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Abstract 

 

The Implementation of Phylogenetic Structural Equation Modeling for 

Biological Data from Variance-Covariance Matrices, Phylogenies, and 

Comparative Analyses 

 

 

 

 

 

Juan Carlos Santos, M.S.Stat. 

The University of Texas at Austin, 2009 

 

Supervisor: Claus O. Wilke 

 

One statistical approach with a long history in the social sciences is a multivariate 

method called Structural Equation Modeling (SEM). The development of SEM followed 

the evolution of factor and path analyses, multiple regression analysis, MANOVA, and 

MANCOVA. One of the key innovations of factor analysis and SEM is that they group a 

set of multivariate statistical approaches that condense variability among a set of 

variables in fewer latent (unobserved) factors. Most biological systems are multivariate, 

which are not easily dissected into their component parts. However, most biologists use 

only univariate statistical methods, which have definitive limitations in accounting for 

more than a few variables simultaneously. Therefore, the implementation of 
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methodologies like SEM into biological research is necessary. However, SEM cannot be 

applied directly to most biological datasets or generalized across species because of the 

hierarchical pattern of evolutionary history (i.e., phylogenetic non-independence or 

signal). This report includes the theoretical grounds for the development of phylogenetic 

SEM in preparation of the development of utilitarian algorithms. I have divided this 

report in six parts: (1) a brief introduction to factor analysis and SEM from a historical 

perspective and a brief description of their utility; (2) a summary of the implications of 

using biological data and their underlying hierarchical structure due to shared ancestry or 

phylogeny; (3) a summary of the two most common comparative methods that 

incorporate phylogenies in their implementation (i.e., phylogenetic independent contrasts, 

and phylogenetic generalized least squares); (4) I describe how independent contrasts and 

correlation matrices from both comparative methods can be used to estimate a 

phylogenetically corrected variance–covariance matrices; (5) I describe how to perform a 

exploratory factor analysis, specifically phylogenetic principal component analysis, with 

the corrected variance–covariance matrices; and (6) I describe the development of the 

phylogenetic confirmatory factor analysis and phylogenetic SEM. I hope that this report 

encourages other researchers to develop adequate multivariate analyses that incorporate 

the evolutionary principles of shared ancestry and phylogeny in their estimations. 
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Chapter 1: A Primer in Structural Equation Modeling and its 
Implementation in Evolutionary Biology 

The development of structural equation modeling followed the evolution of factor 

and path analyses. Factor analysis groups a set of multivariate statistical approaches that 

condense variability among a set of variables in fewer latent (unobserved) factors. 

Charles Sperman developed factor analysis in the early 1900’s after the establishment of 

the multivariate regression analysis by Karl Pearson at the end of the XIX century 

(Brown 2006). The emergence of factor analysis followed the development of 

psychometrics in an attempt to determine underlying patterns in otherwise unmanageable 

matrices of correlated data (Mulaik 2009). Most methods in factor analysis try to 

summarize correlation-covariance matrices using linear combinations of factors and 

remaining unexplained variability (error) (Brown 2006). The information condensation is 

used to reveal correlations and pathways among observed variables, that otherwise will 

not be apparent from raw data.  

Among biologist the most methodology used to summarize variability is principal 

component analysis (PCA) (Grace 2006). Factor analysis is related to PCA but differs in 

the inference about the determinants of the variance-covariance matrices among the 

observed variables. In PCA, we try to maximize the variance explained among set 

observed variables by uncorrelated components that rotate in variable space. In factor 

analysis, we try to determine a set of latent common factors that explain the variability 

among observed variables. Therefore, the evolution of factor analysis in a method 

incorporates unseen common factors and observed variables evolved to incorporate path 

analysis. 
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Sewall Wright is regarded among the founders of theoretical population genetics 

and the initiators of the modern evolutionary synthesis of evolution and genetics (Huxley 

et al. 1942). However, Sewall Wright also had a profound influence in development of 

multivariate statistics including path analysis (Rao et al. 2000). Path analysis was original 

developed on the 1920’s to analyze inbreeding and systems of mating (Wright 1918, 

1920, 1921, 1923, 1925, 1934). However, the was not fully applied until maximum 

likelihood estimation and likelihood ratio test for hypothesis test was introduced in the 

late 1960’s in Social Sciences (Li 1975). The implementation of path analysis in ecology 

only started in the 1990’s following the implementation of software for path analysis 

(e.g., AMOS, EQS, and LISREL) (Grace 2006). The development of path analysis, factor 

analysis, and the maximum likelihood estimation has developed to give rise to structural 

equation modeling (SEM) in the 1990’s to the present (Kline 2005). 

Path analysis can described as structural linear multiple regression with two main 

applications: (1) to model the relationships among a set of observed and correlated 

variables, and (2) to evaluate the importance of observed measurements on describing 

latent (unobserved) variables (Li 1975). Two key feature introduced by Sewall Wright 

(Wright 1921) was introduction of model causation analysis among correlated variables 

and the idea of latent variables (Figure 1). Path analysis provides a mean to test causal 

relationships by testing hypothesized (theoretical) models of variable relationships 

against observed data (Li 1975). It is important to emphasize that Sewall Wright in 

developing path analysis did not attempted to discover causal relationships, but if these 

are hypothesized they can be tested using path analysis (Wright 1923, 1983). The 

application of path analysis is more in terms to explain correlation and not causation of 

variables, and many models may be consistent with an empirical dataset. Therefore, path 

analysis provides a statistical approach to determine the relative importance of alternative 
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models of variables relationships in multivariate scheme (Li 1975). The current 

terminology refers to path analysis as the modeling single-indicator variables without 

latent variables (Kline 2005). 

The implementation of path analysis starts with the researcher proposing a model 

of the variable relationships (Brown 2006). The investigator usually has some previous 

knowledge of variables relationships that allow him to propose a causal hypothesis (i.e., 

theoretical grounds or independent evidence of variable relationship). The hypothesis can 

be draw as a diagram with causal relationships of variables including independent, 

intermediate, dependent, and error (Figure 2). Independent variables are at the top in a 

chain of causation path (i.e., are exogenous) and two or more independent variables can 

be associated by correlation. Intermediate variables are connecting and dependent (i.e., 

endogenous and exogenous) steps in a chain of causation. Dependent variables are 

always influenced (i.e., endogenous) by other variables including independent, 

intermediates, or other dependents. Error terms represent the remaining variance 

unexplained by the proposed model that reflects the effect on endogenous variables by 

unmeasured exogenous variables outside model and measurement error. Therefore, the 

model can be stratified with several levels of causal connections (i.e., with intermediate 

variables in the path of causation).  

The variable relationship diagram (path diagram) and the significance of the path 

coefficients connecting variables are used to perform the inference in path analysis 

(Figure 1 and 2). The graphical representation of the paths is arrows linking variables. 

Single arrows represent causation between exogenous (independent, intermediate 

dependent, and error variables) and endogenous (dependent variables). Double-headed 

arrows indicate correlation between pairs of exogenous variables (independent, 

dependent, or errors). From the path diagram, correlations among variables can be 
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derived from the path coefficients using a set of rules (Wright 1921; Li 1975). First, the 

correlation between two variables can be determined by the sum of the products of the 

path coefficients that join both variables. For example, the correlation between two 

variables joined by a single path (direct) and by two paths through an intermediate 

(indirect path) will be the sum of the products of both pathways (i.e., direct and indirect). 

Second, the significance of a causal influence of an independent over a dependent 

variable is measured by the square of the path coefficient (i.e., determination coefficient). 

Alternatively, the interpretation of the path coefficients can be given in terms of multiple 

regression analysis (Grace 2006). The path coefficient is a standardized regression 

coefficient reflecting the magnitude of the direct effect of an exogenous (i.e., independent 

or intermediate variable) on an endogenous (i.e., intermediate or dependent variable) in 

the path model. Thus, partial regression coefficients between a dependent and two or 

more exogenous variables can also be estimated using path analysis. Therefore, the path 

coefficients can also measure the magnitude of the effect of variable on another after 

controlling for other related variables. 

The interpretation of the path coefficients allows several inferences about 

relationships between independent and depend variables. First, the path multiplication 

rule allows the interpretation of the effect of an independent variable on a dependent 

through intermediate variables. For example, if A is exogenous variable that connects to 

endogenous variable C through an intermediate endogenous variable B (i.e., A → B → 

C), the effect of A on C should be equal to the product of the coefficient paths bAB * bBC. 

Second, total causal effect decomposition of an endogenous can be inferred from path 

analysis by adding direct and indirect effects. Direct effects represent direct paths 

between exogenous and endogenous variables, which are usually evidenced by pairwise 

correlation analysis. Indirect effects represent a significant conceptual development by 
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providing an explanation of the variability on endogenous variables from intervening 

exogenous variables in the path.  

Path analysis is extremely flexible in terms model construction, but it has some 

assumptions and requirements in order to be applicable (Grace 2006).  First, the 

relationships among variables have to linear, but variables can be transformed to meet the 

assumption. Second, error term of any endogenous variable is uncorrelated with any other 

endogenous variable in the model. Third, variables must show some level of correlation 

but multicollinearity must be low. Fourth, model should over-identified or at least just 

identified in order to be estimated, that is that to estimate the path coefficients an equal or 

more structural equations have to be provided. Fifth, a proper correlation or variance-

covariance is required as input. Sixth, large sample sizes and completeness might be 

necessary to be able get an adequate estimation of the path coefficients and significance. 

