statistical consistency under con-

ditions where the number of genes and the number of sites per gene are both

allowed to go to infinity. Thus,

Statistical Consistency: We consider the statistical consistency under the

situation where both L, the minimum sequence length of any gene, and

k, the number of genes, is allowed to increase to infinity. Let ψ be a

method of reconstructing a species tree T̂ under the GTR+MSC model.

We call ψ statistically consistent iff we can prove that as both L → ∞

and k →∞, the estimated species tree T̂ converges in probability to T .

The main results are given in Theorem 4.2.5 and Theorem 4.2.6, where

we prove that using weighted statistical binning in a phylogenomic pipeline

is statistically consistent under the GTR+MSC model, but that replacing

weighted statistical binning with unweighted statistical binning is not statis-

tically consistent under GTR+MSC. Both of our results are according to the

definition of consistency where we allow both the number of genes and the

118



sequence length of each gene to go to infinity. These conditions obviously

make for weak statistical guarantees. Variations of the statistical consistency

concept can be imagined where, for example, only k goes into infinity and L

remains constant, and these make for stronger theoretical guarantees [202]. We

have not been able to prove consistency or inconsistency of statistical binning

under the stronger definition, but we note that traditional two-step pipelines

have also not been proved consistent or inconsistent under those conditions

(see [147] for an in depth discussion of this issue).

Recall that the statistical binning algorithm uses a heuristic to color

the vertices. For our heuristic, we can prove:

Lemma 4.2.1. Let M = {t̂1, . . . , t̂k} be the multi-set of estimated gene trees,

and assume that all the branches in each t̂i have BS above S.Then, when sta-

tistical binning is run,

1. there will be one bin for each of the different estimated gene tree topologies

in M , and

2. for every bin, every two genes in the bin will have the same estimated

gene tree topology.

Proof. Recall that the algorithm operates in two stages. In the first stage,

our binning heuristic finds a clique in the graph and places the genes within

that clique into different bins. After this stage, each bin will be a singleton,

and therefore, the two conditions of the Lemma will hold for those genes that
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are binned so far: all the genes in the clique are pairwise incompatible and

therefore they are all distinct, satisfying the first condition, and the second

condition is irrelevant.

After processing the clique, which we assume has size c, the greedy

phase starts. We prove by induction that as the remaining genes are processed

in the greedy phase, the two conditions continue to hold. Thus, the inductive

hypothesis is that after i ≥ c genes are processed, the two conditions of the

lemma hold for the genes processed to that point. For i = c, we only have the

clique and thus this inductive hypothesis is true.

Now suppose the inductive hypothesis holds for i − 1 ≥ c genes, and

consider what happens when the ith gene tree, t̂i, is processed in the greedy

stage. When we process gi, there are two cases, depending on whether its

estimated gene tree t̂i is a gene tree topology that has been seen before. If

t̂i = t̂j for some 1 ≤ j ≤ i− 1, then there is a bin that contains all the genes

with that topology (by the inductive hypothesis), and gi can be added to that

bin. Note that by the inductive hypothesis, all other bins contain genes with

different estimated gene tree topologies than t̂i. Furthermore, by assumption,

all edges of all gene trees have BS above S. Hence, we cannot add gi to any

other bin. Therefore, if t̂i has been seen before, there is only one bin we can

add gi to, and it is the bin for genes with the same tree topology as t̂i. The

other case is where t̂i has not been seen before. In this case, t̂i is different from

every previously seen estimated gene tree, and again since all BS values are

above S, it cannot be put in any other bin. Therefore, a new bin is created
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and gi is placed in this new bin. As a result, the new set of bins satisfies

the inductive hypothesis, so that there is one bin for every estimated gene

tree topology, and no two genes in any bin have different estimated gene tree

topologies.

We can now prove the following theorem:

Theorem 4.2.2. Let sequence alignments s1, . . . , sk evolve under GTR+MSC

on a species tree T . Let t1, t2, . . . , tk be the true gene trees, and let θ1, θ2, . . . , θk

be the set of numeric GTR model parameters (gene tree branch lengths, base

frequencies, and 4 × 4 substitution matrices) so that mi = (ti, θi) is a GTR

model tree for each i = 1, 2, . . . , k. Let M = {m1, . . . ,mk}. Let ε < 1 and BS

threshold S < 1 be given. Then, there is a sequence length L (that depends on

M, S and ε) such that if all gene sequences have at least L sites, then with

probability at least 1− ε, the following will be true:

• Each estimated gene tree t̂i estimated using ML under GTR will have

the same unrooted topology as ti (the true gene tree for gi), and will have

BS greater than S for all its branches,

• When t̂1, . . . , t̂k are used as input to the statistical binning, two genes gi

and gj are put in the same bin, only if ti and tj have the same topology,

• All genes with the same true gene tree topology will be in the same bin.
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Proof. Since ML under GTR is statistically consistent for sequences generated

by GTR model trees, then for any ε′ > 0, there is a sequence length L′i such

that given sequence alignment si with at least L′i sites generated on ti, we have

ti = t̂i with probability at least 1−ε′ (thus, the ML tree topology under GTR is

the true gene tree topology with high probability). The statistical consistency

of ML also implies that there is a Li such that for sequence alignment si with

at least Li sites, bootstrap support of all branches of t̂i are greater than S,

with probability at least 1− ε′ [203]. Letting L = maxi{Li, L′i}, it follows that

all estimated gene trees will be the true gene trees and have BS greater than

S with probability at least 1− kε′. Therefore, when ε′ = ε
k

and the sequences

are all of length at least L, then the first condition of the theorem follows.

Since under these conditions, estimated and true gene trees are identical with

probability at least 1−ε, by Lemma 4.2.1, the other two conditions follow.

Before providing our other proofs, we give a formal definition of a fully

partitioned analysis.

Fully partitioned ML under GTR. In a fully partitioned ML under GTR

analysis, the input is a set of k multiple sequence alignments, {s1, s2, . . . , sk}.

These alignments are concatenated into a supermatrix, S, in which the

locations where the different alignments begin and end are also noted.

The ML score of a candidate tree t (note that t specifies only a topology

and not also branch lengths) for input S is
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score(t) = supΘ{
k∏
i

Pr(si|(t, θi)) : Θ = {θ1, θ2, . . . , θk}} (4.1)

Thus, Θ denotes a set of GTR model parameters (branch lengths and

other GTR parameters) for each of the parts within the concatenated

alignment S. We will refer to the tree topology that achieves the optimal

score under this fully partitioned analysis as the solution to the fully

partitioned ML analysis of the concatenated matrix, understanding that

the numeric GTR parameters (branch lengths and substitution matrices)

are estimated independently for each part of the alignment, and hence

can differ between parts.

With that definition, we can now provide the following lemma:

Lemma 4.2.3. Let {s1, . . . , sk} be a set of sequence alignments all on the

same set of species. Suppose that tree topology t is an optimal solution for

ML under GTR for each si (allowing various GTR parameters for different

i = 1, 2, . . . , k). Then t will be an optimal solution to a fully partitioned ML

under GTR analysis on a concatenation of s1, s2, . . . , sk.

Proof. In a fully partitioned ML under GTR analysis, the ML score of a given

candidate tree t with respect to a matrix M under a fully partitioned ML

analysis is given by Equation (4.1). Suppose that the tree topology t is an

optimal solution to ML under GTR for each si but not an optimal solution

to the fully concatenated ML under GTR analysis. Then, for some tree t′ 6=
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t, score(t′) > score(t). Therefore, for at least one i, supθ{Pr(si|(t′, θ))} >

supθ{Pr(si|(t, θ))}. But then t is not an ML tree topology for si, contradicting

our assumption. Therefore, if the maximum likelihood analysis is performed

in a fully partitioned manner, then tree topology t will be an optimal solution

to the ML under GTR analysis.

We now consider the result of applying weighted statistical binning

within a phylogenomic pipeline.

Corollary 4.2.4. Let G = {g1, g2, . . . , gk} be a set of k genes, and mi = (ti, θi)

be the true gene tree and GTR parameters (including branch length) for gi,

i = 1, 2, . . . , k. Let S < 1 be the user provided BS value. Assume that the

gene sequence alignment si evolves down the GTR model tree mi = (ti, θi), for

i = 1, 2, . . . , k. As the sequence lengths for all the genes increase then with

probability converging to 1, for each bin produced during a statistical binning

analysis, all genes in any bin will have the same true gene tree topology, and

the supergene tree topology produced for each bin using fully partitioned ML

under GTR will converge in probability to the common true gene tree topology

for the genes in the bin.

Proof. By Theorem 4.2.2, as the sequence length increases, then with proba-

bility converging to 1, the genes in each bin will share a common true gene

tree topology, their estimated gene trees will be topologically identical to each

other and to the true gene tree, and will each have BS greater than S. By

124



Lemma 4.2.3, under these conditions, a fully partitioned GTR maximum like-

lihood analysis of the concatenated alignment of the genes in a bin will produce

the true gene tree topology for the genes in the bin.

We now address the statistical consistency of phylogenomic pipelines

that use weighted and unweighted statistical binning.

Theorem 4.2.5. The phylogenomic pipeline that uses ML under GTR to

estimate gene trees, uses weighted statistical binning to compute supergene

trees, and then combines the supergene trees using a coalescent-based summary

method, is statistically consistent under the GTR+MSC model.

Proof. By Corollary 4.2.4, as the sequence length for each gene goes to infinity

(minimum L → ∞), when gene trees are estimated using ML, the estimated

gene trees converge to the true gene trees and have BS that converges to 1.0,

and so all genes put in any bin by statistical binning will have the same true

gene tree with probability converging to 1, and the supergene trees produced

for each bin will converge in probability to this common true gene tree. In

weighted statistical binning, this common true gene tree topology is replicated

as many times as the number of genes in the bin, and hence the distribution

produced using weighted statistical binning is identical to the distribution

of the true gene trees. Therefore, as both k and L increase to infinity, the

gene tree distribution produced by weighted statistical binning converges in

probability to the true gene tree distribution. The statistical consistency of

the pipeline follows from the use of a coalescent-based summary method, since
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as k →∞, the species tree produced by the summary method given true gene

trees converges in probability to the true species tree.

We now consider the case where we use unweighted statistical binning

instead of weighted statistical binning.

Theorem 4.2.6. The phylogenomic pipeline that uses ML under GTR to es-

timate gene trees, uses unweighted statistical binning to compute supergene

trees, and then combines the supergene trees using a coalescent-based summary

method, is statistically inconsistent under the GTR+MSC model.

Proof. The proof for Theorem 4.2.5 shows that as the sequence length L in-

creases, the set of bins produced by statistical binning converges in probability

to having one bin for each of the true gene trees, and the supergene tree for

each bin converges to the common true gene tree for the bin. As k → ∞,

the set of all observed supergene trees converges in probability to the set of

all possible gene trees (since all gene trees have strictly positive probability

under the multi-species coalescent model). Hence, the multi-set of supergene

trees produced by unweighted statistical binning will converge to the set that

has each possible gene tree appearing exactly once. This is a flat distribution,

and it is not possible to reconstruct the species tree from a flat distribution.

Hence, the use of unweighted statistical binning in a phylogenomic pipeline is

not statistically consistent.
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4.3 Experimental setup

We used biological and simulated datasets to evaluate species trees

estimated using weighted and unweighted binning pipeline, and compared their

results against the traditional (unbinned) summary method pipeline, as well as

concatenation using ML under the GTR+Γ model, computed by RAxML [120].

4.3.1 Datasets

We used four biological and three sets of simulated datasets for evalu-

ating binning.

4.3.1.1 Biological datasets

We studied the avian dataset [39] with 14k genes and 48 species, a

mammalian dataset with 447 genes and 37 species [77], a yeast dataset with

23 species and 1070 genes, a vertebrate dataset with 15 species and 1087

genes, and a metazoan dataset with 21 species and 225 genes [188]. Species

trees estimated using concatenation and gene trees were available [39, 188],

except for the maximum likelihood gene trees from the mammalian dataset,

which we recomputed using RAxML.

4.3.1.2 Simulated datasets

Two of the simulated datasets were simulated based on two biological

datasets with the goal of emulating their properties. The third dataset was

used to set up an artificial model condition, with few species and simulated
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under extreme conditions (which we describe below). The two biologically-

inspired datasets were generated based the avian phylogenomics dataset with

48 species and 14k loci [39] and the mammalian dataset with 37 species and

447 loci [77].

In all three datasets, we simulate data according to GTR+MSC; thus,

we use a species tree with branch lengths in coalescent units, from which we

simulate gene trees according to MSC, and then use simulated (true) gene

trees to simulate sequence data according to the GTR model. The details

of this process are similar between our two biologically-inspired (avian and

mammalian) datasets, but slightly different for the 10-taxon dataset. We first

describe our simulation procedure for the two biological datasets, and then

describe how 10-taxon data is generated.

On two biologically-inspired datasets, we choose the default parameters

of our simulation procedure such that we produce levels of gene tree estimation

error and ILS that resemble biological datasets. We then varied the model

parameters to produce lower and higher ILS levels and simulated gene trees

with varying levels of phylogenetic signal (and thus, gene tree estimation error).

Step 1 - choosing the model species tree: On the two biologically-

inspired datasets, the default model species trees are themselves estimated

from the two biological datasets using MP-EST, a statistical summary method

that estimates both the species tree topology and branch lengths in coalescent

units. By using the real data to estimate the model species tree, we try to
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explore parts of the parameter space that are close to parameters on biological

data. MP-EST produces a tree with branch lengths in coalescent units, and

therefore has all the information necessary to simulate gene trees under the

MSC model. In the case of the mammalian dataset, the gene trees we estimated

on the Song et al. data [77] had high average BS (mean 71%); therefore, we

chose to use all the gene trees as input to MP-EST and use the resulting

tree as our model species tree. For simulating the avian dataset, we used the

MP-EST* tree from [39] as the reference topology, but we re-estimated the

branch lengths on that model tree using only the longest genes with at least

10,000 sites. This was necessary because most gene trees had very low support

values (and thus high estimation error); branch lengths estimated in coalescent

units are directly impacted by observed gene tree discordance, and including

gene trees with high estimation error (i.e., low support gene trees) inflates the

amount of ILS. Resulting trees are shown in Figure 4.5(A,B).

To produce other model conditions with different amounts of ILS, we

modified the branch lengths on the model species trees uniformly by dividing

or multiplying them all by two. Thus, the 2X condition has doubled branch

lengths and so reduces ILS, and the 0.5X condition has halved branch lengths

and so increases ILS.

Step 2 - simulating gene trees: For each of the three avian and three

mammalian model species trees (with coalescent unit branch lengths), we sim-

ulated true gene trees according to MSC using Dendropy [204]. For the avian
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Figure 4.5: Model (reference) species trees for simulated datasets. We
show model species trees used in our simulation studies with branch lengths
in coalescent units. (A) and (B) Model species trees estimated using MP-EST
from biological data; see text for details. (C) Caterpillar like model tree for
the 10-taxon tree. The lengths of all internal branches and the two branches
incident with leaves A and B are all set to 0.005 substitutions per site and the
assumption of ultrametricity defines the remaining branch lengths; θ = 0.05,
and thus, all internal branch lengths are 0.1 in coalescent units.

dataset, we simulated 20,000 gene trees and subsampled these to create 20

replicates of model conditions that had 200, 500, or 1000 genes, and 10 repli-

cates with 2000 genes per replicate. For the mammalian dataset, we created

20 replicates of model conditions that had 200, 400, or 800 genes per replicate.

The amount of true gene tree discordance in our simulated datasets ranges

from relatively low (mammalian 2X condition) to very high levels (avian and
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Table 4.1: Statistics on levels of ILS in simulated datasets. We show
true gene tree incongruence for simulated datasets, with varying model condi-
tions. 2X corresponds to the case where ILS is reduced by multiplying branch
lengths by two and 0.5X corresponds to the case where ILS is increased by
dividing branch lengths by two. The first three rows show average, minimum,
and max normalized Robinson-Foulds (RF) distances between true gene trees
and the model species tree. The next three rows show average, minimum, and
maximum distances between all pairs of true gene trees. Maximum, minimum,
and mean values shown are averages across all 20 replicates of 1000 genes for
the avian dataset and 20 replicates of 200 genes for the mammals dataset.

Mammals Avian
2X 1X 0.5X 2X 1X 0.5X

Distance to Species Tree (mean) 18% 32% 54% 35% 47% 59%
Distance to Species Tree (min) 0% 3% 26% 16% 24% 36%
Distance to Species Tree (max) 42% 62% 82% 58% 69% 78%
Distance to other Gene Trees (mean) 26% 46% 71% 44% 57% 68%
Distance to other Gene Trees (min) 3% 14% 36% 16% 24% 38%
Distance to other Gene Trees (max) 51% 77% 96% 69% 77% 89%

mammalian 0.5X condition). See Table 4.1 for summary statistics on distance

between true gene trees and the species tree, and between true gene trees.

Step 3 - branch length conversion: Branch lengths on the simulated

gene trees are expressed in coalescent units, and have to be converted into

expected numbers of substitutions for simulating sequence alignments. To do

this conversion, we used branch lengths observed from trees reconstructed from

real data. For the avian data set, we used the gene trees reconstructed from

the 190 longest introns. For the mammalian dataset, we used all 447 gene

trees from [77]. For branches leading to leaves, we sample the distribution of
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branch lengths for the same leaf in the biological data; thus, for each species,

we select a random value from lengths of branches leading to the same leaf

in the real data. For internal branches, we used a different approach. We

ordered the internal branch lengths on the simulated true gene trees and on

the reconstructed biological trees separately, and matched branch lengths from

the reconstructed trees with branch lengths from the simulated trees by their

rank percentile. As a result, we converted branch lengths on simulated gene

trees such that their branch in each specific rank percentile had the same length

as the reconstructed gene trees of the real dataset. This way both internal and

external branches of the simulated gene trees had realistic branch lengths, as

observed in the real data. Also, this produced model gene trees that are not

ultrametric (i.e., do not exhibit the strong molecular clock).

Step 4 - simulating sequence data: For each of the resulting simulated

gene trees, we simulated alignments under a GTR+G4 model using bppseq-

gen [205] based on parameters estimated by bppml [205] on the subset of avian

genes that had all the taxa (1185 genes). The same GTR parameters were used

for the mammalian dataset and are shown in Appendix A.2.1. To vary the

amount of phylogenetic signal in the genes, we controlled the sequence length.

We use average BS to quantify the amount of phylogenetic signal in

the gene alignments. The avian biological dataset had estimated gene trees

with very low average BS. As noted before, the avian dataset had three types

of genomic markers: 8251 exons, 2516 introns, and 3679 UCEs. We simulated
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model conditions that resembled the avian exons-only, UCEs-only, introns-

only, and long introns-only datasets, with respect to their average BS values

(Figure 4.6). To achieve these average BS levels, we simulated sequence align-

ments with varying length: 250bp, 500bp, 1000bp, and 1500bp, respectively (to

get shorter alignments, we simply trimmed our longest alignments of 1500bp

by retaining the first 250bp, 500bp, or 1000bp sites and discarding the rest).

These resulted in average BS of 27%, 37%, 51%, and 60% – values that are

very close to those of the four partitions of the avian datasets (24%, 39%, 48%,

and 59%). Figure 4.6 shows the distribution of the average BS for real and

simulated avian datasets and demonstrate the similarity between phylogenetic

signal in our biological and simulated datasets. In our discussion of our results,

we refer to these different four different model conditions as exon-like (250bp),

UCE-like (500bp), intron-like (1000bp), or long intron-like (1500bp), or when

appropriate simply by referring to their sequence length.

For the mammals dataset, we used two values for sequence lengths:

500bp and 1000bp; these resulted in average BS values of 63% and 79%, effec-

tively bracketing the average BS in the real dataset (71%). We refer to these

conditions as 63%-BS (500bp) and 79%-BS (1000bp).

Model conditions: To summarize, the three parameters that we vary are

1) the amount of ILS, controlled by species tree branch length, 2) phylogenetic

signal per gene, controlled by sequence length, and measured by average gene

tree BS, and 3) the number of genes. Studying all combinations of all param-
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Figure 4.6: Gene tree BS for avian biological and simulated datasets.
Histograms show the distribution of average bootstrap branch support across
(A) four partitions of the avian dataset with a total of 14,446 loci [39], and
(B) 1000 genes from each of the four simulated model conditions for the avian
dataset with various target “support” levels. Note the extremely low support
of most loci in the avian biological dataset. The simulation procedure adjusts
alignment length (while fixing all other parameters such as rate of evolution,
which also impact phylogenetic signal) so that the BS values obtained on
estimated simulated gene trees resemble those of the real dataset. The Long
intron-like model condition has BS values similar to a subset of introns that
were all at least 10,000bp long.
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eters would be infeasible. Instead, we start from default settings and change

variables one at a time. Thus, we have the following data “collections”:

Collection Avian-1 (1X, 1000 genes): we fix ILS to 1X and the number

of genes to 1000, and vary the sequence length: Exon-like (250bp), UCE-

like (500bp), Intron-like (1000bp), and Long intron-like (1500bp).

Collection Avian-2 (1X, UCE-like): we fix ILS to 1X and sequence length

to 500bp (UCE-like), and vary the number of genes: 200, 500, 1000, and

2000.

Collection Avian-3 (1X, Intron-like): we fix ILS to 1X and sequence length

to 1000bp (intron-like), and vary the number of genes: 200, 500, 1000,

and 2000.

Collection Avian-4 (1000 genes, UCE-like): we fix number of genes to

1000, and gene length to 500bp (UCE-like), and vary the ILS level: 0.5X,

1X, and 2X.

Collection Mammalian-1 (1X, 63%-BS): we fix the ILS level to 1X and

sequence length to 500bp (63%-BS) and vary the number of genes: 200,

400, and 800.

Collection Mammalian-2 (1X, 79%-BS): we fix the ILS level to 1X and

sequence length to 1000bp (79%-BS) and vary the number of genes: 200,

400, and 800.

135



Collection Mammalian-3 (200 genes, 63%-BS): we fix the number of genes

to 200 and the sequence length to 500bp (63%-BS), and vary the amount

of ILS: 0.5X, 1X, and 2X.

Thus, the avian dataset has 12 model conditions, divided into four

collections, with two conditions appearing in multiple collections. The mam-

malian dataset has 8 model conditions, divided into three collections, with one

model condition appearing in two collections.

In addition to these collections, we built one replicate of a model condi-

tion with 14,350 genes for the avian simulation in order to closely approximate

the actual avian dataset in terms of the number of loci and average BS for

estimated gene trees; thus 8250 genes are exon-like in terms of average BS,

2500 are intron-like, and 3600 are UCE-like. Similarly, we built a mixed model

condition for mammals, where 200 genes of 63% support level and 200 genes

of 79% support level were combined to get 400 genes of 71% average support,

resembling the real dataset. We refer to these two as mixed avian and mixed

mammalian model conditions.

Overall, the avian simulated datasets have higher levels of ILS and lower

BS values than the mammalian datasets, and so present a more challenging

condition.

10-taxon simulated dataset: We simulated an artificial 10-taxon dataset

to study the behavior of binning under conditions where the level of ILS was
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extremely high, and when few taxa are present. The conditions simulated here

are not inspired by real biological datasets, but rather are meant to create a

very challenging condition.

We used a 10-taxon model species tree with a caterpillar-like (also

known as a pectinate, or ladder-like) topology, which has eight short internal

branches in succession (see Fig 4.5(C)). The length of all internal branches is

set to 0.005 substitutions per site and the population size parameter (θ = 4Nµ)

is set to 0.05 for all branches, and this results in seven very short internal

branches (0.1 in coalescence units) in succession, a condition that gives rise to

high levels of ILS [74, 135]. The average distance between true gene trees and

the species tree is 79%. Ultrametric gene trees were simulated down this tree

using McCoal [206] and using control files given in Appendix A.2.1. Unlike the

biologically-inspired model conditions, no transformations of branch lengths

were used, and therefore, gene trees follow a strict molecular clock. Sequence

data were simulated down each gene tree using bppseqgen [205] and with

the same parameters of sequence evolution as those used for the biologically-

inspired datasets (see Step 4). We built 10 replicates for four model conditions

by trimming gene data to 100 or 1000 sites, and by using 100 or 1000 genes.

4.3.2 Methods

Three summary methods – the greedy consensus, Matrix Representa-

tion with Parsimony (MRP) [207], and Maximum Pseudo-likelihood Estima-

tion of Species Trees (MP-EST) [134] – were applied to simulated avian and

137



mammalian datasets using the site-only multi-locus bootstrapping (MLBS) [208]

procedure (see below for a description of MLBS). For the 10-taxon dataset,

we did not run concatenation, MRP, or greedy consensus. The commands and

method version numbers used in these analyses are given in Appendix A.2.2.

We chose MP-EST because it is statistically consistent under the multi-

species coalescent model, has been used in several studies [77, 209–211], and

had better accuracy than other summary methods in some studies [134]. The

greedy consensus is inconsistent under the multi-species coalescent [212], and

MRP and concatenation are also inconsistent [83, 136]. Since MP-EST is the

only statistically consistent method among those mentioned above, we focus

our discussions mostly on MP-EST but show some results using other methods

and point out that the same patterns are observed with other methods as well.

MLBS: For each gene or supergene, 200 replicates of bootstrapping is per-

formed using RAxML. Then, 200 different inputs to the summary method are

built, where each of these 200 inputs consists of the ith bootstrap replicate

across all genes, with 1 ≤ i ≤ 200. Next, the summary method (MRP, MP-

EST, or Greedy) is run on each of the 200 inputs, and 200 “bootstrapped”

species tree replicates are obtained. A greedy consensus of these 200 bootstrap

species tree replicates is built, and support values are drawn on this greedy

consensus by counting occurrences of each bipartition in the 200 replicates.
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Gene and supergene tree estimation: All unbinned and supergene trees

were estimated using RAxML under the GTR+Γ model, and with 200 boot-

strap replicates of bootstrapping. Although it is recommended to use parti-

tioning in the estimation of supergene trees, due to computational concerns,

we did not perform partitioning on avian and mammalian datasets. For the 10-

taxon datasets that are smaller, we were able to run fully partitioned analyses.

