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Traditional approaches for eliminating errors in concurrent and distributed

programs include formal methods and testing. This dissertation presents an ap-

proach toward combining formal methods and testing, while avoiding the complex-

ity of model checking or theorem proving and the pitfalls of ad hoc testing. Our

technique enables efficient formal verification of specifications on execution traces

of actual scalable systems.

By allowing an observer to analyze a partial order trace rather than a total

order trace, we get the benefit of properly dealing with concurrent events and es-

pecially of detecting errors from analyzing successful executions, errors which can

occur under a different thread scheduling. Surprisingly, temporal logic model check-

ing even on a finite partial order trace is NP-complete in the size of the trace

description. We develop techniques to combat the state explosion problem. Our

algorithms have polynomial-time complexity in the size of the trace description as

opposed to exponential.
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We suggest the use of an abstraction technique called slicing. Intuitively,

the “slice” of a trace with respect to a predicate (specification) is a sub-trace that

contains all the global states of the trace that satisfy the predicate such that it is

computed efficiently (without traversing the state space) and represented concisely

(without explicit representation of individual states). We present off-line and on-line

slicing algorithms with respect to predicates in a subset of temporal logic CTL. We

also show that the slicing problem is equivalent to the problem of detecting whether

there exists at least one global state of the trace that satisfies the predicate.

We develop efficient algorithms to detect several useful classes of predicates.

In particular, we show how to use the slicing algorithms to detect predicates in a

subset of temporal logic CTL. We also present efficient detection algorithms for

predicates that do not allow efficient slicing.

We have developed a prototype system Partial Order Trace Analyzer (POTA),

which implements our algorithms. We verify several scalable and industrial proto-

cols including CORBA’s GIOP, ISO’s ATMR, cache coherence and mutual exclusion.

Our experimental results indicate that slicing can lead to exponential reduction over

existing techniques both in time and space.
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Chapter 1

Introduction

Concurrent and distributed systems are commonplace. Examples of such

systems include communication protocols, operating systems, microprocessors. The

design process of such systems involves many stages and people. These together

with non-determinism and the presence of multiple threads of control makes such

systems prone to errors. In many systems, especially those employed in safety-

critical environments, such as avionics and automobiles, errors are costly and can

not be accepted. Thus, it is a challenging task to find ways of reducing the number

of errors in safety-critical systems. Formal methods and testing have been widely

used to improve the reliability of such systems.

Formal methods are a collection of notations and mathematical techniques

for modeling systems, for precisely and unambiguously describing the properties

of systems, and for analyzing whether the specified properties are satisfied. There

are two broad approaches in formal methods—model checking and theorem prov-

ing. Model checking [CE81, QS82, CGP00] uses finite state machines as a system

model, and specifications are written in a specialized language called temporal logic

[Pnu77]. These logics can express a wide variety of useful properties of concurrent
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and distributed programs. Theorem proving [BM79, ORR+96, KMM00] expresses

the system model and the specifications in a suitable logic, and constructs a proof

using the inference rules in the logic that the system model implies the specifications.

Both of these methods enable an exhaustive analysis of the system by rea-

soning about all possible executions of the system model. However, they both have

disadvantages that limit their applicability in practice. In model checking, modeling

complex systems as finite state machines suffers from the state explosion problem.

This is the exponential growth of the number of states in the model with the num-

ber of components which comprise the state. Thus model checking is not capable

of dealing with systems that are made up of a large number of small finite state

machines or systems that manipulate data. Theorem proving can involve generat-

ing and proving hundreds of lemmas and a lot of manual effort. Even if a system

has been formally verified, we still cannot be sure of the correctness of a particular

implementation. The reason is that formal methods, in general, work on an ab-

stract model of a system and make assumptions on the environment. However, for

safety-critical systems such as avionics or automobiles, it is crucial to reason about

the particular implementation.

Testing (or simulation) is the most frequently used reliability assurance method.

It is focused on sampling the executions of a system, and comparing the actual be-

havior with the behavior that is expected according to the specification.

The main reason for the popularity of testing is that it is simple, feasible and

gives a high cost performance ratio. Testing has also the advantage of being able to

check an actual implementation of a system rather than a model of it. Unfortunately

since testing is applied directly to actual programs with a huge or infinite number

of states, it is impossible or impractical to check all the executions of a program

in a systematic way. Therefore, testing is not as exhaustive as model checking or

theorem proving. Also, testing techniques are ad-hoc and do not allow for formal
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specification and verification of logical properties that a concurrent and distributed

system needs to satisfy.

This dissertation presents an approach toward combining formal methods

and testing in a technique called Predicate Detection (also called Runtime Veri-

fication). This technique enables efficient formal verification of specifications on

executions of actual scalable systems. Predicate Detection uses mathematical

techniques as in formal methods for analyzing whether the specified properties are

satisfied, but at a cost same as testing. Predicate Detection is cheaper than formal

methods because checking program correctness for particular executions is much

easier than proving program correctness for all possible executions. Predicate De-

tection, similar to testing, has also the advantage of being able to check an actual

implementation of a system rather than a model of it. A Predicate Detection en-

vironment can be off-line (assuming that the entire execution trace is available a

priori) or on-line (while the program is executing).

The main goal of this dissertation is to present efficient Predicate Detection

algorithms. We depict an overall view of a Predicate Detection environment in

Figure 1.1. The contributions of this dissertation in addressing all of the aspects in

our Predicate Detection environment are discussed in detail in the following sections.

1.1 Execution Trace Model: Partial Order

An execution of a concurrent and distributed program consists of multiple processes.

We denote a set of events generated by processes during program execution by a

trace.

A concurrent and distributed program, when executed, may generate several

traces; therefore, a Predicate Detection tool should handle large numbers of traces

efficiently. In order to increase the scalability, we model an execution trace of a

program as a partial order between events (also called a computation) generated
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Trace
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Detection
Predicate

Specification

Application

Slice

Figure 1.1: Predicate Detection environment overall view

during program execution as opposed to a total order between events. Every total

order of events that respects the partial order relation corresponds to an order in

which the events could have been executed.

Using a partial order model, we can capture exponential number of possible

total order traces succinctly. By allowing an observer to analyze a partial order

trace rather than a total order trace, we also get the benefit of properly dealing

with concurrent events and especially of detecting errors from analyzing successful

executions, errors which can occur under a different thread scheduling. We now

illustrate detection of errors with an example. In Figure 1.2(a), a total order trace

generated by a program with two processes is depicted. The events on process P1 are

generated in the order e0, e1, e2 and the events on process P2 are generated in the

order f0, f1, and f2. Each event is also labeled by CS if the corresponding process

is in the critical section. For example, P2 enters critical section at event f1. Let f1

be the send of a message from P2 and e1 be the receive of that message by P2. The

partial order trace corresponding to the total order trace in Figure 1.2(a) is depicted

in Figure 1.2(b). Observe that the only dependencies in the partial order trace are
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Figure 1.2: (a) A total order trace, (b) the corresponding partial order trace, (c) a

total order trace generated from the partial order trace

the order of events on each process and the message send/receive dependencies.

Suppose the specification is the mutual exclusion property which requires that there

is no global state where two processes are in the critical section at the same time.

The state of a system, referred to as a global state, is given by the set of events

that have been executed so far (on all processes). The specification is satisfied for

the total order trace in Figure 1.2(a). From the partial order trace we observe

that events e2 and f2 can be executed in either order since there is no dependency

between them. However, one of the orderings satisfies the specification, whereas the

other results in a violation of the specification. We depict the ordering that respects

the partial order relation and violates the specification in Figure 1.2(c).

Furthermore, a partial order model is a more faithful representation of con-

currency and this model enables us to apply our theory to both concurrent and

distributed systems.
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1.2 Specification Language: Temporal Logic

While traditional assertions (pre and post conditions, invariants) can be used to

express several properties of a program, there are many logical properties that can-

not be checked with them. Temporal logics [Pnu77] can express a wide variety of

useful properties of concurrent and distributed programs such as safety and liveness

properties [Lam77, AS85]. Intuitively, a safety property specifies that “something

bad will not happen” during system execution and a liveness property specifies that

“something good will eventually happen” during system execution. An example of

a safety property is mutual exclusion which states that at no time more than one

process is in its critical section. An example of a liveness property is starvation

freedom which states that every process that requests a resource eventually acquires

the resource. With the use of temporal logic, we can both unambiguously describe

the properties of a program and also express properties that cannot be expressed

by traditional testing techniques.

Two popular temporal logics are linear temporal logic LTL [Pnu77] and

branching temporal logic CTL [CE81]. Branching temporal logic CTL [CE81] has

been widely used as a specification language in model checking. The complexity

of model checking using CTL is linear in the size of the structure and the formula,

whereas the complexity is exponential in the formula size for LTL [LP85].

Our partial order trace model leads to a state space (the set of possible global

states of a system) which is a finite distributive lattice. A partial order set forms

a lattice if the greatest lower bound (meet) and the least upper bound (join) exist

and are contained in the set for every pair of elements. A lattice is distributive if its

meet operator distributes over its join operator.

CTL semantics has so far been defined for infinite execution traces. We define

a finite trace semantics for CTL and interpret it on a distributive lattice structure.

CTL is built up from atomic propositions and temporal modalities. Every global
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state is annotated with atomic propositions that hold in that state. Some of the

widely used temporal modalities in CTL are EF, AG, EG, AF, EX, AX, EU, and

AU. The modalities are interpreted over sequences of global states or paths. The

operators E and A are used to denote the branching nature of time starting from

the current state. Specifically, we use E and A to denote that a formula is true “for

some path” and “for all paths” starting from the current state, respectively. We

use F and G to denote that a formula is true “eventually” and “globally” on a path,

respectively. We use X to denote that a formula is true “at the next state” on a

path. Finally, we use U to denote that a combination of two formulas is possible

where the first must be true on the path states, beginning at the current state, until

the second formula becomes true. For example, EF(p) means that “for some path

starting from the current state, p eventually holds on the path” or AG(p) means that

“for all paths starting from the current state, p globally holds on the path”. Similarly,

EG(p) means that “for some path starting from the current state, p globally holds

on the path” or AF(p) means that “for all paths starting from the current state, p

eventually holds on the path”. Now, we can specify the starvation freedom property

mentioned above in CTL as AG(request ⇒ AF(acquire)), where request and acquire

are atomic propositions to denote that the process is in the corresponding state. The

detailed semantics of CTL operators is given in Chapter 3.

Although CTL model checking has time complexity linear in the size of the

structure, the size of the structure (i.e., the number of global states) may itself

be exponential in the size of its description as a program. Given a program with

n boolean variables, the reachable state space may be of size 2n—state explosion.

Surprisingly, even when CTL model checking is used for partial order execution

traces rather than programs, the state explosion exists. Given a partial order trace

generated by n processes (or threads) with k events on each process, the possible

number of global states can be as high as O(kn), where a global state is comprised
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of n components. This is the state explosion problem in partial order trace model.

The problem of CTL model checking on finite traces has been denoted by

predicate detection in the context of distributed systems [CM91, CG98]. We also

chose to use predicate detection to differentiate between program and trace checking.

Hereafter, we will use predicate detection instead of model checking.

Our goal in this dissertation is to develop efficient predicate detection algo-

rithms (polynomial-time in the number of processes). For this purpose we develop

abstraction techniques and exploit the lattice structure of the state space.

1.3 Abstraction Technique: Slicing of Traces

Many different methods have been devised for automatically checking temporal logic

specifications on execution traces by examining the state space models of system

behavior. These methods all depend on decision procedures that explicitly represent

the state space using a list or a table that grows exponentially in the number of

processes, components, or state elements (state explosion problem). We developed

a general method that represents the state space that satisfies a temporal logic

specification using a “slice” instead of using an explicit representation.

Computation slicing was introduced in [GM01, MG01a] as an abstraction

technique for analyzing traces of distributed programs, that is, distributed com-

putations. Intuitively, a slice of a trace with respect to a temporal logic speci-

fication (predicate) p is a sub-trace that contains all the states of the trace that

satisfy p. Note that the set of states that satisfy p may be large, so one could

not simply enumerate all the states efficiently either in space or time. A slice

contains all the states that satisfy p such that it is computed efficiently (without

traversing the state space) and represented concisely (without explicit representa-

tion of individual states). The slice has much fewer states than the trace itself—

exponentially smaller in many cases—resulting in substantial savings. Therefore,
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in order to determine whether a predicate is satisfied, rather than searching the

state space of the trace, it is much more efficient to compute the slice and search

the state space of the slice. Other state space reduction techniques for reducing

the time and/or space complexity, such as partial order reduction, BDDs and SAT

[McM93, GW91, Val91, Pel93, Esp94, SL98, SUL00, BCCZ99], are orthogonal to

slicing, and as such can be used in conjunction with slicing. While techniques such

as partial order reduction, BDDs and SAT rely on state space traversal, with our

slicing technique, the state space is never traversed (or built), rather our algorithms

work on the partial order trace model itself.

Computing the slice for an arbitrary predicate is known to be intractable in

general [MG01a]. However, by exploiting the structure of the predicate, polynomial-

time algorithms have been developed for non-temporal regular and linear predicates

[GM01, MG01a, MG03] . A non-temporal predicate is such that it does not contain

any temporal operator. A predicate is regular if the set of global states that satisfy

it forms a sublattice, that is, it is closed under intersection and union. The slice

with respect to a regular predicate contains precisely those global states for which

the predicate evaluates to true. Regular predicates widely occur in practice during

verification. Some examples of regular predicates are conjunction of local predicates

such as “all processes are in red state” and channel predicates such as “at most

k messages are in transit from process Pi to Pj”. A predicate is linear if the set

of global states that satisfy it forms an inf-semilattice, that is, it is closed under

intersection. Linear predicates contain the class of regular predicates.

Using our results in this dissertation, it is now possible to compute the slice

efficiently for many more classes of non-temporal and temporal predicates. The

non-temporal predicates include stable, co-stable, observer-independent, relational,

and co-linear predicates and the temporal predicates include a subset of temporal

logic CTL. In this dissertation, we also present on-line slicing algorithms in which
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the slice is computed as and when a new event arrives. Next, we summarize these

contributions.

Slicing with respect to predicate classes with efficient EF(p) detec-

tion: The predicate detection problem under EF operator is only concerned with

answering the question whether there exists at least one global state of the trace

that satisfies the given predicate. Slicing, on the other hand, is concerned with

computing a succinct representation of all global states of the trace for which the

given predicate evaluates to true. Clearly, detecting a predicate under EF opera-

tor is no harder than computing its slice in the sense that the predicate detection

problem under EF operator can be easily solved given the slice for the predicate

(it suffices to test for the emptiness of the slice). In this dissertation, we prove a

somewhat surprising result that detecting a predicate under EF operator is no eas-

ier than computing its slice. In other words, given an algorithm A for detecting a

predicate EF(p), there exists an algorithm B for computing the slice for p such that

the time-complexity of B is at most a small multiple of the time-complexity of A.

In particular, the multiple is n|E|, where n is the number of processes and E is the

set of events. As a corollary, it can be derived that there exists a polynomial-time

algorithm for detecting a predicate if and only if there exists a polynomial-time

algorithm for computing its slice.

Using this result, it is now possible to compute the slice efficiently for many

more classes of non-temporal predicates including stable and co-stable predicates,

observer-independent predicates, co-linear predicates, and relational predicates. This

is because there are efficient EF(p) detection algorithms in the literature when p be-

longs to one of these classes. A stable predicate is such that once the predicate

becomes true it stays true. For example, deadlock or termination are stable pred-

icates. The complement of a stable predicate is denoted by a co-stable predicate.

An observer-independent predicate is such that if the predicate is eventually true

10



for some path, it is eventually true for all paths. For example, the disjunction of

local predicates such as “at least one server is not busy” is an observer-independent

predicate. An example of a relational predicate is x1 +x2 + . . .+xn 6 k for constant

k, where xi is an integer variable on process Pi.

Slicing with respect to Temporal Logic Predicates: We identify a

regular subset of temporal logic CTL denoted by RCTL with predicates for which

the slices contain precisely those global states that satisfy the predicate. To that

end, we prove that temporal predicates EF(p), EG(p), and AG(p) are regular, whereas

AF(p), EX(p), AX(p), E(p U q), and A(p U q), in general, are not regular when p and

q are regular. We present polynomial-time algorithms to compute slices for EF(p),

EG(p), AG(p), and a local version of EX denoted by EX(p)[j], to specify that the

predicate holds at the next action of process j.

On-line Slicing: The algorithms described in earlier papers [GM01, MG01a,

MG03] for computing a slice are all off-line in nature; they assume that the entire

set of events is available a priori. While this is quite adequate for applications such

as testing and debugging; for other applications such as software fault tolerance,

it is desirable that the slice be computed incrementally in an on-line manner. In

other words, the current slice is updated, as and when a new event is generated,

to reflect its arrival. The reason is that for software fault tolerance, it is important

to detect the fault as early as possible before it can cause any severe damage. If

we compute the slice only after a certain number of events have been collected and

then analyze it for the presence of a faulty global state, it may be too late for any

meaningful recovery. At the same time, whenever an event arrives, we want the

cost of incrementally updating the slice to be less than the cost of recomputing

the slice from scratch using an off-line algorithm. In this dissertation, we give an

efficient incremental algorithm for computing the slice for predicates with efficient

EF(p) detection algorithm and for the class of regular predicates.
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1.4 Analysis Technique: Predicate Detection

Our approach to ameliorate state explosion in partial order trace model uses two

techniques: (1) slicing and (2) exploiting the structure of the predicate itself—by

imposing restrictions—to evaluate its value efficiently for a given execution trace.

Some examples of the predicates for which the predicate detection can be solved

efficiently are: conjunctive [GW94, HMRS96], stable [CL85], observer-independent

[CBDGF95], linear [CG98], an relational [TG97] predicates. So far, these predicate

classes have been detected under some or all of the temporal operators EF, EG, AG,

AF of CTL, but not under any nesting of these operators. For example, a nested

temporal predicate EF(p∧EG(q)), where p and q are conjunctive predicates, cannot

be efficiently detected using only the efficient algorithms for conjunctive predicates.

We show how to use the slicing algorithms developed in this dissertation for

efficient detection of predicates in RCTL+, which contains nested temporal predi-

cates. In RCTL+, the temporal operators are EF, EG, AG, EX[j], EX and the atomic

propositions are regular, co-regular, linear, co-linear, stable, co-stable, observer-

independent, and relational predicates. We also develop efficient detection algo-

rithms for temporal operators that do not allow efficient slicing, hence do not belong

to RCTL+, such as AF, AU, and EU. Specifically, we provide algorithms for pred-

icates without nested temporal operators (unnested) such as AF(p), A(p U q), and

E(pUq). For unnested temporal predicates of the form EG(p) and AG(p) we improve

the complexity results in [MG03], when p is a non-temporal regular predicate.

We consider another problem related to predicate detection, namely the prob-

lem of locating a global state of a trace that satisfies the given predicate (counterex-

ample), if it exists. While it is sufficient to determine whether there exists a faulty

state in a trace for testing purposes; for debugging purposes, it is desirable to ac-

tually locate the faulty state. An examination of such a state may provide valuable

insight into the bug that caused the fault. This problem is closely related to the
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problem of setting a global breakpoint when debugging a distributed program.

1.5 Tools for Predicate Detection

We validate the effectiveness of our algorithms with experimental studies. For this

purpose, we implemented a prototype system called Partial Order Trace Analyzer

(POTA). The tool consists of 3 main modules: analyzer, translator, and instrumen-

tor. We have implemented predicate detection algorithms in the analyzer module.

The translator module translates traces into input language of SPIN model checker

and enables us to compare POTA with partial order reduction techniques of SPIN

[Hol97]. Since we are working with concurrent and distributed programs which ex-

hibit a lot of parallelism and independency, partial order reduction techniques can

take advantage of these properties of programs. The instrumentation module gen-

erates an instrumented version of input program such that when run, every process

outputs “relevant” events.

Our experimental results demonstrate that slicing is a very effective abstrac-

tion technique. We generated traces of several scalable protocols including CORBA

General Inter-ORB Protocol (GIOP), Asynchronous Transfer Mode Ring (ATMR)

and MESI cache coherence protocol with up to 200 processes and verified them using

several safety and liveness properties. In almost all cases, we obtained more than

three orders of magnitude speed-up compared to SPIN. Furthermore, SPIN could

not find bugs, which were found by POTA, due to running out of memory.

1.6 Overview of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2 , we define

our partial order trace model. Chapter 3 discusses the temporal logic and the

classes of predicates that we use in this dissertation. In Chapter 4, we present a
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background on slicing, our results on slicing of traces with respect to non-temporal

predicates and our on-line slicing algorithm. Chapter 5 investigates our temporal

logic slicing approach. Our predicate detection algorithms for temporal and non-

temporal predicates are presented in Chapter 6. We present POTA and our predicate

detection experiments in Chapter 7. In Chapter 8, we give a summary of the related

work. Finally, we draw conclusions and describe future work in Chapter 9.
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Chapter 2

System Model

In this chapter we formally describe the system model and notation used in

this dissertation.

2.1 Overview

We can model an execution trace of a program, which consists of events, in two

ways. The first model imposes a total order (interleaving) of events. The second

model imposes a partial order of events. Traditionally, the former model has been

used in testing and runtime verification [KKL+01, HR01]. We use the latter ap-

proach which has several advantages over the former. First, it is a more faithful

representation of concurrency [Lam78], that is, only the events that have a causal

dependency are ordered. Second, a partial order encodes possibly exponential num-

ber of interleavings. This may translate into finding bugs that are not found using a

single interleaving. Hence, we obtain better coverage in terms of testing. Third, our

partial order approach is applicable to both message passing and shared memory

programs. We use partial order relations in [Lam78] and [SRA03] for representing
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traces of message passing and shared memory programs, respectively. All of these

aspects aid in modeling execution traces in a very compact and efficient manner.

We first define lattice theoretic concepts used in developing our trace model

and slicing theory. Then we extend our trace model and related notions. The

extended model allows us to handle a trace and its slice in a uniform fashion.

2.2 Partially Ordered Sets and Lattices

A pair (X, P ) is called a partially ordered set or poset if X is a set and P is a

reflexive, antisymmetric, and transitive binary relation on X. We call X the ground

set while P is a partial order on X. The 6 and divides relations on the set of natural

numbers are some examples of partial orders.

We write x 6 y and y > x in P when (x, y) ∈ P . Also, x < y and y > x in

P means x 6 y in P and x 6= y. Let x, y ∈ X with x 6= y. If either x < y or y < x,

we say x and y are comparable. On the other hand, if neither x < y nor x > y, then

we say x and y are incomparable.

A poset (X, P ) is called a total order or a linear order if every distinct pair

of points from X is comparable in P . It is possible to extend any partial order to a

linear order by adding order between pairs of unordered elements. Each such linear

order is called a linearization of the partial order. Similarly, we call a poset an

antichain if every distinct pair of points from X is incomparable in P . The height of

a poset is defined to be the largest chain in the poset and is denoted by height(P ).

Similarly, the width of a poset is defined to be the largest antichain in the poset and

is denoted by width(P ).

Finite posets are often depicted graphically using a Hasse diagram. To define

Hasse diagrams, we first define a relation covers as follows. For any two elements

x, y, we say y covers x if x < y and ∀z ∈ X : x 6 z < y implies z = x. In other

words, there should not be any element z with x < z < y. A Hasse diagram of a
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poset is a graph with the property that there is an edge from x to y if and only if y

covers x. Furthermore, when drawing the figure in an Euclidean plane, x is drawn

lower than y when y covers x. For example, consider the poset (X, 6).

X , {a, b, c, d, e} 6 , {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d),

(a, e), (b, d), (b, e), (c, e), (d, e)}.

The first Hasse diagram in Figure 2.1 corresponds to this poset.

An element y ∈ X is called an upper bound for S ⊆ X if s 6 y in P , for

every s ∈ S. An upper bound y for S is the least upper bound for S, provided y 6 y′

in P for every upper bound y′ of S. Lower bounds and greatest lower bounds are

defined similarly. The greatest lower bound is also referred to as infimum or meet.

Similarly, the least upper bound is also referred to as supremum or join. We denote

the meet of {a, b} by a ⊓ b, and the join of {a, b} by a ⊔ b.

In the set of natural numbers ordered by the divides relation, the join corre-

sponds to finding the greatest common divisor and the meet corresponds to finding

the least common multiple of two natural numbers.

The greatest lower bound or the least upper bound may not always exist. In

the third poset in Figure 2.1, the set {b, c} does not have any least upper bound

(although both d and e are upper bounds).

Definition 2.1 (lattice) A set of partially ordered elements (or poset) forms a lat-

tice L if the greatest lower bound and the least upper bound exist and are contained

in the set for every pair of elements.

Thus, the first two posets in Figure 2.1 are lattices, whereas the third one

is not. As another example, the power set of a given set forms a lattice under ⊆

relation.
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Figure 2.1: Only the first two posets are lattices.

Example 2.2 For the set {x, y, z}, the power set is given by {∅, {x}, {y}, {z}, {x, y},

{x, z}, {y, z}, {x, y, z}}. The meet of the two elements of a power set is given by

their intersection. For example, the meet of {x, y} and {y, z} is {y}. Dually, the

join is given by their union. For example, the join of {x, y} and {y, z} is {x, y, z}.

In other words, the meet and join operators of the lattice correspond to intersection

(∩) and union (∪), respectively. ¤

The lattice in Example 2.2 is called a Boolean lattice.

Definition 2.3 (sublattice) A subset of a lattice is a sublattice if it is closed under

the meet and join operations.

For example, in the Boolean lattice the set of all subsets of {x, y, z} that

contain x forms a sublattice. However, the set of all subsets with at most two

elements does not form a sublattice.

Definition 2.4 (distributive lattice) A lattice is distributive if its meet operator

distributes over its join operator.
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For example, since intersection distributes over union, a Boolean lattice is

distributive. The lattice of natural numbers with 6 defined as the relation divides

is also distributive. Two important nondistributive lattices, called diamond and

pentagon, are shown in Figure 2.2.

c

aa

d

d

b c

e

e

b

Figure 2.2: Examples of nondistributive lattices

Now, consider a (finite) set of partially ordered elements (not necessarily a

lattice). A subset of elements forms an order ideal (or simply an ideal) if whenever an

element is contained in the subset then all its preceding elements are also contained

in the subset.

Definition 2.5 (order ideal) Given a poset (X, P ), a subset S of X is an order

ideal if it satisfies 〈∀ x, y : x, y ∈ X : (x ∈ S) ∧ (y 6 x) ⇒ (y ∈ S)〉

Example 2.6 For the poset in Figure 2.3(b), some examples of ideals are {a, b, c}

and {a, b}. However, {a, d} is not an ideal because it contains d but not b, which

precedes d. ¤

We denote the set of ideals of a poset (X, P ) by C(P ).

Theorem 2.7 ([DP90]) The set of ideals of a poset forms a distributive lattice

under ⊆ relation.
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By using the notion of ideals, we went from a poset to a distributive lattice.

Is it possible to go in the reverse direction? The answer is provided by Birkhoff’s

Representation Theorem [DP90]. Intuitively, the result says that a finite distributive

lattice can be uniquely characterized by only a small subset of its elements known

as join-irreducible elements.

Definition 2.8 (join-irreducible element) An element of a lattice L is join-

irreducible if (1) it is not the least element, and (2) it cannot be expressed as join

of two elements, both different from itself. Formally, a ∈ L is join-irreducible if,

〈∃ x :: x < a〉
∧

〈∀ x, y : x, y ∈ L : a = x ⊔ y ⇒ (a = x) ∨ (a = y)〉

Clearly, the join-irreducible elements of a Boolean lattice are the singleton

sets.

Example 2.9 The Boolean lattice in Example 2.2 has three join-irreducible ele-

ments, namely {x}, {y} and {z}. As expected, every other element that is different

from ∅ can be expressed as the union of some or all of these three elements. ¤

Pictorially, in a finite lattice, an element is join-irreducible if and only if it has

exactly one lower cover, that is, there is exactly one edge coming into the element in

the Hasse diagram. Intuitively, the join-irreducible elements of a distributive lattice

act as basis elements for the lattice. Every element of the lattice, except for the

least one (e.g., ∅ in a Boolean lattice), can be written as the join of some or all

of these join-irreducible elements. For a distributive lattice L, J I(L) refers to the

set of its join-irreducible elements. The notion of meet-irreducible elements can be

defined dually.

Definition 2.10 (meet-irreducible element) An element of a lattice L is meet-

irreducible if (1) it is not the greatest element, and (2) it cannot be expressed as
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meet of two elements, both different from itself. Formally, a ∈ L is meet-irreducible

if,

〈∃ x :: x > a〉
∧

〈∀ x, y : x, y ∈ L : a = x ⊓ y ⇒ (a = x) ∨ (a = y)〉

For a distributive lattice L, MI(L) refers to the set of its meet-irreducible

elements. The meet-irreducible elements of a Boolean lattice are given by those

subsets of the ground set that have exactly one element missing. Thus, the meet-

irreducible elements of the Boolean lattice in Example 2.2 are {x, y}, {y, z} and

{x, z}. Clearly, every other element that is different from {x, y, z} can be expressed

as the intersection of some or all of these three elements.

Theorem 2.11 (Birkhoff’s Theorem [DP90]) Let L be a finite distributive lat-

tice and J I(L) be the set of its join-irreducible-elements. Then the map f : L →

C(J I(L)) defined by,

f(a) = {x ∈ J I(L) | x 6 a}

is an isomorphism of L onto C(J I(L)). Dually, let P be a finite poset. Then the

map g : P → JI(C(P )) defined by

g(a) = {x ∈ P | x 6 a}

is an isomorphism of P onto J I(C(P )).

Thus, Birkhoff’s Theorem establishes the duality between finite posets and

finite distributive lattices. We can go from a finite poset to its dual finite distribu-

tive lattice by constructing the set of its order ideals and from the finite distributive

lattice to the poset by restricting it to join-irreducible elements. For example, Fig-

ure 2.3(b) gives the poset corresponding to the lattice in Figure 2.3(a). Note that

the theorem can be defined dually using meet-irreducible elements.
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Figure 2.3: (a) An example of a distributive lattice, (b) its partial order represen-

tation

2.3 Trace Model

A program consists of n sequential processes (or threads) denoted by P1, P2, . . . , Pn.

The local computation of a process is given by the sequence of events that transforms

the initial state of the process into the final state. At each step, the local state is

captured by the initial state together with the sequence of events that have been

executed up to that step. Each event is an internal event or an external event.

Examples of external events are: a send event, a receive event, a read event, and a

write event. An event causes the local state of a process to be updated. The send

and receive events cause a set of messages to be sent or received, respectively. We

assume the presence of fictitious initial and final events on each process. The initial

event on process Pi, denoted by ⊥i, occurs before any other event on Pi. Likewise,

the final event on process Pi, denoted by ⊤i, occurs after all other events on Pi.

For convenience, let ⊥ and ⊤ denote the set of all initial events and final events,

respectively.

Let proc(e) denote the process on which event e occurs. The predecessor and
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Figure 2.4: (a) An execution trace, (b) its lattice corresponding to nontrivial con-

sistent cuts, and (c) another representation of the computation in (a)

successor events of e on proc(e) are denoted by pred(e) and succ(e), respectively, if

they exist. We denote the order of events on processes by
P
→ which is referred to

as process order. The projection of
P
→ on process i is denoted by

Pi→. The reflexive

closure of
P
→ is represented by

P
→ and its transitive closure is denoted by

P
→

+
.

Example 2.12 Consider an execution of a message passing program. The resulting

execution trace is shown in Figure 2.4(a). Such figures are usually called space-

time diagrams, or happened-before diagrams. In the trace, there are two processes

P1 and P2 with integer variables x and y, respectively. The local computations of
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each process advances from left to right as shown in the figure. The events are

represented by circles and the order relation is represented by arrows. (Observe

that the execution traces are drawn from left to right, whereas Hasse diagrams are

drawn from bottom to up). The local computation of P1 is given by the sequence

⊥1e1e2e3⊤1. The event f1 is a send event, the event e1 is a receive event and the

event e2 is an internal event. Here, ⊥ and ⊤ are the set of fictitious initial and final

events. Also, proc(e2) = P1, pred(e2) = e1 and succ(e2) = e3. The process order

P
→ is given by {(⊥, e1), (e1, e2), (e2, e3), (e3,⊤), (⊥,f1), (f1, f2), (f2, f3), (f3,⊤)}+.

Process P2 sends a message to process P1 by executing event f1 and process P1

receives that message by executing event e1. Each event is labeled with the value

of the respective variable immediately after the event is executed. For example, the

value of x immediately after executing e1 is 2. The first event ⊥ initializes the state

of each process.

2.3.1 Traces as Graphs

We model an execution trace as a partial order on the set of events in the trace. For

example, in the case of message passing programs, the partial order is Lamport’s

happened-before relation [Lam78]. In this section, we relax the restriction that

the order on events must be a partial order so that we can use directed graphs to

model execution traces as well as slices. However, several notions developed for

partial order sets such as ideals and distributive lattices have equivalent notions for

directed graphs as well.

Given a directed graph G, let V(G) and E(G) denote the set of vertices and

edges, respectively. We define a consistent cut (consistent global state) on directed

graphs as a subset of vertices such that if the subset contains a vertex then it contains

all its incoming neighbors. Formally,

Definition 2.13 (consistent cut) Given a directed graph G, a subset C of V(G)
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is a consistent cut if,

〈∀ e, f : e, f ∈ V(G) : (f ∈ C) ∧ (e, f) ∈ E(G) ⇒ (e ∈ C)〉

Remark 2.14 Observe that the notion of consistent cuts is similar to the notion of

order ideals in Definition 2.5.

We denote the set of consistent cuts of a directed graph G by C(G), which

forms a distributive lattice under ⊆ relation.

Theorem 2.15 ([MG01a]) Given a directed graph G, (C(G),⊆) forms a distribu-

tive lattice.

Remark 2.16 The above theorem is a generalization of the result in lattice theory

described in Theorem 2.7.

The meet (⊓) and join (⊔) of the two consistent cuts is given by their set

intersection (∩) and set union (∪), respectively. Observe that the empty set ∅ and

the set of vertices V(G) trivially belong to C(G). We call them trivial consistent

cuts. We use P(G) to denote the set of pairs of vertices (u, v) such that there is a

path from u to v in G. We assume that each vertex has a path to itself.

We model an execution trace (or a computation), denoted by 〈E,→〉, as a

directed graph with vertices as the set of events E and edges as →. We use event

and vertex interchangeably. To limit our attention to only those consistent cuts

that can actually occur during an execution, we assume that P(〈E,→〉) contains

at least the partial order relation. We assume that all initial events belong to the

same strongly connected component. Similarly, all final events belong to the same

strongly connected component. This ensures that any nontrivial consistent cut will

contain all initial events and none of the the final events. Therefore, every consistent

cut of a computation in the model without ⊥,⊤ (traditional model) is a nontrivial

consistent cut of the computation in our model and vice versa. Note that the initial
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consistent cut ∅ and the final consistent cut E in the traditional model correspond

to {⊥} and E = E − {⊤}, respectively, in our model.

