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Abstract 

 

Architecture of a mid-Cretaceous patch reef: High resolution mapping 

provides new insight into facies geometries and ecological relationships 

at Paul Spur, Bisbee, Arizona. 

 

Kelly Elizabeth Hattori, M.S. Geo. Sci. 

The University of Texas at Austin, 2017 

 

Supervisors:  Rowan Martindale and Charles Kerans 

 

Patch reef complexes are commonly found in the shelf interior of carbonate 

platforms. These small scattered buildups are potential hydrocarbon targets in the Maverick 

Basin and more broadly within Cretaceous reservoirs in the Middle East. The three-

dimensional facies architecture within patch reefs is difficult to determine using only 

subsurface data. Lateral facies distribution and overall patch reef architecture is better 

assessed in outcrop analogs.  

The Paul Spur patch reefs near Bisbee, Arizona are ideally suited for assessing 

three-dimensional spatial and temporal facies variability. Previous interpretations of this 

1.5 km-long exposure of Mural Limestone disagree as to the overall history of the reef with 

regards to facies relationships and distribution. Early work at Paul Spur attributed spatial 

facies distribution to biotic zonation of a reef during one period of growth, while later work 

concluded that it preserves multiple stages of reef growth with facies succession and 

variation both spatially and temporally controlled.  
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This work better resolves the depositional history and biotic composition of the 

Paul Spur patch reef complex with respect to stratal geometry and both spatial and temporal 

facies relationships.  High-resolution lateral facies mapping of the exposed reef top is 

integrated with three-dimensional digital outcrop modeling techniques to facilitate 

improved understanding of the history of reef growth and patch reef architecture. The new 

reef architecture interpretations are integrated into the preexisting depositional model. At 

Paul Spur, multiple stages of reef growth are preserved and exhibit variable architectures 

controlled largely by local sea-level fluctuations and sediment influx. While coral diversity 

increases throughout the depositional history of the reef complex, overall abundance 

decreases as rudists become more common, reflecting an evolution of the reef community 

through time. Reef constituents are heterogeneously distributed within facies, highlighting 

the need for careful analysis and outcrop scale synthesis of the paleoecological data to 

avoid erroneous characterization of depositional environments based solely on the 

organisms found within a small area. The new depositional model developed in this study 

improves the utility of Paul Spur as an outcrop analog for patch reefs identified in the 

subsurface and furthers understanding of the relationship between environmental controls 

and reef development. 
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Chapter 1: Introduction 

During the Cretaceous Period, shallow-water reefs in the Tethys Ocean were 

dynamic communities with constantly shifting biotic compositions and diversities. In the 

earliest Cretaceous, reefs were dominated by scleractinian corals; as the period progressed, 

a group of heterodontid bivalves called rudists (Order Hippuritida Newell, 1965) (Skelton, 

2013) also took on a reef-building role. These bivalves, which first appeared in the late 

Jurassic (Oxfordian), repeatedly rose to prominence as major reef-builders in the 

Cretaceous, completely dominating reefs in some Tethyan regions at times and 

experiencing heavy decline or extinction during others and ultimately going completely 

extinct in the end-Cretaceous mass extinction (Scott, 1995).  

Mid-Cretaceous reefs from North America have been extensively studied and 

generally exhibit a vertical progression from initially coral-dominated reef frameworks to 

rudist-dominated assemblages (e.g. Scott and Brenckle, 1977; Scott, 1984, 1988; Scott et 

al., 1990; Aisner, 2010). Previous work has attributed the change in biotic composition and 

turnover mainly to competition between corals and rudists (Kauffman and Johnson, 1988; 

Johnson, 2002) and biotic zonation based on water depth (Scott and Brenckle, 1977; 

Roybal, 1981; Scott, 1979, 1984, 1988, 1995; Scott et al., 1990). The latter, more popular 

hypothesis typically relies on fluctuations in eustatic sea level as a mechanism for the 

observed faunal turnover. Rudists are thought to have lived in shallow-water habitats above 

fair weather wave base in areas of higher wave energy and may have flourished in warmer, 

more saline waters (Roybal, 1981; Scott, 1988; Johnson et al., 1996; Johnson, 2002). In 

contrast, corals are thought to have colonized deeper, calmer, cooler waters (Scott, 1988, 

1995; Scott et al., 1990). Rather than directly outcompeting corals, it was hypothesized that 
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rudists simply filled empty niche spaces as the less robust corals declined or moved into 

deeper, cooler waters. 

The spread of rudists may have been mediated by fluctuations in sea level or 

environmental perturbations such as oceanic anoxic events (OAEs). For example, a 

decrease in sea level could reduce habitable area, and could cause subaerial exposure as 

well as increase salinity and temperatures above thresholds that even rudists could tolerate 

(Jenkyns, 1980). Two major declines in rudist diversity and abundance coincide with or 

are closely associated with OAEs 1a and 2 in the early Aptian and at the Cenomanian-

Turonian boundary, respectively (Scott, 1995; Skelton and Gili, 2012). During periods 

following rudist decline and extinction, corals rose to prominence as dominant framework 

builders on reefs, but declined again when rudists began to recover and proliferate. Thus, 

reefs built just after major perturbations can provide insight into dynamics between corals 

and rudists, particularly with respect to rudist re-colonization and coral response to their 

reappearance. 

Mid-Cretaceous (late Aptian to early Albian) reefs are ideal for studying reef 

recovery and community development through time. By the late Early Cretaceous, rudists 

had developed different morphotypes suited for a variety of roles within a reef ecosystem; 

recumbent rudists nestled in the substrate or into sheltered areas, while elevator rudists 

stood erect and may have protruded upwards into the water column (Skelton, 1978). 

Differences in morphotypes aid in the determination of the role of rudists during different 

stages of reef development. Analysis of the progression of post-OAE recovery faunas in 

shallow water tropical reefs could, therefore, be the key to understanding the relationship 

between corals and rudists as major framework-building reef constituents. 

This study utilizes high-resolution comprehensive mapping data for an outcrop of 

the extreme northwest embayment of the Chihuahua Trough of the Gulf of Mexico, known 
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as Paul Spur, to investigate the development of a post-perturbation Aptian-Albian patch 

reef of the Mural Limestone of Arizona. The goal of this work is to assess community 

recovery and transitions, zonation, and facies architecture of the reef, and to reassess the 

stratigraphic framework currently in place using advanced three-dimensional digital 

techniques. Aerial imagery of the outcrop captured by an unmanned aerial vehicle (UAV) 

is processed into a photogrammetric three-dimensional model of the outcrop and facilitates 

improved understanding of the history of reef growth and overall patch reef architecture. 

Integration of the three-dimensional model with detailed facies mapping provides a high-

resolution view of reef development that is useful for predicting the architecture of 

subsurface patch reefs of similar composition and history. Here, we also investigate the 

validity of perturbations, such as pulsed anoxia during OAE 1b or fluctuations in sea level, 

as a mechanism influencing development of the Paul Spur reef with respect to community 

recovery and ecological transitions. Additionally, the study aims to address the likelihood 

of competition-mediated or environmentally-mediated population dynamics between 

rudists and corals. 
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Chapter 2: Geologic Setting 

The present study focuses on Paul Spur, an outcrop of Upper Mural Limestone 

preserving a patch reef complex located southeast of Bisbee, Arizona, USA, on Highway 

80 (Fig. 1). The complex is composed of a series of patch reefs with distinct windward 

(southeast) to leeward (northwest) asymmetry; successive stages of the reef backstep to the 

north (Aisner, 2010). The outcrop is exposed in a northwest- to southeast-trending 

synclinal fold produced by the Laramide orogeny in the Late Cretaceous (Hayes, 1970).  

STRATIGRAPHY 

The Mural Limestone is an early Albian formation within the Bisbee Group that 

represents the shelf of a distally-steepened ramp that prograded into the Chihuahua Trough 

(Fig. 2). The deposition of Mural carbonates succeeding siliciclastics of the Morita 

Formation began in the latest early Aptian during a period of sea level rise and ended in 

the middle Albian with another episode of sea level rise accompanied by burial by clastic 

sediments of the Cintura Formation (Fig. 3) (Scott, 1987; Warzeski, 1987; Scott and 

Warzeski, 1993). The Mural Limestone encompasses a large-scale transgressive-regressive 

sequence and was originally divided into two members: the transgressive Lower Mural and 

the regressive aggradational-progradational Upper Mural (Warzeski, 1987; Scott and 

Warzeski, 1993), which are divided by a late Aptian maximum flooding surface defined 

by Scott (1987). In southeastern Arizona, the Upper Mural is exposed as a series of shelf 

carbonates, patch reefs, and high-energy shoals; in Sonora, Mexico, it is composed of large 

patch reefs and sand banks that may represent the early stages of development of a platform 

margin (Scott and Warzeski, 1993). Aisner (2010) noted that though Paul Spur is within 

the reefal region of the Upper Mural, it is likely within a transgressive sequence; the Upper  
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Figure 1: Area map locating study area southeast of Bisbee, Arizona, United States. The 
outcrop north of Highway 80, boxed in red in the satellite images, is the 
target of the present study.  
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Figure 2: Regional paleogeographic map of Albian southern North America. The Mural 
Limestone is shown at the northwest end of the Chihuahua Trough. Red 
arrow shows location of study area. Modified from Kerans (2010).  
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Figure 3: Stratigraphic column of the Bisbee Group, biostratigraphy, and correlative 
strata in South Texas. Occurrence of Orbitolina texana and Coalcomana 
ramosa at Paul Spur places the outcrop in the upper member of the 
Mural Formation. The Mural Limestone is equivalent to the Pearsall 
Formation and the overlying Glen Rose Limestone. Modified from 
Warzeski (1987) and Scott (1987). 
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Mural is not entirely regressive in nature as previously thought and may instead include a 

regressive-transgressive-regressive depositional record. 

