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Low-thrust spacecraft trajectory optimization is often a difficult and

time-consuming process. One alternative is to instead use a closed-loop,

feedback-driven control law, which calculates the control using knowledge of

only the current state and target state, and does not require the solution of

a nonlinear optimization problem or system of nonlinear equations. Though

generally suboptimal, such control laws are attractive because of the ease and

speed with which they may be implemented and used to calculate feasible

low-thrust maneuvers.

This thesis presents the theoretical foundations for seven modern low-

thrust control laws based on control law “blending” and Lyapunov control

theory for a particle spacecraft operating in an inverse-square gravitational

field. The control laws are evaluated critically to determine those that present

the best combinations of thoroughness of method and minimization of user

input required. The three control laws judged to exhibit the most favorable

vi



characteristics are then compared quantitatively through three numerical sim-

ulations. The simulations demonstrate the effectiveness of feedback-driven

control laws, but also reveal several situations in which the control laws may

perform poorly or break down altogether due to either theoretical shortcomings

or numerical difficulties. The causes and effects of these issues are explained,

and methods of handling them are proposed, implemented, and evaluated.

Various opportunities for further work in the area are also described.

vii



Table of Contents

Acknowledgments v

Abstract vi

List of Tables xii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2. Orbital Mechanics 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Coordinate System Definitions . . . . . . . . . . . . . . . . . . 8

2.2.1 Central Body Centered Inertial (CBCI) Coordinate System 8

2.2.2 V UW Coordinate System . . . . . . . . . . . . . . . . . 8

2.2.3 RθH Coordinate System . . . . . . . . . . . . . . . . . 9

2.2.4 Transformations Between Coordinate Systems . . . . . . 10

2.2.4.1 Transformation Between V UW System and CBCI
System . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4.2 Transformation Between RθH System and CBCI
System . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Thrust Direction Unit Vector and Angle Definitions . . . . . . 12

2.4 Keplerian Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Variational Equations . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Optimization of Variational Equations for Classical Orbital El-
ements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

viii



2.6.1 Semi-major Axis . . . . . . . . . . . . . . . . . . . . . . 23

2.6.2 Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.3 Inclination . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.4 Right Ascension of the Ascending Node . . . . . . . . . 25

2.6.5 Argument of Periapsis . . . . . . . . . . . . . . . . . . . 26

2.6.6 True Anomaly . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Optimization of Variational Equations for Equinoctial Orbital
Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.1 Semi-major Axis . . . . . . . . . . . . . . . . . . . . . . 29

2.7.2 P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.3 P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7.4 Q1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7.5 Q2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7.6 True Longitude . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Minimization of Element Rates . . . . . . . . . . . . . . . . . . 32

Chapter 3. Descriptions and Qualitative Analyses of Low-Thrust
Control Laws 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Lyapunov Control . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 LaSalle’s Invariance Theorem . . . . . . . . . . . . . . . 37

3.3 Petropoulos Control and Joseph Control . . . . . . . . . . . . 38

3.3.1 Petropoulos Control . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Joseph Control . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Naasz Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Kluever Control and Ruggiero Control . . . . . . . . . . . . . . 55

3.5.1 Kluever Control . . . . . . . . . . . . . . . . . . . . . . 55

3.5.2 Ruggiero Control . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Bombrun Control . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Chang Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



Chapter 4. Numerical Simulation of Low-Thrust Control Laws 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Control Laws Modeled . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Spacecraft State Propagation . . . . . . . . . . . . . . . . . . . 67

4.4 Modifications to Control Laws . . . . . . . . . . . . . . . . . . 69

4.4.1 Modifications to Naasz Control . . . . . . . . . . . . . . 70

4.4.2 Modifications to Joseph Control . . . . . . . . . . . . . 71

4.4.3 Modifications to Petropoulos Control . . . . . . . . . . . 72

4.5 Coast Segments . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Defining Convergence . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 5. Numerical Results 78

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Equatorial Orbit to Polar Orbit Transfer . . . . . . . . . . . . 79

5.3 Low-Earth Orbit to Geosynchronous Orbit Transfer . . . . . . 88

5.4 Geostationary Transfer Orbit to Molniya Orbit Transfer . . . . 101

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Chapter 6. Conclusions and Recommendations for Further Study116

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Recommendations for Further Study . . . . . . . . . . . . . . . 122

Appendices 126

Appendix A. Supplemental Expressions 127

A.1 Derivatives of Classical Element Variational Equations with Re-
spect to True Anomaly . . . . . . . . . . . . . . . . . . . . . . 127

A.2 Derivatives of Petropoulos’s Penalty Function with Respect to
the Classical Orbital Elements . . . . . . . . . . . . . . . . . . 129

A.3 Derivatives of Petropoulos’s Scaling Function with Respect to
the Classical Orbital Elements . . . . . . . . . . . . . . . . . . 129

A.4 Naasz’s Fixed-Step State Propagator . . . . . . . . . . . . . . 130

A.5 Edelbaum’s Low-Thrust Orbit Transfer Analysis . . . . . . . . 131

x



Appendix B. MATLAB Scripts 134

B.1 Petropoulos Control: Derivatives of VP with Respect to the
Classical Element Set . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography 140

xi



List of Tables

3.1 Summary of low-thrust control laws. . . . . . . . . . . . . . . 64

3.2 Summary of low-thrust control law weighting parameters and
selection methods. . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Control law abbreviations. . . . . . . . . . . . . . . . . . . . . 79

5.2 Equatorial orbit to polar orbit maneuver elements. . . . . . . . 79

5.3 Equatorial orbit to polar orbit maneuver characteristics. . . . 80

5.4 Equatorial orbit to polar orbit maneuver convergence tolerances. 80

5.5 Equatorial orbit to polar orbit maneuver comparisons: contin-
uous control application. . . . . . . . . . . . . . . . . . . . . . 80

5.6 Equatorial orbit to polar orbit maneuver comparisons: absolute
effectivity coasting criteria. . . . . . . . . . . . . . . . . . . . . 81

5.7 Equatorial orbit to polar orbit maneuver comparisons: relative
effectivity coasting criteria. . . . . . . . . . . . . . . . . . . . . 81

5.8 Equatorial orbit to polar orbit maneuver comparisons: Naasz
coasting criterion. . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.9 LEO-to-GEO maneuver elements. . . . . . . . . . . . . . . . . 88

5.10 LEO-to-GEO maneuver characteristics. . . . . . . . . . . . . . 88

5.11 LEO-to-GEO maneuver convergence tolerances. . . . . . . . . 88

5.12 LEO-to-GEO maneuver comparisons: continuous control appli-
cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.13 LEO-to-GEO maneuver comparisons: absolute effectivity coast-
ing criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.14 LEO-to-GEO maneuver comparisons: relative effectivity coast-
ing criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.15 LEO-to-GEO maneuver comparisons: Naasz coasting criteria. 91

5.16 GTO-to-Molniya maneuver elements. . . . . . . . . . . . . . . 101

5.17 GTO-to-Molniya maneuver characteristics. . . . . . . . . . . . 101

5.18 GTO-to-Molniya maneuver convergence tolerances. . . . . . . 102

xii



5.19 GTO-to-Molniya maneuver comparisons: continuous control ap-
plication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.20 GTO-to-Molniya maneuver comparisons: absolute effectivity
coasting criteria. . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.21 GTO-to-Molniya maneuver comparisons: relative effectivity coast-
ing criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.22 GTO-to-Molniya maneuver comparisons: Naasz coasting criteria.106

xiii



List of Figures

2.1 The CBCI, V UW , and RθH coordinate systems. . . . . . . . 10

2.2 Angles used to describe the spacecraft control direction in the
V UW system and the RθH system. . . . . . . . . . . . . . . . 13

5.1 Equatorial orbit to polar orbit maneuver comparisons: semi-
major axis evolution, continuous control application. Note:
Only two curves are visible because all evolutions but P are
identical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Equatorial orbit to polar orbit maneuver comparisons: inclina-
tion evolution, continuous control application. Note: Only two
curves are visible because all evolutions but P are identical. . . 86

5.3 Equatorial orbit to polar orbit maneuver comparisons: eccen-
tricity evolution, continuous control application. Note: Only
two curves are visible because all evolutions but P are identical. 87

5.4 LEO-to-GEO maneuver comparisons: semi-major axis evolu-
tion, continuous control application. . . . . . . . . . . . . . . . 94

5.5 LEO-to-GEO maneuver comparisons: inclination evolution, con-
tinuous control application. . . . . . . . . . . . . . . . . . . . 95

5.6 LEO-to-GEO maneuver comparisons: eccentricity evolution, con-
tinuous control application. . . . . . . . . . . . . . . . . . . . 96

5.7 LEO-to-GEO maneuver comparisons: semi-major axis evolu-
tion, ηathreshold = 0.9. . . . . . . . . . . . . . . . . . . . . . . . 97

5.8 LEO-to-GEO maneuver comparisons: inclination evolution, ηathreshold =
0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.9 LEO-to-GEO maneuver comparisons: eccentricity evolution, ηathreshold =
0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.10 LEO-to-GEO maneuver comparisons: propellant mass usage
evolution, ηathreshold = 0.9. . . . . . . . . . . . . . . . . . . . . 100

5.11 GTO-to-Molniya maneuver comparisons: semi-major axis evo-
lution, continuous control application. . . . . . . . . . . . . . . 108

5.12 GTO-to-Molniya maneuver comparisons: inclination evolution,
continuous control application. . . . . . . . . . . . . . . . . . . 109

xiv



5.13 GTO-to-Molniya maneuver comparisons: eccentricity evolution,
continuous control application. . . . . . . . . . . . . . . . . . . 110

5.14 GTO-to-Molniya maneuver comparisons: right ascension of the
ascending node evolution, continuous control application. Note
that Petropoulos’s control law yields convergence to Ω = −180◦,
which is equivalent to Ω = 180◦. . . . . . . . . . . . . . . . . . 111

5.15 GTO-to-Molniya maneuver comparisons: argument of periapsis
evolution, continuous control application. . . . . . . . . . . . . 112

xv



Chapter 1

Introduction

1.1 Motivation

The problem of calculating the control required to perform a low-thrust1

orbit transfer maneuver has historically proved very difficult [21]. It is desir-

able to optimize these trajectories with respect to one or more performance

indices, often required fuel mass or required maneuver time. However, even as

computing capabilities continue to improve, producing an optimal low-thrust

trajectory, either by a direct or indirect method, is far from routine and can

still be a difficult and time-consuming ordeal. Direct optimization methods

– which, as the name suggests, search directly for control directions that op-

timize a performance index – are adversely affected by the long time span

required by low-thrust maneuvers. For example, a direct method may allow

for the control direction to be piecewise-constant in time and change discon-

tinuously at predetermined points in time. Each of these control directions

becomes a variable that must be optimized; for a maneuver that may last

years, this can lead to a very large number of variables and long computation

1The term “low-thrust” is difficult to define, but generally refers to propulsion systems
that provide significantly smaller thrust-to-weight ratios than those of traditional chemical
propulsion systems and remain active for significant percentages of maneuver times (e.g.
ion thrusters).
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times if the solution is to have sufficient resolution. Furthermore, many stan-

dard optimization techniques require that an initial guess of each optimization

variable be provided by the user as a starting point for an iterative solution

method, and the provision of inaccurate initial guesses often causes algorithms

to fail. Determination of a sufficiently accurate initial guess for, say, a control

direction midway through a maneuver that requires hundreds of revolutions

about a central body can itself be a laborious and time-consuming matter.

Indirect optimization methods, on the other hand, are based on the

calculus of variations [11] and so do not require the use of very large num-

bers of optimization variables. However, this does not necessarily result in an

easier problem, as indirect methods do require the optimization of the notori-

ously difficult-to-guess costates. The costates determine the control direction

at every time on the transfer trajectory, and because they are propagated in

time just like the actual spacecraft states, the costates can only be optimized

at a single point along each trajectory segment. Since a low-thrust maneuver

generally consists of a single trajectory segment many days in length, the ter-

minal spacecraft states are very highly dependent on the values of the costates

at the point of optimization. Thus, the indirect problem’s extreme sensitivity

to initial guesses of the optimization variables makes its solution difficult and

time consuming, as well.

One alternative to either direct or indirect optimization methods is

a closed-loop, feedback-driven (CLFD) control law. In general, a maneuver

prescribed by this type of control law is suboptimal. Nevertheless, a CLFD

2



control law is often a desirable method of generating a low-thrust transfer

trajectory for several reasons. First, unlike direct and indirect optimization

methods, a CLFD control law requires knowledge of only the current spacecraft

state and the target spacecraft state in order to determine the control that

should be applied. Second, most CLFD spacecraft control laws do not require

the solution of a system of nonlinear equations in order to determine the

control. This means that the use of an iterative nonlinear solver and the

determination of accurate initial guesses for variables are unneeded. Together,

these two facts mean that:

1. Because no iteration is required, a maneuver using a CLFD control law

requires significantly less time to simulate numerically than a maneuver

using an optimization technique. This makes CLFD control laws par-

ticularly suitable to preliminary trajectory design in which trade studies

comparing large numbers of possible maneuvers must be performed.

2. Because no variables need be guessed, a well-designed CLFD control law

requires less up-front user effort than an optimization technique. (As

will be explored in this thesis, however, this generally does not mean

that analyst discretion is eliminated entirely from the trajectory design

process.)

Thus, given the advantages of CLFD control laws and the difficulties

in computing optimal low-thrust trajectories, coupled with the ever-increasing

3



utility of low-thrust spacecraft propulsion systems, it is no surprise that consid-

erable attention has been paid to the development of low-thrust CLFD control

laws. The goal of this thesis is to provide a thorough, critical comparison of

a representative sampling of modern low-thrust CLFD control laws from two

points of view: first, a qualitative comparison of the theoretical foundations

and the strengths and weaknesses of the control laws, and, second, a quanti-

tative comparison of the performance of several of the most promising control

laws discussed by means of multiple numerical simulations.

1.2 Problem Statement

The problem explored by this thesis may be described in its most basic

form as: Given a spacecraft capable of producing control acceleration in a

known elliptical orbit about a central body, how should the control be directed

in order to maneuver the spacecraft to a different, known elliptical orbit about

the same central body?

Within this framework, the problem may be detailed further by the

following assumptions and restrictions:

1. The gravitational attraction between the central body and the spacecraft

and the control force of the spacecraft are the only forces that act on the

spacecraft. Other forces, such as non-spherical-central-body effects and

solar radiation pressure, are not considered.

2. The state of the spacecraft at the beginning of the maneuver is fully

4



defined, but only the target orbit is specified – the location of spacecraft

arrival within the target orbit is free.

3. The maneuver flight time is free in the sense that no equality constraints

are placed on the time of flight. However, from a practical standpoint,

maximum flight times are sometimes imposed to prevent excessively

time-consuming maneuvers.

4. The central body and the spacecraft are both modeled as point masses.

5. The mass of the spacecraft is assumed to be negligible in comparison to

the mass of the central body.

6. The control acceleration produced by the spacecraft is constrained to be

“low-thrust,” as discussed in Section 1.1.

7. The spacecraft propulsion system is thrust-limited and has a constant

specific impulse.

8. The manner in which the control acceleration is calculated is restricted

to be a CLFD control law, as discussed in Section 1.1.

1.3 Thesis Organization

Chapter 2 introduces the background theory necessary to develop the

control laws discussed in this thesis. Topics covered include coordinate system

definitions, the variational equations for a spacecraft in a two-body gravita-

5



tional field experiencing a disturbing acceleration, and the determination of

the disturbing acceleration required to extremize the variational equations.

Chapter 3 describes the theoretical and algorithmic bases for seven low-

thrust, CLFD spacecraft control laws. The strengths and weaknesses of each

control law are evaluated. Because several of the control laws are derived using

control Lyapunov functions, the chapter commences with a brief description

of Lyapunov control theory.

Three of the control laws introduced in Chapter 3 are also compared

quantitatively through numerical simulations. Chapter 4 discusses the meth-

ods used to implement the control laws and several modifications made to fa-

cilitate direct comparison and optimal performance. Chapter 5 then presents

the results of using the control laws to perform three orbit transfer maneu-

vers. The performances of the control laws – from the perspectives of both

maneuver optimality and algorithm ease-of-use – are discussed and compared

against one another. Causes of poor performance – or even failure – are also

discussed, and several remedies to improve performance in these situations are

suggested.

Finally, Chapter 6 presents conclusions that may be drawn from this

thesis and several recommendations for extensions of this work.

6



Chapter 2

Orbital Mechanics

2.1 Introduction

This chapter presents the orbital mechanics necessary to derive the

low-thrust control laws presented in Chapter 3. First, all coordinate systems

used in this thesis are defined, as are the unit vectors and angles used to

define the spacecraft control direction. Next, several methods of characterizing

Keplerian orbits are summarized, each of which is used by at least one of the

control laws discussed in this thesis. The variational equations that govern the

evolution of Keplerian orbits in the presence of a disturbing acceleration – in

this case due to the spacecraft’s control system – are then introduced for each

of these characterizations. Finally, the variational equations are extremized

with respect to both control direction and location on an orbit to obtain the

optimal rates of change of orbital parameters and the corresponding control

directions, quantities important to the development of several of the control

laws discussed in Chapter 3.
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2.2 Coordinate System Definitions

2.2.1 Central Body Centered Inertial (CBCI) Coordinate System

The origin of the central body centered inertial (CBCI) coordinate sys-

tem is located at the center of mass of the central body. (Since the central

body is assumed to be approximated by a point mass throughout this thesis,

the origin coincides with the location of the point mass.) The third axis points

in the direction of the north pole of the body, and the first axis and second

axis lie in the equatorial plane and are perpendicular to one another in such

a manner that the system is right-handed. Unit vectors for the CBCI system

are êi, êj, and êk for the first, second, and third axes, respectively. It may be

noted that, if the central body is assumed to be the earth and êi is aligned

with the vernal equinox direction, the CBCI system becomes identical to the

commonly used Earth centered inertial (ECI) system. However, because the

analysis presented in this thesis does not require that the central body be the

earth, the name CBCI system is used instead of ECI system.