Also, supergene trees on the biological datasets (avian, yeast, vertebrates, and

metazoa) were estimated using a partitioned analysis, assigning one partition

per gene.

Concatenation analyses: The concatenation analyses of the simulated datasets

were performed using an unpartitioned RAxML GTR+Γ maximum likelihood

analysis with 20 independent runs with varying random seed numbers, but

without bootstrapping. Concatenation analyses of the biological datasets were

obtained from the relevant publications, with the exception of the mammalian

dataset analysis on the reduced gene dataset, which we re-estimated using an

unpartitioned RAxML GTR+Γ maximum likelihood analysis.

Statistical Binning: We developed the statistical binning pipeline using

various existing libraries and the resulting code is publicly available in open

source3. We report results for both weighted and unweighted statistical bin-

ning in most cases, and in others we clarify which version is used. An important

3https://github.com/smirarab/binning
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question is the choice of the bootstrap support threshold S. We note that us-

ing 75% for the bootstrap support has been a standard threshold for branch

reliability [213], and so 75% represents a reasonable setting for S; however,

when the datasets are large, we can afford to be more conservative and pick a

smaller threshold. By default, we set two thresholds: a conservative threshold

of S = 50% that we use for all model conditions of the avian dataset that has

more than 1000 genes, and a moderate threshold of S = 75% for the mam-

malian dataset which had fewer than 1000 genes. We compare both thresholds

on a subset of data, designed to show the effect of the support threshold, and

also show both thresholds for the 10-taxon dataset.

4.3.3 Criteria

For the simulated datasets, we recorded the true species tree and true

gene trees generated during the simulation process, which allows us to exactly

quantify the topological error in the estimated trees. We measure gene tree

error, gene tree distribution error, species tree topological error, and species

tree branch length error. We also evaluate the reliability of bootstrap support

values measured from MLBS procedure. We use the missing branch rate (also

called the false negative rate) for measuring tree error (see Section 2.4.1).

Gene tree error: We measure gene tree error based on individual bootstrap

replicates of gene trees, and note that bootstrap replicate gene trees estimated

using RAxML are always fully resolved, and hence the missing branch rate
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is identical to the standard normalized Robinson-Foulds (RF) rate (see Sec-

tion 2.4.1).

Gene tree distribution error: We also measure how well the entire distri-

bution on gene trees is estimated by comparing triplet frequency distributions

calculated from true gene trees and estimated gene trees. To compare gene

tree distributions, we calculate how often each of the three possible topologies

for every triplet of taxa appears in the set of true gene trees and the set of

estimated bootstrap gene trees and supergene trees. Thus for every triplet,

we get a distribution based on true gene trees and another one based on esti-

mated gene trees, and we use the Kullback-Leibler [214] divergence statistic to

measure how much the estimated distribution diverges from the distribution

based on true gene trees. This measure of gene tree distribution error is used

because MP-EST uses estimated triplet distributions to construct the species

tree, and hence, finding correct triplet frequencies directly affects finding the

correct species tree.

Species tree topological error: We measure species tree topological error

using both the missing branch and false positive rates. In the vast majority

of the cases the estimated species trees are fully resolved, and so the missing

branch (false negative) and false positive rates are equal. In a few replicates

of the avian simulated dataset, the species trees were incompletely resolved

(so instead of 45, only 43 or 44 branches were present in the estimated species
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tree), and in those cases false positive rates are slightly smaller than the missing

branch rates. The general pattern of performance does not change whether

error is measured by missing branch (false negative) or false positive rates.

Species tree branch length: We measured estimation error in the species

tree branch lengths as follows: given a branch in an estimated species tree

that is also present in the true species tree, we record the ratio of the branch

length estimated for that branch by MP-EST to the true length of the branch

(both in coalescent units) in the true (model) species tree. Since branches

on MP-EST trees are in coalescent units, branch lengths directly reflect the

predicted amount of ILS. Thus, our branch length evaluation also addresses

how well the amount of ILS is estimated by the method.

Species tree bootstrap support: We explore bootstrap support of trees

estimated on simulated avian datasets, as follows. We assign relative quality

to each edge in an estimated tree, taking bootstrap support into account. The

highest quality edges are the true positive branches with the highest bootstrap

support, and the lowest quality edges are the false positive branches with the

highest bootstrap support, and all other edges fall in between. We order all

the edges by their quality, so that the true positive branches come first (with

the high support branches before low support branches), followed by the false

positive branches (with the low support branches before the high support

branches). Given this ordering, we show empirical cumulative distribution
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functions to compare bootstrap support values of two methods. Thus, we

create figures in which the x-axis indicates the edge quality (from very high to

very low, as you move from left to right), and the y-axis indicates the fraction

of the edges having at least the quality indicated by the x-axis. Thus, the

higher the curve, the better the overall quality of the species tree.

Statistical tests: We evaluate the statistical significance of differences in

species tree topology using an ANOVA test, with correction for multiple hy-

pothesis using the Benjamini-Hochberg method (also known as False Discovery

Rate) [215] (n = 14), and setting α = 0.05. For each data collection, three

two-sided ANOVA tests are performed to establish 1) whether weighted and

unweighted binning used with MP-EST are any different, 2) whether binned

MP-EST is better than unbinned MP-EST, and 3) whether binned MP-EST is

better than concatenation. The two independent variables used in the ANOVA

test are 1) the choice of the technique (e.g., weighted versus unweighted binned

MP-EST), and 2) the variable parameter in the data collection (e.g. the num-

ber of genes for Avian-2 and Avian-3 collection). We report the p-values for

the effect of the first independent variable (choice of the technique), and for

the interaction between the second variable (varying parameter) and the first

variable (choice of the technique).
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4.3.4 Computational platform

While any single analysis can be performed in a reasonable time with

moderate amount of parallelism, this study involved tens of model conditions,

and for each model condition we have looked at 20 replicates (10 replicates for

the model conditions with 2000 genes). Thus our total computational time

was extremely large: we estimate that we used more than 1,000,000 hours (or

more than 100 years) of CPU time overall. Running all these analyses was

doable only because of the exceptional computational resources we had access

to at TACC supercomputers and a Condor cluster at the University of Texas,

Computer Science department.

4.4 Simulation results

We start by exploring two parameters of the binning approach: the

binning threshold S and the use of weighting in statistical binning. We show

that on our simulated datasets, weighting does not impact the accuracy of the

binning pipeline. We then focus only on unweighted binning and a fixed S

threshold, and present results from an extensive analysis of avian and mam-

malian datasets.

4.4.1 Binning parameters

We briefly explore the parameter S and the use of weighting, but note

that the impact of algorithmic parameters are generally dependent on model

conditions, and our findings in this section need to be interpreted with care.

144



4.4.1.1 Impact of support threshold

We tested the impact of support threshold S using two experiments.

Experiment 1- avian 1000 genes, UCE-like: Figure 4.7 compares re-

sults of unweighted statistical binning with various thresholds and also con-

catenation on 10 replicates of the avian dataset with 1000 UCE-like genes. All

values of S resulted in improvements for MP-EST, MRP, and greedy compared

to unbinned analyses on this dataset. However, S = 30% resulted in lower im-

provements compared to other thresholds for all methods. Interestingly, very

high values (e.g., S = 95% here) also did not seem optimal, at least when

MP-EST or MRP were used. Results using 50% and 75% thresholds were

comparable on this model condition.

Experiment 2- 10-taxon: Figure 4.8 shows the impact of support thresh-

old for both weighted and unweighted binning. On this dataset, increased S

tends to result in improved accuracy in most cases. Here, the 25% threshold

ranges from slightly helpful to slightly deleterious, whereas 75% threshold is

always improving the accuracy. Thus, the comparison between binned and

unbinned analyses depends on the threshold used (and also to a lesser ex-

tend whether weighting is used). With 1000 genes, all thresholds of binning

result in improved accuracy; these improvements are statistically significant

for S = 75% with or without weighting (p < 10−4) and S = 50% without

weighting (p = 0.03), and are close to significant for S = 50% with weighting
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UCE-like,

Figure 4.7: Effects of S on the avian simulated dataset. Results are
shown for the simulated avian with 10 replicates, 1000 genes, and UCE-like
gene tree support. Dots correspond to average tree error and error bars corre-
spond to standard error. Results are shown for unbinned analyses, unweighted
binned analyses with 30%, 50%, 75%, and 95% support threshold, and con-
catenation. Results are shown for three summary methods: Greedy, MRP,
and MP-EST.
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Figure 4.8: Effects of S and weighting on the 10-taxon simulated
dataset. Results are shown for the simulated 10-taxon dataset with 10
replicates, 1000 or 100 genes, and either 1000bp or 100bp alignments. Bars
show average tree error and error bars show standard error. Results are shown
for unbinned analyses and both weighted and unweighted statistical binning
with S = 25%, 50%, or 75%.

(p = 0.066), but are not significant for S = 25%. With 100 genes, however,

binning tends to reduce accuracy with S = 25% and S = 50% (none of the

differences are statistically significant for 100 genes). Thus, it is possible to

get reductions in accuracy with the statistical binning pipeline, and the choice

of the S parameter can have an impact.
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4.4.1.2 Impact of weighting

We showed in Section 4.2.2 that theoretical guarantees of binning de-

pend on the weighting. We now ask whether weighting makes any difference in

terms of accuracy. We report results on three collections of the avian dataset,

but trends were similar for other datasets that we have analyzed [191].

Figure 4.9 compares weighted and unweighted statistical binning on

three collections of the avian dataset: Avian-1 (varying sequence length),

Avian-2 (varying number of genes), and Avian-4 (varying level of ILS) and

in terms of both species tree accuracy and branch length accuracy. The

species tree accuracy was almost indistinguishable between the weighted and

unweighted statistical binning. In particular, no statistically significant differ-

ences were observed according to a two-way ANOVA test between weighted

and unweighted binning (P > 0.5 for all three collections).

In terms of branch lengths, there are some differences between weighted

and unweighted binning, but the differences tend to be small. To the extent

that the two methods produce different branch lengths, weighted binning seems

to have slightly better branch length accuracy. While these differences are

small, they are consistent across various datasets, and therefore are likely real,

and not an artifact.

Summary of parameter exploration: We evaluated two parameters of

the statistical binning pipeline: the choice of support threshold S and the effect

of weighting. In the case of weighting, we observed no meaningful differences
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(a) varying gene sequence length (c) varying levels of ILS(b) varying numbers of genes

Weighted statistical binning

Unweighted statistical binning

Weighted statistical binning

Unweighted statistical binning

True gene trees

(d) branch length - varying sequence length (f) branch length: varying level of ILS(e) branch length: varying numbers of genes

Figure 4.9: Comparison of weighted and unweighted statistical bin-
ning on the avian simulated data. Species tree topological error (a,b,c)
and branch length accuracy (d,e,f) are shown for weighted and unweighted
statistical binning (S = 50%) with MP-EST, and also with true gene trees,
on three collections of the avian simulated dataset: (a,d) Avian-1 collection.
(b,e) Avian-2 collection, and (c,f) Avian-4 collection. The species tree branch
length error is measured as the ratio of estimated branch length to true branch
length for branches of the true tree that appear in the estimated tree (1 indi-
cates correct estimation).
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between weighted and unweighted pipelines for the large datasets we explored.

However, weighting is necessary for theoretical properties of the statistical

binning approach and could make an empirical difference for other datasets

(likely small datasets where the number of possible tree topologies is limited).

It seems harder to generalize in terms of effects of S; however, 50% and 75%

seem to work well on various datasets, and are reasonable choices. It is not

clear what threshold is ideal, or how one would tailor the threshold in practice

for a dataset. As noted before, in our extensive analyses of the avian and

mammalian datasets reported in the next sections, we only use unweighted

statistical binning, and we set S = 50% for avian and S = 75% for mammalian

datasets.

4.4.2 Avian simulations using unweighted binning

We now report results of extensive experiments on the avian dataset. In

these experiments, we always use the unweighted pipeline, and we fix S = 50%.

Thus, throughout this part, when we refer to statistical binning, we are re-

ferring to unweighted binning with S = 50%. We start by comparing un-

binned gene trees and binned supergene trees in terms of their accuracy. We

then compare species tree accuracy obtained by statistical binning using MP-

EST against unbinned MP-EST and concatenation, and also compare branch

lengths produced with and without binning. We finish by comparing the tra-

ditional and statistical binning pipelines in terms of the bootstrap support of

the species trees they produce.
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Table 4.2: Gene tree estimation error, with and without binning for
the simulated avian dataset. Results are shown for Avian-1 data collec-
tion. Individual gene tree (GT) error is mean topological distance, measured
using the missing branch rate between the true gene tree and all 200 bootstrap
replicates of each estimated gene tree. Binned analyses are based on S = 50%.
For the supergene trees, each bootstrap replicate of each supergene tree is
compared separately against each true gene tree for the genes put in that bin.
We also characterize gene tree distributions by calculating the triplet frequen-
cies for all possible triplets, and we do this both for true and estimated gene
trees (using all 200 bootstrap replicates of all genes/supergenes in the case of
estimated trees). Thus, we obtain a true and an estimated triplet frequency
distribution for each of the triplets. We report the mean Kullback-Leibler
(KL) divergence of the estimated distribution from the true distribution. The
triplet frequencies are calculated from unweighted supergene trees.

Individual GT Error GT Distribution Error (KL)
Unbinned Binned Unbinned Binned

Exon-like (250bp) 79% 57% 0.234 0.025
UCE-like (500bp) 69% 57% 0.120 0.008
Intron-like (1000bp) 55% 51% 0.033 0.008
Long Int.-like (1500bp) 46% 45% 0.011 0.007

4.4.2.1 Gene tree (distribution) error

Table 4.2 shows the average gene tree estimation error and gene tree

distribution error with and without binning for Avian-1 data collection (default

ILS and varying sequence length). Statistical binning improved the estimation

of gene tree topologies, with the largest reductions in gene tree estimation error

for the exon-like genes, and decreasing impact as the gene sequences increased

in length and gene trees increased in BS (Fig. 4.10). We also studied the

gene tree error on Avian-4 collection, where we varied the amount of ILS, and
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observed that the reduction in gene tree error using binning is most pronounced

when ILS levels are lower (Fig. 4.10).

The triplet frequencies measured from supergene trees were much more

similar to the triplet frequencies measured from true gene trees compared to

those measured from unbinned gene trees (Table 4.2). The reductions in triplet

gene tree distribution error measured by KL divergence were larger than reduc-

tions observed for missing branch rate (Figs. 4.10), and these improvements

were especially large for loci with shortest genes and hence the lowest BS.

4.4.2.2 Species tree error

We focus our discussion on the results obtained using MP-EST but

also report results using other tools. Figure 4.11 shows topological species

tree accuracy for all four collections of the avian simulated dataset, comparing

unbinned MP-EST, binned MP-EST, and concatenation. Table 4.3 shows

average and standard deviation, and Table 4.4 shows p-values resulting from

our ANOVA statistical test (with FDR correction). Figure 4.12 shows results

using MRP and greedy. We focus on false negative rates, but Figure 4.13

shows that the same trends hold for the false positive rate.

Avian-1 collection: In this collection, binned MP-EST was consistently

and significantly more accurate than concatenation (p < 10−5), and was also

significantly more accurate than unbinned MP-EST (p = 0.0001). For gene

trees with the highest BS values (i.e., long intron-like genes), both binned and
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Figure 4.10: Gene tree estimation error on Avian-1 and Avian-4 data
collections. Top: the distribution of RF distances between true gene trees
and all 200 bootstrap replicates of each estimated gene tree. For binned su-
pergene trees (S = 50%), each bootstrap replicate of each bin is compared
separately against each true gene tree corresponding to genes put on that bin.
Bottom: Divergence of estimated gene trees triplet distributions from triplet
distributions of true gene trees. The boxplots show the distribution of the

(
48
3

)
KL divergence measures over 10 replicates of each dataset. The triplet frequen-
cies are calculated from unweighted supergene trees. The whiskers extend to
10 times the inter quartile range.
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a) Avian-1 collection (1X; 1000 genes)

gene count  gene count

b) Avian-2 collection (1X, UCE-like) c) Avian-3 collection (1X, Intron-like)

d) Avian-4 collection (1000 genes, UCE-like)

Figure 4.11: Species tree topological error on the simulated avian
datasets using MP-EST. Results are shown for all collections of the avian
dataset, and each line (dot) shows the mean species tree error over 10 replicates
for the condition with 2000 genes, and 20 replicates for all other conditions.
Error bars show standard error. Results are for unweighted statistical binning,
with S = 50%. 154



Table 4.3: Mean and standard deviation of missing branch rates on
the avian simulated dataset. We show average missing branch rates and
standard deviation in parentheses. Results are shown for the four collections
of the avian simulated dataset, in addition to the results on true gene trees.
The best method is shown in bold. Binning results are for the unweighted
version, with S = 50%.

Avian-1 Exon-like UCE-like Intron-like Long intron-like
Greedy Unbinned 0.288 (0.024) 0.243 (0.030) 0.190 (0.027) 0.154 (0.017)
Greedy Binned 0.139 (0.026) 0.138 (0.031) 0.158 (0.035) 0.154 (0.020)
MRP Unbinned 0.251 (0.030) 0.191 (0.026) 0.107 (0.043) 0.082 (0.015)
MRP Binned 0.128 (0.038) 0.110 (0.034) 0.093 (0.032) 0.090 (0.017))
MP-EST Unbinned 0.232 (0.034) 0.191 (0.025) 0.107 (0.039) 0.054 (0.026)
MP-EST Binned 0.140 (0.043) 0.102 (0.034) 0.079 (0.045) 0.050 (0.026)
RAxML Concatenation 0.138 (0.034) 0.117 (0.034) 0.102 (0.021) 0.103 (0.023)
Avian-2 200 genes 500 genes 1000 genes 2000 genes
Greedy Unbinned 0.270 (0.040) 0.254 (0.032) 0.243 (0.030) 0.229 (0.030)
Greedy Binned 0.201 (0.031) 0.163 (0.036) 0.138 (0.031) 0.127 (0.015)
MRP Unbinned 0.238 (0.041) 0.199 (0.036) 0.191 (0.026) 0.183 (0.031)
MRP Binned 0.201 (0.037) 0.131 (0.040) 0.110 (0.034) 0.082 (0.024)
MP-EST Unbinned 0.244 (0.044) 0.209 (0.040) 0.191 (0.025) 0.164 (0.024)
MP-EST Binned 0.219 (0.043) 0.143 (0.047) 0.102 (0.034) 0.067 (0.033)
RAxML Concatenation 0.210 (0.033) 0.149 (0.040) 0.117 (0.034) 0.084 (0.020)
Avian-3 200 genes 500 genes 1000 genes 2000 genes
Greedy Unbinned 0.220 (0.027) 0.208 (0.035) 0.190 (0.027) 0.180 (0.030)
Greedy Binned 0.196 (0.035) 0.166 (0.022) 0.158 (0.035) 0.140 (0.018)
MRP Unbinned 0.174 (0.038) 0.133 (0.037) 0.107 (0.043) 0.096 (0.033)
MRP Binned 0.170 (0.045) 0.122 (0.026) 0.093 (0.032) 0.084 (0.014)
MP-EST Unbinned 0.191 (0.033) 0.143 (0.037) 0.107 (0.039) 0.082 (0.032)
MP-EST Binned 0.197 (0.043) 0.114 (0.041) 0.079 (0.045) 0.033 (0.016)
RAxML Concatenation 0.190 (0.036) 0.130 (0.035) 0.102 (0.021) 0.084 (0.025)
Avian-4 2X 1X 0.5X
Greedy Unbinned 0.226 (0.028) 0.243 (0.030) 0.293 (0.026)
Greedy Binned 0.077 (0.022) 0.138 (0.031) 0.262 (0.026)
MRP Unbinned 0.163 (0.019) 0.191 (0.026) 0.222 (0.042)
MRP Binned 0.058 (0.017) 0.110 (0.034) 0.174 (0.029)
MP-EST Unbinned 0.172 (0.030) 0.191 (0.025) 0.177 (0.044)
MP-EST Binned 0.059 (0.027) 0.102 (0.034) 0.157 (0.045)
RAxML Concatenation 0.064 (0.022) 0.117 (0.034) 0.197 (0.045)
(True gene trees, 1X ILS) 200 genes 500 genes 1000 genes 2000 genes
Greedy True gene tree 0.143 (0.026) 0.131 (0.024) 0.123 (0.025) 0.120 (0.021)
MRP True gene tree 0.117 (0.034) 0.096 (0.024) 0.076 (0.018) 0.058 (0.012)
MP-EST True gene tree 0.110 (0.030) 0.053 (0.026) 0.037 (0.023) 0.018 (0.018)
(True gene trees, 1000 genes) 2X 1X 0.5X
Greedy True Gene Trees 0.066 (0.010) 0.123 (0.019) 0.181 (0.046)
MRP True Gene Trees 0.052 (0.011) 0.076 (0.019) 0.120 (0.024)
MP-EST True Gene Trees 0.026 (0.018) 0.037 (0.019) 0.063 (0.030)
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Table 4.4: Statistical significance for simulated avian datasets. Sta-
tistical significance of differences in species tree topology (dependent variable)
are evaluated using a two-sided ANOVA test, with correction for multiple hy-
pothesis using Benjamini Hochberg [215] (n = 14 including 8 tests performed
here, and 6 tests performed for the mammalian dataset), and setting α = 0.05.
The two independent variables used in the ANOVA test are 1) the choice of
the technique (Binned MP-EST vs. Unbinned MP-EST, and also Binned MP-
EST vs. Concatenation), and 2) the variable model parameter (e.g. number
of genes for Avian-2 collection). Binning results are for the unweighted ver-
sion, with S = 50%. Top part shows p-values for impact of the choice of the
technique. The bottom part shows p-values for the interaction between the
varying parameter and choice of the technique. Thus p-values in the bottom
part should be interpreted with regard to questions of the following form: “is
the relative performance of binned MP-EST and unbinned MP-EST (or con-
catenation) affected by the choice of varying parameter.” For example, for
Avian-1 collection, the p-value shown under Binned vs. Unbinned indicates
that the gene tree support has a statistically significant impact on the relative
performance of binned and unbinned MP-EST.

Collection 2nd variable Binned vs. Unbinned Binned vs. Concat.

Significance of choice of technique
Avian-1 support p < 10−5 p = 0.00012
Avian-2 # genes p < 10−5 p = 0.37100
Avian-3 # genes p = 0.00212 p = 0.01058
Avian-4 ILS p < 10−5 p = 0.00418

Impact of varying parameter on the choice of the technique
Avian-1 support p < 10−5 p = 0.01162
Avian-2 # genes p = 0.00330 p = 0.56569
Avian-3 # genes p = 0.10614 p = 0.08705
Avian-4 ILS p < 10−5 p = 0.15076
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unbinned MP-EST species trees had approximately the same error (Table 4.3).

However, as gene tree BS values decreased, the improvements obtained by

binned MP-EST compared to unbinned MP-EST increased, and this effect

was statistically significant (p = 0.003). On this collection, concatenation was

generally more accurate than unbinned MP-EST, except for gene trees with

the highest BS. Results for MRP and Greedy showed similar trends (Fig. 4.12).

Avian-2 and Avian-3 collections: On Avian-2 and Avian-3 collections,

where we varied the number genes with fixed sequence length, binned MP-

EST was more accurate than unbinned MP-EST (p < 10−5 for UCE-like and

p = 0.002 for intron-like markers). Furthermore, the advantage provided by

binning increased with the number of genes in Avian-2 collection (UCE-like),

and the impact was statistically significant with p = 0.003; a similar pattern

seems to also hold for Avian-3 collection (intron-like loci), but the impact was

not statistically significant p = 0.106.

Binned MP-EST tended to be more accurate than concatenation on

both UCE-like and intron-like loci, but the differences are statistically sig-

nificant only for intron-like genes (p = 0.011). The improvement of binned

MP-EST over concatenation appeared to increase with the number of intron-

like loci, but the interaction effect is not statistically significant (p = 0.087).

Avian-4 Collection: When we varied the amount of ILS, regardless of the

amount of ILS, binned MP-EST had lower average tree error than both un-
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(A) Avian-1 (varying gene tree support with 1000 1X genes)

(B) Avian-2 (varying gene tree count with UCE-like 1X genes)
14K genes; Mixed (§)

Concatenation

Unbinned

True gene tree

Binned

(D) Mixed; Avian

(C) Avian-3 (varying gene tree count with Intron-like 1X genes)

Figure 4.12: Simulation results including MRP and Greedy on avian
datasets. Bars show average missing branch rates and error-bars show stan-
dard error. Results are over 20 replicates everywhere except 2000 genes model
conditions, which is based on 10 replicates, and the mixed model condition,
which is based on only 1 replicate. Binning results are for the unweighted
version, with S = 50%.
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(A) Avian-1 (varying gene tree support with 1000 1X genes)

(B) Avian-2 (varying gene tree count with UCE-like 1X genes)
14K genes; Mixed (§)

Concatenation

Unbinned

True gene tree

Binned

(D) Mixed; Avian

(C) Avian-3 (varying gene tree count with Intron-like 1X genes)

Figure 4.13: False positive error rates on the avian simulation. In
some rare cases on the simulated avian datasets, the greedy consensus trees
produced by the multi-locus bootstrapping procedure were missing one or two
edges, and hence had small polytomies. In such cases, the missing branch
(false negative) rate and false positive branch rates can be slightly different.
For completeness, we show the false positive rates. Results are consistent
with those observed on false negatives. Binning results are for the unweighted
version, with S = 50%.
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binned MP-EST and concatenation. The difference between binned and un-

binned MP-EST was statistically significant (p < 10−5), and so was the differ-

ence between binned MP-EST and concatenation (p = 0.004). Furthermore,

reducing the ILS level (2X condition) increased the impact of binning, and

increasing the ILS level (0.5X condition) decreased the impact (p < 10−5 for

the interaction effect).

Mixed condition: On the mixed model condition with 14k genes and BS

resembling the avian dataset, concatenation and binned MP-EST each had 7%

error, while all the other methods had at least 11% error (Fig. 4.12).