Foraminifer and rudist biostratigraphy places Paul Spur in the latest Aptian to early 

Albian age (Fig. 3) (Scott, 1987). The large benthic foraminifer, Orbitolina texana, is 

commonly found in late Aptian – early Albian carbonate sediments (Scott, 1987). At Paul 

Spur, it is abundant in shelfal deposits surrounding and at the base of the reef. The reef 

biota includes the caprinid Coalcomana ramosa, which is restricted to North American 

uppermost Aptian to Lower Albian reef deposits in the Glen Rose Formation of Texas and 

the Upper Member of the Mural Limestone of Arizona (Scott, 1981, 1987; Scott and 

Warzeski, 1993; Scott and Filkhorn, 2007).  

CORRELATIVE FORMATIONS 

Lithostratigraphic and biostratigraphic work by Hayes (1970), Warzeski (1987), 

Scott and Filkhorn (2007), Scott and Warzeski (1993), and Gonzalez-Leon et al. (2007) 

has shown the Mural Limestone to be correlative in age to the Glen Rose Formation and 

Edwards Group of Texas (Fig. 3). Here, the Glen Rose is of particular interest because it 

contains patch reefs that may be correlative to patch reefs of the Mural Limestone such as 

Paul Spur. Two biostratigraphic indicators, the caprinid rudist Coalcomana ramosa in reef 

facies and the benthic foraminiferan Orbitolina texana in surrounding open shelf deposits, 

link the formations closely in age. 
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Chapter 3: Methods 

AERIAL IMAGE ACQUISITION AND PHOTOGRAMMETRIC MODELING 

Methods of aerial image acquisition and photogrammetric modeling closely follow 

those of Zahm et al. (2016). A DJI Phantom III Professional unmanned aerial vehicle 

(UAV) was used to capture comprehensive aerial images of the outcrop. The UAV includes 

a self-contained 12 megapixel camera that stores precise GPS spatial data with each 

photograph. The camera and UAV were remotely monitored and controlled using the DJI 

Go software on an Apple iPad connected to the controller unit. Images were acquired at 

distances of approximately 10 meters, 20 meters, and 30 meters from the outcrop with 50% 

overlap and were taken with a variety of camera angles relative to the rock face to ensure 

complete coverage. To avoid problems with shadowing and to maintain consistent lighting 

over the entire outcrop, imaging was only conducted in the morning between the hours of 

8:30 and 11:30 AM.  

A total of 1,193 images were processed and loaded into Agisoft PhotoScan 

Professional for development of a three-dimensional model using photogrammetry. Photos 

were aligned using attached GPS metadata as well as comparisons of like points between 

images. A high-resolution dense point cloud was generated; point cloud data were then 

developed into a 3D mesh and texture for export to other applications for manipulation and 

annotation (Fig. 4A). 

HIGH-RESOLUTION FACIES MAPPING 

Mapping of facies distributions and geometries on the exposed outcrop top was 

conducted using a Trimble Pro 6H series differential GPS with decimeter-scale accuracy. 

Points were taken at intervals between 1 and 3 meters over the entire top surface of the 

outcrop; additional points were taken in areas of interest such as major facies changes or 
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Figure 4: Orthophoto produced from 3D model with overlay of mapped faults (A) and 
stratigraphic column location and differential GPS data points (B). 1,092 
points are mapped over the exposed top surface of the reef. Points 
cluster more densely in areas covered by reefs due to the need to 
differentiate small-scale changes in reef framework facies. Black dots 
with labels denote location of measured stratigraphic sections. 
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 contacts. Covered sections were designated by polygons drawn around the perimeter of 

the areas. A total of 1,092 points were mapped over the exposed platform top; locations of 

each point are shown in Figure 4B and described in the supplemental data. Each point was 

associated with a modified Dunham facies classification (Embry and Klovan, 1971) and 

expanded description of any items of interest. For points including reef material, the ratio 

of corals to rudists was recorded to aid in analysis of community composition variation. 

Faults were mapped and offsets were measured where possible (Fig. 4A). 

The GPS points were exported from the Trimble Pathfinder software to ArcGIS for 

development into a high-resolution facies map. The completed map was exported for use 

as a Google Earth overlay and for use as a base for three-dimensional mapping on the 

model.  

As facies mapping was being conducted, ecological relationships between major 

reef constituents (i.e. corals and rudists) were recorded. Multiple samples were collected 

from each facies from a variety of locations on the outcrop; representative samples were 

cut into thin sections for petrographic analysis, while others were polished as hand samples 

for analysis of larger-scale structures and relationships. 

Further mapping was conducted on the exposed vertical surface on the eastern side 

of the outcrop using large printouts of photo panoramas shot during a previous field 

excursion for annotation. Nine stratigraphic sections were also measured and described in 

detail, as indicated in Figure 4B.  

FACIES COMPOSITION ANALYSIS 

Seven facies were identified and described based on significant changes in 

sedimentology, community composition, stratal geometries, and interpreted depositional 

setting. The composition of each facies was quantitatively assessed to allow better 
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definition of boundaries, since some reef facies varied substantially. For each facies, 4-7 

target sites were selected as representatives for analysis based on quality of preservation, 

exposure, and clarity of fossil content. Because many corals have a drastically different 

vertical (cross-sectional) and horizontal (transverse) profile, qualitative compositional 

estimates were always conducted in the same cross-sectional orientation to avoid error. 

One site displaying the facies in plan view was also analyzed for each facies for comparison 

with the cross-sectional view, but was not included in the averaged fossil content analyses. 

A meter-squared quadrat was held against each selected site and the area inside the 

quadrat was photographed with a Canon 5D and a fixed lens. Each quadrat was then 

reconstructed digitally by stitching together the images in Adobe Photoshop. 

Foreshortening and skew induced by photographing the quadrat at a slight angle was 

removed in post processing to restore all visible fossil elements to their correct size. 

Two techniques were employed to analyze the composition of the quadrats: point 

counting and annotation. Point counting was employed for each quadrat following Hamon 

et al. (2016), with 250 point samples described per quadrat (van der Plas, 1965). Coral 

elements were subdivided into “platy” (Microsolena), “branching/phaceloid”, and 

“massive, miscellaneous, or unidentifiable” categories. Rudist elements were subdivided 

into “caprinid”, “requienid/monopleurid”, and “other or unidentifiable” categories. 

Requienids and monopleurids were counted in the same category because their shell 

fragments cannot be easily distinguished from one another in outcrop due to a similar two-

layered shell structure (Perkins, 1962). Matrix was separated into two categories to reflect 

the presence of fine, light gray carbonate mud versus coarser, darker grain-dominated 

packstone. Microbial growth was represented in its own category.  

Annotation was utilized primarily to ensure that point counting was obtaining an 

accurate representation of the facies composition. Each quadrat photo was fully annotated 
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in a Photoshop overlay with different colors representing different skeletal elements. 

Because this process was time intensive for some of the more densely populated and 

complex facies, it was employed for just one representative quadrat per facies. 
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Chapter 4: Results 

The completed three-dimensional model and extensive facies maps clarify vertical 

succession, reef structure development and architecture, and lateral facies continuity. 

Paleoecological and facies composition data are used to elucidate the history of reef growth 

at this locality.  

OVERVIEW OF ECOLOGY 

Corals and rudists are the major framework components of the Paul Spur patch reef, 

with corals occupying the dominant reef-builder role through overall higher abundance and 

larger size. Microbial growth surrounds skeletal elements and forms thick mats on top of 

platy corals; some encrusting algae have also been identified as Lithocodium sp. or 

Bacinella sp. Minor reef constituents, in order of decreasing abundance, include boring 

bivalves, brachiopods, echinoids, foraminifera, sponges, and bryozoans. 

The most commonly occurring coral at Paul Spur is Microsolena texana. It presents 

both massive and thin platy growth forms. The platy morphology is more widespread in 

outcrop and can either form sheets that grow flat along the substrate or in cup- or V-shaped 

plates that rise above the substrate. Thick 1-3 cm laminar to stromatolitic microbial mats 

form on top of the coral plates, and a thin layer of algae (Lithocodium or Bacinella) encrusts 

the underside of colonies not directly in contact with the substrate. Mats are not laterally 

extensive but are instead limited to the top surfaces of Microsolena. Lower reef framework 

is commonly dominated by alternating layers of Microsolena, microbial mat, and skeletal 

packstone matrix forming a nearly monospecific assemblage. Microsolena is also common 

higher up in the reef, though it shares space with other corals and is thus less abundant than 

in the lower reef. 
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Other corals observed in outcrop include a variety of growth forms and colony 

integrations with massive, meandroid, branching, and phaceloid corals all represented. 