2.2.2 V UW Coordinate System

The origin of the V UW system is the center of mass of the spacecraft.

(Since the spacecraft is assumed to be approximated by a point mass through-

out this thesis, the origin coincides with the location of the point mass.) The

first axis points in the direction of the instantaneous spacecraft velocity vec-

tor, and the third axis points in the direction of the instantaneous spacecraft

angular momentum vector. The second axis is defined such that the system

8



is right-handed. The unit vectors for the V UW system are êv, êu, and êw for

the first, second, and third axes, respectively.

2.2.3 RθH Coordinate System

The origin of the RθH or polar coordinate system is the center of mass

of the spacecraft. The first axis points in the direction of the instantaneous

spacecraft position vector (relative to the central body), and the third axis

points in the direction of the instantaneous spacecraft angular momentum

vector. The second axis is defined such that the system is right-handed. The

unit vectors for the RθH system are êr, êθ, and êh. The unit vectors of the

CBCI, V UW , and RθH coordinate systems are shown in Figure 2.1, in which

r is the position vector of the spacecraft relative to the central body.

9



êj

êk

êi

Central body
center of mass

r
êr

êv
êθêh, êw

êu

Figure 2.1: The CBCI, V UW , and RθH coordinate systems.

2.2.4 Transformations Between Coordinate Systems

Rotation matrices are used to express a vector given in one system in a

different system. A generic vector ζ, expressed in a generic ABC coordinate

system, may be expressed as ζ ′ in a second generic system, the DEF system,

by performing

ζ ′ = RABC→DEFζ, (2.1)

where RABC→DEF is a square matrix whose dimensions are each equal to the

dimension of ζ [2]. Because transformation matrices are orthonormal, the

10



inverse operation is simply

ζ =
(
RABC→DEF )T ζ ′. (2.2)

2.2.4.1 Transformation Between V UW System and CBCI System

The transformation matrix used to express a vector given in the V UW

system in the CBCI system is given by

RV UW→CBCI =


vT êi
v

(h×v)T êi
|h×v|

hT êi
h

vT êj
v

(h×v)T êj
|h×v|

hT êj
h

vT êk
v

(h×v)T êk
|h×v|

hT êk
h

 , (2.3)

where v is the spacecraft velocity vector with respect to the central body

and h = r × v is the spacecraft’s specific angular momentum vector. (The

operator “×” represents the matrix cross product.) The notation |ζ| represents

the Euclidean norm of a vector, and is also represented more succinctly by

ζ = |ζ| =
(
ζTζ

) 1
2 .

2.2.4.2 Transformation Between RθH System and CBCI System

The transformation matrix used to express a vector given in the RθH

system in the CBCI system is given by
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RRθH→CBCI =


rT êi
r

(h×r)T êi
|h×r|

hT êi
h

rT êj
r

(h×r)T êj
|h×r|

hT êj
h

rT êk
r

(h×r)T êk
|h×r|

hT êk
h

 . (2.4)

2.3 Thrust Direction Unit Vector and Angle Definitions

The direction of the spacecraft thrust vector in three-dimensional space

may be defined either by a unit vector or by a set of two angles. Two primary

pairs of angles are used in this thesis: αV UW and βV UW , defined by their

relationship with the control direction unit vector in the V UW system; and

αRθH and βRθH , defined by their relationship with the control direction unit

vector in the RθH system. The relationships between the unit vectors and

thrust angles are

ûV UW =

 cos(αV UW ) cos(βV UW )
sin(αV UW ) cos(βV UW )

sin(βV UW )

 (2.5)

ûRθH =

 sin(αRθH) cos(βRθH)
cos(αRθH) cos(βRθH)

sin(βRθH)

 . (2.6)

The angle αV UW is the control angle in the instantaneous orbital plane, mea-

sured from êv and positive toward the positive êu axis; its domain is αV UW ∈

[0, 2π). βV UW is the out-of-plane control angle, measured off the instantaneous

orbital plane and positive in the direction of the instantaneous angular mo-

mentum; its domain is βV UW ∈ [−π
2
, π

2
]. αRθH is also a measurement of the
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control angle in the instantaneous orbital plane. However, it is measured from

êθ, positive toward the positive êr axis. βRθH is equivalent to βV UW . The

control angles are depicted in Figure 2.2.

êu

êw, êh

êv

êr

êθ

Spacecraft
center of mass û

αV UW

αRθH

βV UW , βRθH

Figure 2.2: Angles used to describe the spacecraft control direction in the
V UW system and the RθH system.

2.4 Keplerian Orbits

The equation of motion of a particle subject only to the gravitational

force of a central gravitational field may be written as [2]

r̈ = −GMCB

r3
r = − µ

r3
r, (2.7)
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under the assumption that the mass of the particle is insignificant compared

to the mass of the central body. In (2.7), r̈ is the second time derivative of r,

G is the universal gravitational constant, MCB is the mass of the central body,

and µ = GMCB is the gravitational parameter of the central body. In such a

force field, closed orbits take the form of ellipses, which may be characterized

in several ways. Three methods are of interest in this thesis: the Keplerian

or classical orbital element set, the equinoctial orbital element set, and the

angular momentum vector and eccentricity vector. The classical element set is

comprised of semi-major axis a, eccentricity e, inclination i, right ascension of

the ascending node Ω, and argument of periapsis ω. Another element, such as

true anomaly ν, is required to specify the particle’s location within a particular

orbit [2].

A drawback of the classical element set is its lack of robustness for all

types of orbits [2, 3]. For circular orbits (e = 0), ω and ν are undefined; for

equatorial orbits (i = 0), Ω and ω are undefined. One method of eliminating

these deficiencies is to use instead the equinoctial element set [3]: a, P1, P2,

Q1, and Q2, which may be related to the classical element set by

14



a = a (2.8)

P1 = e sin($) (2.9)

P2 = e cos($) (2.10)

Q1 = tan

(
1

2
i

)
sin(Ω) (2.11)

Q2 = tan

(
1

2
i

)
cos(Ω), (2.12)

where $ = Ω + ω is the longitude of periapsis. Recovery of the classical

element set from the equinoctial set is achieved through the relations [3, 17]

a = a (2.13)

e =
√
P 2

1 + P 2
2 (2.14)

i = 2 atan

(√
Q2

1 +Q2
2

)
(2.15)

Ω = atan

(
Q1

Q2

)
(2.16)

ω = atan

(
P1

P2

)
− atan

(
Q1

Q2

)
. (2.17)

The equinoctial elements only exhibit singularities for the case in which i =

180◦ [17].

A third method of characterizing an orbit is through the use of the

specific angular momentum vector h and eccentricity vector e, given by [3]

15



h = r × v (2.18)

e =
1

µ
[v × (r × v)]− r

r
. (2.19)

The vectors h and e are constant on a Keplerian orbit and together define that

orbit, although, as with the classical and equinoctial element sets, another pa-

rameter is required to specify the particle’s location within that orbit.1 This

method of orbit classification encounters no singularities. Transformation be-

tween h and e and the classical element set is accomplished via the relations

[2, 18]

a =
|h|2

µ(1− |e|2)
(2.20)

e = |e| (2.21)

i = atan


√

(hT êi)2 + (hT êj)2

hT êk

 (2.22)

Ω = atan

(
nT êj
nT êi

)
(2.23)

ω = ±atan

(
|n× e|
nTe

)
, (2.24)

where n = êk ×h is the node vector and the sign of ω is set equal to the sign

of (n× e)Th.

1It should be noted that h and e comprise six variables while the classical and equinoctial
element sets require only five variables to define an orbit. This discrepancy is rectified by
recalling that h and e are not independent: h is perpendicular to the orbital plane and e
lies in the orbital plane so that hTe = 0.
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While the equinoctial element set and the h and e orbit representation

improve on the classical element set by introducing fewer potential singu-

larities, a significant drawback of both of these orbit characterizations when

considering them for use in an orbit transfer scheme is the coupling exhibited

when transforming between these elements and the classical element set. If a

full orbit transfer is desired – that is, the target orbit is completely specified

– this produces no problem. However, it is very often the case that a mis-

sion requires the targeting of only a subset of the classical element set. For

example, a mission may require achieving a specified a, e, and i but have no

requirements on Ω and ω. In this situation, using the equinoctial element set

or the h and e set to define the target orbit places unnecessary restrictions on

the target values of Ω and ω that will likely increase propellant mass and/or

time required to achieve the target orbit.

2.5 Variational Equations

The equation of motion of a particle subject to a disturbing acceleration

in a central gravitational field may be written as [3]

r̈ +
µ

r3
r = ad, (2.25)

where ad is the disturbing acceleration vector. For the control laws presented

in this thesis, the disturbing acceleration is always taken to be the spacecraft

control acceleration. Therefore, in the derivation of control laws, the disturbing
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acceleration is written as u. For generality, however, the notation ad is used

for the derivation of the variational equations themselves.

If ad is written in the RθH coordinate system, then the time derivatives

of the classical orbital elements are collectively referred to as Gauss’s form of

the Lagrange Planetary Equations [3, 17]:

dΩ

dt
=
r sin(ω + ν)

h sin(i)
adh (2.26)

di

dt
=
r cos(ω + ν)

h
adh (2.27)

dω

dt
=

1

he
[−p cos(ν)adr + (p+ r) sin(ν)adθ]−

r sin(ω + ν) cos(i)

h sin(i)
adh (2.28)

da

dt
=

2a2

h

(
e sin(ν)adr +

p

r
adθ

)
(2.29)

de

dt
=

1

h
{p sin(ν)adr + [(p+ r) cos(ν) + re]adθ} (2.30)

dν

dt
=

h

r2
+

1

he
[p cos(ν)adr − (p+ r) sin(ν)adθ] (2.31)

dν0

dt
=

1

he
[p cos(ν)adr − (p+ r) sin(ν)adθ] (2.32)

dM

dt
=

√
µ

a3
+

b

ahe
[(p cos(ν)− 2re)adr − (p+ r) sin(ν)adθ] (2.33)

dM0

dt
=

b

ahe
[(p cos(ν)− 2re)adr − (p+ r) sin(ν)adθ] , (2.34)

where p = a(1− e2) is the semi-latus rectum, b = a
√

1− e2 is the semi-minor

axis, and M is the mean anomaly. The quantities ν0 and M0 are the true

anomaly at epoch and mean anomaly at epoch, respectively, and are intro-

duced to remove the secular terms from (2.31) and (2.33). This is accomplished

by setting the epoch time to the time of periapsis passage.
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For utilization in low-thrust control laws, it is convenient to express

these equations in a matrix-vector form. If each of the variational equations

is written as

dO

dt
= Ȯradr + Ȯθadθ + Ȯhadh, O = a, e, i,Ω, ω,M0, (2.35)

then Gauss’s form of the Lagrange Planetary Equations (using M0 to define

location on the orbit) may be rewritten as



ȧ
ė

i̇

Ω̇
ω̇

Ṁ0

 = Aad, (2.36)

where the elements of the matrix A are the coefficients of the disturbing ac-

celeration terms in the variational equations.

In the implementation of several control laws, it is necessary to obtain

the derivatives of the variational equations for the slow-moving classical ele-

ments with respect to true anomaly; these expressions are given in Appendix

A.1.

The time derivatives of the equinoctial elements may be written as [3]
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da

dt
=

2a2

h

[
(P2 sin(L)− P1 cos(L))adr +

p

r
adθ

]
(2.37)

dP1

dt
=
r

h

{
−p
r

cos(L)adr +
[
P1 +

(
1 +

p

r

)
sin(L)

]
adθ − · · ·

· · · − P2(Q1 cos(L)−Q2 sin(L))adh

}
(2.38)

dP2

dt
=
r

h

{p
r

sin(L)adr +
[
P2 +

(
1 +

p

r

)
cos(L)

]
adθ + · · ·

· · ·+ P1(Q1 cos(L)−Q2 sin(L))adh

}
(2.39)

dQ1

dt
=

r

2h

(
1 +Q2

1 +Q2
2

)
sin(L)adh (2.40)

dQ2

dt
=

r

2h

(
1 +Q2

1 +Q2
2

)
cos(L)adh (2.41)

dl

dt
= n− r

h

{[
a

a+ b

(p
r

)
(P1 sin(L) + P2 cos(L)) +

2b

a

]
adr + · · ·

· · ·+ a

a+ b

(
1 +

p

r

)
(P1 cos(L)− P2 sin(L))adθ + · · ·

· · ·+ (Q1 cos(L)−Q2 sin(L))adh

}
(2.42)

dl0
dt

= − r
h

{[
a

a+ b

(p
r

)
(P1 sin(L) + P2 cos(L)) +

2b

a

]
adr + · · ·

· · ·+ a

a+ b

(
1 +

p

r

)
(P1 cos(L)− P2 sin(L))adθ + · · ·

· · ·+ (Q1 cos(L)−Q2 sin(L))adh

}
, (2.43)

where L = $+ ν is the true longitude, b = a
√

1− P 2
1 − P 2

2 , l = $+M is the

mean longitude, and n =
√

µ
a3

is the mean motion. The mean longitude at

epoch, l0 = $+M0, is introduced to remove the secular term in (2.42). As was

done with the classical element set, the matrix-vector form of the equinoctial

variational equations may be written as
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

ȧ

Ṗ1

Ṗ2

Q̇1

Q̇2

l̇0

 = Bad, (2.44)

where the elements of the matrix B are the coefficients of the disturbing

acceleration terms in the variational equations.

The variational equations for h and e may be written as [3]

dh

dt
= r × ad (2.45)

µ
de

dt
= ad × (r × v) + (ad × r)× v. (2.46)

(Note that the gravitational parameter µ is assumed to be constant in time

and is therefore removed from the differentiation.)

Like those of the orbital element sets, the variational equations for h

and e may also be written in matrix-vector form:

(
ḣ
µė

)
=


0 −r3 r2

r3 0 −r1

−r2 r1 0
−(r2v2 + r3v3) (2r1v2 − r2v1) (2r1v3 − r3v1)
(2r2v1 − r1v2) −(r1v1 + r3v3) (2r2v3 − r3v2)
(2r3v1 − r1v3 (2r3v2 − r2v3) −(r1v1 + r2v2)


 ad1

ad2
ad3

 .

(2.47)
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In (2.47), the non-specific subscripts 1, 2, and 3 are used to denote the com-

ponents of r, v, and ad because the equation is valid regardless of the choice

of coordinate frame.

2.6 Optimization of Variational Equations for Classical
Orbital Elements

In order to complete an orbit transfer maneuver efficiently, it is natural

to attempt to extremize the time rates of change given by the variational

equations. Several control laws discussed in this thesis employ some form of

this strategy; a summary of the results is presented here [20, 21, 23]. For these

derivations, the control acceleration is represented by (2.6); the subscripts on

αRθH and βRθH are dropped for conciseness.

The control angles at which the time rates of change of the classical

orbital elements are maximized2 are found by invoking the first-order necessary

conditions for optimality [11]:

∂Ȯ

∂α
= 0 (2.48)

∂Ȯ

∂β
= 0 (2.49)

and solving for α and β. (The symbol O represents a, e, i, Ω, and ω in turn.)

The optimal location (in terms of ν) on a given orbit for applying control to

2Minimization of element rates is discussed in Section 2.8.
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change each element is found similarly, by setting

∂Ȯ

∂ν
= 0 (2.50)

and solving for ν.

2.6.1 Semi-major Axis

The optimal control angles for increasing a are given by

α = atan

(
e sin(ν)

1 + e cos(ν)

)
(2.51)

β = 0. (2.52)

The optimal location on an orbit at which to increase a is periapsis; that is,

ν = 0, (2.53)

which gives a maximum ȧ over an orbit of

ȧ = 2ad

√
a3(1 + e)

µ(1− e)
, (2.54)

where ad is the magnitude of the control acceleration.
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2.6.2 Eccentricity

The optimal control angles for increasing e are given by

α = atan

(
sin(ν)

cos(ν) + cos(E)

)
(2.55)

β = 0, (2.56)

where E is the eccentric anomaly. The optimal location on an orbit at which

to increase e is apoapsis; that is,

ν = π, (2.57)

which gives a maximum ė over an orbit of

ė =
2pad
h

. (2.58)

2.6.3 Inclination

Inclination may only be changed by out-of-plane control acceleration,

so the control angle α is meaningless when i is changed optimally. The optimal

out-of-plane control angle for increasing i is given by

β = sign[cos(ω + ν)]
π

2
. (2.59)
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The values of ν that satisfy first-order optimality conditions for being the

location on an orbit at which the maximum i̇ occurs are

ν = −asin(e sin(ω))− ω. (2.60)

The quadrant ambiguity created by the presence of the inverse sine function

may be resolved by substituting both possible values of ν into the variational

equation for i; the ν that yields the larger value of i̇ is the solution. The

maximum i̇ over an orbit is then

i̇ =
pad

h
(√

1− e2 sin2(ω)− e| cos(ω)|
) . (2.61)

2.6.4 Right Ascension of the Ascending Node

Right ascension of the ascending node may only be changed by out-

of-plane control acceleration, so the control angle α is meaningless when Ω is

changed optimally. The optimal out-of-plane control angle for increasing Ω is

given by

β = sign[sin(ω + ν)]
π

2
. (2.62)

The values of ν that satisfy first order optimality conditions for being the

location on an orbit at which the maximum Ω̇ occurs are
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ν = acos(−e cos(ω))− ω. (2.63)

The quadrant ambiguity created by the presence of the inverse sine function

may be resolved by substituting both possible values of ν into the variational

equation for Ω; the ν that yields the larger value of Ω̇ is the solution. The

maximum Ω̇ over an orbit is then

Ω̇ =
pad

h sin(i)
(√

1− e2 cos2(ω)− e| sin(ω)|
) . (2.64)

2.6.5 Argument of Periapsis

Argument of periapsis is unique among the classical elements because

it is the only one whose value may be changed by both in-plane and out-of-

plane control acceleration, a characteristic that complicates the derivation of

the optimal control angles. One solution is to simply use a numerical optimiza-

tion algorithm. However, it is also possible to find an approximate analytical

solution. Petropoulos [20, 21] did so by treating the in-plane and out-of-plane

rates of change separately. This yields, for in-plane control, optimal control

angles of

αi = atan

(
−p cos(ν)

(p+ r) sin(ν)

)
(2.65)

βi = 0, (2.66)
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and an optimal orbit location of

νi = acos


1− e2

2e3
+

√
1

4

(
1− e2

e3

)2

+
1

27

 1
3

− · · ·

· · · −

−1− e2

2e3
+

√
1

4

(
1− e2

e3

)2

+
1

27

 1
3

− 1

e

 . (2.67)

The quadrant ambiguity for νi created by the presence of the inverse cosine

function may be resolved by comparing the values of ω̇i obtained at the two

possible values of νi. As the correct νi maximizes ω̇i, the νi that yields a larger

value of ω̇i must necessarily be the νi at which the optimal ω̇i occurs. The

maximum ω̇i over an orbit is then

ω̇i =
ad
eh

√
p2 cos2(νi) + (p+ ri)2(1− cos2(νi)), (2.68)

where ri is the distance between the spacecraft and the central body evaluated

at νi.

