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The invention of the laser in 1960 opened the door for a myriad of stud-

ies on the interactions between light and matter. Eventually it was shown that

highly focused laser beams could be used to confine and manipulate matter in

a controlled way, and these instruments were known as optical traps. However,

challenges remain as there is a delicate balance between object size, precision

of control, laser power, and temperature that must be satisfied.

In Part I of this dissertation, I describe the development of two op-

tical trapping instruments which substantially extend the allowed parameter

ranges. Both instruments utilize a standing wave optical field to generate

strong optical gradient forces while minimizing the optical scattering forces,

thus dramatically improving trapping efficiency. One instrument uses a cylin-

der lens to extend the trapping region into a line focus, rather than a point

focus, thereby confining objects to 1D motion. By translation of the cylinder

vii



lens, lateral scattering forces can be generated to transport objects along the

1D trapping volume, and these scattering forces can be controlled indepen-

dently of the optical gradient forces. The second instrument uses a collimated

beam to generate wide, planar trapping regions which can confine nanoparti-

cles to 2D motion.

In Part II, I use these instruments to provide the first quantitative

measurements of the optical binding interaction between nanoparticles. I show

that the optical binding force can be over 20 times stronger than the optical

gradient force generated in typical optical traps, and I map out the 2D optical

binding energy landscape between a pair of gold nanoparticles. I show how this

ultra-strong optical binding leads to the self-assembly of multiple nanoparticles

into larger contactless clusters of well defined geometry. I finally show that

these clusters have a geometry dependent coupling to the external optical field.
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Chapter 1

Introduction to Optical Forces

Since the first experimental demonstration of the laser in 1960 [1], stud-

ies involving the interactions between light and matter have rapidly become

more accessible. This has led to a rapid increase in technological advance-

ments utilizing optical properties. Everything from the more commonplace

such as fiber-optic telecommunications, finger-print scanners and laser-based

surgery, to technologies still in development such as photonic circuitry [2–4],

holographic data storage [5, 6], and quantum computing [7–12]. Nanoscale op-

tical systems are especially intriguing. At that scale, objects typically have a

mass small enough such that photons scattered by the object impart a signif-

icant amount of momentum and cause the object to move. This most basic

light-matter interaction is commonly known as radiation pressure, and more

technically known as the scattering force.

1.1 First Observations of Radiation Pressure

Generally, the forces applied to objects due to light scattering cannot

be observed with the naked eye. Objects encountered in everyday life are

typically far too massive, and the photon momentum is far too small to cause
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Dust
tail

Ion tail

Figure 1.1: Comet tail formation near the sun. As the comet nears the sun,
gas and dust particles are pushed away due to solar radiation pressure. Ions
experience a stronger force component from solar wind than neutral parti-
cles, and the ions tend to follow magnetic field lines. Right panel: The
comet Hale-Bopp photographed at its perihelion in April of 1997. Images
from http://spaceplace.NASA.gov.

any significant motion of those objects. However, there are several instances

in which the circumstances are just right for radiation pressure to be readily

observed. In fact, radiation pressure was documented as early as 1610 in a

letter from Johannes Kepler to Galileo Galilei in which he described how comet

tails always point away from the sun [13, 14]. He suggested that the sun itself

may cause this effect, and as it turned out he was correct. Small dust particles

and gases surrounding the comet are pushed away from the sun by the photons

which impact and scatter off [15, 16].

In the vacuum of space there is little to dampen the acceleration of

the small dust particles, and so the effect of this radiation pressure on comet

tails is very pronounced. However, in vacuum even massive objects can be

significantly accelerated. The solar radiation pressure (SRP) can be expressed
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for a perfectly absorbing object as in reference [17]:

pSR =
Lsun
4πr2c

(1.1)

where Lsun = 3.85 × 1026W is the luminosity of the sun, r is the distance

of the object from the sun, and c is the speed of light in vacuum. Thus,

the SRP on an object near the Earth (r = 1A.U. = 1.5 × 1011m) is roughly

4.5 × 10−6 N
m2 . This is in fact a significant pressure for objects which remain

in space for long periods of time. For example, GPS satellites must have their

trajectories corrected for solar radiation pressure effects, and fluctuation of the

solar irradiance is the dominant source of error in computing these trajectories

[18, 19]. Massive objects are also affected, such as the command/service mod-

ule (CSM) of the Apollo 11 mission. We can actually estimate the effect of

solar radiation pressure on the moon mission by considering the displacement

of the CSM over its 3 day trip from the Earth to the moon as:

∆x ≈ 1

2
at2 (1.2)

≈ pSRA t
2

2m
(1.3)

where a is the acceleration of the object, t is the time the pressure is applied to

the object, m is the mass of the object, and A is the cross-sectional area of the

object. For the approximate weight and dimensions of the CSM (A ≈ 40m2,

m = 3 × 104kg), we can estimate that by the time the CSM reached the

moon, it would have been displaced by about 200m due solely to the solar

radiation pressure. When we consider a trip from Earth to Mars (about 9

4



months travel time) for a similar spacecraft, we can estimate the displacement

to be over 1000km. In fact, these displacements are precisely calculated and

taken into account by NASA scientists to guarantee successful missions and

can even be used to aid in spacecraft maneuvering [20–26]. This acceleration

of large objects through light scattering is an intriguing concept and may

eventually lead to spacecraft powered by “solar sails” [17, 27–29], however the

fundamental processes in which light applies forces on objects are more easily

studied in the lab on the single particle level.

1.2 The Scattering Force for Manipulating Microscopic
Particles

The first calculations describing radiation pressure on nanoparticles

were described by James Clerk Maxwell in 1871 using his theories on electro-

magnetism [30], and in 1901 Peter Lebedew reported the first experimental

demonstration [31]. However it wasn’t until the introduction of the laser in

1960 that this scattering force was considered as a viable tool for precise ma-

nipulation of microscopic objects. The first demonstration using lasers as the

basis for manipulating objects using scattering forces was performed in 1969

by Arthur Ashkin [32, 33], a scientist at Bell Telephone Laboratories in New

Jersey. He showed that not only were micron-scale particles easily manipu-

lated by laser light, but that due to the strong dependence of the magnitude

of the scattering force on the size of the particle (see also equation (1.5)),

particles of different sizes could effectively be sorted. In his demonstration,

5



larger 2.68µm diameter particles would be transported along the direction of

light propagation while smaller 0.59µm diameter particles would be left be-

hind [32]. Additional calculations and experiments dealing with the optical

scattering force soon followed [34–43], and the scattering force can succinctly

be written as in references [39, 41, 44]:

Fscat(~x) =
8π3α2

3cn3
mε

2
0λ

4
I(~x) (1.4)

=
128π5a6nm

3cλ4

[
(np/nm)2 − 1

(np/nm)2 + 2

]2

I(~x) (1.5)

where a is the radius of the particle, np and nm are the refractive indexes

of the particle and the surrounding medium respectively, λ is the wavelength

of the excitation light, α is the polarizability of the particle, and I(~x) is the

intensity of the light at the position of the particle (~x). While the scattering

force is very efficient in transporting particles, stable confinement of particles

typically cannot be achieved by a single beam using only the scattering forces.

To achieve “optical trapping” of his micro-spheres (optical levitation

free from direct surface contact), Ashkin used two counter-propagating laser

beams such that the net scattering force on the particle was zero (see figure

1.2). While this generated stable trapping along the axis of light propagation,

the particles could still experience confinement perpendicular to this axis, al-

beit relatively weakly. Ashkin attributed these radially confining optical forces

to the momentum transferred into the particle during refraction of the photons

as they entered and exited the curved surfaces of the sphere. Figure 1.2c shows

that for an incident beam of non-uniform intensity, such as a Gaussian beam,

6



(c)(a)

(b)

Figure 1.2: Original figures from Ashkin’s first paper on optical trapping by
radiation pressure [32]. a) Particles are accelerated towards a glass surface
by the scattering force. b) Stable suspension of particles using two counter-
propagating laser beams. The net scattering force here is nearly zero. c)
Description of forces applied to the particle due to refraction of the light rays.
The particle is pulled toward the highest intensity light rays.

the net force on the particle due to refraction of the photons pulls the particle

toward the highest intensity light rays and is dependent on the spatial varia-

tion (gradient) of the light intensity. This kind of force is therefore known as

the gradient force. On this size scale, when the particle radius is much larger

than the wavelength of the excitation light, this ray optics description is valid

and is conceptually very similar to the description of the scattering force (i.e.

momentum is transfered from the photon to the object). However, for much

smaller particles whose radius is much smaller than the wavelength of the ex-

citation light (Rayleigh particles) this description becomes invalid as the light

rays cannot be considered to refract at precise locations on the particle surface.
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A different conceptual model must be used to describe the gradient force for

Rayleigh particles.

1.3 The Gradient Force & Optical Tweezers

After his demonstrations of particle manipulation using the scattering

force [32, 33], Ashkin quickly realized that the gradient force (which he called

the dipole force in early publications) could be used as a powerful tool for op-

tical confinement of microscopic particles. In 1980 he published calculations

predicting that stable trapping of single atoms should even be possible pro-

vided a reasonable method to slow down the thermal motion of the atoms was

possible [35]. Soon after, from in 1984 to 1986, he worked with Steven Chu to

provide the first experimental observation of optically trapped atoms, made

possible by new laser based cooling techniques and magneto-optical trapping

[38]. Chu’s work on cooling and trapping single atoms earned him the 1997 No-

bel prize in physics [45]. Chu left Bell Labs shortly after trapping atoms while

Ashkin remained and continued to work on optical gradient force trapping,

this time with a focus on trapping biological material. The first experimental

demonstrations of optical gradient force trapping using a single laser beam

came in 1986 [44], and trapping of biological material by the same method

was described in 1987 [46, 47]. The technique of optical trapping by a single,

highly focused laser beam was termed “optical tweezers,” and also often called

a “single beam trap” [48–61].

Ashkin used optical tweezers to trap not only micron-sized dielectric

8



(c)(a) (b)

Figure 1.3: Diagram illustrating gradient force trapping by a single focused
laser beam in the ray optics regime. Light rays are refracted as they enter
and exit through the particle surfaces, thereby transferring momentum from
the photon to the particle. The net force generated (F ) is always toward the
focal point (f) from the particle center (O). The object is displaced a) below
the focus, b) above the focus, and c) laterally from the focus. Figure adapted
from reference [61].

objects such as glass spheres and bacteria, but also the tobacco mosaic virus

which has a size much closer to the Rayleigh regime (length ≈ 320nm, diam ≈

20nm) [44, 62]. However, while trapping of objects whose size is larger than the

wavelength of incident light can be described by ray optics (see figure 1.3), a

different model is needed to describe Rayleigh particles. For Rayleigh objects,

it is not possible to describe the refraction of light rays at precise locations

on the particle surface since the wavelength of the light is much larger than

the particle radius. The gradient forces generated on Rayleigh objects can be

described by considering the polarizability of the particle. An object in an

electric field becomes polarized with a dipole moment (~p) of:

~p = α~E = q~d (1.6)
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Figure 1.4: Diagram illustrating how gradient forces are generated on a
Rayleigh particle. In the presence of an electric field, the particle can be-
come polarized. If the field is non-uniform (stronger on one side of the particle
than the other), the polarized particle experiences a stronger force toward the
direction of increasing intensity (for polarizability α > 0).

where α is the polarizability of the particle and ~E is the electric field at the

location of the particle. The dipole moment of the particle defined here is

also equivalent to the dipole moment of two charges (±q) separated by a

displacement ~d. Figure 1.4 illustrates this concept. We also know the force

acting on a charge is described by the Lorentz relation:

~Fq = q ~E (1.7)

In the case where the polarized particle is in a non-uniform field, you can

consider that the magnitude of the electric field on one side of the particle

is larger than on the other side, thereby generating a larger force on the side

of larger electric field (see figure 1.4). If the polarizability of the particle is

positive (α > 0), the force is directed toward the direction of the stronger

field. In the case of optical tweezers, this would be toward the focal point of
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the laser. The gradient force on a Rayleigh particle can then be written as

derived in reference [41]:

~Fgrad(~x) =
1

4
α∇|E(~x)|2 (1.8)

=
2πnma

3

c

[
(np/nm)2 − 1

(np/nm)2 + 2

]
∇I(~x) (1.9)

where we have utilized the relationship between the intensity of light and the

electric field amplitude as:

I(~x) =
cnmε0

2
|E(~x)|2 (1.10)

We can compare the gradient and scattering forces applied to a particle in an

optical tweezer to determine the criteria for stable optical trapping. Since the

scattering force acts to push the particle in the direction of light propagation,

the peak gradient force along the optical axis which pulls the particle toward

the focal spot must be stronger than the scattering force at that location. This

is a particular weakness in the trapping mechanism as the intensity gradients

along the optical axis are much weaker than perpendicular to it. As shown in

references [41, 44], we can then use equations (1.5) and (1.9) along with the

axial position where the peak intensity gradient is located to define a condition

for stable trapping. The intensity distribution of a Gaussian focal spot can be

written as in reference [41]:

I(x, y, z) =
2P

π

[
1

ω2
0 + 4z2

]
e
− 2(x2+y2)

ω2
0+4z2 (1.11)

where P is the total laser power in the beam related to the peak electric field

amplitude by P = 1
4
πω2

0nmε0cE
2
0 , and ω0 is the radius of the beam waist and is
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related to the numerical aperture (NA) of the trapping lens by ω0 ≈ λ
2NA

. The

location of the strongest gradient force along the optical axis of a Gaussian

point focused beam is then given by (x, y, z) = (0, 0,
πω2

0√
3λ

) = (0, 0, πλ
4
√

3NA2 ).