Massive cerioid Actinastrea colonies are common throughout the section above the 

Microsolena-dominated facies. Branching and phaceloid corals increase in abundance 

towards the top of the section; morphology and size are variable, with branches ranging in 

diameter from 0.5 cm up to 8 cm and coral bodies occupying up to 1 m3 area, and are not 

linked to any particular zone of the reef. The largest branching coral colonies can be up to 

1 m in diameter in cross-section with branches 6 cm in diameter, whereas the smallest 

branching or phaceloid corals can have branches less than 1 cm in diameter. Meandroid 

corals are fairly rare in outcrop, though this may be an artifact of preservation as the 

intricately coiled surface of the coral is rarely preserved due to erosion, rendering them 

unidentifiable. Coral diversity increases up-section from one species (Microsolena) to over 

seven species (see Scott, 1981, 1984), though the culminating facies is dominated by 

rudists.  

Rudists are rare in the lower reef (averaging less than 2% abundance) but increase 

in both diversity and abundance up-section. In lower Microsolena-dominated reef facies, 

the caprinids Coalcomana and Caprinuloidea are observed reclining on corals or matrix as 

solitary rare individuals. Stratigraphically higher in the reef, they become common and can 

occur in locally dense clusters of less than a dozen individuals. The large erect monopleurid 

rudist Petalodontia is common in younger reef strata and is found either living solitarily or 

in dense clusters supporting one another. Some coiled recumbent requienids (Toucasia) 

may be found in dense muddy thickets up to a meter in diameter. Rare rudists include the 

diminutive cm-scale elevator monopleurids Monopleura cf. M. marcida, which are found 

in small clusters only in the uppermost rudist floatstone facies, and large radiolitids, which 

occur very infrequently as solitary individuals in upper reef facies. For the most part, 
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rudists do not preferentially colonize any one zone of the reef; the exception is Toucasia, 

which frequently occurs in association with very fine muddy matrix. Rudists are not 

observed growing with any spatial preference to corals; cohabitation between corals and 

solitary rudists is very common in upper parts of the reef framework. 

FACIES DESCRIPTIONS 

To resolve the depositional history of the patch reef complex, extensive mapping 

was conducted and nine stratigraphic sections were measured across the outcrop (see Fig. 

4). Because the area is faulted (Fig. 4A), the fault offset must be accounted for to provide 

a clear picture of facies distribution. This was accomplished by “hanging” all of the 

stratigraphic sections off of the top surface of the skeletal grain-dominated packstone 

facies, which is laterally continuous and a relatively uniform thickness (3.2-3.5 m) across 

the outcrop. Facies were then mapped in to create an updated depositional model (Fig. 5).  

Seven different facies are described here; for a quick comparison of facies bearing 

reef-building constituents, see Table 1. 

Facies 1: Echinoid-mollusk-Orbitolina mud-dominated packstone 

This facies, hereafter referred to as the Orbitolina mud-dominated packstone or 

Facies 1, is most easily identified by its fine texture and the presence of large calcitic 

benthic foraminifera Orbitolina texana (Hofker, 1963), which are visible even to the naked 

eye in outcrop (Fig. 6A). In outcrop, the Orbitolina mud-dominated packstone is light to 

medium gray in color and occurs in massive beds up to 50 cm thick that weather 

recessively. Well-preserved O. texana up to 4 mm in diameter float in a fine grained 

skeletal matrix predominantly composed of echinoid and mollusk fragments (Fig. 6B). 

Other foraminifera, including miliolids, textulariids, and other orbitolinid species, are also 

present in lower abundances. The top surface of the unit contains extensive large (1-3 cm  
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Table 1: “Facies at a glance” showing major distinctive features of each reef facies to aid 
in highlighting differences. M FRS = Microsolena-dominated microbial-
coral framestone; DC FRS = Diverse microbial-coral framestone; RC 
BS = Rudist-coral boundstone; R RS = Rudist rudstone; RD RS = Rudist 
debris rudstone. 

  

Microsolena
Microbial 

growth

Branching 

coral
Misc. coral Caprinid

Requienid / 

Petalodontid
Monopleura

Matrix-

dominated

M FRS x x

DC FRS x x x x

RC BS x x x x x x

R RS x x x x x

RD RS x x

Readily observable components:
Fa

ci
es
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Figure 6: Echinoid-mollusk-Orbitolina mud-dominated packstone facies. (A) Outcrop 
view with readily visible Orbitolina texana (arrows) floating in a muddy 
matrix with fine skeletal fragments. (B) Photomicrograph of thin section 
in plane polarized light (PPL). Note variety of sizes of Orbitolina 
(arrows) and poor sorting of skeletal grains. Sample PS-A1-A-TS 
(Appendix A). (C) Silicified burrows (brown) preserved in top surface. 
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diameter) silicified burrows; these burrows also occur throughout the unit in other places, 

but more sparsely (Fig. 6C).  

The Orbitolina mud-dominated packstone is visible at the base of the outcrop at 

Paul Spur North and is gradationally overlain by the Orbitolina-echinoid-mollusk grain-

dominated packstone. The facies makes a brief reappearance on top of the central reef 

buildup as a thin (2-30 cm) layer separating two successive reef framework intervals.  

Facies 2: Orbitolina-echinoid-mollusk grain-dominated packstone  

This facies, hereafter referred to as the skeletal grain-dominated packstone or 

Facies 2, is characterized by coarse, rounded skeletal fragments predominantly composed 

of echinoid and mollusk fragments (Fig. 7). Orbitolina fossils are somewhat rare and 

abraded in comparison to those found in Facies 1. A thin micritic envelope surrounds most 

grains. At Paul Spur, the 3-3.5 m thick dark gray to brown unit is massive and laterally 

continuous across the entire outcrop, where it gradationally overlies the echinoid-mollusk-

Orbitolina wackestone to mud-dominated packstone and is overlain by reef framework 

facies.   

The skeletal grain-dominated packstone also occurs commonly as beds flanking the 

reefal facies extending broadly to the north on the leeward side of reef buildups. The 

skeletal grain-dominated packstone facies is found extensively across the top surface of the 

northern end of the outcrop and is there referred to as “upper grain-dominated packstone”; 

in the most northern reaches, this upper unit of grain-dominated packstone likely overlies 

the lower skeletal grain-dominated packstone unit (see depositional model, Fig. 5). Coral 

fragments are occasionally present floating in the matrix; the density and size of these large 

fragments are largely dependent on the distance from an in situ reef framework structure. 

Larger fragments and higher abundances are found closer to the reef framework, and  
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Figure 7: Orbitolina-echinoid-mollusk grain-dominated packstone facies. (A) Outcrop 
view of representative sample showing coarseness of grains and 
abundant molluscan shell debris. (B) Photomicrograph of thin section in 
PPL. Grains are heavily reworked and rounded with poor preservation of 
fossils such as Orbitolina (arrow). Thin micritic envelopes surround 
most grains. Sample PS-A2-A-TS (Appendix A). 
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skeletal component size and abundance decreases laterally moving away from the reef in 

flanking beds. 

Facies 3: Microsolena-dominated microbial-coral framestone  

The Microsolena-dominated microbial-coral framestone is defined by the 

dominance of the platy coral Microsolena and associated thick (1-3 cm) light gray digitate 

microbial mats growing on top of the coral plates (Figs. 8, 9A). Muddy to fine skeletal 

mud-dominated packstone matrix drapes the top of the microbial mats; successive growths 

of Microsolena plates may either rest upon or slightly above the sediment. When the coral 

grows slightly above the sediment, a thin layer of algae typically encrusts the bottom of the 

plate. 

The average composition of this facies is 34.7% Microsolena, 2.6% miscellaneous 

or unidentified coral, 15.0% microbial growth, 0.4% caprinid rudist, and 46.2% matrix 

(Fig. 10). This facies is most widespread at the base of the reef directly overlying the 

Orbitolina-echinoid-mollusk grain-dominated packstone, but can also be found in less 

extensive mounds on the leeward side of larger framestone buildups (see Fig. 5). While the 

Microsolena community at the base of the reef is associated with a very muddy matrix, 

smaller leeward-side mounds may be associated with a coarser peloid-skeletal matrix. 

These small reefs are characterized by thinner, more limited growths of Microsolena and 

less extensive microbial buildups. 