The evolution of path analysis into structural equation modeling (SEM) started by 

incorporating models with latent variables measured by multiple observable variables. 

SEM was extended incorporating model fitting indices and respecification patterns 

(paths) of variable relationships, after determining their goodness of fit and fitting indices 

(Kline 2005). SEM was developed to be flexible in model construction by incorporating 

correlations among all types of variables (independent, dependent, and errors), latent 

variables, multilevel interaction (latent, intermediate, and dependent variables), and latent 

with multiple indicator (observable) variables (i.e., confirmatory factor analysis). In 

general, SEM is considered to be an extension of general linear model (GLM) and 

incorporates concepts of factor analysis, multiple regression, and path analysis. Other 

advantages of SEM include graphical visualization of models; model test with all 

coefficients simultaneously; the ability to model error terms; and to incorporate temporal 

autocorrelated errors (e.g., approximation to time series). However, as in path analysis, 
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SEM cannot be use to infer causation and the interpretation of model is based on 

theoretical grounds underlying the research. 

 SEM applications include data description (exploratory) and model fit 

(confirmatory). Most researchers regard the confirmatory approach of SEM as the most 

suited for its features and it can use in three approaches (Brown 2006). First, strictly 

confirmatory or single model goodness-of-fit of the proposed structural path to the 

pattern of variances and covariances of the observed data. Second, model testing of 

alternative structural models to the observed data with series model comparisons by LTR 

and fit indices. Third, model development or a combination of exploratory and 

confirmatory SEM that includes proposing an initial structural model, rectification of the 

model, and retesting based on changes suggested by SEM modification indexes. Usually 

all SEM approaches might require cross-validation of the model developed using an 

independent validation sample (Kline 2005).  

 The methodological approach to SEM is divided in two main processes: 

(1) measurement model validation, and (2) structural model fitting (Brown 2006) (Figure 

2). The first process accomplished by proposing a model of variable relationships 

including latent and indicator variables. Latent variables are hypothesized factors that 

exist and can only be measured through at least ≥ 2 observable indicator variables 

(Brown 2006).  The model is validated if the indicators measure the corresponding latent 

variables through common factor analysis or principal axis factoring to the observed data. 

The last process is accomplished by path analysis by comparing two or more alternative 

models (one of which may be the null model) in terms of model fitness. Therefore, the 

best model is the one that best predicts the observed covariances in the data with less 

number of parameters estimated. The implementation of SEM approach will be detailed 

in the last chapter of this report. 
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SEM and path analysis has similar assumptions and requirements (Grace 2006).  

First, SEM assumes linear relationships the relationships among latent and indicator 

variables, and between latent variables. Second, multivariate normal distribution of 

indicator variables is required for MLE of the structural model. Third, latent variables 

should have > 2 indicator (observable) variables that reduces the measurement error of 

the structural model. Fourth, indicators should have some level of correlation but 

multicollinearity must be low. Fifth, model should over-identified or at least just 

identified in order to be estimated, that is that the number of many parameters to be 

estimated should be the same or less than the elements in the covariance matrix. Sixth, a 

proper correlation or variance-covariance is required as input. The original sample can 

have correlated values and known in order to be incorporated in the model. Finally, large 

sample sizes might be necessary to be able get an adequate estimation of the structural 

model and different dataset can be used to cross-validate a structural model. 

The implementation of SEM in biology might be straight-forward, but some 

adjustment and correction to the original data might be required (Brown 2006). First, 

most biological data is non-independent as species or individuals share different degrees 

of phylogenetic relationships. Second, the variance-covariance matrix is required as input 

for SEM in order to be applicable. Third, sample sizes in biological systems might be 

limited and some penalizations on the SEM fit indices might need to be adjusted. In this 

report, I will address some of the available methods to correct for phylogenetic signal and 

estimation of corrected variance-covariance matrix (chapters 2 – 4), and then 

implementation of phylogenetic factor analysis and SEM will be presented (chapters 5 – 

6). 
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Chapter 2: The Problem of Phylogenetic Non–independence in 
Comparative Analyses 

All organisms descent of at least one common ancestor and with whom they share 

a joint evolutionary history. Life forms conform lineages of descendents that have an 

underlying non–independent hierarchical structure based on a temporal patter of 

divergence from a common ancestor (Mayr 1982). In this context, phylogenetic signal is 

defined as the tendency of phenotypic resemblance among organisms inherited by their 

ancestors (Blomberg et al. 2003). Alternatively, the process of natural selection will 

produce apparent similarities due to convergence and not by shared ancestry (Brooks 

1996). Therefore, in comparative evolutionary analysis is necessary to incorporate 

phylogentic history to differentiate simplesiomorphy (shared traits by descent) from 

convergence (adaptive or stochastic) (Harvey and Pagel 1991). 

Phylogenetic signal has practical consequences on the characterization and 

inferences about trait evolution among taxa (Felsenstein 2004). First, phenotypes of 

species are expected to be more similar to values of close relatives. Thus, we can make 

predictions about species characteristics based only on the phenotypes of closely related 

taxa (Garland and Ives 2000). Moreover, branch lengths of a phylogeny are integrated as 

a priory expectation of phenotypic change, which can be incorporated in the construction 

of models of character evolution (Garland et al. 2004). Second, comparative analysis of 

phenotypic traits cannot be based on standard statistics as these methods assume that 

data–points are independent and they share common variance. The recognition of this has 

allowed the development of methodologies adequate the hierarchical structure 

evolutionary history and weight the level dependency based on a phylogenetic 

relationship (Rohlf 2001). Therefore, models of character evolution including 

phylogenetic information are robust against the bias of shared ancestry by simultaneously 
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reduce Type I error caused by non–independence (Blomberg et al. 2003). However, some 

natural processes that affect phylogenetic signal are difficult to model including 

hybridization, horizontal gene transfer, character displacement, homoplasy, and long 

periods of stabilizing selection (Wake 1991; Losos 2000; Martins et al. 2002). As a 

consequence, more complex phylogenetic comparative methods are being developed 

(e.g., Hansen et al. 2008). 

Phylogenetic comparative methods have been important in expanding our 

inferences about evolutionary processes (Harvey and Pagel 1991). Most researchers use 

comparative analyses to infer adaptation or response to natural selection (Garland and 

Adolph 1991; Garland et al. 2004) (Figure 3). Other alternative implementation of the 

comparative methods include effects of sexual selection (adaptive, and non–adaptive) 

(Cox et al. 2003), comparisons of rates of phenotypic evolution (Garland and Ives 2000), 

ecological trade–offs under phylogenetic perspective (Clobert et al. 1998); and 

phenotypic integration (Armbruster et al. 2004). The inclusion of this methodologies 

have also provided of conceptual advances in our appreciation of phenotypic evolution 

(Garland and Adolph 1991; Felsenstein 2004): 1) phenotypic variation cannot be 

considered always adaptive; 2) the inclusion of phylogeny as a hierarchical dependency 

has improve the fit of the models of phenotypic evolution; 3) model of character 

evolution has become more general (parametrized) and complex; 4) phylogenetics and 

comparative biology have been integrated and provide a more accurate description of the 

phenotypic evolution; 5) reconstruction of ancestral phenotypes have been possible 

through the incorporation of phylogenies; and 6) experimental evolution has been 

enhanced by providing a temporal description based on hierarchical structure of 

phylogenetic inferences.  
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Some researchers have been resistant to include phylogenetic information in 

comparative analyses since the first statistical methodologies were established in the late 

1980’s (e.g., Felsenstein 1985, Cheverud et al. 1985b). This gave rise a long debate about 

the inclusion or not phylogenetic information if the characters in questions have low 

phylogenetic information (Westoby et al. 1995a, b, c; Björklund 1997). Several reasons 

usually account for the criticisms against the inclusion of phylogenetic analyses (Garland 

et al. 2004). First, all phylogenetic comparative analyses require phylogeny and this is 

especially difficult from some poorly known taxonomic groups (e.g., cnidarians and 

metazoan parasites) (Hillis 1998). Second, a reasonable number of taxa (e.g., > 20) 

should be included in the comparative analysis to get a robust inference statistical 

inference with narrower confidence intervals (Garland et al. 1999). Third, the models of 

character evolution are usually more complex that a random walk with constant variance 

(i.e., Brownian motion model) (Harvey and Pagel 1991; Losos 1999). Fourth, significant 

measurement error in the estimation of the population parameters will introduce biases in 

the comparative analyses, which is usually dependent on the experimental design and not 

in the phylogenetic reconstruction (Garland et al. 2004). Fifth, comparative analyses 

cannot per se infer causation as they are correlational in nature and the inferences are 

strictly based on the interpretation by the researcher (Harvey and Purvis 1991). Finally, 

some immediate ecological factors such as climate are more likely affect trait variation 

and they are not of evolutionary origin (Westoby et al. 1995a, b).   

In spite of all these limitations, comparative analyses still provide a better fit to 

biological data. Some even regard to the standard non–phylogentic statistical analyses as 

special cases of the phylogenetic methodologies without hierarchical relationship among 

taxa (i.e., star phylogeny with equal branch lengths among terminals) (Blomberg et al. 

2003). Simulation and empirical analyses have demonstrated that the inclusion of 
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phylogenetic information provides a similar or better fit to the data than non–

phylogenetic methods (Rohlf 2001; Freckleton et al. 2002).  Some authors have 

recommended that results of both phylogenetic and conventional analyses should be 

presented (Price 1997; Garland et al. 1999). Additionally, several test for degree of 

phylogenetic signal and diagnostics have been developed (e.g., Pagel’s λ, and 

Blomberg’s K) (Pagel 1999; Blomberg et al. 2003). 