Observe that a computation in our model can contain cycles. This is because

whereas a computation in the partial order model captures the observable order

of execution of events, a computation in our model captures the set of possible

consistent cuts.

A frontier of a consistent cut is the set of those events of the cut whose

successors, if they exist, are not contained in the cut. Formally, frontier(C) ,

{ e ∈ C | succ(e) exists ⇒ succ(e) 6∈ C}. A consistent cut is uniquely characterized

by its frontier and vice versa. Thus in figures, we specify a consistent cut by simply

listing the events in its frontier instead of enumerating all its events.

We say that an event e is enabled at a consistent cut C if there exists g ∈

frontier(C) such that e = succ(g) and C ∪ {e} is a consistent cut.

We say that a cut D is reachable from a cut C if C ⊆ D. We define successor

of a cut by a relation ⊲ ⊆ C(G)×C(G) such that C ⊲ D if and only if D = C ∪{e},

where e is the set of vertices in a strongly connected component in G = 〈E,→〉

and {e} ∩ C = ∅. We denote the reflexive closure of this relation by ⊲ . A fullpath

C0, C1, . . . , Ck = E of the distributive lattice (C(G),⊆) satisfies that for each 0 6

i < k, Ci ⊲ Ci+1. We will use the notation |π| to denote the length of the fullpath π

and the notation πi to denote the consistent cut Ci of fullpath π, provided i < |π|.

Definition 2.17 (observation, interleaving) An observation (interleaving) of a

computation is a fullpath that starts from the initial consistent cut, π0 = {⊥}.

Remark 2.18 Note that an observation is similar to a linearization of a partial

order described in the previous section and there are possibly exponential number of

observations of a computation.

Example 2.19 In Figure 2.4(a), the set of events E = {⊥, e1, e2, e3, f1, f2, f3,⊤}

and the edges →= {(⊥, e1), (e1, e2), (e2, e3), (e3,⊤), (⊥, f1), (f1, f2), (f2, f3), (f3,⊤),
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(f1, e1)}
+. Figure 2.4(b) contains the lattice of all (nontrivial) consistent cuts of

the computation in Figure 2.4(a). We represent a cut by a line drawn from top to

bottom passing through exactly one event on each process; an event belongs to the

cut if it either lies on the line or lies to the left of the line. The initial consistent

cut is {⊥} and the final consistent cut E = {⊥, e1, e2, e3, f1, f2, f3}. A consistent

cut in the figure is represented by its frontier. For example, the consistent cut

C = {e3, e2, e1, f2, f1,⊥} is represented by frontier(C) = {e3, f2}. Observe that

{e1,⊥} is not a consistent cut because it depicts a situation where a message from

P2 has been received by P1, but P2 has not yet sent the message. Event e1 is not

enabled at {⊥}, since {e1,⊥} is not a consistent cut. Similarly, f3 is not enabled

at {e1, f1,⊥}, whereas f2 is enabled at {f1,⊥}. Consistent cut {e3, f3} is reachable

from {e1, f3}. Also, {e1, f3}⊲{e2, f3} and the sequence {e1, f3}, {e2, f3}, {e3, f3} is a

fullpath. Finally, the fullpath {⊥}, {f1}, {e1, f1}, {e2, f1}, {e3, f1}, {e3, f2}, {e3, f3}

is an interleaving of the computation. In Figure 2.4(c) we depict the computation

in Figure 2.4(a) displaying its initial and final events explicitly. In the figure, all

initial and final events belong to the same strongly connected component.

Given a computation with the events as in Figure 2.4(a), by using a directed

graph model based on a partial order representation, we are able to capture all

possible interleavings of events, namely ten in total. One such interleaving is {⊥},

{f1}, {e1, f1}, {e2, f1}, {e3, f1}, {e3, f2}, {e3, f3}. If this were the only interleaving

observed for the given computation, and if there were an error at the consistent

cut {e2, f3} then this error would not be found from the mentioned interleaving.

However, we can find this potential error by using a model based on the partial

order representation and capturing all possible interleavings for a given interleaving.

27



2.4 Representing Partial Order Traces

A mechanism known as vector clocks has been used to represent partial order rela-

tions on traces. A vector clock assigns timestamps to events such that the partial

order relation between events can be determined by using the timestamps.

Definition 2.20 (vector clock) Given a poset (X, P ), a vector clock v is a map

from X to N k (vectors of natural numbers) such that

〈∀ x, y : x, y ∈ X : (x, y) ∈ P ⇐⇒ x.v < y.v〉

where x.v is the vector assigned to the element x and k = width(P ).

Given two vectors x.v and y.v of dimension N , we compare them as follows.

x.v 6 y.v , 〈∀ k : 1 6 k 6 N : x.v[k] 6 y.v[k]〉

x.v < y.v , (x.v 6 y.v) ∧ (x.v 6= y.v)

It is clear that this order is only partial for N > 2. A vector clock timestamps

each event with a vector of natural numbers. For modeling message passing pro-

gram traces, a partial order relation known as Lamport’s happened-before relation

[Lam78] has been used. Lamport’s happened-before relation is defined as the smallest

transitive relation satisfying the following properties:

• if events e and f occur on the same process, and e occurred before f in real

time then e happened-before f , and

• if events e and f correspond to the send and receive, respectively, of a message

then e happened-before f .

A well-known vector clock algorithm for message passing programs is Fidge

and Mattern algorithm [Fid91, Mat89], which implements Lamport’s happened-

before relation. For a computation on n processes the dimension of the vector clock
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k has been shown to be at least n [GS01]. We will present details of vector clock

algorithms for both message passing and shared memory programs in Chapter 7.
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Chapter 3

Temporal Logic Predicate

Classes

In this chapter, we describe the temporal logic and the predicate classes that

we use to specify properties of programs.

3.1 Overview

Many specifications of concurrent and distributed systems are temporal in nature

because we are interested in properties related to the sequence of states during an

execution rather than just the initial and final states. We can specify both safety

and liveness properties of a system using temporal logic. A safety property spec-

ifies that something bad will never happen, whereas a liveness property specifies

that something good will eventually happen. For example, the safety property in a

mutual exclusion algorithm, “no two processes are in the critical state at the same

time”, is a temporal property, as is the liveness property in dining philosophers pro-

tocol, “a philosopher, whenever gets hungry, eventually gets to eat”. With the use of
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temporal logic, we can unambiguously describe the properties of a program and also

express the properties that cannot be expressed in traditional testing techniques.

In Section 3.2, we present our temporal logic, which is a subset of branching

temporal logic CTL [CE81]. CTL has widely been used as a specification language in

model checking. CTL semantics has so far been given for infinite execution traces.

However, our trace model leads to a state space which is a finite distributive lat-

tice. In Section 3.2 we give a finite trace semantics for CTL and interpret it on a

distributive lattice structure.

Our approach to ameliorate state explosion problem exploits the structure

of the predicate itself—by imposing restrictions—to evaluate its value efficiently

for a given computation. Some of these predicate classes are conjunctive [GW94,

HMRS96], stable [CL85], observer-independent [CBDGF95], linear [CG98], rela-

tional [TG97], and non-temporal regular [GM01, MG01a] predicates. In Section 3.3,

we formally define these predicate classes.

In Section 3.4, we study the regularity of a predicate p when temporal op-

erators are applied to it. In particular, we prove that several temporal predicates

are regular. This result enables us to obtain efficient slicing algorithms for a regular

subset of CTL, which we denote by RCTL, and for an extended version of temporal

logic, denoted by RCTL+.

3.2 CTL For Finite Execution Traces

We will define the syntax and semantics of the well-known temporal logic CTL for

finite execution traces. The other logics considered, RCTL+ and RCTL, are sublogics

of CTL, and will be defined as such.

CTL (“Computational Tree Logic”) has mostly been used for reasoning about

programs rather than execution traces. Furthermore, it has been interpreted with

respect to Kripke structures, which have infinite length fullpaths, whereas we inter-
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pret it with respect to finite distributive lattices, which have finite length fullpaths.

Propositional temporal logics use a finite set of atomic propositions AP , each

one of which represents some property of the consistent cut. A labeling function

λ: C(G) → 2AP assigns to each consistent cut the set of propositions from AP that

hold in it. Given a consistent cut, an atomic proposition is evaluated with respect

to the values of variables resulting after executing all events in the cut. The formal

syntax of CTL is given below.

• Every proposition ap ∈ AP is a CTL formula.

• If p and q are CTL formulas, then so are ¬p, p∨ q, p∧ q, EF(p), EG(p), AG(p),

AF(p), E(p U q), A(p U q), EX(p), AX(p), EX(p)[j].

The symbols ∨, ∧ and ¬ have their usual meanings. There are two path

quantifiers: A denotes for all fullpaths and E denotes for some fullpath. There

are four linear temporal operators: G is the always operator, F is the eventually

operator, U is the until operator, and X is the next-time operator.

The formula AG(p) (resp. EG(p)) intuitively means that for all fullpaths

(resp. for some fullpath), p always holds on the path. The formula AF(p) (resp.

EF(p)) intuitively means that for all fullpaths (resp. for some fullpath), p eventually

holds on the path. The formula A(p U q) (resp. E(p U q)) intuitively means that

for all fullpaths (resp. for some fullpath), p holds until q holds on the path. The

formula AX(p) (resp. EX(p)) intuitively means that for all fullpaths (resp. for some

fullpath), p holds next-time on the path. The formula EX(p)[j] intuitively means

that when process j executes an event, for some fullpath, p holds next-time on the

path.

Given a finite distributive lattice L = (C(G),⊆) of a graph G, the formulas

of CTL are interpreted over the consistent cuts in C(G). We leave the formulas

undefined for the trivial consistent cuts. Let p be a CTL formula and C be a

consistent cut in C(G). Then, the satisfaction relation L, C |= p means that predicate
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p holds at consistent cut C in lattice L = (C(G),⊆) and is defined inductively below.

We denote C |= p as a short form for L, C |= p, when L is clear from the context.

• C |= ap iff ap ∈ λ(C) for an atomic proposition ap.

• C |= ¬p iff C 6|= p.

• C |= p ∧ q iff C |= p and C |= q.

• C |= p ∨ q iff either C |= p or C |= q.

• C |= EG(p) iff for some fullpath π starting from C, 〈∀ i : 0 6 i < |π| : πi |= p〉.

• C |= AG(p) iff for all fullpaths π starting from C, 〈∀ i : 0 6 i < |π| : πi |= p〉.

• C |= EF(p) iff for some fullpath π starting from C, 〈∃ i : 0 6 i < |π| : πi |= p〉.

• C |= AF(p) iff for all fullpaths π starting from C, 〈∃ i : 0 6 i < |π| : πi |= p〉.

• C |= E(p U q) iff for some fullpath π starting from C, 〈∃ i : 0 6 i < |π| : πi |=

q ∧ 〈∀ j : 0 6 j < i : πj |= p〉〉.

• C |= A(p U q) iff for all fullpaths π starting from C, 〈∃ i : 0 6 i < |π| : πi |=

q ∧ 〈∀ j : 0 6 j < i : πj |= p〉〉.

• C |= EX(p) iff for some fullpath π starting from C, π1 |= p.

• C |= AX(p) iff for all fullpaths π starting from C, π1 |= p.

• C |= EX(p)[j] iff for some fullpath π starting from C, π1 |= p such that

π1 = C ∪ {e}, where e is an event on process j that is enabled at C.

We do not consider empty fullpaths. Also, next-time operator is defined for

fullpaths with length > 1 only.

We define L |= p if and only if L, {⊥} |= p. By an abuse of notation, we also

write G |= p for L |= p when L = (C(G),⊆). We also use the following equivalences
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in writing CTL formulas. EG(p) is equivalent to ¬AF(¬p), AG(p) is equivalent to

¬EF(¬p), EF(p) is equivalent to ¬AG(¬p), and AF(p) is equivalent to ¬EG(¬p).

For convenience, we define a temporal predicate as a predicate that contains

temporal operators such as EG, AG, EF, AF, EU, AU, EX, AX, or EX(p)[j]. We

define a non-temporal predicate as a predicate that does not contain any temporal

operator. For example, an atomic proposition is a non-temporal predicate. We say

that a temporal predicate is nested if it contains > 1 level of nesting of temporal

operators such as AG(EF(p)). We say that a predicate is unnested if it contains a

single temporal operator and is of the form EF(p), EG(p), AG(p), AF(p), E(p U q),

A(p U q), EX(p), AX(p), EX(p)[j] where p is non-temporal. The temporal operators

EG, AG, EF, and AF have also been referred to as controllable, invariant, possibly

and definitely, respectively [Gar02].

Example 3.1 Figure 3.1 illustrates CTL operators on a distributive lattice. Some

typical CTL formulas that may arise for specifying properties of concurrent and

distributed systems are given below:

• EF(criticali ∧ criticalj) intuitively means that “it is possible to get to a global

state where processes i and j are in their critical state”.

• AG(request ⇒ AF(acknowledge)) intuitively means that “whenever request oc-

curs, it will be eventually acknowledged”.

• The complement of the previous formula is EF(request ∧ EG(¬acknowledge)).

• AG(EF(reset)) intuitively means that “reset is possible from every global state”.

• AG(request ⇒ A(request U acknowledge)) intuitively means that “if a request

occurs then it continues to hold until it is eventually acknowledged”.

Sublogics of CTL are defined by restrictions on the operators allowed, and

by restrictions on the classes of atomic propositions.
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Figure 3.1: Basic CTL operators

• RCTL+ is the subset of CTL where atomic propositions are regular, co-regular,

linear, co-linear, stable, co-stable, observer-independent, and relational pred-

icates, which we will define in the next section, boolean operators are ∨ and

∧, and temporal operators are EF, AG, EG, EX[j], and EX.

• RCTL is the subset of RCTL+ where atomic propositions are regular predicates

and both disjunction and EX operators are left out.

The predicate detection problem is to decide whether the initial consistent

cut of a computation satisfies a predicate. More formally,

Definition 3.2 (predicate detection) Given a distributive lattice L = (C(G),⊆)

that represents a computation G = 〈E,→〉 and a temporal logic predicate p express-

ing some desired specification, decide whether L, {⊥} |= p holds or not.
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Remark 3.3 Observe that our definition of predicate detection is similar to that

of model checking [CE81, QS82, CGP00]. However, we consider execution traces

rather than programs and we interpret specifications on a finite distributive lattice.

3.3 Predicate Classes

Our approach to predicate detection is based on exploiting the structure of the

predicate. We first give definitions of several widely used predicate classes and then

present relationship among these classes.

Definition 3.4 (local predicate) A predicate is local predicate if its truth value

depends only on the variables of a single process.

For example, “the value of x on process i is 2” is a local predicate.

Definition 3.5 (conjunctive predicate) A predicate p is conjunctive if it can be

written as a conjunction of local predicates.

For example, in a mutual-exclusion algorithm between two processes, where

csi represents the local predicate that process Pi is in the critical section, cs1 ∧ cs2

represents whether both processes are in the critical section.

Definition 3.6 (disjunctive predicate) A predicate p is disjunctive if it can be

written as a disjunction of local predicates.

For example, in a dining philosophers protocol, “at least one philosopher

is thinking” could be represented by think1 ∨ think2∨, . . . ,∨thinkn where thinki

represents the local predicate that philosopher Pi is thinking.

Definition 3.7 (stable predicate [CL85]) A predicate p is stable if the predicate

remains true, once it becomes true. Formally, for all consistent cuts C, D of a

computation G:

C |= p ∧ (C ⊆ D) ⇒ D |= p
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For example, termination property is a stable predicate because once a sys-

tem has terminated it will stay terminated. Deadlock is another example of a stable

predicate.

Definition 3.8 (observer-independent predicate [CBDGF95]) A predicate p

is observer-independent, if p holds for some observation then p holds for all obser-

vations of a computation.

Note that if p holds in the initial consistent cut then it is an observer-

independent predicate because the initial consistent cut belongs to all observations.

Next we will define the class of meet-closed predicates. These predicates are

useful because they allow us to compute the least consistent cut that satisfies a given

predicate.

Definition 3.9 (meet-closed predicates) A predicate p is meet-closed if for all

consistent cuts C, D of a computation G:

C |= p ∧ D |= p ⇒ (C ⊓ D) |= p

For example, the predicate “does not contain x” in the Boolean lattice gen-

erated by all subsets of {x, y, z} is meet-closed whereas the predicate “has size k” is

not. Any conjunctive predicate is meet-closed.

It follows from the definition that if there exists any consistent cut that

satisfies a meet-closed predicate p, then there exists the least one. Note that the

predicate false which corresponds to the empty subset and the predicate true which

corresponds to the entire set of consistent cuts are meet-closed predicates. We

now give another characterization of meet-closed predicates that will be useful for

computing the least consistent cut that satisfies the predicate. To this end, we first

define the notion of a crucial event for a consistent cut.
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Definition 3.10 (crucial element [CG98, GMS03]) For a consistent cut C $

E and a predicate p, we define e ∈ E − C to be crucial for C as:

crucial(C, e, p) , 〈∀ D : D ⊇ C : (e ∈ D) ∨ D 6|= p〉

Definition 3.11 (linear predicates [CG98]) A predicate p is linear if for all

consistent cuts C $ E,

C 6|= p ⇒ 〈∃ e : e ∈ E − C : crucial(C, e, p)〉

Intuitively, this means that any consistent cut D, that is at least C, cannot

satisfy the predicate unless it contains e. Now, we have

Theorem 3.12 ([CG98]) A predicate p is linear if and only if it is meet-closed.

Example 3.13 Consider the Boolean lattice generated by all subsets of {1, ..., n}.

Let the predicate p defined to be true on a consistent cut C as “If C contains any

odd i < n, then it also contains i + 1.” It is easy to verify that p is meet-closed.

Given any C for which p does not hold, the crucial elements consist of

{i|i is even, 2 6 i 6 n, i − 1 ∈ C, i 6∈ C}

Example 3.14 Consider a computation on two processes P1 and P2 and the predi-

cate p to be true on a consistent cut if both the processes are in the critical section.

Given any consistent cut C for which p does not hold, there are two cases; either

P1 is not in the critical section, or P2 is not in the critical section. Let e be the

projection of events from frontier(C) onto the events on P1. Let g be the event

on P1 that occurs after e, that is, e
P1→ g, and where P1 enters the critical section.

In the first case, event g is crucial. Similarly, we can find the crucial event in the

second case. This example can be easily generalized to any conjunctive predicate.

Our interest is in detecting whether there exists a consistent cut that satisfies

a given predicate p. We make two assumptions for this purpose:
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Property 3.15 (Efficient Predicate Evaluation) Given a consistent cut C and

a predicate p there exists an efficient (polynomial-time) function to determine whether

p is true for C or not.

Remark 3.16 We assume that the time-complexity for the above property is poly-

nomial in the input size. However, for convenience, throughout this dissertation, for

non-temporal predicates, we specify the time-complexity of our algorithms assuming

that the time-complexity of the above property is linear in the number of processes

whose variables the predicate depends on. In case the time-complexity is higher, the

time-complexity of the algorithms will increase correspondingly. However, we will

not assume the above property for temporal predicates.

On account of linearity of p, if p is evaluated to be false in some consistent cut

C, then we know that there exists a crucial event in E −C. We make an additional

assumption:

Property 3.17 (Efficient Advancement) There exists an efficient (polynomial-

time) function to determine the crucial event.

Remark 3.18 We will not assume the above property for temporal predicates.

We now have

Theorem 3.19 ([CG98, GMS03]) If p is a linear predicate with the efficient ad-

vancement property, then there exists an efficient algorithm to determine the least

consistent cut that satisfies p (if any).

Proof: An efficient algorithm to find the least cut in which p is true is given in

Figure 3.2. We search for the least consistent cut starting from the initial consistent

cut. If the predicate is false in the consistent cut, which we determine using the

efficient predicate evaluation property, then we find the crucial element using the
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Algorithm Algo 3.1:

Input: (1) a computation G = 〈E,→〉, and (2) a linear predicate p

Output: whether p is satisfied or not

1 C: consistent cut initially C := {⊥};

2 while ((C 6|= p) ∧ (C 6= E)) do

3 Let e be such that crucial(C, e, p) in 〈E,→〉;

4 C := C ∪ {e};
endwhile;

5 if C |= p then

6 return true;

else

7 return false;
endif;

Figure 3.2: An efficient algorithm to detect a linear predicate

efficient advancement property and then repeat the procedure. If this is the last

event on the process, then we return false else we advance along the process that

has the crucial event. ¤

Complexity Analysis 3.20 Each iteration of the while loop at line 2 has O(n)

time-complexity assuming the efficient property evaluation for determining C 6|= p

and efficient advancement property for determining crucial(C, e, p). Thus the time-

complexity of the algorithm Algo3.1 is O(n|E|).

Assuming that both C |= p and crucial(C, e, p) can be evaluated efficiently

for a given computation, we can determine the least consistent cut that satisfies p

efficiently even though the number of consistent cuts may be exponentially larger

than the size of the computation.

Remark 3.21 In practice, most meet-closed predicates p satisfy the efficient ad-

vancement property. All the non-temporal meet-closed predicates in this dissertation
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satisfy the efficient advancement property.

So far we have focused on meet-closed predicates. All the definitions and

ideas carry over to join-closed predicates. If the predicate p is join-closed, then one

can search for the largest consistent cut that satisfies p in a fashion analogous to

finding the least consistent cut when it is meet-closed.

Predicates that are both meet-closed and join-closed are called regular pred-

icates.

Definition 3.22 (regular predicates [GM01]) A predicate is regular if the set

of consistent cuts that satisfy the predicate forms a sublattice of the lattice of con-

sistent cuts. Equivalently, a predicate p is regular with respect to P if it is closed

under ⊔ and ⊓, i.e., for all consistent cuts C, D of a computation G:

C |= p ∧ D |= p ⇒ (C ⊔ D) |= p ∧ (C ⊓ D) |= p

Some examples of regular predicates are:

• Consider the predicate p as “there is no outstanding message in the channel.”

We show that this predicate is regular. Observe that p holds on a consistent

cut C if only if for all send events in C the corresponding receive events are

also in C. It is easy to see that if C |= p and D |= p, then (C ∪ D) |= p. To

see that it holds for C ∩ D, let e be any send event in C ∩ D. Let f be the

receive event corresponding to e. From C |= p, we get that f ∈ C and from

D |= p, we get that f ∈ D. Thus f ∈ C ∩ D. Hence, (C ∩ D) |= p. Similarly,

the following predicates are also regular.

– There is no token message in transit.

– No token message is in transit between processes P1 and P5.

– Every “request” message has been “acknowledged” in the system.
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• Any local predicate is regular. Thus the following predicates are regular.

– The leader has sent all “prepare to commit” messages.

– Process Pi is in a “red” state.

• Channel predicates such as “there are at most k messages in transit from Pi

to Pj” and “there are at least k messages in transit from Pi to Pj” are also

regular.

It is easy to verify that the class of regular predicates is closed under con-

junction. The closure under conjunction implies that the following predicates are

also regular:

• No process has the token, and no channel has the token.

• Any conjunction of local predicates.

The closure is not true for disjunction as can be readily verified by taking

p1 and p2 to be local predicates. Similarly, the closure is not true for negation. For

convenience, we denote the complement of a predicate from a class A by co-A. For

example, we denote the complement of a regular predicate by a co-regular predicate.

Similarly, we denote the complement of a linear predicate by a co-linear predicate

and the complement of a stable predicate by a co-stable predicate.

Figure 3.3 displays a classification of the above predicate classes. We also

give proofs of these relations in [SG01]. Note that linear predicates include regular

predicates and regular predicates include conjunctive predicates. Similarly, observer-

independent predicates include stable and disjunctive predicates. Also note that, lin-

ear predicates are not necessarily disjoint from observer-independent predicates, for

example, termination or a local predicate are both linear and observer-independent.
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Figure 3.3: Predicate classes

3.4 Temporal Regular Predicates

In this section, we study the regularity of a predicate p when temporal operators

are applied to it. For example, given a predicate p, applying the temporal operator

EF to p gives the predicate EF(p). We prove that temporal predicates EF(p), AG(p),

EG(p), and EX(p)[j] are regular when p is regular. This result shows that regular

predicates are closed under EF, AG, EG, and EX[j] temporal operators in addition to

the boolean conjunction operator. Our temporal logic RCTL is generated by exactly

these five operators. However, the regularity does not follow in the case of AF, EU,

AU, EX, and AX. The results of this section enable us to compute efficient slicing

algorithms in the following chapters.

Given a temporal predicate p, to prove that EF(p) is regular, we show that

for all consistent cuts C, D if both C and D satisfy EF(p) then both (C ∩ D) and

(C ∪ D) satisfy EF(p).

3.4.1 Proof of EF(p) is regular

Lemma 3.23 If p is a regular predicate then EF(p) is a regular predicate.

Proof:

C |= EF(p) ∧ D |= EF(p)

≡ { definition of EF(p) }
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〈∃ C ′ : C ⊆ C ′ : C ′ |= p〉 ∧ 〈∃ D′ : D ⊆ D′ : D′ |= p〉

≡ { rewriting }

〈∃ C ′, D′ : C ⊆ C ′ ∧ D ⊆ D′ : C ′ |= p ∧ D′ |= p〉

⇒ { Let W = C ′ ∪ D′ and use definition of regular predicates }

〈∃ W : C ⊆ W ∧ D ⊆ W : W |= p〉

≡ { set theory }

〈∃ W : (C ∩ D) ⊆ W ∧ (C ∪ D) ⊆ W : W |= p〉

≡ { definition of EF(p) }

(C ∩ D) |= EF(p) ∧ (C ∪ D) |= EF(p)

This establishes the lemma. Note that we only use the join-closedness of predicate

p. ¤

3.4.2 Proof of AG(p) is regular

Lemma 3.24 If p is a regular predicate then AG(p) is a regular predicate.

Proof:

C |= AG(p)

≡ { definition of AG(p) }

〈∀ C ′ : C ⊆ C ′ : C ′ |= p〉

⇒ { (C ∪ F ) ⊆ C ′ ⇒ C ⊆ C ′ }

〈∀ C ′, F : (C ∪ F ) ⊆ C ′ : C ′ |= p)〉

≡ { definition of AG(p) }

〈∀ F :: (C ∪ F ) |= AG(p)〉

⇒ { instantiating for F }

(C ∪ D) |= AG(p)

This shows that AG is a monotonic (stable) operator, i.e.,

C |= AG(p) ∧ C ⊆ C ′ ⇒ C ′ |= AG(p)
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We have not used regularity of p in this part of the proof.

C |= AG(p) ∧ D |= AG(p)

⇒ { monotonicity of AG }

〈∀ F :: (C ∪ F ) |= AG(p) ∧ (D ∪ F ) |= AG(p)〉

⇒ { AG(p) ⇒ p }

〈∀ F :: (C ∪ F ) |= p ∧ (D ∪ F ) |= p〉

⇒ { p is closed under meet }

〈∀ F :: (C ∪ F ) ∩ (D ∪ F ) |= p〉

⇒ { distributivity }

〈∀ F :: (C ∩ D) ∪ F |= p〉

≡ { definition of AG(p) }

(C ∩ D) |= AG(p)

Note that we only use the meet-closedness of predicate p in this part.

¤

3.4.3 Proof of EG(p) is regular

Lemma 3.25 If p is a regular predicate then EG(p) is a regular predicate.

Proof:

C |= EG(p) ∧ D |= EG(p)

≡ { definition of EG(p) }

〈∃ π0 : (π0
0 = C) : 〈∀ i : 0 6 i < |π0| : πi

0 |= p〉〉

〈∃ π1 : (π0
1 = D) : 〈∀ j : 0 6 j < |π1| : πj

1 |= p〉〉

⇒ { definition of regular predicates }

There exists a sequence

(π0
0 ∪ π0

1) = (C ∪ D) ⊲ (π0
0 ∪ π1

1) ⊲ . . . ⊲ (π0
0 ∪ π

|π1|−1
1 ) = E

such that (π0
0 ∪ π0

1) |= p ∧ (π0
0 ∪ π1

1) |= p ∧ . . . ∧ (π0
0 ∪ π

|π1|−1
1 ) |= p

≡ { eliminating stuttering consistent cuts, we obtain fullpath π2 }
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〈∃ π2 : (π0
2 = π0

0 ∪ π0
1) . . . (π

|π2|−1
2 = π0

0 ∪ π
|π1|−1
1 ) :

〈∀ j : 0 6 j < |π2| : πj
2 |= p〉〉

≡ { rewriting }

〈∃ π2 : (π0
2 = (C ∪ D)) : 〈∀ j : 0 6 j < |π2| : πj

2 |= p〉〉

≡ { definition of EG(p) }

(C ∪ D) |= EG(p)

C |= EG(p) ∧ D |= EG(p)

≡ { definition of EG(p) }

〈∃ π0 : (π0
0 = C) : 〈∀ i : 0 6 i < |π0| : πi

0 |= p〉〉 ∧

〈∃ π1 : (π0
1 = D) : 〈∀ j : 0 6 j < |π1| : πj

1 |= p〉〉

⇒ { definition of regular predicates }

There exists a sequence

(π0
0 ∩ π0

1) = (C ∩ D) ⊲ (π0
0 ∩ π1

1) ⊲ . . . ⊲ (π0
0 ∩ πk

1 ) ⊲ π0
0 ⊲ π1

0 ⊲ . . . ⊲ π
|π0|−1
0 = E

such that (π0
0 ∩ π0

1) |= p ∧ (π0
0 ∩ π1

1) |= p ∧ . . . ∧ (π0
0 ∩ πk

1 ) |= p

≡ { eliminating stuttering consistent cuts, we obtain fullpath π3 }

〈∃ π3 : (π0
3 = π0

0 ∩ π0
1) . . . (π

|π3|−1
2 = π

|π0|−1
0 ) :

〈∀ j : 0 6 j < |π3| : πj
3 |= p〉〉

≡ { rewriting }

〈∃ π3 : (π0
3 = (C ∩ D)) : 〈∀ j : 0 6 j < |π3| : πj

3 |= p〉〉

≡ { definition of EG(p) }

(C ∩ D) |= EG(p)

¤

3.4.4 Proof of EX(p)[j] is regular

We prove in the next section that EX(p) is not regular, in general. However, for a

special case of EX(p), that is EX(p)[j], we obtain regularity.

The following lemma states that EX(p) is equivalent to the disjunction of
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EX(p)[j] for all processes j. This result follows directly from the definitions of EX(p)

and our computation model.

Lemma 3.26 EX(p) iff there exists a process j such that EX(p)[j].

Lemma 3.27 Given a process j, if p is a regular predicate then EX(p)[j] is a regular

predicate.

Proof:

C |= EX(p)[j] ∧ D |= EX(p)[j]

≡ {Let e and f be events on process j and be enabled at cuts C and D,

respectively, and use definition of EX(p)[j] }

〈∃ C ′ : C ′ = (C ∪ {e}) : C ′ |= p〉 ∧ 〈∃ D′ : D′ = (D ∪ {f}) : D′ |= p〉

≡ { rewriting }

〈∃ C ′, D′ : C ′ = C ∪ {e} ∧ D′ = D ∪ {f} : C ′ |= p ∧ D′ |= p〉

⇒ { Let W = C ′ ∪ D′, V = C ′ ∩ D′ and use definition of regular predicates }

〈∃ W : W = (C ∪ {e}) ∪ (D ∪ {f}) : W |= p〉 ∧

〈∃ V : V = (C ∪ {e}) ∩ (D ∪ {f}) : V |= p〉

≡ { Assume e
P
→ f on process j }

〈∃ W : W = (C ∪ D) ∪ {f} : W |= p〉 ∧

〈∃ V : V = (C ∩ D) ∪ {e} : V |= p〉

≡ { definition of EX(p) }

(C ∩ D) |= EX(p) ∧ (C ∪ D) |= EX(p)

This establishes the lemma. ¤

3.4.5 Proof of AF(p) is closed under union

We prove in the next section that AF(p) is not regular, in general. However, it is

closed under union, from which we infer that there exists a greatest consistent cut

that satisfies AF(p).
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Lemma 3.28 If the set of consistent cuts that satisfy p is closed under union then

the set of consistent cuts that satisfy AF(p) is closed under union (join-closed).

Proof:

C |= AF(p) ∧ D |= AF(p)

≡ { definition of AF(p) }

〈∀ π0 : π0
0 = C : 〈∃ i : 0 6 i < |π0| : πi

0 |= p〉〉∧

〈∀ π1 : π0
1 = D : 〈∃ j : 0 6 j < |π1| : πj

1 |= p〉〉

⇒ { predicate calculus, range weakening }

〈∀ π0 : π0
0 = C ∧ 〈∃ k : k > 0 : πk

0 = (C ∪ D)〉 : 〈∃ i : 0 6 i < |π0| : πi
0 |= p〉〉∧

〈∀ π1 : π0
1 = D ∧ 〈∃ m : m > 0 : πm

1 = (C ∪ D)〉 : 〈∃ j : 0 6 j < |π1| : πj
1 |= p〉〉

Our goal is to show that for each full path (C ∪ D), . . . , E , there exists a

consistent cut in the path that satisfies p. We have,

Case 1: i > k

〈∀ π0 : π0
0 = C ∧ 〈∃ k : k > 0 : πk

0 = (C ∪ D)〉 : 〈∃ i : 0 6 i < |π0| : πi
0 |= p〉〉

⇒ { Let g = i − k and start π0 from C ∪ D }

〈∀ π0 : π0
0 = (C ∪ D) : 〈∃ g : 0 6 g < |π0| : πg

0 |= p〉〉

Case 2: j > m. Similar to Case 1 by symmetry between C and D.

Case 3: i 6 k ∧ j 6 m

{ from the definition of AF(p) above }

(C ⊆ πi
0) ∧ (D ⊆ πj

1)

⇒ { set theory }

(C ∪ D) ⊆ (πi
0 ∪ πj

1)

⇒ { Case 3 }

((C ∪ D) ⊆ (πi
0 ∪ πj

1)) ∧ ((πi
0 ∪ πj

1) ⊆ (πk
0 ∪ πm

1 ))

≡ { πk
0 = πm

1 = C ∪ D }

((C ∪ D) ⊆ (πi
0 ∪ πj

1)) ∧ ((πi
0 ∪ πj

1) ⊆ (C ∪ D))

≡ { set theory }
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((C ∪ D) = (πi
0 ∪ πj

1))

⇒ { p is closed under join }

(C ∪ D) |= p

⇒ { p ⇒ AF(p) }

(C ∪ D) |= AF(p)

¤

3.5 Temporal Non-Regular Predicates

These are temporal predicates which are not regular. We will present examples of

distributive lattices of consistent cuts to show that the regularity does not follow in

the case of AF(p), A(p U q), EX(p), AX(p), and E(p U q) when p and q are regular.

In the case of AF(p), the set of consistent cuts that satisfy the temporal

predicate AF(p) is closed under union but not under intersection. In Figure 3.4(a)

consistent cuts C and D satisfy AF(p), but their intersection (C∩D) does not. This

is because there exists a path starting from (C ∩ D) and ending at the final cut E

where p never holds on the path.