Therefore, the trapping condition for Rayleigh particles can be written as in

reference [41]:

Fgrad
Fscat

=
3
√

3λ3NA2

32π5a3

[
(np/nm)2 + 2

(np/nm)2 − 1

]
≥ 1 (1.12)

We can see here a strong dependence on the numerical aperture of the focusing

lens, and in fact typically very high numerical aperture lenses (NA ≈ 1.3) are

used in order to generate stable trapping of small particles.

From just equation (1.12) we would expect that smaller particles are

easier to trap since the scattering force drops off more quickly than the gra-

dient force with size, but this is not the case. The above condition does not

consider thermal forces, which greatly affect the ability to stably confine the

particles. This thermal stability condition is mainly dependent on the strength

of the gradient force. Since the depth of the potential energy well (U0) for the

trapped particle is proportional to
∫
Fgrad d~s (where s is the escape path), then

from equation (1.9) we also know U0 ∝ a3. So for smaller and smaller particles,

the depth of the trapping potential rapidly decreases while the thermal energy

of the particle remains constant (at kBT ). This is the main reason why trap-

ping very small particles is much more difficult than large particles. Indeed,

only when advanced cooling techniques were developed which minimized the

thermal energy of the particle could single atoms be trapped [38]. However, it

is not always possible to cool the object. For example, biological applications
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[63–87] are required to be kept at or near room temperature if they are to

remain functional. Since the thermal motion of objects cannot be reduced in

these cases, techniques improving stability though reducing the strength of

the scattering force and increasing strength of the gradient force began to be

developed. The primary example of this is the standing wave optical trap.

1.4 The Standing Wave Optical Trap

In 1998, Pavel Zemánek and his colleagues at the Academy of Sciences

of the Czech Republic proposed a method of optical trapping utilizing a stand-

ing wave optical field [88–95]. By focusing the laser onto a reflective surface,

a standing wave is generated along the optical axis due to the interference of

the incident and reflected beams (see figure 1.5). This simple geometry had

two significant advantages. First, if the reflectivity of the surface is approx-

imately 100%, then the scattering force on the particle due to the incident

beam is completely compensated by the scattering force generated by the re-

flected beam. Therefore, the condition for stable trapping which requires the

scattering force to be weaker than the peak axial gradient force is always sat-

isfied (equation (1.12)). This would imply not only higher stability trapping,

but certain conditions no longer need to be met. For example, the numerical

aperture of the trapping lens no longer needs to be large, and this was demon-

strated in reference [95]. In fact, the beam needs not be focused at all since

a completely collimated beam would still generate an axial gradient force due

only to the standing wave. I will actually demonstrate and utilize this effect
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Figure 1.5: Calculations of the traditional optical tweezer intensity profile
compared to that of the standing wave optical trap. For the same peak in-
tensity, the gradient forces in the standing wave trap are much greater due to
the shortened distances between peak and minimum intensity. The greatest
improvement is along the optical axis (z-axis), which is the weakest axis in the
standard single beam trap. The wavelength of incident light is λ = 800nm.
Figure from reference [95].

to great advantage in chapters 2 and 6.

The second advantage is in terms of the gradient forces generated. We

can see in figure 1.5 that in a traditional single beam trap the focal spot inten-

sity distribution is greatly elongated along the optical axis (z-axis) compared

to the radial dimension. This typically would allow a trapped particle to be

significantly pushed along the optical axis by scattering forces to a position
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where the confinement by the gradient forces would then be weaker. Thus the

particle would be more likely to escape and usually does so along the optical

axis due to the lower restoring gradient force in that direction. In contrast,

when a standing wave is generated the axial intensity gradients become much

stronger than in the case of the single beam trap, and become even stronger

than the radial gradient forces. This is due mainly to the much shorted dis-

tance between intensity maximum to minimum, which is now about λ/4 axially

compared to the single beam trap which is on the order of 2λ axially. In fact,

the peak axial gradient force is calculated to be over 15 times stronger in the

standing wave trap compared to the single beam trap for the same laser power

[95].

We see that the standing wave optical trap eliminates (in a perfect

system) the destabilizing scattering force while amplifying the gradient forces,

especially along the optical axis which was previously the weakness of the single

beam trap. With these improvements, it became possible to stably trap much

smaller dielectric nanoparticles, down to 40nm in diameter, at reasonable laser

powers and at room temperature [89, 95]. This is 3 times smaller in volume

compared to the tobacco mosaic virus trapped by Ashkin in 1986 [44]. Since

the standing wave geometry shows such significant improvement in trapping

of nano-scale objects, I will use this as the basis on which my optical trapping

instruments are developed.
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1.5 Other Optical Manipulation Methods

The standing wave optical trap is not the only advancement in optical

trapping since Ashkin’s work. There are many variations on optical tweezer

design, all with their own advantages and disadvantages. However, there are

two primary goals for basing my new optical instruments on the standing wave

geometry rather than any other. First, I intend to trap the smallest particles

possible using the least laser power. This is to ensure measurements of optical

effects within the Rayleigh regime while also avoiding significant heating of

the objects. Second, the objects must be trapped far from physical surfaces in

order to ensure the particles are free to move and are not experiencing surface

friction or drag effects. The standing wave geometry satisfied both of these

conditions. I will now briefly describe the other major classes of optical trap-

ping and manipulation techniques which have been developed since Ashkin’s

original work and discuss them in reference to the two above conditions.

1.5.1 Evanescent Field Traps

One method to generate strong intensity gradients is by utilizing evanes-

cent waves. When an incident beam strikes an interface between two media of

different refractive indexes, part of the beam is reflected and part of the beam

is transmitted. However, if the beam propagates from a high index material

into a low index material and strikes the interface at an angle greater than the

critical angle, resulting in total internal reflection of the beam, an evanescent

field is generated within the low index medium. Figure 1.6 illustrates this
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(a) (b)

Figure 1.6: Diagram of optical trapping by evanescent waves adapted from
reference [96]. a) An incident laser beam is focused on the interface between
two media of different refractive indexes. b) When the angle of the incident
beam is greater than the critical angle, total internal reflection occurs and an
evanescent field is generated within the second medium which decays expo-
nentially with distance from the interface. This steep intensity gradient pull
particles toward the surface. In addition, a scattering force is generated in the
direction of light propagation.

concept. The evanescent field intensity decays exponentially with distance

from the interface, thus creating steep intensity gradients. Particles in this

evanescent field experience a strong gradient force, pulling them toward and

into contact with the surface [96–102].

In addition, a scattering force is generated on the particles as indicated

in figure 1.6b. This scattering force is similar to the scattering force described

in chapter 1.2 in that momentum from the incident photons is transferred

to the particle. Interestingly though, an evanescent field is not a propagating

wave and therefore carries no momentum. The scattering force here is therefore

attributed to conversion of the evanescent field back into a propagating field
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inside the particle, or equivalently the tunneling of photons through the gap

between the particle and surface [96]. Through this process, momentum of

the incident beam can be transferred to the particle, and particles can then

also be driven across the surface in addition to being pulled towards it by the

gradient force [96, 99, 101, 102].

While this method generates very strong gradient forces, the primary

concern when using this technique is the contact the particles make with the

surface. Bounded by a hard surface, particles are not free to move in all di-

rections. Additionally, friction and drag forces due to contact with the surface

prevent free motion of the particles, which can be otherwise used as a reporter

for the optical forces the particles experience. As I will show in Part II, this

is important for revealing and measuring unexpected optical interactions.

1.5.2 Scanning Single Beam Traps

It is also possible to modify traditional single beam optical tweezers

in order to generate intensity fields of nearly arbitrary three-dimensional ge-

ometries. One such method is the use of motorized mirrors or acousto-optical

modulators to rapidly scan the focus of the laser within the sample. This es-

sentially distributes the laser intensity over the desired path, typically defined

through a computer program, and the time the beam has spent at each posi-

tion in that path determines the trapping strength at that position [103–114].

Using this method, it is possible to generate arrays of discrete trapping regions

(known as “time shared” trapping), or extended traps, such as lines, loops or
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Figure 1.7: Particle transport in scanning optical tweezers. a) A single beam
optical trap is rapidly scanned in a circle roughly 16µm in diameter thereby
confining a particle along the same path. The location of the trapping potential
during the scan is indicated by the inverted Gaussian curve. b) Dependence of
the velocity of the particle (vp) with respect to the velocity of the scanned trap
(vT ) and laser power. 700mW (circles), 300mW (triangles), 150mW (crosses).
Figure adapted from reference [105].

other shapes.

Figure 1.7 shows an example of a scanning optical trap which traces

out a circular path 16µm in diameter. The particle is then confined to the

path traced out by the trap, but is pulled by the optical trap along the path

every time the trap passes by. Figure 1.7b shows the velocity of the particle

as a function of the velocity of the scanning trap and the laser power. As

expected, for low scan velocities, the trap pulls the particle along with it and

the particle velocity is identical to the trap velocity. However, at a critical

speed determined by the drag forces and laser power, the particle can no

longer be pulled effectively by the trap and gets left behind. Therefore we see
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the particle velocity decrease rapidly until it is relatively unaffected by the

motion of the trap.

The relative intensities of different positions in the scan can also be

varied. More time spent at a location by the laser means a higher time averaged

intensity field, and thus stronger gradient forces. By precise control over the

position of the trap and the dwell time at each location, intensity fields can

be generated which can perform interesting functions, such as for guiding and

sorting of particles. Figure 1.8 shows an example in which a carefully sculpted

intensity field can sort different sized particles from a fluid flow. The optical

field is shaped to have regions of varying intensity. Since the gradient force

is proportional to a3 (where a is the particle radius) while the Stokes drag on

the particles is proportional to a, the smaller particles cannot be contained by

the weaker intensity fields while the larger particles can. In this fashion, the

smaller particles exit the intensity field at a different location than the larger

particles, and the particles are therefore effectively sorted [112, 113].

While scanning optical tweezers can have a wide variety of uses, it can-

not provide trapping strength or precision greater than the traditional optical

tweezers on which it is based. It actually requires more total laser power to

generate forces of similar strength as the power is widely distributed over a

larger area. In addition, the relative phase of the light at different positions

in the intensity field cannot be controlled. For experiments requiring that

the phase of light at each position in the intensity field is equal, the scanning

method cannot be used. I will perform such experiments which are sensitive
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Figure 1.8: Sculpted intensity field by scanning optical tweezers for particle
sorting. A flow of four different diameter particles is directed by the shaped
intensity field which is indicated by the gray-scale inset. White indicates high
intensity and black zero intensity. The smaller particles are not affected by
the lower intensity regions while the large particles are, allowing for efficient
sorting of particles by size. Figure adapted from reference [112].

to the phase of incident light at all positions in the optical field in Part II of

this dissertation.

1.5.3 Extended Traps

Rather than scanning a point focused single beam trap in order to

generate a custom intensity field, it is also possible to use additional optical

elements to shape the wavefront of the incident beam. The simplest example

of this is to use an additional lens, for example a cylinder lens, to stretch
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the point focus of the optical tweezers into a line focus or other shape [115–

129]. The main advantage of this technique is the simplicity of implementation

since they generally only require insertion of an additional lens, rather than a

series of computer controlled scanning mirrors or acousto-optical modulators.

Another advantage is preservation of the relative phase of light at all positions

in the stretched light field, whereas in the scanning tweezers the relative spatial

phase coherence is destroyed. However, the drawback to this technique is the

lack of a point focused beam. For example, in the case of using a cylinder lens

to generate a line focus, the beam is only tightly focused in one dimension. We

know that the stability of the trap in terms of the ratio of the gradient force to

the destabilizing scattering force is strongly dependent on how tightly focused

the laser beam is (see equation (1.12)). By focusing in only one dimension, the

scattering force quickly begins to dominate over the gradient force and thus

the trapped particles are very unstable. When this method is used, either

the particles must be pressed against the surface [115, 116, 121], the particles

must be very large (> 1µm) [117, 123], or sub-micron particles can only be

trapped for very short timescales [118]. These drawback prevent me from

using this technique as it stands, however the advantage of the uniformity

in the phase of light is of critical importance to my measurements. I will

propose a modification to this technique by combining it with the standing

wave geometry in order to dramatically increase stability and precision.

Another way to generate extended optical fields is to use a reverse

imaging technique. Rather than use a laser beam which is focused by the
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Figure 1.9: Technique for generating optical trapping regions of various ge-
ometries by reverse imaging. An emitting object (a diode laser bar) is imaged
onto the sample plane thereby generating an intensity field of the same geom-
etry. Particles can then be trapped and aligned in the shape of the emitter.
Figure from reference [131].

objective lens to generate a trapping region, we begin with an already sculpted

external light field which is then imaged onto the sample plane. Figure 1.9

shows how a diode bar laser is used as the emitter and is imaged onto the

sample thereby generating an intensity field of the same geometry (a long

line in this case) [130–132]. Particles can then be trapped and aligned in the

high intensity region. I suspect one could even use an array of many emitting

diodes, or emitters of varying geometry or wavelength thereby projecting the

emitted geometry onto the sample plane. However, I have search and not

found a report of this particular evolution of the method. In addition, it

should be possible to dramatically “shrink” the scale of the original external

light pattern as it gets imaged into the sample, but I have not seen this reported

in the literature either. In any case, it is not possible for this technique to beat

the diffraction limit of a traditional point focused laser beam and suffers from
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similar drawbacks to the line focused traps discussed above.