The use of phylogenetic comparative analysis has expanded beyond the simple 

correlational or ancestral trait reconstruction scheme. Several new methodologies based 

trait evolution and phylogenetic reconstructions have been developed. For example, 

diagnostics of taxonomic bias and its contribution to comparative analyses of common 

variables (e.g., metabolic rates) can be now incorporated as weighted parameters 

(Lajeunesse 2009). The strength of selection and drift can also be estimated from 

phylogenetic comparative analyses providing of model testing of neutral to adaptive 

hypothesis (Lajeunesse 2009). Moreover, we can determine the expected direction of 

phenotypic change based on estimated magnitude of natural selection or drift.  Analyses 

of character association and the rates of speciation and extinction in a lineage can also be 

inferred from the association of phylogeny and character states (Maddison et al. 2007). 

Conservation priorities can also be derived from the association of ecological traits, 

phylogeographic information, and proyected climatological change (Redding and Mooers 

2006; Isaac et al. 2007; Steel et al. 2007). Therefore, the extension of early comparative 

analyses into more complex models of phenotypic evolution under a phylogenetic 

framework will bring light to the process of biotic diversification. 
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Chapter 3: Methods to Incorporate the Effect of Shared Ancestry 
(Phylogenetic Signal) 

The earliest methods to include phylogenetic information were based on 

taxonomic ranking, classification hierarchy, and pairwise comparisons (Felsenstein 1985; 

Harvey and Pagel 1991; Garland et al. 2004). These methods try to maximize species 

phylogenetic distinctiveness by defining groups based on evolutive affiliation (e.g., 

comparing two taxa of well-established and distinct families). However, these methods 

are only intuitive and the failure to incorporate an estimate of phylogenetic relationships 

introduces a pseudoreplication bias and increases type I error (Harvey and Pagel 1991). 

Since the late 1980s, several comparative methods were developed to incorporate 

explicitly phylogenetic information under a statistical framework. A list of the most 

relevant include: phylogenetic independent contrasts (PIC) (Felsenstein 1985), 

phylogenetic generalized least squares (PGLS) models (Grafen 1989; Martins and 

Hansen 1997; Garland and Ives 2000), Monte Carlo trait evolution simulations  (Martins 

et al. 1991; Garland et al. 1993), phylogenetic autocorrelation (Cheverud et al. 1985a), 

generalized estimating equations (Paradis and Claude 2002), phylogenetic mixed models 

(Housworth et al. 2004), concentrated changes test (Maddison 1990), and 

phylogenetically structured environmental variation methods (Desdevises et al. 2003). 

However, the two extensively validated methods for continuous characters are PIC and 

PGLS (Rohlf 2001; Felsenstein 2004; Garland et al. 2004) and I will detail them in this 

report.  
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PHYLOGENETIC INDEPENDENT CONTRASTS (PIC) 

The inclusion of phylogeny in comparative analyses was probably started after the 

publication ‘Phylogenies and the comparative method’ (Felsenstein 1985). The rationale 

of this publication was that the mainstream research in biology at that time only used 

conventional statistical analyses. Felsenstein and others recognized that most of such 

analyzes violated two fundamental assumptions: independence of observations and 

residual errors (Harvey and Pagel 1991). PIC provided a method to incorporate 

information of phylogeny (i.e., hierarchical structure of species relationships based on 

cladogenesis), branch lengths (i.e., estimates of genetic or temporal distance for the 

branching pattern), and a model of character evolution (Figure 3). However, the method 

included some requirements if it were applied to its best: (1) a complete bifurcating 

pattern in the phylogeny, (2) continuous measurements of traits, and (3) a model of 

character evolution that follow an additive stochastic change (i.e. Brownian motion) 

(Blomberg et al. 2003). 

The PIC algorithm goal is to estimate independent measurements (contrasts) that 

can be used to inferences using more conventional statistical analysis (Felsenstein 2004). 

PIC uses the information of actual species (i.e., tips of phylogeny), it goes down to each 

internal node in a completely bifurcating tree (Rohlf 2001). PIC procedure starts at the 

nodes before the tips and contrasts (measures the difference) in a random variable 

between its two daughter branches. The procedure is iterated until the contrast for the 

root node is found. The PIC contrast at each node depends on the scores of the contrasts 

of the nodes or tips one level above, which makes this algorithm recursive. The number 

of contrasts estimated after the procedure is n–1 when n is the number of tips (usually 

species, lineages, or individuals). Overall, PIC procedure will transform the raw data into 

of corresponding contrast that have null phylogenetic covariance with equal variance 
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(rate of character change), which makes the contrasts independent and standardized. The 

PIC contrasts can also be used for multivariate statistical methods, which include factor 

analysis (e.g., PCA and PAF) and multivariate regression (Harvey and Pagel 1991; 

Garland et al. 1992). 

PIC algorithm can be illustrated using vector algebra (Rohlf 2001) or following 

the original description by Felsenstein (Felsenstein 1985; Felsenstein 2004). For this 

report, I will summarize Felsenstein’s original description: 

 

PIC Assumptions:  

The phylogeny is fully bifurcating (i.e., polytomies should be resolved). The 

phylogeny has positive branch lengths (i.e., problematic in branch lengths near zero). The 

model of character evolution has to be Brownian motion (i.e., problematic if characters 

evolve under stabilizing selection).  

 

PIC Procedure description: 

1) Given a completely bifurcating phylogeny with branch lengths of i species and 

each species has a continuous estimable of the phenotypes Xi and Yi. The numeric 

differences of X between pairs of sister species can be calculated and they are 

independent. These conditions should also apply to phenotype Y. 

2) Given the branch lengths represent estimates of vi temporal units since the split 

of the sister species. Assuming a Brownian motion model of evolution, we expect that 

small character displacements in Xi have occurred in a random walk (i.e., equally likely 

positive or negative) during the time vi. Therefore, we expect total displacement of Xi at a 

node should come from the distribution ~ N (0 , sX
2

 ) with sX
2 proportional to v.  
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3) Given that X and Y might undergo different rates of character evolution and 

vary in their degree of relationship (i.e., correlated to independent). We expect that after 

one unit of time the total phenotypic change in X and Y will have a mean of 0 and sX
2 and 

sY
2, respectively. Extending to the v units of time since the split among daughter lineages, 

the phenotypes of X and Y should have a mean of zero and their variance will be sX
2v and 

sY
2v, respectively. 

4) We use the estimations of phenotype X and Y from pairs of sister lineages or 

nodes i and j with a common ancestor node k (Figure 4).  In the case of phenotype X, 

sister taxa will have an expectation of zero and a variance of s2
X (vi + vj), where  s2

X is a 

common to all contrast, vi is the time unit from ancestor k to node i, and vj is the time unit 

from ancestor k to node j. 

5) We compute a contrast Xi – Xj  that should have an expectation of zero and a 

variance proportional to vi + vj. 

6) We remove the two tree tips (i and j) but preserving the ancestor node k that 

becomes a new tip. The value for the tip Xk is calculated as a weighted average based on 

the branch lengths of tips i and j (i.e., vi and vj, respectively) and the values of the 

phenotypes Xi and Xj in the following form: 

 

      (1) 

 

Therefore if vi = vj are the same then Xk = (Xi + Xj)/2, if vi ≠ vj then Xk is a 

weighted averaged based on branch lengths vi and vj. 

7) We adjust the branch length of tip k (i.e., previously node k) from vk to vk + vi vj 

(vi + vj). This adjustment is necessary because the weighted average of Xk from equation 
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(1) is only an estimate of the phenotypic value of the ancestor and introduces an error 

relative to the lengths of vi and vj. This adjusted estimate is a contrast that will be 

included in the statistical analysis and it is independent of the phylogeny. 

8) The algorithm is iterated from steps 4 to 7 to generate n – 1 contrasts from 

original n tips of the tree. Each contrast can be finally standardized by dividing by the 

square root of s2
X to bring all contrasts to a common variance for phenotype X. A similar 

process can be performed for phenotype Y (i.e., steps 4 to 7) to generate n – 1 contrasts 

and standardized by by dividing by the square root of s2
Y. 

9) We will have generated n – 1 independent contrasts for phenotype X and Y. 

However, contrasts for X and Y are not necessarily independent and the covariance can 

be estimated at any given node (except the root): 

 

Cov[Xi – Xj, Yi – Yj] = 2visXsY rXY             (2) 

 

where, vi is the measure in temporal units (i.e., branch lengths) from last common 

ancestor k, sX  is the standard deviation for phenotype X, sY is the standard deviation for 

phenotype Y, and rXY is correlation coefficient between X and Y. It is important to know 

that X and Y do not necessarily have the same rate of character change (i.e., sX = sY). 

10) The step 8 has standardized the contrast that can be regarded as drawn 

independently from a bivariate XY~N (0 , sX=1 sY=1) with a rXY that is unknown. 

Therefore, a test of independence of X and Y is reduced to test if rXY = 0 or not. This last 

step will provide a unbiased test of correlated change between phenotypes X and Y useful 

for comparative analyzes. 
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PHYLOGENETIC GENERALIZED LEAST SQUARES (PGLS). 