Summary of topological species tree error on avian simulations:

Binned MP-EST had significantly lower topological error compared to un-

binned MP-EST for all collections and binned MP-EST was also significantly

more accurate than concatenation in Avian-1, Avian-3, and Avian-4 collec-

tions, but not in the Avian-2 collection. Gene BS (controlled by sequence

length), number of genes, and the amount of ILS had a significant impact

on the relative performance of binned and unbinned MP-EST, but only BS

impacted the choice between binned MP-EST and concatenation.

4.4.2.3 Branch length accuracy

Figure 4.14 shows the branch length accuracy for the four collections

of the avian dataset. MP-EST always underestimated species tree branch
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gene countgene count

a) Avian-1 collection (1X; 1000 genes)

b) Avian-2 collection (1X, UCE-like) c) Avian-3 collection (1X, Intron-like)

d) Avian-4 collection (1K genes, UCE-like)

Figure 4.14: Species tree branch length accuracy on the simulated
avian datasets estimated using MP-EST. Results are shown for all col-
lections of the avian dataset. Boxplots show the distribution of the ratio of
estimated branch length to true branch length for branches of the true species
tree that appear in the estimated tree; thus, 1 indicates correct estimation.
Results are over 10 replicates for the condition with 2000 genes, and 20 repli-
cates for all other conditions. Binning results are for the unweighted version,
with S = 50%. Note that y-axis is shown in logarithmic scale.
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lengths in coalescent units when analyzing estimated gene trees. In contrast,

when true gene trees are used, branch length are estimated very well, indicating

that underestimation of branch lengths is a result of gene tree estimation error.

When unbinned gene trees are used, the underestimation can be close to an

order of magnitude, whereas the binned MP-EST trees had more accurate

branch lengths. Improvements obtained by binning are largest for cases where

gene trees have low BS (e.g., Exon-like), or when the amount of ILS is low.

Because branch lengths determine the amount of ILS, underestimating branch

lengths directly means overestimating ILS.

4.4.2.4 Species tree bootstrap support

Figure 4.15 shows the commutative bootstrap support distributions

of both true and false positive branches for Avian-1 and Avian-4 collections

(similar patterns observed on the other two collections). Binning improve

bootstrap support in the sense that using binning increases the number of

highly supported true positive branches and decreases the number of highly

supported false positives. However, the sequence length (and hence gene tree

BS) modulates the impact of binning on bootstrap support, so that the largest

impact is for the Exon-like genes (250bp), and there is no discernible impact

for the Long intron-like genes (1500bp). ILS levels also impact how binning

affects the bootstrap support, so that the biggest improvement in bootstrap

support is obtained for the lowest ILS level (2X branch lengths).

These results demonstrate that gene tree estimation error not only
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(a) Avian-1 collection (varying sequence length)

(b) Avian-4 collection (Varying the level of ILS)

Exon-like (250bp) UCE-like (500bp)

Long intron-like (1500bp)Intron-like (1000bp)

Figure 4.15: Bootstrap support comparison on the avian simulated
dataset. We show cumulative distribution of the bootstrap support values of
true positive and false positive edges estimated by binned and unbinned MP-
EST on avian datasets. We show results for Avian-1 and Avian-4 collections,
but similar patterns are observed elsewhere. To produce the graph, we order
the branches in the estimated species tree by their quality, so that the true
positives with high support come first, followed by lower support true positives,
then by false positives with low support, and finally by false positives with
high support. The false positive branches with support above 75% are the
most troublesome, and the grey area indicates highly supported false positives.
When the curve for a method lies above the curve for another method, then
the first method has better bootstrap support. Binning results are for the
unweighted version, with S = 50%.
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can result in lack of resolution in the species tree (i.e., low support branches

that are true or false), but can also result in highly supported false positive

branches. Binning not only increases support, but also reduces highly sup-

ported false positives.

4.4.3 Mammalian simulations using unweighted binning

Similar to the experiments on the avian dataset, here, we always use

the unweighted version of statistical binning. We also fix S = 75%. Thus,

throughout this section, when we refer to statistical binning, we are referring

to unweighted binning with S = 75%.

Patterns observed on the avian dataset were also seen on the mam-

malian dataset, but with less stark contrast between unbinned and binned

pipelines. We briefly discuss gene tree error, species tree topological error,

and species tree branch length accuracy on the mammalian datasets.

Gene tree error: Just like the avian dataset, on the mammalian dataset,

binning reduced gene tree estimation error, and improvements were larger for

the model condition with shorter sequences and lower BS (Table 4.5). The

reductions in gene tree distribution error were also high, and were higher for

the 500bp model condition compared to the 1000bp condition. Thus, when

unbinned gene trees have high error, binning can improve gene tree accuracy.

Species tree topological error: Binned MP-EST generally either matched

or improved upon both unbinned MP-EST and concatenation (Fig. 4.16).
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Table 4.5: Gene tree estimation error, with and without binning for
the mammalian avian dataset. Results are shown for Mammalian-1 and
-2 data collections. See Table 4.2 for a description of the measures shown.
Binned results are with S = 75%.

Individual GT Error GT Distribution Error (KL)
Unbinned Binned Unbinned Binned

63% BS (500bp) 43% 35% 0.119 0.019
79% BS (1000bp) 27% 26% 0.038 0.027

On the moderate (63%) BS trees, binned MP-EST and concatenation had

close accuracy (with no statistically significant differences; see Table 4.6),

but unbinned MP-EST was significantly less accurate than binned MP-EST

(p < 10−5), and some conditions showed substantial differences (e.g., 800

loci). On higher BS (79%) loci, binned MP-EST was significantly more accu-

rate than concatenation (p = 0.003), but there were no statistically significant

differences between binned MP-EST and unbinned MP-EST.

On Mammalian-3 collection, the differences between binned and un-

binned MP-EST were statistically significant(p = 0.0001), but differences be-

tween binned MP-EST and concatenation were not significant (Table 4.6).

The impact of ILS level on the mammalian datasets was as expected: more

improvements were obtained for lower ILS; however, the impact of ILS level

was not statistically significant.

On the mixed model condition, which most closely resembles the real

mammalian dataset in terms of the number of genes and gene tree support,

binned MP-EST had only 1.8% error, concatenation had 3.7% error, and un-
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(a) Mammalian-1 collection

(d) Mammalian mixed condition 

71

(c) Mammalian-2 collection

numer of genes Level of ILS

(b) Mammalian-2 collection

Figure 4.16: Species tree topological error on the simulated mam-
malian datasets using MP-EST. Results are shown for both collections
of the mammalian dataset, and the mixed mammalian model condition. Each
line or bar shows the mean species tree error over 20 replicates and error bars
show standard error. Results are shown separately for gene trees with 63% and
79% bootstrap support. Panel C shows topological error for a mixed dataset
with 200 genes of 63% BS level, and 200 genes of 79% BS level. Binning results
are for the unweighted version with S = 75%.
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Table 4.6: Statistical significance for simulated mammalian datasets.
Statistical significance of differences in species tree topology (dependent vari-
able) are evaluated using a two-sided ANOVA test, with correction for multiple
hypothesis using Benjamini Hochberg [215] (n = 14 including 6 tests performed
here, and 8 tests performed for the avian dataset), and setting α = 0.05. The
two independent variables used in the ANOVA test are 1) the choice of the
technique (Binned MP-EST vs. Unbinned MP-EST, and also Binned MP-EST
vs. Concatenation), and 2) the variable model parameter (e.g. ILS levels for
Mammalian-3 collection). Binning results are for the unweighted version with
S = 75%. Top part shows p-values for impact of the choice of the technique.
The bottom part shows p-values for the interaction between the varying pa-
rameter and choice of the technique. Thus p-values in the bottom part should
be interpreted with regard to questions of the following form: “is the relative
performance of binned MP-EST and unbinned MP-EST (or concatenation)
affected by the choice of varying parameter.” For example, for Mammalian-3
collection, the p-value shown under Binned vs. Unbinned indicates that the
level of ILS has no statistically significant impact on the relative performance
of binned and unbinned MP-EST.

Collection 2nd variable Binned vs. Unbinned Binned vs. Concat.

Significance of choice of technique
Mammalian-1 # genes p < 10−5 p = 0.34300
Mammalian-2 # genes p = 0.35690 p = 0.00315
Mammalian-3 ILS p = 0.00012 p = 0.24818

Impact of varying parameter on the choice of the technique
Mammalian-1 # genes p = 0.12071 p = 0.78500
Mammalian-2 # genes p = 0.56569 p = 0.50470
Mammalian-3 ILS p = 0.25511 p = 0.78500
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(A) Mammalian-1 and Mammalian-2 collections

True gene trees

(A) Mammalian-3 collection

numer of genes

Figure 4.17: Species tree branch length accuracy on the simulated
mammalian datasets estimated using MP-EST. Results are shown for
both collections of the mammalian dataset. Boxplots show the distribution of
the ratio of estimated branch length to true branch length for branches of the
true species tree that appear in the estimated tree; thus, 1 indicates correct
estimation. Results are over 20 replicates for all other conditions. Binning
results are for the unweighted version with S = 75%. Note that y-axis is
shown in logarithmic scale.
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binned MP-EST had 4.6% error (Fig. 4.16).

Species tree branch length: Similar to avian dataset, MP-EST underes-

timated species tree branch lengths in coalescent units when given estimated

gene trees but had good accuracy with true gene trees. The binned MP-EST

trees had more accurate branch lengths (Fig. 4.17), especially for lower BS

gene trees, and for lower levels of ILS.

4.5 Biological results

All of our biological datasets shows evidence of gene tree discord (see

Fig. 4.2 for avian and Fig. 4.18 for other datasets), but they vary with respect

to average BS (Fig. 4.19). For all datasets, the use of binning increased average

gene tree support, and in many cases also reduced gene tree discordance. We

discuss our findings on each of the four biological datasets in turn.

4.5.1 Avian

Gene trees: Evidence for ILS in the avian dataset is extensively reported

in [39]. The avian dataset has very low average bootstrap support for almost all

loci (Figs. 4.19 and Fig. 4.6) and large topological distances between estimated

gene trees (Fig. 4.18). The average topological distance between estimated

gene trees and the concatenation tree on the full set of 14K genes was very high

(74%). However, most loci had low phylogenetic signal, with the result that

the average BS for the estimated gene trees was very low, only 32%. Among
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Figure 4.18: Gene tree incongruence for biological datasets. We mea-
sure gene tree incongruence using pairwise normalized RF distance between
all pairs of estimated gene trees, with and without binning. For each of the
four biological datasets, the distributions of pairwise gene tree distances are
shown as kernel density plots [216] drawn using R [217].

170



A) Average support B) Branches with high support

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0%

25%

50%

75%

100%

Avian Mammals metazoa vertebrates yeast

A
ve

ar
ge

 B
oo

ts
tr

ap
 S

up
po

rt

Unbinned Binned

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

0%

25%

50%

75%

100%

Avian Mammals metazoa vertebrates yeast

P
er

ce
nt

ag
e 

of
 b

ra
nc

he
s 

w
ith

 s
up

po
rt

 >
 7

5%

Unbinned Binned

Figure 4.19: Gene tree bootstrap support for biological datasets. A)
Boxplots showing distribution of average bootstrap support across all esti-
mated gene trees. B) Boxplots showing distribution of the percentage of
branches in each gene tree that have support above 75%. Distributions are
shown for both original unbinned gene trees, and the supergene trees.
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the 14,446 gene trees, introns had the highest BS values (48%), and also had

a somewhat lower distance to the concatenation tree (63%). Therefore, the

large topological distance between estimated trees is to some extent a result

of poor phylogenetic signal in the gene sequences.
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Figure 4.20: Evidence for ILS in the avian dataset. On each branch
of the concatenation tree reported in [39], we show the number of intron gene
trees (out of a total of 2516 loci) that rejected that branch with a BS of at
least 75%. Edges with lots of highly supported conflict are closer to the base.
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However, substantial evidence of strongly supported gene tree conflict

remained even after taking these low bootstrap support values into account.

First, as shown in Figure 4.20, many of the branches in the TENT are rejected

by a large number of intron gene trees with high support (at least 75%);

furthermore, there are many short branches adjacent to each other in the tree,

as expected in a rapid radiation scenario. This is a condition that leads to high

levels of ILS. Similarly, comparing gene trees to each other revealed substantial

levels of discordance. On average, two estimated intron gene trees differed in

1.3 strongly supported edges (at least 75% support). Thus, a very high level

of discordance is observed in the avian dataset, some of which is clearly due to

lack of support. However, a lot of discordance is observed even among highly

supported branches, providing evidence of real gene tree discord.

Species Trees: An unbinned MP-EST analysis of the full 14K loci pro-

duced a tree with low to moderate support for some branches (Fig. 4.21).

Moreover, the unbinned tree failed to recover four key clades (Columbea, Cur-

sores, Otidimorphae, and Australaves; all shown on Fig. 4.21). These clades

are recovered consistently in other analyses on the full genome dataset [39],

including all analyses that included introns and UCEs, and also unbinned MP-

EST analyses restricted to non-coding data. Failure to recover Australaves is

particularly surprising, as it has been recovered in the literature using various

types of data [16, 195, 218, 219].

Weighted and unweighted binned MP-EST on all 14K loci (S = 50%
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Figure 4.21: Trees computed on the avian biological dataset using
MP-EST. We show results with weighted and unweighted binning (left),
and unbinned analyses (right). We used 50% bootstrap support threshold
for binning. Supergene trees were estimated using fully partitioned analyses.
MP-EST with weighted and unweighted binning returned the same tree. The
branches on the binned MP-EST tree are labeled with two support values side
by side: the first is for unweighted binning and the second is for weighted
binning; branches without designation have 100% support. Branches in red
indicate contradictions to other sources of evidence from [39].
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since we have more than 1000 genes) generated the same exact tree on this

dataset with small variations in bootstrap support (Fig. 4.21). In contrast

to unbinned analyses, binned MP-EST trees had highly supported branches

throughout most of the tree, and recovered all key clades. The unweighted

binned MP-EST tree was used by the Avian consortium as one of the two

possible hypotheses of bird evolution [39].

An unbinned MP-EST tree generated on the introns-only dataset [39]

had 31 out of 45 edges with 100% support and 34 edges with 95% or higher

BS; it also recovered all the key clades missing from the unbinned MP-EST

tree computed on the full set of 14K loci. However, the unweighted binned

MP-EST analysis on the introns-only dataset also recovered all the key clades,

and had higher support (33 edges with 100% support and 35 with 95% support

or more), with increased support for some key novel clades [39]. Thus, these

intron-only MP-EST trees are more congruent with other reliable analyses.

This similarity is likely because intron gene trees have better support than

other partitions, and (as shown in our simulation study) when gene trees have

high support, even unbinned MP-EST can have high accuracy.

4.5.2 Mammalian

The mammalian dataset has gene trees with substantially higher aver-

age BS (71%), but also demonstrates substantial gene tree incongruence (see

Figs. 4.19 and 4.18). Differences between MP-EST and concatenation (using

ML) were observed for tree shrews and bats: the concatenated analysis put
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Scandentia (tree shrews) as sister to Glires (Rodentia/Lagomorpha), while the

MP-EST analysis put Scandentia as sister to primates [77].

We re-analyzed this dataset and identified 21 loci with mis-labeled se-

quences (subsequently confirmed by the authors) plus two outlier loci [190].

We removed these 23 loci, and re-analyzed the data using concatenation and

both binned and unbinned MP-EST. We recovered a concatenation tree topo-

logically identical to the concatenation tree in [77]. The unbinned MP-EST

tree on this reduced gene set was similar to the unbinned MP-EST tree re-

ported in [77], but had lower support for tree shrews as sister to primates

(99% in [77], 64% with our analysis), and there was one topological difference

among low support edges. These differences are most probably due to the fact

that we have re-estimated our gene trees using RAxML, whereas the authors

had used an inferior tree search tool (only NNI moves).

The weighted and unweighted binned MP-EST (S = 75% since we have

less than 1000 genes) were identical on the mammalian dataset, with small

differences in support (less than 3%). The two binned trees were also similar

to the unbinned MP-EST tree on the reduced gene set with one difference: the

tree shrews were sister to Glires with 80% support in both binned MP-EST

trees, just like their position in the concatenation tree. Thus, the placement

of Scandentia, and whether it is sister to primates or to Glires, depends on the

mode of analysis. This agreement between the binned MP-EST analysis and

concatenated analysis of the reduced dataset may be an important finding,

but contradicts [220] (which specifically addressed this question) and [221].
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However, these two studies did not use coalescent-based methods to estimate

species trees. The unbinned and binned MP-EST trees placed bats identically

as sister to all other Laurasitheria (except for the basal Eulipotyphyla), and

so both differed from the concatenation tree.

4.5.3 Metazoa

The Metazoan dataset also represents a challenging analysis, since the

average bootstrap support is low (only 49%; see Fig. 4.19). On this dataset, we

have only performed an unweighted statistical binning analysis. In this section,

when we refer to binned trees, we are referring to an unbinned analysis with

S = 75% (since there are less than 1000 genes in this dataset).

The most important difference between the unbinned and unweighted

binned MP-EST trees (Fig. 4.22) is among Chordates, where the unbinned

MP-EST tree put Cephalochordates (represented by B. floridae) as sister to

vertebrates (Craniates), and the binned MP-EST tree, (as in the concatena-

tion analysis), put Urochordates (represented by C. intestinalis) as sister to

vertebrates. While Cephalochordates were traditionally thought to be the sis-

ter to all the extant vertebrates [222], recent evidence supports Urochordates

as the sister to all vertebrates [223–225], and hence the binned MP-EST tree

is likely correct. There are also some differences between the two trees within

Protostomia, but both MP-EST trees had low support for those relationships

and neither was congruent with the literature.
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Figure 4.22: Trees computed on the metazoan biological dataset us-
ing MP-EST. We show results with unweighted binning (left), and unbinned
analyses (right). We used 75% bootstrap support threshold for binning. Super-
gene trees were estimated using fully partitioned analyses. Branches without
designation have 100% support. Branches in red indicate contradictions to
other sources of evidence.

Sister to Bilateria: In both the binned and unbinned MP-EST trees, N. vecten-

sis (representing Cnidaria) is grouped with T. adhaerens (representing Placo-

zoa), and these two are sister to Bilateria. This relationship, which contradicts

the monophyly of Eumetazoa, has some support in the literature [226], but

the majority of recent molecular studies are congruent with the relationship

recovered in the concatenation tree, where N. vectensis is sister to Bilate-

ria [187, 227].

Protostomia: There are also some differences in the binned and unbinned

MP-EST trees with respect to Protostomia, but these are hard to interpret
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because some relationships among major lineages of Protostomia are not well

established [228]. Concatenation, binned and unbinned MP-EST analyses each

results in a different resolution for Protostomia, and no topology is identical

to some of the newer molecular studies [187, 228]. This is likely due to the

poor taxon sampling of this dataset (only 20 metazoan taxa).

In all trees, Annelid (represented by H. Robusta) and Mollusca (rep-

resented by L. gigantea) are sisters with full support, as expected. However,

Nematoda (represented by C. elegans), and Platyhelminthes (represented by

S. mansoni) are put in different places. The likely correct relationship is that

Nematoda should be sister to Arthropoda, and Platyhelminthes sister to Mol-

lusca/Annelid [228]. The unbinned MP-EST analysis puts Platyhelminthes

as sister to Mollusca/Annelid with 70% support, but fails to put Nematoda

as sister to Arthropoda. Binned MP-EST recovers neither relationship, but

is in fact essentially unresolved with regard to the relationship between Mol-

lusca/Annelid, Platyhelminthes, and Arthropoda (only 32% support for an

Arthropoda/Mollusca/Annelid clade, and 54% for Nematoda/Platyhelminthes).

Concatenation puts Nematoda as sister to Platyhelminthes.

Among Arthropoda, binned and unbinned MP-EST trees differ in the

position of Hymenoptera (represented by A. mellifera), where the binned MP-

EST tree puts them as sister to other Holometabola, but the unbinned MP-

EST tree puts them as sister to Coleoptera (represented by T. castaneum).

While the exact position of Holometabola is debated, recent molecular analyses

are consistent with the position in the binned MP-EST tree [229].
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4.5.4 Vertebrates

The vertebrate dataset had the highest average BS (76%) of all datasets

we examined (see Figs. 4.19). We performed only unweighted binning with

S = 50% (since this dataset has more than 1000 genes). Binned and unbinned

MP-EST trees had the same topology, and both were topologically identical to

the concatenation tree reported in [188]. The only difference between the two

analyses is the bootstrap support for the clade containing horse (E. caballus)

and dog (C. familiaris). The unbinned analysis has higher support (97%) for

this clade, and the binned analysis has lower support (83%). All other branches

have 100% support in both analyses. Whether horses (and more generally

Perissodactyla) are closer to dogs (more generally Carnivora) or cows (more

generally Cetartiodactyla) is an open question (see [230]).

4.5.5 Yeast

The yeast dataset has relatively high average BS (72%). We performed

only unweighted binning with S = 50% (since this dataset has more than

1000 genes). The binned and unbinned MP-EST topologies were identical,

and both had 100% support for all but one branch, and both trees were also

identical to the concatenation tree reported in [188] in all branches, except for

the single branch that had less than 100% support. This particular branch

unites C. lusitaniae with the C. guiliermondii/D. hansenii clade. While the

exact position of C. lusitaniae is not known, the relationship recovered in the

two MP-EST trees is closer to current belief about yeast evolution [231].
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4.6 Discussion

Our simulation results demonstrate that both weighted and unweighted

variants of binning reduces error in estimated species tree topologies, species

tree branch lengths, gene tree topologies, and gene tree distributions under

the conditions we studied. It also demonstrated that bootstrap support values

in the species tree can be improved, in the sense that binned species trees

tend to have higher support for true branches and lower support for false

branches. These reductions in error result in estimations of ILS that are closer

to correct ILS levels than unbinned MP-EST, which tends to over-estimate ILS

levels. In our analyses, although unbinned methods are rarely more accurate

than concatenation, binned MP-EST is almost always at least as accurate as

concatenation, and there are many model conditions in which binned MP-

EST is more accurate than concatenation while unbinned MP-EST is less

accurate than concatenation. While empirical performances of weighted and

unweighted binning were similar for the two datasets, theoretical guarantees

of binning require weighting, and so we recommend using weighting on real

biological datasets.

Below we discuss various aspects of the binning pipeline not discussed in

detail before, and point out shortcoming of our study, in addition to directions

for future research.

Imperfect binning: Binning can group genes together with different true

topologies, despite its attempt to avoid such groupings. In such situations,
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binning can result in scenarios similar to concatenation analyses in the super-

gene tree estimation step. This could in principal lead to reduced accuracy for

the estimated gene tree distributions. However, our simulations suggest that

estimated gene tree distributions are more accurate after binning, under condi-

tions we studied. We suggest that this is due to the fact that binning will never

group genes with different topologies together unless the conflicting branches

had low support, likely resulting from insufficient phylogenetic signal. As we

have shown, the inclusion of poorly estimated gene trees distorts the estimated

triplet gene tree distribution, and binning reduces this noise, suggesting that

the overall impact of binning is beneficial. These results are also consistent

with the observation that coalescent-based summary methods can be robust

to recombination [232]. However, if levels of ILS are very high and bootstrap

support in gene trees is lower than user-provided support threshold S, we can

get situations when binning hurts, as we saw on some model conditions of our

10-taxon dataset.

Variations of the binning algorithm: Our method can be seen as the

logical extension of the “Naive Binning” technique: binning without attempt-

ing to evaluate whether genes have a common tree [17]. Unlike naive binning,

we attempt to avoid putting genes together that have different true histories.

In this dissertation, we explored only one algorithm for such a binning strat-

egy, using bootstrap support values; however, alternative approaches can be

imagined. For example, instead of using one support threshold, we could use
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a series of thresholds, and hierarchically divide bins into smaller subsets until

some stopping criteria is met (e.g., no bin is larger than a certain size). Alter-

natively, we could use a measure of similarity between two gene trees and use

clustering techniques for binning genes. Or, we could use more rigorous statis-

tical tests for combinability (e.g., [233]) instead of bootstrap branch support

values. Exploring these variations are topics of future research.

Bootstrap support S: The results on the 10-taxon datasets stand out from

the other analyses: statistical binning slightly increases species tree estimation

error for some choice of S. The difference in impact for statistical binning in

this case is interesting, and points out the significance of how S is set. Even

in cases where binning was universally helpful, the choice of the threshold S

did impact the amount of improvement. We do not have a well-tested process

for finding the best S threshold. The optimal choice likely depends on many

factors, including the amount of ILS (thus with higher ILS one wants to be

more conservative and pick lower thresholds), the number of genes (with more

genes, one affords to be more conservative and pick lower thresholds), and

the amount of gene tree error. One approach that can be used in practice

is to simulate data under conditions similar to the biological dataset being

analyzed, and to pick the threshold that performs the best in simulations.

Summary: In this chapter, we showed that gene tree estimation error im-

pacts the accuracy of species tree estimation using summary methods, and de-

scribed how the avian phylogenomics project suffered from lack of support in
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gene trees. We introduced the statistical binning pipeline to improve the qual-

ity of estimated gene trees, and described two variations of binning: weighted

and unweighted. We showed that the weighted version has better theoreti-

cal guarantees than unweighted binning, but we did not observe any meaning

differences between the two pipelines in our simulation studies. We showed

in extensive simulation studies that under most conditions binning improves

species tree accuracy. We showed that these improvements are largest for

lower levels of ILS, lower levels of phylogenetic signal in genes, and for larger

numbers of genes. We demonstrated the use of binning on several biological

datasets, and were able to use binning on the avian phylogenomics project to

produce the first coalescent-based highly supported avian tree of life.
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Chapter 5

ASTRAL1

In the previous chapter, we described how a species tree can be esti-

mated from a set of gene trees using either a traditional two step pipeline,

or the statistical binning pipeline. Regardless of which pipeline is used, the

final step requires a technique that produces a species tree given a collection

of input (estimated) gene trees. Such a method is called a summary method,

and a desirable attribute of the summary method is to be statistically consis-

tent under the MSC model (see Section 2.2.2). Many statistically consistent

methods have been developed through the years, and of these methods (e.g.,

MP-EST [134], which we used in the previous chapter) are now in widespread

use. However, existing methods are too computationally intensive for use with

1Parts of this chapter have appeared in the following papers:

1. Siavash Mirarab, Rezwana Reaz, Md. Shamsuzzoha Bayzid, Théo Zimmermann,
M Shel Swenson, and Tandy Warnow. ASTRAL: Genome-Scale Coalescent-Based
Species Tree. Bioinformatics, 30(17):i541–i548, 2014

2. S. Mirarab and T. Warnow. ASTRAL-II: coalescent-based species tree estimation
with many hundreds of taxa and thousands of genes. Bioinformatics, 31(12):i44–i52,
2015

In all three cases, SM and his supervisor, TM, designed the method, designed the studies,
and wrote the papers (with comments from others), and SM implemented the methods. SM,
MSB, and TZM ran experiments for (1) and SM ran all experiments for (2). MSS and RR
worked on earlier versions of ASTRAL algorithmic ideas, and contributed to writing.
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genome-scale analyses of large number of species or have poor accuracy under

some realistic conditions, as we will show.