1.5.4 Holographic Optical Traps

It is also possible to shape of the intensity pattern using holographic

methods [77, 114, 133–154]. Holography is especially useful because it allows

for nearly complete control over the phase and direction of the laser wavefronts.

Figure 1.10 shows a schematic of a typical holographic optical trap design.

The incident laser is first reflected off of a spatial light modulator (SLM). The

SLM is an array of pixels, similar to an led display, which can be controlled

by a computer program. Each pixel is able to retard the phase of light by

a specific amount through electronically controlled variation of the refractive

index [155]. Thus when the beam is reflected off the SLM, the wavefront is

no longer uniform but rather propagates as a custom diffraction pattern. For

example, the incident laser beam can be reshaped to propagate as though it

were an array of many incident parallel beams which can then all be focused

into the sample chamber. Thus, an array of particles can be trapped within the

sample chamber as shown in figure 1.10. The wavefront can further be modified

such that some beams are either diverging or converging before entering the

focusing objective lens thereby generating optical traps in a plane other than

the focal plane. This is the basic principle for using holographic optical traps

for manipulating multiple particles in all three dimensions, but nearly any

geometry of the intensity patter can be constructed (for example: interlocking

rings [153]), and the wavefronts can even be designed to apply torques to
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Figure 1.10: Schematic of a holographic optical trap. The incident laser beam
is first diffracted off a computer controlled spatial light modulator. The holo-
graphic image is formed within the sample chamber allowing for 3D control of
multiple particles. Figure from reference [134].

objects [138, 154, 156].

In addition to trapping of objects, holographic tweezers can be used to

guide and sort objects within a fluid flow. Such techniques are known as optical

fractionation. Figure 1.8 is an example of optical fractionation, although it

was not based on holographic tweezers but rather rapidly scanned tweezers.

However, holographic optical tweezers have received the most attention for this

technique as they can potentially be more easily implemented for industrial
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applications [135, 137, 148, 157].

While holographic optical tweezers have many uses, there are also draw-

backs. Mainly, the wavefronts generated by the SLMs are not very precise. As

I’ve described, the SLMs are composed of many pixels, and these pixels have

finite size on the order of 40µm in both length and width [155]. This size is

much larger than the wavelength of the incident light, and so it is not possible

to generate a diffraction wavefront with perfect precision. This leads to focus-

ing of the beams within the sample chamber to form focal spots that typically

are distorted and are larger than the diffraction limit. Thus, only large par-

ticles (> 1µm) can typically be trapped and high precision positioning of the

particle is lost. In the future, higher resolution SLMs may make holographic

tweezers a more viable option for high precision and nanoscale applications.

1.5.5 Optical Conveyor Belts

While holographic optical traps utilize diffraction patterns to generate

multiple trapping volumes in the sample plane, there are also methods which

utilize the interference of multiple beams. In particular, optical conveyor belts

demonstrate precise control of the phase of the interfering beams in order to

generate transport of objects over long distances and can be used in either a

standing wave trap geometry [150, 158–168] or an evanescent field trap geom-

etry [165, 169–173]. Figure 1.11 shows images of particles being transported

by a typical optical conveyor belt using a standing wave generated by two

counter-propagating Bessel beams. By precise variation of the phase of one of
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Figure 1.11: Images of particle transport in a typical optical conveyor belt.
Particles are trapped in the standing wave of two counter-propagating Bessel
beams. By manipulating the phase of one of the beams, the standing wave
is moved thereby also transporting the particles. The particles are 410nm
diameter polystyrene. Figure from reference [161].

the beams, the standing wave pattern can be translated thereby transporting

the particles which are confined in the antinodes.

The main advantage of this technique, aside from the ability to trans-

port particles, is the strength of the confinement which can be achieved using

the standing wave geometry. As I discussed in chapter 1.4, generation of a

standing wave pattern both increases the gradient force and at the same time

eliminates the destabilizing scattering force. Thus, trapping and transport

of particles as small as 200nm in diameter has been achieved. When used

in combination with advanced cooling techniques, even single atoms can be

transported by this method [158, 162].

However, this method has its flaws as well. Bessel beams have a self
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reconstructing, or “self healing,” wavefront which allows them to propagate

long distances with little diffraction. This is used to generate long standing

waves deep within the sample chamber. Yet, the axicon lenses (cone-shaped

lenses) used to generate these Bessel beams are known to generate flaws in the

beam wavefront due to the axicon tips which are not perfectly sharp but are

rounded and thereby reduce trapping stability. Furthermore, the technique

utilizing Bessel beams appears to require immense laser power of over 1W in

order to trap such small particles, and significant heating of the water within

the sample chamber in this case has been documented [161]. If water, which

has a nearly minimum absorbance at the wavelength used (λ = 532nm), is

susceptible to heating, then this kind of laser power and heating would likely

damage biological material or hinder measurements dependent on the thermal

fluctuation of the trapped particles. Metal particles, which are an object of

interest for my work (see Part II), are particularly susceptible to heating.

In the case of the evanescent field variation of the optical conveyor belt,

Bessel beams are not needed, and the laser intensity may be distributed over

a large area. However, the problem here is that the particles are pulled into

contact with the surface, as discussed with general evanescent wave trapping in

chapter 1.5.1. Therefore, while the optical conveyor belt has many advantages,

its significant disadvantages prohibit me from using this method as it currently

stands. Yet is is clear that utilizing standing waves can provide the most stable

method of trapping nanoparticles free in solution.
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1.6 Outline of Research Objectives

Although there are many different methods of optical manipulation

available, none are able to meet all the requirements for stable trapping of

nanoscale particles free in solution, and in a geometry which allows for free

movement of particles within a static optical field. For example, the extended

trapping or scanning techniques generate confinement along paths of many

different geometries, however they have not been shown to effectively trap

sub-micron particles. Conversely, the standing wave optical trap has proven

its ability to trap nano-objects, but its point focused beam does not allow

particles to freely move over long range.

In the next chapters, I will discuss the development of two new in-

struments which combine the standing wave optical trap geometry with ex-

tended trapping techniques. I will show that these new instruments are ca-

pable of achieving trapping of nanoparticles in extended optical fields using

minimally focused or completely collimated beams. One such geometry is a

one-dimensional tube-like confinement which I call the standing wave optical

line trap (SWOLT) and is described in chapter 2. The other geometry is a

two-dimensional planar confinement which I call the pancake trap (PT) and

is described in chapter 6.

In chapters 3, 4 and 5 I describe a method for generating and using

additional scattering force components in these traps to push particles to new

positions in the optical field without altering the intensity field itself. Thus,

the trapping by the gradient forces remains unaffected. This transport can be
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generated by either varying the angle of the incident beam thereby pushing

particles in one direction, or by focusing and de-focusing the beam which

pushes particles toward or away from the optical axis.

After fully developing the instruments and characterizing their func-

tion, I will use these instruments to study fundamental optical interactions

between nanoparticles. Aside from the optical scattering and gradient forces

which are forces applied to objects directly by the incident beam of light, there

is also a force known as the optical binding force which is an interaction be-

tween two or more particles in an optical field. While this optical binding force

has been observed and studied for over 20 years, direct quantitative measure-

ments of this force between Rayleigh particles have so far been out of reach.

I describe the current state of measurements on the optical binding force in

chapter 8. By monitoring the movement of nanoparticles in the SWOLT and

pancake trap for long timescales, I can gather orders of magnitude more statis-

tics of the optical binding interaction and accurately quantify the forces and

interaction energy landscape. Chapter 9 describes the measurements of bind-

ing force in 1D using the SWOLT, and chapter 10 describes the measurement

of the 2D energy landscape using the pancake trap.

Finally, I will use the wide optical field of the pancake trap to observe

the self-assembly of “optical matter,” formations of multiple nanoparticles

bound together only through optical binding forces. These cluster formations

have been previously predicted through numerical simulation, but have never

been observed experimentally. I can then monitor the bulk motion of the
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clusters in the trap to determine if the coupling to the external optical field may

be dependent on the specific geometry of the clusters. These measurements

are also described in chapter 10.
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Chapter 2

The Standing Wave Optical Line Trap

2.1 Introduction

With the introduction of the optical tweezers by Ashkin in 1986 [44,

46, 47], fields such as biophysics, colloidal physics and nanotechnology have

widely adopted it as a tool for manipulating and applying external forces on

micro-scale objects [67, 75, 100, 138, 165]. While standard optical tweezers are

commonly used to manipulate single objects, the development of new meth-

ods for multi-particle manipulation has recently become of great interest. For

example, optical methods for sorting and mixing of particles as part of lab-

on-chip devices have been the focus of many studies, also known as optical

fractionation [135–137, 139, 144, 148, 157]. There has also been much effort in

optical methods for continuous transport and delivery of many particles along

defined pathways using extended optical traps or optical conveyor belts (see

chapter 1.5). However, these techniques have only been shown to be effective

for manipulating individual particles larger than about 1µm in diameter, re-

quire immense laser power or pull the objects into contact with a hard surface.

Our goal is to develop a technique that can manipulate nanoparticles

free in solution using low laser power and allows for continuous optical trans-
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port. Such a technique would be highly beneficial for sorting, mixing and

assembly of not only synthetic particles such as individual carbon nanotubes,

but also for biological particles such as small vesicles. With this goal in mind,

we base our technique on the standing wave optical trap (SWOT), which has

been shown to produce stronger intensity gradients and deeper potential wells

compared to a single beam trap (SBT) of the same power and is able to trap

nanoparticles free in solution [88–94]. In a SBT, a laser beam is typically fo-

cused by a high numerical aperture lens in order for the axial gradient force

to overcome the axial scattering force. This requirement is eliminated in a

SWOT due to the compensation of the axial scattering force by the reflected

beam [88–94, 146, 147, 149] and because the axial gradient force is still gener-

ated by the standing wave pattern even if collimated beams are used. This

advantage allows us to generate a highly stable standing wave optical line trap

(SWOLT), even though we have only focused the trapping beam in one dimen-

sion. I use the SWOLT to confine nanoparticles to a precise pathway where

the transverse thermal position fluctuations of the particles are still smaller

than their diameter. This is important, for example, for the precise ordering

and assembly of nano-objects.

While the precise confinement of nano-particles is a necessary step in an

assembly process, it would be desirable if the particles could be manipulated

independent of this confinement. Here I show that the SWOLT can generate

a lateral component of the scattering force which can be used for unidirec-

tional or bidirectional continuous transport out of the trap or for forcing the
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aggregation of particles. This lateral component of the scattering force can

be controlled independently of the confining gradient force through the lateral

and axial translation of the cylinder lens that is used to generate the SWOLT.

The elegant design of the SWOLT allows me to derive a simple ray optics

model (and consequently a simple mathematical expression) which describes

the forces generated on particles in the SWOLT trapping volume.

2.2 Instrument Design

The design of the SWOLT is similar to that of standard single beam

traps but with a few additions. Figure 2.1 shows a schematic diagram of the

SWOLT. The system is designed around an inverted microscope (Axiovert 100,

Carl Zeiss, Germany). Objects are imaged using the microscope’s built-in dif-

ferential interference contrast (DIC) components which include the condenser

lens, Wollaston prisms, polarizer, analyzer and a halogen lamp as the light

source. A CCD camera (Rolera-XR Fast Cooled, Q-Imaging, Surrey, BC,

Canada) is used to capture real time videos of the particles. A 1064nm wave-

length single longitudinal mode laser (CL1064-1W0-S, CrystaLaser, Reno, NV,

USA) is coupled into a single mode polarization preserving fiber optic cable

(PMC-980/1064-6 4-NA012-3-APC-500-P, Schäfter and Kirchoff GmbH, Ger-

many). The coupling optics of the fiber expand the beam to about 5mm in

diameter in order to overfill the back aperture of the objective lens. The objec-

tive lens (Plan-Neofluar 100x/1.3 Oil Pol, Carl Zeiss, Germany) is used both

for imaging and for focusing the laser onto the surface of a dichroic coverslip
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Figure 2.1: Schematic of a standing wave optical line trap. The design is based
on a standard single beam trap design [75, 174], but with two additions. A
dichroic coverslip is used as part of the sample chamber to generate a standing
wave optical trap. The cylinder lens is used to stretch the trapping volume
into a line, and translation of the cylinder lens generates lateral components of
scattering force which drive transport along the line. Many imaging techniques
can be used with the SWOLT, such as dark field microscopy. Figure 6.1 shows
a similar setup using dark field. See also figure 9.1 for a 3D illustration of the
trapping volume. Figure from my publication [175].
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(1064nm reflectivity > 99%, Institute of Scientific Instruments of the ASCR,

Czech Republic). The incident and reflected laser beams interfere and gen-

erate a standing wave trap within the sample chamber (see figure 2.1 inset).