In the case of A(p U q), the set of consistent cuts that satisfy the temporal

predicate A(p U q) is also closed under union. The proof is similar to that of AF(p)

proof above. The set of consistent cuts that satisfy the temporal predicate A(p U q)

is not closed under intersection. In Figure 3.4(b) consistent cuts V and W satisfy

A(p U q), but their intersection (V ∩ W ) does not.

Figure 3.5 displays a distributive lattice of consistent cuts where p and q are

closed under union and intersection. However, none of EX(p), AX(p), and E(p U q)

is closed under union or intersection. Specifically, consistent cuts V and W satisfy

EX(p) and AX(p), but their intersection (V ∩W ) and union (V ∪W ) do not. Similarly,

consistent cuts C and D satisfy E(p U q), but (C ∩ D) and (C ∪ D) do not.
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Figure 3.5: EX(p), AX(p), and E(pU q) may not be regular when p and q are regular
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3.6 Summary

Here we summarize the list of predicate classes that we commonly refer to in this

dissertation.

Table 3.1: Predicate Classes

Predicate Class Description Example

p, q regular

Regular set of consistent cuts are closed under p ∧ q

set union and intersection

Non-Regular not regular p ∨ q, ¬p

Temporal contains temporal operators EX(p)

Non-Temporal does not contain temporal operators p

Nested Temporal contains nested temporal operators EF(p ∧ EG(q))

Unnested Temporal contains a single temporal operator EG(p),AF(p)

Temporal Regular temporal operators are EF, AG, EG, EX[j] EF(p), AG(p), EG(p),

and atomic propositions are regular EX(p)[j]

Temporal Non-Regular contains a temporal operator AF(p), EX(p)

and is not regular

RCTL+ atomic propositions are regular, co-regular, all of the above

linear, co-linear, stable, co-stable,

observer-independent, and relational

predicates, boolean operators are ∨ and ∧,

and temporal operators are EF, AG, EG,

EX[j], and EX

RCTL subset of RCTL+ where atomic propositions

are regular predicates and both ∨ and

EX operators are left out
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Chapter 4

Slicing for Non-Temporal

Predicates

In this chapter, we discuss our results in computation slicing which we will

use for developing predicate detection algorithms in Chapter 6.

4.1 Overview

We first give a background on “computation slicing” in Section 4.2. Computation

slicing was introduced in [GM01, MG01a] as an abstraction technique for analyzing

traces of distributed programs, that is, computations. A computation slice, defined

with respect to a global predicate, is the computation with the least number of

consistent cuts that contains all consistent cuts of the original computation for

which the predicate evaluates to true. Note that the set of consistent cuts that

satisfy a predicate may be large, so one could not simply enumerate all the states

efficiently either in space or time.

In Section 4.3, we present efficient computation slicing algorithms with re-
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spect to non-temporal predicates for which there are efficient detection algorithms

under EF operator of RCTL+. The predicate detection problem under EF opera-

tor is only concerned with answering the question whether there exists at least one

consistent cut of the computation that satisfies the given predicate. Computation

slicing, on the other hand, is concerned with computing a succinct representation

of all consistent cuts of the computation for which the given predicate evaluates to

true. Clearly, detecting a predicate under EF operator is no harder than computing

its slice in the sense that the predicate detection problem under EF operator can be

easily solved given the slice for the predicate (it suffices to test for the emptiness of

the slice). In this chapter, we prove a somewhat surprising result that detecting a

predicate under EF operator is no easier than computing its slice. In other words,

given an algorithm A for detecting a predicate EF(p), there exists an algorithm B

for computing the slice for p such that the time-complexity of B is at most a small

multiple of the time-complexity of A. In particular, the multiple is n|E|, where n is

the number of processes and E is the set of events. As a corollary, it can be derived

that there exists a polynomial-time algorithm for detecting a predicate under EF

operator if and only if there exists a polynomial-time algorithm for computing its

slice.

Mittal and Garg [MG01a] has shown that it is intractable in general to com-

pute the slice for an arbitrary predicate and present efficient slicing algorithms

for non-temporal regular and linear predicates [GM01, MG01a, MG03]. Using the

above equivalence, it is now possible to compute the slice efficiently for many more

classes of non-temporal predicates including stable, co-stable, observer-independent,

relational, and co-linear predicates.

If predicate detection under EF operator is “equivalent” to computation slic-

ing, then how can slicing be used to improve the complexity of predicate detection

in general? Slicing can indeed be used to facilitate predicate detection as illus-
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trated by the following example. Consider a predicate p that is a conjunction of

two clauses p1 and p2. Now, assume that p1 is such that it can be detected effi-

ciently under EF operator but p2 has no structural property that can be exploited

for efficient detection. To detect EF(p), without computation slicing, we are forced

to use techniques such as breadth first search [CM91], depth first search [AV01], and

partial-order methods [SUL00], which do not take advantage of the fact that EF(p1)

can be detected efficiently. With computation slicing, however, we can first compute

the slice for p1. If only a small fraction of consistent cuts satisfy p1, then instead

of detecting EF(p) in the computation, it is much more efficient to detect EF(p) in

the slice. Therefore, by spending only polynomial amount of time in computing the

slice, we can throw away exponential number of consistent cuts, thereby obtaining

an exponential speedup overall.

Note that other techniques for reducing the time-complexity [SUL00] and/or

the space-complexity [AV01] of predicate detection are orthogonal to slicing, and as

such can actually be used in conjunction with slicing.

Finally, the algorithms described in earlier papers [GM01, MG01a, MG03]

for computing a slice are all off-line in nature; they assume that the entire set

of events is available a priori. While this is quite adequate for applications such

as testing and debugging, for other applications such as software fault tolerance,

it is desirable that the slice be computed incrementally in an on-line manner. In

other words, the current slice is updated, as and when a new event is generated,

to reflect its arrival. The reason is that for software fault tolerance, it is important

to detect the fault as early as possible before it can cause any severe damage. If

we compute the slice only after a certain number of events have been collected and

then analyze it for the presence of a faulty consistent cut, it may be too late for

any meaningful recovery. At the same time, whenever an event arrives, we want the

cost of incrementally updating the slice to be less than the cost of recomputing the
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slice from scratch using an off-line algorithm. In Section 4.4, we give an efficient

incremental algorithm for computing the slice for predicates that can be efficiently

detected under EF operator.

4.2 Slicing Background

The notion of computation slice is based on the Birkhoff’s Representation Theo-

rem for Finite Distributive Lattices [DP90] which we described in Section 2.2. We

now illustrate Birkhoff’s Theorem on a computation and its distributive lattice of

consistent cuts.

4.2.1 Birkhoff’s Theorem: Example

Let L be a distributive lattice and J I(L) be the set of its join-irreducible elements.

Form Birkhoff’s Theorem, we have that every element in L can be expressed as

join of some subset of elements in J I(L) and vice versa. In other words, the partial

order defined on J I(L) represents L. This is significant because |J I(L)| is generally

much smaller—exponentially in many cases—than |L|. Hence if some computation

on L can instead be performed on J I(L), we obtain a significant computational

advantage.

Consider a computation G = 〈E,→〉 and its set of its consistent cuts C(G).

The set of join-irreducible elements of C(G) is isomorphic to the set of strongly

connected components of G [MG01a].

Now, consider a sublattice D of C(G). It can be proved that any sublattice of

a distributive lattice is also a distributive lattice [DP90]. Thus if D is a sublattice

of C(G), then, using Birkhoff’s Theorem, J I(D) completely characterizes D. This

forms the basis for the notion of computation slice.

Example 4.1 Consider the computation shown in Figure 4.1(a). The (distributive)
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Figure 4.1: (a) A computation, (b) the lattice of its consistent cuts, (c) the smallest

sublattice that contains all consistent cuts satisfying the predicate x + y − z 6 1,

and (d) the poset induced on the set of join-irreducible elements of the sublattice.
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lattice spanned by its set of consistent cuts is shown in Figure 4.1(b). In the figure,

each consistent cut is labeled with the number of events that have to be executed on

each process to reach the cut. The join-irreducible elements of the lattice have been

drawn with thick boundaries. They have exactly one incoming edge. The lattice has

eight join-irreducible elements which is same as the number of strongly connected

components of the computation. It can be verified that every consistent cut of the

computation can be obtained as the join of some subset of these eight join-irreducible

elements and vice versa. For instance, the consistent cut R (in Figure 4.1(b)) can

be expressed as the join of the consistent cuts U and V .

4.2.2 Slice

Informally, a computation slice (or simply a slice) is a concise representation of all

those consistent cuts of the computation that satisfy the predicate. Formally,

Definition 4.2 (slice [GM01, MG01a]) A slice of a graph G with respect to a

predicate is the directed graph obtained from G by adding edges such that:

(1) it contains all consistent cuts of the computation that satisfy the predicate and

(2) of all the graphs that satisfy (1), it has the least number of consistent cuts.

We denote the slice of a computation G = 〈E,→〉 with respect to a predicate

p by slice(G, p). Note that G = slice(G, true). In the rest of the dissertation, we use

the terms “computation”, “slice”, “graph”, and “directed graph” interchangeably.

Every slice derived from the computation G has the trivial consistent cuts (∅ and E)

among its set of consistent cuts. A slice is empty if it has no non-trivial consistent

cuts. In the rest of the dissertation, unless otherwise stated, a consistent cut refers

to a non-trivial consistent cut. In general, a slice will contain consistent cuts that

do not satisfy the predicate (besides trivial consistent cuts). In case a slice does not

contain any such cut, it is called lean.
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Definition 4.3 (lean slice) The slice of a computation with respect to a predicate

is lean if every consistent cut of the slice satisfies the predicate.

Theorem 4.4 ([GM01]) The slice of a computation with respect to a predicate is

lean if and only if the predicate is regular.

We next present an algorithm for generating the slice. To that end, we first

define some concepts. Given a sublattice L′ and a vertex e, let JL′(e) denote the

least consistent cut in L that is part of L′ and contains e. If there is no consistent

cut in L′ that includes e, then JL′(e) is set to E—the trivial consistent cut. In case

e = ⊤ then JL′(e) is set to E—the trivial consistent cut and in case e = ⊥ then

JL′(⊥) corresponds to the least element of L′.

Given a distributive lattice L generated by a graph G, every sublattice of L

can be generated by a graph obtained by adding edges to G.

Theorem 4.5 Let L′ be any sublattice of a finite distributive lattice L generated by

the directed graph G. Then, there exists a graph G′ that can be obtained by adding

edges to G that generates L′.

Proof: We show an algorithm to compute G′. Since L′ is a sublattice, it is clear

that if the set of consistent cuts include e and are part of L′, then their intersection

(meet) also includes e and is part of L′. Thus, JL′(e) is well-defined.

Now we add the following edges to the graph G. For every pair of vertices

e, f such that JL′(e) ⊆ JL′(f), we add an edge from e to f . We now claim the

resulting graph G′ generates L′.

Pick any nontrivial consistent cut C of G′. We show that C = ∪e∈CJL′(e).

This will be sufficient to show that C ∈ L′ because C is a union of consistent cuts

in L′ and L′ is a lattice. Since e ∈ JL′(e) it is clear that C ⊆ ∪e∈CJL′(e). We show

that C ⊇ ∪e∈CJL′(e). Let f ∈ JL′(e) for some e. This implies that JL′(f) ⊆ JL′(e)

because JL′(f) is the least consistent cut containing f in L′. By our algorithm, there
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is an edge from f to e in G′, and since C is a consistent cut of G′ that includes e,

it also includes f .

Conversely, pick any element C of L′. We show that C is a nontrivial con-

sistent cut of G′. Since L′ ⊆ L and L corresponds to nontrivial consistent cuts of

G, it is clear that C is a nontrivial consistent cut of G. Our obligation is to show

that it is a nontrivial consistent cut of G′ as well. Assume, if possible, C is not a

nontrivial consistent cut of G′. This implies that there exists vertices e, f in G′ such

that f ∈ C, e 6∈ C and (e, f) is an edge in G′. The presence of this edge in G′, but

not in G implies that JL′(e) ⊆ JL′(f). Since f ∈ C and C ∈ L′, from the definition

of JL′(f), we get that JL′(f) ⊆ C. But this implies that JL′(e) ⊆ C, that is, e ∈ C,

a contradiction. ¤

Observe that JL′(e) corresponds to the join-irreducible elements of the sublat-

tice L′. Hence, the algorithm in Theorem 4.5 (as we know from Birkhoff’s Theorem)

generates G′ by computing the poset induced on JL′(e).

Theorem 4.6 For any directed graph G and any predicate p, slice(G, p) exists and

is unique.

Proof: Note that the intersection of sublattices is also a sublattice. Given any

predicate p consider all sublattices that contain all the consistent cuts that satisfy

p. The intersection of all these sublattices gives us the smallest sublattice that

contains all the consistent cuts that satisfy p. From Theorem 4.5, we get that there

exists a graph that generates this sublattice. ¤

The procedure outlined in the proof of Theorem 4.6 is not efficient because it

requires us to take intersection of all bigger sublattices. However, for non-temporal

regular predicates, since the set of consistent cuts that satisfy the predicate generates

a sublattice L′, we can use the algorithm in Theorem 4.5 to compute slices efficiently.
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In particular, JL′(e) corresponds to Jp(e), where Jp(e) denotes the least consistent

cut of a computation G that satisfies p and contains e. Jp(e) can also be interpreted

as the least consistent cut that satisfies the predicate pe. We say that a consistent

cut satisfies predicate pe if the cut contains event e and satisfies predicate p.

Example 4.7 Consider the lattice of consistent cuts depicted in Figure 4.1(b). The

consistent cuts that satisfy the predicate x + y − z 6 1 have been shaded in the

figure. Figure 4.1(c) depicts the smallest sublattice that contains these consistent

cuts. The consistent cuts P and Q do not satisfy the predicate but have been included

to complete the sublattice. The join-irreducible elements of the sublattice have been

drawn with thick boundaries. There are, in total, seven join-irreducible elements,

namely T , U , V , W , X, Y and Z. Figure 4.1(d) portrays the partial order induced

on the set J = {T, U, V, W, X, Y, Z}. There is a one-to-one correspondence between

the set of join-irreducible elements and the set of strongly connected components of

the graph shown in Figure 4.1(d). It can be verified that every consistent cut in the

sublattice can be expressed as join of some subset of J and, furthermore, the join

of every subset of J is a consistent cut of the sublattice.

However, the graph obtained using Theorem 4.5 can have as many as Ω(|E|2)

edges. Next we will show a representation with less number of edges.

Skeletal Representation of a Slice

In general, there can be multiple directed graphs with the same set of consistent

cuts. Therefore more than one graph may constitute a valid representation of the

given slice. The following lemma states that all such graphs are in fact related.

Lemma 4.8 ([MG01a]) Consider directed graphs G and H on the same set of

vertices. Then,

P(G) ⊆ P(H) ≡ C(G) ⊇ C(H)
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which in turn implies that:

Lemma 4.9 ([MG01a]) Consider directed graphs G and H on the same set of

vertices. Then,

P(G) = P(H) ≡ C(G) = C(H)

In other words, two directed graphs G and H, on identical sets of vertices,

are cut-equivalent (that is, C(G) = C(H)) if and only if they are path-equivalent

(that is, P(G) = P(H)). We consider a special directed graph to capture a slice,

called the skeletal representation of a slice [MG01a]. Let Fp(e) be a vector of events

where the ith entry in the vector denotes the earliest event f on process Pi such

that Jp(e) ⊆ Jp(f). Informally, Fp(e)[i] is the earliest event on Pi that is reachable

from e in the slice(G, p). The skeletal representation of a slice has E as the set of

vertices and the following edges:

1. for each event e 6∈ ⊤, there is an edge from e to succ(e), and

2. for each event e and process Pi, there is an edge from e to Fp(e)[i].

To see that the skeletal representation represents the slice, the following

lemma is useful.

Lemma 4.10 (Jp(e) is order-preserving [GM01]) Given events e and f ,

e → f ⇒ Jp(e) ⊆ Jp(f)

Proof: Consider Jp(f). Since e → f and f ∈ Jp(f), e ∈ Jp(f). Thus Jp(f) is

a consistent cut that contains e and satisfies p. Since Jp(e) is the least such cut,

Jp(e) ⊆ Jp(f). ¤

Using this lemma we can prove that if Jp(e) ⊆ Jp(f) then there is a path

from event e to event f in the skeletal representation and vice versa. Finally, we

can show that the slice is cut-equivalent to the skeletal representation.
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4.2.3 Slicing for Non-Temporal Regular Predicates

Garg and Mittal present an efficient algorithm to compute the slice for a non-

temporal regular predicate [GM01]. In particular, they construct the graph corresponding

to the skeletal representation of slice(G, p). To that end, they give an algorithm to

compute Fp(e).

They first compute Jp(e) for each event e. Since pe is a non-temporal regular

predicate, it is also a linear predicate. The algorithm in Figure 3.2 in Chapter 3 can

be used to find the least consistent cut that satisfies pe. Their algorithm computes

Jp(e) for each event e in a single scan of the computation from left to right with

O(n2|E|) time-complexity. This algorithm assumes the efficient predicate evalua-

tion and the efficient advancement properties (Property 3.15 and Property 3.17 in

Section 3.3). Similarly, they compute Fp(e) for each event e, in a single scan of

the computation from left to right with O(n|E|) time-complexity. The overall time-

complexity of computing the slice for a non-temporal regular predicate is therefore

O(n2|E|). The order-preserving property of Fp(e) is crucial for obtaining this com-

plexity bound.

Lemma 4.11 (Fp(e) is order-preserving [GM01]) Given events e and f and a

process Pj,

e → f ⇒ Fp(e)[j]
P
→ Fp(f)[j]

Proof: Assume that e → f . Let g = Fp(e)[j] and h = Fp(f)[j]. Note that proc(g) =

proc(h) = Pj . By definition of Fp(e), Jp(f) ⊆ Jp(h). Since, from Lemma 4.10,

Jp(e) ⊆ Jp(f), Jp(e) ⊆ Jp(h). Again, by definition of Fp(e), g is the earliest event

on Pj such that Jp(e) ⊆ Jp(g). Therefore g
P
→ h. ¤

Figure 4.2 displays the algorithm to compute Fp(e) using the algorithm to

compute Jp(e). Let Ej denote the set of events on process Pj . The outer for loop at
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Algorithm Algo 4.1:

Input: (1) a directed graph G, and (2) Jp(e) for each event e

Output: Fp(e) for all events e

1 for each process Pi do

2 for each process Pj do

3 f := ⊥j ;

4 for each event e on Pi do // visited in the order given by
P
→

5 while Jp(e) 6⊆ Jp(f) do

6 f := succ(f); // advance to the next event on Pj

endwhile;

7 Fp(e)[j] := f ;
endfor;

endfor;
endfor;

Figure 4.2: The algorithm to compute Fp(e) for all events e.

line 2 is executed exactly n times. For jth iteration of the outer for loop, the while

loop at line 5 is executed at most O(|Ei| + |Ej |) times. Each iteration of the while

loop has O(1) time-complexity because whether Jp(e) 6⊆ Jp(f) can be ascertained

by performing only a single comparison. Thus the overall time-complexity of the

algorithm is O(n|Ei| + |E|). Summing up over all processes, Fp(e) for each event e

can be determined in O(n|E|) time.

An advantage of the skeletal representation is that it has O(|E|) vertices and

only O(n|E|) edges, where n is the number of processes and E is the set of events,

and hence generally leads to more efficient algorithms involving slices.

4.3 Slicing for Non-Temporal Predicates

In this section, we present efficient computation slicing algorithms with respect to

non-temporal predicates for which there are efficient detection algorithms under EF

operator of RCTL+. Specifically, we study the relationship between the following
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two problems, which allows us to extend efficient computation slicing algorithms.

Containing Cut (CONTC) Given a directed graph G and a predicate p, does G

contain a consistent cut that satisfies p? Equivalently, check G |= EF(p).

Computing Slice (COMPS) Given a directed graph G and a predicate p, compute

the slice of G with respect to p. Equivalently, compute slice(G, p).

4.3.1 Computing Slice is equivalent to Containing Cut

In this section, we prove that the problem of computing a succinct representation

of all consistent cuts satisfying a predicate is equivalent the problem of determining

whether there exists at least one consistent cut satisfying the predicate. From the

definition of slice, clearly, it follows that the slice for a directed graph with respect

to a predicate (not necessarily regular) is nonempty if and only if the graph contains

a consistent cut that satisfies the predicate. Formally,

CONTC(G, p) ≡ COMPS(G, p) is nonempty

Therefore COMPS is at least as hard as CONTC. We now prove the converse.

Consider a directed graph G and a predicate p. Now, G and slice(G, p) are directed

graphs on identical sets of vertices. However, more pairs of vertices are “connected”

in slice(G, p) than in G, that is, the slice contains “additional edges”. In the next

lemma, we give a complete characterization of the additional edges in slice(G, p).

Let G[e, f ] denote the directed graph obtained by adding an edge from e to f in G.

Lemma 4.12 There is a path from an event e to an event f in slice(G, p) if and

only if no consistent cut in C(G) − C(G[e, f ]) satisfies p.

Proof: We have,

there is a path from e to f in slice(G, p)

≡ { definition of slice(G, p) }
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(there is a path from e to f in slice(G, p)) ∧
(
C(slice(G, p)) ⊆ C(G)

)

≡ { from Lemma 4.8, C(slice(G, p)) ⊆ C(G) ≡ P(G) ⊆ P(slice(G, p)) }

(there is a path from e to f in slice(G, p)) ∧
(
P(G) ⊆ P(slice(G, p))

)

≡ { definition of G[e, f ] }

P(G[e, f ]) ⊆ P(slice(G, p))

≡ { from Lemma 4.8 }

C(slice(G, p)) ⊆ C(G[e, f ])

≡ { C(slice(G, p)) contains all consistent cuts of C(G) satisfying p }

no consistent cut in C(G) − C(G[e, f ]) satisfies p

This establishes the lemma. ¤

Lemma 4.12 is useful provided it is possible to ascertain efficiently whether

some consistent cut in C(G) − C(G[e, f ]) satisfies p. To that end, we show that

the set C(G) − C(G[e, f ]) actually forms a sublattice and therefore can be captured

faithfully using a directed graph. Let Ĝ[e, f ] denote the directed graph obtained

by adding an edge from f to ⊥1 and an edge from ⊤1 to e. It suffices to show the

following:

Lemma 4.13 C(Ĝ[e, f ]) − {∅, E} = C(G) − C(G[e, f ])

Proof: Consider a nontrivial consistent cut C in C(G). It suffices to show that

C ∈ C(Ĝ[e, f ]) ≡ C 6∈ C(G[e, f ]).

(⇒) We need to prove that C ∈ C(Ĝ[e, f ]) ⇒ C 6∈ C(G[e, f ]). Intuitively, it

means that G[e, f ] and Ĝ[e, f ] do not have any common nontrivial consistent cut.

Equivalently, C(G[e, f ]) ∩ C(Ĝ[e, f ]) = {∅, E}. We have,

C ∈ C(Ĝ[e, f ])

⇒ { follows from the definition of Ĝ[e, f ] }

(f ∈ C) ∧ (e 6∈ C)

⇒ { follows from the definition of G[e, f ] }
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C 6∈ C(G[e, f ])

(⇐) We need to prove that C 6∈ C(G[e, f ]) ⇒ C ∈ C(Ĝ[e, f ]). Intuitively, it means

that every nontrivial consistent cut of G is either a consistent cut of G[e, f ] or a

consistent cut of Ĝ[e, f ]. Equivalently, C(G[e, f ]) ∪ C(Ĝ[e, f ]) = C(G). The proof

consists of two steps. In the first step, we show that if C is not a consistent cut

of G[e, f ], then it is the case that e 6∈ C and f ∈ C. Assume that C 6∈ C(G[e, f ]).

Therefore there exist events u and v such that there is a path from u to v in G[e, f ],

u 6∈ C and v ∈ C. Since C is a consistent cut of G, there is no path from u to v in

G. That is, (u, v) ∈ P(G[e, f ]) but (u, v) 6∈ P(G). Thus every path from u to v in

G[e, f ] involves the edge (e, f). This implies that (u, e) ∈ P(G) and (f, v) ∈ P(G).

Since (u, e) ∈ P(G) and u 6∈ C, e 6∈ C. Similarly, since (f, v) ∈ P(G) and v ∈ C,

f ∈ C. Therefore e 6∈ C and f ∈ C.

In the second step, we show that if C is not a consistent cut of Ĝ[e, f ], then

it is the case that (e ∈ C) ∨ (f 6∈ C). Assume that C 6∈ C(Ĝ[e, f ]). Hence there

exist events x and y such that there is a path from x to y in Ĝ[e, f ], x 6∈ C and

y ∈ C. Since C is a consistent cut of G, there is no path from x to y in G. That is,

(x, y) ∈ P(Ĝ[e, f ]) but (x, y) 6∈ P(G). Thus every path from x to y in Ĝ[e, f ] either

involves the edge (f,⊥1) or the edge (⊤1, e). In the first case, there is a path from

x to f in G which implies that f 6∈ C. In the second case, there is path from e to

y in G which implies that e ∈ C. Consequently, either e ∈ C or f 6∈ C—a logical

negation of what we obtained in the first step.

Combining the two steps, it can be inferred that it cannot be the case that C

is neither a consistent cut of G[e, f ] nor a consistent cut of Ĝ[e, f ]. This establishes

the lemma. ¤

We now present an example illustrating the Lemma 4.12 and Lemma 4.13.
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(c)

: consistent cut

: consistent cut that satisfies the predicate

(a)

(b)

{e3, f1}

{e3, f2}

{e2, f1}

{e2, f2}

{e1, f2}

{e2, f3}

{e3, f3}

{e1, f1}
P1

P2
f4

e4e3e2e1

f1 f2 f3

P1

P2
f4

e4e3e2e1

f1 f2 f3

Figure 4.3: (a) A directed graph G, (b) slice(G, p), where p is the predicate “all

channels are empty”, and (c) the set of nontrivial consistent cuts of H.

Example 4.14 Consider the directed graph G shown in Figure 4.3(a). In the graph,

e1 and f1 are the initial events, whereas e4 and f4 are the final events. Figure 4.3(b)

depicts slice(G, p), where p is the predicate “all channels are empty”. The slice is

obtained by adding the edge from f3 to e2 because, for all channels to be empty,

send and receive events of the same message have to be executed atomically. The set

of nontrivial consistent cuts of G are shown in Figure 4.3(c). The cuts for which

all channels are empty have been shaded. Now, consider directed graphs G[e3, e2]

and Ĝ[e3, e2] shown in Figure 4.4(a) and Figure 4.4(c), respectively. Their sets of

consistent cuts (excluding trivial consistent cuts) are shown in Figure 4.4(b) and

Figure 4.4(d), respectively. As expected, the two sets satisfy Lemma 4.13. Also,

since there is no path from e3 to e2 in slice(G, p), Ĝ[e3, e2] contains a consistent cut

that satisfies p. Figure 4.5 illustrates the case when the edge (f3, e3) is such that

slice(G, p) contains a path from f3 to e3.

Combining the two lemmas, we obtain the following:
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(a) (c)

(b) (d)

{e1, f2}{e3, f1}

{e1, f1}

{e3, f2}

{e3, f3}
{e2, f3}

{e2, f2}

{e2, f1}

P1

P2
f4

e4e3e2e1

f1 f2 f3

P1

P2
f4

e4e3e2e1

f1 f2 f3

Figure 4.4: (a) The directed graph G[e3, e2], where there is no path from e3 to e2

in slice(G, p), (b) the set of nontrivial consistent cuts of G[e3, e2], (c) the directed

graph Ĝ[e3, e2], and (d) the set of nontrivial consistent cuts of Ĝ[e3, e2].

Theorem 4.15 There is a path from an event e to an event f in slice(G, p) if and

only if no consistent cut in Ĝ[e, f ] satisfies p, that is, CONTC(Ĝ[e, f ], p) evaluates

to false.

Figure 4.6 depicts the algorithm for solving COMPS using an algorithm that

solves CONTC. The algorithm constructs a directed graph that is transitively closed.

Theorem 4.16 The time-complexity of the algorithm for solving COMPS in Fig-

ure 4.6 is O(|E|2T ), where E is the set of events and O(T ) is the worst-case time-

complexity of solving CONTC.

Proof: The initialization at line 1 requires O(|E|2) time, where E is the set of

events, because G has |E| vertices and therefore O(|E|2) edges. The for loop at
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(b)

(a) (c)

(d)

{e1, f2}{e2, f1}

{e2, f2}

{e1, f1}

{e2, f3}

{e3, f3}

{e3, f1}

{e3, f2}

P1

P2
f4

e4e2e1

f1 f2 f3

e3

P1

P2
f4

e4e3e2e1

f1 f2 f3

Figure 4.5: (a) The directed graph G[f3, e3], where there is a path from f3 to e3

in slice(G, p), (b) the set of nontrivial consistent cuts of G[f3, e3], (c) the directed

graph Ĝ[f3, e3], and (d) the set of nontrivial consistent cuts of Ĝ[f3, e3].

Algorithm Algo 4.2:

Input: (1) a directed graph G, (2) a predicate p, and

(3) an algorithm to evaluate CONTC(H, p) for an arbitrary directed graph H

Output: the slice of G with respect to p

1 K := G;

2 for every pair of events (e, f) do

3 if not(CONTC(Ĝ[e, f ], p)) then // Ĝ[e, f ] 6|= EF(p)

4 add an edge from e to f in K; // K := K[e, f ]

endif;
endfor;

5 output K;

Figure 4.6: An algorithm to solve COMPS using an algorithm to solve CONTC.
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Algorithm Algo 4.3:

Input: (1) a directed graph G, and (2) a predicate p, and

(3) an algorithm to evaluate CONTC(H, p) for an arbitrary directed graph H

Output: Fp(e) for all events e

1 for each process Pi do

2 for each process Pj do

3 f := ⊥j ;

4 for each event e on Pi do // visited in the order given by
P
→

5 while CONTC(Ĝ[e, f ], p) do

6 f := succ(f); // advance to the next event on Pj

endwhile;

7 Fp(e)[j] := f ;

endfor;
endfor;

endfor;

Figure 4.7: The algorithm to compute Fp(e) for all events e.

line 2 executes |E|2 times. Each iteration of the for loop requires solving an instance

of CONTC. The construction of the particular instance of CONTC involves adding

two edges to G, and therefore can be done in O(1) time. Depending on the result

of the if statement at line 3, an edge may be required to be added to K at line 4,

which can be done in O(1) time. At the end of the iteration, the two edges that

were added to G have to be deleted. The deletion can be accomplished in O(1)

time by maintaining pointers to the two edges if using adjacency list representation.

The overall time-complexity of the for loop is O(|E|2T ), which is also the time-

complexity of the algorithm. ¤

The time-complexity of the algorithm can be reduced to O(n|E|T ), where n

is the number of processes, by constructing the skeletal representation of the slice

discussed in Section 4.2.2. To that end, it suffices to compute the vector Fp(e) for

each event e; the ith entry of Fp(e) denotes the earliest event on process Pi reachable
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from e in the slice. From Lemma 4.11, we have that Fp is order-preserving which

means that if e → f then Fp(e)[j]
P
→ Fp(f)[j] for each j. Consequently, it is possible

to compute Fp(e)[j] for each event e on process Pi by scanning the computation

once from left to right. The algorithm is presented in Figure 4.7.

Theorem 4.17 The time-complexity of the algorithm for computing Fp(e) for each

event e in Figure 4.7 is O(n|E|T ), where n is the number of processes, E is the set

of events and O(T ) is the worst-case time-complexity of solving CONTC.

Proof: Note that the while loop at line 5 terminates in at most |Ei|+|Ej | iterations,

where Ei and Ej denote the set of events on processes Pi and Pj , respectively. This

is because the directed graph Ĝ[e, f ] when f = ⊤j has an edge from the final event

⊤j to the initial event ⊥1 implying that Ĝ[e,⊤j ] has no nontrivial consistent cut.

Therefore CONTC(Ĝ[e, f ], p) when f = ⊤j will, trivially, evaluate to false. This

gives the time-complexity of O((|Ei| + |Ej |) T ) for the inner for loop at line 4.

Hence the time-complexity of the outer for loop at line 2 is O((n|Ei| + |E|) T ).

This implies that the overall time-complexity of computing Fp(e) for each event e

is O(n|E|T ). ¤

4.3.2 Applications of the Result

In earlier results, Mittal and Garg gave efficient algorithms for computing the slice

for non-temporal predicate classes such as regular predicates [GM01], co-regular

predicates [MG01a], and linear predicates [MG03]. Using the result of this chapter,

it is now possible to compute the slice efficiently for many more classes of non-

temporal predicates including stable and co-stable predicates, observer-independent

predicates, co-linear predicates, and relational predicates. For instance, an observer-

independent predicate can be detected under EF operator in O(n|E|) time using the

algorithm presented in [CBDGF95]. This implies that its slice can be computed in
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O(n2|E|2) time using the algorithm given in Section 4.3.1. It is possible that a faster

and more efficient slicing algorithm exists for an observer-independent predicate,

which perhaps exploits the specific properties of the class of observer-independent

predicates. Similarly, relational predicates can be detected under EF operator effi-

ciently using max-flow techniques [Gar96] and we can use this algorithm to compute

the slice with respect to a relational predicate. Our result is still useful because it

gives a ready-made algorithm for computing the slice.

Note that the input to our slicing algorithm is a directed graph G, a predicate

p, and an algorithm to evaluate CONTC(H, p) for an arbitrary directed graph H.

In fact, in our algorithms of this section, H is obtained from G by addition of

edges. Equivalently, the lattice of consistent cuts of H is a sublattice of the lattice

of consistent cuts of G.

In Chapter 3, we defined predicate classes such as linear, stable, observer-

independent with respect to a graph G. We now show that given a predicate p from

a class A and defined with respect to a graph G, p belongs to class A for an arbitrary

graph H that is obtained from G. In particular, we are concerned with classes of

non-temporal predicates stable and co-stable, observer-independent, co-linear, and

relational predicates.

Lemma 4.18 (universal predicates) If p belongs to one of linear, co-linear, sta-

ble, co-stable, local, disjunctive, conjunctive and relational predicate classes with

respect to a graph G, then then it belongs to the same class with respect to all H

obtained from G by addition of edges.

Proof: We know that L′ = (C(H),⊆) forms a sublattice of the lattice L = (C(G),⊆

).

Given a linear predicate p and two arbitrary consistent cuts C and D in

C(H), C ∩ D belongs to C(H) and C(G) since C(H) is a sublattice. Furthermore, if

both C and D satisfy p, then C ∩ D satisfies p, since C ∩ D belongs to C(G) and
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satisfies p. Hence, p is linear with respect to H.

Given a predicate p which is co-linear with respect to G, ¬p is linear with

respect to G. Consequently, p is co-linear with respect to H, since ¬p is linear with

respect to H, which we showed above.

A stable predicate is such that once the predicate is true then it stays true.