Some of these challenges were faced by the thousands plant transcrip-

tomes (1KP) project [40]. The 1KP project has gathered sequences from across

the genomes of a large number of plant species (103 plants in the initial phase

and more than 1,100 in the ongoing second phase). The goal of the project

was to estimate the species tree using various methods, including those that

take gene tree incongruence due to incomplete lineage sorting into account.

As we will show, these attempts had limited success, mostly due to limitations

of existing summary methods.

In this chapter, we introduce a new summary method called ASTRAL

(Accurate Species Tree Reconstruction ALgorithm). ASTRAL uses dynamic

programming to solve a likely NP-hard optimization problem. ASTRAL can

solve the optimization problem exactly in exponential time (doable only for

up to 18 species), but more importantly, it can heuristically solve the problem

in polynomial time by constraining the search space through a set of allowed

bipartitions in the species tree (the constrained version of the problem is solved

exactly). As we will show, ASTRAL is statistically consistent, even when

run under the “constrained” mode. The constrained version can run on very

large datasets, and has outstanding accuracy – improving upon various leading

statistically consistent summary methods. ASTRAL is often more accurate

than concatenation using maximum likelihood, except when ILS levels are low

or there are too few gene trees.
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We introduce two versions of ASTRAL: ASTRAL-I and ASTRAL-II.

The second version is a direct improvement upon ASTRAL-I, with substantial

advantages: ASTRAL-II is faster, can analyze much larger datasets (up to

1000 species and 1000 genes), and has substantially better accuracy under

some conditions. ASTRAL-I’s running time is O(n2k|X|2), and ASTRAL-II’s

running time is O(nk|X|2), where n is the number of species, k is the number

of loci, and X is the set of allowed bipartitions for the search space. ASTRAL

is available in open source at https://github.com/smirarab/ASTRAL/.

In the rest of this chapter, we first motivate the development of a

new summary method using simulation studies and some observations from

the 1KP project. We then give the algorithmic details of ASTRAL-I and

ASTRAL-II in Section 5.2 and discuss theoretical properties of both versions

of ASTRAL. We then present a simulation study evaluating ASTRAL-I in

Section 5.3 and a completely different simulation evaluating ASTRAL-II in

Section 5.4. We then evaluate the use of ASTRAL on real biological data

(Section 5.5) and finish by discussing results and pointing to directions for

future research.

5.1 Motivation

Despite the availability of coalescent-based methods, many biological

datasets are too large for the available methods. For example, MP-EST, easily

scales to very large number of gene trees but cannot be used on datasets

with large number of species due to computational reasons and degradation of
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accuracy (see [236], but we will show more results supporting this in our results

section). BUCKy-pop [133], a method that tries to take into account gene tree

uncertainty, is more computationally intensive and cannot run on datasets of

moderate size. However, BUCKy tends to have very good accuracy where it

can run, and can work with unrooted gene trees [148]. MP-EST has also been

shown to have good accuracy under some conditions, but requires rooted gene

trees [134]. A new distance-based method called NJst [146] can also handle

unrooted gene trees, but NJst is new and its accuracy has not been tested

extensively on various datasets.

We were motivated to develop a new summary method by difficulties

we were facing on a biological data analysis. The 1KP project [40] gathered

sequence data across 103 plant species, with plans to go to more than 1,100

species in the next phase 2. Our attempts to run MP-EST on this dataset had

limited success. The pilot dataset that included 103 species was analyzed to

extract 856 genes. We had difficulty in rooting many of these gene trees, since

the common ancestor is believed to have existed close to a billion years ago,

and our set of outgroups were missing from many of the genes. We built a

restricted set of 669 gene trees that could be putatively rooted using outgroups.

We attempted to analyze these 669 gene trees using MP-EST.

MP-EST took between 4 to 8 days to finish 5 random runs on each

bootstrap replicate of this dataset. The results produced, however, were not

2see http://www.onekp.com/samples/list.php for the list of species
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consistent among the 5 runs, and in some cases had log likelihoods scores that

were many times larger than log likelihoods obtained from other runs (e.g.,

-69150891 in one run and -19540149 in a second run). These differences in

log likelihood are not expected and show that the method is failing to search

the tree space well in at least some of the random runs (this might be related

to the fact that MP-EST uses only NNI moves). The species trees produced

using MP-EST had low support, sometimes for easy-to-recover uncontroversial

clades that we had recovered with 100% support using concatenation, and

even simple statistically inconsistent summary methods such as MRP [237].

The shortcomings of MP-EST on the 1KP dataset could be the result of a

combination of factors: rooting is challenging on this dataset, all gene trees are

incomplete (are missing some species) and in some gene trees a large number

of species are absent, and finally, the number of species being analyzed here is

more than all the previous analyses that had tested or used MP-EST (typically

below 50 species).

Beyond these challenges, it is possible that optimization scores other

than pseudo-likelihood score optimized by MP-EST could simply correlate

better with species tree accuracy. For example, a recent paper showed that a

simple non-parametric quartet-based way of scoring species trees can predict

species tree topological accuracy better than the pseudo-likelihood parametric

score used by MP-EST [236]. Similarly, in a recent paper, we have shown

that a simple statistically inconsistent method called MRL [238] outperforms

MP-EST on large parts of the parameter space (see Fig. 5.1), suggesting that
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Figure 5.1: Comparison of MP-EST and MRL on a simulated mam-
malian dataset. Species tree error is depicted for a simulated mammalian
dataset reported in [38]. Simulation procedures are similar to those used in
Chapter 4 and further described in Section 5.3.1.1. (a) We fix the level of ILS
to medium and vary the number of genes and the gene alignment length, which
controls gene tree estimation error. (b) We fix the level of ILS to very high,
and vary the number of genes. We compare accuracy of MRL and MP-EST.
On many conditions MRL has better accuracy; MP-EST, which has theoreti-
cal guarantees of statistical consistency, is better than MRL on these data only
when levels of ILS are very high and very large number of genes are available.
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better statistically consistent methods can be developed.

An accurate analysis of the 1KP dataset required a new method that

could handle unrooted gene trees, could handle large number of species, and

was robust to missing data. More generally, even the best coalescent-based

summary methods have not been reliably more accurate than concatenation [17,

239], and analyses of biological datasets have in some cases resulted in species

trees that were less well resolved and biologically feasible than concatena-

tion [16, 195]. Hence, the choice between coalescent-based estimation and

concatenation is highly controversial [33]. Improved accuracy and scalabil-

ity for summary methods can help resolving this long-standing debate about

the relative accuracy of concatenation and summary methods.

5.2 ASTRAL

Designing a statistically consistent summary method is complicated by

the possibility that the most likely gene tree can be different from the species

tree (the so-called anomaly zone [72], discussed in Section 2.2.2.2). However,

it has been proved [20, 71, 240] that

Theorem 5.2.1. There are no anomalous rooted 3-taxon species trees and no

anomalous unrooted 4-taxon species trees.

The complete proofs are given in [20] for rooted trees and [71, 240]

for unrooted trees. Here, we provide a sketch for the rooted species tree on 3-

taxa. Let’s consider the case of the 3-taxon tree on human, chimp, and gorilla,
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Gorilla Chimp Human Gorilla Chimp Human

Gorilla Chimp HumanGorilla Chimp Human

(1) (2)

(3) (4)

Figure 5.2: Rooted gene trees and the species tree for 3 taxa. Four
coalescence scenarios can be imagine. (1) The two lineages from sister species
chimp and human coalesce in their first ancestral population. The gene tree
and the species tree will always be congruent under this scenario. (2-4) Lin-
eages from chimp and human do not coalesce in the ancestral population and
go further back into the common ancestor of all three populations. All three
scenarios are equiprobable. Blue (1-2): concordance between species tree and
gene tree. Red (3-4): discordance.

shown in Figure 5.2. There are three possible gene tree topologies (putting

human with chimp or with gorilla, or putting chimp and gorilla together). The

lineages from human and chimp have a non-zero probability p of coalescing

in their most recent common ancestor (scenario 1); gene trees produced by

this scenario will agree with the specie tree. If the two lineage fail to coalesce

and go further back in time to the previous population, we have three lineages

(human, chimp, gorilla) and the first coalescence event is equally likely to
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be between any pair of lineages (scenarios 2 – 4); thus, the three gene tree

topologies are equiprobable in this case, and each topology has a probability

of 1−p
3

. The probability of observing the species tree topology among the gene

trees, therefore, is p+ 1−p
3

= 1
3

+ 2p
3

, which is strictly greater than 1
3
. Thus, the

species tree topology has a higher probability than the two alternative trees.

A similar argument can be made for 4-taxon unrooted species trees [20].

The fact that rooted 3-taxon and unrooted 4-taxon species trees do not

have anomaly zones underlies the design of some summary methods and their

proofs of statistical consistency. These methods decompose the gene trees into

triplets or quartets of taxa (for the rooted or the unrooted case, respectively),

find the species tree on the triplets or quartets, and then combine the triplet

or quartet species trees. ASTRAL uses similar ideas in its design.

While some methods in the literature, such as MP-EST, use rooted

triplets of taxa to speed up these analyses, we use unrooted quartet trees in

ASTRAL. Rooting gene trees can be challenging, as it typically requires the

use of an outgroup, but the given limited data in each gene, the position of

the outgroup can be easily misconstructed [33]. For this reason, we believe

that by using unrooted input gene trees, ASTRAL finds applicability for more

datasets. As we will show, good running time can be achieved even with

quartet trees, and ASTRAL has excellent accuracy.

We first start by giving some definitions and describing the notation.

We next describe the first version of ASTRAL, and then describe how ASTRAL-

II has improved upon ASTRAL-I.
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5.2.1 Definitions and notations

We use the following notation throughout the rest of this chapter:

S: a set of n species

G = {t1, . . . , tk}: a set of k binary unrooted gene trees leaf-labelled by S.

r: an arbitrary set of four species {a, b, c, d} ⊂ S.

Q : the set of all
(
n
4

)
quartets of taxa selected from S

q: an unrooted tree topology on quartet r. We use ab|cd to indicate that a

and b are sisters. Three topologies are possible: ab|cd, ac|bd, and ad|bc.

t|r: the quartet tree topology obtained by restricting tree t to the four species

of r. When q = t|r, we say that t agrees or is compatible with q.

Q(t): the set of quartet trees induced by tree t; thus, Q(t) =
⋃
r∈Q{t|r}

wG(q): the number of trees in G that agree with q.

X: a set of bipartitions (see Section 2.1.1) on leaf-set S; all bipartitions in X are

complete (include all taxa in S). Each subset of S is called a cluster, and

a bipartition defines two clusters. Since bipartitions in X are complete,

we can represent X as a set of clusters instead of bipartitions, and when

we do so, we refer to it as X′.

For any quartet of taxa, the quartet tree topology that has higher wG

than the two alternative topologies is called the dominant topology (breaking

ties arbitrarily).
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5.2.2 ASTRAL-I

5.2.2.1 Optimization problem

Given a set G of k binary input gene trees on n taxa, there is a multi-set

of k
(
n
4

)
quartet trees induced by trees in G. We define the Weighted Quartet

(WQ) score of a tree t with respect to G to be the number of quartet trees

from this multi-set that t also induces. Thus,

WQG(t) =
k∑
1

|Q(t)
⋂

Q(ti)| (5.1)

An equivalent definition is

WQG(t) =
∑
r∈Q

wG(t|r) =
∑
q∈Q(t)

wG(q)

.

We now define an optimization problem for maximizing WQ.

Weighted Quartet Consensus (WQC) problem:

• Input: a set G of unrooted gene trees

• Output: the tree topology T̂ on S that maximizes WQG; i.e., return T̂

such that WQG(T̂ ) ≥ WQG(T ′) for T ′ 6= T̂ .

The WQC optimization problem, also called the quartet consensus [241]

or Maximum Quartet Support Species Tree (MQSST) [234] problem, is a spe-

cific case of the general weighted quartet problem (where w(q) is defined ar-

bitrarily and not with respect to G), which is an NP-hard [242] problem. The

complexity of WQC has not been established. If the input trees are allowed to
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have missing data, then they could all include four leaves; in this case, WQC

would be NP-hard [242]. When all the gene trees are restricted to be complete

(i.e., contain all the species), the complexity of WQC is an open problem to

our knowledge, but we suspect it is also NP-hard.

To be able to cope with the computational complexity of this likely

NP-hard problem, we introduce a constrained version of WQC.

Constrained Weighted Quartet Consensus (CWQC) problem:

• Input: a set G of unrooted gene trees, and a set X of bipartitions on S.

• Output: the tree topology T̂ on species set S that maximizes WQG and

all its bipartitions are in X (equivalently, all its clusters are in X′).

CWQC is a generalization of WQC; setting X′ in CWQC to the power

set (set of all possible subsets) of S would solve WQC. As we show in The-

orem 5.2.8, CWQC can be solved in time polynomial in the size of X′, k,

and n, and ASTRAL uses a dynamic programing algorithm to solve the prob-

lem. An exact solution to the constrained problem gives a heuristic solution

to the unconstrained problem. Therefore, we refer to a solution to the con-

strained problem as the heuristic version of ASTRAL, and a solution to the

unconstrained version as the exact version. Various settings of X would give

different heuristics, and would each correspond to a specific constraint on the

search space.

A natural way to define X is using the input gene trees and adding all

their bipartitions to the set. The motivation for setting X in this manner is
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that we hope each bipartition in the species tree would appear in at least one

of the gene trees. This definition of X is used by default in ASTRAL-I, but we

allow the user to add extra bipartitions to this set if desired (in, ASTRAL-II,

we expand this set automatically). Besides the intuitive reasons for setting X

to bipartitions in the gene trees, this definition enables us to prove theoretical

guarantees of statistical consistency.

Theorem 5.2.2. An exact solution to CWQC problem is a statistically con-

sistent estimator of the species tree topology under the MSC model when true

gene trees are used as input, as long as X includes at least all bipartitions from

all the input gene trees, but perhaps also more bipartitions.

Proof. Let T be the true species tree. As stated in Theorem 5.2.1, unrooted

quartet trees do not have anomaly zones [240]. Therefore, as the number of

gene trees increases, with probability that approaches 1, each quartet topology

induced by the species tree will appear more frequently in G than either of the

two alternative topologies. Therefore, for every quartet of taxa r and every

possible tree T ′, with probability that approaches 1 as we increase the number

of genes, wG(T |r) ≥ wG(T ′|r). By extension, if Q is the set of all possible

quartets of taxa, then

∑
r∈Q

wG(T |r) ≥
∑
r∈Q

wG(T ′|r)

and thus:

WQG(T ) ≥ WQG(T ′)
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Thus, the optimization criterion in WQC attains its maximum value with the

true species tree with probability that approaches 1. The assumption of having

a binary species tree ensures that the dominant quartet tree has a frequency

that is strictly higher than two alternatives, and therefore, in the limit, the

optimization problem has a unique maximum value (note that Q(T1) = Q(T2)

iff T1 = T2 [243]). Thus, an exact solution to the WQC problem is statistically

consistent.

The species tree topology has a non-zero probability of being observed

among gene trees. Therefore, as the number of gene trees increases, with

probability converging to 1, at least one of the gene trees will be topologically

identical to the species tree T . Therefore, in the limit, the set X will contain

all the bipartitions from T with probability approaching 1. Thus, a solution

to CWQC is also statistically consistent as long as X includes all bipartitions

from all gene trees. Note also that X may contain all the bipartitions from T

even without having T among its gene trees, but we invoked the probability

of observing T in X for ease of proof.

We note that CWQC takes into account the relative frequency of all

three alternative quartet topologies for all quartets of taxa, and weights them

accordingly. Thus, if the dominant quartet topology is much more frequent

than the alternatives, trees that don’t induce the dominant topology are pe-

nalized, but if the three alternative quartet topologies all have frequencies

close to 1/3, that quartet will contribute little to the optimization problem.

This approach is in contrast to some other quartet-based methods such as the
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population tree from BUCKy [133] that first try to find the dominant quartet

topologies and then summarize them. Estimation of the dominant quartet tree

is susceptible to error (due to insufficient gene sampling and estimation error)

and the CWQC accounts for this.

The WQC optimization problem could be expressed as finding a median

tree, where instead of finding a species tree that maximizes the total number

of quartet trees that it satisfies, we would seek a fully binary species tree that

has a minimum total distance to the input gene trees, where the distance is

the number of gene tree quartet trees that it violates. Then, Theorem 5.2.2

asserts that the median tree (under this definition) is a statistically consistent

estimator of the species tree.

5.2.2.2 Dynamic programming

ASTRAL uses a dynamic programming (DP) approach to solve the

CWQC optimization problem. Moreover, the fact that weights of quartet trees

are defined according to their frequency in the gene trees and not arbitrarily

enables us to optimize the WQ score without explicitly enumerating the set

of all possible quartet trees. Thus, we solve CWQC problem without ever

explicitly calculating the 3
(
n
4

)
values of the wG function.

For a given unrooted binary tree t and four leaves r = {a, b, c, d} in

the tree, the induced subtree of t connecting the four leaves will have exactly

two nodes x and y with degree three (Fig. 5.3). We say that the quartet tree

q = ab|cd on four taxa r is associated (or mapped) to a pair of nodes {x, y}
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Figure 5.3: Mapping a quartet tree to a tripartition. Each node x in
an unrooted tree defines a tripartition (X1|X2|X3) of the set of taxa and a
tripartition defines a node. Each induced quartet tree q = ab|cd maps to two
nodes (x and y here). Node x is where the paths from a to c (or d) and b to
c (or d) first join. Similarly, node y is where the paths from c to a and d to a
first join.

in an unrooted binary tree t when q is compatible with t and x and y are the

only two nodes that have a degree of three in t|r. We say that q is mapped

to x from its ab side when a and b are on two different edges pending from x

(similarly y is associated with the cd side of q).

Deleting x from a tree t separates it into three parts, X1, X2, and X3, as

shown in Figure 5.3; this is called a “tripartition”, and is denoted (X1|X2|X3).

Internal nodes of an unrooted tree and tripartitions are equivalent and we

use them interchangeably. We call each part of a tripartition a “side” of the

corresponding node.

For an internal node x, we can easily count the number of quartets

that are associated with it. Recall that by definition, a quartet mapped to x
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has two of its leaves pending from two different edges of x. Thus, to count

the number of quartets mapped to x, we simply need to pick one of the three

partitions of x (say X1), and pick two leaves from it, and then pick one leaf

from each of the remaining partitions, and do this for all ways of picking the

first partition. Thus,

Corollary 5.2.3. The number of quartet trees mapped to x = (X1|X2|X3), is

F (x1, x2, x3) =

(
x1

2

)
x2x3+x1

(
x2

2

)
x3+x1x2

(
x3

2

)
=
x1x2x3(x1 + x2 + x3 − 3)

2

where x1, x2, and x3 give the sizes of X1, X2, and X3, respectively.

Recall that q = ab|cd is mapped to x from the ab side when a and b

belong to two different sides of x. Now, for two given tripartitions, x and y,

we can derive how many quartets are mapped to both x and y from the same

side of the quartet.

Lemma 5.2.4. Let x = (X1|X2|X3) and y = (Y1|Y2|Y3) be two tripartitions

on the same set of leaves S. Let C be a 3× 3 matrix with Cij = |Xi ∩ Yj| for

i, j ∈ {1, 2, 3}. The number of quartet trees mapped to both x and y from the

same side of the quartet tree is:

H(x, y) = H(C) =
∑

(a,b,c)∈G3

F (C1a,C2b,C3c) (5.2)

where G3 gives the set of all permutations of {1, 2, 3}.

Proof. There are six bijections between the three parts of x and y. Take

w.l.o.g. one of those bijections (X1 → Y1, X2 → Y2, X3 → Y3). If we find
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the intersection between all three partitions paired with each other, we get a

tripartition z = (X1 ∩ Y1, X2 ∩ Y2, X3 ∩ Y3) on a subset of S. We can use the

equation from Corollary 5.2.3 to count the number of quartet trees mapped

to z. This is the term inside the sum in Equation 5.2 and note that we are

summing over all possible bijections. The quartet trees mapped to z are clearly

mapped also to both x and y. Moreover, any quartet tree mapped to z maps

to x and y on its same exact side (the side that belonged to two sides of z).

Furthermore, a quartet tree that maps to both x and y but from different

sides won’t be counted because z will not include it. To see this, consider

x = (a|b|cd) and y = (ab|c|d); the quartet tree ab|cd is mapped to both x and

y, but is mapped from the ab side to x and from the cd side to y. All six

ways of calculating z using bijections between partitions of x and y will have

at least one empty part, and thus, H will be zero here. Therefore, H counts

only quartets that are mapped to both x and y form their same side. We now

need to show that all such quartet trees are counted exactly once.

Take any quartet tree q = ab|cd that is mapped to both x and y w.l.o.g.

from the ab side. By definition, a and b belong to two sides of x and w.l.o.g.

let a ∈ X1, b ∈ X2, and c, d ∈ X3 and similarly, w.l.o.g. let a ∈ Y1, b ∈ Y2, and

c, d ∈ Y3. The bijection that produces z = (Z1 = X1 ∩ Y1, Z2 = X2 ∩ Y2, Z3 =

X3 ∩Y3) has a ∈ Z1, b ∈ Z2, and cd ∈ Z3; therefore F applied to this bijection

will count q. Tripartitions z produced by all five remaining bijections will miss

one of the four taxa, and therefore will not count q. The lemma follows.

We now count the number of quartet trees that a tripartition x shares
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with a collection of input trees. Let

sG(x) =
∑
t∈G

|Q(t) ∩Q(x)|

where Q(x) is the set of quartet trees mapped to x. Then,

Lemma 5.2.5. For a tripartition x and a set of unrooted binary trees G,

sG(x) =
∑
t∈G

∑
y∈N(t)

H(x, y) (5.3)

where N(t) is the set of internal nodes in t and H(x, y) is given in Equation 5.2.

Proof. The proof follows from the fact that by Lemma 5.2.4, each H(x, y)

term counts all quartet trees that are mapped to x and y if and only if they

are mapped from the same side. Each quartet tree q in a gene tree t that is

mapped to x will therefore be counted, and will be counted only once: when

y is the node in the gene tree that has q mapped to it, and has q mapped to

it from the same side as x.

We now present a major result.

Theorem 5.2.6. The WQG score of a species tree T̂ can be computed as

WQG(T̂ ) =
1

2

∑
x∈N(T̂ )

sG(x) (5.4)

Proof. Recall that WQG score defined in Equation 5.1 counts the number of

quartet trees induced both by the species tree and the set of gene trees. Each

quartet tree in the species tree maps to two of its internal nodes. Thus, if we
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simply count the number of quartet trees in all gene trees that are mapped to

any internal nodes of T̂ and sum up these values, we will count each quartet

tree shared between the species tree and the gene trees exactly twice. The

sG(x) term, by Lemma 5.2.5, counts exactly this quantity for a given node.

Thus, we just need to sum sG(x) values for all the internal nodes of T̂ , and

divide the sum by two. The theorem follows.

The ability to score a tripartition of the species tree in isolation from

other tripartitions using the sG(x) function allows us to use dynamic program-

ming to maximize the WQG score. The dynamic programming starts from

the set S and recursively divides it into smaller subsets, each time finding the

division that maximizes the WQG score. Backtracking defines the subtree that

maximizes the score and at the top level returns the tree that maximizes WQG.

Recall that X′ is the set of clusters from bipartitions in X (i.e., A ∈ X′

iff the bipartition (A|S − A) ∈ X). We compute V (A), which gives the score

for an optimal subtree on A ⊂ S, using the following dynamic programming.

ASTRAL DP algorithm:

• |A| = 1: V (A) = 0

• A = S: V (A) = V (A− {a}) for an arbitrary a ∈ S

• otherwise:

V (A) = max
A′,A−A′∈X′

{V (A′) + V (A−A′) +
1

2
sG((A′|A−A′|S−A))} (5.5)

Note that sG is defined in Equation 5.3 and (A′|A−A′|S−A) defines a tripar-
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tition, which can be scored using sG.

The recursion in the dynamic programming finds a way of dividing each

set A into A′ and A−A′ (each of which must be in X′) such that the number

of quartets satisfied by an optimal rooted tree on A′ and A − A′, in addition

to those satisfied by the tripartition (A′|A − A′|S − A), is maximized. The

boundary cases are singleton clusters; for these, we set V (A) = 0. Also note

that for A = S, the tripartition (A′|A − A′|S − A) will have an empty set in

its third part, regardless of the choice of A′; therefore sG(A′|A−A′|S−A) will

be zero for A = S. Since any trivial bipartitions (where one side has only one

taxon) has to be in the final species tree, setting A′ to any arbitrarily chosen

leaf at the top level would work. Each division of A to two parts creates two

new bipartitions in the species tree: (A′|S − A′) and (A − A′|S − (A − A′));

note that both of these bipartitions are restricted to those found in the set X.

Theorem 5.2.7. The ASTRAL DP algorithm finds an optimal solution to the

CWQC optimization problem.

Proof. Let tree T̂ be the tree obtained by backtracking the sequence of set

divisions in the DP algorithm. The V (S) score computed by the DP algo-

rithm equals the right hand side of Equation 5.4 and by Theorem 5.2.6, it

equals WQG(T̂ ) (i.e. the optimization score of the tree). To see this, note that

the recursive formula simply produces the sum of sG scores for all the inter-

nal nodes of T̂ . We therefore need to only show the dynamic programming

maximizes V (S). For each A, the dynamic programming recursively finds the
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maximum possible V among all resolutions of A in addition to the score for

the node resulting from that resolution; thus, by induction on A, the dynamic

programming maximizes V . The theorem follows.