If instead only out-of-plane control is considered, the optimal control

angles are

αo = 0 (2.69)

βo = sign [− sin (ν + ω) cos (i)]
π

2
. (2.70)
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The location over an orbit at which the maximum ω̇o occurs is

νo = acos(−e cos(ω))− ω. (2.71)

The quadrant ambiguity created by the presence of the inverse sine function

may be resolved by substituting both possible values of νo into the variational

equation for ω using α = 0 and the optimal value of β; the νo that yields the

larger value of ω̇o is the solution. The maximum ω̇o over an orbit is then

ω̇o =
pad| cos(i)|

h sin(i)
(√

1− e2 cos2(ω)− e| sin(ω)|
) . (2.72)

2.6.6 True Anomaly

Because the goal of the control laws discussed in this thesis is not to

correct errors in location within an orbit, the control angles and orbit location

that extremize ν̇ are unneeded and are not presented.

2.7 Optimization of Variational Equations for Equinoc-
tial Orbital Elements

The rates of change of the equinoctial elements may be extremized in

much the same manner as the rates of change of the classical elements were

extremized in Section 2.6.
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2.7.1 Semi-major Axis

The quantities associated with extremizing ȧ are the same as those

given in Section 2.6.1.

2.7.2 P1

As was the case with ω of the classical element set, P1 and P2 of the

equinoctial element set may be changed by both in-plane and out-of-plane

control acceleration. In Section 2.6.1, expressions were obtained for the ex-

tremizing values of ω̇ for the case in which the control acceleration is purely

in-plane and the case in which the control acceleration is purely out-of-plane.

Here, however, because analytical expressions for max(Ṗ1) and max(Ṗ2) are

not required for the control law discussed in this thesis that utilizes these

values [12], a numerical optimization technique is used instead. Following

the derivations given in [12], the global maximum of Ṗ1 over an osculating

orbit is found by recognizing that the first possible maximum occurs when

cos(L) = −1 and control acceleration is directed purely in the êr direction.

Under these circumstances,

Ṗ1 =
p

h
. (2.73)

A numerical search method (Joseph uses the Golden search method [12]) is

then used to find the maximum values of Ṗ1 that may be achieved over an os-

culating orbit via application of control acceleration purely in the êθ direction
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and purely in the êh direction. (Note that, because Ṗ1 is trigonometric in L,

two local maxima may exist for each of the functions maximized numerically.

Both must be calculated.) The global maximum of Ṗ1 is the greatest of the

five Ṗ1 values found by this procedure.

2.7.3 P2

The maximum value of Ṗ2 is found in exactly the same manner in

which the maximum value of Ṗ1 is determined (Section 2.7.2), except that the

one possible maximum determined through application of control acceleration

purely in the êr direction occurs at sin(L) = 1 rather than at cos(L) = −1.

(The value of Ṗ2 at this location is Ṗ2 = p
h
.)

2.7.4 Q1

Q1 is only affected by out-of-plane control acceleration, so the in-plane

control angle α is meaningless when Q1 is changed optimally, and the optimal

out-of-plane control angle for increasing Q1 is

β = sign(sin(L))
π

2
. (2.74)

The value of L at which the maximum Q̇1 occurs on an osculating orbit is

given by

L = −acos(P2). (2.75)
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The quadrant ambiguity in (2.75) may be resolved by evaluating Q̇1 at both

possible values of L; the value of L that yields the larger Q̇1 is the solution.

The maximum value of Q̇1 is then found by substituting the optimal L into

(2.40).

2.7.5 Q2

Q2 is only affected by out-of-plane control acceleration, so the in-plane

control angle α is meaningless when Q2 is changed optimally, and the optimal

out-of-plane control angle for increasing Q2 is

β = sign(cos(L))
π

2
. (2.76)

The value of L at which the maximum Q̇2 occurs on an osculating orbit is

given by

L = −asin(P1). (2.77)

The quadrant ambiguity in (2.77) may be resolved by evaluating Q̇2 at both

possible values of L; the value of L that yields the larger Q̇2 is the solution.

The maximum value of Q̇2 is then found by substituting the optimal L into

(2.41).
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2.7.6 True Longitude

Because the goal of the control laws discussed in this thesis is not to

correct errors in location within an orbit, the control angles and orbit location

that extremize l̇ are unneeded and are not presented.

2.8 Minimization of Element Rates

The preceding derivations give the conditions that achieve maximum

rates of change of the classical elements and equinoctial elements and the

corresponding maxima. No further derivation is required to obtain the minima

because of the following relations [20]:

min(Ȯ) = −max(Ȯ) (2.78)

αmin = αmax + π (2.79)

sin(βmin) = − sin(βmax). (2.80)
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Chapter 3

Descriptions and Qualitative Analyses of

Low-Thrust Control Laws

3.1 Introduction

In this chapter, algorithmic descriptions and qualitative analyses of

seven distinct low-thrust control laws are presented. While each control law is

different, all those discussed in this thesis share several important character-

istics:

1. All laws require the initial spacecraft state to be fully defined; the lo-

cation of the spacecraft within an orbit at the start of the maneuver is

fixed.

2. All laws use some form of the variational equations presented in Section

2.5.

3. All laws are intended for use in global transfer problems; no law relies on

knowledge of a reference transfer trajectory from which the controlled

trajectory is perturbed.

4. All laws are capable of performing both in-plane and out-of-plane ma-

neuvers.
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In the interests of brevity and unambiguity, each of the control laws

described in this thesis is referenced by the name of the first author of the

source in which the control law is described.

3.2 Lyapunov Control

The majority of the control laws studied in this thesis are based on

Lyapunov control theory. To avoid repetition, the theory is presented generally

first, then discussed as it applies to individual control laws.

Lyapunov’s Second Theorem [9] states that, for a system

Ż = f(Z), Z = X −XT , (3.1)

the equilibrium point XT is globally asymptotically stable1 if there exists a

scalar function V (Z) (called a Lyapunov function) such that

1. V (0) = 0, where 0 is an appropriately dimensioned vector of zeros.

2. V (Z) > 0 ∀Z 6= 0.

3. V̇ (Z) < 0 ∀Z 6= 0.

4. lim|Z|→∞ V (Z) =∞.

1It is important to note that stability in the sense of Lyapunov by itself does not guarantee
a successful orbit transfer maneuver, particularly for the case in which the target orbit is
only partially defined. For example, a transfer for which the target eccentricity is free may
result in the osculating eccentricity approaching unity, leading to a non-elliptical orbit.
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For the problem considered by this thesis, X is taken to be a vector of values

that define the current osculating orbit of the spacecraft, and XT contains the

target values of each of those elements, such that Z = X −XT = 0 if the

spacecraft is on the target orbit. Thus, by the first condition of Lyapunov’s

Second Theorem, the goal of the Lyapunov-based control laws is to direct the

spacecraft control such that the value of the Lyapunov function is driven to

zero. Furthermore, for an efficient orbit transfer, it is desirable to direct the

control such that the osculating orbit is driven to the target orbit as quickly

as possible; that is, for a given spacecraft state and target state, the control

should be directed such that V̇ is as negative as possible. This is achieved [17]

by noting that the equations of motion for the spacecraft may be written in

the form

Ẋ = g(X,a)u, (3.2)

where g(X,a) is a matrix that relates Ẋ to the control u, and a is a vector

of parameters independent of X. For an autonomous system,

V̇ (Z) = V̇ (X −XT ) =
∂V

∂X
Ẋ =

∂V

∂X
gu. (3.3)

Making V̇ as negative as possible is then a simple matter of directing the

control such that
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u = −gT
(
∂V

∂X

)T
, (3.4)

and the resulting V̇ is

V̇ = −
∣∣∣∣ ( ∂V∂X

)T
gT
∣∣∣∣2. (3.5)

In summary, the steps required to apply a Lyapunov-type spacecraft

control scheme are:

1. Determine the elements of X. These must be selected such that a Lya-

punov function that accurately captures a “distance” between the cur-

rent state and the target state may be written as a function of X and

XT . For example, in the low-thrust spacecraft control problem, a pos-

sibility is X = (a e i Ω ω)T , which allows for the targeting of the

five classical orbital elements.

2. Write the dynamics of the system as Ẋ = g(X,a)u. For the preceding

example, g is given by rows one through five of the matrix in (2.36), u

is given by (2.6), and the only element of a is true anomaly.

3. Find a suitable Lyapunov function V (Z) = V (X −XT ) such that the

system is stable in the sense of Lyapunov. There is no hard-and-fast
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approach capable of generating a Lyapunov function for all dynamic sys-

tems [17]; however, a popular choice in the low-thrust spacecraft control

problem [5, 6, 12, 17, 20, 21] takes the form of

V (Z) =
n∑
i=1

KiZ
2
i , (3.6)

where Z is n× 1 and all Ki ≥ 0. The key to the formulation of a good

Lyapunov function of this form is the method of the determination of

the Ki, which weight the error terms in V .

4. Determine ∂V
∂X

to find the optimal control u for a given X and XT .

3.2.1 LaSalle’s Invariance Theorem

A useful tool for proving stability in the sense of Lyapunov for an

autonomous system for which V̇ is not strictly less than zero for all Z 6= 0

is LaSalle’s Invariance Theorem [9, 17], which states that Z = 0 is a globally

uniformly asymptotically stable point if

1. V (Z) > 0 ∀Z 6= 0.

2. lim|Z|→∞ V (Z) =∞.

3. V̇ ≤ 0 and V̇ 6= 0 along any solution to the system except Z = 0.

LaSalle’s Invariance Theorem is used to prove stability in the sense

of Lyapunov for several of the control laws presented in this thesis [5, 6, 17]
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because the corresponding Lyapunov functions do not meet the third condi-

tion for Lyapunov stability (Section 3.2) but do meet all conditions to satisfy

LaSalle’s Invariance Theorem.

3.3 Petropoulos Control and Joseph Control

Control laws presented by Petropoulos [20, 21] and Joseph [12] are pre-

sented together because Joseph’s method is based on that of Petropoulos.

However, the two control laws are not identical, and the differences between

the algorithms produce interesting and important differences in the results

that may be obtained through their application.

3.3.1 Petropoulos Control

The refined version of Petropoulos’s control law [21], also known as the

Q-law, is based on a Lyapunov function given by

VP = (1 +WPP )
∑
O

WOSO

(
δO

maxν(Ȯ)

)2

, O = a, e, i,Ω, ω, (3.7)

where WP is a weighting function, P is a penalty function, WO is a weighting

function, SO is a scaling function, and δO is an error metric given by

δO =

{
O− OT , O = a, e, i

acos(cos(O− OT )), O = Ω, ω
. (3.8)
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The use of the cosine and inverse cosine functions in (3.8) has the effect of

returning the principle value for δO (δO ∈ [0, π]). This allows the control law

to take advantage of the continuity of Ω and ω at 0 and 2π. Were δΩ and

δω defined simply as Ω− ΩT and ω − ωT , respectively, the control law would

not “know” that, for example Ω = 10◦ is “near” Ω = 350◦. The control law

would thus call to increase Ω rather than decrease it, creating inefficiency in

the maneuver.

For a, e, i, and Ω, the value maxν(Ȯ) refers to the maximum rate of

change of each classical element over the current osculating orbit. (Expressions

for these values are presented in Section 2.6.) The expression for maxν(ω̇) is

more complicated, however, because an analytical expression is not available

the maximum rate of change of ω over an orbit. Instead, a weighted average

of the maximum ω̇ achievable through purely in-plane control on the current

osculating orbit and the maximum ω̇ achievable through purely out-of-plane

control on the current osculating orbit is used, so that

maxν(ω̇) =
maxν(ω̇i) + b maxν(ω̇o)

1 + b
, (3.9)

where b is a parameter, nominally set to b = 0.01.

The purpose of the penalty function P is to enforce mission constraints.

Petropoulos gives an example penalty function whose goal is to create a min-

imum periapsis distance for the transfer trajectory:
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P = exp

[
k

(
1− rp

rpmin

)]
, (3.10)

where k is a parameter, nominally set to 100, rp is the osculating periapsis dis-

tance, and rpmin is the minimum allowable periapsis distance. (Implementation

of the penalty function requires calculation of the derivatives of P with respect

to the orbital elements; the necessary expressions are given in Appendix A.2.)

The penalty weighting function WP is nominally set to unity if the penalty

function is active and zero otherwise. Similarly, the classical element weight-

ing functions WO are nominally set to unity if the corresponding element is

targeted and zero if its final value is free.

The scaling function SO is nominally set to

SO =


[
1 +

(
a−aT
maT

)n] 1
r

, O = a

1, O = e, i,Ω, ω
, (3.11)

where m, n, and r are parameters, nominally set to 3, 4, and 2, respectively.

The purpose of the unique form of Sa is that the Lyapunov function VP is not,

in fact, stable in the sense of Lyapunov because it approaches zero not only as

the elemental errors approach zero, but also as a approaches infinity. The goal

of Sa, then, is to increase the attention paid to semi-major axis error as δa

grows in an effort to prevent a from growing without bound. (Implementation

of the scaling function requires calculation of the derivatives of SO with respect

to the orbital elements; the necessary expressions are given in Appendix A.3.)
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The desired control is found from VP using the strategy of minimizing

V̇P . This requires derivation of the partial derivatives of VP with respect to

each of the orbital elements; however, because some of the required derivatives

are rather lengthy, the expressions themselves are omitted from the body of this

thesis. Instead, a MATLAB script that utilizes MATLAB’s Symbolic Toolbox

to obtain the necessary derivatives is included in Appendix B.1. Once the

required derivatives are obtained, the control is found as a function of the

current osculating classical elements and target elements through application

of (3.4).

The motivation behind the form of the Lyapunov function is that each

term
(

δO
maxν(Ȯ)

)2

is the square of the time required to change an orbital element

from its current value to its target value, assuming that its rate of change were

equal to ±maxν(Ȯ) for the duration of the transfer. Thus, rather than thinking

of the Lyapunov function as a summation of weighted differences between

current and target values of orbital elements, it is perhaps more natural to

think of it as a summation of times required to achieve the target values of

orbital elements. The goal of the control law is to drive all these times to zero.

A key feature of this approach is that each of the elemental terms of VP

will decrease not only if δO decreases but also if maxν(Ȯ) increases. This allows

the control law to take into account the fact that, for example, the optimal rate

of change of inclination increases in magnitude as semi-major axis increases.

Petropoulos’s control law may therefore direct thrust acceleration to increase

a beyond its target value, change i, then decrease a to achieve its target value.
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Petropoulos discusses two strategies for introducing coast arcs into a

controlled trajectory, both based on the concept of applying control accelera-

tion only in the areas of an osculating orbit at which it is most effective to do

so. The quantity absolute effectivity is defined as

ηa =
minα,β(V̇P )

minα,β,ν(V̇P )
, (3.12)

where minα,β(V̇P ) is the minimum value of V̇P at a given position on an os-

culating orbit, which is also the value of V̇P obtained from (3.5). Meanwhile,

minα,β,ν(V̇P ) refers to the minimum value of V̇P that may be obtained by ap-

plying (3.4) at any value of ν on the current osculating orbit.

Similarly, relative effectivity is defined as

ηr =
minα,β(V̇P )−maxα,β,ν(V̇P )

minα,β,ν(V̇P )−maxα,β,ν(V̇P )
, (3.13)

where maxα,β,ν(V̇P ) is the maximum value of V̇P that may be obtained by

applying (3.4) at any value of ν on the current osculating orbit.2

The coasting scheme, then, is to apply control acceleration only when

V̇P at the current value of ν yields an absolute or relative effectivity that is

greater than some threshold value of either ηa or ηr. As may be expected, in-

creasing either effectivity threshold increases the amount of time spent coasting

2It is important to note that this is not the same as the maximum value of V̇P that may
be obtained by any combination of α, β, and ν on the current osculating orbit.
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and increases the total time required to perform a maneuver. In many (though

not all) cases, this will also lead to a decrease in the amount of fuel required

to perform a maneuver. Petropoulos discusses several different strategies for

utilizing effectivity thresholds, including setting a constant threshold value of

ηa; setting a constant threshold value of ηr; setting constant values of both ηa

and ηr; and increasing the threshold value of ηa as the spacecraft nears the

target orbit. However, there is no theoretical basis for selecting an appropriate

threshold value for a given maneuver; the threshold must instead be selected

using the discretion of the mission designer. A minimum control duration of

10◦ of true longitude is also imposed to prevent control on/off chatter when

the effectivity is near its threshold value.3

Petropoulos’s control law is perhaps the most complete law discussed

in this thesis. The control law allows for the targeting of any subset of the

classical element set; the weights for each term of the Lyapunov function are

fully defined; and the law includes multiple schemes for coasting. However,

Petropoulos’s control law is not without its flaws. First, as mentioned in the

discussion of SO, the Lyapunov function VP does not satisfy the conditions for

Lyapunov stability. Though Petropoulos claims that the form of Sa has led

to convergence to the target orbit in all numerical simulations performed [21],

this lack of a completely firm theoretical footing is a cause for concern. There

is no guarantee that the control law will not direct the spacecraft toward an

3Control on/off chatter is characterized by the controller rapidly switching back and forth
between controlled arcs and coasting arcs.
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infinite semi-major axis rather than toward the target orbit. Further, this is

not the only scenario in which a term in the summation of VP may be driven

to zero even though the corresponding error term is not. For example, the δΩ2

term in VP is multiplied by sin2(i) and therefore goes to zero if the osculating

orbit approaches an equatorial orbit.