In other words, all cuts reachable from the cut where p holds, satisfy p. This implies

that if there exists a consistent cut C that satisfies p in L′, and if L′ also contains

cuts reachable from C in L, then all such cuts satisfy p, hence p is stable with

respect to H. Using an argument similar to co-linear predicates, we can show the

universality of co-stable predicates.

A local predicate is such that it holds true at a local event of a process. If

H contains a consistent cut that has an event that satisfies the local predicate in its

frontier then it is clear that p is local with respect to H as well. Using an argument

similar to local predicates, we can prove that disjunctive, conjunctive and relational

predicates are also universal. ¤

Note that a co-linear predicate can be detected by using the complement of

the algorithm to detect a linear predicate under AG operator. We assume observer-

independent predicates are universal too.

The above results enable us to use the efficient algorithms for CONTC(H, p)

as an input to our slicing algorithm.

Since the predicate detection problem under EF operator is NP-complete in

general [CG95], the problem of computing the slice is also NP-complete. Nonethe-

less, it is still useful to be able to compute an approximate slice for such a predicate

efficiently. An approximate slice may be bigger than the actual slice but may be

much smaller than the computation itself. Therefore, in order to detect a predicate,

rather than searching the state-space of the computation, it is much more efficient

to search the state-space of the slice. In Chapter 6 we show how to use the results
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of this section for predicate detection.

4.4 On-Line Slicing Algorithm

In this section, we present an on-line algorithm for computing the slice for a predicate

for which the slice can indeed be computed efficiently in an off-line manner. Our on-

line slicing algorithm is basically derived from the off-line algorithm for computing

the slice described in Figure 4.7. On generation of a new event in the system, our

on-line algorithm updates the current slice to reflect the arrival of the new event.

Before discussing the algorithm, we state our assumptions and describe some

notation. We assume that a newly arrived event is “enabled” in the sense that all

events that happened-before it have already arrived and been incorporated into the

slice. This can be achieved by buffering the new event—in case it is not “enabled”—

and processing it later when it becomes “enabled”. Whether an event is “enabled”

can be determined efficiently by examining its vector clock timestamp. A well-known

vector clock algorithm for message passing programs is Fidge/Mattern algorithm

[Fid91, Mat89].

Initially, the computation consists of only the fictitious—initial and final—

events. Let the kth arriving event, k > 1, be denoted by e(k), and let G(k) denote

the resulting computation. Sometimes we represent the computation more explicitly

using 〈E(k),→〉 whenever necessary, where E(k) denotes the set of events and →

denotes the set of edges in G(k). Without loss of generality, assume that G(k) is a

transitively closed graph and thus → is a transitive relation.

Clearly, every nontrivial consistent cut of G(k−1) is a consistent cut of G(k)

as well.

Observation 4.19 C(G(k−1)) − E(k−1) ⊆ C(G(k))

Furthermore, every consistent cut of G(k) that is not a consistent cut of
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G(k−1) contains e(k).

Observation 4.20 C ∈ C(G(k)) − C(G(k−1)) ⇒ e(k) ∈ C

The on-line algorithm, whenever a new event arrives, computes the new slice

by updating Fp(e) for each event e. We use Fp
(k) to refer to the value of Fp for

the computation G(k). Now, in order to incorporate an event into the slice, we may

have to recompute the entry Fp(e)[i] for each event e and every process Pi.

Definition 4.21 (critical event) Let Pjk
denote the process on which the event

e(k) occurred. An event e ∈ E(k−1) is said to be a critical event with respect to e(k)

if F k−1
p (e)[jk] = ⊤jk

.

Intuitively, no nonfinal event on Pjk
is reachable from e in slice(G(k−1), p).

This may change, however, on arrival of e(k) because e(k) is an event on Pjk
. Let

critical(k) denote the set of all events in E(k−1) that are critical with respect to

e(k).

First, we show that the new value for events on the same process cannot

move backward in the space-time diagram. It is easy to verify that F k
p (e)[j] is

order-preserving using the result that Fp(e) is order-preserving from Lemma 4.11.

Lemma 4.22 (F k
p (e)[j] is order-preserving) Given events e and f and a process

Pj,

e
P
→ f ⇒ F k

p (e)[j]
P
→ F k

p (f)[j]

Section 4.4.2 contains a formal proof a similar lemma as above. Lemma 4.22

may greatly restrict the amount of work that needs to be done in order to recompute

Fp. In particular, to determine the new value of Fp(f)[j] for an event f and a process

Pj , rather than starting the scan from ⊥j , we can instead start the scan from the

value of Fp(e)[j], where e
P
→ f . The next lemma specifies the conditions under which

either Fp(e)[j] will not change or can be determined cheaply.
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Lemma 4.23 Given an event e ∈ E(k−1) and a process Pj,

(e → e(k)) ∧
(
(j 6= jk) ∨ (e /∈ critical(k))

)
⇒ F k−1

p (e)[j] = F k
p (e)[j] (4.3)

(e → e(k)) ∧
(
(j = jk) ∧ (e ∈ critical(k))

)
⇒ F k

p (e)[j] = e(k) (4.4)

Proof: Let f = F k−1
p (e)[j] and g = F k

p (e)[j].

Equation (4.3) Given f and g are on process Pj . It suffices to show that f 6
P
→ g and

g 6
P
→ f .

(a) f 6
P
→ g: Assume, on the contrary, that f

P
→ g. In this case, edge (e, f) does

not belong to slice(G(k), p). This means that, there exists a consistent cut C in G(k)

such that f ∈ C, e 6∈ C, and C |= p. Since e → e(k), e(k) 6∈ C, as well. From

Observation 4.20, a consistent cut of G(k) that does not include e(k) is a consistent

cut of G(k−1), that is, C ∈ G(k−1). Using Theorem 4.15, there is no edge (e, f) in

slice(G(k−1), p). Equivalently, f 6= F k−1
p (e)[j], contradiction.

This implies that the value for a new entry cannot move forward.

(b) g 6
P
→ f : Assume, on the contrary, that g

P
→ f . In this case, edge (e, g) does

not belong to slice(G(k−1), p). This means that, there exists a consistent cut C

in G(k−1) such that g ∈ C, e 6∈ C, and C |= p. From Observation 4.19, every

nontrivial consistent cut of G(k−1) (in this case C) is a consistent cut of G(k). Using

Theorem 4.15, there is no edge (e, g) in slice(G(k), p). Equivalently, g 6= F k
p (e)[j],

contradiction. Note that, we did not use the fact that e → e(k) in this case.

This implies that the value for a new entry cannot move backward.

Equation (4.4) Note that C(slice(G(k), p)) ⊆ C(G(k)). In case e → e(k), there is a

path from e to e(k) in G(k). Thus, from Lemma 4.8, there is a path from e to e(k)

in slice(G(k), p) as well. Consequently, F k
p (e)[j]

P
→ e(k). Since e is a critical event,

F k−1
p (e)[j] = ⊤j . From part (b) we know that, the value of F k

p (e)[j] cannot move

backward, that is, it is either e(k) or ⊤j . This, in turn, implies that F k
p (e)[j] is e(k).

¤
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Lemma 4.23 implies that Fp needs to be (re)computed only for the following

events in E(k): (1) the newly arrived event e(k), (2) those events in E(k−1) that did

not happen-before e(k). It turns out that Fp for the newly arrived event can be

determined rather easily. Specifically,

Lemma 4.24 Given a process Pj,

j 6= jk ⇒ F k
p (e(k))[j] = F k−1

p (⊤jk
)[j]

j = jk ⇒ F k
p (e(k))[j] = min{e(k), F k−1

p (⊤jk
)[j]}

Section 4.4.2 also contains the proofs of the lemmas in this section.

4.4.1 Algorithm

Figure 4.8 shows the algorithm to update the slice on arrival of a new event. Our on-

line slicing algorithm is basically derived from the off-line algorithm for computing

the slice described in Figure 4.7. The algorithm is the same as the off-line algorithm

except for the lines 1–3, 7 and 8. Intuitively, at line 8 (due to Lemma 4.23), instead

of starting the search on process Pi from e = ⊥i we start from the earliest event

e 6→ e(k). Also, at line 9 (due to Lemma 4.22), instead of starting the search on

process Pj from f = ⊥j , we start from f := Fp(pred(e))[j]. Finally, at lines 1–3,

the value of Fp(e
(k)) is computed using Lemma 4.24.

We now analyze the time-complexity of the algorithm. For a set of events

X, let Xj denote the subset of those events that occurred on process Pj . Note

that for an event e in E(k−1), if e(k) → e then e ∈ ⊤; otherwise, when e was

incorporated into the slice, it was not “enabled”—a contradiction. As a result,

events in E(k−1) that did not happen-before e(k) consists of either those events that

are concurrent with e(k) or the final events. Now, let C(k) contain those events from

E(k) that are concurrent with e(k). It can be verified that, given processes Pj and

Pi, the number of times an instance of CONTC is invoked at line 10 is given by
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Algorithm Algo 4.4:

Input: (1) a directed graph G(k) = 〈E(k),→〉, (2) a predicate p,

(3) for each event e ∈ E(k−1), Fp(e) currently set to F k−1
p (e), and

(4) an algorithm to evaluate CONTC(H, p) for an arbitrary directed graph H

Output: for each event e ∈ E(k), Fp(e) now set to F k
p (e)

1 Fp(e(k)) := Fp(⊤jk
); // compute Fp for the new event

2 for each event e in E(k) do

3 if Fp(e)[jk] = ⊤jk
then Fp(e)[jk] := e(k); endif; // is e a critical event?

endfor;

4 for each process Pi do

5 for each process Pj do

6 let e be the earliest event on Pi such that e 6→ e(k);

7 f := Fp(pred(e))[j];

8 for each event e on Pi starting from the event at line 6 do

9 f := max{f, Fp(e)[j]}; // Fp is order-preserving and Lemma 4.22

10 while (f 6= ⊤j) and CONTC(Ĝ(k)[e, f ], p) do

11 f := succ(f); // advance to the next event on Pj

endwhile;

12 Fp(e)[j] := f ;

13 endfor;
endfor;

endfor;

Figure 4.8: An on-line algorithm to update Fp(e) for all events e on arrival of a new

event.

O(|E
(k)
j |+ |C

(k)
i |). This is because between two consecutive invocations of CONTC,

either e or f advances to its next event. Further, whereas e, if different from ⊤i, is

constrained to be concurrent with e(k), there is no such constraint on f . Summing

over all possible values for j and i, CONTC is invoked O(n|E(k)|) times. This gives

us a time-complexity of O(n|E|T ) for updating the slice, which is same as that of

computing the slice from scratch. (Note that the earliest event on a process that

did not happen-before e(k)—at line 6—can be determined in O(1) time using the

Fidge/Mattern’s vector timestamp.)

In order to reduce the time complexity further, we proceed as follows. Sup-
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11a if f → e(k) then

11b set f to the earliest event on Pi such that f 6→ e(k);
11c else f := succ(f);

endif;

Figure 4.9: Improving the time-complexity of the algorithm in Figure 4.8.

pose, at line 10, CONTC(Ĝ(k)[e, f ], p) evaluates to true and f → e(k). It can be

shown that CONTC(Ĝ(k)[e, g], p) will also evaluate to true for all events g such that

g → e(k). Formally,

Lemma 4.25 Consider an event e ∈ E(k−1) and a process Pj. Further, let f be an

event on Pj with f → e(k) such that F k−1
p (e)[j]

P
→ f . Then,

(CONTC(Ĝ(k)[e, f ], p) evaluates to true) ∧ (g → e(k)) ⇒

CONTC(Ĝ(k)[e, g], p) evaluates to true

Proof: Since f
P
→ e(k), f ∈ E(k−1). Further, F k−1

p (e)[j]
P
→ f . From Theorem 4.15,

CONTC(Ĝ(k−1)[e, f ], p) evaluates to false. Equivalently, there is no consistent cut

of Ĝ(k−1)[e, f ] that satisfies p. However, CONTC(Ĝ(k)[e, f ], p) evaluates to true.

This implies that there exists a consistent cut of Ĝ(k)[e, f ], say C, that satisfies

p. In other words, C is a consistent cut of G(k), f ∈ C, e /∈ C and C satisfies p.

Clearly, e(k) ∈ C; otherwise, C is a consistent cut of Ĝ(k−1)[e, f ] that satisfies p—a

contradiction. Since g → e(k), C also contains g. Therefore CONTC(Ĝ(k)[e, g], p)

also evaluates to true. ¤

Therefore, when the condition of the while loop at line 10 evaluates to true

and f → e(k), rather than advancing f to succ(f), we can advance f directly to the

earliest event on Pj that did not happen-before e(k). This reduces the number of

times an instance of CONTC is evaluated to O(|C
(k)
j |+|C

(k)
i |+1). The modification is
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described in Figure 4.9. Now, summing over all possible values for j and i, when e(k)

arrives, CONTC needs to be invoked O(n|C(k)|+n2) times to update the slice. Next,

summing over the arrival of |E| events, the total number of times CONTC is invoked

is given by O(n|C| + n2|E|), where C is the set of concurrent pairs of events in the

computation. Assuming that the time-complexity of solving CONTC increases with

the number of events, the overall time-complexity is given by O(n|C|T + n2|E|T ),

where O(T ) is the worst-case time-complexity of solving CONTC for a computation

consisting of |E| events. Note that the time-complexity of executing lines 1-3, over

|E| events, is given by O(|E|2), which can be ignored assuming that T = Ω(|E|).

Finally, the amortized time-complexity for updating the slice once—on arrival of an

event—is given by O(n(c+n)T ), where c = |C|/|E| denotes the average concurrency

in the computation. Formally,

Theorem 4.26 The time-complexity of the algorithm to update the slice on arrival

of a new event, described in Figure 4.8 and Figure 4.9, amortized over |E| events,

is O(n(c + n)T ), where n is the number of processes, c is the average concurrency

in the computation and O(T ) is the worst-case time-complexity of solving CONTC

for a computation consisting of |E| events.

In case c is low, say O(n), the on-line algorithm has an amortized time-

complexity of O(n2T ). In this case, therefore, rather than computing the slice

from scratch whenever an event arrives, it is much faster to update it using the

incremental algorithm. The (on-line) algorithm in this section only assumes that

the predicate can be detected efficiently; no other assumption is made about the

structure of the predicate. For a special class of predicates, however, namely non-

temporal regular predicates, we have developed a much faster O(n2) amortized

time-complexity algorithm to compute the slice in an on-line manner [MSGA03].

80



4.4.2 Technical Details

Lemma 4.22 Given an event e ∈ E(k−1) and a process Pj,

(j 6= jk) ∨ (e /∈ critical(k)) ⇒ F k−1
p (e)[j]

P
→ F k

p (e)[j] (4.1)

(j = jk) ∧ (e ∈ critical(k)) ⇒ F k
p (e)[j] ∈ {e(k),⊤j} (4.2)

Proof: First, consider an event f ∈ E(k−1) on process Pj . We have,

f
P
→ F k−1

p (e)[j]

≡ { F k−1
p (e)[j] is the earliest event on Pj reachable from e in slice(G(k−1), p) }

(e, f) /∈ P(slice(G(k−1), p))

≡ { f ∈ E(k−1) and using Theorem 4.15 }

〈∃ C : C is a consistent cut of Ĝ(k−1)[e, f ] : C satisfies p〉

≡ { definition of Ĝ(k−1)[e, f ] }

〈∃ C : C is a consistent cut of G(k−1) : (f ∈ C) ∧ (e /∈ C) ∧ (C satisfies p)〉

⇒ { Observation 4.19 }

〈∃ C : C is a consistent cut of G(k) : (f ∈ C) ∧ (e /∈ C) ∧ (C satisfies p)〉

≡ { definition of Ĝ(k)[e, f ] }

〈∃ C : C is a consistent cut of Ĝ(k)[e, f ] : C satisfies p〉

≡ { using Theorem 4.15 }

(e, f) /∈ P(slice(G(k), p))

≡ { F k
p (e)[j] is the earliest event on Pj reachable from e in slice(G(k), p) }

f
P
→ F k

p (e)[j]

In other words, whenever f ∈ E(k−1), f
P
→ F k−1

p (e)[j] implies that f
P
→ F k

p (e)[j].

Now, we prove the two implications.

Equation (4.1) Consider an event f ∈ E(k) on process Pj . Suppose f
P
→

F k−1
p (e)[j]. In case j is different from jk, f is different from e(k) and therefore f ∈

E(k−1). On the other hand, if e /∈ critical(k), then F k−1
p (e)[j]

P
→ e(k) and therefore
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f ∈ E(k−1). In either case, f ∈ E(k−1). Using the above result, f
P
→ F k

p (e)[j]. In

other words, whenever f ∈ E(k), f
P
→ F k−1

p (e)[j] implies that f
P
→ F k

p (e)[j]. This,

in turn, means that F k−1
p (e)[j]

P
→ F k

p (e)[j].

Equation (4.2) Consider an event f ∈ E(k) on process Pj , where j = jk. Suppose

f
P
→ e(k). Clearly, f ∈ E(k−1). Further, in case e is a critical event, f

P
→ F k−1

p (e)[j].

Using the above result, f
P
→ F k

p (e)[j]. In other words, whenever f ∈ E(k), f
P
→ e(k)

implies that f
P
→ F k

p (e)[j]. This, in turn, means that e(k) P
→ F k

p (e)[j]. ¤

Lemma 4.23 Given an event e ∈ E(k−1) and a process Pj,

(e → e(k)) ∧
(
(j 6= jk) ∨ (e /∈ critical(k))

)
⇒ F k−1

p (e)[j] = F k
p (e)[j] (4.3)

(e → e(k)) ∧
(
(j = jk) ∧ (e ∈ critical(k))

)
⇒ F k

p (e)[j] = e(k) (4.4)

Proof: Equation (4.3) From Lemma 4.22, F k−1
p (e)[j]

P
→ F k

p (e)[j]. Assume, on the

contrary, that F k−1
p (e)[j]

P
→ F k

p (e)[j]. For convenience, let f = F k−1
p (e)[j]. We

have,

f
P
→ F k

p (e)[j]

≡ { F k
p (e)[j] is the earliest event on Pj reachable from e in slice(G(k), p) }

(e, f) /∈ P(slice(G(k), p))

≡ { using Theorem 4.15 }

〈∃ C : C is a consistent cut of Ĝ(k)[e, f ] : C satisfies p〉

≡ { definition of Ĝ(k)[e, f ] }

〈∃ C : C is a consistent cut of G(k) : (f ∈ C) ∧ (e /∈ C) ∧ (C satisfies p)〉

⇒ { e → e(k) }

〈∃C : C is a consistent cut of G(k) : (f ∈ C) ∧ (e /∈ C) ∧ (C satisfies p)∧

(e(k) /∈ C)〉

≡ { a consistent cut of G(k) that does not contain e(k) is a consistent cut of

G(k−1) }

〈∃C : C is a consistent cut of G(k−1) : (f ∈ C) ∧ (e /∈ C) ∧ (C satisfies p)∧
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(e(k) /∈ C)〉

≡ { e(k) is not an event in G(k−1) }

〈∃ C : C is a consistent cut of G(k−1) : (f ∈ C) ∧ (e /∈ C) ∧ (C satisfies p)〉

≡ { definition of Ĝ(k−1)[e, f ] }

〈∃ C : C is a consistent cut of Ĝ(k−1)[e, f ] : C satisfies p〉

≡ { using Theorem 4.15 }

(e, f) /∈ P(slice(G(k−1), p))

⇒ { f is F k−1
p (e)[j] }

a contradiction

Equation (4.4) Note that C(slice(G(k), p)) ⊆ C(G(k)). In case e → e(k), there is a

path from e to e(k) in G(k). Thus, from Lemma 4.8, there is a path from e to e(k) in

slice(G(k), p) as well. Consequently, F k
p (e)[j]

P
→ e(k). From Lemma 4.22, F k

p (e)[j] is

either e(k) or ⊤j . This, in turn, implies that F k
p (e)[j] is e(k). ¤

Lemma 4.24 Given a process Pj,

j 6= jk ⇒ F k
p (e(k))[j] = F k−1

p (⊤jk
)[j] (4.5)

j = jk ⇒ F k
p (e(k))[j] = min{e(k), F k−1

p (⊤jk
)[j]} (4.6)

Proof: Consider an event f ∈ E(k) with f 6= e(k). We have,

〈∃ C : C is a consistent cut of Ĝ(k)[e(k), f ] : C satisfies p〉

≡ { definition of Ĝ(k)[e(k), f ] }

〈∃ C : C is a consistent cut of G(k) : (f ∈ C) ∧ (e(k) /∈ C) ∧ (C satisfies p)〉

≡ { a consistent cut of G(k) that does not contain e(k) is a consistent cut of

G(k−1) }

〈∃ C : C is a consistent cut of G(k−1) : (f ∈ C) ∧ (e(k) /∈ C) ∧ (C satisfies p)〉

≡ { e(k) is not an event in G(k−1) }

〈∃ C : C is a consistent cut of G(k−1) : (f ∈ C) ∧ (C satisfies p)〉
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≡ { definition of Ĝ(k−1)[⊤jk
, f ] }

〈∃ C : C is a consistent cut of Ĝ(k−1)[⊤jk
, f ] : C satisfies p〉

Equation (4.5) Clearly, using the above result and Theorem 4.15, F k
p (e(k))[j] =

F k−1
p (⊤jk

)[j].

Equation (4.6) In case F k−1
p (⊤jk

)[j] is different from ⊤jk
, using the above result and

Theorem 4.15, F k
p (e(k)) = F k−1

p (⊤jk
)[j]. On the other hand, if F k−1

p (⊤jk
)[j] = ⊤jk

,

then CONTC(Ĝ(k)[e(k), e(k)], p) evaluates to false and therefore F k
p (e(k))[j] = e(k).

¤
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Chapter 5

Slicing for Temporal Predicates

In this chapter, we discuss our results in slicing for temporal predicates.

5.1 Overview

Many different methods have been devised for automatically checking temporal logic

predicates on execution traces by examining the state space models of system be-

havior. These methods all depend on decision procedures that explicitly represent

the state space using a list or a table that grows exponentially in the number of

processes, components, or state elements (state explosion problem). In this chapter

we develop algorithms that represent the state space that satisfies a temporal logic

predicate using a “slice” instead of using an explicit representation.

We first define the problem formally in Section 5.2. Informally, the slice

of a computation with respect to a temporal predicate contains all consistent cuts

of the slice that satisfies the temporal predicate. In [MG01a], it was shown that

computing slices with respect to an arbitrary predicate is an intractable problem

and efficient slicing algorithms with respect to non-temporal regular predicates were
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presented. Regularity of a predicate plays an important role in developing efficient

slicing algorithms for temporal predicates as well. In Chapter 3, we defined a regular

subset of CTL called RCTL, which contains four temporal operators EF, AG, EG, and

EX[j] and where the atomic propositions are non-temporal regular predicates. We

obtained this subset by proving in Chapter 3 that temporal predicates EF(p), AG(p),

EG(p), and EX(p)[j] are regular when p is regular.

Our slicing algorithms for temporal regular predicates have an overall time-

complexity of O(n|E|), where n is the number of processes and E is the set of

events in a given computation. The complexity of computing the slice with respect

to a predicate from RCTL is dominated by the complexity of computing the slice

for an atomic proposition, which is a non-temporal regular predicate. The slicing

algorithm complexity is O(n2|E|) for a non-temporal regular predicate. Therefore,

the complexity of computing the slice for a predicate from RCTL is O(|p| · n2|E|),

where |p| is the number of boolean and temporal operators in p. We present our

slicing algorithms for temporal regular predicates in RCTL in Section 5.3.

In Section 5.4 we show that we can use our slicing algorithms for tempo-

ral regular predicates to obtain slices for temporal predicates in RCTL+, which

extends RCTL with temporal operator EX and boolean operator ∨ and where the

atomic propositions are non-temporal predicates. The slicing algorithm complexity

is O(n|E|T ) for a non-temporal predicate as we showed in the previous chapter,

where T is the complexity of detecting the predicate under EF operator. Therefore,

the complexity of computing the slice for a predicate from RCTL+ is O(|p| ·n|E|T )r.

Note that in this chapter we do not assume the efficient predicate evalua-

tion and the efficient advancement properties (Property 3.15 and Property 3.17 of

Section 3.3) in developing our slicing algorithms for temporal predicates. This is

because, an efficient way of computing the crucial element (efficient advancement

property) for a temporal predicate is not known. Also, our goal in this dissertation
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is to develop efficient predicate detection algorithms to determine the satisfiability

of temporal predicates, so assuming the efficient predicate evaluation property de-

feats this purpose. Therefore, in particular, we cannot use Garg and Mittal slicing

algorithm for non-temporal regular predicates to compute slices for temporal regular

predicates. Similarly, we cannot use our slicing algorithm from previous chapter to

obtain an efficient temporal predicate slicing algorithm. That algorithm assumes

the presence of an efficient EF(p) algorithm. This implies that when p is tempo-

ral such as EG(p), we need an efficient algorithm to detect EF(EG(p)). Although

there are efficient algorithms to detect EG(p) (which we will show in next chapter),

those algorithms can not be used when there is a nesting of temporal operators.

Intuitively, EF(EG(p)) checks whether there exists any consistent cut that satisfies

EG(p), whereas the algorithms in the literature (and which we will present in the

next chapter for p linear) checks whether the initial consistent cut satisfies EG(p).

5.2 Problem Statement

In this chapter we are concerned with computing those consistent cuts of a com-

putation that satisfy a temporal predicate. In other words, given a computation

G and a temporal predicate AG(p), we are interested in computing consistent cuts

C ∈ C(G) such that G, C |= AG(p). The semantics of a temporal predicate is given

with respect to a graph. More formally, a cut C that belongs to a graph G satisfies

AG(p) if for all fullpaths π starting from C, 〈∀ i : 0 6 i < |π| : πi |= p〉. A full-

path C0, C1, . . . , Ck = E of the distributive lattice (C(G),⊆) satisfies that for each

0 6 i < k, Ci ⊲ Ci+1. This implies that the successor relation ⊲ is also defined with

respect to G. Formally,

Definition 5.1 (slice for temporal predicates) A slice of a graph G with re-

spect to a temporal predicate is a directed graph obtained from G by adding edges

such that:
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(1) it contains all consistent cuts of the computation that satisfy the temporal pred-

icate and

(2) of all the graphs that satisfy (1), it has the least number of consistent cuts.

We denote the slice of a computation G = 〈E,→〉 with respect to a temporal

predicate AG(p) by slice(G, AG(p)).

5.3 Slicing for RCTL Predicates

From the definition of a slice, we know that the slice of a computation is obtained by

adding edges to the computation. In the previous chapter, we showed an efficient

way of adding edges to compute the slice of a computation with respect to non-

temporal predicates. In this chapter, we show an efficient way of adding edges to

compute the slice of a computation with respect to temporal predicates.

Clearly, every nontrivial consistent cut of slice(G, p) is a consistent cut of G.

From the definition of AG(p) we know that every consistent cut that satisfies AG(p)

also satisfies p. This implies that every nontrivial consistent cut of slice(G, AG(p))

is a consistent cut of slice(G, p). Similarly for EG(p).

Observation 5.2

C(slice(G, AG(p))) ⊆ C(slice(G, p)) ⊆ C(G)

C(slice(G, EG(p))) ⊆ C(slice(G, p)) ⊆ C(G)

Furthermore, using Lemma 4.8, we obtain

Observation 5.3

P(slice(G, AG(p))) ⊇ P(slice(G, p)) ⊇ P(G)

P(slice(G, EG(p))) ⊇ P(slice(G, p)) ⊇ P(G)
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which in turn implies that the slice with respect to AG(p) (or EG(p)) can be

obtained by adding edges to the slice for p.

Since the set of consistent cuts that satisfy EF(p) and EX(p)[j] may not be a

subset of the set of consistent cuts of the slice for p, the slice with respect to EF(p)

and EX(p)[j] cannot always be obtained by adding edges to the slice for p. Rather,

we obtain the slice with respect to these temporal predicates by adding edges to the

computation G.

Every slicing algorithm in this section takes as input a graph G, and its slice

with respect to a regular predicate p. The output of each algorithm is the slice of

G with respect to a temporal predicate such as EF(p).

In Figure 5.2(a) and (d), we show two slices of the computation given in

Figure 5.1. The lattices of consistent cuts of the slices are displayed in Figure 5.2(b)

and (e). In this chapter, we chose to display the set of consistent cuts of the slices

as in Figure 5.2(c) and (f), that is, explicitly showing those consistent cuts of the

computation that satisfy the predicate and that do not satisfy the predicate. This

makes it easier to see which consistent cuts of the computation belong to the slice.

5.3.1 Computing Slices with respect to EF(p)

In this section, we explain algorithm Algo5.1 in Figure 5.3 for computing the slice of

a graph G with respect to EF(p).

Consider a graph G and slice(G, p). Let W denote the greatest cut that

satisfies p. Notice that W is the final consistent cut of slice(G, p). In the algorithm,

we construct a graph H with vertices as the vertices in G and the following edges:

1. all the edges in G, and

2. from ⊤ to the successors of events in frontier(W ).

The first type of edges ensure that the consistent cuts of H are a subset of

89



2e 3e

2f 3f

1e

1f
P 2

P 1 2e ,

1e ,2f

2f 1f

2e ,

3f

3f2e , 3e , 2f

2f

1e ,

1f

3f

3e , 1f1e , 3f

(a)

2 4 5

0 2 6

Initially x=0, y=0

x

y

1f

,3e{

{ {

{ {

{

{

{

{ {

{

}

}

}

}

}

}

}}

}

}

}

}{

{ }

(b)

C

C

Figure 5.1: (a) A computation, and (b) the set of consistent cuts
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Figure 5.2: (a) A slice of the computation above, (b) the set of consistent cuts, (c)

the set of consistent cuts displayed as a subset of the set of consistent cuts of the

computation, (d) A slice of the computation above, (e) the set of consistent cuts,

(f) the set of consistent cuts displayed as a subset of the set of consistent cuts of

the computation
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Algorithm Algo 5.1:

Input: (1) a directed graph G, and (2) slice(G, p)

Output: slice(G, EF(p))

1 H := G;

2 if slice(G, p) is nonempty then

3 W := the final consistent cut of slice(G, p);

4 ∀ e ∈ frontier(W ): add an edge from the vertex ⊤ to succ(e) in H;

else

5 add an edge from the vertex ⊤ to ⊥ in H; // H becomes an empty slice
endif;

6 return H;

Figure 5.3: The algorithm to compute slice(G, EF(p)).

the consistent cuts of G. The second type of edges ensure that the final consistent

cut of H is W , therefore all consistent cuts of G that can reach W is a consistent

cut of H. From the definition of EF(p), all consistent cuts of the computation that

can reach the greatest consistent cut that satisfies p, that is W , will also satisfy

EF(p) and furthermore these are the only cuts that satisfy EF(p). We can find the

cut W using slice(G, p) when it is nonempty. We construct the slice for EF(p) from

the computation so that the slice contains all consistent cuts of the computation

that can reach W . To ensure that all cuts that cannot reach W do not belong to

the slice, we add edges from ⊤ to the successors of events in the frontier of W in

the computation. Note that adding an edge from ⊤ to an event makes any cut that

contains the event trivial.

Consider the computation depicted in Figure 5.1(a) and its slice depicted in

Figure 5.4(a). The application of algorithm Algo5.1 is shown in Figure 5.4(c). The

frontier of the final cut of the slice in Figure 5.4(a) is frontier(W ) = {e2, f3}. After

adding edges from ⊤ to the successor of e2, that is e3, and to the successor of f3,

that is ⊤, we obtain the slice with respect to EF(p) depicted in Figure 5.4(c).
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Figure 5.4: (a) A slice of the computation in Figure 5.1(a), (b) the corresponding

sublattice, (c) The application of the temporal operator EF on the slice in (a), (d)

the corresponding sublattice

We now establish that the above-mentioned edges are sufficient to eliminate

all those consistent cuts of the computation that do not satisfy EF(p).

Lemma 5.4 Every consistent cut of H satisfies EF(p).

Proof: Consider a consistent cut C of H. slice(G, p) must be nonempty in order

for C to exist, otherwise H is an empty slice. Since the final consistent cut of H is

W , C ⊆ W . Therefore, C satisfies EF(p). ¤
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Next, we show that the above constructed graph retains all consistent cuts

of the computation that satisfy EF(p).

Lemma 5.5 Every consistent cut of G that satisfies EF(p) is a consistent cut of H.

Proof: Consider a consistent cut C of G that satisfies EF(p). In this case, slice(G, p)

is nonempty. Assume, on the contrary, that C is not a consistent cut of H. Thus,

there exist events e and f such that there is an edge from e to f in H, f belongs

to C but e does not. Since C is a consistent cut of G, the edge from e to f could

be only of type (2). This implies that C contains an event from the successors of

events in W . Since C satisfies EF(p), there exist a cut D ⊇ C such that D satisfies

p. Since W is the greatest cut that satisfies p, D ⊆ W . However, D contains an

event from the successors of events in W so D 6⊆ W—a contradiction. ¤

From the previous two lemmas, it follows that:

Theorem 5.6 H is cut-equivalent to slice(G, EF(p)).

Complexity Analysis 5.7 The graph H has O(|E|) vertices, O(|E|) edges (in fact

O(n+ |E|) edges, but we assume that n is much smaller than |E|) and can be built in

O(n|E|) time as explained next. The slice with respect to a regular predicate contains

O(n|E|) edges using the skeletal representation. The nonemptiness check at line 2

can be done by checking whether the number of strongly connected components of

the input slice is greater than one, which takes O(n|E|) time. We can compute the

final consistent cut of this slice, that is W , by proceeding backwards from vertex ⊤

as follows: First, we compute the strongly connected component of the slice that

contains ⊤, in O(n|E|) time. Second, for each process Pi, starting from the final

event on Pi, we find the predecessors of events until we reach events on Pi that

do not belong to the strongly connected component. This step takes O(|Ei|) time.
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Algorithm Algo 5.2:

Input: (1) a directed graph G, and (2) slice(G, p)

Output: slice(G, AG(p))

1 H := slice(G, p); // FAG(p)(e) = Fp(e)

2 for each process Pi do

3 for each event e on Pi do // visited in the order given by
P
→

4 for each process Pj do

5 f := Fp(e)[j];

6 if f
P
→ F(e)[j] then // (e, f) ∈ P(slice(G, p)) ∧ (e, f) 6∈ P(G)

7 add an edge from e to ⊥ in H; // FAG(p)(e)[j] = ⊥

8 continue; // no need to add an edge from e to ⊥ again
endif;

endfor;

endfor;
endfor;

9 return H;

Figure 5.5: The algorithm to compute slice(G, AG(p)) using Fp(e) for each event e.

Summing up for all processes, we can compute the frontier of W in O(|E|) time.

Finally, there are n successors of the events in the frontier of W , therefore adding

edges from ⊤ to these successor events take O(n) time. Thus the algorithm has

O(n|E|) overall time-complexity.

5.3.2 Computing Slices with respect to AG(p)

In this section, we explain algorithm Algo5.2 in Figure 5.5 for computing the slice of

a graph G with respect to AG(p).