The sample chamber volume is typically filled with deionized water along with

the sample to be studied. A λ/2 plate is used to change the polarization angle

of the incident laser beam such that it is not split in two by the Wollaston

prism. Finally, a cylinder lens (LJ1653RM-C, f = 200mm, Thorlabs, New-

ton, NJ) is inserted in the beam path in order to transform the SWOT into

a SWOLT. This is done by focusing the laser beam onto a line localized on

the back focal plane of the objective and centered on the optical axis. We will

call this the “default” alignment. The first trapping volume near the dichroic

coverslip is nearly diffraction limited transverse to the long axis (y-axis) of

the line trap. The width of the elongated Gaussian intensity profile along the

line trap (x-axis) is determined by the diameter of the incident laser beam,

the focal length of the cylinder lens, and the back focal length of the objec-

tive lens. The focusing axis of the cylinder lens (xCL-axis) corresponds to the

elongated axis of the trapping beam (x-axis), thus the SWOLT can also be

rotated through rotation of the cylinder lens. We will show that particles can

be manipulated by translating the cylinder lens laterally or axially from the

default position. Thus, the cylinder lens is mounted on an XY stage for precise

translation perpendicular to the beam path, and the XY stage is attached to

a rail system that permits long-range translation of the cylinder lens along the

optical axis. This allows the cylinder lens focal line to be positioned relative to
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the back focal plane of the objective lens in order to generate either collimated,

converging, or diverging trapping beams within the sample.

A simple check to see that the system is correctly producing a line

focus is to directly image the focal spot (actually a focal line). Since the same

objective is used for imaging objects in the sample as well as for focusing the

laser, the imaging plane is equivalent to the focal plane. To see an image of

the focal spot (which is the object of imaging), we need to use the dichroic

coverslip to reflect the rays back to the objective lens. Thus we really create

a virtual object of the focal spot which is in a plane behind the dichroic

surface. Therefore the only instance in which this virtual focal spot and the

imaging plane can be coplanar is to focus the objective lens directly onto the

surface of the dichroic coverslip. Any translation of the objective lens along

the optical axis away from this position will cause the image to be out of focus

and we will see the point spread function of the focal spots. Figure 2.2 shows

example images of a point focused spot and a line focused spot. The intensity

distribution can be easily rotated by rotating the cylinder lens accordingly but

otherwise does not change significantly. In addition, the axis of rotation is at

the same location where the point focused trap is located in figure 2.2a which

indicates good alignment of the optical system.

2.3 Trapping and Alignment of Nanoparticles

The ability of the SWOLT to stably trap and align nanoparticles over

a long length-scale is demonstrated in figure 2.3. Particles can be seen to be
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Figure 2.2: Images of the standing wave optical line trap intensity distribution
in the xy-plane. Images were recorded by removing the band pass filter from
the experimental setup (see figure 2.1) thereby allowing some laser light to
reach the camera. Since I focus the the laser onto the surface of the reflecting
coverslip with the objective lens, the imaging and focal planes are coplanar
and the image of the focal spot/line are projected onto the CCD camera. a)
Image of a point focused laser (cylinder lens removed). b), c ), & d) When
the cylinder lens is inserted, the point focus is stretched into a line focus. By
rotation of the cylinder lens, the orientation of the focal line is correspondingly
rotated. This allows for precise alignment and orientation of elongated trapped
objects, or for changing the path of transported objects.
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Figure 2.3: Trapping and alignment of 500nm diameter polystyrene particles
in the SWOLT. Stable trapping and alignment of 26 polystyrene nanoparticles
is demonstrated using 70mW of laser power in the focal plane. The aligned
particles maintain a precise ordering (they can not pass each other) demon-
strating the precision of the alignment even over the long SWOLT length.
Particles are imaged using DIC microscopy.

well aligned along the SWOLT length, and the alignment axis can be rotated

easily by rotating the cylinder lens as shown in figure 2.2. The confinement

along the y- and z- axes is strong enough to reduce thermal fluctuations of the

particles along those axes to significantly less than the particle diameters (see

also chapter 2.4). Therefore the trapped particles cannot “pass” each other

along this chain, but rather they maintain their precise ordering along the

length of the SWOLT. This is the equivalent of confinement to one dimension,

as in a channel or tube. This trapping geometry generated by the SWOLT can

be used for many studies requiring confinement to 1D, but would otherwise

suffer from proximity to surfaces such as attempts to experimentally quantify

single file diffusion [176–185]. Single file diffusion plays a major role in many

biological functions, such as the transport of molecules through ion channels

[186–191], and therefore development of an experimental model system would

prove useful in further research studies.

The ability of the SWOLT to stably trap and align even smaller nanopar-
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Figure 2.4: Trapping and alignment of nanoparticles in the SWOLT. Gold
particles 100nm in diameter were stably trapped and aligned in the SWOLT
with 70mW of laser power in the focal plane. Particles are imaged using
dark-field microscopy. The particle second from the left is trapped in the
second antinode of the standing wave and thus is out of focus. Figure from
my publication [175].

ticles at low laser power is demonstrated in figure 2.4. The compensation of

the scattering force increases the stability of the SWOLT when compared to a

single beam trap (SBT). Particularly for metallic particles in a SBT, the strong

scattering forces push them along the optical axis to positions away from in-

tensity maximum where they become less stable. Thus higher laser powers

are generally required for stable trapping compared to a SWOT. For example,

97nm diameter gold particles were trapped with 30mW of laser power in an

optimized SBT [192, 193]. Here we use 70mW , but when comparing the theo-

retical power density of the diffraction limited Gaussian focal spot of the SBT

(σx = σy ≈ 0.5µm) with the extended SWOLT (σx ≈ 15µm, measured from

direct images of the SWOLT intensity profile, and σy ≈ 0.5µm), and even ac-

counting for a factor of 4 increase in power density due to the standing wave,

the required power density of the SWOLT is still at least 3 times lower at the

intensity maximum. Particles were also stably trapped far away from the inten-

sity maximum of the SWOLT (along the x-direction) where the power density

can be nearly an order of magnitude lower compared to the center of a SBT.
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Despite the low power density, the gold nanoparticles are well aligned

within the SWOLT. Using video analysis to track the particle positions, the

measured standard deviation of the transverse (y-axis) thermal fluctuations

along the length of the trap explored by the particles is only 36 ± 4nm (de-

termined by a Gaussian fit to the position data) which is smaller than their

radius. Thus the probability that they reorder themselves along the SWOLT

is very low which is desirable for the assembly of nanoparticles in a precise

order.

2.4 Measurement of the SWOLT Trapping Stiffness

While it is possible to trap, align, and manipulate such small particles

in the SWOLT, their diameter is below the diffraction limit. This makes the

quantification of the trap properties difficult. Although we can distinguish

individual 100nm gold particles from aggregates based on the scattering inten-

sity (for example doublets appear roughly twice as bright as an individual),

the center of an individual particle cannot be tracked if particles aggregate.

Therefore, we use 500nm diameter polystyrene particles, easily resolved in

conventional DIC microscopy, for many of the following experiments which

will characterize the SWOLT.

To determine the trap stability we observed a 500nm diameter polystyrene

particle diffusing in the SWOLT for 2 hours (see figure 2.5a) and calculated

the position histogram. The longitudinal (x-axis) as well as the transverse

(y-axis) probability distributions follow a Gaussian profile that corresponds
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Figure 2.5: Characterization of the SWOLT’s trapping potential. a) Position
histogram of a 500nm diameter polystyrene bead diffusing in the SWOLT
for 117 minutes (1.4 × 105 data points). The base image shows the full 2D
histogram data. The black curves are individual line profiles of histogram data
for a given x-position averaged over ±65nm. The inset shows a sample DIC
image used to track the bead. The yellow line indicates the path of the center
of the particle over 30sec. b) The transverse spring constant κy of the trap at
different positions along the trap length. Values are normalized to the value
at x = 0, κy(0) = 2.6± 0.2pN/µm. The trapping power in the focal plane was
about 70mW . Figure from my publication [175].

to a harmonic potential. The width of the probability distribution along the

x-axis (at y = 0) is 385±4nm and along the y-axis (at x = 0) is 36.9±0.4nm.

The corresponding spring constants are κx = 0.025 ± 0.002pN/µm and κy =

2.6± 0.2pN/µm. The errors in these values are determined from least-squares
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fitting of the data. The small fluctuations along the y-axis underline the strong

transverse confinement of the particle by SWOLT while the confinement along

the trap is weak, allowing the particle to explore more than two micrometers

by thermal excitation. The aspect ratios are approximately 10:1 for the posi-

tion fluctuations and 1:100 for the force constants. As expected, the transverse

force constant κy is nearly invariant over the explored length of the trap (see

figure 2.5(b)) which indicates a tube-like confinement of the particle. The

uniform transverse confinement also suggests that the SWOLT extends much

further out, but these parts of the SWOLT are not accessible by thermal fluc-

tuations under the given experimental conditions. To also explore these parts

of the SWOLT, we use two additional methods: change of the average particle

position by the lateral component of the scattering force and the measurement

of the flow velocity of the particle after it is captured by the SWOLT. These

methods are described in Chapters 3 and 4.

2.5 Trapping and Guiding Live Swimming Bacteria

The ability of the standing wave optical line trap to stably confine ob-

jects to a one-dimensional channel, even at low laser power, opens the door

for interesting new experiments. For example, biological experiments in which

cells need to be ordered and observed for long timescales can be performed.

Figure 2.6 shows several bacterium (Bacillus subtilis) aligned in the SWOLT.

The strong confinement of the bacteria to 1D effectively maintains their or-

dering, even as they undergo cell division.
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Figure 2.6: Bacteria (Bacillus subtilis) trapped and aligned in the SWOLT.
Images using DIC microscopy. The bacteria shown here were not able to swim,
and so were easily trapped (see figure 2.7 for swimming bacteria). Cell division
was observed for a few of the bacteria in the SWOLT, however the medium was
likely deprived of nutrients and so prevented normal division. The SWOLT
provides the possibility for alignment and observation of biological objects
using low laser power and free from surface contact.

In the case of swimming bacteria, the SWOLT can be used to guide

their motion without imposing solid walls. Figure 2.7 shows an example of a

swimming bacterium being guided by the SWOLT. In the future, experiments

may be done which study the 1D motion of swimming bacteria without the

presence of a hard surface which is known to significantly affect the swimming

behavior. On the other hand, the SWOLT can also be used to probe the

surface effects even further, in a controlled fashion. With proper positioning

of the SWOLT, bacteria can be guided to swim parallel to a hard surface.

The distance from the surface the bacteria swim can then easily be varied

by repositioning the SWOLT, and the swimming behavior as a function of

distance from the hard surface can be studied in detail. This is just one

example of potentially many biological experiments that can be done with

the SWOLT. However I will focus on the purely optical phenomena, which is

surprisingly rich, for much of this dissertation.
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Figure 2.7: Excepts from video of bacteria (Bacillus subtilis) swimming
through the SWOLT. At this laser power (P ≈ 70mW ), the bacteria swim
too strongly to stay in the SWOLT. One bacterium is likely dead (not from
the trap) and thus rests at the center of the SWOLT. A passing bacterium
swims by but is guided by the SWOLT to change directions and swim along
the SWOLT axis, pushing into the dead bacterium and swimming around it
for a moment. Images taken using DIC microscopy.
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2.6 Summary

Two new optical trapping instruments were described and tested. In

chapter 2, the details of the standing wave optical line trap (SWOLT) design

were presented, and the instrument was shown to achieve the intended func-

tionality. Primarily, the SWOLT was shown to effectively confine nanoparti-

cles to a one-dimensional tube-like channel free in solution. Transverse particle

fluctuations in the SWOLT were measured to be smaller then their diameter

which is sufficient to maintain the order of the particles along the channel.

Twenty-six 500nm polystyrene particles were simultaneously trapped in the

SWOLT indicating the long length scale (tens of µm) with which particles can

be precisely aligned. Several 100nm diameter gold particles were also stably

trapped using 3 times less laser intensity than previously reported. This in-

dicates the efficiency of the SWOLT for trapping nanoparticles with low laser

power. Finally, live bacteria were trapped and aligned in the SWOLT, again

showing that living biological objects can be trapped with little photodamage.
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Chapter 3

Uni-Directional Manipulation in the SWOLT

3.1 Generating Lateral Scattering Force Components

In the experiments described in Chapter 2, the SWOLT was aligned so

that the scattering force from the incoming and reflected beam compensated

each other completely, i.e. when the trapping beam along the x-direction is

normal to the dichroic coverslip. However, the situation where the scattering

force is completely compensated is only a special case of the SWOLT. The

collimated beam parallel to the optical axis (z-axis) is generated in the sample

chamber by focusing the trapping laser beam on the center of the back focal

plane of the objective lens. By translating the cylinder lens perpendicular

to the optical path, a lateral component of the scattering force (~F s
net) will be

generated (see figure 3.1).

The dashed lines show representative light rays for the case of zero

net scattering force. The solid lines show the path of those rays after the

cylinder lens has been shifted by δxCL. The cylinder lens focal line still lies

within the back focal plane of the objective lens, thus the beam still emerges

as collimated, but the incident angle (θm) of that collimated beam changes.

Since the beam no longer propagates normal to the reflective surface of the
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Figure 3.1: Ray optics diagram illustrating how the lateral component of the
scattering force (~F s

net) is generated by shifting the cylinder lens along the xCL-
direction. While the z-component of the scattering force is compensated by
the reflected beam, the lateral component is amplified. This enables transport
of particles along the length of the SWOLT. Figure from my publication [175].
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dichroic coverslip, there is a lateral component of the scattering force (~F s
net)

while the axial components of the incoming and reflected beam still cancel

each other out. The lateral components of the two beams add, amplifying its

strength. The lateral scattering force can be used to push particles to different

regions along the length of the SWOLT. To illustrate the action of the lateral

scattering force, the cylinder lens was shifted in steps of 50µm, and a 2D

position histogram was obtained for each position of the diffusing particle.