The introduction of PGLS extended the approach of PIC, as this one is considered 

a special case (Rohlf 2001). The PGLS was originally introduced by Grafen (Grafen 

1989), but it was explicitly described in the late 1990s (Martins and Hansen 1997; Pagel 

1997). During this decade (i.e., 2000s), the PGLS methodology has been improved by 

including confidence intervals (Garland and Ives 2000), alternative algorithms for 

variance-covariance matrix calculation (Butler and King 2004), and Bayesian estimation 

of the regression parameters (Pagel et al. 2004; Pagel and Meade 2007).  

The requirements of PGLS are similar to PIC and include the topology with 

branch lengths, but it does not calculate contrasts. PGLS involves a modified GLS 

analysis with error terms that are not assumed to be independent nor identically 

distributed (Garland and Ives 2000). Therefore, branch lengths and tree topology are used 

to calculate a corrected variance-covariance matrix of the error terms that are independent 

of the phylogenetic inertia (Freckleton et al. 2002). PGLS assumes a Brownian motion 

model of character evolution with the following expectations: (1) GLS estimates of the 

regression parameters are also maximum likelihood estimates, and (2) elimination of non-

independence bias as the error terms are drawn from a multivariate normal distribution 

(Garland and Ives 2000).  Moreover, the estimated PGLS variance-covariance matrix can 

be used for factor analyses (e.g., PCA and confirmatory factor analysis), and ancestral 

state reconstruction (Lajeunesse 2009).  

PGLS algorithm can be described in terms of regression with phylogenetically 

corrected data (Garland and Ives 2000). For this report, I will summarize the approach of 

Garland and Ives’ (Garland and Ives 2000) modified from Martins and Hansen (Martins 

and Hansen 1997). 
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PGLS PROCEDURE DESCRIPTION: 

1) Let yi (dependent) and xi, (independent) denote continuous measurements of 

two variables (phenotypes) from a species i from a dataset of n species in the phylogeny. 

We can describe the following regression equation: 

 

yi = β0 + β1 xi + εi,                    (3) 

 

where β0 and β1 are regression coefficients and εi is an error term with mean zero but not 

independent from other similar terms. The values for εi are correlated among different 

species, which is derived from shared phylogenetic history. Therefore, phylogenetically 

closer species are expected to be more similar for yi and xi phenotypic values than more 

distantly related species. 

2) The PGLS algorithm is implemented by dealing explicitly with the correlations 

among the εi for all extant taxa. So, a general equation from (3) can be written as: 

 

Y = Xβ  + ε ,                             (4) 

 

where Y is a vector of the values of the dependent yi of the phenotype Y with n-

dimensions (i.e., n number of extant taxa in the tree). X is a n x 2 matrix of values of the 

of the dependent xi values of the phenotype X whose first column consist of ones and the 

second of the xi values. The parameter β  is equal to [β0 , β1]’ (i.e., a transpose of the 

regression parameters).  Finally, ε  approximates to an n-dimensional multivariate normal 

distribution with mean zero and a variance-covariance matrix σ2C, where σ2 is a scalar 

measuring the expected rate of character change under a Brownian motion model and C 

is a phylogenetic matrix. The elements of the C matrix include the information of the 
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phylogenetic relationship among taxa based on the tree topology and branch lengths. The 

description of the calculation of the variance-covariance matrix and the phylogenetic C 

matrix will be expanded in the next section of this report. 

3) PGLS algorithm progresses by iterating different values on β  until the 

estimated values of Y converge to the empirical values yi in the extant species. Several 

methodologies have been proposed to estimate the best values of these parameters 

including a maximum likelihood estimators (Freckleton et al. 2002) and Bayesian 

estimators (Pagel and Meade 2007). 
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Chapter 4: The Variance–covariance Matrix Estimation while 
Incorporating Phylogenetic Signal 

In order to compare multivariate data from biological organism, data has to be 

converted to integrate phylogenetic information (Garland et al. 1999). Several methods 

have been proposed to convert raw data into phylogentically independent measurements 

as indicated in the section 3 of this report. However, the underlying theme among 

comparative methods including PIC and PGLS is that they are both special cases of the 

generalized theory of least squares (OLS) (Martins and Hansen 1997; Garland and Ives 

2000; Freckleton et al. 2002; Adams 2008; Lajeunesse 2009). Many common parametric 

statistical tests are also based on OLS (e.g., multiple regression, ANOVA, ANCOVA, 

PCA), which provide an interesting link to phylogenetic comparative methods. However, 

OLS has assumptions that must be satisfied in order to be unbiased: (1) model has to be 

linear, (2) independent variables do not have to be collinear, (3) data points have to be 

randomly sampled from a population, (4) measurement errors have to be independent and 

normally distributed, and (5) the independent variables share a common sampling 

variance (i.e., they are homoscedastic). Most phylogenetic methods based on OLS have 

to overcome two critical violations to the assumptions of OLS in order to be unbiased, 

which are the lack of common variance among independent variables and that the error 

are non-independent due to share ancestry of the taxa that were measured.  

The problems of the phylogenetic correction under OLS framework are mostly 

based on equation (4) and most methodologies try to incorporate phylogentic dependency 

on the error term (ε). In a non-phylogenetic OLS problem, we expect that ε  is a scalar 

variance-covariance matrix (i.e., a diagonal matrix whose diagonal elements all contain 

the same scalar variance σ2, ε  = σ2I). However, the phylogenetic inertia causes ε  to be 

different than σ2I and the off-diagonal elements are different than zero. Therefore, 
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corrections for phylogeny are based on modeling the variance-covariance matrix (usually 

named Σ  matrix) that weights dependency based on phylogenetic relatedness. The Σ  

matrix contains in its main diagonal the common variance σ2 (or adjusted weights to 

compensate for unequal size effects) and in its off-diagonal elements (i.e., covariances) 

the accounts of phylogenetic relationship among taxa. Therefore, the correction will 

allow to give less weight to closely related taxa when fitting a regression line through 

their data (Pagel 1997, 1999; Lajeunesse 2009).  

 

CALCULATING Σ  MATRIX 

The elements of Σ  matrix have important implications in how to model the 

character evolution and the necessary corrections for phylogenetic signal. The elements 

of main diagonal are the common variance of the independent variables of the taxa 

included in the OLS analysis. Recent comparative analyses have proposed to include a 

penalization in the elements of the main diagonal to account for inaccurate estimates 

among taxa (i.e., unequal variances) and specifically for phylogenetic meta-analysis 

(Adams 2008; Lajeunesse 2009). However, for this report I will focus in the off-diagonal 

elements of the Σ  matrix, which are relevant to phylogenetic factor analyses.   

The elements of the off-diagonal of the Σ  matrix are weighted covariances 

modeled after the phylogenetic information among taxa. These covariances measure the 

correlation phylogenetic history based on the C correlation matrix of equation (4). Most 

comparative methods based on OLS often consider a common variance (σ2) among taxa, 

which reduces the Σ  ∝  C (Rohlf 2001). Therefore, for phylogenetic factor analyses the 

variance-covariance Σ  matrix can be effectively reduced to estimate the C matrix (Pagel 

1999). 
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The C matrix contains the correlations among taxa based on the phylogeny used 

to correct for shared evolutionary history (Garland et al. 1999; Lajeunesse 2009). The 

usual account of shared phylogenetic history is based on the branch length (b) distance 

between taxa estimated in the phylogeny. Therefore, C matrix of k taxa has in its main-

diagonal a function of the total branch lengths for each taxa (i.e, bi
total total distance from 

the root to the i taxon tip) and in its off-diagonal a function of the shared distance 

between contrasted taxa (i.e., bi
shared distance from root between i and j taxa). 

Several models of character evolution can be incorporated as modifications of the 

C matrix. I will use the notation of Lajeunesse (Lajeunesse 2009) and focus on two of the 

most common models: Brownian motion (CBM matrix) and the Ornstein-Uhlenbeck (COU 

matrix).  

The basic model is the CBM matrix, which assumes random character proportional 

to the branch lengths (i.e., time since divergence). Therefore, CBM matrix will include 

only the following elements: 

 

             (5) 

 

where, bi
total is total branch length distance from the root to the tip of i taxon and bi,j

shared is 

shared branch length distance from the root to the node before the split between i and j 

taxa (Rohlf 2001; Lajeunesse 2009). 

The Ornstein-Uhlenbeck model (Hansen and Martins 1996) is the COU matrix, 

which assumes an exponential relationship between contrasted taxa based on the 

phylogentic distance and a selection parameter (β). Therefore, COU matrix will include 

only the following elements (Hansen 1997): 



 23 

 

              (6) 

 

where, bi
total is total branch length distance from the root to the tip of i taxon, bi,j

shared is 

shared branch length distance from the root to the node before the split between i and j 

taxa, and the selection parameter β that vary from neutral (β → 0) to strong (β → ∞) 

selection (Hansen 1997; Lajeunesse 2009). Interestingly, the COU matrix can approximate 

to CBM matrix if the selection parameter β → 0, which makes the Brownian motion a 

special case of Ornstein-Uhlenbeck model (Butler and King 2004). 

Finally, all methods of phylogenetic comparative analysis assume a direct 

relationship with time expressed as branch lengths. Ultrametricity (i.e., all tree tips are 

contemporaneous in time) is required to be met in order to apply the model of character 

evolution and in the calculation of the C matrix (Garland et al. 2004). However, the 

timescale of the chronograms are not required to be absolute and corrections can be 

applied to phylogenies to make them ultrametric(Lajeunesse 2009). Therefore, a 

standardization of the C matrix to meet ultrametricity is necessary and can be performed 

by dividing elements bi
total (Pagel 1994), or alternative corrections with other elements of 

control (Lajeunesse 2009). 