Consider a graph G and its slice(G, p). In the algorithm, we construct a

graph H with vertices as the vertices in G and the following edges:

1. all the edges in slice(G, p), and

2. from e to ⊥ if Fp(e)[j]
P
→ F(e)[j].

The first type of edges ensure that the consistent cuts of H are a subset of the

94



consistent cuts of slice(G, p). This follows from Observation 5.2 and Observation 5.3.

The second type of edges ensure that consistent cuts of slice(G, p) that do not include

vertex e of an additional edge (e, f) do not belong to slice(G, AG(p)), whereas the

rest of the consistent cuts belong to slice(G, AG(p)). The semantics of AG(p) is

given with respect to a graph and a consistent cut. Notice that a consistent cut C

of slice(G, p) (which is also a consistent cut of G) satisfies AG(p) with respect to G, if

all fullpaths starting from C in G also exist in slice(G, p). This is because all cuts in

slice(G, p) satisfies p. When slice(G, p) contains an additional edge (e, f) that does

not exist in G, some fullpaths that start from C in G, namely the ones in which f is

included (executed) before e, do not exist in slice(G, p). Hence, C does not satisfy

AG(p). Since every nontrivial consistent cut includes ⊥, by adding an edge from e to

⊥ (by the definition of a consistent cut), e is included in every nontrivial consistent

cut of H.

Consider the computation depicted in Figure 5.1(a) and its slice depicted

in Figure 5.6(a), which contains an additional edge (f2, e3). The application of

algorithm Algo5.2 is shown in Figure 5.6(c). The consistent cuts {⊥}, {f1}, {e1, f1},

and {e2, f1} of the slice in Figure 5.6(a) do not include vertex f2 of the additional

edge (f2, e3). Hence, it is easy to see that these four consistent cuts do not satisfy

AG(p). Therefore we add an edge from vertex f2 to ⊥ and obtain the slice with

respect to AG(p) depicted in Figure 5.6(c). Note that we exploit the transitivity of

the edge relation and not display other added edges such as the edge from vertex f1

to ⊥.

We now establish that the above-mentioned edges are sufficient to eliminate

all those consistent cuts of the computation that do not satisfy AG(p).

In order to check for the existence of an edge that does not exist in the graph

but in the slice, it suffices to check the F(e). The next lemma follows from the

definition of F(e).
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Figure 5.6: (a) A slice of the computation in Figure 5.1(a), (b) the corresponding

sublattice, (c) The application of the temporal operator AG on the slice in (a), (d)

the corresponding sublattice

Lemma 5.8 Given a graph G, there exist vertices e and f in V(G) such that (e, f) ∈

P(slice(G, q)) ∧ (e, f) 6∈ P(slice(G, r)) ⇐⇒ Fq(e)[j]
P
→ Fr(e)[j], where f = Fq(e)[j]

and j = proc(f).

Proof:

(⇒) If (e, f) ∈ P(slice(G, q)) and (e, f) 6∈ P(slice(G, r)) then there is no path from
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e to any vertices before f (in process order) on Pj in slice(G, r). We also know that

there is an edge from e to Fr(e)[j] in slice(G, r). Then Fr(e)[j] 6
P
→ f .

(⇐) If Fq(e)[j]
P
→ Fr(e)[j] then there is an edge from e to f in slice(G, q) but no

such edge exists in slice(G, r). ¤

Lemma 5.9 Every consistent cut of H satisfies AG(p).

Proof: Consider a consistent cut C of H. Assume, on the contrary, that C does

not satisfy AG(p). Thus, there exists a consistent cut D ⊇ C in G such that D does

not satisfy p. Therefore, D does not belong to slice(G, p). This implies that there

exist events e and f such that there is an edge from (e, f) ∈ slice(G, p), f belongs

to D but e does not. Setting q = p, r = true, and j = proc(f) in Lemma 5.8,

Fp(e)[j]
P
→ F(e)[j]. This means that there exists an edge from e to ⊥ of type (2) in

H. We know that every nontrivial consistent cut of every directed graph contains

⊥. Since there is an edge (e,⊥) in H, every nontrivial consistent cut also contains

e. This implies that C contains e. However, since e 6∈ D and C ⊆ D, we have

e 6∈ C—contradiction. ¤

Lemma 5.10 Every consistent cut of G that satisfies AG(p) is a consistent cut of

H.

Proof: Consider a consistent cut C of G that satisfies AG(p). Assume, on the

contrary, that C is not a consistent cut of H. Thus, there exist events e and f

such that there is an edge from e to f in H, f belongs to C but e does not. Since

C is a consistent cut of G, the edge from e to f could be only of type (1) or of

type (2). If the edge is of type (1) then C does not belong to slice(G, p) since e

does not belong to C. Thus C does not satisfy p. However, C satisfies AG(p)—

contradiction. If the edge is of type (2) then f = ⊥ and there exists a process j

such that Fp(e)[j]
P
→ F(e)[j]. Equivalently, there is an edge from e to Fp(e)[j] in
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slice(G, p) that does not exist in G. For convenience, let g = Fp(e)[j]. If g ∈ C

then C does not belong to slice(G, p) since C does not contain e. Thus C does not

satisfy p. However, C satisfies AG(p)—contradiction. If g 6∈ C then consider a path

in G from C to the final consistent cut in which g is executed before e (it is always

possible to find such a path because there is no path from e to g in G). Consider

a consistent cut immediately after the execution of g, say D. Again D does not

belong to slice(G, p) because D contains g but not e. Thus D does not satisfy p. It

follows that there exists a consistent cut D on a path from C to the final consistent

cut such that D does not satisfy p. Hence, C does not satisfy AG(p)—contradiction.

¤

From the previous two lemmas, it follows that:

Theorem 5.11 H is cut-equivalent to slice(G, AG(p)).

Remark 5.12 The semantics of AG(p) is given with respect to a graph and a con-

sistent cut. Notice that a consistent cut C of slice(G, p) (which is also a consistent

cut of G) satisfies AG(p) with respect to G, if all fullpaths starting from C in G also

exist in slice(G, p). A fullpath C0, C1, . . . , Ck = E of the distributive lattice (C(G),⊆)

satisfies that for each 0 6 i < k, Ci ⊲ Ci+1. Observe that the successor relation is

also defined with respect to a graph.

Let H = slice(G, p). Since p holds for all consistent cuts of C ∈ C(H), we

have that H, C |= AG(p). The consistent cuts of the slice belong to the the set of

consistent cuts of the computation as well, and one might falsely infer that for all

C ∈ C(H), we have that G, C |= AG(p). However, this may not be true since some

fullpaths starting from C in G may not exist in slice(G, p).

For example, consider the slice in Figure 5.2(a). The consistent cut {e2, f1}

satisfies AG(p) with respect to the slice. However, the same consistent cut does

not satisfy AG(p) with respect to the computation. This is because there exists a
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consistent cut {e3, f1} that does not satisfy p on a fullpath starting from {e2, f1} in

the computation, which can be easily seen in Figure 5.2(c). However, such a fullpath

does not exist in the slice. In other words, {e2, f1}, {e3, f1}, {e3, f2}, {e3, f3} is a

fullpath of the computation, yet it is not a fullpath of the slice in Figure 5.2(c).

Similarly, {f1}, {f2}, {e2, f2}, {e2, f3} is a fullpath of the slice in Figure 5.2(a),

however, it is not a fullpath of the computation G.

We assume the computation is given to us as n queues of events—one for

each process. Further, the vector clock for each event e is available to us, that is

J(e), from which F(e) = Ftrue(e) can be easily computed using algorithm Algo4.1 in

O(n|E|) time. Furthermore, we assume that the skeletal representation of slice(G, p)

and thus Fp(e) is given.

Complexity Analysis 5.13 The graph H has O(|E|) vertices, O(n|E|) edges (one

edge is added for each event e in the graph at line 7 and slice(G, p) has at most

O(n|E|) edges) and can be built in O(n|E|) time as explained next. Let Ei denote

the set of events on process Pi. The for loop at line 4 is executed exactly n times.

Each iteration of the for loop has O(1) time-complexity because the condition at

line 6 can be ascertained by a single comparison and adding an edge takes constant

time. Thus the complexity of for loop at line 3 is O(n|Ei|). Summing up over all

processes, we have O(n|E|) time-complexity.

5.3.3 Computing Slices with respect to EG(p)

In this section, we explain algorithm Algo5.2 in Figure 5.7 for computing the slice of

a graph G with respect to EG(p).

The algorithm for EG(p) slicing displayed in Figure 5.7 is similar to the AG(p)

slicing algorithm. However in this case, for each additional edge (e, f) that generates

a nontrivial strongly connected component in slice(G, p), we add an edge from the

vertex e to the vertex ⊥. This is different from the algorithm for AG(p) where for
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Algorithm Algo 5.3:

Input: (1) a directed graph G, and (2) slice(G, p)

Output: slice(G, EG(p))

1 H := slice(G, p); // FEG(p)(e) = Fp(e)

2 for each process Pi do

3 for each event e on Pi do // visited in the order given by
P
→

4 for each process Pj do

5 f := Fp(e)[j];

6 if f
P
→ F(e)[j] and Fp(f)[i]

P
→ e then

// (e, f), (f, e) ∈ P(slice(G, p)) and (e, f) 6∈ P(G)

7 add an edge from e to ⊥ in H; // FEG(p)(e)[j] = ⊥

8 continue; // no need to add an edge from e to ⊥ again
endif;

endfor;
endfor;

endfor;

9 return H;

Figure 5.7: The algorithm to compute slice(G, EG(p)) using Fp(e) for each event e.

each additional edge (e, f) in slice(G, p), we add an edge from the vertex e to the

vertex ⊥.

Consider a graph G and its slice(G, p). In the algorithm, we construct a

graph H with vertices as the vertices in G and the following edges:

1. all the edges in slice(G, p), and

2. from e to ⊥ if Fp(e)[j]
P
→ F(e)[j] and Fp(f)[i]

P
→ e.

The first type of edges ensure that the consistent cuts of H are a subset of the

consistent cuts of slice(G, p). This follows from Observation 5.2 and Observation 5.3.

The second type of edges ensure that consistent cuts of slice(G, p) that do not include

strongly connected components generated by an additional edge (e, f) are disallowed

from slice(G, EG(p)), whereas the rest of the consistent cuts belong to slice(G, EG(p)).

The semantics of EG(p) is given with respect to a graph and a consistent cut. Notice
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that a consistent cut C of slice(G, p) (which is also a consistent cut of G) satisfies

EG(p) with respect to G, if some fullpaths starting from C in G also exist in slice(G, p).

When there is no such strongly connected component in G, the fullpaths in G can

be classified as the ones that execute e before f and those that execute f before e.

When slice(G, p) contains a strongly connected component that does not exist in G,

then a consistent cut upon including a single vertex from the component includes

all vertices from the component. This implies that no fullpaths that start from C

in G exist in slice(G, p). Hence, C does not satisfy EG(p). Since every nontrivial

consistent cut includes ⊥, by adding an edge from e to ⊥ (by the definition of a

consistent cut), the strongly connected component generated by an additional edge

(e, f) is included in every nontrivial consistent cut of H.

Consider the computation depicted in Figure 5.1(a) and its slice depicted in

Figure 5.8(a), which contains two additional edges, (e2, e1) and (f3, e3). Only one

of these edges, (e2, e1), generates a nontrivial strongly connected component in the

slice. Therefore an edge from e2 to ⊥ is added to obtain the slice with respect to

EG(p) depicted in Figure 5.8(c).

As another example, consider the computation in Figure 5.1(a) and the slice

in Figure 5.6(a) as input to the EG(p) algorithm. The resulting slice is going to be

the same as Figure 5.6(a) because the additional edge (f2, e3) does not generate a

nontrivial strongly connected component.

We now establish that the above-mentioned edges are sufficient to eliminate

all those consistent cuts of the computation that do not satisfy EG(p).

Lemma 5.14 Every consistent cut of H satisfies EG(p).

Proof: It suffices to show that every fullpath in H is a fullpath in G. Consider a

fullpath π starting from a consistent cut C in H. Assume, on the contrary, that π is

not a fullpath starting from C in G. This implies that there exists a first consistent

cut Cj of π such that Cj ⊲ Cj+1 in H, but Cj 6 ⊲ Cj+1 in G. Equivalently,
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}

}
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Figure 5.8: (a) A slice of the computation in Figure 5.1(a), (b) the corresponding

sublattice, (c) The application of the temporal operator EG on the slice in (a), (d)

the corresponding sublattice

Cj+1 is not a successor of Cj in G. We know that Cj ⊲ Cj+1 if and only if

Cj+1 = Cj ∪ {e}, where e is the set of vertices in a strongly connected component

in a graph and {e} ∩ Cj = ∅. From the definition of ⊲, it follows that there exists a

strongly connected component in H that does not exist in G. Let e be a vertex of

this component. Then there exists an edge from e to ⊥ of type (2) in H. We know

that every consistent cut of every directed graph contains ⊥. Since there is an edge
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(e,⊥) in H, every consistent cut that contains ⊥ also contains e. This implies that

Cj contains e. However, since e∩ ∈ Cj , we have e 6∈ Cj—contradiction. ¤

Lemma 5.15 Every consistent cut of G that satisfies EG(p) is a consistent cut of

H.

Proof: Consider a consistent cut C of G that satisfies EG(p). Assume, on the

contrary, that C is not a consistent cut of H. Thus, there exist events e and f

such that there is an edge from e to f in H, f belongs to C but e does not. Since

C is a consistent cut of G, the edge from e to f could be only of type (1) or of

type (2). If the edge is of type (1) then C does not belong to slice(G, p) since e

does not belong to C. Thus C does not satisfy p. However, C satisfies EG(p)—

contradiction. If the edge is of type (2) then f = ⊥ and there exists a process j such

that Fp(e)[j]
P
→ F(e)[j] and Fp(g)[i]

P
→ e, where g = Fp(e)[j]. Equivalently, there is

an edge from e to g in slice(G, p) that does not exist in G and there is an edge from

g to e in slice(G, p). If g ∈ C then C does not belong to slice(G, p) since C does not

contain e. Thus C does not satisfy p. However, C satisfies EG(p)—contradiction.

If g 6∈ C then there are two types of paths in G from C to the final consistent cut.

First type of paths is in which g is executed before e (it is always possible to find

such a path because there is no path from e to g in G). Consider a consistent cut

immediately after the execution of g, say D. Again D does not belong to slice(G, p)

because D contains g but not e. Thus D does not satisfy p. Second type of paths is

in which e is executed before g (it is possible to find such a path if there is no path

from g to e in G, otherwise such a path does not exist and we are done). Consider a

consistent cut immediately after the execution of e, say D. Again D does not belong

to slice(G, p) because D contains e but not g. Thus D does not satisfy p. It follows

that there exists a consistent cut D on all paths from C to the final consistent cut

such that D does not satisfy p. Hence, C does not satisfy EG(p)—contradiction. ¤
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From the previous two lemmas, it follows that:

Theorem 5.16 H is cut-equivalent to slice(G, EG(p)).

We assume the computation is given to us as n queues of events—one for

each process. Further, the vector clock for each event e is available to us, that is

J(e), from which F(e) = Ftrue(e) can be easily computed using algorithm Algo4.1 in

O(n|E|) time. Furthermore, we assume that the skeletal representation of slice(G, p)

and thus Fp(e) is given.

Complexity Analysis 5.17 The graph H has O(|E|) vertices, O(n|E|) edges (one

edge is added for each event e in the graph at line 7 and slice(G, p) has O(n|E|) edges

) and can be built in O(n|E|) time as explained next. Let Ei denote the set of events

on process Pi. The for loop at line 4 is executed exactly n times. Each iteration of the

for loop has O(1) time-complexity because the condition at line 6 can be ascertained

by a single comparison and adding an edge takes constant time. Thus the complexity

of for loop at line 3 is O(n|Ei|). Summing up over all processes, we have O(n|E|)

time.

5.3.4 Computing Slices with respect to EX(p)[j]

In this section, we explain algorithm Algo5.4 in Figure 5.9 for computing the slice of

a graph G with respect to EX(p)[j].

Consider a graph G and its slice(G, p). For each event e in G, let f =

Fp(e)[proc(f)]. In the algorithm, we construct a graph H with vertices as the

vertices in G and the following edges:

1. all the edges in G,

2. from pred(e) to pred(f) if proc(e) = proc(f) = j, and

3. from pred(e) to f if proc(e) = j, proc(f) 6= j, and
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Algorithm Algo 5.4:

Input: (1) a directed graph G, (2) slice(G, p), and (3) a process j

Output: slice(G, EX(p)[j])

1 H := G; // FEX(p)(e) = F(e)

2 for each process Pi do

3 for each event e on Pi do // visited in the order given by
P
→

4 for each process Pk do

5 f := Fp(e)[k];

6 if (Pk = Pj and Pi = Pj) then

7 add an edge from pred(e) to pred(f) in H;

endif;

8 if (Pi = Pj and Pk 6= Pj) then

9 add an edge from pred(e) to f in H;
endif;

10 if (Pk = Pj and Pi 6= Pj) then

11 add an edge from e to pred(f) in H;
endif;

12 if (Pk 6= Pj and Pi 6= Pj) then

13 add an edge from e to f in H;
endif;

endfor;
endfor;

endfor;

14 return H;

Figure 5.9: The algorithm to compute slice(G, EX(p)) using Fp(e) for each event e.

4. from e to pred(f) if proc(f) = j, proc(e) 6= j, and

5. from e to f if proc(e) 6= j, proc(f) 6= j.

The first type of edges ensure that the consistent cuts of H are a subset of

the consistent cuts of G. The second, third, fourth and fifth type of edges ensure

that only the consistent cuts that satisfy p at the next action of process j belong to

the slice. In other words, we would like the slice to be the same as the slice with

respect to p, except the edges to and from the process j, hence the next action of

process j. Specifically, when the condition for the third type of edge is satisfied,

then we know that there may exist a consistent cut that includes e and f and that
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satisfies p. We capture the predecessor of this cut by adding an edge from pred(e)

to f , thereby, when process j executes e, p holds. When the condition for the fourth

type of edge is satisfied, then we know that e must be executed before f . Hence, by

adding an edge from e to pred(f), we make sure that e has been executed, thereby,

the consistent reached when next time process j executes satisfies p.

Consider the computation depicted in Figure 5.1(a) and its slice depicted

in Figure 5.10(a), which contains two additional edges, (f1, e1) and (f2, e3). We

are interested in computing the slice of the computation with respect to EX(p)[j],

where j is process 1. We add edges from f1 and f2 to the predecessors of e1 and e3,

respectively. We obtain the slice with respect to EX(p)[1] depicted in Figure 5.10(c).

We now establish that the above-mentioned edges are sufficient to eliminate

all those consistent cuts of the computation that do not satisfy EX(p)[j].

Lemma 5.18 Given a process j, every consistent cut of H satisfies EX(p)[j].

Proof: Consider a consistent cut C of H. Let g be the frontier of C on process j.

Assume, on the contrary, that C does not satisfy EX(p)[j]. Thus, D = C∪{succ(g)}

does not satisfy p. Therefore, D does not belong to slice(G, p). This implies that

there exist events e and f such that there is an edge from (e, f) ∈ slice(G, p), f

belongs to D but e does not. We have the following cases:

• Both e and f are on process j: Since f belongs to D and f is on process j,

pred(f)
P
→ g. Therefore, pred(f) belongs to C. In this case, since there is an

edge from e to f in slice(G, p), there exists an edge of type (2), from pred(e)

to pred(f) in H. Hence, C contains pred(e). Since D does not contain e and

e and f are on the same process, C does not contain pred(e)—contradiction.

• proc(f) 6= j, proc(e) = j: Since e does not belong to D and e is on process

j, succ(g)
P
→ pred(e). Therefore, pred(e) does not belong to C. In this case,

since there is an edge from e to f in slice(G, p), there exists an edge of type
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Figure 5.10: (a) A slice of the computation in Figure 5.1(a), (b) the corresponding

sublattice, (c) The application of the temporal operator EX(p)[1] on the slice in (a),

(d) the corresponding sublattice

(3), from pred(e) to f in H. Since, D contains f and f is not on process j, C

contains f . Hence, C contains pred(e)—contradiction.

• proc(e) 6= j, proc(f) = j: Since f belongs to D and f is on process j,

pred(f)
P
→ g. Therefore, pred(f) belongs to C. In this case, since there is

an edge from e to f in slice(G, p), there exists an edge of type (4), from e to

107



pred(f) in H. Hence, C contains e. Since D does not contain e, C does not

contain e—contradiction.

• proc(e) 6= j and proc(f) 6= j: In this case, since there is an edge from e to f

in slice(G, p), there exists an edge of type (5), from e to f in H. Since both

e and f are not on process j, C contains f but not e. Therefore, C is not a

consistent cut of H—contradiction.

¤

Lemma 5.19 Given a process j, every consistent cut of G that satisfies EX(p)[j] is

a consistent cut of H.

Proof: Consider a consistent cut C of G that satisfies EX(p)[j]. Let g be the frontier

of C on process j. Assume, on the contrary, that C is not a consistent cut of H.

Thus, there exist events e and f such that there is an edge from e to f in H, f

belongs to C but e does not. Since C is a consistent cut of G, the edge from e to f

could be only of type (2), (3), (4) or of type (5).

• If (e, f) is of type (2), then both e and f are on process j. In this case, there

is an edge from succ(e) to succ(f) in slice(G, p). Since C does not include e,

D = C ∪ {succ(g)} does not include succ(e). Furthermore, since C includes

f , D = C ∪ {succ(g)} includes succ(f). Therefore, D is not a consistent cut

of slice(G, p) and does not satisfy p–contradiction.

• If (e, f) is of type (3), then e is on process j. In this case, there is an edge from

succ(e) to f in slice(G, p). Since C does not include e, D = C∪{succ(g)} does

not include succ(e). However, D includes f . Therefore, D is not a consistent

cut of slice(G, p) and does not satisfy p–contradiction.

• If (e, f) is of type (4), then f is on process j. In this case, there is an edge

from e to succ(f) in slice(G, p). Since C does not include e, D = C∪{succ(g)}
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does not include e, but D includes succ(f). Therefore, D is not a consistent

cut of slice(G, p) and does not satisfy p–contradiction.

• If (e, f) is of type (5), then both e and f are not on process j. In this

case, there is an edge from e to f in slice(G, p). Since C does not include e,

D = C ∪ {succ(g)} does not include e. However, D includes f . Therefore, D

is not a consistent cut of slice(G, p) and does not satisfy p–contradiction.

¤

From the previous two lemmas, it follows that:

Theorem 5.20 Given a process j, H is cut-equivalent to slice(G, EX(p)[j]).

We assume the computation is given to us as n queues of events—one for

each process. Further, the vector clock for each event e is available to us, that is

J(e), from which F(e) = Ftrue(e) can be easily computed using algorithm Algo4.1 in

O(n|E|) time. Furthermore, we assume that the skeletal representation of slice(G, p)

and thus Fp(e) is given.

Complexity Analysis 5.21 The graph H has O(|E|) vertices, O(n|E|) edges (at

most 4 edges are added for each event e in the graph at line 7, line 11, line 9, and

line 13 and since slice(G, p) has O(n|E|) edges ) and can be built in O(n|E|) time as

explained next. Let Ei denote the set of events on process Pi. The for loop at line 4

is executed exactly n times. Each iteration of the for loop has O(1) time-complexity

because each of the conditions at line 6, line 10, line 8, and line 12 can be ascertained

by a single comparison and adding an edge takes constant time.
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5.4 Slicing for RCTL+ Temporal Predicates

Using our slicing algorithms for temporal regular predicates, for non-temporal predi-

cates, and algorithms for composing slices under boolean operators given in [MG01a],

it is possible to compute slices with respect to temporal predicates in RCTL+.

We explain algorithm Algo5.5 in Figure 5.11 for computing the slice of a

graph G with respect to RCTL+ predicates. The slices are computed recursively

starting from the deepest nesting of predicates and applying the appropriate slicing

algorithm, either temporal or boolean, while proceeding outwards. In the figure, the

input to each algorithm has been specified next to the algorithm name in parenthe-

ses.

Following algorithm Algo5.5, now we present an example in Figure 5.12(a) for

computing the slice of the computation in Figure 5.1(a) with respect to AG(p ∧ EF(q)),

when p = (y > 6) and q = (2 6 x 6 4) ∧ (y > 2). First, we compute the slices with

respect to non-temporal predicates p and q using algorithm Algo4.3. Next, the slices

of the computation with respect to predicates EF(q), p, p∧EF(q) and AG(p ∧ EF(q))

are obtained, which are displayed in Figure 5.12(a), (c), (e), (g), respectively.

Complexity Analysis 5.22 Our slicing algorithms for temporal regular predicates

have an overall time-complexity of O(n|E|), where n is the number of processes

and E is the set of events in a given computation. The complexity of computing

the slice with respect to a predicate from RCTL is dominated by the complexity of

computing the slice for an atomic proposition, that is, a non-temporal predicate.

The slicing algorithm complexity is O(n2|E|) for a non-temporal regular predicate.

Therefore, the complexity of computing the slice for a predicate from RCTL using

algorithm Algo5.5 is O(|p| · n2|E|), where |p| is the number of boolean and temporal

operators in p. When the predicate is from RCTL+, the slicing algorithm complexity

is O(n|E|T ) for a non-temporal predicate as we showed in the previous chapter,

where T is the complexity of detecting the predicate under EF operator. Therefore,

110



Algorithm Algo 5.5:

Input: (1) a directed graph G, and (2) a predicate p

Output: slice(G, p)

1 if (p is an atomic proposition) then

return Algo4.3(G, p, CONTC); // returns skeletal representation

// adding edges to G in every algorithm below

2 else if ( p is boolean combination of RCTL predicates) then

3 if ( p = (q ∧ r) ) then

4 H := AND(slice(G, q), slice(G, r)); // the union of edges in both slices

5 else if ( p = (q ∨ r) ) then

6 H := OR(slice(G, q), slice(G, r));// the intersection of edges in both slices
endif;

7 else if ( p = EF(q) ) then

8 H := Algo5.1(G, slice(G, q));

9 else if ( p = AG(q) ) then

10 H := Algo5.2(G, slice(G, q));

11 else if ( p = EG(q) ) then

12 H := Algo5.3(G, slice(G, q));

13 else if ( p = EX(q)[j] ) then

14 H := Algo5.4(G, slice(G, q), j);

15 else if ( p = EX(q) ) then

16 H := ORj(Algo5.4(G, slice(G, q), j));// for each process j using Lemma 3.26

endif;

17 compute skeletal representation of H; // using Algo4.1 and Algo5.6

18 return H;

Figure 5.11: The algorithm to compute slice(G, p) for a predicate in RCTL+.

the complexity of computing the slice for a predicate from RCTL+ using algorithm

Algo5.5 is O(|p| · n|E|T ), where |p| is the number of boolean and temporal operators

in p.

5.4.1 Discussion

We know that slicing for an arbitrary predicate is intractable. Nonetheless, it is still

useful to be able to compute an approximate slice for such a predicate efficiently.

An approximate slice may be bigger than the actual slice but may be much smaller
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Figure 5.12: (a) The slice of the computation in Figure 5.1(a) wrt. EF(q), (b)

the corresponding sublattice, (c) wrt. p, (d) the corresponding sublattice, (e) wrt.

p ∧ EF(q), (f) the corresponding sublattice, (g) wrt. AG(p ∧ EF(q)), (h) the corre-

sponding sublattice
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than the computation itself. Therefore, in order to detect a predicate, rather than

searching the state-space of the computation, it is much more efficient to search the

state-space of the slice.

The slices for RCTL predicates are lean, however this is not the case for

RCTL+ predicates. This is because regular predicates are not closed under ∨, ¬,

or EX operators. Also, slices for atomic propositions such as co-regular, linear, co-

linear, stable, co-stable, observer-independent, and relational predicates may not be

lean.

Depending on the predicate p, a slice may be lean or approximate. Figure 5.13

shows the relationship of slice categories on the set of all consistent cuts of the

computation,

• the shaded region (denoted by |= p) corresponds to the set of all consistent

cuts in C(G) that satisfy predicate p.

• slice corresponds to the smallest sublattice of C(G) that contains the region

|= p. If the region X in slice is empty (or equivalently, if the region |= p is a

sublattice of C(G)) then the slice is a lean slice.

• approximate slice corresponds to any sublattice of C(G) that contains the

region |= p.

For example, given non-temporal regular predicates p1, p2, p3, and p4, and a

non-temporal predicate p5:

• We generate lean slices for the following predicates: p1, p2, p1 ∧ p2, EF(p1),

AG(EF(p1 ∧ p2)), EG(p2).

• We generate slices for the following predicates: p1 ∨ p2, (p1 ∧ p2) ∨ (p3 ∧ p4),

p5, EX(p1).
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p is true

Figure 5.13: Relationship of slice categories

• We may generate approximate slices for the following predicates: (p1 ∨ p2) ∧

(p3 ∨ p4), EG(p1 ∨ p2), EF(p5).

5.4.2 Implementation Details

In the complexity analysis of the slicing algorithms in this dissertation, we assume

the computation is given to us as n queues of events—one for each process. Further,

the vector clock for each event e in the computation is available to us, that is J(e). In

Chapter 7, we will show how to obtain vector clock for the events in a computation

G.

Furthermore, in the analysis of slicing algorithms, we assume that the skeletal

representation of the computation G and slice(G, p) are given and thus F(e) =

Ftrue(e) and Fp(e), respectively. Observe that we may add edges to the computation

at line 2 through line 16 of algorithm Algo5.5. Therefore, the skeletal representation
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Algorithm Algo 5.6:

Input: a directed graph G

Output: J(e) for each event e in G

1 topologically sort G;

2 for each SCC in G do // visited in topological order
Let JVector be the jvector of this SCC;

3 for each event e in SCC do

4 add index of e to JVector
endfor;

5 compute the component-wise maximum of the JVector for each SCC that has an edge

to this SCC and the JVector for this SCC.

6 for each event e in SCC do

7 J(e) = JVector;

endfor;
endfor;

Figure 5.14: The details of the algorithm to compute J(e) for each event e.

needs to be recomputed. This is shown in line 17 of algorithm Algo5.5.

Once we have J(e) values, it is easy to check whether J(e) 6⊆ J(f) by per-

forming a single comparison of the vector clocks. Hence, the skeletal representation

can be easily computed, using algorithm Algo4.1 in O(n|E|) time.

In Figure 5.14, we present algorithm Algo5.6 to compute J(e) for each event

e in a given graph. We first topologically sort the graph in O(n|E|) time at line 1.

Then, at line 4 and line 5, while traversing the strongly connected components

(denoted by scc) in topological order, we compute the vector clock of an scc (denoted

by JVector) by first adding the index (in terms of process order) of all the events

in the scc and then taking the component-wise maximum of the JVector of all scc’s

that have an edge to the current scc. Finally, at line 7, we set J(e) to the JVector of

the scc that contains it. This algorithm has a computational complexity of O(n|E|)

as well.
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Chapter 6

Predicate Detection

In this chapter, we present our results pertaining to predicate detection.

6.1 Overview

Informally, the predicate detection problem is to decide whether a computation sat-

isfies a given predicate. We give a formal definition of the problem in Section 6.2.

Predicate detection aids in increasing the reliability of programs by checking their

specifications (given as predicates) and generating counter examples when the pro-

grams do not satisfy their specifications, that is, when there are bugs.

The main problem in predicate detection in the partial order trace model is

the state explosion problem—the set of possible consistent cuts of a program with

n individual processes can be of size exponential in n.

Our approach to ameliorate state explosion uses two techniques: (1) exploit-

ing the structure of the predicate itself—by imposing restrictions—to evaluate its

value efficiently for a given execution trace, and (2) slicing.

Some examples of the predicates for which the structure can be exploited are:
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conjunctive [GW94, HMRS96], stable [CL85], observer-independent [CBDGF95],

linear [CG98], relational [TG97], and non-temporal regular [GM01, MG01a] pred-

icates. These predicate classes have so far been detected under some or all of the

temporal operators EF, EG, AG, AF, but not under any nesting of these operators.

For example, a nesting of these operators exists in the predicate EF(p ∧ EG(q)),

where p and q are conjunctive predicates. This nested temporal predicate cannot

be efficiently detected using only the efficient algorithms for conjunctive predicates.

Slicing allows us to concisely and precisely represent the consistent cuts of

a computation that satisfies a given predicate. In order to detect a predicate, it

is exponentially more efficient to work on the slice than on the computation. In

Section 6.3, we show how to use the slicing algorithms developed in this disserta-

tion for efficient detection of predicates in RCTL+, which contains nested temporal

predicates. In RCTL+, temporal operators are EF, EG, AG, EX[j], EX and atomic

propositions are regular, co-regular, linear, co-linear, stable, co-stable, observer-

independent, and relational predicates.

We also develop efficient detection algorithms for unnested temporal predi-

cates of the form AF(p), A(p U q), and E(p U q). Note that temporal operators AF,

AU, and EU do not belong to RCTL+.

Cooper and Marzullo [CM91] present an algorithm for detecting AF(p) for

arbitrary predicate p. The worst-case space and time complexity of the their algo-

rithm is exponential in the number of processes. Tarafdar and Garg [TG98b] proved

that it is, in general, NP-complete to detect a predicate under EG operator. Since

the problem of detecting a predicate under AF operator is the dual of the problem of

detecting a predicate under EG operator, it is, in general, coNP-complete to detect

a predicate under AF operator. Using Tarafdar and Garg’s [TG99] NP-completeness

result for detecting EG(p) when p is a special case of 2-CNF predicates, called inde-

pendent mutual exclusion predicates, we can easily deduce that detecting a special
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case of 2-DNF predicates, which is the dual of independent mutual exclusion predi-

cates, under AF operator is coNP-complete in general.

In Section 6.4 we present efficient algorithms for detecting AF(p). We first

present a polynomial-time state-space reduction algorithm that enables us to work

on a computation that is in general much smaller than the original computation. We

prove that the original computation satisfies AF(p) if and only if the smaller compu-

tation satisfies it. Then, we present a simple algorithm that uses polynomial-space

in Section 6.4.1. We determine necessary conditions and sufficient conditions under

which detecting AF(p) may be efficiently solved in Section 6.4.2 and Section 6.4.3.

In Section 6.5, we develop algorithms for unnested temporal predicates E(pUq)

and A(pUq). These predicates help in detecting properties where a condition has to

hold until another condition eventually holds. Efficient algorithms for this operator

did not exist before. A mutual exclusion predicate such as “a process enters the

trying state before entering the critical state” can be specified as A(try U critical).

In Section 6.6, we give efficient detection algorithms for unnested temporal

predicates EG(p) and AG(p), where p is a non-temporal linear predicate. Although

EG and AG operators belong to RCTL+, and as such EG(p) and AG(p) can be

detected using slicing, the algorithms in this section are more efficient.

It is useful to know what classes of predicates do not have an efficient predi-

cate detection algorithm. To that end, Chase and Garg [CG98] show that detecting

EF(p) when atomic proposition p belongs to 3-CNF is an NP-complete problem.