Facies 4: Diverse microbial-coral framestone  

Coral diversity increases up-section with species of branching, massive, and 

meandroid corals colonizing the reef in addition to Microsolena (Figs. 9B, 11). Caprinids 

are uncommon and solitary. Geopetal structures, when visible, indicate an in situ 

deposition. Void spaces are filled with a skeletal mud-dominated to grain-dominated  
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Figure 8: Microsolena-dominated microbial-coral framestone facies. (A) Cross-sectional 
view of facies in outcrop. Thin platy Microsolena (m) support thick 
digitate microbial mats (mi). Medium-coarse skeletal mud-dominated 
matrix filling around coral and mats. Rare caprinid (Coalcomana) 
present (red arrow). (B) Polished hand sample showing relationship 
between Microsolena (m), microbial mat (mi), and matrix (ma). Sample 
PS-A9 (Appendix A). (C) Photomicrograph (PPL) of interface between 
top of microbial mats and overlying matrix; note digitate morphology of 
top of microbial mats (mi). Sample PS-A9-A-TS (Appendix A).            
(D) Photomicrograph (PPL) of interface between Microsolena (m) and 
microbial mat (mi). Note encrusting algae directly on top of coral 
between coral and mat (arrow). PPL. Sample PS-A9-C-TS (Appendix A). 
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Figure 9 (previous page): Representative quadrats displaying typical composition and 
texture of reef facies. Original photo on left and annotated photo 
showing fabrics on right. Blue = Microsolena; purple = microbial 
growth; red = caprinid rudist; yellow = branching corals; green = 
miscellaneous or unidentifiable corals; orange = requienid or 
petalodontid rudist. (A) Q1: Microsolena-dominated microbial-coral 
framestone facies containing 28.7% Microsolena, 15.9% microbial 
growth, and 53.8% very fine muddy packstone matrix. Caprinids rare at 
1.6% abundance. 53.8% of the quadrat is composed of a very fine 
muddy packstone matrix. (B)  Q19: Diverse microbial-coral framestone 
facies containing 29.4% Microsolena, 6.4% branching coral, 5.8% 
massive or unidentified corals, 5.9% microbial growth, and 52.2% 
mixed carbonate mud and coarse grain-dominated packstone. (C) Q28: 
Rudist-coral boundstone facies containing 33.9% branching corals, 
17.8% massive or unidentified corals, 3.2% rudists (caprinids, 
petalodontids, and requienids), and 44.9% mixed carbonate mud and 
coarse grain-dominated packstone matrix. 

 

Figure 10 (next page): Facies compositions for each sampled quadrat. Quadrats are 
grouped by facies type; each group is headed by the averaged facies 
composition. Note the significant variation in the rudist-coral 
boundstone facies compared to all other reef facies. 
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Figure 11: Diverse microbial-coral framestone facies. Coral diversity is high with 
branching corals (bc) and small massive corals present in addition to the 
Microsolena and microbial mats (m and mi, respectively) seen lower in 
section. Few caprinids (r) visible.  

r 

r 
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packstone matrix containing varying amounts of poorly sorted mollusk, echinoid, coral, 

and rudist fragments. Muddier variations of this facies are easily recognized by their light 

gray matrix color in outcrop, while more grain-dominated facies take on a brown-gray hue. 

The average composition of this facies is 51.7% coral, 21.8% of which is Microsolena, 

14.5% branching coral, and 15.4% miscellaneous or unidentifiable coral (Fig. 10). 

Microbial mats are not as extensive as in the Microsolena-dominated framestone, with a 

5.4% abundance. Caprinid rudists remain rare at an average of 1.1% of reef composition 

and matrix fills 41.8% of the framework. 

Buildups of this facies typically succeed the Microsolena-dominated coral 

framestone. While the Microsolena-dominated facies is more laterally than vertically 

extensive, accumulating a maximum of 4.6 m of vertical growth and extending for 440 m 

north-south in outcrop, the diverse coral framestone facies builds more vertical topography 

with less lateral accumulation. On the southern end of the outcrop, this facies builds 

significant topography with a maximum vertical growth of 6.2 m and a lateral extent of 

140 m.  

Facies 5: Rudist-coral boundstone  

The rudist-coral boundstone is similar in texture to the diverse microbial-coral 

framestone but is differentiated by the presence of petalodontid and requienid rudists (Figs. 

9C, 12). It is the most diverse of all facies described here as the ratio of corals to rudists 

can vary by as much as 47% (Fig. 10). In one sampled area, corals comprise 46.5% of the 

measured quadrat (Q2) and rudists are only 1.0%; in another sample (Q6), only 6.0% is 

composed of corals in comparison to 21.6% rudists. Spatial variability is high even in 

samples only a meter apart. Averaging nine sampled sections yields a value of 26.8% coral 

and 17.0% rudist composition.  
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Figure 12: Rudist-coral boundstone facies. Requienid and petalodontid rudists (r) are 
mixed in with a diverse assemblage of corals (br = branching, ma = 
massive, m = Microsolena). Rudists typically occur as solitary 
individuals, though limited colonial clusters may occur in some parts of 
the facies. (A) Representative view of facies in cross-section. (B) Plan 
view of the facies. Note that this facies may vary substantially in 
appearance and faunal composition when viewed at a meter-scale 
resolution as seen here; see Figure 10.  
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Rudists occur as solitary individuals living intermixed with corals, or may appear 

in small bouquet-like clusters with a few other individuals. Uncommonly, they form 

localized dense meter-scale assemblages within a grain-rich matrix. Caprinids remain 

uncommon in comparison to requienids and petalodontids, making up a maximum of 

10.0% of the fabric but averaging 3.4% abundance (Fig. 10).  

Microbial mats are infrequent in comparison to Facies 3 (average 3.0% in sampled 

sections), and growth more typically occurs in the form of extensive algal (Lithocodium 

sp. or Bacinella sp.) encrustations on other organisms. The matrix of this facies is 

predominantly grain-rich packstone that comprises an average of 53.2% of sampled reef 

fabrics. 

The rudist-coral boundstone is found higher up in the reef section, typically 

overlying either the diverse microbial-coral framestone or the Microsolena-dominated 

microbial-coral framestone. On the southern end of the complex, it forms a relatively thin 

(1.7 m) cap covering the 6.2 m thick diverse microbial-coral framestone growth. To the 

north, it occurs in a thicker package up to 4.4 m thick overlying the Microsolena-dominated 

microbial-coral framestone and the diverse microbial-coral framestone. 

Facies 6: Rudist floatstone  

The rudist floatstone is largely matrix-dominated (average 75.7% of total 

composition of each sample) and contains significantly less coral than previously described 

facies (average 4.6%; Fig. 10). Corals are fragmented and appear to be predominantly 

rubble rather than in situ growths. The major reef constituents of this facies are in situ, 

toppled, or fragmented rudists (19.7%; Figs. 13, 14A).  

Rudist diversity in this facies is the highest seen in this outcrop with requienids, 

caprinids, radiolitids, and monopleurids (both Petalodontia and Monopleura) all present.  
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Figure 13: Rudist floatstone facies. Rudists (r) typically float in situ in a coarse, grain-
rich matrix with uncommon coral fragments (c) (A); however, some 
parts of the facies may contain limited dense colonies of requienids in a 
somewhat muddier packstone matrix (B). These “thickets” of rudists are 
no more than 2 m in diameter.  
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Figure 14: Representative quadrats displaying typical composition and texture of reef 
facies. Original photo on left and annotated photo showing fabrics on 
right. Red = caprinid rudist; yellow = miscellaneous or unidentifiable 
rudists; green = miscellaneous or unidentifiable corals; orange = 
requienid or petalodontid rudist; pink = Monopleura. (A) Q11: Rudist 
floatstone facies composed of coarse grain-dominated packstone matrix 
(85.8%), requienids and petalodontids (9.4%), caprinids (1.1%), 
miscellaneous or unidentified rudists (1.7%), and coral fragments 
(2.0%). (B) Q22: Rudist debris rudstone facies containing 24.4% 
caprinids, 20.5% requienids and petalodontids, 8.8% miscellaneous or 
unidentifiable rudists, and 46.5% mixed carbonate mud and grain-
dominated packstone matrix. 
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Requienids and petalodontids remain the most common rudist type (13.4%) and 

occur most commonly as solitary individuals or in small closely-packed clusters (Fig. 

13A). Uncommonly, they may be found in dense clusters or thickets surrounded by a light 

gray medium to fine skeletal lime mud matrix (Fig. 13B). Caprinids are mostly solitary but 

may be found grouped in loose clusters of less than ten individuals. Large radiolitids are 

also mostly solitary. In contrast, small (<6 cm tall) conical elevator Monopleura are found 

exclusively in tightly packed bouquet-like clusters. The abundance of this monopleurid 

varies within the facies but is difficult to establish because of this clustering behavior. 

Additionally, it should be noted that Monopleura is only found near the top of the facies 

on the southern side of the complex, which is covered in vegetation that hinders facies 

sampling. Thus, overall monopleurid abundance in the facies is higher than represented by 

sampling efforts. 

Facies 7: Rudist debris rudstone  

This distinctive facies is characterized by an abundance of mixed large 

petalodontids, caprinids, and requienids densely packed in a fine muddy packstone matrix 

(Figs. 14B, 15). Most rudists are intact but not in place, suggesting that they were 

transported a short distance before deposition. In the top 50 cm of the unit, the rudists are 

highly fragmented (Fig. 15B). Rudists make up an average of 58.2% of the facies 

composition (27.4% caprinid, 23.3% requienid / monopleurid, and 7.5% other or 

unidentifiable rudist) with matrix comprising the rest (40.6%; Fig. 10).  