A similar issue that may be encountered is that the complexity of the

derivatives of VP with respect to the orbital elements may produce conse-

quences that are not obvious upon inspection of VP . In relation to the previ-

ous example of the δΩ2 term of VP , the multiplication of δΩ2 by sin2(i) means

that, when Ω is targeted, i will also be driven toward either 0◦ or 180◦. Ad-

ditionally, the derivatives of both the δa2 and δi2 terms of VP with respect

to the eccentricity are always less than zero, meaning that these two terms of

VP are always decreased by increasing e. As a result, a maneuver in which

only the semi-major axis is targeted may not result in control acceleration

directed only in the direction of the velocity vector, and a maneuver in which

only the inclination is targeted may not result in purely out-of-plane control

acceleration, as might be expected.

In addition to introducing suboptimalities, this characteristic of Petropou-

los’s control law can adversely affect the control profile to the point that con-

vergence to the target orbit may not be achieved when using nominal values

for all parameters, a point explored more fully in Chapter 5.

Control direction chatter is another possible source from which poor

performance of the control law may arise. This is a byproduct of the dis-
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cretization of the control calculation required to numerically propagate the

trajectory. When multiple elements that may be changed by in-plane control

acceleration are targeted, it is possible that the errors in the elements may

reach values such that, at time step tj, the control law prescribes that the

majority of the in-plane control be applied to correct one element, and at time

step tj+1, the majority of the in-plane control be applied to correct a different

element. Furthermore, it is possible that the in-plane control angles that the

control law prescribes to change each of these two elements oppose one an-

other. This can create a cycle in which the in-plane control angle changes by

large amounts from time step to time step. This situation may also arise when

multiple elements that may be changed by out-of-plane control acceleration

are targeted. If a variable-step integration algorithm is used, the result is that

the step size rapidly approaches zero and integration effectively stops, while

if a fixed-step algorithm is used, propagation persists, but the spacecraft is

unlikely to converge to the target orbit.

Petropoulos describes this phenomenon as occurring primarily when

a and e are targeted simultaneously, and the spacecraft is very close to the

target orbit. In this situation, the control directions required to change the

two elements may become diametrically opposed, leading to control direction

chatter. In these cases, the effectivity is generally low, so Petropoulos proposes

temporarily increasing the effectivity cutoff to induce coasting until a more

favorable location on the orbit is achieved – one at which control direction

chatter does not occur. However, as discussed in detail in Chapter 5, this is
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not the only situation in which control direction chatter may occur, and other

means may be needed to counteract it.

Selection of the parameters b, m, n, r, and k used in the definition of

VP is a task that must be performed by the mission designer and requires user

discretion. Though the nominal values may lead to adequate performance, it

is highly unlikely that they will be optimal for all maneuvers. (In fact, some

work has been done in the optimization of not only these parameters but the

WO, as well, through the use of heuristic optimization techniques, including

genetic algorithms and simulated annealing. Lee et al. [15] found that the

modification of certain WO, as well as the parameters b, m, n, r, and k, could

lead to a noticeable improvement in the performance of the control law.)

3.3.2 Joseph Control

Joseph’s implementation of Petropoulos’s control law differs from the

original scheme in several fundamental ways [12]. First, Joseph uses the

equinoctial element set rather than the classical element set. This has the

advantage of eliminating the singularities caused by the use of the classical

element set, but also significantly increases the difficulty of targeting any ar-

bitrary set of classical orbital elements.

Second, Joseph’s adaptation of Petropoulos’s control law was published

prior to the presentation of the “refined” version of Petropoulos’s control law

[21] and is instead based on a simpler version [20]. Therefore, the Lyapunov

function on which Joseph’s control law is based is
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VJ =
∑
O

WO

(
δO

maxν(Ȯ)

)2

, O = a, P1, P2, Q1, Q2. (3.14)

This form of VJ differs from the VP given by (3.7) in that it does not take into

account a penalty function and does not utilize a scaling function.

Third, Joseph uses the assumption that the derivatives of maxν(Ȯ)

with respect to all orbital elements except anomaly may be neglected. This

significantly simplifies the derivation of the control law because the partial

derivatives of VJ with respect to the orbital elements become

∂VJ
∂O

=
2WOδO[

maxν(Ȯ)
]2 , O = a, P1, P2, Q1, Q2. (3.15)

This assumption also allows for the maximum achievable rates of change over

an osculating orbit of P1 and P2, the two equinoctial elements that may be

changed by both in-plane and out-of-plane control acceleration, to be calcu-

lated numerically. Were it required that maxν(Ṗ1) and maxν(Ṗ2) be differenti-

ated with respect to the equinoctial elements, such a numerical scheme would

necessitate that the corresponding derivatives also be obtained numerically

(for example, by a finite-difference approximation). This situation may be

compared to that encountered in Petropoulos’s control law (Section 3.3.1), in

which an approximate analytical expression for maxν(ω̇) is used to make possi-

ble the differentiation of maxν(ω̇) with respect to the classical orbital elements.
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Thus, Joseph’s simplification in the calculation of ∂VJ
∂O

has the advantages of

easing the derivation of the control law and facilitating an accurate numerical

solution for maxν(Ṗ1) and maxν(Ṗ2), but also brings with it the disadvantage

of introducing error into the calculation of the control by neglecting terms. A

direct consequence of this simplification is the loss of the ability of the con-

trol law to direct “desirable overshoots” of elements, such as in the case of

increasing semi-major axis to ease the burden of changing inclination. The VJ

weighting terms are treated as constants, so the control law has no knowledge

that changing one element will decrease the weight of another element’s term

in the summation of VJ .

Joseph’s adoption of Petropoulos’s weighting functions brings with it

the lack of stability in the sense of Lyapunov caused by VJ tending toward

zero as a approaches infinity. However, because Joseph’s control law assumes

that the derivatives of maxν(Ȯ) with respect to all orbital elements except

anomaly may be neglected, Joseph’s control law is much less likely than that

of Petropoulos to converge to an infinite semi-major axis rather than to the

target orbit. Further, this assumption means that the “unusual” control pro-

files sometimes commanded by Petropoulos’s control law (Section 3.3.1) are

not seen in maneuvers directed by Joseph’s control law, and control direction

chatter is less likely to occur. As explored in Chapter 5, this has non-trivial

consequences on both the optimality and robustness of the control laws of

Petropoulos and Joseph.

Finally, though not strictly relevant to this thesis, it should be noted
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that Joseph’s control law also uses a classical proportional-integral control law

to target locations within an orbit.

3.4 Naasz Control

Naasz [17] presents three control schemes for driving spacecraft to tar-

get orbits, each based on a different representation of the spacecraft state:

1. A control law based on driving spacecraft inertial position and velocity

vectors to target values.

2. A control law based on driving the set of osculating equinoctial orbital

elements to target values.

3. A control law based on driving the set of osculating classical orbital

elements to target values.

The first strategy is not appropriate for comparison in this thesis because it

generally requires the specification of a target phase within a target orbit,

while this study focuses on control laws whose goal is to achieve a target orbit,

regardless of phase. Furthermore, such a control scheme makes difficult the

targeting of arbitrary subsets of the classical orbital elements. The second

strategy presented by Naasz encounters a similar difficulty. Equinoctial ele-

ments may be transformed to classical elements and vice versa (Section 2.4),

but there exists coupling between the elements that makes targeting an arbi-

trary set of classical elements via the equinoctial set problematic. Also, Naasz
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presents no systematic method for properly weighting the errors in the different

elements of either the position vector and velocity vector or the equinoctial

element set for arbitrary maneuvers, meaning that further derivations or a

trial-and-error approach are required when implementing either method.

Naasz’s control law based on the classical element set is both more

closely aligned with the aims of this thesis and more fully developed than the

other two control strategies. It is based on a Lyapunov function given by

VN =
1

2

∑
O

KO(δO)2, O = a, e, i,Ω, ω,M0, (3.16)

where the KO are weights greater than or equal to 0 and

δO = O− OT , O = a, e, i,Ω, ω,M0. (3.17)

A systematic approach is given for the selection of the weighting func-

tions KO. The process is begun by determining the maximum change in an

orbital element that may be achieved by applying an impulsive maneuver

whose change in velocity magnitude is ∆v = T
m

∆t, where T is the control

force magnitude, m is the spacecraft mass prior to the maneuver, and ∆t is

the time duration for a finite-time control maneuver for which the impulsive

maneuver is an approximation. For example, for semi-major axis, a maxi-

mal change ∆amax is achieved by applying an impulse in the direction of the

velocity vector at periapsis [17, 20]; the resulting change in a is
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∆amax =
2a2(1 + e)

h

T

m
∆t. (3.18)

Once ∆Omax is determined, that expression is substituted for the difference

between the current osculating value of the orbital element and the target

value of the element, δO, in (3.4). Again using semi-major axis as an example,

this gives the control dictated only by semi-major axis error as

|u(∆amax)| =
∣∣∣∣− [2a2(1 + e cos(ν))

h

]
Ka

[
2a2(1 + e)

h

T

m
∆t

]∣∣∣∣ . (3.19)

The value of KO is then determined by setting the expression for |u(∆Omax)|

equal to the thrust acceleration magnitude, T
m

, and solving for KO.

Naasz’s application of these principles to all the elements is given by

[17]

Ka =
h2

4a4(1 + e)2

1

∆t
(3.20)

Ke =
h2

4p2

1

∆t
(3.21)

Ki =

[
h+ eh cos(ω + asin(e sin(ω)))

p(−1 + e2 sin2(ω))

]2
1

∆t
(3.22)

KΩ =

[
h sin i(−1 + e sin(ω + asin(e cos(ω))))

p(1− e2 cos2(ω))

]2
1

∆t
(3.23)

Kω =
e2h2

4p2

(
1− e2

4

)
1

∆t
(3.24)

KM0 =
a2e2h2

4b2p2

(
1− e2

4

)
1

∆t
, (3.25)
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In order to make possible an analytical expression for Kω, Naasz assumes that

the greatest possible change in ω due to an impulsive maneuver is achieved by

maneuvering purely in the êθ direction near a true anomaly of ν = π
2
. This is

not entirely correct because, uniquely among the classical elements, ω may be

changed by both in-plane and out-of-plane maneuvers, and a general analyti-

cal expression for the optimal maneuver direction for changing ω taking into

account both in-plane and out-of-plane maneuvering possibilities is not avail-

able [20]. Thus, the optimality of the choice of Kω is lacking when compared

with that of the other weighting functions. Furthermore, the derivations of

both Kω and KM0 utilize a first-order Taylor expansion about e = 0 to ease

the calculations. This simplification introduces further suboptimalities into

Kω and KM0 , which will be most apparent when the target orbit is highly

eccentric.

These expressions present several other points of interest. First, target-

ing a subset of the classical elements rather than all six may be accomplished

by setting the KO associated with untargeted elements to zero. Second, the

algorithm prescribes that the KO should be evaluated using the characteristics

of the target orbit and held constant for the duration of the maneuver. Naasz

gives no justification for this strategy, and it proves problematic when only

a subset of the classical orbital elements is targeted. For example, in order

to calculate Ka, the target values of a and e are required. However, if eccen-

tricity is not targeted, then the necessary value of e is undefined. A simple

workaround is to use the initial value of an orbital element whose target value
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is undefined in the calculation of the KO; however, this is not mentioned by

Naasz in the original presentation of the control law.

Though the presentations are somewhat different, it may be noted that

the resulting expressions for Naasz’s Ka and Ke are identical to the corre-

sponding weighting terms of Petropoulos and Joseph (Section 3.3) except for

a scaling – by the control acceleration magnitude in the case of Petropoulos

and Joseph and by the inverse of the propagation time step in the case of

Naasz. Furthermore, the expressions for Ki and KΩ should be identical (disre-

garding the scaling); however, discrepancies arise because Naasz neglects the

quadrant ambiguity presented by the inverse sine function in (3.22) and (3.23).

Of course, the Kω terms differ between the control laws due to Petropoulos

and Joseph’s separation of in-plane and out-of-plane control acceleration and

Naasz’s use of linearization.

Given this method of KO calculation, it is interesting to think of Naasz’s

control law as a sort of special case of Joseph’s control law in which the KO are

calculated once and held constant throughout the maneuver. And, because

Naasz’s KO are constant, Naasz’s strategy has the benefit of actually being

stable in the sense of Lyapunov for all cases in which the semi-major axis used

to calculate the KO is not infinite. As discussed in Section 3.3, this is not the

case for the control laws of Petropoulos and Joseph.

Naasz proves the stability of the system using LaSalle’s Invariance The-

orem [17] (Section 3.2.1). The first two conditions are seen to be met by simple

inspection of (3.16). If u is chosen to satisfy (3.4), then V̇N ≤ 0 holds because
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of the form of (3.5). V̇N goes to zero for Z = 0 and may also go to zero when

ω + ν is a positive integer multiple of π
2
. However, because true anomaly is

not constant on an orbit, V̇N will not remain zero unless Z = 0. Thus, the

system is globally uniformly asymptotically stable.

The fact that stability may be proven for Naasz’s control law but not

for Petropoulos’s control law or Joseph’s control law is a direct consequence

of the fact that the KO are held constant in Naasz’s scheme but vary as the

osculating orbital elements change in the other two. However, holding the KO

constant is also likely to lead to less fuel-optimal maneuvers than if the KO

are allowed to change as the elements of the osculating orbit change. (This is

explored numerically in Chapter 5.)

It is also noteworthy that Naasz’s expressions for the KO allow for the

units of the control to be those of acceleration, resulting in an intuitive output

of the control law that some other control algorithms lack. Naasz uses this to

prescribe a simple algorithm for incorporating coast segments into the control

scheme. Because the magnitude of u output by (3.4) is itself an acceleration

magnitude, it may be directly compared to the acceleration magnitude of which

the spacecraft propulsion system is capable, T
m

. Therefore, Naasz proposes

T =

{
Tmax, |u| ≥ T

m

0, |u| < T
m

. (3.26)

A drawback of this coasting mechanism is that it may cause control on/off

chatter when the commanded acceleration magnitude is nearly equal to the
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available acceleration magnitude.

Naasz briefly discusses the impact of the singularities inherent in any

control law based on the classical element set. If the target orbit is circular –

meaning ωT is undefined – Kω is set to zero.

3.5 Kluever Control and Ruggiero Control

Control laws presented by Kluever [13] and Ruggiero et al. [23] are

discussed together because both are based on the concept of blending the

optimal control laws for changing individual classical orbital elements to create

a control law capable of targeting multiple elements simultaneously.

3.5.1 Kluever Control

Kluever’s scheme is capable of targeting a, e, and i. The in-plane con-

trol angle is a weighted average of the optimal control acceleration directions

for changing a and e:

ûin =
Kaûa +Keûe
|Kaûa +Keûe|

=

 sin(αRθH)
cos(αRθH)

0

 , (3.27)

where ûa is the optimal control acceleration direction for increasing a, ûe is

the optimal control acceleration direction for increasing e, and Ka and Ke

are weighting functions. (Expressions for ûa and ûe may be obtained using

the control angles derived in Sections 2.6.1 and 2.6.2 and the relation given
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by (2.6).) Calculation of ûi allows for immediate calculation of αRθH using

(3.27).

The out-of-plane control angle is determined solely by the optimal angle

for changing i. However, Kluever modifies the expression given by (2.59) to

account for the fact that it is inefficient to change inclination near ν+ω = ±π
2

and uses instead

βRθH = Ki cos(ν + ω), (3.28)

where Ki is a weighting function. The final control unit vector is then given

by (2.6).

Kluever’s method has three primary drawbacks. First, no mechanism

is given for targeting Ω or ω. However, this could be remedied by adding ûω

and a Kω to the calculation of ûin in (3.27) and manipulating the out-of-plane

control angle calculation to more closely resemble that of the in-plane control

angle calculation so that

ûout =
Kiûi +KΩûΩ

|Kiûi +KΩûΩ|
=

 0
0

cos(βRθH)

 . (3.29)

A deficiency that is more difficult to address is the lack of a systematic

approach for selecting the weighting functions Ka, Ke, and Ki. Kluever sug-

gests expressing the weights as quadratic functions of time whose coefficients
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are to be set by the mission designer using engineering judgment; however, as

he himself notes [13], “simplicity is often a desired attribute of a good guid-

ance scheme,” and a robust control law should require minimal user input.

Furthermore, any weighting functions that change with time are inherently

problematic since the time of flight is generally unknown a priori.

Finally, as is the case for all control laws based on the blending of the

optimal control directions for changing multiple elements, there is no theoret-

ical basis that ensures convergence to the target orbit.