5.2.2.3 Running time analysis

The score sG(x) needs to be calculated for each tripartition of taxa vis-

ited in the dynamic programming. In ASTRAL-I, to compute sG(x), we simply

follow Equation 5.4. Thus, we sum over O(nk) input gene tree nodes, and, for

each node, we first calculate C and then compute H(C) using Equation 5.2.

We represent subsets of taxa as bitsets, which results in O(n) running time for

calculating C; therefore, calculating each sG(x) requires O(n2k) (we improve

this in ASTRAL-II, as we will show). Note that our dynamic programming

algorithm draws its clusters from the set X′. Not all pairs of clusters in X can

be put together, but for simplicity we assume they can; with this assumption,

there are O(|X|2) tripartitions that need to be scored. Thus,

Theorem 5.2.8. ASTRAL-I runs in O(n2|X|2k) time, where n is the number

of species and k is the number of gene trees.

Note that this is a conservative running time analysis. The number

of tripartitions scored is certainly lower than |X|2, and likely can be bounded

with a lower exponent. Also, we do not need to calculate the score multiple

times for the tripartitions that appear in multiple gene trees; we can compute

the score once and simply multiply it by the number of times it appears. In

practice, ASTRAL-I is really fast, as we will show.
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We close by noting that our dynamic programming (DP) approach

is similar to the algorithm used in [244] for constructing species trees from

sets of gene trees, minimizing the total number of duplications and losses, and

subsequently used to construct species trees minimizing deep coalescence [140].

We also note that Bryant and Steel give a dynamic programming for solving

the general constrained weighted quartet problem (where weights are defined

arbitrarily and not by the gene trees) [245]. Their dynamic programming also

runs in polynomial time (with a n4 term) and solves a constrained version

of the problem where the bipartitions in the final tree are restricted to those

coming from an input constraint set (analogous to X). In our algorithm, we

assume weights are the frequencies in the gene trees, and therefore, we can

solve the problem without ever listing all 3
(
n
4

)
quartet topologies and their

weights. Thus, we are able to achieve polynomial time running time with a

lower exponent than n4.

5.2.3 ASTRAL-II

We now describe how ASTRAL-II improves upon the older version.

ASTRAL-II has three new features:

1. ASTRAL-II uses a faster algorithm to compute sG(x).

2. ASTRAL-II searches a larger space by expanding the set X using heuris-

tics.

3. ASTRAL-II can handle polytomies in its input gene trees.
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Algorithm 5.1 - Weight calculation. Input is a gene tree set G and a
tripartition w = (X|Y |Z). Each part (e.g., X) is a bitset indexed by the
species (thus, X[i] is 1 if leaf i is in X and otherwise is 0). H(C) is defined as
in Eq. 5.2. Function WEIGHT computes sG(x) defined in Eq. 5.3.

function weight(g, w = (X|Y |Z))
for t ∈ G do

w ← 0
S ← empty stack
for u ∈ postOrder(t) do

if u is a leaf then
(x, y, z)← (X[u], Y [u], Z[u])

else
(C11,C12,C13)← pull from S
(C21,C22,C23)← pull from S
(x, y, z)← (C11 + C21,C12 + C22,C13 + C23)
(C31,C32,C33)← (|X| − x, |Y | − y, |Z| − z)
w ← w +H(C)

push (x, y, z) to S

We motivate and discuss each feature in turn.

5.2.3.1 Running time improvement

Recall that ASTRAL-I computes sG in O(n2k) time for each tripar-

tition, by going over all O(nk) input gene tree nodes, and, for each node,

calculating H using Equation 5.2 in O(n). In ASTRAL-II, instead of looking

at all tripartitions in input gene trees, we use a post-order traverse of all gene

trees (rooted arbitrarily) to calculate the score using Algorithm 5.1.

To score the input tripartition w = (X|Y |Z), we traverse all the nodes

of all gene trees. For each traversal node u, we compute a tuple (x, y, z),

which gives the number of leaves under u that are shared with X, Y , and Z.
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To do this for leaves, we simply need to find which side of w includes that leaf,

which can be done in O(1) if the tripartition is represented as three bitsets.

For internal nodes, we can calculate (x, y, z) by simply summing up the same

quantities already calculated for the two children of u, which also takes O(1).

The tuples from the two children of u in addition to (|X| − x, |Y | − y, |Z| − z)

give all the element of the 3×3 matrix C that gives the size of the intersection

between all three sides of u and all three sides of w. Given C, we simply need

to calculate H(C), which also takes O(1). Thus, each inner-loop takes O(1)

and therefore, calculating sG(w) for one tripartition requires O(nk) running

time. Thus,

Theorem 5.2.9. ASTRAL-II runs in O(nk|X|2) time, where n is the number

of species, and k is the number of gene trees.

5.2.3.2 Additions to X

Theorem 5.2.2 established that the default way of setting the set X is

statistically consistent. However, for a limited number of genes, as we will

show in our results section, it is possible and sometimes likely that some of

the bipartitions in the species tree do not appear in any of the gene trees. In

ASTRAL-II, to account for this, we use a host of heuristic strategies to add

extra bipartitions to the default set X.

Similarity Matrix: For each pair of species a and b, we define

Q({a, b}) = {(ab|cd) : c, d ∈ S− {a, b}}
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We now define a similarly measure between a pair of species:

s(a, b) =
∑
t∈G

|Q({a, b}) ∩Q(t)|

Thus, the similarity between the two taxa is the number of quartet trees

induced by gene trees where the pair appear on the same side of the quartet.

This similarity matrix can be calculated using Algorithm 5.2. This algorithm

traverses all nodes of all input gene trees (rooted arbitrarily), and for each

node u, we look at all pairs of leaves chosen each from one of the children

of u. For each such pair, we add
(
o
2

)
to their similarity score, where o is the

number of leaves outside the subtree below u. This will process each pair of

nodes in each of the input k genes exactly once and would therefore require

O(n2k) computations. The final score can be normalized by |Q({a, b})|, the

total number of quartet trees that include a and b on the same side. When

input gene trees are complete, this normalization is not necessary and is not

shown in Algorithm 5.2.

Once the similarity matrix is computed, we calculate an UPGMA tree

and add all its bipartitions to the set X. The UPGMA algorithm starts from

Algorithm 5.2 - Computing similarity matrix. leafCount gives the
number of leaves under a node and is easily precomputed.

function getSimilarity(G)
S ← Zeros(n× n)
for g ∈ G and u ∈ postOrder(g) do

for l ∈ Left(u) do
for r ∈ Right(u) do

S[l, r] = s[r, l] = s[r, l] +
(
n−leafCount(u)

2

)
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Algorithm 5.3 Additions to X using greedy consensus. See descrip-
tions of functions in Table 5.1. Constants are by default set to THS =
{0, 1

100
, 1

50
, 1

20
, 1

10
, 1

4
, 1

3
}; ITERS = 10; RWD = 2; and FRQ = LTH = 1

100
.

function addByGreedy(G, S)
for t ∈ THS do

gc← greedy(G, t, False)
for p ∈ polytomies(gc) do

updateX(upgma(S, start = clusters(p)))
c← 0
itercount← ITERS
while c < itercount do

c← c+ 1
sample← randSample(p)
gr ← greedy(G|sample, 0, T rue)
if updateX(resolve(p, gr)) ≥ FRQ then

itercount← itercount+RWD

updateX(resolve(p, upgma(S|sample)))
if t ≤ LTH and c < ITERS then

for s ∈ sample do
ld← pectinate(sortBy(S, sample, s)
updateX(resolve(p, ld))

n singleton clusters, one per taxa, and in each step, combines the two clus-

ters with the highest similarity. The similarity of two clusters is the average

similarity between all pairs of leaves chosen each from one of the two clusters.

Greedy: The greedy consensus of a set of trees is obtained by starting from

a star tree and adding bipartitions from input trees in the decreasing order of

their frequency if they don’t conflict with previous bipartitions. This process

ends when no remaining bipartition has frequency above a given threshold,

or when the tree is fully resolved. We use greedy consensus of gene trees to
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Table 5.1: Functions used in Algorithm 5.3.

Function Description

polytomies(t) For a given unrooted tree t, return all nodes with degree d > 3.
greedy(G, t, b) Finds bipartitions in all input trees in G and for each biparti-

tions notes its frequency. Sorts bipartitions by the descending
order of frequency (with arbitrary tiebreakers) and discards
those with frequency below t. Starts with a fully unresolved
tree (i.e., the star tree), and adds bipartitions one at a time
according to the order; if a bipartition conflicts with the tree,
ignores it. At the end, if b is true, any remaining polytomies
in the tree are randomly resolved. The branches (i.e., bipar-
titions) in the resulting tree are labelled by their bipartition
frequency (i.e., their frequency in trees in G).

updateX(t) Adds all bipartition from t to the set X and notes which bipar-
titions are new. When edges in t have a frequency label (e.g.,
labels generated by the greedy function), updateX returns
the maximum label of any new bipartition added to X.

clusters(p) An unrooted node p with degree d divides taxa into d subsets
(Fig. 5.4). This function returns the partitions defined by p.

upgma(S,C) Runs UPGMA using similarity matrix S on n taxa. By de-
fault, starts from n singleton clusters, one per taxa, and in
each step, combines the two clusters with highest similarity.
The similarity of two clusters is the average similarity between
all pairs of leaves chosen each from one of the two clusters.
When a set of clusters C is given, instead of starting with n
singletons, starts by C.

randSample(p) Selects a random leaf from each partition around node p.
resolve(p, t) The input p is a node in an unrooted tree with leaf set L,

and t is an unrooted tree on L′ ⊂ L such that L′ contains
exactly one leaf from each partition defined by p. Note that
the tree t will be compatible with the tree that includes p.
Every bipartition in t defines a further resolution of p. This
function resolves p according to t and returns the results.

pectinate(O) Given an ordered list of taxa O, it returns a pectinate tree
based on O; e.g., pectinate(a, d, e, c, b) = (a, (d, (e, (c, b)))).

sortBy(S, l, x) Sorts a list of taxa l based on their decreasing similarity to x
and according to the similarity matrix S.
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compute and add further bipartitions to X, using Algorithm 5.3.

Algorithm 5.3 estimates the greedy consensus of the gene trees with

various thresholds (THS). For each polytomy in each of these greedy con-

sensus trees, it resolves the polytomy in multiple ways and adds bipartitions

implied by those resolutions to the set X (if they don’t already exist).

1. We resolve the polytomy by applying UPGMA to the similarity matrix;

however, unlike the normal UPGMA algorithm that starts from singleton

clusters, here, we start from clusters defined by each side of the polytomy.

2. We sample one leaf from each side of the polytomy randomly, and use the

greedy consensus of the gene trees restricted to this subsample to find a

resolution of the polytomy (randomly resolving remaining polytomies).

We repeat this process at least 10 times, but if the subsampled greedy

consensus trees include new bipartitions that are sufficiently frequent

(≥ 1%), we do more rounds of random sampling (we increase the number

of iterations by two).

3. For each random subsample around a polytomy, we also resolve it by

calculating an UPGMA tree on the similarity matrix restricted to the

set of subsampled species.

4. For the two first greedy threshold values in THS and only for the first

10 random subsamples, we also use a third strategy that can potentially

add a larger number of bipartitions: for each subsampled taxon a, we
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resolve the polytomy as a pectinate tree (see Table 5.1) by sorting the

remaining taxa according to their similarity with a (in decreasing order).

Gene tree polytomies: When gene trees include polytomies, we also add

new bipartitions to X. We first compute the greedy consensus of the input gene

trees with threshold 0, and if the greedy consensus has polytomies, we resolve

them using UPGMA; we repeat this process twice to account for random

tie-breakers in the greedy consensus estimation. Then, for each gene tree

polytomy, we use the two resolved greedy consensus trees to infer a resolution

of the polytomy, and we add the implied bipartitions to X.

Incomplete gene trees: The optimization problem used in ASTRAL can

easily handle incomplete gene trees; i.e., gene trees where some of the leaves

are not present. If m < n quartets are present in a gene, it would contribute(
m
4

)
quartets to the WQ score defined in Equation 5.1. It is easy to show that

if patterns of missing data are unbiased, the exact version of ASTRAL remains

statistically consistent under gene trees that are incomplete. The challenging

part of handling inputs with missing data is ensuring that the set X will include

usable bipartitions.

When an input gene tree has missing data, at least one of its two parts

(but possibly both parts) would not be in the complete gene tree, and therefore

the inclusion of that part in X′ is unlikely to be helpful (recall that X′ is the

set of all parts from all bipartitions in X). When dealing with incomplete
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gene trees, we need to complete their bipartitions before adding them to X. In

ASTRAL-II, we use a heuristic approach to complete incomplete gene trees,

and add bipartitions from the completed gene trees to X. Note that this does

not affect the scoring function, and only impacts the search space.

We use the similarity matrix computed in Algorithm 5.2 for adding

missing taxa into incomplete trees. To ensure that the similarity matrix is not

affected by arbitrary patterns of missing data in the gene trees, we need to

also normalize the similarity values. As noted before, the normalization factor

for each pair of leaves can simply be the number of quartets in all input gene

trees that include the two taxa:

m(a, b) =
k∑
1

(
ni − 2

2

)
Ii(a, b)

where ni is the number of leaves in gene tree gi and Ii(a, b) = 1 if {a, b} ⊂ gi

and otherwise Ii(a, b) = 0.

Given the similarity matrix, we add each missing taxon to each gene

tree using an application of the four point condition [246]. When a distance

matrix d is defined based on pairwise distances of leaves of a binary tree (i.e.,

with strictly positive branch lengths), for any quartet of taxa r, if the tree

induces the quartet topology q = ab|cd, we have:

d(a, b) + d(c, d) < d(a, d) + d(b, c) = d(a, c) + d(b, d)

This inequality is called the four point condition.

We assume our similarity matrix (which can be converted to a distance

matrix) uniquely defines a tree (i.e., is additive [247]). If all incomplete gene
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trees were identical topologically, our distance matrix would become additive

as the number of genes increased. In the presence of discordance no such

guarantees can be made, but we use this matrix anyway as a heuristic and

note that our algorithm can be used with any similarity (or distance) matrix.

We use Algorithm 5.4 to add missing leaves to the incomplete trees.

Algorithm 5.4 -Completing incomplete gene trees. Adds missing taxon
m to tree t using similarity matrix S according to the four point condition.
arbLeaf(x) choses an arbitrary leaf under node x (by default, the left-most
child). addChild(x, y) adds y as a child of x.

function place(t, S,m)
closest← argmini 6=m S[i,m]
reroot(t, closest)
u← child(closest)
while true do

if isLeaf(u) then
n← Parent(u)
break

(l, r)← (left(u), right(u))
(lc, rc)← (arbLeaf(lc), arbLeaf(rc))
betterSide← fourPoint(S,m, closest, lc, rc)
if betterSide = closest then

break
else if betterSide = lc then

u← l
else if betterSide = rc then

u← r
addAsChild(u,m)

function fourPoint(S,m, a, b, c)
as← S[m, a] + S[c, b]− (S[m, c] + S[a, b])
bs← S[m, b] + S[a, c]− (S[m, a] + S[b, c])
cs← S[m, c] + S[b, a]− (S[m, b] + S[c, a])
max← max(as, bs, cs)
return c if max = c else b if max = b else a
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This heuristic algorithm first finds the taxon that has the highest sim-

ilarity to the missing taxon m; it then roots the tree at this closest species c

and traverses the nodes of the tree from root to the leaves. At each traversal

point u, it decides whether it should move further down to the left (l) or the

right (r) child of the current node u (we are assuming binary input genes, but

extensions are straight forward), or if it should place the taxon at the branch

above the current node. It arbitrarily chooses two leaves lc and rc under l and

r (by default we choose the left most leaf). It places the taxon at the current

branch iff m is closer to c than it is to either lc or rc according to the four point

condition. If m is closer to one of the two arbitrarily chosen nodes, say lc, it

choses that child of u, say l, as the next traversal nodes. Note that for each

taxon x and any other three taxa, we can answer which of the three is closer to

x by examining the four point conditions for all three possible topologies and

finding which four point condition is closer to holding true (i.e., has a lower

residual).

5.2.3.3 Multifurcating input gene trees

Although true gene trees are assumed to be binary, estimated gene trees

can include polytomies. For example, some ML programs such as FastTree

produce polytomies when several leaves have identical sequences. In maximum

parsimony estimation of gene trees, if there are multiple trees with equal scores,

a consensus of the trees is typically used, which can also result in polytomies.

Most importantly, when bootstrapping (or other approach for obtaining branch
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support) are used, one can collapse low support branches in the gene trees,

with the hope that impacts of gene tree estimation error are reduced [140, 149].

Extending ASTRAL to inputs that include polytomies requires solving

the weighted quartet tree problem when each node of the input defines not

a tripartition, but a multi-partition of the set of taxa. We start by a basic

observation: every resolved quartet tree induced by a gene tree maps to two

nodes in the gene tree regardless of whether the gene tree is binary or not

(Fig. 5.4). In other words, induced quartet trees that map to only one node

of the gene tree are unresolved.

When maximizing the quartet support, these unresolved gene tree quar-

tet trees are inconsequential and need to be ignored. Now, consider a polytomy

of degree d, which divides the set of taxa into d parts. There are
(
d
3

)
ways to

select three parts around the polytomy, and each of these defines a triparti-

tion. Any selection of two taxa from one part of this tripartition and one taxon

from each of the remaining two parts induces a resolved quartet tree, and each

resolved quartet tree maps to exactly two nodes in our multifurcating tree.

Thus, all the algorithmic assumptions of ASTRAL remain intact, as long as

for each degree d node in an input gene tree, we treat it as a collection of
(
d
3

)
tripartitions. Thus, to score a species tree tripartition x = (X1|X2|X3) with

respect to a gene tree multi-partition y = Y1| . . . |Yd, we let Cij = |Xi ∩ Yj| for

all i ∈ {1, 2, 3} and j ∈ {1, . . . , d}, and we generalize Equation 5.2 to:

H(x, y) = H(C) =
∑

(a,b,c)∈P3

F (C1a,C2b,C3c) (5.6)
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Figure 5.4: Multipartitions in unrooted gene trees. A polytomy divides
the set of taxa into more than three parts (here, d = 4). A quartet tree
mapped to two nodes (e.g., ab|cd) is a resolved quartet topology and needs
to be counted towards WQ. A quartet tree mapped to only one node (e.g.,
ab|ce) is an unresolved quartet, and does not contribute to WQ; these need
to be ignored. By treating the polytomy as a collection of

(
d
3

)
tripartitions

(in this case, X1|X2|X3, X1|X2|X4, X1|X3|X4, and X2|X3|X4), we ensure that
all resolved quartet trees are counted and all unresolved quartet trees are left
out. For example, here, ab|ce would not be counted in our collection of

(
d
3

)
tripartitions since each of its taxa are on a different part.

where P3 is the set of all ordered subsets of size 3 from {1, . . . , d}.

Extending Algorithm 5.1 to compute Equation 5.6 is straightforward.

The leaves are treated the same. For internal nodes, instead of popping two

values from the stack, d − 1 values are popped and are summed to calculate

the tuple for the traversal node. All
(
d
3

)
ways of choosing three subsets around

that polytomy are then iterated over and H values are summed.

In the presence of polytomies, the running time analysis can change
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because analyzing each polytomy requires time cubic in its degree and the

degree can increase with n. It is not hard to see that the worst case is when

all gene trees have a polytomy with d = n
2

and each side of each polytomy

has two leaves; in this case, Algorithm 5.1 would require
(n

2
3

)
calculations,

which requires O(n3) running time; thus, the running time of ASTRAL-II is

O(n3k|X|2) instead of O(nk|X|2) in presence of polytomies.

5.3 Evaluation of ASTRAL-I on simulated data

5.3.1 Experimental setup

We evaluate ASTRAL-I on a collection of simulated datasets. Our

simulation procedure is similar to what was used in Chapter 4. Simulated

data are generated under the GTR+MSM model by first simulating gene trees

down a species tree according to MSM and then simulating sequence data

down each gene tree according to GTR. Gene trees are then estimated form

the sequence data, and species trees are estimated from the gene trees using

various summary methods. We also run concatenation under maximum likeli-

hood (CA-ML) on the sequence data. The accuracy of the estimated species

tree is evaluated against the model true species tree using the Robinson-Foulds

(RF) [158] rate; because all species trees estimated here are completely bifur-

cating, this is the same as the missing branch rate (proportion of internal edges

in the model tree missing in the estimated tree).
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5.3.1.1 Datasets

100-taxon simulated datasets. These data were generated by Yang and

Warnow [148]; we briefly describe the simulation process and direct the reader

to the original publication [148] for details. The 100-taxon model species tree

was created by a birth-death process, and 25 genes were evolved within the

species tree under the MSC, producing ultrametric gene trees. Nucleotide se-

quences with 1000 sites were evolved down each gene tree under a process with

GTR+Γ substitutions as well as insertions and deletions, using ROSE [175].

True alignments were used to generate estimated gene trees using RAxML.

37-taxon “mammalian” simulated datasets. We use the same mam-

malian simulated dataset used for evaluating statistical binning; Section 4.3.1.2

gives details of the simulation procedure, which we summarize here.

We simulated this collection of datasets based on a 37-taxon mam-

malian dataset with 447 genes studied in [77]. First, we used MP-EST to

estimate a species tree on the biological dataset from [77], and used it as a

model species tree, with branch lengths in coalescent units. We evolved gene

trees down the model tree under the MSC model using Dendropy [204], and

then rescaled the gene trees to deviate from the molecular clock and produce

branch length patterns observed in the biological dataset. We then evolved

sequences with 500 and 1000 sites down each gene tree under the GTR model

of site evolution, using GTR parameters estimated on the biological dataset.

This produces the “default” model condition that has the amount of ILS es-
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timated for this dataset by MP-EST. We varied this protocol by scaling the

model species tree branch lengths up (2X and 5X) or down (0.2X and 0.5X)

to modify the amount of ILS; longer branch lengths reduces ILS, and shorter

branch lengths increases ILS (note that in Chapter 4 we only multiplied or di-

vided by two, but here we also multiply or divide by five). The default model

tree conditions (including the number of genes, sequence length distribution,

and amount of ILS) were set to produce a dataset called the “mixed condition”

that most resembled the biological dataset.

The average bootstrap support (BS) in the biological data was 71%,

and so we generated sequence lengths that produced estimated gene trees with

BS values bracketing that value – 500bp alignments produced estimated gene

trees with 63% average bootstrap support and 1000bp alignments produced

estimated gene trees with 79% BS. The “mixed dataset” of 400 genes was

produced using 200 genes with 63% BS and 200 genes with 79% BS, and had

average BS of 71% - like the biological data.

We vary ILS levels, the number of genes, and sequence length. Unlike

Chapter 4, where we went up to 800 genes, here we go up to 3,200 genes for the

most challenging conditions with 0.2X branch lengths (thus, very high ILS).

For each model condition (specified by the ILS level, the number of genes, and

the sequence length), we created 20 replicates, except for the 1600- and 3200-

gene model conditions where we created 10 and five replicates respectively. We

used RAxML to estimate gene trees on the simulated sequence alignments, and

we generated 200 ML bootstrap replicates for the mixed dataset.
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5.3.1.2 Methods

We compare ASTRAL-I with MP-EST [134], BUCKy-pop (the popu-

lation tree from BUCKy [133]), MRP (a supertree method [207]), the Greedy

Consensus, and CA-ML computed by RAxML. Of these six methods, three

are statistically consistent summary methods, two are inconsistent summary

methods, and CA-ML is also inconsistent Note that BUCKy takes into account

gene tree uncertainty and other methods don’t [154].

For 100-taxon datasets and the mixed mammalian datasets, we ran

summary methods using three different procedures: using maximum likeli-

hood gene trees as input (bestML), using all bootstrap replicates of all genes

as input (All BS), and using the site-only multi-locus bootstrapping (MLBS)

procedure [208], described in Section 4.3.2. For MLBS, we used the greedy

consensus of 200 replicate species trees, each computed on an input consisting

of one bootstrap replicate tree per gene. BUCKy-pop takes as input distri-

butions of gene trees, and its authors intended a Bayesian distribution to be

the input; following results from Yang and Warnow [148], we approximate the

distribution using bootstrap gene trees which are less computational intensive

to generate and have resulted in the same accuracy as Bayesian trees in some

analyses [148]; thus, BUCKy-pop is run with a procedure analogous to All BS.

In subsequent analyses, where we study the impact of various model parame-

ters, we only study the bestML approach. Exact commands and versions used

are given in Appendix A.3.1.
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5.3.2 Simulation results

5.3.2.1 Results on mammalian simulated datasets

We address the following three research questions on the mammalian

simulated dataset, in three separate experiments.

RQ1: Given a choice of the gene tree input type (bestML, MLBS, or All BS),

which of the six methods produces the best accuracy under the default

mixed condition?

RQ2: How is relative performance of methods affected by the number of genes,

levels of ILS, and gene tree error?

RQ3: How do summary methods compare under the highest levels of ILS if

the number of genes is allowed to increase?

We now describe the results obtained for each question and finish by

discussing the running time of ASTRAL-I in comparison to other methods.

RQ1: Figure 5.5 shows results on the mixed mammalian dataset, compar-

ing all six methods and three types of inputs to summary methods (bestML,

MLBS, and All BS). For MRP, MP-EST and ASTRAL-I, using bestML input

trees produced more accurate species trees than using bootstrap replicates,

either as one input (All BS) or using MLBS. The purpose of using bootstrap

replicates is to take gene tree uncertainty (resulting from insufficient sequence

length, for example) into account; the fact bestML gene trees had the best
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accuracy indicates that for this model condition, using bootstrapping does not

alleviate the gene tree estimation problem. However, it is possible that other

model conditions or other ways of addressing gene tree uncertainty might show

some advantage over the bestML approach. For example, we have found in

other studies that with few genes, the accuracy of the MLBS approach tends

to be higher than the bestML approach, but as the number of genes increases,

bestML becomes better [38]. Nevertheless, in this study we are not seeing

any improvements form the use bootstrapped gene trees. Therefore, we use

bestML input trees in the remaining experiments in this chapter (see [38] for

more comparisons of using bestML or bootstrapped gene trees).