This facies is occurs only in the uppermost reef on top of one buildup (Fig. 5). It is 

deposited in meter-scale inclined flanking beds dipping approximately 12 degrees to the 

north on the leeward side of the reef and grades out into the skeletal grain-dominated 

packstone to the north.  
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Figure 15: Rudist debris rudstone facies. Massive poorly-sorted facies composed 
primarily of very large intact (A) to medium fragmented (B) 
petalodontid, caprinid, and requienid rudist skeletal fragments in a 
mixture of carbonate mud and grain-dominated packstone matrix. (C) 
Inclined meter-scale bedding dipping to the north (indicated by arrows) 
is evident in outcrop.   
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DIRECT CORAL-RUDIST ECOLOGICAL RELATIONSHIPS 

Though reliable instances of definite overgrowth are somewhat rare, rudists and 

corals are observed directly interacting with one another in several instances in outcrop 

(Figs. 16, 17). Direct interactions are defined by definite observable overprinting or growth 

relationships. Simple close stratigraphic association is not considered to be a direct 

interaction; neither is association of elements not preserved in situ. As such, only a dozen 

examples of direct interaction have been documented in outcrop. 

Platy or massive corals more frequently grow over rudist clusters than rudists 

growing on top of corals (10 out of 12 documented interactions). Corals observed 

overgrowing rudists included Actinastrea and Microsolena; these were large corals that 

grew indiscriminately over clusters of rudists rather than growing upon and encrusting 

individual rudists (Fig. 16, A-B and E-F). However, in one instance a massive meandroid 

coral was observed either growing on or up against a singular rudist (Fig. 16, C-D). Rudists 

that were overgrown were recumbent caprinids and requienids.  

Occurrences of rudists growing on corals were rare, but when observed occurred as 

growths on branching corals (Fig. 17). It is impossible to know if these rudists colonized 

the coral prior to or after its death, because branching corals often remain intact and upright 

for some time after death if not disturbed. No rudists were observed colonizing the top 

surfaces of platy or massive corals. 
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Figure 16: Examples of direct coral-rudist interactions in the form of overgrowth 
relationships. (A) Top-down view of Actinastrea overgrowing several 
caprinids. (B) Close-up view of overgrowth shown in (A). (C) Top-
down view of platy coral Microsolena overgrowing thicket of 
requienids; (D) shows close-up view of overgrowth relationship. (E) 
Top-down view of meandroid coral growing either on or around a rudist; 
(F) is expansion of center of (E) showing close-up view of coral butting 
up to rudist; rim of coral associated with algal growth and rudist shell 
surrounded by marine cement. 
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Figure 17: Example of rudists (likely petalodontids) growing on a large branching coral. 
An unidentified massive coral (arrow) is also supported in the branches 
and may be the substrate upon which one of the rudists is growing. Note 
the upright orientation of the rudists that is indicative of in situ 
preservation. (A) Original image; (B) Annotated with blue highlighting 
the body of the branching coral and green highlighting the upright 
rudists. 
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Chapter 5: Interpreted Depositional History  

This study presents a new look at the biotic communities of Paul Spur and their 

relationship with reef development through time. Though some facies such as the 

Microsolena-dominated microbial-coral framestone remain the same by definition 

(compare to Aisner, 2010; Roybal, 1981; Scott, 1979, 1981; Scott and Brenckle, 1977), 

their interpretation is significantly different in some cases. This, in turn, prompts new 

insight into environmental factors impacting growth of the reef complex, as well as 

mechanisms mediating the interplay of coral and rudist communities. 

The Orbitolina mud-dominated packstone, which is the basal unit at Paul Spur 

predating development of the reef (Fig. 18A), has been widely interpreted as an open 

marine facies (e.g. Scott, 1979; Aconcha, 2008; Aisner, 2010). The defining disc-like 

Orbitolina foraminifera and fine peloid-skeletal matrix are both characteristic of a subtidal 

quiet marine setting. The unit’s massive habit is likely a result of bioturbation; additionally, 

common large silicified burrows indicate that it was deposited during a time when waters 

were well-oxygenated and biota were unstressed. 

The thick (3.2-3.6 m) skeletal grain-dominated packstone that followed deposition 

of the Orbitolina mud-dominated packstone is composed predominantly of coarse 

molluscan skeletal material sourced from allochthonous reef debris and shelf material 

reworked by wave action, currents, and storm activity (Fig. 18B). Common Orbitolina 

fossils are poorly preserved and abraded, but are notably taller in morphology than the 

Orbitolina found in the Orbitolina mud-dominated packstone, indicating a shallower water 

depth (Vilas et al., 1995; Pittet et al., 2002; Schroeder et al., 2010). Small Microsolena-

dominated microbial-coral framestone buildups may have developed during this phase, but 

did not establish significant topography in comparison to the main reef buildup that was  
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Figure 18: Deconstructed depositional model illustrating stages of reef development and 
correlation to local relative sea level fluctuations as a potential 
mechanism controlling reef architecture and community distribution. 
Note: vertical exaggeration is 4x. Facies and symbols as in Figure 5. 
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established later, growing to less than 1.5 m in height and less than 2 m diameter at the 

base of the buildup.  

The skeletal grain-dominated packstone facies has been previously interpreted as a 

back reef shoal (Scott, 1979; Aisner, 2010) due to its coarse skeletal, fragmental 

composition. This interpretation is still supported though it should be noted that the 

thickness of the unit (3.2 to 3.5 m) may be unusual for a back reef shoal unless significant 

degradation of the reef was taking place. Absent bedforms point to mobile sediments and 

high sedimentation rates; therefore, the primary mechanism driving the development of 

this unit was strong wave energy and currents. The inferred shallower water depth may 

help explain the development of this unit: if a reef with significant vertical growth 

developed basinward in deeper water during a period of higher sea level, a regression 

would cause it to come into contact with wave base. Increased wave action would have 

contributed to significant erosion as sea level dropped during the shoaling upwards cycle, 

providing the coarse sediments that sourced the skeletal grain-dominated packstone. 

Occurrences of the grain-dominated packstone can be observed elsewhere in 

outcrop, typically in small meter-scale gaps in the reef framework and in small debris 

“tails” extending off of the north side of buildups. These debris facies have previously been 

used to determine paleocurrent direction, as they are interpreted to be back reef shoals 

generated by breakdown and transport of reef structures by wave action and currents. Our 

data here are in agreement with previous assessments (e.g. Aisner, 2010; Roybal, 1981; 

Scott and Brenckle, 1977): paleocurrents ran north-northwest from the south-southeast. 

Eventually, the thick skeletal grain-dominated packstone shoal acted as the 

initiation point for the first stage of reef growth, which was predominantly Microsolena-

dominated microbial-coral framestone (Fig. 18C). The Microsolena-dominated microbial-

coral framestone is an unusually low-diversity reef facies found consistently in Aptian and 
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Albian Gulf Coast reef assemblages in a variety of different settings. It is extensively 

documented throughout the patch reefs of the Mural Limestone of the Bisbee Basin 

(Monreal, 1985; Roybal, 1981; Scott, 1979, 1981, 1990; Scott and Brenckle, 1977) and the 

James Limestone of Texas (Achauer and Johnson, 1969; Greenberg, 1986). It is observed 

in the Running Duke Field (Rodessa Formation) in what has been interpreted as a reef belt 

landward of the shelf margin reef, though depositional models are not in agreement as far 

as mechanisms of reef growth (Scott, 1990). Futhermore, the facies is also found in the 

Stuart City reef margin in the lower reef framework (Bebout and Loucks, 1974; Scott, 

1990). Despite the nearly-identical composition and growth habit reported by all of these 

studies, different workers have attributed this facies to disparate reef zones and times of 

growth. In the Mural Limestone, this facies has previously been attributed to the “middle 

reef”, or a growth stage of the reef occurring after initial establishment of pioneering 

massive corals (Scott and Brenckle, 1977; Scott, 1979,1981). It has also been interpreted 

as a reef crest facies dominated by intense wave energy (Roybal, 1981). In the James 

Limestone, the Microsolena-microbial mat association is reported as being indicative of a 

somewhat deeper water subtidal environment (Achauer and Johnson, 1969; Greenberg, 

1986). In the Rodessa Formation, it is once again attributed to a second-generational middle 

reef community (Scott, 1990), though it should be noted that the depositional model is 

taken from Scott and Brenckle’s (1977) model of the Mural patch reefs. Finally, in the 

Stuart City reef, the Microsolena-microbial faces is depicted as a deeper water facies at the 

base of the reef frame overlying the forereef slope (Bebout and Loucks, 1974; Scott, 1990, 

1995). Reports of water depth for this shelf margin community vary from very shallow 

(10-30 feet) (Bebout and Loucks, 1974) to deeper than 10 meters (Scott, 1995). 