 

USING C MATRIX IN STANDARD LINEAR REGRESSION 

The C matrix can be used to solve the problem of correlated errors due to 

phylogenetic signal by making the error terms uncorrelated. Garland and Ives (Garland 

and Ives 2000) proposed an interesting application of matrix algebra to the problem of 
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phylogenetically correlated error terms. The method can be summarized as follows 

(Garland and Ives 2000): (a) C matrix is a real symmetric nonsingular matrix as 

described above; (b) there should exists another matrix D such that DCD’ = I (i.e., an 

identity n x n matrix); (c) the D matrix can then be used to transform values of the traits 

(e.g., x and y) and the error term ε, such that Z = DY, U = DX, and α  = Dε , which 

reduces equation (4) to 

 

Z = Uβ  + α        (7) 

 

where, the new variance-covariance matrix of α  equal to σ2I (i.e., no covariance elements 

are present), (d) this is true by the following: V  = E = E  = E

= DE D’ = (Dσ2C)D’ = σ2I, and (e) α  matrix also approximates to normal 

distribution, as α  is a linear transformation of ε . The matrices Z and U can be back-

transformed to matrices Y and X. Moreover, Garland and Ives (Garland and Ives 2000) 

also provided extensions to more than two variables and important approximations GLS 

equation (4). Including, the regression coefficient β  vector, : 

 

= (U’U)-1(U’Z) = (X’C-1X)-1(X’C-1X)        (8) 

 

unbiased estimate of variance σ2 with N variables, : 

 

= (Z - U )’ (Z - U )/(n - N) = (Y - X )’C-1 (Y - X )/(n - N)           (9) 

 

 

 

!̂
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variance-covariance matrix of β , V β{ } : 

 

V β{ }  = σ2 (U’U)-1 = σ2 (X’C-1X)-1                   (10) 

 

estimated variance-covariance matrix of β , s2 β{ } : 

 

s2 β{ }  =  (U’U)-1 =  (X’C-1X)-1            (11) 

 

estimates of mean responses of Y, : 

 

= D-1(DX )                                                (12) 

 
estimated variance-covariance matrix of mean responses of Y, s2 Ŷ{ } :  

 
s2 Ŷ{ }  = D-1 s2 Ẑ{ } (D-1)’ = X s2 β{ }X’        (13) 
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Chapter 5: The Variance–covariance Matrix in Phylogenetic 
Exploratory Factor Analysis 

Factor analysis (FA) is a data reduction technique used to identify a reduced 

number of latent variables underlying a set of covaring directly measurable variables 

(Kline 1994; Brown 2006). The uses of FA include the reduction in the redundancy in a 

set of intercorrelated variables, determination of the dimensionality (i.e., degree of 

multicollinearity), and model testing of alternative hypothesis of the observed variable 

covariance. In order to assess with high reliability a FA, multiple observable variables are 

usually used. Each observed variable includes a proportion attributed to latent variable of 

interest (reliability) and the rest from measurement error (e.g., other influencing latent 

variables). Therefore, the implementation of FA is designed to extract from each 

observed variable the proportion that is measuring the construct without the error. 

The basic steps of FA can be summarized in data gathering, method of factor 

extraction, and interpretation (Brown 2006). First, data collection is fundamental for any 

inference and is based on the type of factor (i.e., latent variable) to be characterized, the 

population of interest, and completeness of the dataset obtained (Tabachnick and Fidell 

2007). Second, the FA methods are the estimation of the proportion of variability of the 

observed variable between the factor and measurement error (Jolliffe 2002). Two 

common FA methodologies include: principal component analysis (PCA) and common 

factor analysis (PAF).  Third, interpretation of the results based on previous knowledge 

(i.e., theory) and the determination of significant relationships (i.e., factor loadings) with 

the latent factors (Kline 1994; Brown 2006). For this report, I will focus on the PCA and 

how the phylogenetically independent variance–covariance matrix can be used for this 

type of factor analysis. 
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All FA methods use a common path analysis notation and include four elements 

(Kline 1994). First, the latent variables or factors that are inferred elements and account 

for the pattern of association among observed variables. Second, the indicator or 

observable variables are the elements that derive from empirical data and they are used to 

account for the underlying factors. Third, the factor loadings are the path connecting the 

indicator onto the factor and it is characterized by its magnitude and direction. Finally, 

the error term or unique variance of the indicator that is not explained by the factor. Thus, 

the performance of an indicator is derived by the combination of the factor loading and 

measurement error. 

Factor analysis has two different approaches in data reduction. Exploratory factor 

analysis (EFA) determines all factor loadings (i.e., magnitude and direction of 

relationship) between each observed variable on all latent variables. PCA is an example 

of EFA and it is the most common FA method use in Biology (Quinn and Keough 2002; 

Gotelli and Ellison 2004). Confirmatory factor analysis (CFA) resembles EFA, but some 

factor loadings are set to zero (i.e., independent or not related) and it is in more model 

testing under theoretical grounds by the researcher. Therefore, CFA can be use to 

compare alternative hypothesis of factor-indicator relationship and EFA is more 

exploratory and does not assume any a priori mode of relationship among factor and 

indicator variables. I will cover CFA under the following chapter of this report. 

Principal component analysis (PCA) is method based on the assumption that 

given a set of n observable variables, in n-dimensional space, will have unevenly 

distributed variation and concentrated within few dimensions (Kline 1994; Brown 2006). 

Therefore, PCA will redistribute correlations among variables into perpendicular (i.e., 

orthogonal or uncorrelated) dimensions. The variance explained by the new dimensions 

or components is distributed in a decreasing order. Each component is a linear 
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combination of all n variables and the first component will explain the most of the 

simultaneous variation among all observed variables. From the remaining variation, the 

second component will explain the most and so on until we extract n components of n 

variables have explained all variation in the set. Therefore, PCA summarized the 

observed variability among a set of n variables in a set of n orthogonal components with 

most of the variation explained by the first components extracted. 

One important feature of PCA is that it can be calculated using matrix algebra 

from a regression matrix R (Jolliffe 2002). For instance, for a given set of n variables (X1, 

… , Xn) can be replaced by n orthogonal components (C1, … , Cn) , given the following 

conditions about their linear combination for a given component : 

 

          = a1k 1 + a2k 2 + … + ank n                       (14) 

 

where, every is a linear coefficient and  is the variable vector. Such that each is 

an eigenvector described as coordinates of the original variable space ( , …, ) under 

the condition: 

 

 + + … + =  = 1                             (15) 

 

Therefore, in order to calculate a full PCA (i.e., all components or eigenvectors) 

for the correlation matrix R of n variables, we need to fulfill the following condition:  

 

R( , …, ) = ( , …, )                              (16) 
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where R is the correlation matrix,  is the components or eigenvectors, and are the 

eigenvalues. This relationship is important for interpretation as eigenvectors for a 

component are the coordinates of the component in the original variable space and 

eigenvalues are the variance explained by the component. Therefore, the equation (16) 

can be rewritten using a matrix notation where P is a matrix of eigenvectors and Λ  is a 

diagonal matrix of eigenvalues: 

 

RP = PΛ                     (17) 

 

this can be rearranged in order to calculate the principal component equation: 

 

P-1RP = Λ                     (18) 

 

Factor loadings are the correlation coefficients between the observed variables 

and components. Important information can be obtained from factor loadings including: 

(1) the proportion of variance in the variable that is explained by a component calculated 

as the square of each variable factor loading, and (2) the communality or the total 

variance in observed variable accounted for by all the factors, which is the sum of the 

squared factor loadings for all factors for a given variable. Therefore, we can manipulate 

equation (18) to obtain factor loadings such as  

 

P-1RP = Λ  →   R = PΛP’      (19) 

 

using the property of orthogonal matrices P’ = P-1. In order to calculate factor loadings, 

we can modify equation (19) to obtain factor loadings using the following property: 

 
!ci !i
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PΛP’ = (P ) ( P’) = R         (20) 

 

and factor loadings are B = P  then: 

 

PΛP’ = BB’     (21) 

 

Alternatively, PCA con be understood from a multiple regression context. We can 

define a set of variables set of n variables (X1, … , Xn) such that the weighted sum of all 

variables give n orthogonal components (C1, … , Cn)  in the form: 

 

ck =a1X1 + … + anXn                 (22) 

 

with the condition that 

 

+ … +  = = 1          (23) 

 

under PCA will try to maximize the sum of the squared coefficients on the sum ck and 

each variable Xi.  

Many other calculation and inferences can be done after the PCA has been 

completed including component rotation or the number of components to retain. 

However, they are beyond the scope of this report and I will suggest to potential readers 

to review appropriate literature (e.g., Jolliffe 2002). 
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USING THE PHYLOGENETICALLY CORRECTED VARIANCE–COVARIANCE MATRIX IN 
EXPLORATORY FACTOR ANALYSIS 

Factor analysis as many other multivariate methods based on GLS methods 

assume that the multivariate error variances are independent (Garland et al. 1993; Jolliffe 

2002). In case of biological data, this assumption is violated unless it is accounted in the 

analysis or excluded from the input correlation or variance−covariance matrices (Garland 

et al. 1993). The correction and calculation of the variance−covariance matrix after 

correction for phylogenetic signal was addressed in chapter 4 of this report (Figure 4). 