For the mixed model condition and using bestML trees, ASTRAL-I is

the most accurate of these methods, MP-EST the next most accurate, followed

by the other summary methods, and finally by CA-ML. ASTRAL-I with any

of the three sets of inputs is also more accurate than BUCKy-pop; however,

differences between ASTRAL-I on All BS and BUCKy-pop are relatively small.

RQ2: We now explore variants of the basic mammalian simulation, exploring

the impact of changes to the number of genes, gene sequence length, and the

ILS level (by scaling the species tree branch lengths) on the absolute and

relative performance of various methods using bestML input. We first fix the

ILS to the default 1X and vary both the number of genes and the sequence

length. We then fix the number of genes to 200, and sequence length to

500bp, and vary the amount of ILS, in both cases also showing results on
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CA-ML

Figure 5.5: Species tree estimation error on the default mixed mam-
malian datasets.. This dataset has 200 genes with 500bp and 200 genes with
1000bp, which results in 71% mean BS. We show the missing branch rates for
estimated species trees computed using summary methods (MRP, MP-EST,
greedy, BUCKy-pop, and ASTRAL-I) as well as concatenation using RAxML.
Results are shown for running summary methods on maximum likelihood gene
trees (bestML) and on the set of all bootstrap replicates from all genes (All
BS), as well as the greedy consensus of running summary methods on indi-
vidual bootstrap replicates from all genes (MLBS). CA-ML is run on the true
alignment. Average and standard error shown based on 20 replicates.
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true (simulated) gene trees. Figure 5.6 shows results for this experiment for

all these model conditions. General trends as we changed parameters were

as expected: all summary methods gave improved accuracy as the sequence

length in each gene increased from 500bp to 1000bp; using true gene trees gave

the best results; species tree error rates generally reduced as the number of

genes increased; and species tree error rates increased as ILS levels increased.

ASTRAL-I was commonly more accurate than all the other summary

methods we studied. ASTRAL-I was never outperformed by other summary

methods; however, for a few cases, ASTRAL-I and one or more summary

methods had identical accuracy. For example, on 800 true gene trees from

default ILS levels, all summary methods (except for Greedy) produced the

true species tree. We performed an ANOVA test comparing the species tree

accuracy differences between ASTRAL and MP-EST, with the amount of ILS,

number of genes, and the sequence length as independent variables. ASTRAL

was significantly better than MP-EST (p < 10−5) and the relative accuracy of

ASTRAL and MP-EST depended only on the amount of ILS (p = 0.008), but

not the number of genes (p = 0.8) or gene sequence length (p = 0.3).

Comparison of ASTRAL-I and CA-ML was interesting. ASTRAL-I

was more accurate than CA-ML in general (p < 10−5 according to an ANOVA

test); however, the relative performance depended significantly on the level

of ILS (p < 10−5). With reduced ILS, CA-ML had better accuracy than

all summary methods, including ASTRAL, but as the level of ILS increased,

ASTRAL became more accurate.
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(a) 1X ILS, varying number of genes and gene tree resolution

(b) 200 genes, varying ILS levels
True gene trees

ILS Levele (ST branch length scaling)

Estimated gene trees (500bp)

True gene trees True gene trees True gene trees

CA-ML

Figure 5.6: Species tree estimation error on the simulated mammalian
datasets, varying simulation parameters. We show the missing branch
rates for estimated species trees computed using summary methods (MRP,
MP-EST, greedy, and ASTRAL-I) as well as CA-ML. Summary methods are
run on RAxML bestML gene trees and true gene trees, and CA-ML is run
using RAxML. (a) Default levels of ILS, varying the number of genes and gene
tree resolution; (b) 200 genes, varying the amount of ILS from very low (5X
species tree branch lengths) to very high (0.2X species tree branch lengths).
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RQ3: For the most challenging ILS level, where with 200 genes the error was

still high for all methods including ASTRAL-I, we asked whether increasing the

number of genes reduces the error, as expected by the statistical consistency

of ASTRAL-I. Figure 5.7 shows results for the case where fix the ILS level to

0.2X (very high) and increase the number of genes up to 3,200. As we increase

the number of genes, the error reduces for all summary methods, except for

the greedy consensus. With 3,200 gene trees, ASTRAL-I has 0.5% error, with

true gene trees, and only 1.5% error with estimated trees. Thus, even with the

most challenging ILS scenarios, with increased number of genes, high accuracy

can be obtained. MP-EST also has reduced error with increased number of

genes, but is always less accurate than ASTRAL-I. For example, the error of

MP-EST with 1600 true gene trees is 4.1%, which is exactly the same as the

error of ASTRAL-I with 800 genes, but with 1,600 true gene trees, ASTRAL-I

has 2.0% error.

Running time. We examine running times under moderate ILS, gene se-

quences of length 500bp, and with 400 and 800 genes and with bestML input

trees (except for BUCKy-pop). BUCKy-pop strictly runs in serial, using a

Bayesian MCMC technique, which can take a long time and substantial mem-

ory to reach convergence. On the 37-taxon mammalian simulated datasets,

BUCKy-pop ran to completion for datasets with up to 400 genes (where it

took approximately 5 hours), but failed to complete (due to memory issues)

on the 800-gene dataset.
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0.2X (much increased ILS), varying number of genes
True gene trees

Number of genes

Estimated gene trees (500bp)

Figure 5.7: Species tree estimation error on the simulated mammalian
datasets with highest level of ILS. We show the missing branch rates for
estimated species trees computed using summary methods (MRP, MP-EST,
greedy, and ASTRAL-I) run on RAxML bestML gene trees and true gene
trees. ILS levels are fixed to 0.2X (very high) and the number of genes is
increased to 3200.

MP-EST completed relatively quickly - about 100 minutes - for both

the 400-gene and 800-gene datasets. We ran MP-EST with 10 random starting

points, so this time could be reduced by using just one starting point, but with

a potential decrease in accuracy.

ASTRAL-I completed in 3.3 seconds on the 400-gene dataset, and in

5.3 seconds on the 800-gene dataset. Thus, ASTRAL-I is dramatically faster

than the other methods, and able to run on these moderately large datasets in
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extremely short time frames. However, BUCKy is used with 200 bootstrapped

gene trees for each gene, and outputs support values. Running ASTRAL-I and

MP-EST using MLBS to obtains support values would increase their running

times if run in serial, but ASTRAL-I would still be much faster than BUCKy

(e.g., 11 minutes on the 400-gene dataset rather than 5 hours). In addition,

parallelizing MLBS is trivial since each bootstrap replicate is independent.

Finally, Figure 5.8 shows how the running time of ASTRAL-I is im-

pacted by the number of genes and the level of ILS. The running time of

ASTRAL-I increases as the level of ILS is increased, because the set X is

populated with more bipartitions when gene trees have high levels of ILS. As

the number of genes are increased, the number of unique bipartitions in input

gene trees increases, which increases the time required to calculate the score

function w, and also the size of the set X is likely to increase. Thus, both fac-

tors impact the running time, but even under the most challenging conditions

(3200 genes of 0.2X ILS level), ASTRAL-I finished in about two hours on the

mammalian dataset.

5.3.2.2 100-taxon dataset

We evaluated the feasibility of using ASTRAL-I on datasets with large

numbers of taxa using the 100-taxon simulated datasets, with 25 genes and

10 replicates. Because there is no single outgroup, the estimated trees are not

rooted, and so we could not use MP-EST. ASTRAL-I had no difficulty ana-

lyzing these data (completing in under one second). ASTRAL-I had average
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Figure 5.8: Running time of ASTRAL. We show the running time for
default ASTRAL on the mammals simulated datasets with (top) varying levels
of ILS with 200 genes of 500bp resolution, and (bottom) varying number of
true gene trees with much increased ILS level (0.2X).
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Table 5.2: Results on 100-taxon dataset. Average FN rates (over 20
replicates) of different methods on the 100-taxon 25-gene simulated datasets.
The dataset does not have an outgroup, and therefore, we could not run MP-
EST on it. Gene trees and CA-ML are estimated using RAxML.

Method bestML All BS

CA-ML 0.057
ASTRAL 0.061 0.052
Greedy 0.064 0.056
MRP 0.064 0.055

missing branch rate of 6.1%, better than MRP and Greedy (6.4%), but not as

good as CA-ML (5.7%); differences are not statistically significant (p > 0.1;

paired Wilcoxon test).

5.3.3 Summary of results

In our study, ASTRAL-I was more accurate than MP-EST and BUCKy-

pop, two leading coalescent-based methods, and improved or matched the ac-

curacy of concatenation under maximum likelihood under many conditions,

except when the amount of ILS was very low, where concatenation was more

accurate. This study also showed that concatenation could be more accu-

rate than coalescent-based estimation, provided that the amount of ILS is low

enough. However, the best coalescent-based methods can be more accurate

than concatenation under biologically realistic conditions.

Using bootstrap replicate gene trees instead of best ML gene trees did

not improve species tree estimation accuracy on the simulated mixed mam-
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malian dataset – and in fact made species tree estimations less accurate for

MRP, MP-EST and ASTRAL-I. Similar results have been observed by others

when taking gene tree estimation error into account [36]. This suggests the

possibility that the topological error in bootstrap gene trees is large enough

to offset any improvement in species tree estimation obtained by taking gene

tree uncertainty into account. However, it is possible that an improvement

might be obtained under other conditions, or that using a sample of gene trees

estimated by a Bayesian MCMC analysis might be better suited to coalescent-

based species tree estimation methods than maximum likelihood bootstrap

trees, as suggested by [239] (although see [148]).

5.4 Evaluation of ASTRAL-II on simulated data

Our experiments on ASTRAL-I were all using relatively small datasets;

we had either few species and large numbers of genes, or moderately large

numbers of species and few gene trees. Here, we report the result of a more

extensive simulation study that shows under certain conditions ASTRAL-I

can have reduced accuracy because of the restrictions imposed by the default

setting of the set X. We show that ASTRAL-II addresses these problems, and

we demonstrate that ASTRAL-II can run on datasets with up to 1000 genes

and 1000 species in about a day.
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5.4.1 Experimental setup

5.4.1.1 Dataset

We used SimPhy [248] to simulate species trees and gene trees under

MSC and to generate gene trees in mutation units, and then used Indeli-

ble [176] to simulate nucleotide sequences down the gene trees according to

GTR with varying length and model parameters. We estimated gene trees on

these simulated gene alignments, which we then used as input to ASTRAL-I,

ASTRAL-II, NJst [146], and MP-EST, in addition to concatenation.

We used SimPhy to simulate species trees according to the Yule pro-

cess, characterized by the number of taxa, maximum tree length, and the

speciation rate (this combination defines a model condition). We simulated 11

model conditions, which we divide into two datasets, with one model condition

appearing in both datasets.

Dataset I: In 6 model conditions (forming Dataset I), we fixed the number

of taxa to 200 and varied tree length (500K, 2M, and 10M generations), and

speciation rates (1e-6, and 1e-7 per generation). The tree length impacts the

amount of ILS, with lower length resulting in shorter branches, and therefore

higher levels of ILS (Fig. 5.9). Speciation rate impacts whether speciation

events tend to happen close to the tips (1e-06) or close to the base (1e-07).

Different tree shapes (i.e., combinations of tree length and speciation rate)

produce different levels of ILS starting from relatively low and going up to

very high. The 10M/1e-06 condition had 0% to 20% distance between true
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gene trees and the species tree, measured by the RF distance, whereas 500K

length (with 1e-06 or 1e-07 rate) had between 60% and 80% RF distance

(Fig. 5.9). Thus, the 500K length has the highest ILS levels and 10M has the

lowest, and 2M is in between.

Dataset II In six model conditions (forming Dataset II), we fixed the tree

shape to 2M/1e-06 (medium ILS levels) and set the number of taxa to 10,

50, 100, 200, 500, and 1000. The amount of ILS only slightly increased as we

increased the number of species (Fig. 5.9). Note that the model condition

with 200 taxa and the 2M/1e-6 tree shape appears in both datasets.

For each model condition, we simulated 50 species trees, forming 50

replicates. On each species tree, 1000 gene trees were simulated according to

the MSC model with the population size fixed to 200,000 (a reasonable value

for vertebrates). SimPhy uses various rate parameters and rate heterogeneity

modifiers to convert gene tree branch lengths to mutation units, introducing

deviations from molecular clock and rate heterogeneity between genes. Pa-

rameters for these simulations are given in Appendix A.4.1.

We simulated indel-free gene alignments using Indelible [176] under the

GTR+Γ model. First, for each replicate, two parameters, µ and σ, were drawn

uniformly from (5.7, 7.3) and (0, 0.3) respectively. Then, the sequence length

for each gene in that replicate was drawn from a log-normal distribution with

µ and σ parameters (thus, average sequence length is uniformly distributed

between 300bp and 1500bp). GTR+Γ parameters were drawn from a Dirich-
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Figure 5.9: ILS levels in ASTRAL-II simulation data. RF distance be-
tween the true species tree and the true gene trees (50 replicates of 1000 genes)
for (a) Dataset I and (b) Dataset II. Tree height directly affects the amount
of true discordance; the speciation rate affects true gene tree discordance only
with 10M tree length. The number of taxa has a modest effect on the amount
of ILS.
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let(36,26,28,32) distribution; we estimated the Dirichlet parameters from a

collection of biological datasets using ML (see Appendix A.4.2 for details).

5.4.1.2 Methods

Gene tree estimation: Previous studies [123] have shown that FastTree-

II [119] is generally as accurate at estimating the tree topology as more ex-

tensive ML heuristics such as RAxML [249], while being much faster. In our

simulation studies, we used FastTree to estimate the 550,000 gene trees rang-

ing from 10 to 1000 species. Our estimated gene trees had wide-ranging levels

of gene tree estimation error (see Figure 5.10). The tree error was impacted

by tree shape parameters; as expected, more ILS and deeper speciation lead

to higher levels of gene tree error. Moreover, average gene tree estimation

error varied across replicates, and gene tree error varied considerably among

the 1000 genes in each replicate (Fig. 5.10). The number of taxa had only a

small impact on gene tree estimation error.

FastTree outputs polytomies when sequence alignments cannot distin-

guish between competing tree resolutions. We removed any gene tree where

more than 50% of the internal nodes were polytomies because they would

not add much new information but would increase the running time of AS-

TRAL (and would be randomly resolved for other methods). This pruning

left fewer than 500 genes for 9 out of 550 replicates in some model condi-

tions: 200-taxon/500K/1e-06 (3 replicates), 50-taxon (3 replicates), 100-taxon

(2 replicates), and 10-taxon (1 replicate). We removed these 9 replicates.
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Figure 5.10: Gene tree estimation error in simulated ASTRAL-II
datasets. Many parameters (e.g. alignment length, gene tree length, and
substitution rates) were varied in a heterogeneous way to simulate 50 repli-
cates per model condition with varying gene tree estimation error. Top: each
box (box title: number of taxa, height, rate) shows averages and standard
deviations of gene tree estimation error (across 1000 genes) for each replicate.
Note wide variations in gene tree error across and within replicates. Bottom:
both tree height and rate (left) affect gene tree estimation error; more ILS
and deeper speciation result in higher error rates. With fixed tree shape (2M,
1e-06), changing the number of taxa (right) has little impact on the gene tree
estimation error. 239
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Figure 5.11: Impact of polytomies. Comparison of ASTRAL-II run on
estimated gene trees with polytomies output by FastTree and with random
resolutions of polytomies. Results are shown for dataset-I.

Species tree methods: We compared ASTRAL-I only to ASTRAL-II, and

after establishing the improvements obtained in ASTRAL-II, we focused on

the new version and compared it to MP-EST, NJst and CA-ML run using

FastTree. We ran all methods given a maximum of 4 days of running time

and 24GB of memory. MP-EST only finished for datasets with at most 100

taxa within time limits. Because of its running time, we ran MP-EST once

(one random seed number) for each analysis. NJst, ASTRAL-I and MP-EST

could not handle polytomies; therefore, we randomly resolved polytomies in

inputs of these methods. We also ran ASTRAL-II on gene trees with randomly

resolved polytomies and observed no differences with ASTRAL-II run on gene

trees with polytomies (Fig. 5.11). Thus, differences between ASTRAL-II and

other methods were not due to the random resolutions of polytomies.
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5.4.1.3 Evaluation criteria

We evaluate methods in terms of species tree error and we also evaluate

running time for coalescent-based methods. Species tree error is measured us-

ing the standard normalized RF distance. Running time of summary methods

gives the wall clock running time and is measured on a heterogeneous Condor

cluster at the University of Texas, Computer Science department.

5.4.2 Simulation results

We start by comparing ASTRAL-II with ASTRAL-I in terms of accu-

racy and running time (RQ1). We next focus on ASTRAL-II and compare

it to other coalescent-based methods (RQ2) and then compare it to CA-ML

(RQ3). This question leads us to a more in depth analysis of the effects of

gene tree estimation error on the accuracy of various methods (RQ4). Finally,

we evaluate the impact of collapsing low support branches in input gene trees

on the accuracy of ASTRAL-II (RQ5).

5.4.2.1 RQ1: ASTRAL-I versus ASTRAL-II

Search space: ASTRAL-II adds extra bipartitions to the search space,

which allows it to explore a larger search space; this tends to increase the

accuracy of ASTRAL-II over ASTRAL-I. In our simulations, the extent of the

improvement depended on the model condition. Table 5.3 shows the improve-

ments obtained by ASTRAL-II compared to ASTRAL-I, and Figures 5.12 and

5.13 compare the two methods in terms of accuracy for Datasets I and II. In
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Dataset I, with the lowest level of ILS or with the medium ILS level and

recent speciation, ASTRAL-I and ASTRAL-II both had extremely low error

(Fig. 5.12) and no substantial improvements were detected by the addition of

extra bipartitions (Table 5.3). With 2M length and deep speciation, ASTRAL-

II improved upon ASTRAL-I substantially, with improvements ranging from

3.5% with 1000 genes to 10.1% with 50 genes. Most dramatic differences were

observed on the high ILS conditions, where ASTRAL-I performed extremely

poorly, but ASTRAL-II reduced the error by about 40% (Table 5.3). Results

on Dataset II showed that the effect of adding extra bipartitions also depended

on the number of taxa in expected ways (Table 5.3): ASTRAL-I was as accu-

rate as ASTRAL-II for up to 200 taxa, but with 500 taxa or more, ASTRAL-II

had a substantial advantage (as large as 9%). As expected, the advantage of

ASTRAL-II was larger with few genes and reduced with more genes.

The improvements obtained by ASTRAL-II are due to additions to the

search space. We therefore asked whether the heuristic approaches used to

add bipartitions to set X are sufficient, or improvements could be obtained

by further expanding X. To answer this question, we tested the impact of

adding all the bipartitions from the species tree to the set X, and compared

ASTRAL-II with and without these extra bipartitions (see Figs. 5.12 and 5.13).

We saw no significant differences between ASTRAL-II with and without these

potentially new bipartitions (p=0.77 according to a two-way ANOVA test),

indicating that the accuracy of ASTRAL-II is very unlikely to be improved

further by expanding the search space.
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Figure 5.12: Comparison of ASTRAL-I and ASTRAL-II on Dataset-I.
Species tree error (top) and running times (bottom) are shown. “ASTRAL-II
+ true st” shows the case where the true species tree is added to the search
space; this is included to approximate an ideal solution (e.g. exact) where the
set X includes all bipartitions that lead to the optimal score.
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Figure 5.13: Comparison of ASTRAL-I and ASTRAL-II on Dataset-
II. Species tree error (top) and running times (bottom) are shown. “ASTRAL-
II + true st” shows the case where the true species tree is added to the search
space; this is included to approximate an ideal solution (e.g. exact) where the
set X includes all bipartitions that lead to the optimal score.
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Table 5.3: Reductions in species tree error obtained by ASTRAL-II
compared to ASTRAL-I. We report results using the difference in RF
percentage; values above 0.0% indicate ASTRAL-II is more accurate.

Dataset I [200 taxa, varying tree shape (columns) and number of genes (rows)]
10e-6 (recent) 10e-7 (deep)

10M 2M 500K 10M 2M 500K

50 0.2±0.2 0.7±0.3 37.9±1.0 1.7±0.6 10.1±0.9 38.7±0.9
200 0.0±0.1 0.2±0.1 41.0±1.1 0.7±0.3 7.4±0.7 41.4±1.0
1000 0.0±0.0 0.2±0.1 39.2±1.2 0.0±0.0 3.5±0.7 41.4±1.1

Dataset II [2M/1e-6 shape, varying the number of taxa (columns) and genes
(rows)]

10 50 100 200 500 1000

50 0.3±0.3 0.0±0.1 0.3±0.2 0.7±0.3 6.0±0.6 9.3±0.6
200 0.0±0.0 0.0±0.0 0.0±0.0 0.2±0.09 3.9±0.5 8.3±0.5
1000 0.0±0.0 0.1±0.1 0.0±0.0 0.2±0.08 1.7±0.4

Running time: With 200 taxa and lower levels of ILS, ASTRAL-I and

ASTRAL-II had similar running times (Fig. 5.12), but ASTRAL-II was faster

with increased ILS (3 versus 7.5 hours of median run time). The improvement

in speed is noteworthy, given that ASTRAL-II searches a larger tree space than

ASTRAL-I. With small numbers of taxa, the two versions had close running

times, but as the number of taxa increased, the running time of ASTRAL-II

increased more slowly (Fig. 5.13). For 500 taxa, ASTRAL-II was twice as

fast as ASTRAL-I (a median of 5 versus 10 hours), while ASTRAL-I did not

complete on 1000 taxa and 1000 genes.
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5.4.2.2 RQ2: ASTRAL-II vs. other summary methods

Completion within time constraints: ASTRAL-II completed on all model

conditions, MP-EST completed only on datasets with at most 100 taxa, and

NJst completed on all model conditions except for the condition with 1000

genes and 1000 taxa.

Dataset I: ASTRAL-II was more accurate than NJst in all model conditions,

except 1e-07/500K where the two methods had identical error (Table 5.4, Fig.

5.14). Overall, the differences between ASTRAL-II and NJst were statistically

significant (p < 10−5), according to a two-way ANOVA test, and the relative

performance of the methods was significantly impacted by the speciation rate

(p = 0.026) but not by the number of genes or tree length. ASTRAL-II was

faster than NJst, in some cases by an order of magnitude (Fig. 5.15).

Dataset II: On 10-taxon datasets all methods had high accuracy (Table

5.12). On 50- and 100-taxon datasets, MP-EST was able to finish, but it was

the least accurate of all the methods. ASTRAL-II was more accurate than

NJst for all conditions except for 50 taxa with 50 genes (Table 5.12); however,

differences were generally small when the number of taxa was 200 or less, and

more substantial with more taxa. Overall, differences between ASTRAL-II

and NJst were significant (p = 0.0007) and were significantly impacted by the

number of taxa (p = 0.0004) but not the number of genes. ASTRAL-II was

also faster than NJst, especially with more genes and more taxa (Fig. 5.15).
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Table 5.4: Species tree error on Dataset I of ASTRAL-II analyses. We
show average and standard error of RF percentage. ASTRAL-II is always more
accurate than NJst, but CA-ML (using FastTree) is sometimes more accurate
than ASTRAL. For each row, the lowest average error and those error values
that have an overlapping standard error with the lowest error value are in
bold.

rate height genes ASTRAL-II NJst CA-ML

1e-06 10M 50 5.2±0.5 5.6±0.6 5.4±0.3
1e-06 10M 200 3.1±0.4 3.4±0.5 3.1±0.3
1e-06 10M 1000 2.0±0.4 2.3±0.5 1.4±0.2

1e-06 2M 50 8.4±0.6 9.1±0.7 9.2±0.4
1e-06 2M 200 5.0±0.6 5.6±0.6 5.5±0.5
1e-06 2M 1000 3.4±0.6 3.9±0.6 2.8±0.4

1e-06 500K 50 17.6±0.7 20.9±0.7 27.9±0.7
1e-06 500K 200 9.6±0.5 11.0±0.5 16.2±0.7
1e-06 500K 1000 5.3±0.5 5.7±0.4 8.0±0.3

1e-07 10M 50 7.3±0.9 10.2±1.0 4.0±0.4
1e-07 10M 200 5.4±0.7 8.2±1.0 2.2±0.3
1e-07 10M 1000 5.0±0.8 8.0±1.0 1.8±0.3

1e-07 2M 50 10.2±0.6 11.7±0.7 10.3±0.3
1e-07 2M 200 6.0±0.5 7.5±0.7 5.7±0.3
1e-07 2M 1000 4.4±0.6 6.0±0.7 2.8±0.2

1e-07 500K 50 19.3±0.7 22.5±0.6 28.2±0.6
1e-07 500K 200 10.7±0.6 11.4±0.5 16.1±0.7
1e-07 500K 1000 6.3±0.5 6.3±0.5 8.0±0.4
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Table 5.5: Species tree error on Dataset II. of ASTRAL-II analyses.
We show average and standard error of RF percentage. Note that ASTRAL-II
is always more accurate than MP-EST, and more accurate than NJst under
all conditions except one (50 taxa and 50 genes), where NJst is slightly more
accurate (7.2% vs. 7.3%). CA-ML (using FastTree) is also less accurate than
ASTRAL, except for 100 taxon and 200 or 1000 genes, where the two methods
differ in less than 0.5%. For each row, the lowest average error and those error
values that have an overlapping standard error with the lowest error value are
in bold.

taxa genes ASTRAL-II NJst CA-ML MP-EST
10 50 2.8±1.0 2.8±1.0 3.8±0.9 2.8±1.0
10 200 1.5±0.7 1.5±0.7 1.8±0.7 1.8±0.7
10 1000 1.5±0.7 1.8±0.7 2.1±0.8 1.5±0.7

50 50 7.3±0.7 7.2±0.6 7.8±0.6 13.5±1.7
50 200 4.2±0.5 4.4±0.5 4.5±0.4 9.1±1.5
50 1000 2.6±0.4 2.7±0.5 2.7±0.4 8.2±1.5

100 50 7.9±0.5 8.7±0.5 9.1±0.4 16.9±1.3
100 200 4.8±0.5 5.1±0.6 4.7±0.4 13.7±1.5
100 1000 3.0±0.4 3.9±0.6 2.5±0.3 14.1±1.55

200 50 8.4±0.6 9.1±0.7 9.2±0.4
200 200 5.0±0.6 5.6±0.6 5.5±0.5
200 1000 3.4±0.6 3.9±0.6 2.8±0.4

500 50 8.0±0.4 9.7±0.5 9.2±0.3
500 200 4.9±0.3 6.1±0.5 4.7±0.2
500 1000 3.3±0.4 4.7±0.5 2.3±0.1

1000 50 9.9±0.7 12.1±0.9 9.8±0.3
1000 200 6.0±0.7 7.9±0.9 5.1±0.2
1000 1000 4.5±0.7
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Figure 5.14: Comparison of methods with respect to species tree topo-
logical error on ASTRAL-II simulated data. Species tree error is shown
for Dataset-I (top) and Dataset-II (bottom). ASTRAL-II is always at least as
accurate as NJst and MP-EST, but CA-ML (using FastTree) is under some
conditions more accurate.
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Figure 5.15: Running time comparison with varying number of taxa
and genes on Dataset II. Average running time is shown for NJst and
ASTRAL-II. Note that ASTRAL-II is much faster on large datasets.