In Section 6.7, we present intractability results for observer-independent predicates.

Charron-Bost et al. [CBDGF95] introduced observer-independent predicates to cap-

ture the class of predicates for which the detection under EF and AF operators

are equivalent. Observer-independent predicates include predicate classes such as

stable predicates and disjunctive predicates. We prove that detecting an observer-

independent predicate under EG and AG operators is, in general, NP-complete and
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co-NP-complete, respectively.

In Section 6.8 we consider the problem of finding a counter example, namely

the problem of locating a consistent cut of a computation that satisfies the given

predicate (or its complement), if it exists. While it is sufficient to determine whether

there exists a faulty consistent cut in a computation for testing purposes, for de-

bugging purposes, it is desirable to actually locate the faulty consistent cut. An

examination of such a cut may provide valuable insight into the bug that caused the

fault. This problem is closely related to the problem of setting a global breakpoint

when debugging a program.

Finally, in Section 6.9 we discuss how to interpret the output of our predicate

detection algorithms in the context of program correctness. Table 6.1 displays the

classes of predicates for which we develop an algorithm or prove complexity results

in this chapter.

Table 6.1: Predicate detection algorithms and complexity results
Operator and Predicate Class Complexity

RCTL O(|p|.n2|E|)

RCTL+ exponential-time, may be O(|p|.n|E|T )

AX(p), p conjunctive, disjunctive O(n2|E|)

AF(p), p regular reduced complexity

E(p U q), p conjunctive, q linear O(n|E|)

A(p U q), p disjunctive, q disjunctive O(n|E|)

EG(p), p linear O(n|E|)

AG(p), p linear O(n|E|)

EG(p), p observer-independent NP-complete

AG(p), p observer-independent co-NP-complete

6.2 Problem Statement

For completeness, we now give the formal definition of predicate detection, which

was previously given in Chapter 3.

The predicate detection problem is to decide whether the initial consistent

cut of a computation satisfies a given predicate. More formally,
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Algorithm Algo 6.1:

Input: (1) a directed graph G, and (2) an RCTL+ predicate p

Output: G satisfies p or not

1 Let slice(G, p) = Algo5.5(G, p);

// initial denotes the initial consistent cut of a graph

2 if initial(G) 6= initial(slice(G, p)) then

3 return false and a counter example;

else

4 if p belongs to RCTL then

5 return true;

else // the slice may not be lean

6 use a model checker;
endif;

endif;

Figure 6.1: Predicate detection algorithm for RCTL+.

Definition 6.1 (predicate detection) Given a distributive lattice L = (C(G),⊆)

that represents a computation G = 〈E,→〉 and a temporal logic predicate p express-

ing some desired specification, decide whether L, {⊥} |= p holds or not.

Remark 6.2 Observe that our definition of predicate detection is similar to that

of model checking [CE81, QS82, CGP00]. However, we consider execution traces

rather than programs and we interpret specifications on a finite distributive lattice.

We define L |= p if and only if L, {⊥} |= p. By an abuse of notation, we also

write G |= p for L |= p when L = (C(G),⊆).

We also define a path as a sequence of consistent cuts such that the consistent

cuts in the sequence are ordered with the successor relation ⊲. Note that a path is

different from a fullpath in that it does not have to end at the final consistent cut.
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6.3 Predicate Detection for RCTL+

Many different methods have been devised for automatically checking temporal logic

predicates on execution traces by examining the state space models of system be-

havior. These methods all depend on decision procedures that explicitly represent

the state space using a list or a table that grows exponentially in the number of

processes, components, or state elements (state explosion problem). In the previous

chapter we developed algorithms that represent the state space that satisfies a tem-

poral logic predicate using a “slice” instead of using an explicit representation. In

this section we show how to use slices for predicate detection.

We explain algorithm Algo6.1 in Figure 6.1 for detection of RCTL+ predicates.

We first compute the slice with respect to the predicate at line 1 using algorithm

Algo5.5. The slice contains all consistent cuts that satisfy the predicate. Since the

predicate detection problem is concerned with checking whether the initial consistent

cut of a computation satisfies the predicate, we check this at line 2. If the initial

consistent cut of the computation does not belong to the slice then the predicate

is false and we return a counter example at line 3. We describe details of counter

example generation in Section 6.8.

If the initial consistent cut of the computation belongs to the slice then

depending on the class of the predicate either we return true or we have to take

extra steps. When the predicate belongs to RCTL (at line 4), we know that the slice

with respect to the predicate is lean, therefore the slice does not contain cuts that

do not satisfy the predicate. Hence, the initial consistent cut of the computation

satisfies the predicate and we return true at line 5.

However, when the predicate does not belong to RCTL, the slice may not

be lean, therefore it may contain cuts that do not satisfy the predicate. In fact,

the slice may even be approximate as described in Section 5.4.1. Hence, the initial

consistent cut of the computation may not satisfy the predicate although it belongs
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to the slice. In this case, we can use a model checker to check whether the initial

consistent cut of the computation satisfies the predicate or not.

Consider the example in Figure 5.12. We observe that the initial cut of the

original computation, which is {⊥}, is different from the initial cut of the slice with

respect to AG(¬p ∨ EF(q)), since the slice is empty. Therefore the predicate is not

satisfiable.

Complexity Analysis 6.3 The complexity of predicate detection for RCTL is dom-

inated by the complexity of computing the slice which has O(|p|·n2|E|) time-complexity

as shown in Section 5.4. Therefore, the overall time-complexity of predicate detec-

tion for RCTL is O(|p| · n2|E|), where |p| is the number of boolean and temporal

operators in p.

When the initial consistent cut of the computation is different from the ini-

tial consistent cut of the slice, the complexity of predicate detection for RCTL+ is

dominated by the complexity of computing the slice which has O(|p| · n|E|T ) time-

complexity as shown in Section 5.4. Therefore, the time-complexity of predicate

detection for RCTL+ is O(|p| · n|E|T ), where T is the complexity of detecting an

atomic proposition under EF operator.

When the initial consistent cut of the computation is the same as the initial

consistent cut of the slice, due to use of a model checker, we may have exponential-

time complexity. However, the slice is, in general, much smaller than the computa-

tion and therefore we still have efficient predicate detection results. We validate this

conclusion with experiments in the next chapter.

Remark 6.4 The condition at line 4 of the algorithm Algo6.1 is used for checking

whether the slice for p is lean or not. In fact, a condition weaker than a “lean” slice

would suffice. We say that a slice with respect to a predicate p is “join-irreducible

exact” if (1) all join-irreducible elements of the slice satisfy p and (2) the initial

consistent cut {⊥} satisfies p.
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Note that when the predicate in the algorithm is non-temporal, we can use

the slice as input to the model checker rather than the computation.

We can use the duality AX(p) ≡ ¬EX(¬p) and give EX(¬p) as an input

predicate to algorithm Algo6.1 to obtain a necessary and sufficient algorithm to

detect AX(p). However, such a procedure may not have polynomial-time complexity

since EX(¬p) is not a regular predicate, in general. For special cases of p, such as

disjunctive and conjunctive predicates, we can obtain efficient algorithms by using

the duality and the fact that the negation of a local predicate is also a local predicate,

hence regular. Therefore, we can detect AX(p) for conjunctive and disjunctive p in

O(n2|E|) time-complexity.

Next we will present predicate detection algorithms for detecting specific

classes of unnested temporal predicates.

6.4 Predicate Detection for AF(p)

The AF(p) detection problem has efficient solutions when the predicate p is conjunc-

tive or disjunctive [GW96, GW92]. However, the complexity problem is open when

p is regular. In this section, we present space and time efficient conditions to solve

the problem when p is arbitrary or regular.

6.4.1 Polynomial-Space Algorithm

The performance of algorithms for detecting AF(p) in a computation can be im-

proved by considering a smaller state-space, that is, a smaller computation (with

less number of consistent cuts) than the original computation. In this section, we

present a polynomial-time algorithm for reducing the size of the computation. We

show that detecting AF(p) on the original computation is the same as detecting

AF(p) on the smaller computation.
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Figure 6.2: The lattice of consistent cuts of a computation G and an

interval(G, C, D)

Let interval(G, C, D) denote the slice of a computation G with respect to

the predicate G[C,D]. We say that a consistent cut satisfies G[C,D] if the cut belongs

to the interval lattice [C, D]. Formally,

Definition 6.5 (interval predicate) Given a computation G and consistent cuts

C and D such that C ⊆ D, F |= G[C,D] iff F ∈ [C, D].

Figure 6.2 depicts the lattice of consistent consistent cuts of a computation G.

The shaded region in the figure depicts the set of consistent cuts of interval(G, C, D).

Note that an interval lattice is also a sublattice. It can be proved that G[C,D] is a

regular predicate. We can obtain interval(G, C, D) as follows: We add edges from

⊤ to the successor of every vertex in frontier(D). Thus, all cuts that include one

of these successors becomes a trivial cut, hence such a cut does not belong to the

slice (similar to line 4 in algorithm Algo5.1). We also add edges from every vertex

in frontier(C) to ⊥. Since ⊥ is the initial consistent cut, by adding these edges,

frontier(C) becomes the initial consistent cut of the slice.
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For a computation G and a predicate p, we use inf(p) and sup(p) to de-

note the least and the greatest consistent cuts of the computation that satisfy the

predicate, respectively. Observe that both inf(p) and sup(p) exist for a regular

predicate.

We will prove below that interval(G, C, D), which is smaller than the original

computation G, can be used for detecting AF(p), but first we prove the following

lemma which presents an observation on the lattice structure of the set of consistent

cuts of a computation.

Lemma 6.6 Given a computation G = 〈E,→〉 and consistent cuts C, D, F ∈ C(G),

if C ⊲ F and D ⊆ F then (C ∩ D) = D or (C ∩ D) ⊲ D.

Proof: From the definition of ⊲, we have C ⊲ F ⇒ 〈∃e ∈ E : e 6∈ C : C∪{e} = F 〉.

Hence, we have that for any D, D ⊆ F ⇒ D ⊆ (C ∪ {e}). We have the following

two cases:

Case 1: e 6∈ D: Hence, D ⊆ C, and so (C ∩ D) = D, as required.

Case 2: e ∈ D: Hence, (C ∩ D) = (D − {e}) and it is a consistent cut. Further,

using the definition of ⊲ and (e 6∈ C), we get (C ∩ D) ⊲ D, as required. ¤

Theorem 6.7 (NSC) Given a computation G, G |= AF(p) iff interval(G, C, D) |=

AF(p), where C is the meet of predecessors of inf(p), if the predecessors exist, oth-

erwise C = inf(p), and D is the join of successors of sup(p), if the successors exist,

otherwise D = sup(p).

Proof: Without loss of generality, assume that both C and D exist and are different

from the initial and final consistent cuts of G. We prove the contrapositives.

⇒:

We obtain a path starting from the initial consistent cut and ending at the final

consistent cut in G along which p is false as follows. Pick an arbitrary path start-

ing from the initial consistent cut and ending at a predecessor of C in G. We
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know that none of the cuts along this path satisfy p since all cuts that satisfy

p belong to interval(G, C, D). Next, extend this arbitrary path with a path in

interval(G, C, D) where none of the cuts on the path satisfy p. We can find such

a path in interval(G, C, D) due to the assumption in this case. Finally, pick an

arbitrary path starting from a successor of D and ending at the final consistent cut

of G.

⇐:

We prove the claim in two steps.

Step 1: We first show that if there exists a path P, from the initial to the final

consistent cut in G such that all cuts on the path satisfy ¬p then there exists a path

from the initial to the final consistent cut in interval(G, C, E) such that all cuts on

the path satisfy ¬p. For convenience, we depict an example path P in Figure 6.2

with thick lines.

Let β be the first cut on the path P such that inf(p) ⊆ β. Let β′ be the

predecessor of β on the path P. From Lemma 6.6, the meet of β′ and inf(p) is

either inf(p) or a predecessor of inf(p), denoted by C ′. However, in the former

case, inf(p) ⊆ β′. Since β′ is also on the path P, this leads to a contradiction since

β is the first cut such that inf(p) ⊆ β. Therefore the meet of β′ and inf(p) is C ′

and inf(p) 6⊆ β′.

There exists a path from C ′ to β′ because C ′ ⊆ β′. We now prove that every

cut on this path satisfies ¬p, that is, for all F such that C ′ ⊆ F , F ⊆ β′, F satisfies

¬p. Since inf(p) 6⊆ β′ and F ⊆ β′, we have inf(p) 6⊆ F . The consistent cuts that

satisfy p belong to interval(G, inf(p), sup(p)). Therefore, β′ and all such F do not

satisfy p. Since C is the meet of all predecessors of inf(p) and C ′ is a predecessor

of inf(p), C ⊆ C ′. Therefore C ⊆ F . Similarly, all cuts from C to C ′ do not satisfy

p since they do not belong to interval(G, inf(p), sup(p)).

We obtain the required path as follows. Start the path from C and extend it
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with a path from C ′ to β′. Such a path exists as we showed in the above paragraph.

Then, extend the resulting path with a path from β to the final cut. Such an

extension exists in P because there is a path from β to the final cut in path P.

Step 2: Now we show that if there exists a path P, from the initial to the final

consistent cut in interval(G, C, E) where all cuts on the path satisfy ¬p then there

exists a path from the initial to the final consistent cut in interval(G, C, D) where

all cuts on the path satisfy ¬p.

The proof is similar to Step 1 with the paths reversed. In this case we choose

β as the last cut on the path P such that β ⊆ sup(p) and β′ as the successor of β

on the path P. Furthermore, we choose D′ as a successor of inf(p). We can show

in a similar fashion as in Step 1 that there exists a path from β′ to D′ where all

cuts on the path satisfy ¬p. Finally, we can construct a path from C to D as the

concatenation of the paths from C to β, β′ to D′, and D. ¤

Complexity Analysis 6.8 When p is regular, we can compute inf(p) in O(n|E|)

time using algorithm Algo3.1. The same algorithm can also be used to compute sup(p)

by starting the algorithm from the final consistent cut and moving backwards. We

can compute the predecessors and successors of a cut in O(n) time. Finally we can

obtain interval(G, C, D) by adding edges from ⊤ to the successor of every vertex

in frontier(sup(p)) and an edge from ⊥ to the every vertex in frontier(inf(p)) in

O(n) time. Therefore, the overall complexity is O(n|E|).

Note that the above theorem is not restricted to predicates with a single least

and greatest cut only. For example, if the predicate has several least cuts then first

we take the intersection of all those cuts. Second, we find the predecessors of the

intersection. Finally, we compute the intersection of the predecessors to obtain C

in interval(G, C, D). Also, we can use the above theorem to reduce the state space

for other temporal operators such as EF, EG, and AG. In other words, in order to
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detect a predicate of the form EF(p) we can use the interval(G, C, D).

Although the time complexity of computing interval(G, C, D) is polynomial,

the time and space complexity of detecting AF(p) on this reduced state-space may

still be exponential since interval(G, C, D) may contain exponential number of con-

sistent cuts. However, it is always better to work on interval(G, C, D) rather than

G since interval(G, C, D) is a subset of G. In fact, we believe that interval(G, C, D)

is generally much smaller than the original computation G which we validate with

experimental work in the next chapter. Furthermore, Theorem 6.7 is orthogonal to

other techniques we will present in the next sections for detecting AF(p), that is, we

can always first compute interval(G, C, D) and then apply those conditions.

Next, we present a polynomial-space algorithm for AF(p). Cooper and Marzullo

[CM91] presented a worst-case exponential-space and exponential-time algorithm for

AF(p). Their algorithm detects AF(p) using level sets where a level set is the set of

successors of a consistent cut. Their algorithm starts from the initial consistent cut.

If p is true in the initial consistent cut AF(p) is satisfied. Otherwise, it constructs the

next level set including only those consistent cuts in which ¬p is true. Continuing

in this manner, if the algorithm can reach the final consistent cut, then AF(p) is

false; otherwise, it is true. This algorithm requires space proportional to the size

of the largest level set, which is exponential in the number of processes. This is

because there are possibly exponential number of consistent cuts of a computation

but polynomial number of level sets. In fact, the number of level sets is exactly |E|

(the length of an observation).

We obtain a simple space efficient algorithm for detecting AF(p) by generating

all observations for the given computation. This algorithm is based on generating

linearizations of a partial order [PR94]. For each such observation, we check whether

¬p holds on every cut on the observation. If such an observation exists then AF(p)

is not satisfied, otherwise it is satisfied.
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Figure 6.3: (a) A computation, and (b) its corresponding lattice

Complexity Analysis 6.9 The length of every observation is |E|, the total num-

ber of events in the computation. The frontier of a consistent cut can be represented

by an n-dimensional vector for a computation with n processes. Therefore, for each

consistent cut O(n) space is required giving us the space complexity of O(n|E|). The

time complexity is bounded by the number of observations, which may be exponen-

tial in the number of processes. Note that if we use the slice of the computation

with respect to ¬p instead of the computation, then we can reduce the number of

observations.

6.4.2 Polynomial-Time Necessary Conditions

Now we present a polynomial-time necessary condition to detect AF(p) that uses

meet-irreducible elements [DP90]. For example, the predecessors of the final consis-

tent cut of a computation (e.g., predecessors of the final consistent cut {e3, f3} in

Figure 6.3(b)) are all meet-irreducible elements.

Theorem 6.10 (NC) Given a computation G = 〈E,→〉 and a regular predicate p,
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if ¬p holds at the initial consistent cut and at the successor of every meet-irreducible

element then G 6|= AF(p).

Proof: We show that there exists a path from the initial to the final consistent cut

in the computation G where all cuts on the path satisfy ¬p. Given an arbitrary

consistent cut C that satisfies ¬p and that is different from the final consistent cut,

we first show that there exists a successor of C that satisfies ¬p. There are two

cases.

Case 1: C has a single successor. In this case C is a meet-irreducible element and

from the assumption, ¬p holds at the successor of C.

Case 2: C has at least two successors. Observe that if more than one successor of

C satisfies p then from the regularity of p, the intersection of those successor cuts,

which is C, satisfies p. This leads to a contradiction. Therefore, there exists at least

one successor of C where ¬p holds.

We construct the required path as follows: Start from the initial consistent

cut for which we know that ¬p holds. From above 2 cases, we have that for every

consistent cut that satisfies ¬p we can find a successor consistent cut that satisfies

¬p. Finally, we reach the final consistent cut which is the successor of a cut that

satisfies ¬p.

Note that we only use the linearity of predicate p only. ¤

The converse of Theorem 6.10 is false. Figure 6.3(b) displays the lattice of

consistent cuts of the computation in Figure 6.3(a). From the lattice we observe

that this computation satisfies the right side of Theorem 6.10, that is G 6|= AF(p).

However, the left side of the theorem does not hold because the successor of the

meet-irreducible element {f3} satisfies p.

A similar necessary condition can be given for join-irreducible elements.

Theorem 6.11 Given a computation G and a regular predicate p, if ¬p holds at
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the final consistent cut and at the predecessor of every join-irreducible element then

G 6|= AF(p).

Complexity Analysis 6.12 We can check the condition in Theorem 6.10 (resp.

in Theorem 6.11) by finding the meet-irreducible (resp. join-irreducible) cuts of

the computation in O(n|E|) time as will be explained in the complexity analysis of

algorithm Algo6.5.

Observe that the consistent cuts of interval(G, C, D) may partition the lat-

tice of consistent cuts of a computation G as in Figure 6.4. The patterned re-

gion in the figure denotes the cuts that belong to interval(G, C, D), i.e., the set

of cuts that satisfy the interval predicate G[C,D]. A cut F belongs to partition

I if (C 6⊆ F ) ∧ (F ⊆ D), partition II if (C 6⊆ F ) ∧ (F 6⊆ D), partition III

if (C ⊆ F ) ∧ (F ⊆ D), and partition IV if (C ⊆ F ) ∧ (F 6⊆ D). Given that

interval(G, C, D) exists, that is, partition III exists, other partitions may not exist.

For example, if C is the initial consistent cut of G and D is the final consistent cut

of G then only partition III exists.
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Next we present another polynomial-time necessary condition for detecting

AF(p) based on the above characterization of partitions generated by an interval

predicate.

Theorem 6.13 Given a computation G and an interval predicate p = G[C,D], there

exists a consistent cut F ∈ C(G) that belongs to partition II iff G 6|= AF(p).

Proof:

⇒:

We know that F is reachable from the initial consistent cut. For the purpose of

contradiction, assume that there exists a cut H on a path from {⊥} to F such that

H satisfies p. For F to be reachable from H, we must have that H ⊆ F . However

since H satisfies p, C ⊆ H and therefore C ⊆ F . Since F is in partition II, C 6⊆ F—

a contradiction. Similarly, we can show that there does not exist a cut H ′ on a path

from F to E such that H ′ satisfies p. C cannot be {⊥} and D cannot be E because

we assume that partition II exists. Therefore, partitions I and IV also exist. Now

we obtain a path where all cuts satisfy ¬p by starting from {⊥} and following an

arbitrary path in partition I such that the path reaches F in partition II. Then we

follow an arbitrary path from F to the final consistent cut.

⇐:

We prove by contradiction. Suppose that partition II does not exist and there exists

a path in G from initial to the final consistent cut where all cuts on the path satisfy

¬p. Since there exists such a path, we have that partitions I and IV exist. Otherwise,

C = {⊥} and D = E and we do not have a path from {⊥} to E where ¬p holds on

the path. Since partition II does not exist and a path of cuts satisfying ¬p exists,

there is a path from partition I to partition IV without passing through partition

III (since p is an interval predicate). We will show that this is impossible.

Consider two cuts F and H on a path from {⊥} to E where ¬p holds on

the path, F belongs to partition I, H belongs to partition IV, and H is a successor
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of F . From the definition of partitions, we have that (C 6⊆ F ) ∧ (F ⊆ D) and

(C ⊆ H) ∧ (H 6⊆ D). Furthermore, from the definition of successor of a cut, we

know that H = F ∪ {e}, where e is an event in G and e 6∈ F . To obtain H from F ,

there are two cases: In the first case, we should add e 6∈ D to F (therefore e 6∈ C)

so that H 6⊆ D. In the second case, we should add e ∈ C to F (therefore e ∈ D) so

that C ⊆ H. However, e ∈ D and e 6∈ D leads to a contradiction. ¤

We present a weaker result for regular predicates. The necessary conditions

of Theorem 6.10 and Theorem 6.11 are not comparable with the condition of The-

orem 6.14 below. Furthermore, observe that the converse of the next condition is

false.

Theorem 6.14 Given a computation G and a regular predicate p, if there exists a

consistent cut F that belongs to partition II in G then G 6|= AF(p).

We can use slicing to detect whether there exists a consistent cut F in par-

tition II as follows. We compute the slice of the computation with respect to the

predicate (C 6⊆ F ) ∧(F 6⊆ D), where C = inf(p) and D = sup(p). If the slice is

nonempty then AF(p) does not hold. In the following, Ci denotes the maximal event

(in terms of process order) of the consistent cut C from process i.

(C 6⊆ F ) ∧ (F 6⊆ D)

≡ { from the definition of a consistent cut }

(∃i : Fi
Pi→ Ci) ∧ (∃j : Dj

Pj

→ Fj)

≡ { rewriting }(
(F0

P0→ C0) ∨ (F1
P1→ C1) ∨ . . . ∨ (Fn−1

Pn−1

→ Cn−1)
) ∧

(
(D0

P0→ F0) ∨ (D1
P1→ F1) ∨ . . . ∨ (Dn−1

Pn−1

→ Fn−1)
)
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Figure 6.5: (a) A computation, and (b) its corresponding lattice

Complexity Analysis 6.15 The above predicate is a disjunction of n2 terms where

each term is a conjunction of local predicates ((Fi
Pi→ Ci) ∧ (Dj

Pj

→ Fj)). Using the

slicing algorithm Algo5.5, we can compute a slice for this predicate in O(n4|E|) time.

If the slice is not empty then F exists otherwise it does not exist.

6.4.3 Polynomial-Time Sufficient Condition

We can use the duality between AF(p) ≡ ¬EG(¬p) and give EG(¬p) as an input

predicate to Algo6.1 to obtain a necessary and sufficient algorithm to detect AF(p).

However, such a procedure may not have polynomial-time complexity since EG(¬p)

is not a regular predicate. Instead we use Algo6.1 to obtain a simple sufficient

condition.

Theorem 6.16 (SC) Given a computation G and a predicate EG(¬p), if algorithm

Algo6.1 returns false at line 3, then G |= AF(p).

The converse of Theorem 6.16 is false. Figure 6.5(a) displays a computation

that satisfies AF(p). When we compute the union and intersection closure of the cuts
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that satisfy the predicate (the closure of white filled circles), we obtain all consistent

cuts that belong to the computation, that is, slice(G,¬p,) has the same set of cuts

as G. Therefore, algorithm Algo6.1 does not return false at line 3.

6.4.4 A General AF(p) Algorithm

Algorithm Algo6.2 in Figure 6.6 displays a general procedure that combines the

conditions developed in this section for detecting whether a computation satisfies a

predicate of the form AF(p), when p is a regular predicate.

6.5 Predicate Detection for E(p U q) and A(p U q)

In this section, we explain algorithm Algo6.3 in Figure 6.7 for detecting whether

a computation satisfies a predicate of the form E(p U q), when p is a conjunctive

predicate and q is a non-temporal linear predicate.

EU and AU operators aid in detecting conditions where a condition has to

hold until another condition eventually holds. A computation satisfies E(p U q),

if there exists a fullpath starting from the initial consistent cut such that p holds

along the path until q holds on the path. In detecting E(p U q), if we constructed

the lattice of nontrivial consistent cuts then, in the worst-case, we would have to

check all fullpaths in the lattice. It is clear that this is very inefficient due to both

state explosion and exponential number of fullpaths in the number of events.

Algorithm Algo6.3 shows a procedure to detect E(p U q) by checking for full-

paths in a smaller state-space. At line 1, the least consistent cut that satisfies a

non-temporal linear predicate is computed using algorithm Algo3.1. Then in order

to check E(p U q) we check whether there exists a path starting from the initial

consistent cut and ending at a predecessor of Jq such that along the path p holds.

The algorithm adds an edge from vertex ⊤ to the successor of every element in the

frontier of Jq at line 4. At the end of the for loop at line 3, a new graph that has the
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Algorithm Algo 6.2:

Input: (1) a directed graph G, and (2) a non-temporal regular predicate p

Output: G satisfies AF(p) or not

// reduce the state-space using Theorem 6.7

1 compute inf(p) and sup(p);

2 let C be the intersection of predecessors of inf(p);

3 let D be the union of successors of sup(p);

4 use C and D to obtain K := interval(G, C, D); // reduce the number of cuts
// apply polynomial-time necessary condition in Theorem 6.10

5 let SMI := the set of Successors of all Meet-Irreducible elements in K;

6 if initial consistent cut of K and all cuts in SMI satisfy ¬p then

7 return false;
endif;

// apply polynomial-time necessary condition in Theorem 6.11

8 let PJI := the set of Predecessors of all Join-Irreducible elements in K;

9 if final consistent cut of K and all cuts in PJI satisfy ¬p then

10 return false;
endif;
// apply polynomial-time necessary condition in Theorem 6.14

11 let q := the be DNF predicate in Complexity Analysis 6.15;

12 if slice(K, q) is nonempty then

13 return false;
endif;

// apply polynomial-time sufficient condition in Theorem 6.16

14 compute slice(K, EG(¬p));

15 if initial(G) 6= initial(slice(K,¬p)) then

16 return true;
endif;
// apply polynomial-space algorithm in Section 6.4.1

17 for each path in interval(G, C, D) do // obtain paths using [PR94]

18 let G be the first cut on the path;

19 while G satisfies ¬p do

20 G := successor of G on the path;
endwhile;

21 if G = D then // final consistent cut is reached

22 return false;
endif;

endfor;

23 return true;

Figure 6.6: The algorithm to decide whether AF(p) is satisfied or not.
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Algorithm Algo 6.3:

Input: (1) a directed graph G, (2) a conjunctive predicate p, and

(3) a non-temporal linear predicate q

Output: G satisfies E(p U q) or not

1 Jq := Algo3.1(G, q); // the least consistent cut that satisfies q

2 Q := frontier(Jq);

3 for each e ∈ Q do

4 add an edge from ⊤ to succ(e) in G; // the final consistent cut of G is Jq

endfor;

5 for each e ∈ Q do

6 H := G; // H is (re)set to G

7 add an edge from ⊤ to e in H; // the final consistent cut of H is Jq − {e}

8 if H |= EG(p) then

9 return true;
endif;

endfor;

10 return false;

Figure 6.7: The algorithm to decide whether E(p U q) is satisfied or not.

same set of consistent cuts as the input graph up to Jq is obtained. This is because

adding an edge from ⊤ to a vertex makes every consistent cut that includes that

vertex trivial (similar to line 4 in algorithm Algo5.1). Then during each iteration

of the for loop at line 5, we compute yet another graph H that has the same set

of consistent cuts as the input graph up to a predecessor of Jq. We check whether

there exists a graph H that satisfies EG(p) or not at line 8. If the answer is positive

then the algorithm returns true at line 9, otherwise it returns false at line 10.

Consider the computation depicted in Figure 6.8(a) and the predicate E(pUq)

where p denotes that “variable z of process P3 is less than 6 and variable x of process

P1 is less than 4” and q denotes that “channels are empty and variable x of process

P1 is greater than 1”. Note that p is a conjunctive predicate and q is a non-

temporal linear predicate. It can be observed from Figure 6.8(b) that the predicate

is true since there exists a path of consistent cuts denoted by patterned circles
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leading to consistent cuts denoted by filled circles. The least consistent cut that

satisfies q is Jq = {e1, f2, f1, g1} and Q = frontier(Jq) = {e1, f2, g1}. Algorithm

Algo6.3, at line 4, adds an edge from ⊤ to succ(e1) = e2. Similarly, edges are

added from ⊤ to the successors of f2 and g1, which is ⊤ itself. Then in the for

loop at line 5, the algorithm adds an edge from ⊤ to g1 ∈ Q and we obtain the

graph depicted in Figure 6.8(c). It is clear that EG(p) holds for this new graph

since there exists a path of patterned circles, that is, consistent cuts {⊥}, {f1},

{e1, f1}, {e1, f2, f1}. Furthermore, this path can be extended with a filled circle,

that is, Jq = {e1, f2, f1, g1}. Hence, E(p U q) holds for the computation depicted in

Figure 6.8(a). Out of a possible 7 paths starting from the initial consistent cut and

satisfying E(p U q), it is enough to consider only the ones that lead to Jq, of which

there are only 2 in this case.

The correctness of the algorithm follows from the theorem below.

Theorem 6.17 Given a finite distributive lattice L = (C(G),⊆) for a computation

G = 〈E,→〉, a conjunctive predicate p, and a linear predicate q; L |= E(pU q) if and

only if there exists a finite sequence D0, . . . , Dj of consistent cuts such that

(a) D0 = {⊥}, (b) Di ⊲ Di+1 for all 0 6 i < j, (c) Dj = Jq, and

(d) Di |= p, for all 0 6 i < j

Proof:

⇐: D0, D1, . . . , Dj is a sequence that satisfies the predicate E(p U q).

⇒: Assume L |= E(pUq). This means that there exists a finite sequence C0, C1, . . . , Ck

of consistent cuts such that (a) C0 = {⊥}, (b) Ci⊲Ci+1 for all 0 6 i < k, (c) Ck |= q,

and (d) Ci |= p for all 0 6 i < k. Interesting case is when k > 1; otherwise the

theorem is trivially true.

We know that Jq exists because q is a linear predicate. Therefore Jq ⊆

Ck. Consider the sublattice, L′ = (C(H),⊆) corresponding to the computation H
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Figure 6.8: (a) A computation, (b) the corresponding sublattice, (c) The application

of the algorithm on the computation in (a), (d) the corresponding sublattice

obtained from G such that the final consistent cut of H is C(k−1) and all cuts that

can reach this final cut in G belong to H.

{ C0, ..., C(k−1) is a path in L′ along which p is true }

L′ |= EG(p)

≡ { EG(p) ≡ ¬AF(¬p) }

L′ |= ¬AF(¬p)

≡ { disjunctive predicate ¬p is observer-independent and universal }
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L′ |= ¬EF(¬p)

≡ { ¬EF(¬p) ≡ AG(p) }

L′ |= AG(p)

⇒ { since C(k−1) ∩ Jq ⊆ Ck−1 }

There exists a path K0, . . . , Km in L′ starting from the initial consistent

cut and ending at C(k−1) ∩ Jq such that p holds along the sequence.

Setting C = C(k−1), D = Jq, F = Ck in Lemma 6.6, there are two cases for

(C(k−1) ∩ Jq):

Case 1: (C(k−1) ∩ Jq) = Jq, then E(p U q) is true since there exists a sequence

K0, . . . , Km.

Case 2: (C(k−1) ∩ Jq) ⊲ Jq, then E(p U q) is true since there exists a sequence

K0, . . . , Km, Jq. ¤

Using Theorem 6.17, in algorithm Algo6.3 we check only for the existence

of a path starting from the initial consistent cut and ending at Jq. This greatly

simplifies the task of detecting E(p U q) because otherwise we would have to check

for the existence of a path starting from the initial consistent cut and ending at an

arbitrary consistent cut that satisfies q.

Remark 6.18 Observe that predicate q in Theorem 6.17 could be “weaker” than

a linear predicate in that only the existence of a least consistent cut that satisfies

the predicate q is required. Also, predicate p should be such that its complement

is an observer-independent predicate. Conjunctive predicates is one such class of

predicates.

Complexity Analysis 6.19 When q is a linear predicate, algorithm Algo3.1 in Sec-

tion 3.3 is applicable at line 1. We can compute Jq in O(n|E|) time assuming the

efficient predicate evaluation and efficient advancement properties (Property 3.15
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and Property 3.17 in Section 3.3) in O(n|E|) time. The for loops at line 3 and at

line 5 are executed n times. At line 8, the optimal algorithm presented in [MG01a]

for computing the slice of a conjunctive predicate p is applicable for detecting EG(p).

The complexity of checking EG(p) using this algorithm is O(n|E|). (Note that we

can also use the EG(p) algorithm which we will describe next at this step since a

conjunctive predicate is also linear.) Adding an edge takes constant time, therefore

the complexity of the for loop at line 5 is O(n|E|). The overall time-complexity of

the algorithm is O(n|E|).

Remark 6.20 We can use the equivalence A(pUq) ≡ ¬(EG(¬q)∨E(¬qU(¬p ∧ ¬q)))

to detect predicates under AU operator. This equality gives a representation of AU

operator in terms of EU and EG operators. When predicates p and q are disjunctive,

we can use the algorithm developed for EU, since (¬q) is a conjunctive predicate

and (¬p∧¬q) is a linear predicate. Similarly we can use the algorithm presented in

[MG01a] for detecting conjunctive predicates under EG operator to detect EG(¬q).

The overall time-complexity of A(p U q) algorithm is therefore O(n|E|) + O(|E|),

which is O(n|E|).