Therefore, I will indicate describe the calculation of the principal components using the 

phylogenetically corrected variance−covariance matrix. 

The methodology of calculating PCA given a variance−covariance matrix can be 

summarized in the following steps (Jackson 2003): (1) calculate the correlation matrix 

from the variance−covariance matrix of n variables; (2) calculate the eigenvectors and 

eigenvalues from the correlation matrix; and (3) extract n components from n variables. 

Therefore, the only step that is significantly different from previous description of PCA is 

the conversion from a variance−covariance into a correlation matrix. In this report, I will 

describe how such conversion can be performed. 

Given a phylogenetically corrected variance−covariance matrix A it can be 

transformed to correlation matrix R (Jolliffe 2002). It can be transformed as follows: (1) 

calculate the A-1, (2) get the diagonal elements of A-1 into diagonal matrix D, (3) 

calculate the square root of the elements of matrix D, (4) compute correlation matrix R 

by calculating DAD. The correlation matrix can then be used in the PCA calculation 

described above. 
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Chapter 6: The Phylogenetic Confirmatory Factor Analysis and 
Structural Equation Modeling 

Exploratory (EFA) and confirmatory (CFA) factor analyses share methodological 

similarities, but profound conceptual differences (Kline 2005; Brown 2006; Grace 2006). 

For instance, with EFA, we try to determine the number of factors and calculate the 

loadings on every factor by all available indicator variables. With EFA, we can specify 

the number of factors to be extracted and constrain the factors to be orthogonal or not 

(i.e., independent or correlated), but we cannot constrain the indicators variable loadings 

to be zero. We also do not have a previous idea of the structure of factors and indicators 

loadings; and the answer is unique for a given correlation matrix. With CFA, we can 

specify a priori several models (i.e., a factor structures) of the number of factors, loadings 

from indicator variables, and error terms in order to find the most parsimonious model 

(i.e., a simple structure) that best explains the empirical variance-covariance matrix. 

CFA methodology can be summarized in the following steps and I will detail each 

part in the following paragraphs (Figure 4). First, we specify a model of factor and 

indicator variables loadings or correlations (usually in the form of a path diagram). 

Second, we determine if the model is identified (i.e., number of unknown parameters is 

equal or less than the known parameters) in order to estimate a unique set of parameters. 

Third, we estimate the model (i.e., run an algorithm to estimate the model parameters). 

Four, we determine the fit of the model to the empirical data (i.e., variance-covariance 

matrix) using fit indices. Fifth, we re-specify (i.e., modify) the model structure if it does 

not fit using theoretical evidence or modification indices and iterate starting from the 

second step until we get the best answer. Finally, we do the inference on the base of 

theoretical ground and additional empirical evidence (e.g., cross-validation). 
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Model specification is strictly derived from theoretical grounds or empirical 

evidence that include latent, indicator, and error term variables (Brown 2006). Latent 

factors are unobserved variables that are measured by set observable indicator variables. 

Observed variables or indicators are measurable from a given population and they present 

an aspect of the latent variable. Error terms are the part of the indicator variable not 

explained by the factor and it might come from other unseen factors or measurement 

error. With CFA, the researcher can propose a model based on the relationships between 

the set of latent factors and their indicator variables. These relationships are derived from 

empirical evidence or the researcher proposing a hypothesis on how factors and 

indicators are related to each other. In most CFA, the model propositions usually 

underline causative and correlation basis. For instance, the researcher can propose that 

factor-1 affects factor-2 on the basis of a temporal progression (e.g., age mother affects 

the viability of their gametes, and not vice versa). In other hand, the researcher can 

propose how indicators measure which factors, so he/she can constrain some loading to 

be zero (i.e., a proposition of negligible direct relationship between a factor and 

indicator). It is important that this is not the case for EFA, where all indicator loadings on 

each factor have to be estimated (Brown 2006). 

A model is identified if the number of parameters to be estimated is less or equal 

to the number of known parameters in the model (Kline 2005; Brown 2006; Grace 2006). 

Under CFA, the known parameters are the number of elements (p*) in the empirical 

variance-covariance matrix. The parameters usually estimated (q) are factor variances, 

error terms variances, covariances among factors or error terms, and factor loadings. 

Therefore, a simple equation to determine if a model is identified is the following: 
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p* =                   (24) 

 

model uniqueness = p* − q     (25) 

 

where p* is the elements in the variance-covariance matrix, p is the number of indicator 

variables, and q is the number of estimated parameters. Therefore, a model is under-

identified if we have more unknown than known parameters (i.e., p* < q), and single 

model cannot be estimated for the empirical variance-covariance matrix. A model is just-

identified if we have equal unknown and known parameters (i.e., p* = q), and the model 

implied will recover exactly the empirical variance-covariance matrix. A model is over-

identified if we have less unknown than known parameters (i.e., p* > q), and the model 

implied would recover a variance-covariance matrix that is less fit than the empirical. 

However, the over-identified models are of interest, as they allow the inference of more 

parsimonious answers of the factor, indicator, and error term relationships. 

In order to contrast different structural models, we need that they are over-

identified. For instance, the researcher has to propose model of variable relationships by 

fixing some paths to specific values (usually one), dropping paths (e.g., covariance 

between factors equal to zero), and estimating the remaining parameters. Fixing an 

indicator loading or setting a variance of a factor to one usually achieves scaling a factor 

(Kline 2005; Brown 2006). However, most over-identified models are proposed on the 

base of theoretical grounds and specific hypothesis about the relationships among 

indicators and factors. 

p(p +1)
2

p(p +1)
2
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The estimation of a CFA has some similarities with EFA algorithms (Brown 

2006). For instance, consider the indicator (observed) variables (X1, … ,Xn)  can be 

derived from the following linear equation each variable: 

 

Xi = λiξ + δi          (26) 

 

where λi is the factor loading from each Xi, ξ is the factor, and δi is the measurement error 

from each Xi. Then, consider the observed variance-covariance sample matrix S and the 

variance-covariance population matrix ∑ . The relationship between the linear equation 

(26) and the elements of the matrices ∑  are equivalent by the following: 

 

∑  = λφλ’ + θδ         (27) 

 

where λ  is a vector matrix of factor loadings, φ  is a variance-covariance matrix of the ξi 

factors and θδ  is a diagonal matrix of the variances of the measurement errors. 

Therefore, the variance-covariance matrix among Xis or ∑  can be estimated from set of 

matrices λ , φ , and θδ . 

CFA as many other multivariate methods assume that the multivariate error 

variances are independent (Garland et al. 1993; Jolliffe 2002). In case of biological data, 

this assumption is violated unless it is accounted in the analysis or excluded from the 

input variance−covariance matrix S (Garland et al. 1993). The calculation of the 

corrected variance−covariance matrix after accounting for phylogenetic signal was 

addressed in chapter 4 and 5 of this report. Therefore, I suggest the reader to review both 

previous chapters and assume that the input variance−covariance matrix S has already 

been corrected for phylogenetic signal. 
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CFA and structural equation modeling (SEM) are a form of covariance analysis 

among the observed Xi variables (Grace 2006). Therefore, CFA and SEM are based on a 

minimization of a discrepancy function or loss function E. This is achieved by 

minimizing the discrepancy between the variance-covariance matrix of the observed 

variables in the sample (S) and the variance-covariance matrix implied for the population 

(∑) by the model proposed by the researcher. The discrepancy function is defined as 

 

E = S - ∑(θ)       (28) 

 

where S is the observed variance-covariance matrix, and ∑  is the model implied 

variance-covariance matrix using a set of θ  parameters for path loadings, covariances, 

and error terms. However, the elements of ∑(θ) are unknown and they have to be 

estimated by the S matrix. Therefore, the estimates of the model parameters ( ) are 

included in the ∑(θ) matrix resulting in a implied variance-covariance matrix, ∑( ). 

Therefore, the discrepancy function  

 

E = S - ∑( )            (29) 

 

is used to estimate the unknown parameters of the structural model. Analytically, E is 

minimized by setting starting values of the  parameters and iterated until the E 

converges. The value of E is estimated with each set of new parameters and the fit of the 

implied model is determined. The criterion for convergence is predetermined to a 

minimal discrepancy (difference) threshold value (e.g., < 0.001) of E before its 

acceptance. Usually, multiple independent runs with different starting values are 

proposed and the expectation is that all of them converge to similar  parameters. 
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Therefore, CFA and SEM are method to test how well proposed models account for the 

variance-covariance matrix of the observed variables. 

Several methods have been proposed to minimize the discrepancy function E 

(Grace 2006). Some of the most important are: Maximum Likelihood (ML), Unweighted 

Least Squares (ULS), and Generalized Least Squares (GLS). ML approach minimizes the 

sum of the squared differences for S - ∑( ) after weighting them by the inverse of the ∑(

). ULS approach minimizes only the sum of the squared differences for S - ∑( ). GLS 

approach minimizes the sum of the squared differences for S - ∑( ) after weighting them 

by the inverse of the S. All methods provide a χ2 statistic based on the difference of [(S - 

∑( )]2 in the form of  

 

χ2 = EML (n – 1)     (30) 

 

where EML is the minimized fitting function and n is the sample size of the sample 

population. The significance of the χ2 statistic is determined by the degrees of freedom or 

the number of parameters estimated (i.e., p* − q). The structural equation model is 

rejected if χ2 more than a critical value (cα) and α significance level.   