Figure 3.2 shows the average position of the particle for different positions of

the cylinder lens. Note that the particle can be pushed over a range of 30µm

to 40µm by a modest shift of the cylinder lens (range of incident angles about

±13◦) due to the strength of the lateral scattering force.

To exclude that the longitudinal shift of the particles position is caused

by a longitudinal displacement of the SWOLT while changing the position of

the cylinder lens, we imaged the position of the trap and analyzed its strength.

Although it is expected that the shift in the average position of the trapped

particle is due to the lateral scattering force, any changes in the gradient

force also need to be considered since the resting position of the particle is

the point where the scattering and gradient force compensate each other. By

examining the ray diagram in figure 3.1 it is expected that the gradient force

distribution will be unchanged as the cylinder lens is shifted. The solid light

rays (representing a non-zero angle of incidence of the trapping beam on the

dichroic coverslip) are parallel to the dashed light rays (representing normal

incidence of the trapping beam) before entering the objective lens, so when
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xeqi

x=0

Figure 3.2: The average position of a trapped 500nm diameter polystyrene
particle in the SWOLT is shown for different positions of the cylinder lens.
The value xeqi = 0 corresponds to a selected pixel on the CCD camera near
the x-position of the intensity maximum when δxCL = 0. The vertical error
bars represent the standard deviation of the position. The solid red line was
fit to the data using the model for the SWOLT described in the text (equation
(3.9)). The parameters used for the fit are shown in table 3.1. The incident
angle (θm) was calculated from cylinder lens position (δxCL) using equation
(3.6). The inset illustrates an example of the particle position within the
trapping volume’s intensity profile. Figure from my publication [175].
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D = 4277µm NA = 1.3 κx = 25 fN
µm

nm = 1.33 np = 1.55 λ0 = 1064nm

I0 = 3.0mW
µm2 |~F s

00| = 0.98± 0.03pN

Table 3.1: Parameters used for the fit to the data in figure 3.2 using equation
(3.9). The diameter of the back aperture of the objective lens (D) as well as
the numerical aperture (NA) were given by the manufacturer; the refractive
index of the medium, water (nm), is known; the longitudinal spring constant
(κx) was measured as described in the text; and the magnitude of the incident

scattering force at x = 0 (|~F s
00|) was determined by fitting equation (3.9) to

the data with all other parameter held constant. This value is in agreement
with calculations of the scattering force magnitude on a Rayleigh particle using
equation 1 in the work done by Ashkin et.al. [44] which yields 1.17pN . For that
calculation we assume the parameters of a 500nm diameter polystyrene particle
with refractive index np trapped in water by a 1064nm vacuum wavelength
laser. The intensity of the incident beam at x = y = 0, I0, can be calculated
from the total power and the x and y widths of the 2D-Gaussian beam profile
by I0 = P/(σxσyπ) = 70mW/(15µm× 0.5µm× π) = 3.0mW/µm2.

they emerge they must intersect in the focal plane. Thus it is expected that

the intensity distribution in the trapping region near the reflective surface,

which is situated near the front focal plane of the objective, must remain

unchanged. Images of the intensity distribution on the surface of the dichroic

coverslip were obtained by removing the band pass filter (see figure 2.1) from

the observation path to allow the laser light to be imaged on the CCD chip.

Figure 3.3(a) shows the intensity profiles along the x-axis as the cylinder lens

is moved in steps of 50µm.

A shift of ±4µm in the center position of the intensity profiles can

be seen as the cylinder lens is moved. This shift is a result of translating
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Figure 3.3: Intensity profile of the SWOLT as a function of the position of the
cylinder lens. a) The intensity profile of the trap is imaged directly to provide
the gradient force component of the optical forces acting on the particles. No
particles are in the trap. Each column of pixels represents the intensity profile
of the trap along its length averaged over ±250nm from the longitudinal axis
(y = 0). Profiles were measured as the cylinder lens was translated in steps
of 50µm. b) Normalized longitudinal stiffness (κx/κx(δxCL=0)) of the SWOLT
as function of the cylinder lens position. The stiffness was calculated from the
intensity distribution (see text). Figure adapted from my publication [175].
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the cylinder lens without also translating the path of the incident laser beam.

However, this shift is in the opposite direction of the particle displacement and

is smaller in magnitude. Therefore the scattering force is pushing the particle

to different locations in the trap rather than being moved to a new intensity

maximum by the gradient force.

To obtain a measure of the strength of the spring constant κx, we

analyzed the intensity profiles. By taking the derivative of each intensity

profile, which is proportional to the gradient force, a line can be fitted to the

derivative near the trap’s center. The slope of this line is proportional to

the spring constant. Figure 3.3(b) shows that the calculated magnitude of the

spring constant remains unchanged as the cylinder lens position is varied. Thus

the strength of the lateral scattering and the gradient force are independent

within the tested range.

3.2 Mathematical Determination of Particle Position

To describe the new equilibrium position of the trapped particle when

the angle of incidence (θm) is not zero, we now develop a quantitative descrip-

tion of the lateral scattering force as a function of θm. The net scattering force

can be described by:

~F s
net = −2| ~F s

0 | sin(θm)x̂ (3.1)

where θm is the incident angle of the beam with respect to the normal of

the reflective coverslip (see figure 2.1 and figure 3.4). ~F s
0 is the scattering

force applied to the particle by the incident light ray. Assuming the particle
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Figure 3.4: Definition of the parameters used to calculate the incident angle
of the laser light θm as a function of cylinder lens position δxCL. Figure from
my publication [175].
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is near the dichroic coverslip which has a reflectivity close to 100%, we can

approximate the magnitude of the scattering force applied by the reflected

light ray ~F s
ref to be equal to that of the incident light ray (see figure 3.1 inset).

If the particle is not trapped in the first antinode of the SWOLT (closest to

the coverslip), but is trapped in an antinode further from the surface, this

approximation will become less accurate for large incident angles θm since the

incident and reflected rays striking the particles will have different intensities

based on the intensity profile of the trapping beam. The magnitude of the

force ~F s
0 is proportional to the intensity of the light ray generating that force.

Since we can assume that the intensity profile of the beam is a Gaussian and

the incident angle is independent of x-position in the SWOLT, we can write

~F s
0 (x) = ~F s

00 exp(−x2/σ2
x) where σx is the width of the Gaussian intensity

profile in x̂ and ~F s
00 is the incident scattering force at x = 0. Thus equation

(3.1) becomes:

~F s
net = −2|~F s

00| sin(θm)e
−x2

σ2
x x̂ (3.2)

To derive the relationship between the angle of incidence and the cylinder lens

position, we use a simplified model of the objective lens as described by Hwang

and Lee [194]. We consider a ray parallel to the optical axis whose distance

from the optical axis corresponds to the center position δxCL of the cylinder

lens. The angle θoil can be related to the ray position δxCL by:

noil sin θoil =
δxCL
f

(3.3)

where f is the focal length of the objective lens and noil is the refractive index

of the immersion oil which is matched to that of glass. And in the limit where
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δxCL = D/2 the equation becomes:

noil sin θ
max
oil =

D

2f
(3.4)

where θmaxoil is the maximum incident angle and is related to the numerical

aperture NA of the objective lens by:

noil sin θ
max
oil = NA (3.5)

Using Snell’s law, nm sin θm = noil sin θoil, with Eqs. (3.3) , (3.4), and (3.5),

we can write the incident angle θm as a function of the cylinder lens position

δxCL:

sin θm =
2 NA δxCL
D nm

(3.6)

Thus the form of the scattering force and the gradient force acting on a particle

along the x-axis in the SWOLT can be written as:

~F s
net(x, δxCL) =

−4 |~F s
00|NA δxCL
D nm

e
−x2

σ2
x x̂ (3.7)

~F g
x (x) = −κx x e

−x2

σ2
x x̂ (3.8)

where the x-component of the gradient force ~F g
x is given by the gradient of a

Gaussian intensity profile and is independent of cylinder lens position δxCL.

Using equation (3.7) and equation (3.8) it is now possible to solve for the

equilibrium position of the particle, which is where ~F s
net + ~F g

x = 0. Solving

these equations for x, the position of the particle, yields:

~xeqi(δxCL) =
−4 |~F s

00|NA δxCL
κx D nm

x̂ (3.9)
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The validity of equation (3.9) can be tested by fitting this function against

the experimental data (see figure 3.2) leaving the magnitude of the maximal

scattering force (|~F s
00|) as the only free parameter. The excellent agreement of

data and calculation confirms that our simple model is sufficiently precise to

describe the change of the scattering and gradient force as a function of the

position of the cylinder lens correctly.

3.3 Measurement of Total Optical Force at All Positions

If the gradient force does not change as the angle of incidence is changed,

then a probe particle can be manipulated by the scattering force alone to an

arbitrary equilibrium position along the trap. This allows us to measure the

transverse stiffness of the trap κy from the local thermal fluctuations of the

particle (see figure 3.5). As expected, the transverse force constant, dominated

by the gradient force, follows essentially the Gaussian intensity profile of the

trap. When the particle is displaced 15µm from the center to either side, its

transverse stiffness drops to just a few percent of its center value, but the trap

is still strong. We like to emphasize again that the positioning of the particle

was achieved by the lateral scattering force, in contrast to most other optical

manipulation techniques in which the particle is transported primarily by the

gradient force and thus typically comes to rest at the intensity maximum.

To quantify the lateral scattering force along the long axis of the trap,

we track the probe particle as it is transported along the length of the trap to

its rest position which is given by the balance of the gradient and scattering
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Figure 3.5: Transverse stiffness of the SWOLT measured at different equi-
librium positions along the trap length. Using the lateral scattering force as
shown in figure 3.1, a 500nm diameter polystyrene particle was pushed to po-
sitions away from the position of highest intensity. The transverse stiffness
κy was measured concurrently with equilibrium position data shown in figure
3.2. A Gaussian profile is drawn to guide the eye. Figure from my publication
[175].

force as calculated above. Since the Reynolds number of a nanoparticle in

water is very small, it can be assumed that the particle/fluid system is over-

damped and the particles travel at terminal velocity at any instant. In this

case the drag and the optical force are always in balance, and we can determine

the magnitude of the optical forces along the SWOLT from the local velocity

of the particle using Stokes’ law:

~F d
x = 6πεηavxx̂ = ~F s

net + ~F g
x (3.10)

where η is the viscosity of the fluid, ε is a correction factor for the viscous drag

near a surface [195], a is the radius of the particle, and vx is the x-component of

the particle’s velocity. Figure 3.6(b) shows the local velocities of particles and
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|~F s
00| = 1pN a = 250nm κx = 25 fN

µm

σx = 15.5µm η = 1.0 fNs
µm2 ε = 3

Table 3.2: Parameters used to fit equation (3.11) to the velocity data shown
in figure 3.6b. The value θm is the only free parameter used in the fit while
the remaining parameters are fixed to known, measured, or estimated val-
ues. |~F s

00| = 1pN and κx = 25fN/µm are set to experimentally determined
values as described for figure 3.2 (see also table 3.1). The particle radius
(a = 250nm) is given by the manufacturer; the width of the Gaussian inten-
sity profile (σx = 15.5µm) is measured from images of the intensity profile at
the coverslip surface; the viscosity of water (η = 1.0fNs/µm2) is known; and
the viscous drag correction factor (ε = 3) was estimated for a particle moving
near a surface [195].

the corresponding forces while they are transported form the capture position

to the position of zero force. The results are an average over 16 to 18 particles

for each of the three angles of incidence. Though the particles used here

are large and are trapped near the surface, they do not make contact due to

repulsive electrostatic forces. This occurs because both the glass surface and

the carboxylated polystyrene particles naturally have a negative charge, and

the Debye length in deionized water is very long compared to the glass-particle

separation distance.

For the case of vertical incidence (θm ≈ 0) for which the scattering

force is almost completely compensated, the force profile resembles that of the

gradient of a Gaussian intensity profile as expected. When the incidence angle

is not zero, a net scattering force (~F s
net) is generated. With increasing angle

of incidence, the maximum velocity of the captured particle increases, and the
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Figure 3.6: Measurement of the optical force component along the long axis of
the SWOLT: ~F Total

x (x) = ~F s
net(x) + ~F g

x (x). To measure the forces acting along
the entire length of the trap, particle velocities were measured. a) Experi-
mental procedure. Particles diffuse one-by-one into the trap near one of the
ends. A video is recorded of the particle being transported to its rest position
which depends on the incident angle of the trapping beam θm. The positions
and velocities of the particles are determined by video particle tracking. b)
The average velocity of the particle at each position in the trap is shown for
different angles of incidence (θm). The right axis shows the corresponding op-
tical forces. The solid curves are fits from the model (equation (3.11)) where
θm is the only free parameter. The remaining parameters are fixed to known,
measured, or estimated values and are given in table 3.2. Videos were recorded
at a rate of 80 fps. The results of at least 16 particles were averaged for each
measurement. The error bars represent the standard error of the mean of these
measurements. All measurements were done using 70mW of laser power in the
sample plane. Figure from my publication [175].
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equilibrium position of the particle is moved further away from the center of

the trap as already indicated in figure 3.2. We can calculate the local velocity

of the particle as a function of the angle of incidence from equations (3.2),

(3.8), and Stokes’ law (3.10):

~vx(x, θm) =
−1

6πεηa
e
−x2

σ2
x

[
2|~F s

00| sin(θm) + κxx
]
x̂ (3.11)

The data sets in figure 3.6(b) were fitted with equation (3.11) where

the angle of incidence was the only free parameter. The resulting angles of

incidence agree well with the experimental values calculated from the cylinder

lens positions δxCL = {0µm,−100µm,−200µm} ± 15µm (corresponding to

θm = {0◦,−2.62◦,−5.24◦} ± 0.39◦). The uncertainty in cylinder lens position

arises from the mechanical accuracy and drifting of the positioning stage. The

good agreement between the model and data again supports the assumption

that the scattering force can be varied independently of the gradient force.