3.5.2 Ruggiero Control

The fundamental equation put forth by Ruggiero et al. gives the desired

control acceleration direction unit vector as

û =

∑
O

WO
OT−O
OT−Oi

ûO∣∣∣∣∑
O

WO
OT−O
OT−Oi

ûO

∣∣∣∣ , O = a, e, i,Ω, ω, (3.30)

where ûO is the optimal thrust direction unit vector for changing a classical

element (given in Section 2.6), Oi is the value of an orbital element at the

beginning of a maneuver, and WO is a weighting function given by

WO =

{
1, O 6= OT

0, O = OT

. (3.31)

A method for introducing coast segments into the transfer trajectory is also

presented, based heavily on the idea of absolute effectivity [20, 21] (see Section
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3.3). As with Petropoulos’s control law, however, no systematic approach for

determining an appropriate value for ηa is given.

The Ruggiero control law has the advantage of being simply adaptable

to the situation in which only a subset of the classical element set is targeted:

the WO of any free element is set to zero. However, the remainder of the

control blending function presents problems. Beyond the WO, the weighting

of the ûO is given by the difference between the current value of the orbital

element and its target value normalized by the difference between the initial

value of the orbital element and its target value. The rationale behind this

strategy is that the control direction should be closer to the optimal direction

for correcting elements (relatively) farther from their target values in order to

ensure that all elements achieve their target values at roughly the same time.

Unfortunately, such weighting leads to singularities in the case in which the

target value of an element is equal to its initial value (OT = Oi). Perhaps the

simplest possible workaround for this problem is to set a lower bound on the

magnitude of OT − Oi used to formulate û. This way, the target value of an

element may still be equal to the initial value of that element, but, when used

in the calculation of û, the value of OT − Oi is changed slightly from its true

value to avoid a singularity. A drawback of this revision is that it may give

an improperly large weight to an element whose target value is equal to its

initial value and whose osculating value deviates from the initial/target value

because of the small, non-zero value assigned to OT − Oi.

Another disadvantage of the Ruggiero control law is that, as given, it
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lacks a firm theoretical underpinning (such as Lyapunov stability theory) that

guarantees convergence to the target orbit.

3.6 Bombrun Control

A control law introduced by Bombrun [5] is based on a Lyapunov func-

tion of the form

VB =
5∑
i=1

Ki(Oi − OiT )2, (3.32)

where the Ki are weighting functions, the Oi are any set of five independent

parameters that may be used to define the current osculating orbit (i.e. the

classical element set or the equinoctial element set), and the OiT are the target

values of those parameters. From this general formulation, Bombrun focuses

on defining VB using the classical element set. For example, for a transfer

from a geosynchronous transfer orbit to an equatorial geosynchronous orbit

for which a, e, and i are targeted, the Lyapunov function is given by

VB1 = 4

(
a

aGEO
− 1

)2

+ 3e2 + i2, (3.33)

where aGEO is the semi-major axis of the equatorial geosynchronous orbit. The

control is then found through application of (3.4). While VB1 is certainly valid

and is shown to be effective, it has the severe disadvantage of being highly
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specialized to the specific problem for which it is implemented. To remedy

this, Bombrun uses Lyapunov interpolation to formulate Lyapunov functions

for a large set of planar orbit transfers. For these transfers, the Lyapunov

function is given by

VB2 = cos(φ)

(
a

aGEO
− 1

)2

+ sin(φ)e2, (3.34)

where φ ∈ [0, π
2
]. The value of φ for a particular orbit transfer is determined by

comparing the control commanded by the control law to the control dictated

by a time-optimal transfer scheme at each time step along the time-optimal

transfer trajectory. The value of φ is then set such that the difference between

the control law’s control and that of the time-optimal maneuver is minimized.

Mathematically, φ is chosen to minimize the performance index

J =
1

(tfopt − t0opt)

∫ tfopt

t0opt

|uφ(γ(t))− u(γopt(t))|2dt, (3.35)

where t0opt and tfopt are the initial and final times of the time-optimal transfer

maneuver, respectively, γ(t) is the transfer trajectory generated by the control

law, γopt(t) is the time-optimal transfer trajectory, uφ(γ(t)) is the control accel-

eration vector on the trajectory γ(t) (which is a function of φ), and u(γopt(t))

is the control acceleration vector on the time-optimal trajectory.

An obvious disadvantage of Lyapunov interpolation of this kind is that

the generation of VB2 requires prior knowledge of the corresponding time-
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optimal transfer trajectory. As the determination of arbitrary optimal low-

thrust transfer trajectories can be difficult – some of the appeal of closed-loop

control laws comes specifically from the fact that open-loop optimization is

not required – this is a poor feature for a control law. Furthermore, the given

form of VB2 applies only to planar orbit transfers, and neither VB1 nor VB2

provides the ability to target Ω or ω.

3.7 Chang Control

Chang et al. [6] propose a control law based on targeting the angular

momentum vector h and the Laplace vector A = µe. To this end, Chang

introduces the vector X = (h A)T and a Lyapunov function

VC =
1

2
k|δh|2 +

1

2
|δA|2, (3.36)

where k > 0 is a weighting function and

δh = h− hT (3.37)

δA = A−AT . (3.38)

Differentiating the Lyapunov function with respect to X gives

∂VC
∂X

= (kδh δA) , (3.39)
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while, from the variational equations for h and e,

Ẋ =

(
r × u

u× h+ v × (r × u)

)
. (3.40)

After some manipulation, the time derivative of the Lyapunov function may

then be written as

V̇C =
∂VC
∂X

Ẋ = [kδh× r + h× δA+ (δA× v)× r]Tu. (3.41)

The isolation of the control u in (3.41) facilitates a nearly trivial derivation of

the control that minimizes V̇C : The time derivative of the Lyapunov function is

minimized when u is set to directly oppose the term with which it is multiplied

in (3.41):

u = −f [kδh× r + h× δA+ (δA× v)× r], (3.42)

for arbitrary f > 0.

It may be shown, through invocation of LaSalle’s Invariance Principle,

that the controller given by (3.42) causes any elliptical orbit to asymptotically

converge to any targeted elliptical orbit [6]. Furthermore, Chang’s control

law is the only one discussed in this thesis for which it is shown that an

initial elliptical orbit remains an elliptical orbit throughout the orbit transfer
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process. However, the proof for this requires that the maneuver be a “local”

orbit transfer. A transfer between two arbitrary elliptical orbits may then be

accomplished by performing multiple local transfers in succession. (See [6] for

a more detailed discussion of local vs. global orbit transfers.)

While, as is shown by an example orbit transfer given in [6], this con-

trol law is not without merit, as presented, it does have several considerable

shortcomings. One is associated with the parameter k. While the chosen value

of k greatly influences the efficiency with which a spacecraft will reach a target

orbit, no systematic approach is given for its proper selection. Moreover, it is

possible that the use of multiple weighting functions would add flexibility to

the method because, for the majority of orbit transfer scenarios, it is unlikely

that all components of δh should be weighted equally and all components of

δA should be weighted equally. Furthermore, increasing the number of weight-

ing functions from one to six adds minimal complexity to the derivation of the

control law because derivations of revised expressions for Ẋ = g(X)u and

∂VC
∂X

are straightforward. (See (2.47).)

A second drawback of this method is that of the coupling that exists in

the transformations between the angular momentum and Laplace vectors and

the classical element set. This makes it impractical to target arbitrary subsets

of the classical element set with this control law.
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3.8 Summary

The characteristics of the low-thrust control laws discussed in this thesis

are summarized in Tables 3.1 and 3.2.

Table 3.1: Summary of low-thrust control laws.

Author(s) Type Targeted elements Coasting mechanisms
Naasz Lyapunov any subset of a, e, i,

Ω, ω, M0

one

Petropoulos Lyapunov any subset of a, e, i,
Ω, ω

two

Joseph Lyapunov any subset of a, P1,
P2, Q1, Q2

zero

Kluever Blended any subset of a, e, i zero
Ruggiero et al. Blended any subset of a, e, i,

Ω, ω
one

Bombrun Lyapunov VB1 : any subset of a,
e, i; VB2 : any subset
of a, e

zero

Chang et al. Lyapunov h, A zero
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Table 3.2: Summary of low-thrust control law weighting parameters and se-
lection methods.

Author(s) Weighting parameters Selection method
Naasz one per element OT

Petropoulos two per element O

Joseph one per element O

Kluever one per element polynomial functions of time
Ruggiero et al. one per element Oi, O, OT

Bombrun one per element VB1 : O, OT ; VB2 : time-optimal
trajectory

Chang et al. one no method given

Note: For Lyapunov-type control laws, weighting refers to the weighting of
element errors; for blended-type control laws, weighting refers to the

weighting of control directions. Oi refers to the initial orbit, O refers to the
osculating orbit, and OT refers to the target orbit.
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Chapter 4

Numerical Simulation of Low-Thrust Control

Laws

4.1 Introduction

This chapter describes the methods used to numerically model three of

the control laws described in Chapter 3. The method of trajectory propagation

is presented, and modifications made to each of the three control laws to

improve performance are discussed. Three methods used to introduce coast

arcs into trajectories are described, and, finally, the problem of measuring

convergence to the target orbit is discussed.

4.2 Control Laws Modeled

Of the seven control laws discussed in depth in Chapter 3, three are

implemented in numerical simulations in order to obtain a quantitative com-

parison: Naasz’s control law, Petropoulos’s control law, and Joseph’s control

law. These control laws are selected for two primary reasons:

1. All three present methods with firm theoretical bases for weighting the

error terms of their Lyapunov functions.
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2. Naasz’s control law and Petropoulos’s control law allow for the targeting

of arbitrary subsets of the classical element set, and Joseph’s control law

may be made to do so with straightforward modifications.

Ruggiero’s control law also meets these criteria (although in this case

the weighting is of the blended control directions rather than of the terms

of a Lyapunov function). However, the severe problems with the weighting

functions discussed in Section 3.5.2 preclude the control law’s use in many

practical scenarios. Therefore, Ruggiero’s control law is not modeled.

Bombrun’s control law, Kluever’s control law, and Chang’s control law

are not modeled primarily because of the lack of a systematic method for

selecting the values of weighting parameters.

4.3 Spacecraft State Propagation

For all maneuvers, the primary method of spacecraft state propagation

is numerical integration of Gauss’s form of the Lagrange Planetary Equations

(see (2.26)) using variable-step-size Adams methods [10]. The state vector is

X =



a
e
i
Ω
ω
ν
m


. (4.1)
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X is integrated in time, with the time derivative of the spacecraft mass given

by

ṁ = − T

g0Isp
, (4.2)

where T is the thrust force magnitude, g0 is the reference gravitational accel-

eration at Earth’s surface, and Isp is the specific impulse of the spacecraft’s

propulsion system.

Because control direction chatter can cause a variable-step integration

scheme to take step sizes so small that propagation effectively stops, the fixed-

step propagation method employed by Naasz [17] is also implemented. This

method is invoked only in the case that the primary integrator requires the

evaluation of the derivatives of the state at 10, 000 time steps in a 100-second

time span. If this condition is met, the fixed-step propagation method is used

for a time span of up to one day, at which point integration duties are returned

to the primary propagation scheme. The fixed step size used is 3 seconds.1 A

detailed description of Naasz’s propagation method is given in Appendix A.4.

Only one control law and one of the maneuvers simulated numerically

required the use of fixed-step propagation (Section 5.4).

1Note that the criterion for switching to the fixed-step propagation method is problem-
dependent, as is the fixed step size itself.
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4.4 Modifications to Control Laws

Several modifications are made to the three modeled control laws in

order to improve the numerical properties of the simulations. First, in order

to avoid singularities in the classical element set, threshold values are set on

eccentricity and inclination. If it is desired to begin a maneuver at a value of

e or i (or target a value of e or i) near a value that produces a singularity in

the variational equations or in the equations used to calculate the control, the

initial (or target) value is changed so that it is different from the value that

produces the singularity by the threshold value. Additionally, if, during the

course of a maneuver, the osculating elements of the transfer orbit near a value

of e or i that would cause a singularity, the offending element is held constant

at the threshold value until the rate of change of the element becomes such that

the element will begin to move away from the singularity [21]. Mathematically,

the singularity-avoidance procedure may be written as

O =

{
O, O ≥ εO

εO, O < εO
, O = e, i, (4.3)

for some εO > 0. For all simulations performed in the completion of this thesis,

εO is set such that εe = 5× 10−3 and εi = 10−4 rad. The relatively large value

of εe is used because the calculation of the control in Petropoulos’s control law

requires exponentiating the eccentricity with large negative values.
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4.4.1 Modifications to Naasz Control

Several changes are made to the Lyapunov function for the form of

Naasz’s control law implemented in this thesis. First, because phasing is not

considered here, the value of KM0 is always set to zero; error in the mean

anomaly at epoch therefore does not contribute to the Lyapunov function.

Second, the error functions for Ω and ω are changed slightly to the form

presented by Petropoulos [21], given by (3.8). Also, the expressions for Ki

and KΩ given by Naasz – which do not account for the quadrant ambiguity

inherent in invoking the inverse sine function – are replaced by expressions

that do take this into consideration:

Ki =

h
(√

1− e2 sin2(ω)− e| cos(ω)|
)

p

2

1

∆t
(4.4)

KΩ =

h sin(i)
(√

1− e2 cos2(ω)− e| sin(ω)|
)

p

2

1

∆t
. (4.5)

Finally, the minimum-periapsis-distance penalty function used by Petropoulos

(see (3.10)) is introduced into Naasz’s Lyapunov function so that it becomes

VNmod =
1

2
(1 +WPP )

∑
O

KO(δO)2, O = a, e, i,Ω, ω. (4.6)

Further modifications are made in the calculation of the KO. First and

foremost, the issue of undefined KO in the case of an only partially defined
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target orbit (discussed in Section 3.4) is circumvented by prescribing that,

should the target value of an untargeted orbital element be required to calcu-

late the KO, the initial value of that element is used instead. Also, because

Naasz gives no theoretical basis for calculating the KO on the target orbit and

holding them constant for the duration of the maneuver, two other possibilities

are investigated:

1. Calculate KO on the initial orbit and hold constant.

2. Calculate KO by evaluating the orbital elements at a simple average of

the initial and target values and hold constant. (The continuity of Ω and

ω at values of 0 and 2π is taken into account.)

It would also be natural to calculate the KO using the osculating orbital el-

ements and thereby continuously revise the weights of the terms of the Lya-

punov function. However, such a strategy would make Naasz’s weighting terms

identical to those of Petropoulos and Joseph. Therefore, this method is not

examined as a separate case of Naasz’s control law.

4.4.2 Modifications to Joseph Control

For implementation in this thesis, the Lyapunov function used by Joseph

is altered so that the error terms are written in terms of the classical element

set rather than the equinoctial element set in order to allow for the targeting of

arbitrary subsets of the classical element set. Furthermore, the modifications

made by Petropoulos [21] to the Lyapunov function originally presented in [20]
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are incorporated into Joseph’s Lyapunov function. (This includes the use of

the penalty function used to enforce a minimum periapsis distance.) Thus,

the Lyapunov function implemented for Joseph’s control law is equivalent to

that which is implemented for Petropoulos’s control law. The difference be-

tween the two control laws, then, is in the calculation of the derivatives of the

Lyapunov function with respect to the classical orbital elements (see Sections

3.3.1 and 3.3.2).

4.4.3 Modifications to Petropoulos Control

No substantive modifications are made to Petropoulos’s control law.

4.5 Coast Segments

Introducing coast segments into a trajectory is accomplished by simply

setting the control acceleration magnitude to zero at a given time step in

the numerical integration if the control law dictates the existence of a coast

segment. This determination is made one of four ways:

1. Control acceleration is applied under all circumstances.

2. Control acceleration is applied if absolute effectivity is greater than a

constant threshold value (see Section 3.3.1).

3. Control acceleration is applied if relative effectivity is greater than a

constant threshold value (see Section 3.3.1).
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4. Control acceleration is applied if the magnitude of requested control ac-

celeration is greater than the magnitude of available control acceleration

(see Section 3.4). (Only applicable to Naasz’s control law.)

While Petropoulos [21] presents simulations that use multiple values

of ηa for a single trajectory and others that use both absolute effectivity and

relative effectivity thresholds for a single trajectory, these strategies are not

used in the simulations presented in this thesis. Furthermore, while the ef-

fectivity concept is not explicitly mentioned by either Naasz or Joseph, its

extension to these two control laws is natural and straightforward. On the

other hand, Naasz’s coasting scheme may not be so easily applied to the con-

trol laws of Petropoulos and Joseph because it relies on comparison of the

requested control acceleration magnitude with the maximum value available

to the spacecraft. Such a comparison is meaningless for the other two control

laws because the units of the control they output are not those of accelera-

tion.2 For this reason, Naasz’s coasting strategy is implemented only for the

corresponding control law.

The determination of absolute and relative effectivity is done numer-

ically. Because the only optimization variable in the calculations is true

anomaly, the numerical procedure presents no large difficulty. On the first

calculation of an effectivity, the control dictated by a control law is calculated

2In the SI system, the units are [u] = [s]3

[m] . The control must be unitized and scaled by

the magnitude of the available control acceleration to make physical sense.
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at half-degree increments of true anomaly between ν = 0◦ and ν = 360◦ on the

current osculating orbit. From this, the approximate minimum and maximum

time rates of change of the Lyapunov function on the current osculating orbit

are calculated. The minimum value of the time rate of change of the Lyapunov

function is used to calculate absolute effectivity, while both the minimum and

maximum values are used to calculate relative effectivity. When effectivities

are calculated at subsequent time steps, a sequential quadratic programming

(SQP) algorithm [24] is used to calculate the minimum and maximum time

rates of change of the Lyapunov function over true anomaly. The initial guess

of true anomaly required by the algorithm is set to the corresponding opti-

mized value from the previous time step. (The lack of knowledge regarding an

accurate initial guess is the reason the SQP algorithm is not used at the first

time step). If for any reason the SQP algorithm fails at a given time step, the

method used to calculate the effectivities at the first time step is used instead.