Structural model fit is reported by providing overall model fit (i.e., χ2 goodness of 

fit) and several fit indices (Brown 2006). Large sample sizes tend to cause significant χ2 

statistics as implied from equation (30). Therefore, other fit indices provide alternative 

evaluation of model fit and they are classified in incremental and absolute fit indices. 

Incremental fit indices measure the proportional improvement of a proposed model 

against a null model of all indicators as uncorrelated variables. The most common 

incremental indices are the Normed Fit Index (NFI) (Bentler and Bonnett 1980), Tucker-

Lewis Index (TLI) (Tucker and Lewis 1973), and the Comparative Fit Index (CFI) 
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(Bentler 1990). Absolute fit indices measure the accuracy of the structural model in 

reproducing the observed variance-covariance matrix. The most common absolute indices 

are the Standardized Root Mean Square Residual (SRMR) (Joreskog 1993) and the Root 

Mean Square Error of Approximation (RMSEA) (Steiger and Lind 1980).  The 

determination of good fit based on the indices reported are > 0.95 for NFI, CFI, and TLI; 

< 0.10 for SRMR; and < 0.06 for RMSEA (Hu and Bentler 1999).  For this report, I have 

not included the derivations of the fit indices, but it is encouraged that readers refer to 

literature cited. 

Structural model does not have an adequate fit, if the model has a significant χ2 

statistic and evidence of poor fit based on the indices described above. However, the 

model can be re-specified (i.e., modified) and subsequently re-tested for fit. The basis of 

model modification has to have significant theoretical bases by proposing or dropping 

parameter estimation. Two common model re-specification techniques are the Lagrange 

Multiplier and Wald statistic modification index algorithms (Grace 2006). Lagrange 

Multiplier (LM) is an iterative approach where the path and parameters are added to the 

model and fit improvement is determined by statistical significant changes in the overall 

χ2 statistic. Parameters are progressively added until the fit model of the model is not 

significantly better than without the added parameter. The Wald statistic is also an 

iterative approach where the path and parameters are dropped from the model and fit 

improvement is determined by statistical significant changes in the overall χ2 statistic. 

Parameters are progressively dropped until the fit model of the model is significantly 

worst than with the dropped parameter. The LM and Wald statistic approaches usually 

have several independent starts and an overall consensus for adding or dropping specific 

parameters is presented to the researcher. 
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The final step is the interpretation of the accepted model in the context of theory 

and the population where the data came from. Several aspects have to be considered after 

a model is favored. First, the true model almost never be recovered with enough 

accuracy, but the structural model is the best approximation of the truth. Second, the 

preferred model is one of multiple equivalent models that equally explain our data and we 

shall be willing to propose alternatives. Third, the model preferred was derived from a 

given dataset and cross-validation with independent datasets is always desirable. Finally, 

the model is a simplification of the world and we have to assume that the complexity is 

always a reality. 
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Figure 1: Sewell Wright path diagrams depicting the fitness, reproduction, and growth 
traits interrelationships of guinea pigs. (a) Wright’s 1921 paper (Wright 
1921) on causation and correlation shows the negative or positive 
relationships between hereditary factors and measurable variables (e.g., rate 
of growth and gestation period). (b) Wright’s 1920 paper (Wright 1920) on 
the importance of hereditary and environmental variables on phenotypic 
traits of guinea pigs. Wright introduced the concept of path analysis and the 
some of its rules to address correlation by diagrams as early as the 1920’s. 
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Figure 2:      An exemplar measurement (a) and structural model (b) of observed and 
latent variables related to the reproductive success based on data of 
Darwin’s finches (Grant 1999). (a) The measurement model depicts the 
latent (implied, grey ovals), their indicator (observed, white boxes), and 
error variables. Single-headed arrows indicate direct effect from latent or 
error on indicator variables. Double-headed arrows indicate correlation. The 
circles with 1 indicate that the model has been standardized. (b) One of the 
proposed structural models of relationships among latent variables. The 
model indicated suggest a direct effect of scale on diet, diet on survival to 
adulthood, and survival on reproductive success. The model (b) is 
illustrative and it does not reflect an actual SEM analysis performed in 
Darwin’s finches data. 
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Figure 3:      An exemplar use of independent contrasts with two traits that have evolved 
uncorrelated in 40 species within four lineages (Clades A-D). (a) Plot of the 
bivariate values of trait 1 versus 2 of all species. The dashed line is the 
linear regression with a significant positive correlation value between both 
traits. (b) Phylogeny of the 40 species with their lineage affiliation. Species 
in Clade A are evolutionarily more closely related to Clade B, than species 
in Clades C and D. (c) Plot of the bivariate relationships with the phylogeny 
superimposed, the reader might notice that data points are not independent 
and there is a hierarchical nature of the relationships among species. We 
might need to account or correct for the phylogenetic signal before statistical 
analyses can be performed if independence of data points is an assumption 
(i.e., multivariate regressions, MANOVA, factor analysis, and structural 
equation modeling). (d) Plot of the phylogenetic independent contrasts (PIC) 
for the two traits, the number of contrasts is 39 (i.e., n – 1 species). The 
regression line is forced through the origin (Felsenstein 1985) and we reject 
the association between both traits after phylogenetic correction. 
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 Figure 4:      Flowchart of the steps necessary to perform a Phylogenetic SEM from raw 
multivariate data and phylogenetic reconstruction to factor analysis, 
confirmatory factor analysis, and SEM. Different steps are summarized from 
the different chapters developed in this report. 



 44 

References 

 

Adams, D. C. 2008. Phylogenetic meta‐analysis. Evolution 62:567-572. 

Armbruster, W. S., C. Pelabon, T. F. Hansen, and C. P. H. Mulder. 2004. Floral 
integration, modularity, and accuracy: distinguishing complex adaptations from 
genetic constraints. Pp. 23-50 in M. Pigliucci, and K. Preston, eds. Phenotypic 
Integration: Studying The Ecology. Oxford University Press, New York, USA. 

Bentler, P. M. 1990. Comparative fit indexes in structural models. Psychological Bulletin 
107:238-246. 

Bentler, P. M., and D. G. Bonnett. 1980. Significance tests and goodness of fit in the 
analysis of covariance structures. Psychological Bulletin 88:588-606. 

Björklund, M. 1997. Are “comparative methods” always necessary? Oikos 80:607-612. 

Blomberg, S., T. Garland, and A. Ives. 2003. Testing for phylogenetic signal in 
comparative data: behavioral traits are more labile. Evolution 57:717-745. 

Brooks, D. R. 1996. Explanations of homoplasy at different levels of biological 
organization. Pp. 339 in M. Sanderson, J, and L. Hufford, eds. Homoplasy: The 
Recurrence of Similarity in Evolution. Academic Press, San Diego, CA. 

Brown, T. 2006. Confirmatory Factor Analysis for Applied Research. The Guildford  
Press, New York, NY. 

Butler, M. A., and A. A. King. 2004. Phylogenetic comparative analysis: a modeling 
approach for adaptive evolution. Am Nat 164:683-695. 

Cheverud, J., M. Dow, and 1985a. An autocorrelation analysis of genetic variation due to 
lineal fission in social groups of rhesus macaques. American Journal of Physical 
Anthropology 67:113-122. 

Cheverud, J. M., M. M. Dow, , W. Leutenegger, and 1985b. The quantitative assessment 
of phylogenetic constraints in comparative analyses: sexual dimorphism in 
body‐weight among primates. . Evolution 39:1335-1351. 

Clobert, J., T. Garland, and R. Barbault. 1998. The evolution of demographic tactics in 
lizards: a test of some hypotheses concerning life history evolution. J Exp Biol 
11:329-364. 

Cox, R. M., S. L. Skelly, and H. B. John-Alder. 2003. A comparative test of adaptive 
hypotheses for sexual size dimorphism in lizards. Evolution 57:1653-1669. 

Desdevises, Y., P. Legendre, L. Azouzi, and S. Morand. 2003. Quantifying 
phylogenetically-structured environmental variation.. Evolution 57:2647-2652. 

Felsenstein, J. 1985. Phylogenies and the comparative method. Am Nat 125:1-15. 



 45 

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Sunderland, MA. 

Freckleton, R. P., P. H. Harvey, and M. Pagel. 2002. Phylogenetic analysis and 
comparative data: a test and review of evidence. Am Nat 160:712-726. 

Garland, T., and S. C. Adolph. 1991. Physiological differentiation of vertebrate 
populations. Annu. Rev. Ecol. Syst. 22. 

Garland, T., A. F. Bennett, and E. L. Rezende. 2004. Phylogenetic approaches in 
comparative physiology. J Exp Biol 208:3015-3035. 

Garland, T., A. W. Dickerman, C. M. Janis, and J. A. Jones. 1993. Phylogenetic analysis 
of covariance by computer simulation. Syst Biol 42:265-292. 

Garland, T., P. H. Harvey, and A. R. Ives. 1992. Procedures for the analysis of 
comparative data using phylogenetically independent contrasts. Syst Biol 41:18-
32. 

Garland, T., and A. R. Ives. 2000. Using the past to predict the present: confidence 
intervals for regression equations in phylogenetic comparative methods. Am. Nat. 
155:346-364. 

Garland, T., P. E. Midford, and A. R. Ives. 1999. An introduction to phylogenetically 
based statistical methods, with a new method for confidence intervals on ancestral 
values. Amer. Zool. 39:374-388. 