3.4 Summary

A method for generating single-direction transport of particles within

the SWOLT was presented and tested. By translating the cylinder lens per-

pendicular to the optical axis, the incident angle of the trapping beam can be

changed. This in turn generates lateral scattering force components which can

push particles to new positions along the length of the SWOLT. This mecha-

nism was described in detail, and a mathematical model based on ray optics

was developed. The positioning of particles along the length of the SWOLT
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was demonstrated, and the results were compared successfully with the model

predictions. The transport velocities of particles in the SWOLT were measured

in order to determine the total optical force as a function of position in the

SWOLT. These measurements were also shown to agree with model predic-

tions. Finally, it was shown that the scattering force which is used to transport

the particles can be varied without disturbing the intensity distribution of the

trapping volume, thereby maintaining a static gradient force field.
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Chapter 4

Bi-Directional Manipulation in the SWOLT

4.1 Generating Axially Symmetric Scattering Force Com-
ponents

So far, net scattering forces were generated by changing the angle of

incidence of the collimated beam by displacing the cylinder lens perpendicular

to the optical axis. However, scattering forces that lead to transport in the

SWOLT can be generated in another way. Figure 4.1 illustrates how lateral

scattering forces can be generated by translating the cylinder lens along the

optical axis rather than perpendicular to it.

The forces now act radially inwards (converging beam) or outwards

(diverging beam) from the optical axis, and the incident angle varies with the

position along the long axis of the trap. For a diverging beam (figure 4.1(a)),

the x-components of the scattering force counteract the gradient force and push

the particles away from the center of the trap. For a converging beam (figure

4.1(b)), the net scattering force reinforces the gradient force and pushes the

particles toward the center of the trap. The latter essentially leads to stronger

confinement and a higher force constant of the trap. Also in this case, the

intensity profile of the SWOLT near the surface of the dichroic coverslip will

remain constant as the cylinder lens is translated along the optical axis (δzCL).
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Figure 4.1: Generation of axially symmetric scattering forces by translating the
cylinder lens along the optical axis. a) Generation of radially outward point-
ing scattering forces by a diverging beam. b) Generation of radially inward
pointing scattering forces by a converging beam. The blue arrows represent
the incident scattering force vector at different locations along the SWOLT.
The green arrows represent the net scattering force vectors when considering
the contribution of the reflection off the dichroic coverslip. The resultant net
force is parallel to the plane of the coverslip since the z-components cancel.
Figure from my publication [175].
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Thus the gradient force again remains constant even as the scattering force is

varied. Using this technique, particles can be transported radially toward or

away from the center of the SWOLT, rather than unidirectionally as shown

earlier. Figure 4.2 shows images of particles being positioned by translating

the cylinder lens along the optical axis.

When the cylinder lens is moved towards the objective lens and a di-

verging beam is generated, the net scattering force acts radially outward and

pushes the particles outward from the center of the trap, thus separating them

as shown in figure 4.2(a). When the cylinder lens is moved away from the

objective lens and a converging beam is generated, the particles are pressed

together as shown in figure 4.2(c). We note that the inter-particle spacings seen

in figure 4.2 are determined in part by optical binding forces [115, 116, 118, 196–

198]. The SWOLT in fact provides a very efficient method for studying this

”third” optical force, and the results of this study are presented in Part II of

this dissertation (starting page 93).

4.2 Ray Optics Theory of Axially Symmetric Scattering
Forces

Similarly to the case of the lateral transport (chapter 3), a mathemat-

ical model based on ray optics can be used to predict the magnitude of the

scattering force at any location along the SWOLT length. However, this model

is a bit more complex since the angle at which the rays strike the reflecting

surface vary as a function of position along the SWOLT. Nevertheless, we be-
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Figure 4.2: Positioning of particles with radially symmetric scattering forces.
a) Particles are pushed away from the center of the trap by the lateral scat-
tering forces generated by a diverging beam (δzCL = 60mm). b) Particles
move closer to the center of SWOLT when the laser light is focused on the
back focal plane of the objective lens (δzCL = 0) and the net scattering force
is reduced to 0. c) When the cylinder lens is moved away from the objective
lens (δzCL = −140mm) thus generating a converging beam, the particles are
pressed closer together. Inset: Propagation of the light rays at the dichroic
coverslip surface. Figure from my publication [175].

gin by using the ray optics model detailed in figure 4.3. If we consider the

cylinder lens focal line to be a point source, we know that the position of that

point source along the optical axis (the object plane) is related to the location

of the image (image plane). We can determine the location of the image plane

by analyzing the geometry of figure 4.3. We use a “test” object in order to

construct the geometry, as just using a point source on the optical axis is not

sufficient. Since our system includes a refractive index mismatch interface be-

tween the glass and water, we need to consider both the image first generated

by the lens/glass/oil system alone as well as the image generated including

this interface. This is necessary for complete determination of the paths and

angles of the light rays.
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Figure 4.3: Definition of the parameters used to calculate the incident angle of
the laser light as a function of cylinder lens position axial displacement δzCL.
I use a “test” object (with its corresponding image) to aid in construction of
the ray optics geometry and determine the location of the final imaging plane
(Imagem). The inset shows the path of a sample ray from the trapping laser
which is focused on the optical axis but displaced a distance δzCL from the
back focal plane. The angle with which the ray strikes the surface θ′(x) is
dependent on the distance along the surface x.
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Now we can begin to relate the variables geometrically. First it is

obvious that hoil = hm. Next, by noting the similar triangles, we can also

clearly see the relations:

δzCL
h

=
fb
hm

(4.1)

∆zoil
hm

=
foil
h

(4.2)

where δzCL is the displacement of the cylinder lens focal line from the back

focal plane of the objective lens along the optical axis, and fb is the back focal

length of the objective lens (the other values are constructs from the “test”

geometry). Combining equations (4.1) and (4.2) we find:

δzCL∆zoil = fbfoil (4.3)

Next, we can see a relationship between ∆zoil and ∆zm using the common side

hm. First we note:

tan θoil =
hm

∆zoil
(4.4)

tan θm =
hm

∆zm
(4.5)

The combination of equations (4.4) and (4.5) yields:

∆zoil =

[
tan θm
tan θoil

]
∆zm (4.6)

The next step is to assume that the object height h is equal to half the diameter

of the back aperture such that the angles θoil and θm take on their maximum

values for light rays passing through this objective lens (see also figure 3.4).
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This is a valid choice since the location of the image plane does not depend

on the height of the object, and this allows us to relate the maximum angle

(θmaxoil ) to the diameter of the front aperture (Df ) and the numerical aperture

(NA) of the objective lens by the relation given in reference [194] (this relation

was also used in chapter 3.2):

sin θmaxoil =
Df

2foil
(4.7)

as well as the known definition of the numerical aperture NA:

NA = noil sin θ
max
oil (4.8)

Therefore, when we let hm → Df/2 such that θoil → θmaxoil and θm → θmaxm , we

can use equations (4.7) and (4.8) to rewrite equation (4.6) as:

∆zoil =

[
tan θmaxm

tan θmaxoil

]
∆zm (4.9)

=

[
tan θmaxm

tan(sin−1(
Df

2foil
))

]
∆zm (4.10)

=

[(
2foil
Df

)2

− 1

]1
2

tan θmaxm ∆zm (4.11)

Now we can use Snell’s law to relate the incident and refracted angles at the

glass/water interface (noil sin θoil = nm sin θm). Substituting this into equation

(4.11) we get:

∆zoil =

[(
2foil
Df

)2

− 1

]1
2

tan

(
sin−1

(
noil
nm

sin θmaxoil

))
∆zm (4.12)

69



Again, using equation (4.7) we rewrite equation (4.12):

∆zoil =

[(
2foil
Df

)2

− 1

]1
2

tan

(
sin−1

(
NA

nm

))
∆zm (4.13)

=

√[(
2foil
Df

)2

− 1

]/[(nm
NA

)2

− 1

]
∆zm (4.14)

Solving equation (4.14) for the displacement of the image plane:

∆zm =

√[(nm
NA

)2

− 1

]/[(
2foil
Df

)2

− 1

]
∆zoil (4.15)

Now we consider the inset in figure 4.3 and relate the incident angle of the

light ray (θ′) to the displacement of the image plane (∆zm) and the lateral

displacement along the reflective surface (x):

tan θ′ =
x

∆zm
(4.16)

Since we know that we are only interested in the x-component of the scattering

force, we can make the remaining steps simpler by calculating sin θ′:

sin θ′ = sin

(
tan−1

(
x

∆zm

))
(4.17)

=

[(
∆zm
x

)2

+ 1

]− 1
2

(4.18)

=

[( [
nm
NA

]2 − 1[
2foil
Df

]2

− 1

)(
∆zoil
x

)2

+ 1

]− 1
2

(4.19)
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Now we substitute equation (4.3) into equation (4.19) to get:

sin θ′ =

[( [
nm
NA

]2 − 1[
2foil
Df

]2

− 1

)(
fbfoil
xδzCL

)2

+ 1

]− 1
2

(4.20)

=

[( [
nm
NA

]2 − 1[
2
Df

]2

−
[

1
foil

]2

)(
fb

xδzCL

)2

+ 1

]− 1
2

(4.21)

Finally, we use equations (4.7) and (4.8) to relate for foil to known parameters:

foil =
Df noil
2NA

(4.22)

Substituting equation (4.22) into equation (4.21) we can now solve for the

angle θ′ with respect to known physical parameters:

sin θ′(x) =

[( [
nm
NA

]2 − 1

1−
[
NA
noil

]2

)(
fbDf

2x δzCL

)2

+ 1

]− 1
2

(4.23)

Now we can use equation (4.23) in conjunction with the description of the

scattering force given by equation (3.1). From equation (4.23) we can clearly

see that when δzCL → 0 the angle θ′ is 0 (no lateral component of scattering

force) at all positions x along the length of the SWOLT as we would expect.

For a finite valule of δzCL, we see that for x = 0 the angle is always θ′ = 0,

as expected for the axially symmetric system. For lager displacements of a

particle from the optical axis, x, the incident angle becomes increasingly steep.

Again, this is as we expect conceptually from figure 4.1.
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4.3 Summary

A method for generating bi-directional transport of particles within

the SWOLT was presented and tested. Here, the cylinder lens was translated

along the optical axis in order to generate a converging or diverging beam

within the sample chamber thereby generating inward or outward transport

of particles respectively. This mechanism was described using ray optics, and

a mathematical model describing the scattering force was derived. Separation

and compression of multiple particles using this mechanism was demonstrated.
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Chapter 5

Continuous Transport of Particles Using the

SWOLT Within a Fluid Flow

5.1 Uni- & Bi-Directional Continuous Transport

Since both the methods, single-direction transport as in figure 3.1 and

radial transport as in figure 4.1, allow for varying the net scattering force

independently of the gradient force, they can be used to generate continuous

transport of particles. Figure 5.1(a) shows the continuous transport of particles

in a single direction by increasing the angle of incidence of a collimated beam

while figure 5.1(b) shows the continuous transport of particles in opposite

directions by a divergent beam.

Particles 500nm in diameter, carried by a flow of water, are captured

by the SWOLT which lies perpendicular to the fluid flow. Since the cylinder

lens has been translated perpendicular to or along the optical axis, a net

scattering force is generated which pushes the particles toward the end(s) of the

trap. Since the transverse spring constant κy of the trap decreases significantly

toward the ends of the trap (see figure 3.5), the drag force on the particles is

sufficient to overcome the optical gradient force there and carry the particles

out of the trap. Thus continuous transport is generated in the SWOLT by
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Figure 5.1: Particles are continuously transported by fluid flow into the
SWOLT which lies perpendicular to the flow. The particles are then cap-
tured and transported towards the end(s) of the trap where they can then be
pushed out by drag forces. a) Single direction transport as illustrated in figure
3.1 with δxCL = −500µm. b) Bi-directional outward transport as illustrated in
figure 4.1 with δzCL = 100mm. c) Combination of both uni- and bi-directional
transport methods with (δxCL, δzCL) = (−300µm, 100mm). Inset: Propaga-
tion of the light rays at the dichroic coverslip surface. Figure adapted from
my publication [175].
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combination of the strong gradient force that captures the particles from the

flow and the strong lateral scattering force that pushes the particles over long

distance to unstable regions where they leave the SWOLT. We note that in

figure 5.1a the SWOLT has been tilted slightly towards the fluid flow to show

that the transport is not due to drag forces, but is in fact is an optical effect.