The SQP algorithm requires the derivatives of the objective function

(the time rate of change of the Lyapunov function) with respect to the opti-

mization variable (true anomaly). From (3.5) and the forms of the Lyapunov

functions used by the control laws modeled, the only derivatives that must be

taken are those of the elements of (2.36) with respect to true anomaly. The

necessary expressions are given in Appendix A.1.

In order to minimize control on/off chatter, Petropoulos’s strategy of

requiring a minimum control application duration of 10◦ of true longitude is

applied to all coast methods. The implementation is such that a controlled arc
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begins when the criterion for control is first met and must continue at least

until the minimum duration is reached. It is likely more optimal to center the

controlled arc around the time at which the criterion for control is first met,

but any attempt to do so would require knowledge of the control criterion at

future values of time. This would require that the maneuver be propagated

iteratively. Because the goal of closed-loop control laws is to prescribe a control

using only the current and target values of the spacecraft state, no such scheme

is used.

4.6 Defining Convergence

Each of the three implemented control laws is based on Lyapunov con-

trol theory, the goal of which is to drive the spacecraft to the target orbit

asymptotically. A consequence of this is that, as the spacecraft nears the tar-

get orbit, the rate of approach decreases (V̇ approaches zero). Because of

this, the Lyapunov function will not achieve a value of precisely zero in finite

time, and a mission designer must choose some other criteria with which to

determine arrival on the target orbit. A natural strategy is to pronounce a ma-

neuver complete when the value of the Lyapunov function becomes less than

some threshold value. However, several issues complicate this method. First,

because different control laws utilize different Lyapunov functions, a different

threshold value must be set for each to achieve similar results. Second, even

when using a single control law, tolerable error for two maneuvers may corre-

spond to different values of the Lyapunov function, meaning that the threshold
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value must be tuned for every maneuver analyzed.

Another difficulty arises from the fact that the state and control are

(necessarily) evaluated at discrete points in the maneuver evolution. Like all

CLFD control laws, those modeled in this thesis rely on the difference between

the current value of a state and its target value to prescribe the control. As a

state approaches its target value, at some point it will begin to oscillate about

the target value because the combination of the magnitude of the control and

the size of the step between consecutive points in the numerical propagation re-

sults in a control that is unable to change rapidly enough to avoid overshooting

the target. (For this reason, smaller control magnitudes and smaller propaga-

tion steps generally result in tighter convergences.) When a variable-step-size

integration scheme is used to perform the numerical propagation, this phase of

the maneuver is generally characterized by rapidly shrinking step sizes, often

to the point that the propagation effectively stops. At this point, conver-

gence must be pronounced, as further improvement is not possible unless the

propagation scheme is changed.

In an effort to avoid these problems, the control law algorithms imple-

mented in this thesis deem a maneuver complete when the differences between

the osculating values of targeted orbital elements and their target values are all

less than threshold values simultaneously. The threshold values for the individ-

ual maneuvers performed are specified in Chapter 5. Options for obtaining a

maneuver that achieves the final orbit more exactly include (1) decreasing the

control acceleration magnitude and (2) targeting specific elements individually
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after other elements have achieved acceptable values.
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Chapter 5

Numerical Results

5.1 Introduction

Three maneuvers are simulated using the methodology presented in

the preceding chapters. The maneuvers are selected for two reasons: first, to

represent a realistic set of maneuvers a spacecraft may be expected to perform,

and, second, to showcase both the strengths and weaknesses of the control

laws modeled. For each maneuver, the results obtained from the control laws

of Petropoulos, Joseph, and Naasz are compared against one another using a

variety of absolute and relative effectivity control cutoff values. Additionally,

the results obtained from implementation of two other methods of calculating

Naasz’s weighting values and from the use of Naasz’s coasting strategy are

presented. Table 5.1 summarizes abbreviations used in the discussion of all

maneuvers.
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Table 5.1: Control law abbreviations.

Abbreviation Meaning
P Petropoulos’s control law
J Joseph’s control law
N0 Naasz’s control law, weights evaluated on target orbit
N1 Naasz’s control law, weights evaluated on initial orbit
N2 Naasz’s control law, weights evaluated using average of ini-

tial orbit and target orbit

For all maneuvers, the Earth is taken to be the central body. Thus,

g0 = 9.80665 m
s2

and µ = 3.9860049 km3

s2
.

5.2 Equatorial Orbit to Polar Orbit Transfer

The characteristics of a maneuver from an equatorial orbit (i ≈ 0◦) to

a polar orbit (i = 90◦) are given in Tables 5.2 and 5.3. Note that, when the

maneuver is performed using Petropoulos’s control law, a penalty function of

the form given by (3.10) with k = 100 and rpmin = 6578 km is used in order

to prevent the spacecraft from impacting the Earth.

Table 5.2: Equatorial orbit to polar orbit maneuver elements.

Orbit a (km) e i (deg) Ω (deg) ω (deg) ν (deg)
Initial 10000 0.005 5.73× 10−3 0 0 0
Target 10000 0.005 90 free free free

Note: The initial inclination value corresponds to εi = 10−4 rad. (See Section
4.4.)
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Table 5.3: Equatorial orbit to polar orbit maneuver characteristics.

Thrust (N) Initial mass (kg) Isp (s)
1 300 3100

The convergence tolerances for this maneuver are given in Table 5.4.

Table 5.4: Equatorial orbit to polar orbit maneuver convergence tolerances.

Element Tolerance
a 1 percent relative error (100 km)
e 0.01
i 0.1◦

The results of the maneuvers commanded by the control laws are sum-

marized in Tables 5.5 - 5.8. Table 5.5 also includes a comparison to a maneuver

obtained using Edelbaum’s orbital averaging scheme [4, 8]. (A description of

Edelbaum’s method is given in Appendix A.5.)

Table 5.5: Equatorial orbit to polar orbit maneuver comparisons: continuous
control application.

Coasting
Criterion

Control Law Flight time
(days)

Propellant mass
(kg)

None

P 33.5683 95.4027
J 42.2917 120.1949
N0, N1, N2 42.2917 120.1949
Edelbaum 35.8779 101.9668
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Table 5.6: Equatorial orbit to polar orbit maneuver comparisons: absolute
effectivity coasting criteria.

Coasting
Criterion

Control Law Flight time
(days)

Propellant mass
(kg)

ηa = 0.33
P 34.5671 89.9121
J 45.6516 106.3174
N0, N1, N2 45.6516 106.3174

ηa = 0.67
P 73.1551 71.4029
J 57.6863 93.7575
N0, N1, N2 57.6863 93.7575

ηa = 0.90
P 153.3137 68.0399
J 92.8495 86.7943
N0, N1, N2 92.8495 86.7943

Table 5.7: Equatorial orbit to polar orbit maneuver comparisons: relative
effectivity coasting criteria.

Coasting
Criterion

Control Law Flight time
(days)

Propellant mass
(kg)

ηr = 0.33
P 84.8553 73.1519
J 45.6968 106.1905
N0, N1, N2 45.6516 106.3174

ηr = 0.67
P 167.0590 69.4826
J 57.7153 93.7625
N0, N1, N2 57.7211 93.7523

ηr = 0.90
P 278.7106 67.9010
J 92.7500 86.8024
N0, N1, N2 92.7940 86.8013
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Table 5.8: Equatorial orbit to polar orbit maneuver comparisons: Naasz coast-
ing criterion.

Coasting
criterion

Control Law Flight time
(days)

Propellant mass
(kg)

Naasz N0, N1, N2 42.2917 120.1938

In all scenarios, the results for Joseph’s control law and all three im-

plementations of Naasz’s control law are identical except for numerical im-

precision. This is to be expected: The initial and final values of semi-major

axis and eccentricity are identical, and inclination does not appear in the ex-

pressions for Naasz’s Ka, Ke, or Ki, so N0, N1, and N2 should all produce

identical trajectories. (See (3.20).) Joseph’s control law produces the same

control profile, as well, because of the similarities between Joseph’s control

law and Naasz’s control law discussed in Section 3.4. Initially, the errors in

semi-major axis and eccentricity are zero, so all control is directed toward cor-

recting the inclination error. In Joseph’s control law and Naasz’s control law,

this is accomplished through out-of-plane control application only, which has

no effect on semi-major axis or eccentricity. Therefore, the control for both

laws is directed purely out of plane for the entirety of the maneuvers, thereby

creating identical transfer trajectories.

The maneuver directed by Petropoulos’s control law, however, is markedly

different, and the lower propellant mass requirements shown in Tables 5.5 -

5.7 clearly display the utility of differentiating the full form of the Lyapunov
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function rather than using Joseph’s approximation or Naasz’s constant KO

values. As shown in Figure 5.1, Petropoulos’s control law increases a to a

peak of approximately five times its initial and target value to decrease the

fuel expenditure required to change i. The time evolution of i shown in Figure

5.2 confirms that i begins its increase more slowly when Petropoulos’s control

law is used, but quickly increases its rate of change as a grows.

Another difference between the maneuvers is that Petropoulos’s control

law causes the eccentricity to increase to a maximum value greater than 0.6

before decreasing to its target value, while the control laws of Joseph and Naasz

leave the eccentricity constant for the duration of the maneuver, as illustrated

in Figure 5.3.1 As previously discussed, Joseph’s control law and Naasz’s

control law direct the control acceleration purely out of plane for the duration

of the maneuver, and this accounts for the lack of change in eccentricity. The

large eccentricity change dictated by Petropoulos’s control law is due to the

fact that the derivatives of the a and i terms of VP with respect to e are

always less than zero, meaning that control acceleration is applied to increase

e in order to decrease these terms. (See (2.54), (2.61), and (3.7).)

For all three control laws, increasing either the absolute or relative

effectivity control-application threshold results in longer flight times and less

1In fact, the large changes in e commanded by Petropoulos’s control law are the reason a
minimum-periapsis-distance penalty function is implemented for this control law. Without
the penalty function, the control causes the spacecraft to impact the central body. Further,
the large eccentricity change plays a large role in Petropoulos’s control law achieving the
target orbit is less time than Edelbaum’s averaging method, which assumes a quasi-circular
orbit for the duration of the maneuver.
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propellant mass expenditure. For all cases, Petropoulos’s control law produces

the maneuver that requires the least propellant mass.

Naasz’s coasting strategy, on the other hand, is seen to be less effective.

When comparing the results of Table 5.8 to those of Table 5.5, it is notable that

Naasz’s coasting scheme produces only miniscule changes in both the flight

time and propellant usage. This is because the control acceleration “requested”

by Naasz’s control law is significantly greater than the control acceleration that

the spacecraft propulsion system is capable of producing for the duration of the

maneuver until the spacecraft has very nearly achieved the target orbit. This

is typical of Naasz’s coasting strategy for most maneuvers and makes it less

effective at introducing intermediate coast arcs than Petropoulos’s effectivity

cutoff coasting criterion, which, as shown in Tables 5.6 and 5.7, produces

significant propellant savings for the cases tested.
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Figure 5.1: Equatorial orbit to polar orbit maneuver comparisons: semi-major
axis evolution, continuous control application. Note: Only two curves are
visible because all evolutions but P are identical.
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Figure 5.2: Equatorial orbit to polar orbit maneuver comparisons: inclination
evolution, continuous control application. Note: Only two curves are visible
because all evolutions but P are identical.
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Figure 5.3: Equatorial orbit to polar orbit maneuver comparisons: eccentricity
evolution, continuous control application. Note: Only two curves are visible
because all evolutions but P are identical.
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5.3 Low-Earth Orbit to Geosynchronous Orbit Transfer

The characteristics of a maneuver from an inclined low-earth orbit

(LEO) to an equatorial geosynchronous orbit (GEO) are given in Tables 5.9

and 5.10. (Note that the initial and target orbits of this maneuver are identical

to those given in Example 5.2.2 of [17].) No penalty function is used for any

of the control laws.

Table 5.9: LEO-to-GEO maneuver elements.

Orbit a (km) e i (deg) Ω (deg) ω (deg) ν (deg)
Initial 6700 0.005 28.4 0 0 0
Target 42100 0.005 5.73× 10−3 free free free

Table 5.10: LEO-to-GEO maneuver characteristics.

Thrust (N) Initial mass (kg) Isp (s)
1 300 3100

The convergence tolerances for this maneuver are given in Table 5.11.

Table 5.11: LEO-to-GEO maneuver convergence tolerances.

Element Tolerance
a 1 percent relative error (421 km)
e 0.01
i 1◦

The results of the maneuvers commanded by the control laws are sum-

88



marized in Tables 5.12 - 5.15. Table 5.12 also includes a comparison to a

maneuver obtained using Edelbaum’s orbital averaging scheme [4, 8].

Table 5.12: LEO-to-GEO maneuver comparisons: continuous control applica-
tion.

Coasting
Criterion

Control Law Flight time
(days)

Propellant mass
(kg)

None

P 19.9236 56.6239
J 18.7072 53.1667
N0 22.1400 62.9231
N1 20.9178 59.4495
N2 19.3472 54.9857
Edelbaum 17.4850 49.6933
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Table 5.13: LEO-to-GEO maneuver comparisons: absolute effectivity coasting
criteria.

Coasting
Criterion

Control Law Flight time
(days)

Propellant mass
(kg)

ηa = 0.33

P 23.7188 54.2818
J 18.6887 52.2052
N0 23.5116 63.5711
N1 20.9282 56.8857
N2 19.3056 54.4658

ηa = 0.67

P 38.9664 47.2680
J 19.8495 50.5170
N0 29.5532 63.2015
N1 22.3310 54.7301
N2 22.3773 54.2060

ηa = 0.90

P 76.1887 43.4002
J 25.4583 48.8086
N0 44.1076 62.3083
N1 26.3796 53.5839
N2 33.9606 53.6883
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Table 5.14: LEO-to-GEO maneuver comparisons: relative effectivity coasting
criteria.

Coasting
Criterion

Control Law Flight time
(days)

Propellant mass
(kg)

ηr = 0.33

P 30.3854 50.8810
J 29.5660 48.7295
N0 30.0463 63.9392
N1 68.4873 56.6051
N2 26.9641 53.5172

ηr = 0.67

P 49.6030 45.3285
J 49.4097 46.5574
N0 61.0475 62.9216
N1 115.3438 49.2048
N2 40.5521 53.1342

ηr = 0.90

P 95.7326 42.8495
J 87.1921 45.9463
N0 148.3495 62.2314
N1 191.8079 45.4384
N2 73.5463 53.0624

Table 5.15: LEO-to-GEO maneuver comparisons: Naasz coasting criteria.

Coasting
criterion

Control Law Flight time
(days)

Propellant mass
(kg)

Naasz
N0 22.1400 62.9231
N1 20.9178 59.4495
N2 19.3472 54.9857

Though still a circle-to-circle transfer, the LEO-to-GEO maneuver re-

veals several characteristics of the control laws not seen in the example of

Section 5.2. For example, the differences between the three implementations
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of Naasz’s control law are readily apparent. As shown in Figures 5.4 and 5.7,

N1 increases the semi-major axis more quickly than any of the other control

laws, while N2 and N0 successively increase the time required to achieve the

target semi-major axis. This is caused by the fact that Ka in Naasz’s control

scheme is constant and proportional to a−3, meaning that a larger a value

used in the calculation of Ka results in a smaller Ka value and a longer time

required to achieve the target semi-major axis. Examination of the forms of

Ke and Ki reveal similar causes for the differences between the evolutions of

these elements, as well.

The differences between Petropoulos’s control law and Joseph’s control

law caused by Joseph’s differentiation approximation create interesting effects

in the evolution of the orbital elements for this maneuver. For example, the

overshoot in semi-major axis directed by Petropoulos’s control law when no

coast arcs are permitted (Figure 5.4) actually causes the maneuver to take

more time and therefore use more fuel than the maneuver that uses Joseph’s

control law. However, as the effectivity threshold increases, the propellant

mass required by Petropoulos’s control law decreases not only absolutely, but

also relative to the propellant mass required by Joseph’s control law, such that,

at higher effectivity threshold values, Petropoulos’s control law requires less

fuel mass than Joseph’s control law (Figure 5.10). The suboptimal semi-major

axis overshoot gradually disappears and the vast majority of the inclination

change is postponed until the tail end of the maneuver, when it is more optimal

to change inclination due to the larger semi-major axis (Figures 5.7 - 5.9).
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In the majority of cases, Petropoulos’s control law and Joseph’s control

law create maneuver profiles that are more fuel-optimal than those produced

by any of the three implementations of Naasz’s control law. This is to be

expected, as the inability to vary the weights of the error terms that make up

the Lyapunov function as the maneuver progresses is a strong limitation of

Naasz’s control law.

As in the previous example, Naasz’s coasting scheme produces nearly no

change in maneuver characteristics because the magnitude of the acceleration

requested remains significantly greater than the magnitude of the acceleration

available to the spacecraft until the spacecraft approaches convergence to the

target orbit (Table 5.15).
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Figure 5.4: LEO-to-GEO maneuver comparisons: semi-major axis evolution,
continuous control application.
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Figure 5.5: LEO-to-GEO maneuver comparisons: inclination evolution, con-
tinuous control application.
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Figure 5.6: LEO-to-GEO maneuver comparisons: eccentricity evolution, con-
tinuous control application.

96



0 10 20 30 40 50 60 70 80
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time (days)

S
em

i−
m

aj
o
r 

ax
is

 (
k
m

)

 

 

P

J
N

0

N
1

N
2

Figure 5.7: LEO-to-GEO maneuver comparisons: semi-major axis evolution,
ηathreshold = 0.9.
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Figure 5.8: LEO-to-GEO maneuver comparisons: inclination evolution,
ηathreshold = 0.9.
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Figure 5.9: LEO-to-GEO maneuver comparisons: eccentricity evolution,
ηathreshold = 0.9.
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Figure 5.10: LEO-to-GEO maneuver comparisons: propellant mass usage evo-
lution, ηathreshold = 0.9.
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5.4 Geostationary Transfer Orbit to Molniya Orbit Trans-
fer

The characteristics of a maneuver from a geostationary transfer orbit

(GTO) to a Molniya-type orbit are given in Tables 5.16 and 5.17. (Note that

the initial and target orbits of this maneuver are identical to those given in

Case E of [21].2) Because of the highly eccentric nature of both the initial

and target orbits, Petropoulos’s minimum-periapsis-distance penalty function

is used to augment all control laws modeled in order to prevent the spacecraft

from impacting the Earth. (See (3.7) and (3.10).) The parameters used to

define the penalty function are k = 100 and rpmin = 6578 km.