With the revision of the history of reef growth and stratigraphy at Paul Spur, the 

Microsolena-microbial facies in the Mural Limestone falls in line with the interpretations 
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made for the James Limestone patch reefs and for the Stuart City shelf margin reefs. Rather 

than being a secondary generation of reef growth mediated by wave action and currents, as 

originally proposed by Scott and Brenckle (1977), the Microsolena-microbial framestone 

is instead a pioneer reef facies, initiating growth of the reef upon a skeletal grain-dominated 

packstone shoal. The thick microbial mats and fine lime mud matrix associated with 

Microsolena supports growth in a quiet, deeper-water marine environment where wave 

action was unlikely to disturb the accumulation of mud. This interpretation is also more 

consistent with what is known about modern platy coral growth morphologies, which are 

typically found in deeper water environments where corals are somewhat stressed and must 

maximize surface area to acquire enough light (Fricke and Schuhmacher, 1983; Rosen et 

al., 2002). The reef framework built by these corals grew outwards (laterally) more than 

upwards (vertically), which is typical of low-relief platy coral growth. Lateral growth could 

also represent limited accommodation space due to shallow water, but is unlikely here 

given the apparent muddiness of the environment and lack of wave energy.  

After the first stage of reef growth, coral alpha diversity increased drastically with 

the addition of over a dozen species of branching, phaceloid, meandroid, and massive 

corals (see Scott, 1981); this high diversity defines the diverse microbial-coral framestone 

community (Fig. 18D). While Microsolena maintained a strong presence (averaging 42.2% 

of reef builders), the platy corals were no longer as extensive and laterally continuous as 

in the previous stage of growth. The fine carbonate mud matrix observed in the microbial-

Microsolena facies is less prominent and appears mixed with a coarser skeletal grain-

dominated packstone matrix or as small pockets in the shelter of corals. The overall nature 

of the reef growth is altered as well, with greater vertical accumulation than recorded in 

the Microsolena facies and comparatively less lateral accumulation. Its taller, narrower 

shape was not likely entirely mediated by the taller growth forms of the larger massive and 
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branching corals. Instead, I propose that the reef during this time may have been employing 

a “keep-up” strategy (Neumann, 1985), growing upwards into accommodation space to 

stay in the optimal water depth as local sea level rose slowly. Alternatively, it could have 

successfully established itself on top of the Microsolena-dominated reef buildup during an 

initial minor shallowing, and then simply grown up to fill all available accommodation 

space as sea level remained constant.  

During the initial period of diversified coral reef growth, rudists were very rare and 

were usually solitary recumbent caprinids that reclined in the substrate in the shelter of the 

larger corals. As time progressed, requienid and petalodontid rudists colonized the reef 

community as well, defining the rudist-coral boundstone facies (Fig. 18E). This facies 

forms a thin (1.7 m maximum thickness) cap covering the diverse coral framestone buildup 

as well as a larger reef buildup to the north. Reef growth is more lateral than vertical, 

similar in shape to that of the Microsolena-dominated facies; however, here the lateral 

growth is more suggestive of a limitation in accommodation space possibly caused by 

shallowing. Large massive and branching corals typical of shallow water reefs continue to 

dominate alongside the requienids and petalodontids, which are also known for their 

preference for shallower environments (Perkins, 1962, 1974). The fine carbonate mud 

matrix seen in deeper facies is almost entirely absent here, having been replaced by the 

coarse skeletal grain-dominated packstone matrix more typical of a higher-energy 

environment.  

Because the rudist-coral boundstone facies is so similar to the diverse coral 

framestone facies, having only one major different fossil constituent (i.e. the presence of 

rudists), it is likely that the two associated reef growth phases were built within a short time 

of one another. Continued upwards shallowing likely limited development on the top of 

the taller reef structure but did not inhibit the establishment of a new buildup in the back 
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reef area. Requienid and petalodontid rudists colonized the reef as it grew upwards into 

their preferred water depth and environmental conditions (Scott, 1984). These rudists were 

successful in this facies but did not achieve total dominance; instead they are 

heterogeneously distributed across the reef as solitary individuals, small clusters, and 

densely packed colonies that grew at a sub-meter scale. This heterogeneous distribution 

can be problematic for facies composition assessments at a small scale, as shown in Figure 

10. Here, the rudist-coral boundstone facies is not split out into multiple facies based on 

relative abundance of corals and rudists because mapping as such yields an extremely 

sporadic distribution of facies, no clear trend explaining distribution of the different reef 

constituents or preference for certain microhabitats, and no growth patterns that could 

indicate that temporal boundaries were being crossed. Heterogeneity is well-documented 

in modern reefs and is a source of error in small-scale population analyses that must be 

accounted for when diverse biota are present (Link et al., 1994; Mapstone et al., 1998).  

Therefore, it is more logical to conclude that organisms in Cretaceous reefs such as Paul 

Spur were simply heterogeneously distributed as in modern reefs. 

The reappearance of the Orbitolina mud-dominated packstone above the rudist-

coral boundstone (Fig.18F) suggests an episode of relative sea level rise and drowning of 

reef buildups. It can only be seen reliably in one place in outcrop, as it is thin (<30 cm 

thick) on the top of the reef and weathers recessively. Here, we have interpreted this event 

as an abrupt flooding cycle in which productive reef growth shut off and open marine 

sediments buried the reef, filling gaps between reef buildups and draping over existing 

topography. Shut-off of reef growth and the deposition of the Orbitolina mud-dominated 

packstone is attributed to increasing water depths rather than any major perturbation caused 

by a shift in ocean water chemistry because the unit is predominantly composed of fine 

carbonate mud, which is both indicative of ongoing carbonate production (despite cessation 
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of reef growth) and of a return to deeper, quieter waters rather than continued shallowing 

upwards into a more wave-dominated regime in which fine sediment would be winnowed 

out. Although this unit is not well exposed in outcrop between patch reefs, it may have 

filled the space between the tall diverse coral framestone buildup on the south side of the 

outcrop and the laterally extensive rudist-coral boundstone to the north, as shown in Figure 

5. After lithification and subsequent uplift and exposure, it would have quickly eroded off 

the top of the outcrop, leaving behind the better-cemented reef exposures and the 

topography observed today. 

The termination of the Orbitolina mud-dominated packstone and the re-initiation 

of reef growth is interpreted to represent a return to more optimal reef growth conditions, 

likely by another period of shallowing. This phase of reef growth is limited as in the initial 

first stage of reef growth at the base of the outcrop (i.e. Fig. 18B). Laterally extensive 

buildups with low vertical profile are replaced by smaller diameter buildups with taller 

profiles. Coarse-grained matrix occurs at higher concentrations than in the older reefs, and 

platy corals (Microsolena) appear small, thin, and cup-shaped, indicating that growing 

conditions may have been more stressed. This same relationship is seen in small reef 

growths observed in the skeletal grain-dominated packstone tails on the leeward side of 

larger reef buildups lower in the section; it is possible that sedimentation rates were higher 

than optimal for coral growth, leading to lower substrate colonization and a preference for 

growing upwards into the water column. 

Following transgression and deposition of the Orbitolina mud-dominated 

packstone, reef growth began again but with much less significant buildups (Fig. 18G). 

Microsolena-dominated microbial-coral and diverse microbial-coral framestones appeared 

in limited pinnacle-like reefs, attaining somewhat substantial vertical growth (<3 m) but 

not spreading out laterally as before. The final stage of “reef” accumulation, the rudist 
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floatstone, fills in the space around these buildups and drapes across the older reef 

topography, building a deposit up to 4.4 m thick.  

The rudist floatstone facies is strongly grain-dominated (75.7% matrix) and does 

not contain a coral framework of any kind. Instead, a diverse assemblage of rudists floats 

in the coarse grain-dominated packstone matrix. The diversity of rudists is in itself 

intriguing, as a variety of different growth forms and sizes indicative of different 

environments are all found together in close association. Monopleura, which is a small (<8 

cm tall) elevator rudist, occurs commonly in small clusters on the southernmost hill of the 

study area. These rudists are typically found in quiet back reef or reef flank environments 

(Perkins, 1974; Scott, 1981, 1990), yet here they are found with petalodontids and 

caprinids, which are commonly attributed to higher-energy reef core and flank 

environments (Kerans, 2002; Perkins, 1974; Ross and Skelton, 1993). Large elevator 

radiolitids are also present, though in low abundances.  Most rudists are in situ or have 

been toppled but not transported far from their original location. This facies therefore may 

initially give the appearance of a “rudist reef” that has developed without a supporting coral 

framework. Nevertheless, the high amount of sediment and the presence of typically more 

back reef protected-water rudists indicates that this facies likely developed in the energy 

shadow of a larger buildup further seaward (south) that acted as the sediment source and 

barrier creating an ideal environment for rudist growth. Rather than actively building 

topography, sediment and rudists simply draped over the underlying older reefs, 

accumulating a significant vertical buildup over time. The rudist debris rudstone deposited 

in a flanking debris tail on the leeward side of the northern end of the buildup is indicative 

of further sediment transport off-reef to the north. 

High sedimentation rates derived from the breakdown and wash-over of the 

seaward buildup would have prevented corals from gaining a foothold during deposition 



 47 

of the rudist floatstone unit. In contrast, this type of environment may have been optimal 

for rudist habitation, as many members of this group flourish in grain-rich deposits, 

preferring to support themselves by nestling into the sediment (Gili et al., 1995a, 1995b). 

It is unclear why rudists did not proliferate into dense colonies as seen in other Cretaceous 

rudist reef outcrops, such as those seen in the time equivalent Glen Rose Formation 

(Perkins, 1974) and at other Mural Limestone outcrops within the Bisbee Basin (e.g. 