6.6 Predicate Detection for EG(p) and AG(p)

In this section we present efficient algorithms for detecting non-temporal linear

predicates under EG and AG operators. Linear predicates include several useful

predicate classes like conjunctive predicates, regular predicates, monotonic channel

predicates and some relational predicates. Garg et al. [CG98] presented an efficient

algorithm for detecting non-temporal linear predicates under EF operator. We pre-

sented this in algorithm Algo3.1 of Section 3.3. Our results improve the algorithm

in Section 6.3 when detecting predicates EG(p) and AG(p), for non-temporal regular

or non-temporal linear predicate p.

141



Algorithm Algo 6.4:

Input: (1) a directed graph G, (2) a non-temporal linear predicate p

Output: G satisfies EG(p) or not

1 W := the final consistent cut of G;

2 if W 6|= p then

3 return false;
endif;

4 while W 6= initial(G) do

5 Q := {C | C |= p ∧ C ⊲ W}; // Q is the set of predecessors of W that satisfy p

6 if Q = ∅ then

7 return false; // no predecessor that satisfies p exists
else

8 let W be an arbitrary element from Q;

endif;
endwhile;

9 return true;

Figure 6.9: The algorithm to decide whether EG(p) is satisfied or not

6.6.1 EG(p) Detection

In this section, we explain algorithm Algo6.4 in Figure 6.9 for detecting whether a

computation satisfies a predicate of the form EG(p), when p is a non-temporal linear

predicate.

A computation satisfies EG(p) if there exists a fullpath starting from the

initial consistent cut such that every cut on the path satisfies the predicate. Our

algorithm generates such a path backwards, that is, starting from the final consis-

tent cut moving toward the initial consistent cut. If the final consistent cut of the

computation (computed at line 1) does not satisfy p, then such a path does not

exist and the algorithm returns false at line 3. Otherwise, in each iteration of the

while loop at line 4, we move backward by one predecessor cut starting from the

final consistent cut until we reach the initial consistent cut. In the while loop, we

compute the set of consistent cuts that precede the current consistent cut and that

satisfy p at line 5. If this set is nonempty then we choose an arbitrary element from
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Figure 6.10: (a) A computation, and (b) its lattice corresponding to nontrivial

consistent cuts

this set at line 8. If the set is empty then there is no path that starts from the final

consistent cut and reaches the initial consistent cut along which p holds. Therefore,

the algorithm returns false at line 7. Finally, if the while loop terminates when W

is the initial consistent cut then EG(p) is satisfied.

Consider the computation depicted in Figure 6.10(a). It is clear that the

computation satisfies EG(p). The application of algorithm Algo6.4 returns an arbi-

trary fullpath along which p holds. One such fullpath, given in reverse order, is

{e3, f3}, {e2, f3}, {e2, f2}, {e1, f2}, {f2}, {f1}, {⊥}.

Next we will prove the correctness of algorithm Algo6.4.

Theorem 6.21 Given a computation G and a linear predicate p, algorithm Algo6.4

returns true iff G |= EG(p).

Proof: If the algorithm returns true then it is clear that EG(p) holds. Now we

prove that if EG(p) holds then the algorithm returns true. Since EG(p) holds, there
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exists a fullpath π starting from the initial consistent cut along which p holds.

The invariant for the while loop is “there exists a fullpath starting from

W along which p holds”. We prove by induction that after every iteration j the

invariant still holds. It suffices to prove that Q is nonempty. In other words, there

exists a predecessor of W that satisfies p.

Base case (j = 1): Since EG(p) holds in the computation and W is not the initial

consistent cut, Q is nonempty. At line 8, the new value of W is updated such that

it satisfies p and it is a predecessor of the old value of W . Therefore, the invariant

holds after the first iteration.

Induction step (j = k +1): Assuming that the invariant is true up to j = k, we now

prove that it holds for j = k + 1. When the condition of the while loop holds, we

know that W is not the initial consistent cut. Let πm be the first cut on π such

that W ⊆ πm. Setting D = W , C = πm−1, and F = πm in Lemma 6.6, we have

(πm−1 ∩W ) = W or (πm−1 ∩W ) ⊲ W . The former case is not possible because then

W ⊆ πm−1, which implies that πm−1 is the first cut on π such that W ⊆ πm−1.

Furthermore, since p is linear and it holds at πm−1 and W , p holds at (πm−1 ∩W ).

Therefore, there exists a predecessor of W , which is (πm−1 ∩ W ), that satisfies p.

At the end of the (|E| − 1)’th iteration of the while loop, W becomes the

initial consistent cut. Since it satisfies p, the algorithm returns true at line 9. ¤

Complexity Analysis 6.22 We can compute the final consistent cut of G in O(n)

time. Assuming a property similar to efficient advancement property (Property 3.17),

we can compute a predecessor consistent cut that satisfies p in O(n) time. (Con-

sider a conjunctive predicate predicate. The crucial element in this case is the event

from a process on which the value of the local predicate stays true). Any fullpath

in the lattice of consistent cuts has at most |E| length since there are |E| events in

the computation. Therefore the complexity of the while loop is O(n|E|) time. The

overall time-complexity is O(n|E|). Since regular predicates are contained in linear
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Algorithm Algo 6.5:

Input: (1) a directed graph G, and (2) a non-temporal linear predicate p

Output: G satisfies AG(p) or not

1 V := M(L) ∪ {E} // the set of all meet-irreducible elements plus the final consistent cut

// check whether all consistent cuts in V satisfy p

2 for each consistent cut C in V do

3 if C 6|= p then

4 return false;
endif;

endfor;

5 return true

Figure 6.11: The algorithm to decide whether AG(p) is satisfied or not.

predicates, this result applies to non-temporal regular predicates as well and improves

the O(n2|E|) complexity in [GM01].

6.6.2 AG(p) Detection

In this section, we explain algorithm Algo6.5 in Figure 6.11 for detecting whether a

computation satisfies a predicate of the form AG(p), when p is a linear predicate.

For this purpose, we use Birkhoff’s Representation Theorem for Finite Distributive

Lattices (Theorem 2.11) explained in Chapter 2.

Birkhoff’s Theorem implies that there is a one-to-one correspondence be-

tween a finite poset and a finite distributive lattice. Every element of a finite

distributive lattice (except for the final element) can be defined as the meet of

a subset of meet-irreducible elements of the lattice. The following is a corollary of

Theorem 2.11.

Corollary 6.23 ([DP90]) Given an element x ∈ L for a finite distributive lattice

L, x = {y ∈ MI(L) | x ⊆ y}.
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A computation satisfies AG(p) if all consistent cuts of the computation satisfy

p. Using the above corollary, in order to detect a linear predicate under AG operator,

it is necessary and sufficient to check whether the predicate is satisfied at the meet-

irreducible elements and the final consistent cut of the computation. We compute

these elements and the final consistent cut at line 1 of algorithm Algo6.5. If all cuts

in this set satisfy p then the predicate is satisfied and the algorithm returns true

at line 5, otherwise the algorithm returns false at line 4. The correctness of the

algorithm follows from the corollary above.

Consider the computation depicted in Figure 6.12(a) and its lattice of non-

trivial consistent cuts in Figure 6.12(b). Pictorially, in a finite distributive lattice

an element is meet-irreducible if and only if it has exactly one upper cover, that is,

it has exactly one outgoing edge. The meet-irreducible elements of the computation

are shown as patterned circles in Figure 6.12(b). The consistent cut {f2} can be

obtained by the intersection of meet-irreducible elements {f3}, {e1, f3}, {e2, f3}, and

{e3, f2}. Similarly, we can obtain other consistent cuts by the intersection of a subset

of meet-irreducible elements.

The number of meet-irreducible elements of a distributive lattice is generally

exponentially smaller than the number of all cuts in the lattice. In fact, for a finite

distributive lattice, the number of meet-irreducible elements is exactly equal to the

size of the longest chain in the lattice [DP90]. In our case, the length of the longest

chain is equal to the number of events |E|. Hence, if some computation can be done

on meet-irreducible elements, we get a significant computational advantage.

Complexity Analysis 6.24 A vector clock algorithm such as Fidge/Mattern’s is

used to compute the join-irreducible elements of a computation. We can use the

same algorithm with slight modifications to compute the meet-irreducible elements

as follows. We apply the vector clock algorithm backwards on the computation, that

is, with all the edges in the computation reversed. Whenever the local component
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Figure 6.12: (a) A computation, and (b) its lattice corresponding to nontrivial

consistent cuts

of a vector clock is incremented in the original algorithm, instead we decrement

it. Whenever the vector clock of a process is updated by taking a component-wise

maximum with that of the received vector clock, instead we take the component-wise

minimum with that of the received vector clock. Using this modified vector clock

algorithm the complexity of computing the set of meet-irreducible elements at line 1

is O(|E|) time. The for loop at line 2 is executed at most |E| + 1 times since the

number of meet-irreducible elements is |E|. Further, assuming the efficient predicate

evaluation property, the check at line 3 takes linear time. Therefore, the overall

time-complexity of the algorithm is O(n|E|).

Remark 6.25 We can use the above EG(p) and AG(p) detection algorithms when p

is a post-linear predicate [CG98] as well. Post-linear predicates are such that the set

of consistent cuts that satisfy a post-linear predicate is closed under join, whereas

the set of consistent cuts that satisfy a linear predicate is closed under meet.

147



Algorithm Algo6.4 can be modified so that it starts from the initial consistent

cut and moves toward the final consistent cut. The next consistent cut to move is

determined based on picking one of the consistent cuts that is a successor of the

current consistent cut and that satisfies the predicate. Again, it does not matter

which one of these consistent cuts is chosen as long as there exists one.

Algorithm Algo6.5 can be modified such that at line 1 instead of computing

meet-irreducible elements and the final consistent cut, the new algorithm computes

the join-irreducible elements and the initial consistent cut. This is because every

consistent cut except the initial one can be obtained by the join of a subset of join-

irreducible elements.

6.7 Detecting Observer-Independent Predicates

In this section we present intractability results for detecting observer-independent

predicates under EG and AG operators. A predicate is called observer-independent

if there exists a consistent cut that satisfies the predicate for some observation, then

there exists a consistent cut that satisfies the for all observations, and vice versa.

Since the initial consistent cut belongs to all observations, if a predicate is satisfied at

the initial consistent cut, then the predicate is observer-independent. Some examples

of observer-independent predicates are stable predicates and local predicates. Unlike

linear predicates, observer-independent predicates are closed under disjunction, but

not under conjunction.

It was shown in [CG98] and [TG98b] that detecting an arbitrary predicate

is NP-complete under EF and EG operators, respectively. Next, we prove that

detecting an observer-independent predicate is NP-complete under EG operator and

co-NP-complete under AG operator.

Theorem 6.26 Given a computation, detecting an observer-independent predicate

p under EG operator is NP-complete.
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Proof: The proof of the theorem is very similar to the proof of NP-completeness for

an arbitrary predicate under EG operator [TG98b]. The problem is in NP because

it takes polynomial-time to check that a candidate fullpath is valid and that it

satisfies the predicate p. To show that it is NP-hard, we reduce SAT [GJ91] to an

instance this problem. If p is the boolean expression in SAT, then for each variable

x1, . . . , xm in p, we assign a separate process with two events, true and false (as

shown in Figure 6.13(a), for convenience, we do not display the trivial final event ⊤

in the figure). We define a process for an extra boolean variable xm+1 which starts

true, goes through a false event, and ends true again. We define B = p ∨ xm+1. It

is clear that B is observer-independent since it is satisfied at the initial consistent

cut. Then we apply EG algorithm to detect predicate B. If there exists a fullpath

along which B is true (that is EG(B) is satisfied), then the consistent cut with

xm+1 = false will have a satisfying assignment for the variables of p. Conversely, if

p is satisfiable, then there exists a satisfying fullpath. ¤

Theorem 6.27 Given a computation, detecting an observer-independent predicate

p under AG operator is co-NP-complete.

Proof: The problem is in co-NP because it takes polynomial-time to check that

a candidate consistent cut satisfies the negation of the predicate p. To show that

it is co-NP-hard, we reduce TAUTOLOGY [GJ91], a co-NP-complete problem, to

an instance of this problem. If p is the boolean expression in TAUTOLOGY, then

for each variable x1, . . . , xm in p, we assign a separate process with true and false

events (Figure 6.13(b)). We define a process for an extra boolean variable xm+1

which starts true, and ends at a false event. We define B = p∨xm+1. Similar to the

proof of above theorem, it is clear that B is observer-independent since it is satisfied

at the initial consistent cut. We then apply AG algorithm to detect invariance of

B. If the algorithm returns true, then all fullpaths satisfy the predicate and all

consistent cuts with xm+1 = false will have satisfying assignments for the variables
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of p. Conversely, if p is a tautology, then all consistent cuts in all sequences will

satisfy p. ¤
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Figure 6.13: Detecting an observer-independent predicate p under (a) EG operator

is NP-complete, (b) AG operator is co-NP-complete

Although predicate detection of observer-independent predicates under EG

and AG operators is intractable, there are efficient algorithms under EF and AF

operators [CBDGF95]. Also, subclasses of observer-independent predicates such as

disjunctive predicates have polynomial-time detection algorithms under EG and AG

operators. These algorithms can be obtained using the duality of temporal operators

such as AG(p) ≡ EF(¬p), where ¬p is a conjunctive predicate [GW92] and similarly

for EG. Finally, we can check whether a stable predicate is satisfied under EG and AG

operators by simply checking whether the predicate is true at the initial consistent

cut.

150



6.8 Generating Counter Examples

In this section we show how to obtain counter examples in case there is a consistent

cut that does not satisfy the given predicate. Equivalently, we show how to obtain

a witness when there is a consistent cut that satisfies the given predicate. For this

we define the following problem.

Computing Cut (COMPC) Given a directed graph G and a predicate p, compute

a consistent cut of G that satisfies p, if any.

We establish that the problem COMPC is equivalent to the problem CONTC

defined in Section 4.3, that is, G |= EF(p). While for testing purposes, it is sufficient

to determine whether there exists a faulty consistent cut in a computation; for

debugging purposes, it is desirable to actually locate the faulty consistent cut. This

is because an examination of such a cut may provide valuable insight into the bug

that caused the fault. Evidently, COMPC is at least as hard as CONTC. We prove

the converse. The main idea is follows. Starting with the lattice of consistent cuts

of the given directed graph, successively shrink the lattice—by adding edges to the

graph—until it consists of only a single nontrivial consistent cut. Of course, at each

step, an edge is added in such a way that the resultant (shrunken) lattice contains

at least one consistent cut that satisfies the predicate. The algorithm is presented

in Figure 6.14. The next theorem establishes the correctness of the algorithm.

Theorem 6.28 The algorithm in Figure 6.14 solves COMPC.

Proof: The algorithm first checks whether some consistent cut of G satisfies p. In

case no such consistent cut exists, it simply outputs the appropriate message at line 1

and terminates. Now, assume that G does contain a consistent cut that satisfies p.

In that case, the for loop at line 3 executes exactly |E| times, where E is the set

of events. Let Ki, where 0 6 i 6 |E| and K0 = G, be the value of K when the ith

iteration of the for loop ends. The algorithm maintains the invariant that each Ki

contains at least one consistent cut that satisfies p. The proof is by induction on
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Algorithm Algo 6.6:

Input: (1) a directed graph G, (2) a predicate p, and

(3) an algorithm to evaluate CONTC(H, p) for an arbitrary directed graph H

Output: a consistent cut of G that satisfies p, if any

1 if not(CONTC(G, p)) then output “no consistent cut of G satisfies p” endif;

2 K := G;

3 for each event e do

4 if CONTC(K[e,⊥1], p) then // K[e, f ] is the graph obtained
// by adding an edge from e to f in K

5 add an edge from e to ⊥1 in K; // K := K[e,⊥1]

6 else add an edge from ⊤1 to e in K; // K := K[⊤1, e]
endif;

endfor;

// at this point, K has exactly one nontrivial consistent cut

7 output the nontrivial consistent cut of K;

Figure 6.14: An algorithm to solve COMPC using an algorithm to solve CONTC.

i. When i = 0, by definition, K0 = G and the proposition holds. Assume that the

proposition holds for Ki. We need to show that it also holds for Ki+1. Let e be the

event in consideration at the (i+1)st iteration of the for loop. At line 4 the algorithm

tests whether Ki[e,⊥1] contains a consistent cut that satisfies p. If the answer is

yes, then Ki+1 is set to Ki[e,⊥1] at line 5. Clearly, in this case, Ki+1 contains a

consistent cut that satisfies p. On the other hand, if the test fails, then Ki+1 is set to

Ki[⊤1, e]. From Lemma 4.13, C(Ki) = C(Ki[e,⊥1]) ∪ C(K̂i[e,⊥1]). From induction

hypothesis, Ki contains a consistent cut that satisfies p. However, Ki[e,⊥1] does not

contain any such consistent cut. Therefore K̂i[e,⊥1] should contain a consistent cut

that satisfies p. Note that K̂i[e,⊥1] is obtained from Ki by adding edges (⊥1,⊥1)

and (⊤1, e). Clearly, the presence or absence of the edge (⊥1,⊥1) does not affect

the set of consistent cuts. Therefore Ki+1 contains a consistent cut that satisfies p.

We next prove that K|E| contains exactly one nontrivial consistent cut. As-

sume the contrary. Therefore K|E| contains two nontrivial consistent cuts C and D
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with C 6= D. Evidently, either C −D 6= ∅ or D −C 6= ∅. Without loss of generality

assume that it is the former, and let e be an event in C −D. The for loop at line 3

considers events in E one by one. Let the iteration corresponding to e be i. After

the ith iteration ends, Ki contains either (e,⊥1) or (⊤1, e). Since no edge is ever

deleted, K|E| also contains either (e,⊥1) or (⊤1, e). In the first case, since e 6∈ D,

⊥1 6∈ D—a contradiction. In the second case, since e ∈ C, ⊤1 ∈ C—a contradiction.

¤

An illustration of the algorithm is given below.

Example 6.29 Consider the computation shown in Figure 6.15(a). In the figure,

e1 and f1 are the initial events and e4 and f4 are the final events. Suppose we want

to find a consistent cut for which both x1 and x2 evaluate to true. In the figure, we

represent an event for which the corresponding local predicate evaluates to true—

referred to as a true event—using a solid circle. Clearly, there are two consistent

cuts which satisfy x1∧x2, namely {e1, e2, f1} and {e1, e2, f1, f2}. Suppose the events

are considered in the order e3 f2 f3 e2. (There is no need to consider the initial and

final events.) Figure 6.15(b) to Figure 6.15(e) depict the sequence of iterations of

the for loop. In the first iteration, an edge is added from ⊤1 to e3. In the second

iteration, an edge is added from f2 to ⊥2, which is equivalent to adding an edge

from f2 to ⊥1. In the third iteration, an edge is added from ⊤2 to f3, which is same

as adding an edge from ⊤1 to f3. Finally, in the fourth iteration, an edge is added

from e2 to ⊥1. Clearly, the slice has exactly one nontrivial consistent cut, namely

{e1, e2, f1, f2}.

In general, a graph may contain more than one consistent cut satisfying the

given predicate. The specific consistent cut that is output at line 7 depends on the

order in which the events are considered at line 3.
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Figure 6.15: All illustration of the algorithm in Figure 6.14.

Theorem 6.30 The time-complexity of the algorithm for solving COMPC in Fig-

ure 6.14 is O(|E|T ), where E is the set of events and O(T ) is the worst-case time-

complexity of solving CONTC.

Proof: Clearly, the initialization at line 2 has O(n|E|) time-complexity, where n

is the number of processes and E is the set of events, assuming that the skeletal

representation is used. Also, each iteration of the for loop at line 3 has O(T ) time-

complexity. Therefore the overall time-complexity of the algorithm is O(n|E| +

|E| T ). It is reasonable to assume that T = Ω(n). This gives the time-complexity
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of O(|E| T ). ¤

It is possible to further reduce the time-complexity to O(n log(|E|)T ) using

a technique similar to binary search. The main idea is as follows. Consider an event

e on process Pi. Suppose the if statement at line 4 evaluates to true for e. In that

case, we will add an edge from e to ⊥1. The edge will also create a path from every

event that occurred before e on Pi to ⊥1. These events do not need to be considered

at all by the for loop and can be simply ignored. On the other hand, in case the if

statement evaluates to false, we will add an edge from ⊤1 to e. Similar to before,

the edge will also create a path from ⊤1 to every event that occurred after e on

Pi. Again, these events do not need to be considered by the for loop. Therefore,

by selecting e appropriately, it is possible to eliminate close to half of the remaining

events on Pi from consideration in a similar fashion as binary search.

Remark 6.31 Using our results in this section and Section 4.3, we have that CONTC

∼= COMPC ∼= COMPS.

We use the algorithm of this section to generate a witness when the predicate

is of the form EF(p). Note that our slicing algorithms can also be used to gener-

ate a witness. (A counter example is simply a witness to the complement of the

predicate.) In that, when the predicate EF(p) is satisfied, any consistent cut of the

slice(G, EF(p)) serves as a witness. When the predicate EG(p) is satisfied, any obser-

vation in slice(G, EG(p)) serves as a witness. When the predicate AG(p) is satisfied,

any observation in G serves as a witness. However, the witness generation based on

slicing has a higher complexity than witness generation algorithm of this section.

6.9 Discussion

Predicate detection algorithms of this chapter are useful in increasing the under-

standing of program behavior when a property fails or holds. Also, due to the

155



nature of working on a single trace, these algorithms are most appropriate for find-

ing bugs rather than proving programs correct. For example, when a safety property

such as AG(p) does not hold on a trace, we can conclude that the program does not

satisfy the property. However, when the safety property holds on a trace, it might

not hold for other traces or when the same trace is extended.

In order to detect liveness property violations, we need to reason about in-

finite execution traces. For finite state systems, such infinite traces are generated

when a consistent cut is revisited (resulting in a loop). However, our current al-

gorithms do not find such loops, hence when we report a violation of a liveness

property, the property may indeed hold for the program. For example, when a live-

ness property such as EF(p ∧ EG(q)) fails on a trace, it might hold for other traces

or when the same trace is extended by new events.
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Chapter 7

POTA System and Experiments

In this chapter, we describe an experimental evaluation of our partial or-

der trace analysis method which is based on the predicate detection algorithms in

Chapter 6.

7.1 Overview

In order to quantify the effectiveness of our predicate detection algorithms, we de-

veloped a prototype system named Partial Order Trace Analyzer (POTA). POTA

contains implementation of our novel computation slicing technique for predicate

detection.

Section 7.2 gives an overview of the tool architecture with the implementation

details of representing the partial order relation between the events in a trace.

We present predicate detection experiments in Section 7.3. The first set of

experiments demonstrate the effectiveness of our slicing based predicate detection

algorithms. The second set of experiments demonstrate the effectiveness of our

AF(p) detection algorithms. Our experimental work covers a wide range of protocols.
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Some of these protocols are a message passing dining philosopher protocol, a shared

variable mutual exclusion protocol, a CORBA General Inter-ORB Protocol, and a

directory based cache coherence protocol.

Finally, we present a discussion of our experimental work in Section 7.4.

7.2 POTA Architecture

The overall structure of POTA architecture is shown in Figure 7.1. We implemented

the tool using the Java programming language [GJSB00]. The input to POTA is

a program and a specification. The specification is given in a text file and then

parsed. The program is instrumented by the instrumentor module and executed,

generating a partial order trace. The trace is then fed into the analyzer module,

which implements our slicing and predicate detection algorithms. The tool also

contains a translator module that enables the usage of a model checker on a program

trace rather than on a program. Next we will describe the details of each module.

7.2.1 Instrumentor

The instrumentor module inserts code at the appropriate places in the program to

be monitored. The instrumented program is such that it outputs the relevant events

and a vector clock that is updated for each such event. The events can be classified

as internal and external events. An external event is a send, receive, read, or write

event. A relevant event is such that it assigns values to the atomic propositions in

the predicate, hence, the value of the predicate might change or a relevant event

is a send or a receive event. An example of a relevant event in a message passing

program is an internal event that updates the value of a variable that appears in the

predicate. An example of a relevant event in a shared variable program is a write

event of a shared variable that appears in the predicate.

In order to represent the partial order relationship between the events, we
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Figure 7.1: Overview of POTA Architecture

use a vector clock mechanism which we described in Chapter 2. We refer the reader

to [Fid91, Mat89] for a detailed discussion on vector clock mechanisms. Now we

will present details of vector clock algorithms implemented in POTA for message

passing and shared memory programs, which are taken from [Gar02] and [SRA03]

for message passing and shared variable programs, respectively. It was proven in

[Gar02] and [SRA03] that the mentioned vector clock algorithms correctly implement

causality.

Our implementation of vector clocks uses vectors of size n, the number of

processes in the system. Each process (thread) is associated with a vector clock v.

The algorithms presented in Figure 7.2 and Figure 7.4 are described by the initial

conditions and the actions taken for each event type.

In algorithm Algo7.1, a process increments its own component of the vector

clock only after a relevant event. A process includes a copy of its vector clock in

every outgoing message. On receiving a message, it updates its vector clock by
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Algorithm Algo 7.1:

Input: vector clock v: array[1..n] of integers for process Pj

Output: vector clock v updated for process Pj

1 initially (∀i : i 6= j : v[i] := 0) ∧ (v[j] := 1);

// update the vector clocks for each event e generated by a process Pj as follows:

2 if e is a relevant event then

3 v[j] := v[j] + 1;
endif;

4 if e is the send of an event to process Pk then

5 send v to Pk;

endif;

6 if e is the receive of an event g then

7 for i := 1 to n do

8 v[i] := max(v[i], g.v[i]);
endfor;

endif;

9 if e is a relevant event then

10 output the pair (e, v);

endif;

Figure 7.2: A vector clock algorithm for message passing programs.

taking a component-wise maximum with the vector clock included in the message.

Finally, if the event is relevant, then the event and its vector clock is output. For

message passing programs, all of internal events that assign values to the atomic

propositions in the predicate, send events and receive events are relevant. A sample

execution of the algorithm is given in Figure 7.3.

In algorithm Algo7.2, for each shared variable x there are two vector clocks

va
x and vw

x , denoted by access and write vector clocks, respectively. A process incre-

ments its own component of the vector clock only after a relevant event. A process

updates its vector clock on reading a shared variable x by taking a component-wise

maximum with the write vector clock of x. Then the access vector clock of x is
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Figure 7.3: A sample execution of the vector clock algorithm

updated by taking a component-wise maximum with that of the vector clock of the

process. On writing a shared variable, a process updates its vector clock by taking

a component-wise maximum with the access vector clock of x. Then, the write and

access vector clocks of x are set to the vector clock of the process. Finally, if the

event is relevant, then the event and its vector clock pair is output.

Upon running the instrumented program, a separate log file is created for

each process. Each log file consists of a sequence of (event, vector clock) pairs that

a process generates. Furthermore, each such pair is also appended by the values of

the variables that the event in the pair manipulates. The log files from all processes

are then combined to obtain a partial order representation of the execution trace.

Instead of using a log file, if every process sends its trace to a dedicated process

which combines them during runtime, we can obtain a simple on-line verification

environment. This environment can further be used to implement our on-line slicing

algorithm in Section 4.4.
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Algorithm Algo 7.2:

Input: (1) a vector clock v: array[1..n] of integers for process Pj , and

(3) read vector clock va
x and write vector clock vw

x for each shared variable x

Output: vector clocks v, va
x, and vw

x updated for process Pj and for each shared variable x

1 initially (∀i : i 6= j : v[i] := 0) ∧ (v[j] := 1);

2 initially (∀i : va
x[i] := vw

x [i] := 0);

// update the vector clocks for each event e generated by a process Pj as follows:

3 if e is a relevant event then

4 v[j] := v[j] + 1;
endif;

5 if e is the read of a shared variable x then

6 for i := 1 to n do

7 v[i] := max(v[i], vw
x [i]);

endfor;

8 for i := 1 to n do

9 va
x[i] := max(va

x[i], v[i]);
endfor;

endif;

10 if e is the write of a shared variable x then

11 for i := 1 to n do

12 v[i] := max(va
x[i], v[i]);

endfor;

13 vw
x := va

x := v;
endif;

14 if e is a relevant event then

15 output the pair (e, v);
endif;

Figure 7.4: A vector clock algorithm for shared variable programs.

Currently, the instrumentation code is manually added to the programs.

7.2.2 Translator

The translator module takes a partial order representation of a trace and translates

it into specific languages. Since we are working with concurrent and distributed pro-
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grams which exhibit a lot of parallelism and independency, partial order reduction

techniques can take advantage of these properties of programs. The SPIN model

checker [Hol97] contains implementation of partial order reduction techniques and

is one of the most effective model checking tools.

SPIN is an on-the-fly linear time logic (LTL) model checker that uses explicit

state enumeration and the partial order reduction. The partial order reduction

generates a subset of the lattice of consistent cuts. This is due to executing only a

subset of events enabled from the current consistent cut rather than executing all

enabled events. The selection of the subset of events exploits the commutativity

of concurrent events, which results in the same consistent cut when the events are

executed in different orders. For example, read events by different processes on

different variables are commutative. The details of the partial order reduction can

be found elsewhere [GW91, Val91, Pel93, Esp94, SUL00].

Currently, translation from traces to Promela (input language of SPIN) is

supported. The translation mechanism is similar to the technique explained in

[LL96] for translations from Message Sequence Charts (MSC) to Promela.

Translator module serves two purposes: (1) It enables comparison of our

slicing technique with other techniques such as partial order reduction, (2) It enables

detection of predicates that do not belong to RCTL. The second usage is performed

when the predicate detection algorithm Algo6.1 reaches line 6. Note that we can use

SPIN when there are equivalent specifications in linear temporal logic LTL for the

corresponding RCTL+ predicate.

7.2.3 Analyzer

The analyzer module contains our computation slicing and predicate detection algo-

rithms. In particular, it contains an implementation of our slicing algorithm Algo5.5,

and predicate detection algorithms Algo6.1 and Algo6.2, respectively. In order to ob-
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tain the slice with respect to a predicate, our algorithms add edges to the input

graph. Upon adding edges, we traverse the graph in order to compute the new val-

ues of J(e) and F(e) for each event e as explained in Section 5.4.2. This procedure

aids in obtaining a skeletal representation of the slice.

7.3 Experiments

In order to evaluate the effectiveness of POTA, we perform experiments with scal-

able protocols; protocols which are composed of many processes. We compare our

computation slicing based approach with partial order reduction based approach of

SPIN.

7.3.1 Setup

All experiments were performed on a 1.4 Ghz Pentium 4 machine running Linux.

We restricted the memory usage to 512MB, but did not set a time limit. The

two performance metrics we measured are running time and memory usage. In

the case of slicing both metrics also include the overhead of computing the slice.

We measure the time with Unix “time” command for SPIN runs and with Java’s

“System.Milliseconds” function for POTA runs. We measure the memory usage by

“runtime.totalMemory() - runtime.freeMemory()” for POTA runs and by the usage

displayed by SPIN for SPIN runs. We run all the programs for 20 seconds and our

measurements are averaged over 20 traces for each program.

We consider programs such as distributed dining philosophers, primary-secondary,

distributed mutual exclusion, GIOP, ATMR, and leader election protocols. Further

experimental results can be obtained from POTA website [POT03].

We are primarily interested in checking the violations of the safety and live-

ness properties of the programs. For this purpose, we check for the complements of

these properties.

164



7.3.2 Distributed Dining Philosophers

We use the Java protocol from [Har98] for this exercise. The protocol consists of

multiple philosophers who sit around a table and spend their time thinking and

eating. However, a philosopher requires shared resources, such as forks, to eat. The

protocol coordinates access to the shared resources. Each philosopher has 3 local

states namely think, hungry, and eat. The philosophers do not have a central server

that they can query for fork availability. Instead each philosopher has a servant who

communicates with the two neighboring servants to negotiate the use of the forks.

The servants send “need left fork”, “need right fork”, “pass left fork”, and “pass

right fork” messages back and forth. Each fork is always in the possession of some

philosopher, one of the two on either side of the fork. When a philosopher finishes

eating, it labels its two forks as dirty. A hungry philosopher’s servant is required to

give up a dirty fork in its possession, if asked for by its hungry neighbor’s servant.

This prevents starvation. We check the following properties.

1. We require mutually exclusive use of forks, that is, a shared resource should

not be used by more than one philosopher at a time. This can be ascertained

by checking whether two neighbor philosophers are eating at the same time.

This safety property can be stated as
∧

i,j∈0...(n−1) (AG(¬eati ∨ ¬eatj)), where

eati denotes that philosopher i is in eating state and j denotes the neighbor

of philosopher i. We can check whether this property is violated by checking

the complement of the safety property, which is
∨

i,j∈0...(n−1) (EF(eati ∧ eatj)).

Figure 7.5 displays our results for this property. SPIN took 16.06 seconds

and 74 MB to complete for 6 processes. SPIN ran out of memory for more

than 90 % of the runs for 7 processes and took 189.4 seconds and 493.2 MB

to complete for the remaining runs. Whereas, POTA took 383 seconds and

52 MB to complete for 200 processes. Due to the overhead associated in

generating traces, we stopped generating traces for more than 200 processes.
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2. We check starvation freedom of the philosophers, that is, every hungry philoso-

pher should be able to eat eventually. Symbolically,
∧

i∈0...(n−1)(AG(hungryi ⇒

AF(eati))), for each philosopher i. We check the complement of the property,

which is
∨

i∈0...(n−1)(EF(hungryi ∧ EG(¬eati))), for each philosopher i. Fig-

ure 7.6 displays our results for this property. Observe that the negation of a

local predicate ¬eati is also a local predicate and furthermore it is a regular

predicate. SPIN took 246.7 seconds and 301.7 MB to complete for 6 processes

and it ran out of memory for more than 6 processes. Whereas, POTA took

835 seconds and 106 MB to complete for 200 processes.

3. We check the property AG(EF(eati)) which denotes that eating is possible from

every state. Note that, this property does not need to be satisfied unless the

philosopher is in hungry state. Figure 7.7 displays our results for this property.

POTA took 1118 seconds and 80 MB to complete for 200 processes. There is

no equivalent specification in LTL in this case, hence we do not present SPIN

results.
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Figure 7.5: Dining philosophers verification results for Property (1)
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Figure 7.6: Dining philosophers verification results for Property (2)
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Figure 7.7: Dining philosophers verification results for Property (3)

7.3.3 Primary Secondary

The primary secondary program [SUL00] is an algorithm designed to ensure that the

system always contains a pair of processes acting together as primary and secondary.

The details of the protocol can be found at [SUL00]. The invariant of the protocol

requires that there is a pair of processes Pi and Pj such that (a) Pi is acting as

a primary and correctly thinks that Pj is its secondary, and (b) Pj is acting as

a secondary and correctly thinks that Pi is its primary. Both the primary and

secondary may choose new processes as their successor at any time.
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Figure 7.8: Primary Secondary verification results for Property (1)

1. We check the complement of the safety property, which is

EF
∧

i,j∈0...(n−1),i6=j(¬isPrimaryi∨¬isSecondaryj∨ (secondaryi 6= Pj) ∨(primaryj 6=

Pi)). Note that this predicate contains disjunction operators and the slice may

not be lean. We use logscale for time and memory in Figure 7.8. The figure

shows that even for predicates with disjunction operator, slicing can reduce the

state space substantially. SPIN ran out of memory for more than 10 processes,

whereas POTA ran out of memory for more than 40 processes. Since the slice

for the predicate may be approximate, the number of processes verified with

POTA is not as high as it was in the previous experiment.