Figure 5.2, corresponding to figure 5.1a, shows example streamlines of

particle flow into, carried by, and out of the SWOLT. By locating and tracking

the positions of only the particles which are in the focal plane of any given

frame, I can generate an image representing the flow pattern over the course

of 250 frames of the corresponding video. Since only the particles in the

focal plane are tracked, we can see not only information about their x and y

positions, but also information about their z axis motion. Since the particles

in the bulk fluid are free to thermally diffuse in all directions, they constantly

come in and out of the focal plane. This is indicated in figure 5.2 by the many

short streamlines above and below the SWOLT. When particles are captured

from the fluid flow by the SWOLT, they are then confined to the 1D trapping

volume which also lies in the focal plane. Therefore, along the SWOLT we

see a solid streamline as the particles are transported to the right edge by the

optical scattering force. When the particles near the end of the SWOLT, the

are carried out by the fluid flow. Since the particles leaving the SWOLT all

originate in the focal plane, the exiting streamlines are at first very dense, but

become less dense as the particles diffuse again in all directions.

It is also possible to add the effects of both transport methods simulta-
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Figure 5.2: The video corresponding to figure 5.1a was analyzed to show the
flow pattern (streamlines) of the 500nm diameter polystyrene particles into
a SWOLT. Only particles in the focal plane were located in 250 consecutive
frames of the video taken at 20fps and the set of all particle locations is plotted
as white pixels. A few streamlines are highlighted by blue arrows as examples.
We can see that particles diffuse easily in and out of focus while in the bulk fluid
(many short streamlines), but in the SWOLT they are transported precisely
in the focal plane. Particles leaving the SWOLT, carried out by the flow,
begin their new journey within the focal plane and slowly diffuse again in all
directions.
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neously by providing both a lateral and axial translation of the cylinder lens.

The result is that the particles are once again transported in opposite direc-

tions depending on their location in the trap, but the point at which the lateral

scattering force changes direction is no longer in the center of the SWOLT.

It is instead shifted such that the majority of the SWOLT transports parti-

cles in one direction while a smaller fraction of the SWOLT is responsible for

transport in the opposite direction (see figure 5.1c). This is a simple example

of how the SWOLT can be used to sort particles. Here, we can send a given

fraction of the particles to one side, and the remaining fraction to the other

side. In the future, more advanced sorting mechanisms can be designed which

can sort based on size or refractive index of the particle (see chapter 7.1).

5.2 Summary

A method for continuous optical transport of particles using the SWOLT

was presented. Particles could be captured from a fluid flow by the SWOLT

then immediately transported to the ends of the SWOLT using the scattering

forces. At the ends of the SWOLT, the confining gradient forces are weaker

and so the particles can then be carried out of the SWOLT once they reach the

ends. Continuous transport in a single direction using the method of chapter 3

and outward transport from the SWOLT center using the method of chapter 4

were demonstrated. Additionally, both methods can be combined resulting in

a biased outward transport of particles such that a larger fraction of particles

are transported toward one end than the other.
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Chapter 6

The Pancake Trap

6.1 Introduction

While confinement of objects to one-dimension using the SWOLT is an

efficient way to manipulate and study 1D systems or elongated objects, there

are also many systems which are most effectively studied in two-dimensions.

For example, optical fractionation techniques [135–137, 139, 144, 157] for pas-

sive sorting, mixing and analysis of particles works most efficiently when the

particles can be manipulated in 2D or 3D. More recently, nanoparticles have

been predicted to interact within optical fields to form clusters of well defined

geometries [199], known as “optical matter.” Elongated nano-objects, such as

microtubules and actin filaments, may require freedom to rotate, fluctuate and

arrange in 2D in order to display certain behavior, such as the formation of

cytoskeletal networks. Many of these 2D systems are required to be free from

surface contact in order for the nano-objects to freely diffuse and organize.

However, until now a tool which can stably confine nanoparticles in a wide 2D

plane away from surfaces has not been available.

Aside from pressing objects between two solid, flat surfaces, confine-

ment in 2D is most commonly achieved through total internal reflection optical
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trapping [101, 102, 200, 201] where the steep optical gradients of the evanescent

field pull particles into direct contact with a single flat surface. Particle motion

is greatly dampened from contact with the surface and thus particles cannot

freely explore different arrangements through thermal motion. In addition,

the steep incident angle of the laser beam generates a scattering force on the

particles which transports them along the surface [101, 102] and eventually

out of the field of view or until pressed against a barrier. Counter propagating

beams can be used, but either an interference pattern is generated which puts

the particles in a pre-defined configuration due to the intensity pattern, or if

cross polarized beams are used, dynamics dependent on a well-defined polar-

ization direction of the optical field can no longer be observed [201]. I solve

these major problems of current 2D trapping methods through development of

a new optical trapping instrument which I call the optical pancake trap (PT).

6.2 Instrument Design

The design of the pancake trap is very similar to the design of the

SWOLT as described in chapter 2.2. A schematic of an optical pancake trap

setup using dark field microscopy illumination is shown in figure 6.1. It is also

possible to use DIC, as shown with the SWOLT setup, and that design would

be much like it is shown in figure 2.1. The pancake trap, like the SWOLT,

is based on a typical optical tweezer design [44, 100, 165, 174] built around a

commercial microscope with two modifications. First, a plano-convex spherical

lens (LA1172-C-ML, f = 400mm, Thor Labs, USA) is added to the optical
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Figure 6.1: Schematic of an optical pancake trap. The design is based on a
standard single beam trap design [75, 174], but with two additions. A dichroic
coverslip is used as part of the sample chamber to generate a standing wave
optical trap. The addition of a spherical lens in the trapping laser optical path
is used to generate a collimated beam withing the sample chamber, rather than
a point focused beam. Many different imagin techniques can also be used with
the pancake trap, such as DIC microscopy. Figure 2.1 shows a similar setup
using DIC imaging. See also figure 10.1 for a 3D illustration of the trapping
volume.
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path just behind the microscope objective lens (Plan-Neofluar 100x/1.3 Oil

Iris, Carl Zeiss, Germany). By using this spherical lens to focus an incident

laser beam (vacuum wavelength λ0 = 1064nm) onto the back focal plane of the

objective lens, a collimated beam is formed within the sample chamber. This

is similar in concept to a simple beam expander design but in reverse a beam

shrinker which reduces the diameter of the incident collimated laser beam by

about three orders of magnitude. Within the sample chamber, the shrunk colli-

mated beam is reflected off of a dichroic coverslip (reflectivity > 99%) thereby

generating a standing wave intensity distribution axially, while maintaining

a wide 2D Gaussian intensity distribution radially (see figure 6.1). Thus,

particles trapped by gradient forces in the high intensity regions (antinodes)

experience strong axial confinement but weak radial confinement, effectively

restricting motion to a wide 2D plane. These stacked, wide 2D trapping re-

gions are nearly identical in size and strength, and therefore we observe nearly

identical behavior of trapped particles in planes up to about 50µm from the

reflective surface. This enables 2D trapping far from surfaces which may affect

the dynamics which one intends to observe.

6.3 Single Particle Characterization of Trap Size

We can characterize the trapping potential of the pancake trap by mon-

itoring a particle diffusing in the trap for long timescales. This is an identical

technique as described in chapter 2.4. Figure 6.2 shows a position histogram

of a single 200nm diameter gold particle trapped in the pancake trap.
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Figure 6.2: Position histogram of a single 200nm diameter gold particle in the
pancake trap using 130mW of laser power measured in the sample plane. The
histogram is generated from 3.7× 105 data points (2 hours of video at 50fps
using dark-field microscopy). The wide, Gaussian trapping area is demon-
strated. While the diameter of the region explored by the particle can be
seen to be relatively small (2σp = 1.66µm), this due to the strong polarizabil-
ity of the gold particle. The actual diameter of the beam can be calculated
from knowledge of the particle polarizability and sample temperature to be
2σI ≈ 12.6µm (see chapter 6.3). Bin size= 50nm× 50nm.
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The histogram illustrates the wide, Gaussian, axially-symmetric trap-

ping volume of the pancake trap. The width of this Gaussian probability

distribution shown is σp = 0.83µm and this value is directly related to the

Gaussian intensity profile of the beam. Since the confinement of a particle

within an optical field is dependent on the intensity of the field as well as the

parameters of the particle which determine its polarizability (such as its size

and refractive index), the true width of the collimated beam used to generate

the pancake trap may be calculated knowing these parameters.

Through Boltzmann statistics we can relate the probability of finding

the particle in a given location to the potential energy of being in that location:

Wx,y =
1

Z
e
−Ux,y
kBT (6.1)

where Wx,y is the probability of being at location (x, y) , Ux,y is the potential

energy of the particle at that location, kBT is the thermal energy of a single

particle, and Z =
∫ ∫∞
−∞ e

−Ux,y
kBT dxdy is a normalizing factor ensuring the total

probability over all space is equal to 1. It is reasonable to approximate the

measured probability distribution as a 2D Gaussian, and thus we can rewrite

equation (6.1) as:

1

A
e

−(x2+y2)
σ2
p =

1

Z
e
−Ux,y
kBT (6.2)

where σp is the width of the 2D Gaussian probability distribution and A =∫ ∫∞
−∞ e

−(x2+y2)
σ2
p dxdy = σ2

pπ is a normalizing factor ensuring the total proba-

bility over all space is again equal to 1. We also know that the only significant
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potential in our system is due to the gradient force on the single particle, and

this potential is given by:

U grad
x,y = −α

2
E2
x,y (6.3)

= − α

cnmε0
Ix,y (6.4)

= − α

cnmε0
I0e

−(x2+y2)
σ2
I (6.5)

= − α

cnmε0

[
4P

σ2
Iπ

]
e

−(x2+y2)
σ2
I (6.6)

where Ex,y is the amplitude of the electric field at the given location, Ix,y

is the field intensity distribution which we know to be approximately Gaus-

sian, I0 is the peak intensity of the 2D Gaussian intensity distribution, P =∫ ∫∞
−∞

1
4
Ix,ydxdy = 1

4
πσ2

II0 is total power of the incident beam which is related

to the peak intensity of the Gaussian standing wave intensity distribution, σI

is the width of the Gaussian intensity distribution, nm is the refractive index

of the medium, c is the speed of light in vacuum, ε0 is the dielectric permit-

tivity in vacuum, and α is the complex polarizability of the particle using the

Clausius-Mossotti relation (equation (6.8)) in conjunction with the radiative

reaction correction (equation (6.7)) [39, 196, 202]:

α =
α0

1− ik3α0

6πε0εm

(6.7)

α0 = 4πε0εma
3

[
εp − εm
εp + 2εm

]
(6.8)

where a is the radius of the particle, εp is the dielectric constant of the particle,

εm is the dielectric constant of the medium, and k = 2πnm
λ0

is the wavenumber
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λ0 = 1064nm ε0 = 8.85× 10−12 s2C2

m3kg
kB = 1.38× 10−23m2kg

Ks2

P = 130mW εp = −26.18 + i1.85 [203] T = 295K

a = 100nm
√
εm = nm = 1.33 c = 3× 108m

s

Table 6.1: Experimental system parameters used to calculate the width of the
beam used to generate the pancake trap from the probability distribution data
shown in figure 6.2.

of the excitation light in the medium. Using equation (6.6) with equation (6.2)

yields:

1

A
e
−(x2+y2)

σ2
p =

1

Z
e

(
4αP

σ2
I
πcnmε0kBT

)
e

−(x2+y2)

σ2
I

(6.9)

≈ 1

Z
e
−4αP (x2+y2)

σ4
I
πcnmε0kBT (6.10)

where the Gaussian function within the exponent in equation (6.9) was ap-

proximated by Taylor expansion to the first non-zero term. Therefore, in this

case where the particles displacement from the center of the Gaussian inten-

sity profile is generally much smaller than the width of that intensity profile

(x2 + y2 � σ2
I), we can approximate:

σ4
I ≈

4αPσ2
p

πcnmε0kBT
(6.11)

From our measurement of the width of the probability distribution shown in

figure 6.2, we find σp ≈ 0.83µm. The remaining parameters are known or

are measured directly (see table 6.1). Using the parameters in table 6.1 with

equations (6.7), (6.8) and (6.11), we can calculate the width of the Gaussian

intensity distribution as σI ≈ 6.3µm.

85



2-particles 2-particles 4-particles

5-particles 5-particles 5-particles

6-particles 6-particles 7-particles

5µm
y

x

Figure 6.3: Dark-field images of 500nm diameter polystyrene particles confined
to 2D in the pancake trap. Particles are effectively confined to a single plane
(all are in focus) due to strong axial intensity gradients, but are weakly confined
in the x and y directions due to the wide diameter of the collimated trapping
beam. Interesting 2D behavior can be observed, such as the formation of
clusters and “strings.” Although, for these particles at the laser power used
these formation are not stable. Much of this inter-particle interaction behavior
can be attributed to optical binding forces (see chapter 10).
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6.4 Single-Plane Alignment of Multiple Particles

I demonstrate the alignment of particles in a single plane using a solu-

tion of 500nm diameter polystyrene particles in water. Figure 6.3 shows dark

field images of particles aligned in the pancake trap. While the particles are

free to diffuse in the xy-plane, they are strongly confined along the z-axis.