Aisner, 2010; Hartshorne, 1989). Environmental conditions may not have been optimal for 

the growth of larger bodied rudists or vast colonies. Despite being in a protected back reef 

area, the energy levels in the platform interior may have still been too high for this kind of 

accumulation (Ross and Skelton, 1993; Scott et al., 1990); other factors such as nutrient 

availability, salinity, and water temperature may also have limited growth. 
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Chapter 6: Discussion 

NEW INTERPRETATIONS OF PAUL SPUR NORTH 

Based on the morphology and biotic composition of the reefs described here, local 

sea level and sedimentation rates were the two main environmental factors impacting reef 

growth. Platy corals colonized the deeper waters of the platform, while an abundance of 

diverse corals grew in slightly shallower depths. Rudists did not proliferate at depth and 

were uncommon to rare, but increased in abundance as shallowing occurred. Shallowing 

was also associated with an increase in sedimentation rate, which initially limited growth 

of corals spatially. Towards the end of observable reef growth at Paul Spur, high amounts 

of sediment accumulation eliminated coral growth entirely; corals may also have declined 

due to unfavorable conditions related to increased turbidity, temperatures, and salinity with 

additional shallowing on the platform.  

Previous models of the patch reef at Paul Spur (e.g. Scott and Brenckle, 1977; 

Roybal, 1981; Aisner, 2010) presented a somewhat simplified view of the true depositional 

history of the reef. More detailed mapping of both the facies and major faults has revealed 

a more complex story than previously recognized. Not only does facies offset occurring 

solely as a result of faulting have to be considered, but multiple stages of growth must also 

be differentiated to successfully unravel the history of the reef. The new depositional and 

stratigraphic model for Paul Spur presented here adds a temporal component that clearly 

shows the evolution of the reef complex through time, and provides supporting evidence 

for sea level and sedimentation rate as the primary mechanisms mediating biotic 

community turnover. Additionally, standard reef biotic zonation is not as strong of a factor 

influencing community distribution as previously modeled (e.g. Roybal, 1981). While the 

back reef community can still be differentiated due to its graininess, the presence of reef 

rubble, and paucity of coral growth, the forereef and climax framework communities 
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within a single buildup are not significantly different. This is consistent with coral zonation 

in modern platform interior patch reefs of this scale, which are also more controlled by 

water depth and sedimentation than by windward-leeward zonation (e.g. Bonem and 

Stanley, 1977; Burke et al., 1998; Huston, 1985; Wallace and Schafersman, 1977). 

Investigation of other previously studied Cretaceous patch reef localities could yield insight 

into zonation not related to water depth. 

Although initial mapping of the exposed top surface of the reef seemed to indicate 

substantial variation in reef facies both laterally and in a windward-leeward orientation, 

integrated reef stratigraphy mapped in the exposed cross-sectional view of the reef now 

makes it clear that the exposed top surface actually reflects multiple stages of reef growth 

with original topography being affected by erosion and faulting. Facies variability is also 

an issue, as reef frameworks are difficult to quantitatively constrain because of the size and 

heterogeneous distribution of reef constituents (see Fig. 10, especially in coral-rudist 

boundstone facies). If this outcrop were described using only cores rather than 

comprehensive mapping, the interpretation would likely be drastically different, especially 

when going through the rudist-coral boundstone facies. If the core happened to slice 

through one of the dense colonies of rudists within the facies, it may be interpreted as a 

widespread rudist reef when that is not the case. This observation should serve as a warning 

for those describing reef buildups with a limited amount of data: interpretations made on 

small-scale changes rather than large-scale trends could depict its depositional history and 

architecture erroneously. 

Compounding the problem of facies interplay are the skeletal grain-dominated 

packstones, which are compositionally identical or nearly identical even when they are 

non-contemporaneous in deposition. In outcrop, grain-dominated packstone is found as a 

thick, laterally continuous shoal acting as the initiation point for the start of reef growth, as 
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sediment tails on the leeward side of reef buildups, and as a later generation burying later 

stage reefs. Presence of coral rubble assists in differentiating the “first” grain-dominated 

packstone from later reef-associated grain-dominated packstones, but these different units 

are difficult to distinguish from one another. This study therefore highlights the need to 

integrate rigorous three-dimensional work where possible to aid in resolving reef growth 

history.  

CORAL-RUDIST INTERACTIONS AND POTENTIAL FOR COMPETITION 

The rudist-coral reef buildups provide an opportunity to test the hypothesis of direct 

coral-rudist competition established by Kauffman and Johnson (1988) as a factor 

influencing faunal turnover in the reef ecology through time. Assessing evidence of direct 

competition can be difficult due to the constraints of the fossil record. Relationships are 

sometimes obscured from view in outcrop when matrix filling the area around the 

organisms of interest does not erode. Additionally, fossils found in close association may 

not have necessarily lived at the same time, and thus may not have interacted at all; this is 

especially important to consider for a complex framework structure such as a coral reef, 

which provides substrate for colonization even after the reef organisms have died. 

Nevertheless, several indications of competition described by Kauffman and Johnson 

(1988) can potentially be observed in outcrop, including: development of defense 

structures, overgrowth of competing organisms, and support of dense clusters to the 

exclusion of the other organism.  

Defense structures would likely only be observable in rudists due to corals’ reliance 

on cnidocytes for protection (e.g. Chornesky, 1983; Richardson et al., 1979). Rudist 

defense structures could manifest in features such as excessively thickened shells, spikes, 

and protuberances that could hold corals at a distance. Kauffman and Johnson (1988) noted 



 51 

the development of rudists with spiked shells, though they interpreted the spikes as a 

method of stabilization via intermeshing with other nearby rudists. Gӧtz (2003) also 

described balcony-like protuberances on the shells of rudists associated with nearby corals. 

Nevertheless, no such structures were found in any rudists at Paul Spur, despite frequent 

close associations between coral and rudist bodies (Figs. 16, 17). No morphological 

adaptations were observed in rudists; thus, it can be concluded that this method of 

competition does not occur.  

Overgrowth relationships, if consistent (e.g. corals only growing over rudists, or 

rudists only growing over corals), could represent competition for light or nutrients; this 

competitive strategy can be observed in modern corals competing for light (Karlson, 1999). 

Although it is not known whether or not rudists were photosymbiotic, it has been suggested 

that symbiosis was a means of increasing competitiveness with corals (Kauffman and 

Johnson, 1988; Kauffman and Sohl, 1974; Vogel, 1975). Even if rudists did not need light 

to grow, the overprint relationship could still be viewed as competition for optimal habitat 

in more open waters, a necessity for food acquisition. At Paul Spur, both types of 

overgrowth relationships (corals growing on rudists and rudists growing on corals) were 

observed (Figs. 16, 17). Corals more frequently overgrew rudists, which could potentially 

indicate that corals were actually better adapted for this sort of competition, which directly 

opposes the hypothesis of rudist reef dominance through competition. Nevertheless, these 

overgrowth relationships were infrequent and inconsistent enough that definitive 

conclusions about direct competition between corals and rudists cannot be drawn; they can 

only provide evidence against competition as a primary component of rudist dominance 

over corals.  

Dense clusters of organisms could work to exclude a competitor from an optimal 

habitat. Although some rudists such as toucasids frequently occur in tightly packed 
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monospecific clusters, this community typically occurs in very muddy areas that corals 

would be unlikely to colonize anyways. Therefore, this relationship as evidence of 

competition has been excluded to avoid potential confounding factors. 

In summary, the community interactions observed in the rudist-coral reefs provide 

limited (if any) support for the competition hypothesis. Overall trends in reef development, 

composition, and morphology are much more strongly indicative of environmental controls 

on faunal turnover.  

COMPARISON OF QUANTITATIVE ECOLOGICAL METHODOLOGIES 

One of the goals of this research was to assess quantitative techniques for assessing 

reef facies composition. Specifically, the two facies composition analysis techniques 

compared were random point counting of a selected sample area (following Hamon et al., 

2016) and comprehensive mapping of the selected area via a digitized image. Prior work 

by Bernecker et al. (1999) compared various reef sampling methodologies and concluded 

that outcrop photography was unreliable for differentiation of reef fabrics; however, 

modern photography equipment has substantially improved with regard to image quality 

and resolution since then and thus the technique merited reassessment. Facies composition 

analysis of Mural patch reefs has been conducted in the field in the past (e.g. Hartshorne, 

1989; Roybal, 1981). This technique involves point counting at regular predetermined 

intersections within a selected area; it can be time consuming in the field and can even be 

impossible in some circumstances depending on outcrop conditions. Photographing a 

sample area thoroughly and compiling it into a digitized, undistorted sample can reduce 

the amount of valuable field time used for facies analysis. The sample image can be loaded 

into a point counter program (such as JMicrovision, as used in this study) that allows 

quicker and potentially more accurate analysis. To test the accuracy of the analysis, 
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selected samples were both annotated (colored over by hand) and point counted. The two 

techniques were found to yield similar results to one another for reef framework facies, 

coming within 5% accuracy of one another for all reef constituents (Appendix B). 