Table 5.16: GTO-to-Molniya maneuver elements.

Orbit a (km) e i (deg) Ω (deg) ω (deg) ν (deg)
Initial 24505.9 0.725 0.06 0 0 0
Target 26500 0.7 116 180 270 free

Table 5.17: GTO-to-Molniya maneuver characteristics.

Thrust (N) Initial mass (kg) Isp (s)
2 2000 2000

The convergence tolerances for this maneuver are given in Table 5.18.

2It must be noted that the results for Petropoulos’s control law presented here do not
match those given in [21]. However, the results presented here have been confirmed by mul-
tiple independent third parties, and correspond to the control law derived and implemented
as described in this thesis.
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Table 5.18: GTO-to-Molniya maneuver convergence tolerances.

Element Tolerance
a 1 percent relative error (265 km)
e 0.01
i 1◦

Ω 1◦

ω 1◦

Further modifications are made to the N1 control law due to unac-

ceptably poor performance by the default formulation. The N1 control law

experiences difficulties because of the small initial i and ω values and the large

initial e value. For this control law, the weight attached the δΩ term of the

Lyapunov function is given by

KΩ =

h sin(i)
(√

1− e2 cos2(ω)− e| sin(ω)|
)

p

2

1

∆t
. (5.1)

Because the values of i and ω at which KΩ is evaluated are 0.06◦ and 0◦,

respectively, for N1, KΩ takes on such a low value that the error in Ω is never

corrected. As a workaround, KΩ is scaled by 104, a value determined through

trial and error.

Petropoulos’s control law also requires modifications. When using a

variable-step integration scheme with nominal values for all parameters and

continuous control application, propagation ceases after less than a day of ma-

neuver time because of chatter in the out-of-plane control angle. In order to
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obtain a better idea of the maneuver evolution for this case, a fixed-step inte-

gration scheme (Appendix A.4) was also used to propagate the trajectory, with

a step size of 10 seconds. The set of initial and target elements and the forms

of the gradients of the KO with respect to the orbital elements lead to noncon-

vergence to the target orbit. The majority of the magnitude of the Lyapunov

function is initially contributed by the δi term of the summation. In order to

increase the efficiency of changing i, the control law commands increases in

both a and e. However, a grows to millions of kilometers, and e approaches

1, despite the presence of the scaling function Sa intended to prevent a from

growing without bound. This causes the δi term of the Lyapunov function to

decrease because Ki decreases, but the actual inclination value itself never in-

creases significantly – δi remains near its initial value. The inclination remains

near zero because ∂VP
∂i

is much greater than zero for the vast majority of the

maneuver, meaning that the control law attempts to drive i down in order to

decrease VP . This, in turn, is due to the fact that the gradients of the δΩ and

δω terms of the Lyapunov function summation with respect to i are, together,

significantly more positive than the gradient of the δi term with respect to

i is negative. The cause of these large positive gradients with respect to i

is readily apparent upon inspection of (2.64), (2.72), and (3.7): The sin2(i)

terms in the maximum rates of change of Ω and ω due to out-of-plane control

acceleration mean that these terms of the Lyapunov function approach zero

as sin2(i) approaches zero. Therefore, the target orbit is never achieved even

though VP decreases continuously.
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In order to force convergence to the target orbit for the case of con-

tinuous control application, the weights of VP are modified such that WΩ =

Wω = 10−2. Even with these modifications, control direction chatter is still

encountered, and use of the hybrid variable/fixed-step integration technique

described in Section 4.3 is required to fully propagate the trajectory. Also,

this modification does not lead to convergence for nonzero absolute or relative

effectivity thresholds because of the renewed presence of chatter in the out-

of-plane control angle. No other straightforward modification of the tunable

parameters of Petropoulos’s control law is found that leads to convergence to

the target orbit. The strategy of temporarily increasing the effectivity thresh-

old in order to induce coast arcs when control direction chatter is encountered

[21] is similarly not found to lead to convergence in this case.

The results of both the variable-step propagation and fixed-step prop-

agation reflect poorly on the robustness of Petropoulos’s control law when

multiple elements that may be changed by out-of-plane acceleration are tar-

geted.3 Petropoulos claims that control direction chatter is most commonly

seen in the in-plane control angle when both a and e are targeted [21]; this

maneuver, however, demonstrates a scenario in which control direction chatter

occurs in the out-of-plane control angle early in a maneuver. This is a case

in which Joseph’s control law – which does not take into account the deriva-

tives of the KO with respect to the orbital elements when differentiating the

Lyapunov function – may produce useful results more reliably.

3If only one of i, Ω, and ω is targeted for this maneuver, convergence is readily achieved.
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The results of the simulations are given in Tables 5.19 - 5.22.

Table 5.19: GTO-to-Molniya maneuver comparisons: continuous control ap-
plication.

Coasting
Criterion

Control Law Flight time
(days)

Propellant mass
(kg)

None

P 103.3885 910.8890
J 100.5208 885.6235
N0 85.7338 755.3445
N1 115.4664 1017.2995
N2 108.0532 951.9867

Table 5.20: GTO-to-Molniya maneuver comparisons: absolute effectivity
coasting criteria.

Coasting
Criterion

Control Law Flight time
(days)

Propellant mass
(kg)

ηa = 0.33

P N/A N/A
J 104.9039 819.0864
N0 84.4236 659.7969
N1 130.4074 934.4736
N2 113.0787 890.1130

ηa = 0.67

P N/A N/A
J 120.0938 622.0207
N0 96.8993 589.3837
N1 181.5185 830.5341
N2 139.7315 733.7799

ηa = 0.90

P N/A N/A
J 181.7199 543.6037
N0 145.6042 531.1991
N1 270.7650 749.9020
N2 241.1782 659.9646
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Table 5.21: GTO-to-Molniya maneuver comparisons: relative effectivity coast-
ing criteria.

Coasting
Criterion

Control Law Flight time
(days)

Propellant mass
(kg)

ηr = 0.33

P N/A N/A
J 106.2465 764.0672
N0 87.6632 627.7959
N1 130.7442 913.1253
N2 149.3275 703.2975

ηr = 0.67

P N/A N/A
J 129.2083 590.2332
N0 106.2419 564.9858
N1 185.3264 821.5054
N2 149.3275 703.2975

ηr = 0.90

P N/A N/A
J 198.9549 537.6985
N0 166.2407 512.1025
N1 283.5961 752.6686
N2 257.2894 642.6833

Table 5.22: GTO-to-Molniya maneuver comparisons: Naasz coasting criteria.

Coasting
criterion

Control Law Flight time
(days)

Propellant mass
(kg)

Naasz
N0 85.7338 755.3446
N1 115.4664 1017.2995
N2 108.0532 951.9867

An interesting result of the inclusion of effectivity-based coast arcs is

that, in the case of the N0 control law, the time of flight for the maneuver with

an absolute effectivity threshold of 0.33 is less than that of the maneuver during
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which control acceleration is applied continuously. This clearly shows the

suboptimality of trajectories produced by CLFD control laws because optimal

application of continuous control acceleration may be shown to produce the

minimum-time transfer maneuver [19].

The behavior of the maneuvers in the flight-time-propellant-mass plane

is similar as either the absolute effectivity threshold or relative effectivity

threshold is varied. The N0 control law requires less fuel than Joseph’s con-

trol law for all cases. However, this result is due primarily to a fortuitous

combination of target orbital elements and is not to be generally expected.

Like the maneuvers discussed in Sections 5.2 and 5.3, Naasz’s coasting

criterion produces a negligible effect for the N0, N1, and N2 maneuvers.

Figures 5.11 - 5.15 clearly demonstrate a significant drawback of the

method used to achieve convergence with Petropoulos’s control law. Despite

the fact that a is increased significantly to accommodate the large required

change in i, the vast majority of the change in i occurs before a reaches its

peak value. Furthermore, the majority of the required changes in Ω and ω

occur after i approaches its target value – where it is much less efficient to

change Ω and ω than at values of i where sin2(i) is near zero. Both of these

unfortunate maneuver characteristics are caused by the small values used for

WΩ and Wω.
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Figure 5.11: GTO-to-Molniya maneuver comparisons: semi-major axis evolu-
tion, continuous control application.
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Figure 5.12: GTO-to-Molniya maneuver comparisons: inclination evolution,
continuous control application.
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Figure 5.13: GTO-to-Molniya maneuver comparisons: eccentricity evolution,
continuous control application.
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Figure 5.14: GTO-to-Molniya maneuver comparisons: right ascension of the
ascending node evolution, continuous control application. Note that Petropou-
los’s control law yields convergence to Ω = −180◦, which is equivalent to
Ω = 180◦.
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Figure 5.15: GTO-to-Molniya maneuver comparisons: argument of periapsis
evolution, continuous control application.
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5.5 Summary

Three maneuvers are simulated numerically using Petropoulos’s control

law, Joseph’s control law, and three implementations of Naasz’s control law.

The results of an equatorial-to-polar transfer confirm that Joseph’s control law

and Naasz’s control law behave identically when inclination is the only element

to be changed because only out-of-plane control is dictated by either of the

control laws. Identical performance would therefore also be obtained were

right ascension of the ascending node the only element to be changed. The

results of Petropoulos’s control law for this maneuver are strikingly different,

however, due to its use of gradient information of the weighting functions of the

Lyapunov function with respect to the orbital elements. (Both Joseph’s control

law and Naasz’s control law only consider the gradients of the error functions

of the Lyapunov function.) Petropoulos’s control law commands increases in

the semi-major axis and eccentricity in order to more efficiently accomplish the

large inclination change, yielding smaller fuel mass requirements than Joseph’s

control law or any of the three implementations of Naasz’s control law.

A LEO-to-GEO transfer clearly shows the differences between the three

implementations of Naasz’s control law, and also provides an example for which

an element overshoot commanded by Petropoulos’s control law actually results

in a less fuel-optimal maneuver than may be achieved by using only the gra-

dient information of the element error functions of the Lyapunov function.

A GTO-to-Molniya transfer in which all five orbital elements are tar-

geted reveals problems that may arise when using the control laws tested. Tar-
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geting multiple elements that may be changed by in-plane control acceleration

or multiple elements that may be changed by out-of-plane control acceleration

may lead to control direction chatter, a situation characterized by rapid, dis-

continuous changes in the control direction. Additionally, when a fixed-step

integration scheme is used to propagate through control direction chatter, the

GTO-to-Molniya transfer represents a case for which the use of Petropoulos’s

control law with all nominal parameters leads to non-convergence to the target

orbit due in part to the possibility of terms of the summation of the Lyapunov

function approaching zero despite the corresponding elements not approaching

their target values.

The GTO-to-Molniya transfer also explicitly reveals the problems that

may arise from setting the Lyapunov function weights to constant values, as

is done by Naasz’s control law. The N1 implementation requires that KΩ be

scaled by 104 to achieve convergence to the target orbit because of this.

Despite the problems exhibited by Petropoulos’s control law and Naasz’s

control law, Joseph’s control accomplishes the maneuver using all nominal val-

ues, suggesting that it may be the most robust of the three methods tested.

For all three maneuvers simulated, Naasz’s coasting mechanism does

not lead to the inclusion of intermediate coast arcs because the magnitude

of the acceleration requested by the control law is much greater than the

magnitude of the acceleration available to the spacecraft until the spacecraft

closely approaches the target orbit. Thus, Naasz’s coasting mechanism is

quite ineffective for the maneuvers simulated, particularly when compared
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to the effectivity-based coasting criterion, which is found to effectively intro-

duce intermediate coast arcs into the trajectories dictated by all three control

laws tested. As either the absolute or relative effectivity threshold for control

application is increased, the fuel mass required to perform any of the three

maneuvers is found to generally decrease for all control laws tested: Higher

effectivity thresholds generally yield longer flight times and more fuel-optimal

maneuvers.

Due to problems of the type encountered by the N1 control law when

applied to the GTO-to-Molniya transfer, it is clear that using the initial orbital

elements to calculate the KO for Naasz’s control law has a significant and

detrimental effect on the robustness of the method. The N0 and N2 methods

of calculating KO are more robust. However, it cannot be said that one or the

other is generally superior; that determination must be made on a manuever-

by-maneuver basis.
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Chapter 6

Conclusions and Recommendations for

Further Study

6.1 Conclusions

This thesis presents a qualitative and quantitative comparison of mod-

ern closed-loop, feedback-driven (CLFD) low-thrust spacecraft control laws.

Control laws whose error functions are calculated based on the classical

orbital element set, the equinoctial orbital element set, and the angular mo-

mentum vector and Laplace vector are discussed. While the latter two orbit

representations have the advantage of lacking the singularities that can occur

when using the classical element set, other factors must also be considered

when choosing the best representation to use in a CLFD control law. Im-

portantly, the transformations between the three representations are coupled,

with the result that, in many cases, changing one element of one representation

results in changing multiple elements in another representation. This presents

problems if only a subset of the elements of a target orbit is specified because,

in a different representation, the target orbit is likely to be unnecessarily con-

strained. To avoid this issue, and since orbits are most often specified using

the classical element set, it is concluded that the classical element set is a
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preferred representation in which to write control law error functions.

Based on the qualitative comparisons performed, it is concluded that

CLFD control laws based on Lyapunov control theory are generally preferable

to those based on the blending of multiple control laws, each designed to

optimally change one orbital element. This is primarily because there exists a

sound theoretical framework for choosing the control that minimizes the time

rate of change of the Lyapunov function at each step of the maneuver and

because a control law based upon a well-chosen Lyapunov function may be

theoretically proven to force a spacecraft to asymptotically approach a target

orbit.

For Lyapunov-based control laws, the most important factor in the

determination of the effectiveness of the control law is the weights of the error

terms, or the Ki in

V =
∑
O

KiδO
2
i . (6.1)

The control law of Chang et al. gives no strategy for the selection of appropri-

ate Ki, a drawback that significantly increases the amount of user interaction

required to obtain acceptable performance. Bombrun’s control law, on the

other hand, requires knowledge of the corresponding time-optimal maneuver

in order to set its Ki. This creates difficulties since optimal low-thrust tra-

jectories are very difficult to determine, a fact that is a major motivation

for the development of CLFD control laws. Thus, it is concluded that these
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two control laws require heavy modification to reach the utility of the other

Lyapunov-based control laws discussed in this thesis: those of Petropoulos,

Joseph, and Naasz.

It is shown that, by assuming that the osculating orbital elements (other

than anomaly) remain constant between the discrete time steps of a numer-

ical propagation scheme, Joseph’s control law is a significant simplification

of Petropoulos’s control law. However, this simplification comes at a price:

Joseph’s control law is unable to command “scheduled overshoots” in one el-

ement in order to ease the changing of another, as confirmed by the results of

the numerical examples performed.

It is also shown that, though derived independently, Naasz’s control

law may be thought of as a special case of Joseph’s control law, in which the

maximum rate of change of each orbital element – used in the formulation of

the Lyapunov function – is calculated using the parameters of the target orbit

and held constant for the duration of the maneuver rather than calculated on

the current osculating orbit and varied continuously. This comparison holds

for all terms of the Lyapunov function except for argument of periapsis, for

which Naasz uses a linearization about e = 0 to approximate the maximum

rate of change of ω on an orbit.

Improvements to both the Joseph and Naasz control laws are presented,

which increase the robustness of each. Naasz’s control law is altered to account

for the quadrant ambiguity present in the calculation of the maximum rates of

change of inclination and right ascension of the ascending node and to account
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for the continuity of right ascension of the ascending node and argument of

periapsis at values of 0 and 2π. Further changes are made to Naasz’s control

law to make it more impervious to singularities and to address issues that

may arise due to the method of calculation of the weights of the terms of the

Lyapunov function.

Because Naasz gives no rationale for his choice of calculating the weights

of his Lyapunov function using the target orbital elements, two other possi-

bilities are explored: calculation using the elements of the initial orbit and

calculation using a simple arithmetic mean of the elements of the initial and

target orbits. Calculation on the initial orbit is shown to be ineffective in

certain situations, while calculation using the target elements and calculation

using the averaged elements are shown to lead to results whose quality is

heavily dependent on the specific maneuver modeled.

Joseph’s control law, meanwhile, is altered so that it utilizes the clas-

sical element set rather than the equinoctial element set in the formulation of

its Lyapunov function for reasons discussed earlier in this section.

Both the Joseph and Naasz control laws are updated to include the

minimum-periapsis-radius penalty function included in Petropoulos’s control

law, the utility of which is confirmed in the numerical simulations presented.

The Lyapunov functions upon which the control laws of Petropoulos

and Joseph are based are shown to not be globally asymptotically stable in

the sense of Lyapunov for all possible targeting subsets of the classical ele-
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ment set. The results of a GTO-to-Molniya orbit transfer numerical example

indicate that the use of gradient information related to the Lyapunov function

weights – an attribute unique to Petropoulos’s control law among those tested

numerically – may cause Petropoulos’s control law to be more susceptible to

nonconvergence to the target orbit than Joseph’s control law due to this lack

of stability. Nevertheless, the advantage of using the aforementioned gradient

information (as opposed to only using gradient information related to the dif-

ferences between the osculating element values and the target element values)

is shown in an equatorial-to-polar orbit transfer example and a LEO-to-GEO

orbit transfer example. In both cases, Petropoulos’s control law produces tra-

jectories that require less fuel mass than those generated by the control laws

of Joseph and Naasz.