For example, on 500 taxa and 1000 genes, ASTRAL-II typically finished in 2

to 10 hours, whereas NJst required 12 to 30 hours. MP-EST was the slowest

method, but its running time was not impacted by the number of genes.

5.4.2.3 RQ3: ASTRAL-II vs. CA-ML

Dataset I: Interestingly, the relative accuracy of CA-ML and ASTRAL-II

was significantly impacted by tree length (p < 10−5), speciation rate (p =
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0.00004), and the number of genes (p < 10−5). With lower levels of ILS (10M

and 2M) and recent speciation, CA-ML and ASTRAL-II had close accuracy,

but CA-ML tended to be better with more genes and ASTRAL-II was better

with fewer genes (Table 5.5, Fig. 5.14). With deep speciation and lower ILS,

CA-ML was substantially more accurate than ASTRAL-II, but increasing the

number of genes reduced the gap. At the high ILS levels, ASTRAL-II was

much more accurate than CA-ML for all number of genes and for both recent

and deep speciation.

Dataset II: Overall, differences between ASTRAL-II and CA-ML were not

significant (p = 0.2), but the relative accuracy seemed to be impacted by the

number of genes (p = 0.06). Regardless of the number of taxa, which did

not impact relative accuracy (p = 0.2), CA-ML was slightly more accurate

with 1000 genes, and ASTRAL-II was slightly often more accurate otherwise

(Table 5.5, Fig. 5.14).

Running time: We ran CA-ML and ASTRAL-II on different platforms, and

hence cannot make direct running time comparisons. Nevertheless, we provide

our running time numbers to give a general idea. CA-ML using FastTree on

200-taxon model conditions with 1000 genes took roughly two hours, whereas

ASTRAL-II took roughly one hour to estimate the species tree, and estimating

gene trees also took about 1.5 hours. In general, therefore, the running times

of ASTRAL-II and CA-ML are relatively close on this dataset.
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Figure 5.16: Comparison of ASTRAL-II run on estimated and true
gene trees and CA-ML on Dataset I. The different between ASTRAL-II
with true gene tree (“true gt”) and ASTRAL-II with estimated gene trees in-
dicates the impact of gene tree error. Note that with true gene trees, ASTRAL
has excellent accuracy and is always better than CA-ML (using FastTree).

5.4.2.4 RQ4: Effect of gene tree error

In RQ3, we observed that under some conditions, CA-ML was more

accurate than ASTRAL-II, a pattern that we attribute to high levels of gene

tree error present in our simulations. When true (simulated) gene trees are

used instead of the estimated gene trees, the accuracy of ASTRAL-II is out-

standing, regardless of the model condition (see Fig. 5.16) and ASTRAL-II is

always more accurate than CA-ML. Thus, the fact that CA-ML is occasion-

ally more accurate than ASTRAL-II under lower levels of ILS is related to

estimation error in the input provided to ASTRAL-II.
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In our ASTRAL-II and NJst analyses, gene tree error had a positive

correlation with species tree error (Fig. 5.17), with correlation coefficients that

were similar for ASTRAL-II and NJst. The error of CA-ML also correlated

with gene tree error (obviously the relationship is indirect as factors such as

short alignments impact both CA-ML and gene tree error), but the correla-

tion was weaker than the correlation observed for coalescent-based methods

(Fig 5.18). Interestingly, the correlation between gene tree estimation error

and species tree error was typically higher with fewer genes.

To further investigate the impact of the gene tree error, we divided

replicates of each model condition into three categories: average gene tree

estimation error below 0.25 is labelled low, between 0.25 and 0.4 is labelled

medium, and above 0.4 is labelled high. We plotted the species tree error

within each of these categories (see Figs. 5.19 and 5.20). The relative per-

formance of ASTRAL-II and NJst is typically unchanged across various cat-

egories of gene tree error, but increasing gene tree error tends to increases in

the magnitude of the difference between ASTRAL-II and NJst. Furthermore,

MP-EST seemed to be more sensitive to gene tree error than either NJst or

ASTRAL-II (Fig. 5.20).

The relative performance of ASTRAL-II and CA-ML depended on gene

tree error. For those model conditions where CA-ML was generally more ac-

curate than ASTRAL-II (e.g., 2M/1e-07), ASTRAL-II tended to outperform

CA-ML on the replicates with low gene tree estimation error (Fig. 5.19). Con-

sistent with this observation, we noted that ASTRAL-II was impacted by gene
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Figure 5.17: Correlation between gene tree estimation error and
species tree error for ASTRAL and NJst on Dataset-I. Gene tree
and species tree error correlate well, and the correlation is stronger for fewer
genes and lower levels of ILS. Varying tree shapes are shown in columns and
numbers of genes are showed in rows.
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Figure 5.18: Correlation between gene tree estimation error and
species tree error for CA-ML on Dataset-I. A correlation between gene
tree error (controlled by parameters such as alignment length that also affect
concatenation) and species tree error is detectable for concatenation, but is
smaller compared to NJst and ASTRAL.
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tree error more than CA-ML (Fig. 5.19).

5.4.2.5 RQ5: Collapsing low support branches

ASTRAL-II can handle inputs with polytomies. In this study, because

of the prohibitive costs of applying bootstrapping to datasets of this size, we

have not done bootstrapping on our genes to get reliable measures of support.

However, we do get local SH-like branch support [250] from FastTree-II. Using

these SH-like support values, we collapsed low support branches (10%, 33%,

and 50%) and ran ASTRAL-II on the resulting unresolved gene trees. We

measured the impact of contracting low support branches on the species RF

rate. The median delta RF (error before collapsing minus error after collaps-

ing) is typically zero (Fig. 5.21), never above zero, but in a few cases below zero

(signifying that accuracy was improved in those few cases). However, these

differences are not statistically significant (p = 0.36). Since this analysis was

performed using SH-like branch support values instead of bootstrap support

values (or other ways of estimating support values), it’s hard to generalize and

make conclusions about the use of other measures of support. Further stud-

ies are therefore needed for understanding the effect of collapsing low support

branches in other situations.

5.4.3 Summary of results

Our wide-ranging simulation results show that ASTRAL-II, unlike the

other methods we studied, can analyze datasets with up to 1000 taxa and
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1000 genes within reasonable running times. The next most computationally

feasible method we explored was NJst, but ASTRAL-II was faster and more

accurate than NJst. ASTRAL-II was also much more accurate than MP-EST,

especially with larger numbers of species, but MP-EST was much slower and

could not run on datasets with more than 100 species. Finally, ASTRAL-

II improved upon ASTRAL-I in terms of both accuracy and running time.

ASTRAL-II was more accurate than CA-ML, except when gene tree estimation

error was high and ILS levels sufficiently low.

5.5 Biological Results

5.5.1 Datasets and methods

We analyzed five biological datasets:

• The 1KP dataset from [40], containing 103 plant species and 424 genes.

• The land plant dataset from [211], containing 32 species and 184 genes.

• The angiosperm dataset from [193] containing 42 angiosperm species and

4 outgroups with 310 genes.

• The mammalian dataset from [77], containing 37 species and 447 genes.

• The amniota dataset from [189], containing 16 species and 248 genes.

On these datasets, we compare ASTRAL-II, MP-EST, and concatena-

tion using RAxML (CA-ML). We use gene trees that we estimated for the 1KP
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project; for the amniota and land plant datasets, gene trees were available from

the respective publications. For the mammalian and the angiosperm datasets,

we re-estimated gene trees from the gene alignments that were available. We

used RAxML under the GTR+Γ model with 200 replicates of bootstrapping

and 10 rounds of ML. We used the MLBS procedure [208] to obtain BS values

(see Section 4.3.2).

As noted in Chapter 4, in our analysis of the mammalian dataset,

we found 21 genes with mis-labelled sequences (easily confused taxon names,

subsequently confirmed by the authors of [77]). We removed all those and two

outliers genes from the dataset, and re-analyzed the reduced dataset. We used

the MLBS procedure with 100 replicates, with both site and gene resampling,

in order to be consistent with [77]. We re-estimated the gene trees using

RAxML on the gene sequence alignments produced by [77].

On the amniota dataset, since the number of taxa is small, we ran the

exact version of ASTRAL; in other cases, we ran ASTRAL-II.

5.5.2 Results

5.5.2.1 1KP dataset

As we noted earlier, analyzing 1KP dataset was one of our motivations

for designing a new summary method. This dataset was very challenging for

existing summary methods; it had 103 species, which is larger than what most

methods are designed for and tested on. Also, since the 103 taxa span close

to a billion years of evolution, rooting gene trees was challenging; finally, no
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single gene tree was complete, and some gene trees had substantial levels of

missing data (note that this also affects the ability to root gene trees) As we

noted before, the other summary methods were not able to produce reliable

species trees on this dataset.

There are several interesting questions about plant evolution that this

dataset can help answering, but three stand out.

Sister to land plants: The sister species to a clade including all the land

plants remains unresolved. Two sets of streptophyte algae, Charales, and

Coleochaetales, share complex characteristics with land plants (e.g., oog-

amous sexual reproduction and parental retention of the egg), which tra-

ditionally lead to the belief that Charlales, or Charales+Coleochaetales

are sister to land plants. However, previous molecular analyses have in-

ferred many different possible sister clades, including the following four

major hypotheses: Zygnematales [251–253], Coleochaetales [254], Zygne-

matales + Coleochaetales [255], and Charales [256].

Bryophytes: Mosses, liverworts, and hornworts (collectively called bryophytes)

are plants that separated out from other land plants early in the evolu-

tion of land plants. All various possible hypothesis of branching order

involving these groups has been proposed in the literature and many

have been supported by various data [257–259].

Gnetales: The position of Gnetales within a monophyletic gymnosperm clade
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is also unresolved, with various hypotheses recovered in the literature [260–

262].

Angiosperms: The earliest branch that diverged from the remaining flow-

ing plants (angiosperms) has been the subjective of debate. Amborella

and Nymphaeales (water lilies), have been identified as earliest branches

of the tree [263, 264]; however, it is not clear whether Amborella [264,

265] or a clade containing Nymphaeales+Amborella [266, 267] should be

placed as sister to all other extant angiosperm lineages.

In its initial phase, the 1KP project gathered entire transcriptomes of

103 different plant species, and from those gathered a set of 852 single-copy pu-

tatively orthologous genes [40]. As part of the 1KP project, we estimated gene

trees on all 852 genes, and then analyzed them in various ways, including var-

ious ways of filtering data. An important filtering was to remove fragmentary

data from gene alignments. Fragments can reduce alignment accuracy [173],

and can also result in poorly estimated gene trees. After removing sequences

that were more than 66% gaps, and removing genes that were missing more

than 50% of the sequence data, we obtained a dataset that included 424 gene

trees (close to half of gene trees had less than half of the species and these were

removed). We estimated gene trees based on amino acid sequences and also

on DNA sequences with 3rd codon position removed (to avoid effects of GC

bias [40, 268]). We report results on these two sets of 424 gene trees, and refer

the reader to [40] for other analyses on the complete dataset. As mentioned
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in Section 5.1, our attempts at running MP-EST on this dataset had limited

success.

Figure 5.22 shows the ASTRAL tree on 1KP and summarizes the differ-

ences between CA-ML and ASTRAL trees. Both concatenation and ASTRAL

recover Zygnematales as sister to land plants, with high support. Similarly,

the sister to flowering plants is recovered to be Amborella with high support,

regardless of the dataset used or whether ASTRAL or CA-ML was used.

The relationships among Bryophytes and Gymnosperms are less con-

sistent. In all analyses, mosses and liverworts were sister groups. However,

in the CA-ML analysis of DNA sequences, hornworts were recovered with low

support as the sister to all remaining land plants (a clade containing mosses,

liverworts, and all the other land plants) whereas in both ASTRAL analyses

and the CA-ML analysis of the AA data, hornworts were sister to mosses +

liverworts, and this clade was at the base of land plants. The correct rela-

tionship is not known, but the fact that ASTRAL and concatenation recover

different relationships is important, especially given short branch lengths at

the base of land plants. Similarly, within Gymnosperms, the exact relation-

ships recovered depend on the method used. ASTRAL analyses both recover

Conifers as a monophyletic clade and Gnetales as the base of Gymnosperms, a

topology previously recovered in other analyses [269]. However, CA-ML anal-

yses put Gnetales as sister to pines, breaking the monophyly of Conifers (this

topology was also previously observed [260]).
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Figure 5.22: Summary of results of 1KP dataset. (a) ASTRAL results
on the 1KP dataset (ASTRAL-I and ASTRAL-II produced identical results);
the DNA tree is shown and the support values are shown for both DNA and
AA astral analyses. Branches without designation have 100% support in both
analyses. NA means a branch was missing from the AA analysis. (b) Summary
of results. Rows show hypotheses of plant evolution for four parts of the tree.
Columns show two ASTRAL and two CA-ML analyses (using RAxML). Colors
indicate whether a hypothesis was supported, or rejected and whether support
or rejection had support that was at least 75%.
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5.5.2.2 Land plant dataset

The question of greatest interest on this dataset is the sister group to

land plants. As noted before, our recent 1KP analysis recovered Zygnematales

as sister to Land plants with high confidence using both ASTRAL and con-

catenation. Zhong et al. used MP-EST to analyze their data, and inferred

Zygnematales as the sister with 64% BS [211]. A re-analysis of the same

data using STAR was performed by Springer and Gatesy [33], who obtained

Zygnematales + Coleochaetales with 44% BS.

We analyzed this dataset using ASTRAL-II and obtained a tree that

generally has high BS on most branches (i.e., with the exception of four

branches, all branches have support at least 86%, and most have 100% sup-

port). However, one edge had very low support (only 18%). After collapsing

the single branch with very low support, we obtained a tree (see Fig. 5.23)

in which the Charales + Land plants hypothesis is rejected with moderately

high support (86%); however, it is not determined whether Zygnematales,

Coleochaetales, or Zygnematales + Coleochaetales are the sister group to Land

plants (the branch that distinguishes between these three hypotheses is the one

with 18% support). Thus, ASTRAL’s analysis of this dataset can be seen as

suggesting that this dataset is insufficient to completely resolve the sister re-

lationship to Land plants. However, the most interesting question is whether

Charales are sister to Land plants, and the ASTRAL tree rejects that hypothe-

sis with 86% support. The ASTRAL results, therefore, are consistent between

the Zhong et al. dataset and 1KP dataset.
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Figure 5.23: ASTRAL tree on the Zhong et al. land plant dataset. We
analyzed a plant dataset with 32 species and 184 genes from [211]. Bootstrap
support values were obtained using the multi-locus bootstrapping procedure
with 100 replicates; values not shown indicate 100% support. ASTRAL-II
tree (with bootstrap support values) is shown on top, and we show a cartoon
version of the tree below. The cartoon version only shows the relationship
between the 5 groups – Land plants, Coleochaetales, Zygnematales, Charales,
and the outgroups, after collapsing the branch with bootstrap support of 18%.
Note that there are three possible sister groups to Land plants: Coleochaetales,
Zygnematales, or the two together (Zygnematales+Coleochaetales); however,
Charlaes is strongly rejected as the sister group to Land plants.
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5.5.2.3 Angiosperms

The evolution of angiosperms, and the placement of Amborella tri-

chopoda Baill., is one of the challenging questions in Land plant evolution.

One hypothesis recovered in some recent molecular studies and all of our 1KP

analyses is that Amborella trichopoda is sister to the rest of angiosperms, fol-

lowed by Nymphaeales (e.g., see [40, 270–272]). A competing hypothesis is

that Amborella is sister to Nymphaeales and this whole group is sister to

other angiosperms [267, 272]. Xi et al. [193] have examined this question using

a collection of 310 genes sampled from 42 angiosperms and 4 outgroups. They

observed that concatenation using maximum likelihood (CA-ML) produced

the first hypothesis and MP-EST produced the second hypothesis, and they

argued that these differences are due to the fact that CA-ML does not model

ILS, whereas MP-EST does.

We ran MP-EST and ASTRAL on the gene tees that we re-estimated on

this dataset, and we obtained two different species trees (Fig. 5.24). Reproduc-

ing results by Xi et al., MP-EST recovered the sister relationship of Amborella

and Nymphaeales with 100% support. However, ASTRAL, just like CA-ML

(using RAxML), recovers Amborella as sister to other angiosperms, with 75%

support. While the exact position of Amborella is debated, our analysis shows

that the differences between CA-ML and MP-EST results cannot be simply

attributed to the fact that CA-ML does not consider ILS.

There are several possible reasons for the differences between the AS-

TRAL and MP-EST on this dataset, including the possibility that rooting
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Figure 5.24: Comparison of species trees computed on the angiosperm
dataset. MP-EST and ASTRAL-II differ in the placement of Amborella; the
concatenation tree agrees with ASTRAL-II.
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gene trees (required by MP-EST but not by ASTRAL-II) by Selaginella can

be problematic for some genes, or that the impact of the gene tree estimation

error is different for the two methods. We also note that ASTRAL-II is a non-

parametric method that does not estimate branch lengths, and it is possible

that non-parametric methods are less sensitive to gene tree estimation error

than parametric methods (like MP-EST).

Our reanalysis of this dataset and our results on the 1KP dataset taken

together point to more support for the hypothesis that Amborella is sister to

the remaining flowering plants.

5.5.2.4 Mammalian

On the mammalian dataset, two of the questions of greatest inter-

est were the placement of bats (Chiroptera) and tree shrew (Scandentia),

where their MP-EST analysis differed from the concatenated analyses they

performed. We recomputed the MP-EST tree, obtaining a tree topologically

identical to the MP-EST tree reported in [77], but with lower bootstrap for

the placement of Scandentia (62% in our analysis). CA-ML analyses of the

full and reduced datasets using RAxML were topologically identical and had

similar branch support. Thus, the CA-ML and MP-EST trees on the reduced

dataset still differed in the placement of both Scandentia and Chiroptera.

We compare ASTRAL to MP-EST in Figure 5.25. Both ASTRAL

and MP-EST trees placed Chiroptera as the sister to all other Laurasiatheria

except Eulipotyphyla, while CA-ML placed Chiroptera as the sister to Cetar-
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Figure 5.25: Analysis of the Song et al. mammals dataset using AS-
TRAL and MP-EST. We show the result of applying ASTRAL and MP-
EST to 424 gene trees on 37-taxon mammalian species. MP-EST is based on
rooted gene trees; ASTRAL is based on unrooted gene trees, and then rooted
at the branch leading to the outgroup. Branch support values in black are
for both methods, those in red are for ASTRAL, and values in blue are for
MP-EST. See Chapter 4 for the resolution of collapsed clades.

tiodactyla. The ASTRAL tree placed Scandentia as sister to Glires with 74%

support, and thus agrees with the CA-ML tree but differs from the MP-EST

tree. Thus, the differences between CA-ML and MP-EST cannot simply be

attributed to use of a coalescent-based method, as Song et al. conjectured,

since ASTRAL, which is also coalescent-based, recovers the same relationship

as MP-EST.

5.5.2.5 Amniota dataset

Chiari et al. [189] assembled a dataset of Amniota to resolve the posi-

tion of turtles relative to birds and crocodiles. Most recent studies favor an
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Archosaurus hypotheses that unites birds and crocodiles as sister groups [273].

The MP-EST analyses by [189] resolved this relationship differently when AA

and DNA gene trees were used; thus, AA had 99% support for the Archosaurus

clade, but DNA rejected Archosaurus with 90% support. We analyzed the

same dataset using the exact version of ASTRAL and found that both AA

and DNA recover Archosaurus; however, while ASTRAL on AA gene trees

recovered Archosaurus with 100% support, ASTRAL on DNA gene trees had

only 55% support for Archosaurus.

5.6 Discussions and future work

This study introduced ASTRAL, a method for estimating species trees

from unrooted gene trees. We introduced two versions of ASTRAL, and proved

that both versions are statistically consistent under the MSC model, but our

second version, ASTRAL-II, has lowered running time and better empirical

performance. Our simulation and biological results show that upcoming multi-

gene datasets with large numbers of species can be accurately analyzed using

ASTRAL-II. For example, we are currently analyzing the next of 1KP dataset

that includes 400 genes, but more than 1,100 species.

Our biological analyses suggest that interestingly, some of the observed

discrepancies between existing coalescent-based analyses and concatenation

in previous studies [33] might be the result of the choice of coalescent-based

method. Therefore, improved coalescent-based analyses might not only help

to identify alternate relationships, but might also confirm prior hypotheses

272



produced using concatenation.

An interesting observation was that in our simulations, concatenation

was under certain conditions more accurate than ASTRAL and other summary

methods. These results suggest that CA-ML should not be rejected, even

though it is not statistically consistent. Conversely, proofs of consistency of

standard summary methods assume gene trees estimated without error [147],

and this assumption limits the relevance of consistency results in practice.

Our analyses also highlighted a problem that we addressed in Chapter 4:

gene tree estimation error can affect the species tree, and that the accuracy

of summary methods is depended on the accuracy of gene trees. This results

in an interesting question: can the statistical binning approach also improve

the accuracy of ASTRAL? Our preliminary results suggest that the answer

is yes. We analyzed the avian simulated dataset presented in the previous

chapter and observed that 1) ASTRAL-II has better accuracy than MP-EST

on this dataset, and 2) binning used with ASTRAL-II further improved its

accuracy for many model conditions (see results in Fig. 5.26 and see [191] for

more). We also noted some interesting cases (e.g., the 1000bp model condition

in Fig. 5.26) where ASTRAL, unlike MP-EST, did not improve using binning,

but with or without binning ASTRAL had better accuracy than MP-EST.

Nevertheless, our results make it clear that the use of all summary methods,

including ASTRAL should be with the understanding that gene tree error

can impact their results, and that practitioners need to make an effort to

obtain the best gene trees possible using their data. The requirement to use
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(a) Avian (1X ILS; 1000 genes; varying gene sequene length)

(b) Mammalian (1X ILS, 500bp alignments; varying number of genes)

MP-EST ASTRAL

MP-EST ASTRAL

Figure 5.26: Impact of binning on ASTRAL. We compare weighted and
unweighted statistical binning when run using MP-EST or ASTRAL-II as the
summary method on simulated (a) avian and (b) mammalian datasets (S =
50% for avian and S = 75% for mammalian). ASTRAL, just like MP-EST, is
improved in terms of accuracy when used with binned supergene trees. Also
note that ASTRAL has lower error than MP-EST with or without binning,
except with the longest sequences.
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recombination-free regions complicates this pursuit as recombination-free “c-

genes” can be very short, especially as the number of taxa increases [34].

Future work is needed to study the impact of using shorter gene sequence

alignments, and conversely the presence of recombination events within genes.

Several limitations in ASTRAL need to be addressed in future work.

Comparison to other types of methods: While we compared ASTRAL

to simple summary methods, future studies need to compare ASTRAL-II

to boosting approaches (e.g., [153, 236]) that enable slower coalescent-based

methods to scale to large datasets. Also, the running time of NJst and other

simple distance-based methods that we didn’t analyze here (e.g., STAR [142]

and GLASS [144]) might be improved if better implementation of them is

produced. Finally, a comparison to co-estimation methods under conditions

where those methods can run (e.g., small numbers of species and genes) would

also be interesting.

Missing data: We presented algorithms for handling incomplete gene trees.

However, we have not rigorously studied the effect of incomplete gene trees

on the accuracy of ASTRAL. A more comprehensive study needs to test the

accuracy of ASTRAL in the presence of incomplete gene trees. These studies

would be most interesting if they also include cases where missing data are not

randomly distributed throughout the tree (e.g., basal taxa could be missing

more often). While the optimization problem of ASTRAL is likely sufficient
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even when there are missing taxa, whether our current construction of set X

from a set of incomplete genes is sufficient remains to be tested.

Multiple individuals: In studies where closely related species are analyzed,

it is believed that sampling more than one individual per species can help in

resolving the relationships [37, 151]. The optimization problem in ASTRAL

can be easily extended to cases where multiple individuals are sampled from

each species. Once again, computing the set X requires more care when mul-

tiple individuals are present, and future algorithmic developments are needed

to obtain good accuracy on such datasets.

Further running time improvements: Further improvements to the run-

ning time of ASTRAL can be potentially obtained. For example, currently, in

our traversal of gene trees, we do not exploit similarities between gene trees. If

two gene trees are identical, we can traverse only one of them and simply count

the resulting score twice. Taking this idea one step further would allow us to

find commonalities between gene trees, and to exploit those commonalities to

reduce the computational burden.
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Chapter 6

Conclusions and Future Work

Evolutionary studies are increasingly relaying on large-scale data now

that sequencing has become relatively cheap. In this dissertation, we ad-

dressed three challenges arising in analyses of large-scale datasets for evolu-

tionary studies: multiple sequence alignments (MSA) of ultra-large datasets,

gene tree estimation error and how it impacts reconstructing species trees us-

ing summary methods, and finally, the scalability and accuracy of summary

methods. The MSA challenge has implications in many areas of biological

studies and relates to increases in the number of sequences for a particular

gene. The next two challenges are related to the problem of reconstructing

species phylogenies in the presence of gene tree discordance due to ILS; hence,

both arise with increases in the number of genes sampled across the genome

(potentially from a large number of species). All three challenges are faced in

the pipeline that starts from raw sequences and outputs a species phylogeny.