However, the same was not true for the grain-dominated rudist floatstone facies. While 

“reef constituents” (rudists) still came within 6% of one another for annotation and point 

count analyses, large rudists were consistently overrepresented by point counting, while 

matrix and small rudists were underrepresented. This effect is attributed to the discrepancy 

in relative skeletal grain size (see Jacobson et al., 2011), as large-bodied requienids and 

caprinids are often counted more than once during point counting while smaller or less 

abundant skeletal grains may be skipped over entirely. Increasing the number of point 

counts from 250 to 500 reduces this effect. Therefore, care must be taken when utilizing 

point counting for facies analysis, especially in more grain-dominated facies where 

sampling error is more likely; using annotation to verify the accuracy of point counting is 

a good strategy to reduce error, although time consuming. 

BROADER APPLICATIONS AND IMPLICATIONS  

From a broader perspective, this study resolves some anomalies that previously 

made Paul Spur an oddity in the context of other Cretaceous reefs as well as modern patch 

reefs. By integrating a temporal component into the interpretation of the reef’s history, the 

apparently strong biotic zonation, which would not typically occur in a small-scale, shallow 

water platform interior patch reef, is instead shown to be a result of different generations 

of reef growth (i.e. Fig. 18). Reef buildups are mostly composed of one community, though 

different reef constituents may be heterogeneously distributed, and may be associated with 

a grain-rich tail in which smaller reef buildups and more fragile sheltered reef organisms 

grew. These tails seem to develop more preferentially during periods when reefs are 
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affected by strong wave action, either when they grow up into fair weather wave base or 

when sea level drops. 

The new depositional/stratigraphic model for Paul Spur may have implications for 

those interested in patch reefs as hydrocarbon sources in the subsurface. Previous work at 

Paul Spur has identified it as an excellent outcrop analog for the patch reefs of the Lower 

Glen Rose Formation (Aisner, 2010); it may also be closely analogous to reefs in the James 

Limestone (Achauer and Johnson, 1969) and the Rodessa Formation (Scott, 1990). Patch 

reefs in the Glen Rose developed in moderately shallow water on the distally steepened 

ramp of the passive margin of what is now the Gulf of Mexico in the early Albian recovery 

period following OAE 1b (Phelps et al., 2014, 2015). Earlier coral-rudist “reefs” (more 

accurately labeled as bafflestone biostromes) in this formation did not have significant 

depositional relief; however, later caprinid-dominated assemblages grew up to 10 m of 

relief (Scott et al., 2007). Despite the differences in faunal assemblages between Glen Rose 

reefs and Paul Spur, these reefs exhibit a similar asymmetric morphology driven by 

windward-leeward currents and wave action (Aconcha, 2008). Notably, they altered shape 

during different periods of growth based on sea level fluctuations, which is also now 

demonstrated at Paul Spur. The Glen Rose patch reefs were also associated with 

Orbitolina-peloid packstones that are likely correlative in depositional setting to the 

Orbitolina mud-dominated packstones observed at Paul Spur, providing further evidence 

for similarities in depositional environment and development.  

Paul Spur is likely another reef representative of post-OAE carbonate platform 

recovery. Previous work has associated the Orbitolina packstone with transgression and 

flooding caused by the drowning of the Comanche platform after OAE 1b, and has posited 

that it represents an environmentally stressed assemblage as it is primarily dominated by 

one orbitolinid species (O. texana) (Phelps et al., 2014, 2015). The re-initiation of reef 
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growth in the form of patch reefs represents recovery from a stressed to a healthy carbonate 

system (Phelps et al., 2015). At Paul Spur, Microsolena and its associated stromatolitic 

microbial mats are the pioneer community. The presence of only one type of coral may be 

indicative simply of deeper waters, as suggested by others (Achauer and Johnson, 1969; 

Bebout and Loucks, 1974; Greenberg, 1986; Scott, 1990, 1995); however, the possibility 

of the facies as the representative initiation of the recovery phase, with only one coral able 

to withstand ocean conditions at that time well enough to flourish, should not be ruled out. 

The subsequent diversification of the coral assemblage in the second stage of growth is 

likely not only related to fluctuations in sea level, but to biotic recovery as well. As 

environmental conditions improved for growth of less-hardy aragonitic organisms, other 

corals would be able to colonize the reef, leading to the more diverse assemblage observed 

in the second stage of reef growth. It should be noted though that though recovery likely 

plays a part in the biotic composition of the reefs at Paul Spur, eustatic fluctuations and 

variable sedimentation rates were the main drivers of reef development and growth from 

an architectural perspective. 

Loucks and Kerans (2003) identified the patch reefs and associated grainy tails of 

the Glen Rose Formation as potential hydrocarbon targets with moderate reservoir quality, 

depending on the preservation of porosity; it is therefore useful to know what reef 

geometries and depositional environments to look for when identifying these units. 

Recognizing the importance of sea level and sedimentation rates controlling reef 

architecture aids in hypothesizing geometries and targeting areas of interest when only 1D 

or 2D data are available (e.g. seismic or cores), provided that the data are placed in a 

stratigraphic framework that has been well resolved. What is now known about Paul Spur 

could be directly applied to these different reef growth strategies observed in the subsurface 

Glen Rose for improved identification of ideal targets. Rather than extrapolating a generic 
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domed reef shape for subsurface patch reefs, reef architecture can be more accurately 

modeled using facies data with environmental context applied, as seen in the stratigraphic 

model of Paul Spur. 
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Chapter 7: Conclusions 

The degree of exposure and quality of preservation of reefs at Paul Spur makes it 

exceptionally well suited for comprehensive facies and stratigraphic analysis. Here, the 

addition of new high-resolution facies mapping to a three-dimensional outcrop model 

facilitates reconstruction of the depositional history of the reef. Local sea level and 

sedimentation rates control the growth and architecture of multiple generations of reefs and 

reflect an overall shallowing upwards sequence. The deeper water Microsolena-dominated 

microbial coral framestone builds the initial pioneer reef on top of a low-relief abraded 

Orbitolina skeletal grain-dominated packstone shoal. A more diverse coral assemblage 

follows in the second period of growth; the introduction of rudists to the diverse coral 

framestone marks the third transition as shallowing continues. A brief transgression 

precedes a drastic regime change and the subsequent deposition of the rudist floatstone, 

which is composed of a much higher percentage of matrix than previous reef facies and is 

indicative of high sediment supply likely sourced from a more seaward reef buildup. 

Ecological succession and community evolution are important elements 

contributing to the shape and extent of the reefs. The paleoecology of each stage of growth 

is closely tied to water depth and sedimentation, emphasizing the importance of the 

interplay of biotic and abiotic controls on reef development. Initial reef growth and coral 

assemblage diversification may also be related to recovery of the carbonate system 

following OAE 1b. Corals and rudists are found to be noncompetitive with each other and 

changing population sizes, with increasing numbers of rudists and decreasing numbers of 

corals through time, are more likely to reflect evolving environmental conditions. 

The revised interpretation of the history of reef growth at Paul Spur highlights the 

utility of modern high-resolution and digital data gathering techniques for improved 
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stratigraphic analysis. This new model and associated data can be applied to problems in 

the subsurface with respect to patch reef geometries and facies relationships, which will 

improve confidence in targeting potential reservoirs in future petroleum exploration. 
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 Appendix A 

This appendix includes all rock specimens and thin sections figured within this text. 

It includes the facies represented, a brief description of the rock, and geographic location 

data if applicable. 

 

 
  

Sample ID Sample Type Facies Brief Description Collection Information

PS-A1
Hand sample, 

slabbed
1 Orbitolina  mud-dominated packstone facies sample with visible Orbitolina 31.38889°, -109.7575°

PS-A1-A-TS Thin section 1
Thin section of Orbitolina  mud-dominated packstone facies with abundant 

Orbitolina in a fine skeletal mud-dominated packstone matrix
31.38889°, -109.7575°

PS-A2
Hand sample, 

slabbed
2

Skeletal grain-dominated packstone facies sample with visible coarse skeletal 

(predominantly molluscan) grains
31.3873°, -109.7565°

PS-A2-A-TS Thin section 2
Thin section of lower skeletal grain-dominated packstone facies showing large 

abraded skeletal grains and rounded  Orbitolina
31.3873°, -109.7565°

PS-A9

Hand sample, 

slabbed and 

polished

3

Sample of Microsolena -dominated microbial-coral framestone facies showing the 

relationship between a thin platy Microsolena  coral and a stromatolitic microbial 

mat growing on top, with matrix filling in top surface over microbial mat

Float

PS-A9-A-TS Thin section 3
Thin section from sample PS-A9 demonstrating fine skeletal mud-dominated 

packstone draping across and filling digitate top surface of microbial mat
Float

PS-A9-C-TS Thin section 3

Thin section from sample PS-A9 comprised of bored Microsolena  (white), with 

encrusting algae (arrow) and stromatolitic microbial mat with laminar texture 

growing on top of coral

Float
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Appendix B 

This appendix includes the facies composition analysis data for all measured 

quadrats at Paul Spur. 
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Appendix C 

This appendix compares point counting and annotation techniques for selected 

quadrats for each described reef facies. 
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