The possibility of poor performance, or even complete failure, of the

control laws presented due to control direction chatter at consecutive time

steps of numerical propagation is discussed. When using a variable-step in-

tegration scheme, this generally causes the numerical propagation to come to

a complete standstill. A fixed-step integration scheme, on the other hand, is

capable of integrating through regions of chatter, but the resulting maneuver

is likely to be either highly suboptimal or not converge to the target orbit at

all.

All three numerical examples performed indicate that the coasting

scheme suggested by Naasz is generally ineffective at introducing mid-maneuver

coast arcs into orbit transfer trajectories because the magnitude of the acceler-
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ation “requested” by the control law tends to remain significantly greater than

the magnitude of the control acceleration available to the spacecraft until the

spacecraft very nearly converges to the target orbit.

The effectivity-based coasting criterion of Petropoulos, on the other

hand, is shown to be capable of introducing coast arcs that can result in

significant propellant mass savings, at the cost of increasing the required flight

time. The numerical examples confirm that this coasting method is applicable

also to the control schemes of Joseph and Naasz and, indeed, to any Lyapunov-

based control law.

Analysis of the theoretical foundations and the numerical simulations

performed indicate that Naasz’s control law is the least effective of the three

control laws tested numerically. This is unsurprising given that Naasz’s control

law may be thought of as a simplification of Joseph’s control law in which the

weights of the Lyapunov function are evaluated once and held constant for the

duration of the maneuver, while Joseph’s weights and Petropoulos’s weights

are continuously varied using the elements of the current osculating orbit. The

relative effectiveness of Petropoulos’s control law and Joseph’s control law,

however, is more difficult to define. While Petropoulos’s control law is capable

of producing more fuel-optimal results, Joseph’s control law is shown to be

more robust in certain situations, particularly those in which multiple elements

that may be changed by out-of-plane acceleration are targeted simultaneously.

Without a more exhaustive numerical comparison, the only conclusion that

may be made is that each has its uses, but, as with all CLFD control laws,
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analyst discretion is required.

6.2 Recommendations for Further Study

A myriad of options exist for extending the work presented in this

thesis. Perhaps most obviously, the development of new Lyapunov functions

or new weighting schemes for blended control algorithms may produce control

laws capable of outperforming those currently in use. Beyond this, there are

four key areas in which work may be performed based on already-derived

control laws.

First, the incorporation of effective methods of eliminating or amelio-

rating the consequences of control-direction chatter into CLFD control laws

could have a strongly positive effect on the robustness of the laws. Possible

areas of investigation include setting a maximum value on the change in the

control angle between consecutive time steps or temporarily “untargeting” one

or more targeted elements to eliminate the control law’s confusion as to the

direction in which control should be applied.

Second, the fidelity of the model used to derive and implement the

control laws may be improved. As detailed in Section 1.2, the control laws

discussed in this thesis are developed for use in a simple two-body gravitational

force field that does not take into account any of the other forces that act

on spacecraft, like the gravitational attraction of third bodies, non-spherical

central body effects, solar radiation pressure, and, for low-altitude spacecraft,

atmospheric drag. All of the control laws discussed in this thesis model the
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motion of a spacecraft subjected to a disturbing acceleration, namely, a control

acceleration. However, the disturbing acceleration may just as easily include

other effects, as well, and (2.25) may be rewritten as

r̈ +
µ

r3
r = ac + ao, (6.2)

where ac is the control acceleration and ao is a term combining all other

disturbing accelerations to be modeled. It is then straightforward to determine

Gauss’s form of the variational equations in this new model and thus propagate

the spacecraft state. Less simple, however, may be the determination of the

control. For example, the control laws of Petropoulos, Joseph, and Naasz all

require that the maximum rate of change of the orbital elements over an orbit

be calculated, which requires differentiation of Gauss’s equations with respect

to the control angles and true anomaly. While it is unlikely that ao will depend

on the control direction, it is possible that ao will have some dependency on

true anomaly, and this must be taken into account when implementing any

of these control laws in the presence of disturbing accelerations. Some work

in this area has been performed by Maddock and Vasile [16], who adapted

Joseph’s control law to account for the effects of solar radiation pressure and

the presence of a third body.

A third method by which control laws may be improved is the optimiza-

tion of the parameters and functions which help to define them. The inclusion

of non-unity scaling functions – similar to Petropoulos’s Sa – for other orbital
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elements may be able to improve the robustness of control laws by forcing con-

vergence to the target orbit in cases in which terms of the Lyapunov function

summation approach zero even though the orbit does not approach the target

orbit (Section 3.3.1). In addtion, the terms of the summations of the Lyapunov

functions used in the control laws of Petropoulos, Joseph, and Naasz are each

multiplied by a weighting parameter (e.g. the WO in (3.7)). Each parameter

is nominally set to unity if the orbital element corresponding to that term is

targeted and zero if it is free. However, it is very likely that setting each of

the weights of the targeted elements to positive values not equal to unity will

result in improved performance. (And, as shown in Chapter 5, this is some-

times required to simply achieve convergence to the target orbit.) Further, the

nominal values for heuristic parameters such as those used in the definition of

Sa in Petropoulos’s control law (3.11) are also highly unlikely to be optimal

for all maneuvers. The optimization of these parameters to, for example, min-

imize fuel usage, provides a means by which the trajectory calculated by the

control law may more closely approximate the true optimal trajectory. Lee et

al. [15] used heuristic optimization techniques to optimize the parameters that

make up the Lyapunov function introduced by Petropoulos, and found that

significant fuel savings could be achieved in this manner. Future work may

look into the use of optimization of the parameters of the other control laws

presented in this thesis – particularly the weights used in the blended control

laws.

Finally, further work may focus on the use of the trajectories gen-
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erated by control laws as initial guesses for iterative optimization routines.

Petropoulos and Lee [22] have performed some work in this area, utilizing

Petropoulos’s control law – both using nominal parameter values and using

heuristically optimized parameter values – to determine initial guesses for the

direct optimization algorithm Mystic [22, 25, 26]. For the maneuvers modeled,

it was found that use of the control law to create the initial guess could sig-

nificantly decrease the computational time required to determine the optimal

trajectory. Much work may still be done in this area, however. The opti-

mization was performed only for fixed-flight-time maneuvers; free-flight-time

maneuvers may also be investigated. Also, the use of an indirect optimization

method is not considered, and the extent to which the use of a CLFD control

law may improve the performance of an indirect algorithm has not yet been

determined.
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Appendix A

Supplemental Expressions

A.1 Derivatives of Classical Element Variational Equa-
tions with Respect to True Anomaly

As introduced in (2.36), Gauss’s form of the variational equations for

the classical element set may be represented in matrix-vector form by



ȧ
ė

i̇

Ω̇
ω̇

Ṁ0

 = Aad. (A.1)

In the implementation of several control laws, it is necessary to obtain the

derivatives of the elements of the first five rows of the matrix A with respect

to true anomaly. These expressions are given by
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∂A1,1

∂ν
=

2a2e cos(ν)

h
(A.2)

∂A1,2

∂ν
= −2a2e sin(ν)

h
(A.3)

∂A1,3

∂ν
= 0 (A.4)

∂A2,1

∂ν
=
p cos(ν)

h
(A.5)

∂A2,2

∂ν
=
r sin(ν)[−2e cos(ν)− 2− e2 cos2(ν) + e2]

h[1 + e cos(ν)]
(A.6)

∂A2,3

∂ν
= 0 (A.7)

∂A3,1

∂ν
= 0 (A.8)

∂A3,2

∂ν
= 0 (A.9)

∂A3,3

∂ν
=
re sin(ω) cos(ω + ν)

h[1 + e cos(ν)]
− r sin(ω + ν)

h
(A.10)

∂A4,1

∂ν
= 0 (A.11)

∂A4,2

∂ν
= 0 (A.12)

∂A4,3

∂ν
=

re sin(ν) sin(ω + ν)

h sin(i)[1 + e cos(ν)]
+
r cos(ω + ν)

h sin(i)
(A.13)

∂A5,1

∂ν
=
p sin(ν)

he
(A.14)

∂A5,2

∂ν
=

r sin2(ν)

h[1 + e cos(ν)]
+

(p+ r) cos(ν)

he
(A.15)

∂A5,3

∂ν
= −

(
re cos(i) sin(ν) sin(ω + ν)

h sin(i)[1 + e cos(ν)]
+
r cos(i) cos(ω + ν)

h sin(i)

)
. (A.16)
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A.2 Derivatives of Petropoulos’s Penalty Function with
Respect to the Classical Orbital Elements

The penalty function used by Petropoulos [21] to enforce a minimum-

periapsis-distance constraint is

P = exp

[
k

(
1− rp

rpmin

)]
, (A.17)

where k is a parameter nominally set to 100. Periapsis distance may be ex-

pressed as rp = a(1− e), so the penalty function depends only on semi-major

axis and eccentricity; therefore, derivatives with respect to the other orbital

elements are zero.

∂P

∂a
=
−k(1− e) exp

[
k
(

1− a(1−e)
rpmin

)]
rpmin

(A.18)

∂P

∂e
=
ka exp

[
k
(

1− a(1−e)
rpmin

)]
rpmin

(A.19)

A.3 Derivatives of Petropoulos’s Scaling Function with
Respect to the Classical Orbital Elements

The scaling functions used by Petropoulos are [21]

SO =


[
1 +

(
a−aT
maT

)n] 1
r

, O = a

1, O = e, i,Ω, ω
, (A.20)

129



where m, n, and r are parameters nominally set to 3, 4, and 2, respectively.

Therefore, the only non-zero derivative is that of Sa with respect to semi-major

axis:

∂Sa
∂a

=
n
[
1 +

(
a−aT
maT

)n]( 1
r
−1) [

a−aT
maT

]n
r(a− aT )

. (A.21)

A.4 Naasz’s Fixed-Step State Propagator

Naasz’s method [17] of fixed-step spacecraft state propagation uses the

state vector

X =

 r
v
m

 , (A.22)

where r is the spacecraft position vector in the CBCI coordinate system, v

is the spacecraft velocity vector in the CBCI coordinate system, and m is

the spacecraft mass. Naasz’s method approximates the continuous control

acceleration as a sequence of instantaneous ∆v maneuvers uniformly separated

by time spans ∆t. At each maneuver, X is discontinuously changed such that

X+ = X− +

 0
T−

m− û
−∆t

− T−

g0Isp
∆t

 , (A.23)
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where the superscript (−) represents the time immediately prior to the dis-

continuity, the superscript (+) represents the time immediately following the

discontinuity, û is the control application direction unit vector, g0 is the ref-

erence gravitational acceleration, and Isp is the spacecraft propulsion system’s

specific impulse. Propagation from time t to time t+ ∆t is then accomplished

analytically via solution of Kepler’s problem [7]. This propagation method

provides adequate accuracy for sufficiently small values of ∆t.

A.5 Edelbaum’s Low-Thrust Orbit Transfer Analysis

Edelbaum’s analysis [1, 4, 8] linearizes the orbital element variational

equations about a circular orbit (e ≈ 0) in order to obtain an analytical solu-

tion for a low-thrust orbit transfer between two circular orbits with (generally)

different semi-major axes and inclinations. The following assumptions and re-

strictions apply:

1. The osculating orbit is quasi-circular for the duration of the maneuver.

2. The control acceleration is constant, and there are no coast arcs.

3. The in-plane control acceleration is tangential. (There is no control

acceleration in the êu direction.)

4. The magnitude of the out-of-plane control angle is constant over an orbit

revolution and switches signs at the orbit antinodes.
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5. The difference between the initial and final inclinations must be less than

114.59◦.

For such a transfer, Edelbaum gives the required ∆v as

∆v =

√
v2

1 + v2
2 − 2v1v2 cos

(
π∆i

2

)
, (A.24)

where v1 is the magnitude of the initial circular velocity, v2 is the magnitude

of the final circular velocity, and ∆i is the difference between the initial and

final inclinations (in radians). From this, the fuel mass required to perform

the transfer may be determined using the Tsiolkovsky rocket equation [14].

mf = m0 exp

(
− ∆v

g0Isp

)
(A.25)

mfuel = m0 −mf , (A.26)

where m0 is the initial mass of the spacecraft, mf is the final mass of the

spacecraft, and mfuel is the fuel mass required. Furthermore, the time required

to perform the maneuver may be calculated by

∆t =
mfuelg0Isp

T
, (A.27)

where T is the control force magnitude. (It should be noted that this calcu-

lation assumes constant control force magnitude, while Edelbaum’s analysis
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assumes constant control acceleration magnitude. The prior assumption is

used in the calculations performed in this thesis to provide a better point of

comparison for the results obtained using other control laws, which operate

under a constant-thrust-force assumption.)
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Appendix B

MATLAB Scripts

B.1 Petropoulos Control: Derivatives of VP with Re-
spect to the Classical Element Set

The derivatives of VP with respect to the classical orbital elements are

in many cases quite lengthy and are therefore not included explicitly in this

thesis. However, the following script, which utilizes the MATLAB Symbolic

Toolbox, may be used to obtain the required expressions. Because the required

derivatives of the minimum-periapsis-constraint penalty function are given ex-

plicitly in Appendix A.2, it is excluded from VP in the calculation of these

derivatives. It should be noted that this script returns the derivatives of each

term of the summation of VP with respect to each orbital element to ease the

calculation of derivatives when one or more orbital elements are not targeted.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Script calculates the derivatives of the Lyapunov function of

% Petropoulos’s control law with respect to semi-major axis,

% eccentricity, inclination, right ascension of the ascending

% node, and argument of periapsis symbolically.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Declare symbolic variables

syms v dvdt % Lyapunov function and its time derivative

syms mu % gravitational parameter of central body

syms f % magnitude of control acceleration

syms fr ftheta fh % components of control acceleration in

% R-theta-H system

syms h p r % osculating values of: angular momentum

% magnitude, semi-latus rectum, and position vector

% magnitude

syms sma e inc ape ran tru % osculating orbital elements

syms sma_t e_t inc_t ape_t ran_t % target orbital elements

syms vsma ve vinc vape vran % terms of Lyapunov function

% summation

syms smadotxx edotxx incdotxx randotxx apedotxxi apedotxxo

syms apedotxx cosvxxo rxxo distape distran m_petro n_petro

syms r_petro b_petro

% ^^^ maximum rates of change of each element over

% osculating orbit and other variables used in their calculation

syms dvdcoe % 5x5 array holding derivatives of each term of

% Lyapunov function with respect to each orbital element
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% put h, p, r in terms of orbital elements

p = sma*(1-e^2);

h = sqrt(mu*p);

r = p/(1+e*cos(tru));

% maximum values of rates of change of orbital elements over

% control acceleration angles and true anomaly

% semi-major axis

smadotxx = 2*f*sqrt((sma^3*(1+e))/(mu*(1-e)));

% eccentricity

edotxx = (2*p*f)/h;

% inclination

incdotxx = (p*f)/(h*(sqrt(1-e^2*(sin(ape))^2)-e*abs(cos(ape))));

% right ascension of the ascending node

randotxx = (p*f)/(h*sin(inc)*(sqrt(1-e^2*(cos(ape))^2)- ...

e*abs(sin(ape))));

% argument of periapsis: in-plane

cosvxxo = (((1-e^2)/(2*e^3)) + ...

sqrt((1/4)*((1-e^2)/e^3)^2+(1/27)))^(1/3) - ...

(((-(1-e^2)/(2*e^3))) + ...

sqrt((1/4)*((1-e^2)/e^3)^2+(1/27)))^(1/3) - (1/e);

rxxo = p/(1+e*cosvxxo);

apedotxxi = (f/(e*h))*sqrt(p^2*cosvxxo^2 + (p+rxxo)^2* ...

(1-cosvxxo^2));
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% argument of periapsis: out-of-plane

apedotxxo = randotxx*abs(cos(inc));

% NO PENALTY FUNCTION

% build Lyapunov function term by term

% semi-major axis term also has scaling function:

s_sma = (1+((sma-sma_t)/(m_petro*sma_t))^n_petro)^(1/r_petro);

% semi-major axis term

vsma = s_sma*(((sma - sma_t)/smadotxx)^2);

% eccentricity term

ve = ((e - e_t)/edotxx)^2;

% inclination term

vinc = ((inc - inc_t)/incdotxx)^2;

% right ascension of the ascending node term

distran = acos(cos(ran - ran_t));

vran = (distran/randotxx)^2;

% argument of periapsis term

distape = acos(cos(-ape_t + ape));

apedotxx = (apedotxxi+b_petro*apedotxxo)/(1+b_petro);

vape = (distape/apedotxx)^2;

% differentiate each term with respect to all orbital elements

dvdcoe(1,1) = diff(vsma, sma);

dvdcoe(1,2) = diff(vsma, e);

dvdcoe(1,3) = diff(vsma, inc);
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dvdcoe(1,4) = diff(vsma, ran);

dvdcoe(1,5) = diff(vsma, ape);

dvdcoe(2,1) = diff(ve, sma);

dvdcoe(2,2) = diff(ve, e);

dvdcoe(2,3) = diff(ve, inc);

dvdcoe(2,4) = diff(ve, ran);

dvdcoe(2,5) = diff(ve, ape);

dvdcoe(3,1) = diff(vinc, sma);

dvdcoe(3,2) = diff(vinc, e);

dvdcoe(3,3) = diff(vinc, inc);

dvdcoe(3,4) = diff(vinc, ran);

dvdcoe(3,5) = diff(vinc, ape);

dvdcoe(4,1) = diff(vran, sma);

dvdcoe(4,2) = diff(vran, e);

dvdcoe(4,3) = diff(vran, inc);

dvdcoe(4,4) = diff(vran, ran);

dvdcoe(4,5) = diff(vran, ape);

dvdcoe(5,1) = diff(vape, sma);

dvdcoe(5,2) = diff(vape, e);
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dvdcoe(5,3) = diff(vape, inc);

dvdcoe(5,4) = diff(vape, ran);

dvdcoe(5,5) = diff(vape, ape);
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