Gotelli, N. J., and A. M. Ellison. 2004. A Primer Of Ecological Statistics. Sinauer 
Associates, Sunderland, MA. 

Grace, J. 2006. Structural Equation Modeling and Natural Systems. Cambridge 
University Press, Cambridge, UK. 

Grafen, A. 1989. The phylogenetic regression. Philos. Trans. R. Soc. London 326:119-
157. 

Grant, P. 1999. Ecology and Evolution of Darwin's Finches. Princeton University Press, 
Princeton, NJ. 

Hansen, T. F. 1997. Stabilizing selection and the comparative analysis of adaptation. 
Evolution 51:1341-1351. 

Hansen, T. F., and E. P. Martins. 1996. Translating between microevolutionary process 
and macroevolutionary patterns: the correlation structure of interspecific data. . 
Evolution 50:1404-1417. 

Hansen, T. F., J. Pienaar, and S. H. Orzack. 2008. A comparative method for studying 
adaptation to a randomly evolving environment. Evolution 62:1965-1977. 

Harvey, P. H., and M. D. Pagel. 1991. The Comparative Method in Evolutionary 
Biology. Oxford University Press, Oxford. 



 46 

Harvey, P. H., and A. Purvis. 1991. Comparative methods for explaining adaptations. 
Nature 351:619-624. 

Hillis, D. M. 1998. Taxonomic sampling, phylogenetic accuracy, and investigator bias. 
Syst. Biol. 47:3-8. 

Housworth, E. A., E. P. Martins, and M. Lynch. 2004. The phylogenetic mixed model. 
Am Nat 163:84-96. 

Hu, L., and P. M. Bentler. 1999. Cutoff criteria for fit indexes in covariance structure 
analysis: conventional criteria versus new alternatives. Structural Equation 
Modeling: A Multidisciplinary Journal 6:1-55. 

Huxley, J., 1942, and 1942. Evolution: The Modern Synthesis. George Allen and Unwin, 
London, UK. 

Isaac, N. J. B., S. T. Turvey, B. Collen, C. Waterman, and J. E. M. Baillie. 2007. 
Mammals on the EDGE: conservation priorities based on threat and phylogeny. . 
PLoS ONE 2:e296. 

Jackson, J. E. 2003. A User's Guide to Principal Components. Wiley-Interscience, 
Hoboken, NJ. 

Jolliffe, I. T. 2002. Principal Component Analysis, New York, NY. 

Joreskog, K. G. 1993. Testing structural equation models. Pp. 294-316 in K. Bollen, and 
J. Lang, eds. Testing structural equation models. Sage, Newbury Park, CA. 

Kline, P. 1994. An Easy Guide to Factor Analysis. Routledge Taylor & Francis Group, 
New York, NY. 

Kline, R. 2005. Pinciples and Practice of Structural Equation Modeling. The Guilford 
Press, New York, NY. 

Lajeunesse, M. J. 2009. Meta-analysis and the comparative phylogenetic method. Am 
Nat 174:369-381. 

Li, C. 1975. Path Analysis: A Primer. Boxwood Press, Pacific Grove, CA. 

Losos, J. B. 1999. Uncertainty in the reconstruction of ancestral character states and 
limitations on the use of phylogenetic comparative methods. Anim Behav 
58:1319-1324. 

Losos, J. B. 2000. Ecological character displacement and the study of adaptation. Proc 
Natl Acad Sci U S A 97:5693-5695. 

Maddison, W. P. 1990. A method for testing the correlated evolution of two binary 
characters: are gains or losses concentrated on certain branches of a phylogenetic 
tree? Evolution 44:539-557. 

Maddison, W. P., P. E. Midford, and S. P. Otto. 2007. Estimating a binary character's 
effect on speciation and extinction. Syst Biol:5. 



 47 

Martins, E., and T. F. Hansen. 1997. Phylogenies and the comparative method: a general 
approach to incorporating phylogenetic information into the analysis of 
interspecific data. Am Nat 149:646-667. 

Martins, E. P., , and T. Garland. 1991. Phylogenetic analyses of the correlated evolution 
of continuous characters: a simulation study. Evolution 45:534-557. 

Martins, E. P., E. A. Housworth, and 2002. Phylogeny shape and the phylogenetic 
comparative method. Syst Biol 51:873-880. 

Mayr, E. 1982. The Growth of Biological Thought: Diversity, Evolution, and Inheritance. 
Belknap Press of Harvard University Press, Cambridge, MA. 

Mulaik, S. 2009. Foundations of Factor Analysis. Chapman & Hall/CRC. 

Pagel, M. 1994. Detecting correlated evolution on phylogenies: a general method for the 
comparative analysis of discrete data. Proc. R. Soc. London B 255:37-45. 

Pagel, M. 1997. Inferring evolutionary processes from phylogenies. Zoologica Scr. 
26:331-348. 

Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877-
884. 

Pagel, M., and A. Meade. 2007. BayesTraits Manual. 
http://www.evolution.rdg.ac.uk/BayesTraits.html. School of Biological Sciences. 
University of Reading, Reading, UK. 

Pagel, M., A. Meade, and D. Barker. 2004. Bayesian estimation of ancestral character 
states on phylogenies. Syst Biol 53:673-684. 

Paradis, E., and J. Claude. 2002. Analysis of comparative data using generalized 
estimating equations. J Theor Biol 218:175-185. 

Price, T. 1997. Correlated evolution and independent contrasts. Phil. Trans. R. Soc. 
London B 362:519-529. 

Quinn, G. P., and M. J. Keough. 2002. Experimental Design and Data Analysis for 
Biologists. Cambridge University Press, Cambridge, UK. 

Rao, D., C, M. Province, and A. 2000. The future of path analysis, segregation analysis, 
and combined models for genetic dissection of complex traits. Hum Hered 50:34-
42. 

Redding, D. W., and A. O. Mooers. 2006. Incorporating evolutionary measures into 
conservation prioritization. Conserv Biol 20:1670-1678. 

Rohlf, F. J. 2001. Comparative methods for the analysis of continuous variables: 
geometric interpretations. Evolution 55:2143-2160. 



 48 

Steel, M., A. Mimoto, and A. O. Mooers. 2007. Hedging one's bets: quantifying a taxon's 
expected contribution to future phylogenetic diversity. Evol Bioinform Online 
3:237-244. 

Steiger, J. H., and J. C. Lind. 1980. Statistically based tests for the number of common 
factors. Spring Meeting of the Psychometric Society, Iowa City, IA. 

Tabachnick, B. G., and L. S. Fidell. 2007. Using Multivariate Statistics. Pearson 
Education, Inc., Boston, MA. 

Tucker, L. R., and C. Lewis. 1973. The reliability coefficient for maximum likelihood 
factor analysis. Psychometrika 38:1-10. 

Wake, D. B. 1991. Homoplasy: the result of natural selection, or evidence of design 
limitations? Am. Nat. 138:543-567. 

Westoby, M., M. R. Leishman, and J. M. Lord. 1995a. Further remarks on phylogenetic 
correction. J Ecol 83:727-729. 

Westoby, M., M. R. Leishman, and J. M. Lord. 1995b. Issues of interpretation following 
phylogenetic correction. . J Ecol 83:892–893. 

Westoby, M., M. R. Leishman, and J. M. Lord. 1995c. On misinterpreting the 
“phylogenetic correction.”. J Ecol 83:531–534. 

Wright, S. 1918. On the nature of size factors. Genetics 3:367-374. 

Wright, S. 1920. The relative importance of heredity and environment in determining the 
birth weight of guinea pigs. Proc Natl Acad Sci U S A 6:320-332. 

Wright, S. 1921. Correlation and causation. Journal of Agricultural Research 10:557-585. 

Wright, S. 1923. The theory of path coefficients:  a reply to Niles' criticism. Genetics 
8:239-255. 

Wright, S. 1925. Corn and Hog Correlations. . Pp. 1-60. U.S. Department of Agriculture 
Bulletin, Washington, D.C. 

Wright, S. 1934. The method of path coefficients. Ann Math Stat 5:161-215. 

Wright, S. 1983. On "Path analysis in genetic epidemiology: a critique". Am J Hum 
Genet 35:757-768. 



 49 

Vita 

 

Juan Carlos Santos was born in Quito, Ecuador, on September 4th 1977. He is one 

of the three sons of Ernesto Santos and Sara García. He lived in his native city since his 

childhood. His love for living things was inspired by his visits with his father to the cloud 

forests in the Eastern Andean Foothills. His parents gave him, since early childhood, free 

access to books including Science and History. His love for basic sciences and the 

unselfish support from his parents influenced him to follow the path of Academia. He 

graduated from the San Gabriel High School in 1995 and he went for a full year visit to 

the US. In 1996, he studied Biology at the Pontificia Universidad Católica del Ecuador. 

He earned a B.A. in Biology in 2002 under the direction of Luis Coloma. In the fall of 

2002 he entered the Program of Ecology, Evolution and Behavior at the University of 

Texas at Austin and got his Ph.D. in 2009 under the supervision of David Cannatella. He 

also took courses in statistics and he hoped to finish his M.S. before his Ph.D., but he did 

it a semester after. He met his wife Natalia Biani in Austin and together, they have been 

sharing their love for Nature and Science.  

 

 

 

 

 
Permanent address: Ventura Aguilera N57-11 y Anonas, Quito, Pichincha, Ecuador. 

This report was typed by the author. 

 