7.3.4 Distributed Mutual Exclusion (Message Passing)

Mutual exclusion is one of the most studied topics in distributed systems. It reveals

many important issues such as safety and liveness properties of such systems. We use

the Java protocol from [Har98] for this exercise. The protocol is an implementation

of Ricart and Agrawal’s distributed mutual exclusion algorithm. The algorithm

uses timestamps assigned to requests of shared resources to resolve conflict in use of

resources. Each process has two local states, namely tryCS, which denotes that the

process has made a request to access the resource (or the critical section), and inCS,
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which denotes that the process has acquired the resource. Each process maintains

the logical time of its request. On receiving any request with a lower timestamp

than its own, it replies immediately. Otherwise, it adds that process to the list of

processes that will be replied after this process releases the resource. The details of

the algorithm can be found in [RA81]. We check the following properties.

1. Two processes cannot access the critical section simultaneously. We can

check whether this property is violated by checking its complement, which

is
∨

i,j∈0...(n−1)(EF(inCSi ∧ inCSj)), where i and j denote processes. Fig-

ure 7.9 displays our results for this property. In this case the traces did not

satisfy the predicate. Hence, the safety property was not violated.

2. Every request for the critical section is eventually granted. We check the

complement of the liveness property, which is
∨

i∈0...(n−1) (EF (tryCSi ∧ EG(¬inCSi))), for each process i. Observe that the

negation of a local predicate ¬inCSi is also a local predicate, hence, it is a

regular predicate. Figure 7.10 displays our results for this property. SPIN

took 55.82 seconds and 393 MB to complete for 5 processes and it ran out of

memory for more than 5 processes. Whereas, POTA took 2335 seconds and

272 MB to complete for 100 processes and it ran out of memory for more than

100 processes.

7.3.5 Distributed Mutual Exclusion (Shared Variable)

We use the Java protocol from [Gar04] for this exercise. The protocol is an im-

plementation of Bakery mutual exclusion algorithm. The algorithm uses shared

variables. The basic idea is that of a bakery; customers take numbers, and whoever

has the lowest number gets service next. Here, of course, “service” means entry to

the critical section. We check the same safety property as in the message passing

169



20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

number of processes

Ti
m

e 
(s

)

POTA

20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

18

20

number of processes

M
em

or
y 

(M
B)

POTA

Figure 7.9: Mutual Exclusion (Message Passing) verification results for Property (1)
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Figure 7.10: Mutual Exclusion (Message Passing) verification results for Property

(2)

version.

1. Two processes cannot access the critical section simultaneously. We can

check whether this property is violated by checking its complement, which

is
∨

i,j∈0...(n−1)(EF(inCSi ∧ inCSj)), where i and j denote processes. Fig-

ure 7.11 displays our results for this property. SPIN took 36 seconds and 375

MB to complete for 11 processes and it ran out of memory for more than 11
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processes. Whereas, POTA took 8500 seconds and 30 MB to complete for 200

processes.
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Figure 7.11: Mutual Exclusion (Shared Variable) verification results for Property

(1)

7.3.6 Cache Coherence Protocol

The MSI (Modified Shared Invalid) cache coherence protocol is a protocol to main-

tain data consistency among a number of caches connected to a central directory

structure in a multi-processor system. The protocol is a directory based scheme in

which individual processes snoop on all other processors’ activities over a shared

directory. The details of the protocol can be found in [POT03].

1. The property we checked on the MSI protocol is the safety property, “two

caches cannot be in the modified state simultaneously”. The complement of

the property is EF(modifiedi ∧ modifiedj), where i and j are cache identifiers.

Figure 7.12 displays our results for this property. SPIN took 90 seconds and

468 MB to complete for 10 processes and it ran out of memory for more than

10 processes. Whereas, POTA took 1053 seconds and 44 MB to complete for
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120 processes. Due to the overhead associated in generating traces, we stopped

generating traces for more than 120 processes.
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Figure 7.12: MSI verification results for Property (1)

7.3.7 General Inter-ORB Protocol (GIOP)

In this section, we present experimental results for the General Inter-ORB Protocol

(GIOP) which was verified for a configuration with a small number of processes in

[KL00] using SPIN.

The Common Object Request Broker Architecture (CORBA) [COR97] de-

scribes the architecture of a middleware platform that supports the implementation

of applications in distributed and heterogeneous environments. The ORB is the

key component of the CORBA programming model. An ORB is responsible for

transferring operations from Clients to Servers. This requires the ORB to locate

a Server implementation (and possibly activate it), transmit the operation and its

parameters, and finally return the results back to the Client.

The General Inter-ORB Protocol (GIOP) is the abstract protocol which is

used for communications between CORBA ORBs. It specifies the transfer syntax

and a standard set of message formats for ORB interoperation over any connection-
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oriented transport protocol. GIOP is designed to be simple and easy to implement,

while still allowing for reasonable scalability and performance. In order to allow

server objects to move between different ORBs and have messages forwarded to

them wherever they are, GIOP supports server migration.

Figure 7.13 displays the high level view of the Promela model of the GIOP

protocol as depicted in [KL00]. The protocol consists of User, Client, Transport,

Agent and Server processes.

Transport

Server

Agent

Transport

GIOP
Client
GIOP

User

Figure 7.13: GIOP model

1. After sending a URequest message a User should eventually receive the cor-

responding UReply message.

We check the complement of this property stated as:

EF (URequestSenti ∧ EG(¬UReplyReceivedi)), for all users i. Figure 7.14 dis-

plays our results for this property. SPIN took 607.32 seconds 376.15 MB to

complete for 10 processes and it ran out of memory for more than 10 processes.

Whereas, POTA took 1761 seconds and 91 MB to complete for 250 processes.

We stopped generating traces at 250 processes since this was the maximum
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number of processes allowed in SPIN.

2. After sending an SRequest the GIOP-Agent should eventually receive a cor-

responding SReply.

We check the complement of this property stated as:

EF(SRequestSenti ∧ EG(¬SReplyReceivedi)), for all agents i. Figure 7.15

displays our results for this property. SPIN took 324.71 seconds 305 MB to

complete for 10 processes and it ran out of memory for more than 10 processes

Whereas, POTA took 1177 seconds and 107 MB to complete for 250 processes.

3. If the user received no exception, its request was performed exactly once.

We check the complement of the following predicate.

AG(¬NoExceptioni∨ (
∨

k

∧
j ServerjProcessedi = m)), where m = 1 if k = j

and m = 0 otherwise, for all users i and for all servers j, k.

Figure 7.16 displays our results for this property. SPIN took 321.69 seconds

305 MB to complete for 10 processes and it ran out of memory for more than

10 processes. Whereas, POTA took 522 seconds and 369 MB to complete for

120 processes and it ran out of memory for more than 120 processes.

4. If the user received exception, its request was performed at most once.

We check the complement of the following predicate.

AG(¬SystemExceptioni ∨ (
∨

k

∧
j ServerjProcessedi = m)

∨(
∧

l ServerlProcessedi = 0)), where m = 1 if k = j and m = 0

otherwise, for all users i and for all servers j, k, l. Figure 7.17 displays our

results for this property. SPIN took 319.21 seconds 305 MB to complete for

10 processes and it ran out of memory for more than 10 processes. Whereas,

POTA took 520 seconds and 475 MB to complete for 120 processes and it ran

out of memory for more than 120 processes. Observe the sudden increase in
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time from 80 to 90 processes. The complexities of our algorithms in POTA are

polynomial in the number of events. Since we generate traces for 20 seconds,

the number of events may not be the same for traces of the same protocol with

different number of processes. Hence, there may be a sudden increase as seen

in the figure.

The full verification of GIOP by Kamel and Leue [KL00] even for the con-

figuration in Figure 7.13 with 10 processes was not completed due to state space

explosion. They could verify a simplified version of the protocol without server

migration with 10 processes. To enable verification for larger number of processes,

they used an approximation technique in SPIN called bit-state hashing where two

bits of memory are used to store a reachable state. SPIN displays a state cover-

age number (hash-factor) at the end of a verification with bit-state hashing. With

bit-state hashing, they could verify the unsimplified version of the protocol with 20

processes with 1.5 hash-factor, which means that the coverage was less than one

percent since best coverage is obtained when the hash-factor is greater than 100.

We generated execution traces for a variety of GIOP architectures where we

duplicated the User and Server blocks. In one case, we generated execution traces

of the unsimplified version of GIOP protocol where the total number of processes

was increased to 250 and we completed full verification of these traces.

7.3.8 Asynchronous Transfer Mode Ring (ATMR)

We present experimental results for the Asynchronous Transfer Mode Ring (ATMR)

protocol which was verified for a configuration with a small number of processes in

[PTK03] using SPIN.

ATMR protocol [ISO93] is an ISO standard based on a high-speed shared

medium connecting a number of access nodes by channels in a ring topology. For

controlling access to this type of shared medium, the ring is first initialized with a
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Figure 7.14: GIOP verification results for Property (1)
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Figure 7.15: GIOP verification results for Property (2)

fixed number of ATM cells continuously circulating around the channel from one

node to another. Within each access node there is an access unit which performs

both the physical layer convergence function and the access control function. Access

to the ring is requested by the client and controlled by a combination of a window

mechanism and a reset procedure. The client can issue a sending request to the

access unit and receive a data cell. The window mechanism limits the number of cells

a node can transmit at a time, called the “credits” of this node. The reset procedure

reinitializes the window in all access units to a predefined credit value. Figure 7.18
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Figure 7.16: GIOP verification results for Property (3)
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Figure 7.17: GIOP verification results for Property (4)

gives an example ring with five nodes connected via a channel transferring cells

between the nodes as depicted in [PTK03].

We conducted experiments for the following predicates used in [PTK03].

1. Once an access unit exhausts its window size credit, the credit will eventually

be renewed.

We check the complement of this property stated as: EF
(
(crediti == 0) ∧

EG(¬(crediti == 6))
)
, for all access units i, where credit stands for the num-

ber of credits which is being held by an access unit and 6 is the preset max-
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Figure 7.18: ATMR model

imum value. Figure 7.19 displays our results for this property. SPIN ran out

of memory for more than 3 processes. Whereas, POTA took 5195 seconds and

460 MB to complete for 250 processes.

2. A client’s request will be eventually acknowledged.

We check the complement of this property stated as: EF
(
reqi ∧ EG(¬acki)

)
,

for all clients i, where req signal is generated by a cell sending request signal

from a client to an access unit. If the requested cell has been sent out, the

access unit will return an ack signal to the client. Figure 7.20 displays our

results for this property. SPIN ran out of memory for more than 3 processes.

Whereas, POTA took 3420 seconds and 357 MB to complete for 250 processes.

The full state space verification of ATMR by Peng et al. even for a configu-

ration with 3 nodes was not completed due to state explosion. To enable verification

for larger number of processes, they used the bit-state hashing technique which we

explained in GIOP experiment. With bit-state hashing, they could verify up to 6

nodes on a 2GB memory machine with less than 98 percent coverage.

We generated execution traces for up to 250 nodes and completed full state
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Figure 7.19: ATMR verification results for Property (1)
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Figure 7.20: ATMR verification results for Property (2)

space verification of these traces. Whereas, SPIN failed to complete full state space

verification for more than 3 nodes even when the input to SPIN were traces rather

than the protocol.

7.3.9 AF(p) Experiments

We also performed experiments using algorithm Algo6.2 in Section 6.4 for AF(p)

predicate detection.

We implemented the Chang-Roberts leader election algorithm in Java. In
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the leader election protocol the processes are arranged in a unidirectional ring. The

algorithm ensures that the process with the maximum identifier gets elected as the

leader. Every process sends messages only to its left neighbor and receives messages

from right neighbors. A process can send election message along with its identifier to

its left, if it has not seen any message with a higher identifier than its own identifier.

It also forwards any message that has an identifier greater than its own; otherwise,

it swallows that message. If a process receives its own message, then it declares

itself as the leader by sending a leader message. The details of the Chang-Roberts

algorithm can be found in [CR79].

1. We check AF(done0 ∧ done1 ∧ . . . ∧ donen−1) which denotes that eventually a

leader is chosen by every process. Our results are shown in Figure 7.21. The

POTA results denote experiments performed by applying all of the conditions

in Theorem 6.7, Theorem 6.10, and Theorem 6.16. Observe that our improve-

ment in space and time performance is in the order of magnitude. SPIN took

15.8 seconds and 67.4 MB for 11 processes and it ran out of memory for more

than 11 processes. Whereas, POTA took 54 seconds and 181 MB to complete

for 17 processes.
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Figure 7.21: Leader Election verification results for Property (1)
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7.4 Discussion

We have presented a partial order execution trace analysis tool (POTA) that imple-

ments our predicate detection algorithms. For problem sizes that preclude “exhaus-

tive program verification”, POTA proves to be an effective tool. Our technique is

orthogonal to other reduction techniques, that is, one can use POTA to reduce the

state space as long as we can exploit the specification for computation slicing.

We obtain three orders of magnitude speed up and state space reduction

compared to partial order reduction with SPIN as shown in experiments. Using

our slicing based technique we could verify up to 250 processes in some cases. Some

protocols also violated the properties checked. With SPIN, even for bit-state hashing

enabled verification, the faults could not be found because the state spaces were too

large and the coverage was low. However, with POTA the faults were easily found.
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Chapter 8

Related Work

8.1 Computation Slicing

The results in computation slicing presented in this dissertation were first published

in [SG03a, SG03c, GMS03, MSGA04]. Computing the slice for an arbitrary pred-

icate is known to be intractable, in general [MG01a]. However, by exploiting the

structure of of the predicate, polynomial-time algorithms have been developed for

non-temporal regular and linear predicates [GM01, MG01a, MG03]. Using our re-

sults, it is now possible to compute the slice efficiently for many more classes of

non-temporal and temporal predicates. The non-temporal predicates include sta-

ble, co-stable, observer-independent, relational, and co-linear predicates and the

temporal predicates include a subset of temporal logic CTL.

The algorithms described in earlier papers [GM01, MG01a] for computing a

slice are all off-line in nature; they assume that the entire set of events is available a

priori. While this is quite adequate for applications such as testing and debugging,

for other applications such as software fault tolerance, it is desirable that the slice
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be computed incrementally in an on-line manner, that is, as and when a new event

is generated, the current slice is updated to reflect its arrival. We developed an

efficient algorithm to compute slices on-line.

The notion of a computation slice is similar to the concept of a program

slice [Wei82]. Given a program and a slicing criterion, that is, a set of variables, a

program slice consists of all statements in the program that may affect the value

of the variables in the set at some given point. The criterion in program slicing

has also been extended to some predicate classes such as atomic propositions in

temporal logic LTL [DH99] and has been implemented in Bandera tool [CDH+00].

Millett and Teitelbaum [MT00] have applied program slicing to the input language

of the model checker SPIN [Hol97]. Program slicing has been shown to be useful

in program debugging, testing, program understanding, and software maintenance

[KR97, Wei82]. A program slice can significantly narrow the size of the program to

be analyzed, thereby making the understanding of the behavior easier. We obtain

similar benefits from a computation slice for predicate detection and furthermore

our approach is orthogonal to program slicing. In other words, after finding a bug

using computation slicing, one can use program slicing to reduce the program that

needs to be analyzed for locating the bug.

8.2 Predicate Detection

We published our results on predicate detection in [SG02, SG03a, SG03b, SG03c].

Predicate detection in the partial order model is a hard problem. Detecting even a

2-CNF predicate under EF operator has been shown to be NP-complete, in general

[MG01b]. Some examples of the predicates for which the predicate detection can

be solved efficiently are: conjunctive [GW94, HMRS96], stable [CL85], observer-

independent [CBDGF95], linear [CG98], relational [TG97], and non-temporal regu-

lar and linear [GM01, MG01a, MG03] predicates.
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In [SG02], we presented predicate detection algorithms for predicates of the

form EG(p), AG(p) when p is linear. Our algorithms improve the complexity results

for predicates EG(p) and AG(p) in [MG03] when p is non-temporal regular. We also

developed detection algorithms for E(p U q) when p is conjunctive and q is linear.

Using this algorithm we obtained a simple algorithm to detect A(p U q) when p and

q are disjunctive predicates. Also, we are not aware of other efficient algorithms for

temporal predicates E(p U q) and A(p U q).

Tarafdar and Garg [TG98b] proved that it is, in general, NP-complete to

detect a predicate under EG operator. Since the problem of detecting a predicate

under AF operator is the dual of the problem of detecting a predicate under EG

operator, it is, in general, coNP-complete to detect a predicate under AF opera-

tor. We showed in [SG02] that the problem of detecting EG(p) when p is observer-

independent is NP-complete and detecting AG(p) when p is observer-independent

is co-NP-complete. Therefore, detecting a co-observer-independent predicate under

AF operator is coNP-complete, in general.

Fromentin and Raynal [FR94] presented a polynomial time algorithm to solve

the predicate detection problem for proper operator, which is a special case of AF

operator. A computation satisfies proper : p if all paths starting from the initial

consistent cut and ending at the final consistent cut go through a unique cut that

satisfies p.

The AF(p) detection problem has efficient solutions when the predicate p is

disjunctive or conjunctive [GW92, GW96]. However, efficient algorithms are not

known for regular p. In [SG03b], we presented efficient conditions to solve the

problem for both arbitrary and regular predicates. We validate with experiments

that these conditions are effective in reducing the state space.

The efficiency of predicate detection algorithms mentioned above depends on

the fact that predicate p is a non-temporal predicate, therefore we could efficiently
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evaluate the satisfiability of p at a consistent cut (efficient predicate evaluation

property). Those algorithms cannot detect predicates that contain nested temporal

operators. For example, the predicate EF(p∧EG(q)), where p and q are conjunctive

predicates, cannot be efficiently detected using only the algorithms for conjunctive

predicates. With the use of our slicing algorithms [SG03a, SG03c], we can detect

such nested temporal logic predicates efficiently. In particular we can detect predi-

cates in a subset of CTL called RCTL+.

Our predicate detection and computation slicing algorithms also exploit the

distributive lattice property of the set of consistent cuts of a partial order execution

trace. We present further applications of lattice theory in distributed computing in

[GMS03].

8.3 Predicate Detection Environments

The idea of using temporal logic for analyzing execution traces at runtime (on-

line predicate detection, also referred to as runtime verification) has recently been

attracting a lot of attention. Tools that use temporal logic for checking execu-

tion traces are the commercial Temporal Rover tool (TR) [Dru00], the MaC tool

[KKL+01], the JPaX tool [HR01], and the JMPaX tool [SRA03]. TR allows the user

to specify the temporal formula in programs. These temporal formula are translated

into Java code before compilation. The TR, MaC and JPaX tools consider a totally

ordered view of an execution trace and therefore can potentially miss bugs that can

be deduced from the trace. LTL based verification of execution traces use automata

generation [GH01, FS01] or rewriting [HR01]. JMPaX tool is closer to our tool

POTA because of the partial order trace model. We work with shared variable and

message passing programs, whereas JMPaX considers multithreaded shared variable

Java programs only. We have both off-line and on-line algorithms, whereas the al-

gorithms are on-line in JMPaX. JMPaX uses a subset of temporal logic LTL with
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safety properties where atomic propositions can be arbitrary. Whereas we use a

subset of temporal logic CTL with both safety and liveness properties where atomic

propositions are restricted. The complexity of the predicate detection algorithm

in our approach is polynomial-time for RCTL predicates, whereas the complexity

is exponential-time (proportional to the width of the lattice of consistent cuts) in

JMPaX.

Since our partial order trace model results in a lattice structure with paths

branching from an initial consistent cut (with several possible futures), we decided to

use a branching temporal logic RCTL+ (a subset of CTL) to analyze these structures.

Also, operators such as possibly, definitely, invariant, and controllable, which are

traditionally used in predicate detection, can easily be expressed in RCTL+. Note

that the complexity of checking CTL is linear in the size of the model (lattice of

consistent cuts), which itself is exponential in the size of the trace description. More

specifically, for a trace with n processes with at most k events on each process, the

complexity of checking a formula p in CTL is O(|p|·kn) (exponential in the number of

processes). Whereas, the complexity of checking RCTL+ is O(|p| ·n2k), (polynomial

in the number of processes) when disjunction, negation and next-time operators are

not allowed.

In case a total order trace is used for predicate detection, the linear time

temporal logic LTL is a more suitable logic than CTL, since there is only a single

possible future. The complexity of checking LTL on a total order trace with k events

is O(k) (linear in the number of events), whereas the complexity of checking LTL on

a program (all possible traces) is PSPACE-complete (and on a partial order trace

is exponential in the number of processes). Markey and Schoebelen [MS03] have

an extensive complexity analysis for temporal logic model checking on a total order

trace.

Partial order logics view each execution of a program as a set of partial order
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events as opposed to a total order as in LTL or CTL. We use CTL and reason about

the linearizations of the partial order relation, which are paths in the lattice of

consistent cuts. The operators of a partial order logic enable reasoning over the sets

of partial orders. These logics are undecidable even when using AG, EF, and EX

operators [AMP98, AP99]. However, these logics are more expressive in that they

permit a direct representation of properties involving causality and concurrency,

for example, serializability. There are extensive surveys on complexity analysis of

temporal logic model checking in [Eme90, Pen95, Sch03]. Also [EFH+03] contains

an analysis of finite trace semantics for temporal logics.

Runtime verification tools are most useful in increasing the understanding of

program behavior and finding bugs rather than proving programs correct. Therefore,

POTA joins the arsenal of automatic verification tools but does not replace them.

8.4 Model Checking

Model checking [CE81, QS82, CGP00] is an automatic verification technique that

takes a model and a temporal logic predicate and automatically checks whether the

model satisfies the predicate. The model is in general a description of a program in

a mathematical structure such as a Kripke structure or an automata. Some model

checking tools are SMV [McM93], SPIN [Hol97], VIS [VIS96], Bandera [CDH+00],

and Java PathFinder (JPF) [HP00] to name a few. Our method differs from model

checking approach in many aspects. First, model checking algorithms check whether

a predicate is satisfied for all executions of a program, whereas we ascertain whether

a predicate is satisfied for a single partial order execution of a program. This

is because our objective is to develop fast algorithms for predicate detection and

debugging of programs where a single execution trace of the program is observed.

Second, even if model checking algorithms are used on a single finite partial order

trace of a program as in our case, the complexity of detecting a temporal predicate
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would be, in general, proportional to the size of the global state space which is

still exponential in the number of processes (state explosion problem). Whereas

our algorithms have polynomial-time complexity since we do not generate the state

space but work on the trace itself. Finally, we focus on specific predicate classes

such as RCTL+, whereas model checking deals with arbitrary predicates. As a result,

model checking algorithms, although more general in their applicability, are much

more expensive in terms of time and space. Several techniques have been developed

to reduce the state explosion problem in model checking. We compare our approach

with those techniques below.

In symbolic model checking [McM93], sets of consistent cuts are represented

implicitly using boolean functions. Manipulating boolean functions can be done

efficiently with Reduced Ordered Binary Decision Diagrams (ROBDD or BDD in

short), a compact, canonical graph representation of boolean functions. The boolean

functions required to represent the set of consistent cuts can grow exponentially,

hence the complexity of storing and manipulating BDDs suffers from state explosion

problem. A slice is similar to a BDD in that sets of consistent cuts that satisfy a

predicate are represented implicitly using slices. However, unlike with BDDs, the

size of the slice grows only polynomially with the number of processes.

In symbolic trajectory evaluation (STE) [SB95], sets of consistent cuts are

represented explicitly using values from a multi-valued domain. Each component of

a consistent cut has quaternary values represented by the lattice L = {0, 1, X,⊤}

corresponding to false, true, under-constrained and over-constrained. The values on

L are partially ordered X 6 0, X 6 1, 0 6 ⊤, and 1 6 ⊤. A trajectory is a totally

ordered execution trace. Every element on a trajectory may correspond to a set of

consistent cuts. Predicates are of the form AG(Antecedent ⇒ Consequent), where

antecedent and consequent contains only local predicates, boolean conjunction op-

erator, and temporal next-time operator (negation and disjunction are not allowed).
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Our temporal logic is more expressive than the temporal logic used in STE both in

terms of the classes of atomic propositions and the temporal operators allowed.

In bounded model checking (BMC) [BCCZ99], sets of consistent cuts are rep-

resented implicitly using boolean functions expressed with propositional formulas

and the algorithms are SAT based. Our approach is similar to BMC in that it can-

not prove the absence of errors. However, there are several differences. First, given

a finite bound S on the number of steps to reach a counter example (witness for the

complement of the property), BMC generates all possible traces starting from an

initial consistent cut such that each trace has length S. Whereas POTA considers

a single partial order trace starting from an initial consistent cut (containing pos-

sibly exponential number of consistent cuts) such that the trace has finite length.

Second, BMC algorithms work on the set of consistent cuts which is formulated as

a propositional satisfiability problem, an NP-complete problem. Hence the BMC

algorithm is inherently exponential, whereas we have polynomial-time algorithms.

Third, BMC algorithms handle complements of LTL properties (since a SAT algo-

rithm checks the existence of a solution to a propositional satisfiability problem),

whereas we handle RCTL+ properties.

In partial order reduction model checking, a subset of the lattice of consistent

cuts is generated. This is due to executing only a subset of events enabled from the

current consistent cut rather than executing all enabled events. The selection of the

subset of events exploits the commutativity of concurrent events, which results in the

same consistent cut when the events are executed in different orders. For example,

read events of a shared variable by two different processes are commutative. The

complexity of partial order reduction may still be exponential. The details of the

partial order reduction can be found in [GW91, Val91, Pel93, Esp94, SUL00].

Message Sequence Charts (MSC) [MSC96] are a commonly used visual de-

scription of design requirements for concurrent systems such as telecommunications
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systems. An MSC depicts the desired exchange of messages among communication

entries in distributed software systems. Also a shared variable version of MSCs has

been developed [AG01]. An MSC corresponds to a single partial order execution of

the system as in our case. There are several variants of MSCs expressing complex

behavior including hierarchical MSCs. Model checking of MSCs has also been ex-

plored. When the specification is given as another MSC or an LTL property, model

checking becomes co-NP-complete [AY99].
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Chapter 9

Conclusions and Future Work

9.1 Summary

This dissertation has at its goal to develop formal verification procedures for analyz-

ing program execution traces and also to ameliorate the effect of state explosion in

analyzing such traces. This analysis is especially important for testing and debug-

ging purposes. Common types of systems that exhibit state explosion include those

that have large number of processes. This dissertation is focused on methods of

verifying execution traces of such types of systems using temporal logic with a view

to reducing state explosion. The contributions of this dissertation are summarized

below.

Traditional formal verification techniques such as model checking and the-

orem proving capture the requirements of a program precisely and unambiguously

but they do not scale well and generally work on an abstract model of a system.

Traditional testing and simulation techniques scale well and work on the imple-

mentations of programs but lack a precise and unambiguous way of specifying the
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requirements of a system. We develop methods to analyze program traces using for-

mal specifications while avoiding the pitfalls of traditional formal verification and

testing.

Our representation of an execution trace by a partial order model gives an

important advantage. Only those dependencies between processes that represent

synchronization in the program execution are included in the model. Thus, errors

can be detected even if they did not actually occur in the particular scheduling or

interleaving of the program run.

Our focus in this dissertation has been on developing and unifying detection

algorithms for temporal logic predicates on a partial order trace model. We present

a subset of temporal logic CTL, called RCTL+, which we interpret on finite traces of

programs. Our subset of temporal logic is powerful enough to specify various safety

and liveness properties of concurrent and distributed systems as illustrated in our

experimental work.

We present polynomial-time detection algorithms for predicates in RCTL+.

Our predicate detection algorithms are based on the computation slicing technique.

A slice is a concise representation of sets of global states in a trace that satisfy a given

predicate. We extend computation slicing, which was earlier introduced for a specific

class of non-temporal predicates (atomic propositions) [GM01, MG01a, MG03] to a

larger class of non-temporal predicates that includes stable and co-stable predicates,

observer-independent predicates, co-linear predicates, and relational predicates. We

accomplish this by showing the equivalence of the two problems; computation slicing

and predicate detection under EF temporal operator. A predicate of the form EF(p)

is satisfied on a trace if there exists a global state that satisfies p. Specifically, given

an algorithm to compute the slice for a predicate p, we can determine whether EF(p)

is satisfied or not, and vice versa. We also extend computation slicing technique to

temporal logic predicates in RCTL+. To that end, we prove that temporal predicates
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EF(p), EG(p), AG(p), and EX(p)[j] are regular, whereas AF(p), EX(p), AX(p), E(pUq),

and A(p U q), in general, are not regular when p and q are regular. We present

polynomial-time algorithms to compute slices for EF(p), EG(p), AG(p), and EX(p)[j].

In this dissertation, we give efficient on-line algorithms for computing the

slice of a trace, that is, we do not assume that the entire set of events in a trace is

available a priori. Especially, for software fault-tolerance purposes, it is desirable to

compute the slice in an on-line manner. Upon generation of an event in the system,

the current slice is updated to accommodate the new event and the resultant slice

is checked for an occurrence of a fault.

Another contribution of this dissertation is efficient predicate detection algo-

rithms. We use our computation slicing algorithms to develop detection algorithms

for predicates from temporal logic RCTL+. In RCTL+, the temporal operators are

EF, EG, AG, EX[j], EX and the atomic propositions are regular, co-regular, linear,

co-linear, stable, co-stable, observer-independent, and relational predicates. For

temporal predicates that do not belong to RCTL+ and that do not contain a nest-

ing of temporal operators, we present algorithms that exploit the distributive lattice

property of the set of global states. Such type of predicates have widely been studied

in the context of distributed computing. Specifically, we provide several conditions

for detecting predicates of type AF(p), when p is a regular predicate. We develop

efficient predicate detection algorithms for EG(p), AG(p), when p is linear and for

E(p U q) when p is conjunctive and q is linear. Using the latter algorithm we obtain

a simple algorithm to detect A(p U q) when p and q are disjunctive predicates. We

also show intractability results for detecting observer-independent predicates under

EG and AG operators.

We have developed a prototype system Partial Order Trace Analyzer (POTA),

which implements our slicing and predicate detection algorithms. We performed

several experiments on scalable and industrial protocols including CORBA’s GIOP,
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ISO’s ATMR, cache coherence and mutual exclusion. Our experimental results in-

dicate that slicing can lead to exponential reduction over existing techniques both

in time and space.

9.2 Future Work

9.2.1 Computation Slicing

As a future work, slicing can be extended to the remaining subset CTL with tem-

poral operators such as AF, AX, EU and AU. Note that, such operators can be

obtained directly from the fix-point characterization of CTL operators that uses the

EX operator [CGP00]. However, this procedure may not result in polynomial-time

complexity.

Since our theory relies heavily on lattice theory, concepts such as composition

of partial orders can be exploited. Using the compositionality, we can first compute

the slice for smaller traces and then combine these slices in an appropriate way to

obtain the slice for the composition. Such concepts will extend the effectiveness and

efficiency of slicing in predicate detection.

9.2.2 Predicate Detection

By the nature of working on a single finite trace, our technique is more suitable for

finding bugs than proving programs correct. An important direction in extending

our work is to develop a better understanding of safety and liveness properties in

the context of finite traces. For certain systems such as finite state systems, we can

reason about infinite traces by considering only finite traces. For safety properties, if

a finite prefix of an execution violates the property then the execution itself violates

the property. Our current technique enables us to detect safety violations. For

liveness properties, if a finite prefix of an execution that leads to a loop violates
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the property then the execution itself violates the property. Hence, if we can detect

whether a global state exists more than once in a finite trace (a loop), we can detect

the violation of a liveness property. Our current technique does not find such loops,

hence when we report a violation of a liveness property, the property may indeed

hold for the program. It would be useful to develop efficient techniques to find such

loops in finite execution traces. Also, liveness properties can be turned into safety

properties using translation techniques [BAS02]. In general, liveness properties are

specified in the context of fairness properties. Another research topic is to investigate

the importance of fairness in the context of a finite trace.

In this dissertation, we give polynomial-time conditions (either necessary or

sufficient conditions) to detect a regular predicate under AF operator. It still remains

an open problem whether there exists an efficient algorithm for AF(p) when p is a

regular or a 2-CNF predicate.

It is important to develop efficient program instrumentation techniques.

These techniques may instrument the program at the source code or object code

level. Also, the instrumentation overhead can be substantially reduced if only a small

part of the program (for example, one that concerns only the relevant events) is in-

strumented. We presented several experiments demonstrating the applicability of

our techniques on software and hardware programs. However, all these experiments

concern asynchronous systems. How can we instrument synchronous hardware pro-

grams in order to generate partial order traces?

9.2.3 Extending the Models and Coverage

It is important to develop metrics to determine whether “sufficient” number of traces

have been explored or not. We can explore coverage-metrics to increase confidence

on verification results. It is also important to develop a theory of test coverage and

generation based on temporal logics and other formal methods.
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Currently, our partial order trace model assumes a total order of events on

each process. This allows us to obtain efficient predicate detection algorithms. It

is important to study the effects of computation slicing and predicate detection on

other models such as potential causality diagrams [TG98a], which allows a partial

order of events on each process. It is clear that our slicing algorithms can work

on a directed graph, hence is applicable to such causality diagrams. However, the

efficiency of the algorithms may decrease in this new model. In particular, even com-

puting the slice for a conjunctive predicate in such a new model becomes intractable

because detecting a conjunctive predicate under EF operator in the potential causal-

ity model is NP-complete.

Although our partial order trace model captures possibly an exponential

number of total order traces, it would still be useful to devise a model that encodes

multiple partial order traces rather than a single one. Such a model will have

immediate coverage impact. For programs with atomic regions and locks, the notion

of a hierarchical (2-level) partially ordered set can be used. A 2-level poset is a poset

where each event may correspond to an atomic region with a total order of events

such that no interleaving of the events in an atomic region is allowed.

Also, we know that for any partial order trace the set of global states forms a

distributive lattice. What additional properties are satisfied when the partial order

is given for a synchronous system?

While formal specification languages have so far been mostly investigated

for model checking, predicate detection can reveal new logics. It is important to

investigate and develop such new logics. Furthermore, temporal logics may not be

the best way to write specifications formally. Can we write specifications in an easier

way? For example, we can represent specifications as partial order traces similar

to Message Sequence Charts [MSC96]. One can then define a notion of refinement

among such finite partial order traces. It is important to explore formalisms that
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go beyond behavioral properties. This includes, but certainly is not limited to

performance and security properties, survivability and fault tolerance.

We have demonstrated that integration of formal methods with testing and

an implicit representation such as slicing is a successful approach and should further

be researched because of the pressing need for formal but still computationally

efficient techniques.
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