We first give a quick summary of each of the three contributions, then present

some directions for future research, and finish by some concluding remarks.
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6.1 Summary

PASTA: We showed that few existing MSA methods can run on ultra-large

datasets, i.e., those with many tens of thousands to even a million sequences.

Those methods that could run typically had degraded accuracy, especially

when datasets also had high rates of evolution. We introduced PASTA, a

new algorithm for co-estimation of alignments and trees. PASTA is built on

SATé [30, 31], and just like SATé, it divides sequences into subsets using a

guide tree, obtains alignments for each subset, merges alignments, and then

estimates a tree from the alignment; it repeats this process until some stop-

ping criterion is met. The main improvement of PASTA over SATé is in the

merge step. Unlike SATé, which aligned alignments using external alignment

merging tools, PASTA combines alignments using a combination of building

a spanning tree, pairwise mergers of alignments using external tools, and ap-

plication of transitivity. We showed that the running time of our merging

strategy is O(n log n) for n sequences, and demonstrated the scalability of the

method empirically as well. Furthermore, we showed in simulation and bio-

logical studies that PASTA had better accuracy than competing methods on

most nucleotide and amino acid datasets. We were able to align a dataset with

a million sequences in two weeks of running time, and achieved high accuracy.

Thus, accurate alignment of ultra-large datasets is possible.

Statistical binning: We showed that when large numbers of genes are sam-

pled from across the genome for reconstructing the species phylogeny, many
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of these genes are typically short and uninformative regarding the true topol-

ogy of their respective gene trees. We thoroughly demonstrated this problem

in simulations, and on the avian biological dataset, among others. We also

showed that high levels of estimation error in gene trees translate to high lev-

els of error in the estimated species tree. We proposed the statistical binning

approach for re-estimating the gene trees by grouping them together. Binning

divides the set of genes into bins such that no two genes in the same bin have

any detected strong conflict. Sequence data from genes binned together are

concatenated, and these are used to estimate a set of supergene trees, which

are then used as input to a summary method. In our simulation studies, gene

tree estimation error, species tree topological error, and species tree branch

length error were all reduced using binning, and branch support values were

improved. We introduced two versions of binning, one with and one without

weighting bins by their size. We proved that weighted statistical binning is

statistically consistent under the multi-species coalescent (MSC) model if we

allow the number of genes and the number of sites per gene to both increase,

but unweighted binning is not consistent under those assumptions.

ASTRAL: Summary methods used to estimate a species tree from a col-

lection of gene trees are relatively new. We showed that existing summary

methods either simply do not scale to datasets that are large in terms of both

the number of genes and the number of species, or have reduced accuracy

for large datasets; moreover, even on moderate size datasets, the accuracy
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of summary methods had room for improvement. We introduced ASTRAL,

a new summary method, which finds the species tree that agrees with the

largest number of induced quartet trees form the gene trees. We showed that

the solution to this problem is statistically consistent under the MSC model.

ASTRAL solves this problem using dynamic programming, and also solves

a constrained version of the problem where the species tree bipartitions are

restricted to those in the gene trees (and in ASTRAL-II, some additional bipar-

titions that we heuristically compute). We showed that with increased number

of genes, the constrained version of ASTRAL also converges in probability to

the true species tree, and is therefore statistically consistent. We demonstrated

scalability and accuracy of ASTRAL on a large set of simulated datasets. On

biological datasets, we demonstrated that the comparison between ILS-aware

summary methods and concatenation depends on which summary methods is

used, and some of the results obtained using concatenation and rejected by

previous summary methods are recovered using ASTRAL.

6.2 Future directions

Our three main contributions address some challenges of analyzing large

datasets in evolutionary studies, but many such challenges remain. We pointed

some directions of future work for each of these three approaches in their

respective chapters. Here we point out some additional directions for future

work.
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Systematic bias: We explored gene tree estimation error arising from insuf-

ficient phylogenetic signal in the gene sequences; however, gene tree estimation

error can also come from poorly estimated alignments (see Chapter 3) or sys-

tematic errors introduced during the tree inference [111, 274]. These sources

of error usually arise from imperfect modeling of sequence evolution processes,

and can lead to estimated gene trees that are positively misleading. Since

our studies focused on insufficient phylogenetic signal, we have no evidence

that statistical binning or ASTRAL could reduce phylogenetic error due to

alignment error or misspecification for the sequence evolution model. Conse-

quently, appropriate care should be devoted to obtaining good alignments and

choosing an adequate model of sequence evolution to reconstruct both gene

and supergene trees. Future studies should evaluate performance of ASTRAL

and statistical binning when at least some of the genes have properties that

cause bias (e.g., unbalanced GC content that violates stationarity assumptions

of GTR [39]). A central question is whether the summary method pipeline or

concatenation would work better in the presence of systematic biases.

Multiple sources of discordance: Throughout Chapters 4 and 5, we only

considered ILS as a source of discord between true gene trees and the species

tree. As we discussed in Section 2.2, biological discordance can also be due

to other factors (e.g., duplication and loss, incorrect orthology assessments,

recombination, introgression, horizontal gene transfer, and hybridization). We

don’t have evidence that either binning or ASTRAL helps when discordance is
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due to some of these other processes. A consequence of simulating only ILS in

our studies is that our simulations should favor ILS-aware summary methods

(such as ASTRAL and MP-EST) that are based on the same model used for

simulations over concatenation (which assumes no ILS is present). Given this,

the fact that unbinned MP-EST and even ASTRAL are less accurate than

concatenation under some conditions is interesting. Future studies based on

model conditions in which other sources of gene tree discord are included would

enable a better understanding of the relative accuracy of concatenation and

coalescent-based species tree estimation, and the impact of using binning and

ASTRAL under those conditions. For example, it would be very interesting

to see if ASTRAL performs well when horizontal gene transfer and ILS act

simultaneously to create gene tree discordance.

Variations of the species tree estimation pipeline: Throughout the

thesis, we used only maximum likelihood for estimating gene trees, and only

a handful of summary methods for estimating the species tree. Other vari-

ations of the pipeline might lead to different patterns of performance. For

example, gene trees could be estimated using Bayesian methods instead of

maximum likelihood, and some recent studies suggest these result in improved

accuracy for the species tree [239]. If Bayesian methods are used, the in-

put to ASTRAL can be a distribution on each gene tree, and not a sin-

gle tree. These specific variants might improve species tree estimations but

would also result in substantially increased running time. Finally, we did
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not compare our methods with pipelines other than summary methods and

concatenation. There are alternative pipelines such as gene tree species tree

co-estimation [150, 151] and species tree estimation directly from data with-

out computing gene trees [156, 157]. Co-estimation methods have prohibitive

running time; however, attempts to improve the scalability of co-estimation

methods are underway, some by us [153], and such attempts may enable run-

ning co-estimation methods on larger datasets. Methods for direct estimation

of species tree without gene trees are new and some are limited to specific

types of data. Future work needs to evaluate these methods thoroughly.

Parallelization: We utilized parallelization throughout this dissertation in

simple forms. In PASTA, we run different alignment and merge jobs on differ-

ent threads, producing plenty of parallelism. However, the tree estimation step

is not well-parallelized inside PASTA, and future work can look into creative

ways of improving the parallelization in the tree estimation step (e.g., through

approaches similar to DACTAL [275]). In binning and ASTRAL, we exploit

parallelization only in the sense that independent parts of the pipeline are ran

independently. But much more can be done. Even though ASTRAL is fast on

fully binary gene trees, its running time can be prohibitive when a very large

number of multifurcating gene trees is available. Since the theoretical running

time of ASTRAL might not be improvable for unresolved gene trees, the use

of parallelism can enable analyses that would otherwise be intractable. The

use of GPUs in particular seems promising for ASTRAL.
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6.3 Conclusions

All tools and datasets presented in this dissertation are publicly avail-

able in open source. We wish that our contributions would advance biological

evolutionary studies with large-scale datasets. In the short time since we

published these methods, new studies have started using them, and some bi-

ologists have even published results using these methods (e.g., see [276–284]).

These are in addition to the biological studies that we have published using

these methods (e.g., [39, 40]), and others that we are currently analyzing (e.g.,

next phases of both avian and 1KP projects, and other datasets on mammals,

raptors, hummingbirds, and others).

The work presented in this dissertation demonstrated that analyzing

large-scale sequence datasets is possible, but it requires developing new meth-

ods that can scale while maintaining accuracy as the size of the datasets grows.

All three methods presented here increase the set of datasets that can be an-

alyzed accurately. PASTA and ASTRAL enable accurate analyses of large

numbers of species, and binning enables using low signal genes that previously

were discarded routinely from summary method analyses. Thus, with our new

methods, more of the data can be analyzed and the need to data filtering is

reduced. We believe our future research needs to address issues that we have

not addressed here, but with a similar goal: developing scalable and accurate

methods that enable analyses of large-scale data without extensive filtering.
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Appendix A

Commands

Here, we give the exact commands used in various analyses presented

throughout this dissertation.

A.1 PASTA

A.1.1 Method commands

• Muscle version 3.8.31:

muscle -in [input sequences] -out [output alignment] <-maxiters 2>∗ (*Only

for datasets with more than 3,000 sequences.)

• Clustal-Omega version 1.2.0:

clustalo --threads=12 -i [input sequences] -o [output alignment]

• HMMBUILD version 3.0:

hmmbuild --symfrac 0.0 --dna [output profile] [backbone alignment]

• HMMALIGN version 3.0:

hmmalign [--dna | --rna | --amino] [output profile] [query file] > [out-

put alignment]
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• Mafft default version 7.143b:

mafft --ep 0.123 --auto --anysymbol --thread 12 [input sequences] > [out-

put alignment]

• Mafft-LNSI version 7.143b:

mafft --ep 0.123 --localpair --maxiterate 1000 --quiet --anysymbol --thread

12 [input sequences] > [output alignment]

• Mafft-PartTree version 7.143b:

mafft --ep 0.123 --partsize 1000 --retree 2 --parttree --quiet --anysymbol

--thread 12 [input sequences] > [output alignment]

• FastTree version 2.1.5 SSE3:

fasttree [-nt -gtr]∗ [input fasta] > [output tree]

(*Only for nucleotide datasets.)

• RAxML version 7.5.7:

raxmlHPC-PTHREADS -T 12 -m PROTGAMMA[model] -j -n [output name]

-s [input fasta] -p 1

• SATé version 2.2.7:

python run sate.py config.sate2.txt

(The config.sate2.txt file is defined as follows:)

[commandline]
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two_phase = False

datatype = <dna, rna, or protein>

untrusted = False

multilocus = False

input = <input_fasta>

treefile = <starting_tree>

aligned = False

raxml_search_after = False

auto = False

[fasttree]

model = -gtr

args =

options = -nosupport -fastest

[sate]

time_limit = -1.0

iter_without_imp_limit = -1

time_without_imp_limit = -1.0

break_strategy = centroid

start_tree_search_from_current = True

blind_after_iter_without_imp = -1

max_mem_mb = 4024
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blind_mode_is_final = True

blind_after_time_without_imp = -1.0

max_subproblem_size = 200

merger = muscle

num_cpus = 12

after_blind_time_without_imp_limit = -1.0

max_subproblem_frac = 0.0

blind_after_total_time = -1.0

after_blind_time_term_limit = -1.0

aligner = mafft

iter_limit = 3

blind_after_total_iter = -1

tree_estimator = fasttree

after_blind_iter_term_limit = -1

return_final_tree_and_alignment = False

move_to_blind_on_worse_score = True

after_blind_iter_without_imp_limit = -1

• PASTA version 1.1.0:

run pasta.py -i input.fasta -t starting.tree

(used this version for all nucleotide results, except Indelible; for stat-

ing.tree, used the approach described in the paper, with the backbone
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alignment estimated using SATé.)

• PASTA version 1.5.1:

run pasta.py -i input.fasta

(used for all AA results and Indelible)

Notes:

• PASTA versions 1.1.0 and 1.5.1 were algorithmically identical, but used

different versions of internal tools. PASTA 1.1.0 internally used version

6.903 of Mafft for aligning subsets and version 1.0.2 of OPAL for pairwise

merges. In PASTA version 1.5.1, OPAL has moved to version 2.1.2 and

Mafft was moved to version v7.149b.

• Version 1.1.0 of PASTA did not estimate the starting tree internally,

and so we gave PASTA the starting tree that we computed separately.

PASTA version 1.5.1 internally estimates the starting tree. The starting

tree provided to PASTA in version 1.1.0 used the approach we describe

in the paper and uses SATé for estimating the backbone alignment on

100 randomly selected sequences. PASTA version 1.5.1 uses a similar

technique, but uses Mafft for estimating the backbone alignment on 100

randomly selected techniques.

A.1.2 Indelible control files

Here is the control.txt file used for Indelible simulations of the 10K

Indelible dataset with 10000M2 condition
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//////////////////////////////

[TYPE] NUCLEOTIDE 2

/* ---------------------------------------------

FROM || T | C | A | G

------++----------+----------+----------+-----------

T || - | a Pi_C | b Pi_A | c Pi_G

C || a Pi_T | - | d Pi_A | e Pi_G

A || b Pi_T | d Pi_C | - | f Pi_G

G || c Pi_T | e Pi_C | f Pi_A | -

A-C 1.24284

A-G 3.47484

A-T 0.48667

C-G 1.07118

C-T 4.38510

G-T 1.0 */

[MODEL] GTRexample

[submodel] GTR 1.2619573850882344 0.14005536945585983 0.2877830346145434

0.35766826674033914 0.3082674310184066

// GTR: a=0.2, b=0.4, c=0.6, d=0.8, e=1.2, f=1

[statefreq] .311475 .191363 .300414 .196748 // T=0.1, C=0.2, A=0.3, G=0.4

[rates] 0 1 0 // continuous gamma with alpha=1

[indelmodel] USER m_indel_model.txt //custom model; see below

[indelrate] 0.0001 // insertion rate = deletion rate = 0.1

// relative to average substitution rate of 1.

[TREE] tree1

[unrooted] 10000 6.7 2.5 1 0.24 // ntaxa birth death sample mut

[treedepth] 5

[seed] 1

[PARTITIONS] pGTR [tree1 GTRexample 1000]

[SETTINGS]

[output] FASTA

[EVOLVE]

pGTR 10 GTRout

////////////////////////////
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The control files for 10000M3 and 10000M4 are similar, with differences

only in the following parts:

10000M3:

[TREE] tree1

[unrooted] 10000 6.7 2.5 1 0.24 // ntaxa birth death sample mut

[treedepth] 2.5

[seed] 1

10000M4:

[TREE] tree1

[unrooted] 10000 6.7 2.5 1 0.06 // ntaxa birth death sample mut

[treedepth] 1

[seed] 1

The m indel model.txt file is the same for all three model conditions,

and is based on values used in [30].

m indel model.txt:

0.2012

0.1600

0.1280

0.1024

0.0819

0.0655

0.0524

0.0419

0.0336

0.0268

0.0215

0.0172

0.0137

0.0110

0.0088

0.0070

0.0056
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0.0045

0.0036

0.0029

0.0023

0.0018

0.0015

0.0012

0.0009

0.0008

0.0006

0.0005

0.0004

0.0003

0.0002

A.2 Binning

A.2.1 Simulations

The parameters of bppseqgen for our simulations were:

• The substitution model parameters (GTR parameters):

a = 1.062409952497, b = 0.133307705766, c = 0.195517800882,

d = 0.223514845018, e = 0.294405416545,

θ = 0.469075709819, θ1 = 0.558949940165, θ2 = 0.488093447144

• The rate distribution parameters (Gamma parameters):

n = 4, α = 0.370209777709

The McCoal control file for simulations of the 10-taxon species tree is:

SimulatedData.txt
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1234567

10 A B C D E F G H I J

1 1 1 1 1 1 1 1 1 1

(((((((((A #.05,B #.05):0.005 #.05,C #.05):0.01 #.05,

D #.05):0.015 #.05, E #.05):0.02 #.05,F #.05):0.025 #.05,

G #.05):0.03 #.05,H #.05):0.035 #.05,I #.05):0.04 #.05,

J #.05):0.54 #.05;

A.2.2 Methods

A.2.2.1 Estimating ML gene trees

We used RAxML version 7.3.5 [120] to estimate gene trees.

Maximum likelihood trees: raxmlHPC-SSE3 -m GTRGAMMA

-s [input MRP file] -n [a name] -N 20

-p [random seed number]

Bootstrapping: raxmlHPC-SSE3 -m GTRGAMMA

-s [input MRP file] -n [a name] -N 200

-p [random seed number] -b [random seed number]

A.2.2.2 MP-EST

MP-EST version 1.0.3 was used in all runs. We used a custom shell

script to run MP-EST 10 times with different random seed numbers and take

the tree with the highest likelihood. For estimating branch length on a fixed
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topology (used in the simulation procedure) we used version 1.0.4 of MP-EST.

A.2.2.3 MRP

MRP data matrices are built using a custom Java program available

at https://github.com/smirarab/mrpmatrix. The following command was

used to create the MRP matrix.

java -jar mrp.jar [input file] [output file] NEXUS

The default heuristic in PAUP* (v. 4. 0b10) [107] was used for solving

the parsimony problem. This heuristic operates by first generating an initial

tree through random sequence addition and then using Tree Bisection and

Reconnection (TBR) moves to reach a local optimum. 1000 iterations are

used, and the most parsimonious tree is returned. When multiple trees have

the same maximum parsimony score, the greedy consensus of those trees is

returned. The following shows the PAUP* commands used.

begin paup;

set criterion=parsimony maxtrees=1000

increase=no;

hsearch start=stepwise addseq=random

nreps=100 swap=tbr;

filter best=yes;

savetrees file = <treeFile> replace=yes

format=altnex;
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contree all/ strict=yes

treefile = <strictConsensusTreeFile>

replace=yes;

tcontree all/ majrule=yes strict=no

treefile = <majorityConsensusTreeFile>

replace=yes;

contree all/ majrule=yes strict=no

le50=yes

treefile = <greedyConsensusTreeFile>

replace=yes;

log stop;

quit; end;

A.2.2.4 Greedy

We use Dendropy version 3.12.0 [204] to compute the greedy consensus

tree.

A.3 ASTRAL

A.3.1 ASTRAL-I analyses

A.3.1.1 Gene tree estimation

RAxML version 7.3.5 [120] was used to estimate gene trees. The fol-

lowing command was used for estimating the best ML trees.
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raxmlHPC-SSE3 -m GTRGAMMA -s [input file] -n [a name]

-N 20 -p [random seed number]

The following command was used for bootstrapping.

raxmlHPC-SSE3 -m GTRGAMMA -s [input file] -n [a name] -N 200

-p [random seed number] -b [random seed number]

A.3.1.2 ASTRAL

We ran version 3.1.1 of ASTRAL (corresponding to the github commit
fb21c0ce6140e9e238575356bc174c88c6cfc597 from March 6th on https://github.

com/smirarab/ASTRAL with the following command:

java -jar astra 3.1.1.jar -wq -in [input tree]

Where the exact version of ASRAL was used, we ran it with the following command:

java -jar astra 3.1.1.jar -wq -in [input tree] -xt

To add new bipartitions to X, we used it with the following command:

java -jar astra 3.1.1.jar -wq -in [input tree] -ex [extra trees]

A.3.1.3 BUCKy-population

We ran BUCKy with the default settings, except for the number of genera-
tions that we changed from 100K to one million. The following command was used
to run BUCKy.

bucky -n <numberOfGenerations> -o <outputFileRoot> <inputFiles>

A.3.1.4 MRP and MRL

MRP trees are built using a custom Java program available at https://

github.com/smirarab/mrpmatrix. The following command was used to create the
MRP matrix.

java -jar mrp.jar [input file] [output file] NEXUS

297



We used the default heuristic in PAUP* (v. 4. 0b10) [107] for maximum
parsimony. This heuristic first generates an initial tree through random sequence
addition and then uses Tree Bisection and Reconnection (TBR) moves to reach a
local optimum. This process is repeated 1000 times, and the most parsimonious
tree is returned. When multiple trees have the same maximum parsimony score,
the greedy consensus of those trees is returned. The following shows the PAUP*
commands used.

begin paup;

set criterion=parsimony maxtrees=1000

increase=no;

hsearch start=stepwise addseq=random

nreps=100 swap=tbr;

filter best=yes;

savetrees file = <treeFile> replace=yes

format=altnex;

contree all/ strict=yes

treefile = <strictConsensusTreeFile>

replace=yes;

tcontree all/ majrule=yes strict=no

treefile = <majorityConsensusTreeFile>

replace=yes;

contree all/ majrule=yes strict=no

le50=yes

treefile = <greedyConsensusTreeFile>

replace=yes;

log stop;

quit; end;

MRL stands for “Matrix Representation with Likelihood”, and is the su-
pertree method obtained by running two-state symmetric maximum likelihood on
the MRP matrix [238]. We computed maximum likelihood trees on the same MRP
matrix using RAxML under the two-state maximum likelihood model, to obtain
MRL (matrix representation with likelihood) trees.

A.3.1.5 Concatenation

We used RAxML version 7.3.5 to create the parsimony starting trees:
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raxmlHPC-SSE3 -y -s supermatrix.phylip -m GTRGAMMA

-n [a name] -p [random seed number] -s [alignment]

We then used RAxML-light version 1.0.6 with the following command to
search for the ML tree.

raxmlLight-PTHREADS -T 4 -s supermatrix.phylip -m GTRGAMMA -n name

-t [parsimony tree] -s [alignment]

A.4 ASTRAL-II

A.4.1 SimPhy parameters

We used the following parameters in our simulation using SimPhy. The
scripts for the simulation are given at http://www.cs.utexas.edu/users/phylo/

software/astral/.

Table A.1: Parameters used in SimPhy simulations.

Arg. Description Value Notes
RS number of replicates 50
RL number of loci 1000
RG number of genes 1 no duplications
ST maximum tree length 500K, 2M, or 10M
SI number of individuals per species 1
SL number of leaves 10,50,100,200,500, or 1000
SB birth rates 0.000001, 0.0000001
P global population sizes 200000
HS Species-specific Log normal (1.5,1)

branch rate heterogeneity modifiers
HL Locus-specific Log normal (1.2,1)

rate heterogeneity modifiers
HG Gene-tree-branch-specific Log normal (1.4,1)

rate heterogeneity modifiers
U Global substitution rate Exponential (10000000)
SO Outgroup branch length 1

relative to half the tree length
CS Random number generator seed 293745
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A.4.2 Indelible parameters

We used a perl script available also at http://www.cs.utexas.edu/users/
phylo/software/astral/ to draw parameters for the Indelible simulations. For
each replicate, some hyperparameters are first drawn and these hyperparameters
affect how the actual parameters are drawn for each gene in that replicate.

Gene Length: The alignments lengths are drawn from log normal distributions
for genes of each replicate. For each replicate, a hyperparameter controls the two
model parameters of the log normal distribution. The log mean is drawn uniformly
between 5.7 and 7.3, which correspond to 300 sites to 1500 sites. Thus, the average
alignment length for each replicate is a random value between 300 and 1500. The log
standard deviation for the log normal distribution is also drawn uniformly between
0.0 and 0.3.

Base frequencies: We used a Dirichlet(36,26,28,32) to draw the base frequen-
cies for A, C, G, and T. These values were calculated using maximum likelihood
estimation form a collection of three large scale multi-locus datasets: 1KP dataset,
Song et al Mammalian dataset, and Avian phylogenomics dataset. The base val-
ues used for this maximum likelihood estimation and the corresponding scripts are
available at http://www.cs.utexas.edu/~phylo/software/astral/.

Substitution matrices: As with base frequencies, GTR matrices were drawn
from a Dirichlet(16,3,5,5,6,15) and these parameters were also estimated using max-
imum likelihood from our empirical data.

Rates-across-sites shape parameter: α was drawn from an exponential dis-
tribution with rate 1.2, with values below 0.1 discarded. Like rates and base fre-
quencies, these values were estimated from real data.
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Petr Novák, Mathieu Piednoël, Hanna Weiss-Schneeweiss, and Andrew R

Leitch. Genomic Repeat Abundances Contain Phylogenetic Signal. Sys-

tematic Biology, 64(1):112–126, 2014.

312



[80] Michael C. Schatz, Arthur L. Delcher, and Steven L. Salzberg. Assembly

of large genomes using second-generation sequencing. Genome Research,

20(9):1165–1173, 2010.

[81] Brandi L. Cantarel, Hilary G. Morrison, and William Pearson. Exploring

the relationship between sequence similarity and accurate phylogenetic trees.

Molecular Biology and Evolution, 23(11):2090–2100, 2006.

[82] T Heath Ogdenw and Michael S Rosenberg. Multiple sequence alignment ac-

curacy and phylogenetic inference. Systematic Biology, 55(2):314–328, 2006.

[83] Li-San Wang, Jim Leebens-Mack, P Kerr Wall, Kevin Beckmann, Claude W

DePamphilis, and Tandy Warnow. The impact of multiple protein sequence

alignment on phylogenetic estimation. IEEE/ACM Transactions on Compu-

tational Biology and Bioinformatics, 8(4):1108–19, 2011.
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suffice to build (almost) all trees (I). Random Structures and Algorithms,

14(2):153–184, 1999.

[248] Diego Mallo, L de Oliveira Martins, and D Posada. Simphy: Comprehensive

simulation of gene, locus and species trees at the genome-wide level., 2015.

(In Prep, available at https://code.google.com/p/simphy-project/).

[249] Alexandros Stamatakis, Andre J Aberer, C Goll, Stephen A Smith, Simon A

Berger, and Fernando Izquierdo-Carrasco. RAxML-Light: a tool for comput-

ing terabyte phylogenies. Bioinformatics, 28(15):2064–2066, 2012.

[250] Hidetoshi Shimodaira and Masami Hasegawa. Multiple Comparisons of Log-

Likelihoods with Applications to Phylogenetic Inference. Molecular Biology

and Evolution, 16(8), 1999.

[251] Sabina Wodniok, Henner Brinkmann, Gernot Glöckner, Andrew J Heidel,
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