Thus the particles all remain in the focal plane over long timescales. As more

particles enter the trap, it becomes clear that the particles begin to form more

complex 2D arrangements and display coupled motion. Particles form clusters

of various geometries including string-like or chain-like connections, however

the interaction here is weak in comparison to the thermal forces which break

up the formations rapidly. These intriguing interactions can be attributed to

an inter-particle optical force known as the optical binding force. This optical

binding interaction is studied in detail in Part II, and the potential for this

force to be ultra-strong is exploited to form optical molecules. Such 2D optical

molecules are described in chapter 10.

6.5 Summary

A method using a collimated beam for generating a 2D optical trap

was demonstrated, and this instrument was named the pancake trap. A single

trapped 200nm diameter gold particle was monitored over 2 hours, and the

resulting position histogram demonstrated a wide, axially symmetric trapping

potential. This position histogram could then be used to calculate the diam-

eter of the collimated trapping beam, which was determined to be 12.6µm.
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Multiple 500nm diameter polystyrene particles were trapped simultaneously

showing confinement of particles to a single plane. The pancake trap is the first

instrument to provide stable optical trapping of nanoparticles to a wide single

plane free in solution. This provides an optimal environment for observing

free 2D motion of trapped objects.
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Chapter 7

Outlook

7.1 Sorting, Mixing and Assembly of Nanoparticles

There are potentially many uses for the standing wave optical line trap

and the pancake trap. For example all-optical sorting, mixing, and assem-

bly of nanoparticles as part of lab-on-chip devices has been of great interest

[112, 136, 137]. With the SWOLT, it is possible to stably confine and transport

nanoparticles along a well defined path with well defined velocities over long

distances (> 40µm), even at low laser power. In principle, the length of the

SWOLT is only limited by the aperture of the front lens of the objective. In

our case, this would be about 1.35mm (given by the manufacturer). Thus,

provided there is enough laser power, transport should be possible over much

longer distances than shown here. I have shown that continuous transport

can be achieved by utilizing the lateral scattering force to push particles into

positions of weak confinement. There, they can be more easily retrieved from

the trap and collected, thus creating space for new particles to enter the trap

and be transported. Since transport in the SWOLT operates based on the

precise balance between the optical gradient and scattering forces, it should

be possible to sort particles based on properties which scale differently with

respect to these forces. For example, it should be possible to effectively sort
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particles of different sizes since Fscat/Fgrad ∝ a3. I used a fluid flow to both

introduce particles into the trap and retrieve them from the end of the trap.

It should also be possible to use multiple SWOLTs to hand off particles from

one SWOLT to another which would allow for continuous sorting or mixing

of particles. In an advanced arrangement, a three step process can be em-

ployed where nanoparticles are first sorted, then arranged, and finally brought

together and assembled. The standing wave optical line trap provides the

precision necessary to achieve this kind of controlled sorting and assembly of

nanoparticles in solution at room temperature.

7.2 Biological Filament Mechanics and Organization

Additionally, there are many biological systems which could be studied

more efficiently using the SWOLT or pancake trap. For example, one could

study the mechanical properties of biological filaments such as microtubules,

actin thin filaments and myosin thick filaments[70, 204–211]. Typically the

fibers are fixed to a solid surface on at least one end in order to prevent the

fiber from drifting out of the field of view. From this position, the filament

can be bent by optical tweezers or the thermal fluctuations of the filament

can be observed thereby revealing the mechanical properties of the filament

[207, 212]. It would be beneficial to be able to confine single filaments free

in solution for long timescales in an alignment within the focal plane. In

traditional optical tweezers, the shape of the focal spot intensity distribution

is elongated along the optical axis (see figure 1.5). This would cause a trapped
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filament to align itself along that axis perpendicular to the focal plane [213].

Additionally, previous methods for generating elongated traps (see chapter

1.5) have demonstrated low trapping stability, especially for nano-objects. By

using the SWOLT, it should be possible to stably confine these biological

nano-filaments in an alignment within the focal plane using low laser power.

This would allow the observation of the thermal fluctuations of the filaments

free from surface contact, which could allow for insights into their mechanical

properties. Through the optical confinement of the SWOLT, it would also

be possible to consecutively add more filaments to the trap thereby creating

bundles of an increasing number of filaments. Additionally, actin and myosin

filaments can be mixed and one could assemble an active bundle [214–222].

Fiber bundles are prevalent in nature [205, 206, 215, 223–225], however there is

currently no model experiment which can systematically study the mechanics

of biological bundles. Additionally, it should also be possible to trap fibers

in a wide 2D plane using the pancake trap. This would allow full thermal

diffusion, including rotation. Potentially the formation of 2D fiber networks

could be observed and studied.

7.3 Single-File Diffusion, Pores & Ion Channels

I have shown that particles can be precisely confined to a one-dimensional

channel using the SWOLT (chapter 2.3). Particles are not able to pass each

other along the length of the trap and thus maintain their order, but the

particles are still relatively free to diffuse along the long axis of the SWOLT.
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This trapping geometry is therefore an ideal system for studying single-file

diffusion dynamics[226]. Typically, these studies are attempted in physical

channels such that the particles within the channels come in direct contact

with the hard surfaces [176–185, 227–229]. The frictional and drag forces as-

sociated with motion near a surface are the major challenge in extracting

meaningful information from these systems. Therefore, it would be ideal to

use the SWOLT where the particles can be confined to 1D without the presence

of surfaces. Single file diffusion plays a major role in many biological func-

tions, such as the transport of molecules through ion channels [186–191], and

therefore development of an experimental model system would prove useful in

future research studies.
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Part II

Assembling “Optical Molecules”
Using the Optical Binding Force
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Chapter 8

Background

8.1 From Single- to Multi-Particle Interactions

Since the first demonstration of optical trapping using the optical scat-

tering and gradient forces [32, 33, 44, 46, 47], optical manipulation of matter

has found wide application not only in fundamental physics but also in fields

as diverse as physical chemistry, cell biology and nanotechnology [32, 33, 44,

46, 47, 85, 100, 138, 140, 165, 197, 230]. At first, micrometer sized objects were

trapped such as bacteria, while smaller objects required increased laser inten-

sity in order for optical forces to overcome thermal forces. Stable trapping

of single atoms was eventually achieved only when advanced techniques for

cooling atoms to near absolute zero were employed, thus minimizing thermal

motion. Yet the most groundbreaking results came when multiple atoms were

trapped simultaneously, which is essential for the observation of macroscopic

quantum phenomena such as the Fermi gas [231, 232], the Bose-Einstein con-

densate [233, 234] and the atom laser [235].

Unfortunately cooling is not an option for studying dynamics which

occur at room temperature or in aqueous solution, and an efficient way to ma-

nipulate and study large numbers of nanoparticles with high precision has yet
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to be developed. Multiple particles can be manipulated by using, for example,

holographic or scanning optical tweezers [138, 140, 197, 230]. However, such

techniques require the laser intensity to be widely distributed, and the spe-

cially shaped light fields are easily perturbed by the introduction of additional

optics resulting in reduced trapping strength and precision [230]. Therefore

particles must typically be micrometers in size in order for optical forces to

overcome thermal forces, and precise control is still lost due to thermal motion.

Increased laser intensity can be used to generate stronger forces, finer control

or for trapping smaller objects. However, the maximal intensity is limited by

heating and radiation damage to the sample, such as with biological material

[230, 236–239]. Focus has been mainly placed on strengthening the optical

gradient force while weakening the destabilizing optical scattering force, such

as with variations on optical tweezer geometry [85, 88, 100, 138, 165, 197, 236],

yet this path has so far produced only limited improvement.

In the following work I will demonstrate that a third optical force, the

optical binding (OB) force [100, 115, 116, 118, 164, 196–201, 240–270], can be

used as a powerful tool for high-precision, simultaneous control of multiple

nanoparticles without the need for specially shaped light fields. Optical bind-

ing was originally assumed to be significant only in intense optical fields and

weaker than the gradient force [116, 199]. However, I will show that trap-

ping by optical binding can be 20 times stronger and more efficient than by

the gradient force in even the best optimized optical tweezers. This leads

to ultra-strong interactions between multiple nanoparticles that freeze their

95



relative position within tens of nanometers – a realization of “optical mat-

ter” [116]. In the following chapters, I will characterize in detail the formed

“optical molecules,” which resemble traditional molecules where nanoparticles

substitute for the atoms, and optical binding forces substitute for the chemical

bonds, as model systems for larger scale optical matter.

8.2 Lateral Optical Binding

Shortly after Arthur Ashkin demonstrated the first single beam optical

gradient force trap in 1986 [44], many researchers around the world began ex-

perimenting with trapping objects in different geometries. On such group was

composed of Michael M. Burns and Jean-Marc Fournier of the Rowland Insti-

tute of Science in Cambridge, Massachusetts along with Jene A. Golovchenko

of Harvard University. In 1989, only a few years after Ashkin’s demonstration,

Burns and his colleagues experimented with using cylinder lenses to extend

the trapping region of a standard single beam optical tweezer. Although this

geometry caused the trap to be unstable due to the stronger scattering forces

and weaker gradient forces, the team could still align objects to the line inten-

sity profile provided that a transparent glass surface was place behind them

to physically prevent the particles from being pushed away by the scattering

forces. Figure 8.1 shows the experiment the team performed.

In monitoring the positions of the particles within their optical line

trap, the team noticed some intriguing behavior. It was expected that the

particles would move smoothly from the outer edges of the line trap to the
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Figure 8.1: Original optical binding experiment by M. M. Burns and colleagues
in 1989. The left panel shows the experimental setup. Cylinder lenses are used
to focus and stretch the beam to generate a long line intensity profile in the
sample for particles to be trapped. The particles, 1.43µm in diameter, are
pressed against a glass surface due to the strong scattering forces. The right
panel shows experimental data of the separation distance between two particles
in the intensity field as they move toward the high intensity trap center from
the outer edges. Figure adapted from reference [115].

higher intensity center by the optical gradient force. This was indeed the case

for a single particle in the trap, but when multiple particles were trapped si-

multaneously their motion was no longer smooth. Instead, the team observed

step-like behavior in their positions with step sizes of approximately the wave-

length of the excitation light (λ) [115, 116]. Figure 8.1 shows the data they

measured for two particles in the same optical line trap. They correctly at-

tributed this step-like motion of the particles to an optical interaction between

the two particles which they called the optical binding force [115, 116].

Optical binding is different from the optical gradient and scattering

forces in that it is an inter-particle optical force, rather than a force applied

to the particle directly by the incident laser beam. The magnetic field com-

ponent ( ~B) of the scattered optical field from one particles interacts with the
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induced electric currents (~I, through rapid oscillations in the dipole moment)

of the other particle. This produces a force proportional to ~I × ~B as given

by the Lorentz force relationship. Since the magnitude and direction of these

magnetic fields and induced electric currents are oscillating, there is a strong

relationship of this optical binding force to the relative phases of these oscillat-

ing parameters. This phase difference is determined largely by the separation

distance between the particles, as the time for the scattered field from one

particle to reach the other is linearly dependent on this distance. For this case

where the particles are aligned perpendicular to the axis of excitation light

propagation (which is called the lateral binding configuration), this means

that the optical binding force on the second particle is an oscillating function

with respect to the distance between the particles, and the oscillation has a

wavelength equal to the wavelength of the excitation light. Therefore, there

are locations where the second particle can sit where the magnitude of the

force is zero and small displacements result in a restoring force, resulting in

a form of optical trapping by optical binding forces. Figure 8.2 shows a plot

of the lateral optical binding force as a function of the distance between the

two particles and the angle of polarization of the incident beam with respect

to the inter-particle axis.

Burns and his colleagues were only able to observe this optical binding

interaction in their specially designed line trap which weakened the gradient

force along the axis of binding, and the binding forces between particles were

far from producing stable trapping locations. Because of this, the team was
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Figure 8.2: Theoretical calculation of the lateral optical binding force oscilla-
tion with separation distance. The stable binding positions are marked with
arrows and can be seen to shift with change in polarization angle of the incident
beam. The calculation was based on the equations in references [196, 240].

quick to assume that the binding force was much weaker than the gradient

force and was only significant in intense optical fields [115, 116]. This seemed

to make sense as the scattering of light from the particles was only a very small

fraction of the excitation light, and this idea pervaded in the optical binding

community for the years to come [196, 199]. However, no research team was

able to dispel this myth by providing accurate quantitative measurements of

the strength of the optical binding force within the Rayleigh regime. The

system which Burns and his team used required the particles to be pressed

against a surface, and this prevented quantitative measurement of the binding

force due to the dampening of the particle motion. In addition, the particles

were very large compared to the wavelength of excitation light, and the ana-

lytical theories of optical binding forces require the particles to be within the
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Rayleigh regime.

Using an optical line trap with no surface with which to press the

particles against is typically very unstable as the ratio of the axial gradient

forces to scattering forces is much lower than in a point focused optical tweezer.

This makes optical binding measurements in such a line trap very difficult as

the particles are only “trapped” for very short timescales. The only improved

measurement of the lateral optical binding interaction came in 2004 [118].

They were able to trap particles free from surface contact for timescales on

the order of 30 seconds, which was far too short to gather enough statistics for

a quantitative measurement of the forces. At best they were able to confirm

the qualitative properties which were already known, that the optical binding

stable positions appear at multiples of the excitation wavelength and have

some dependence on the polarization angle of the incident beam.

Although quantitative measurements have eluded scientists, this lateral

optical binding configuration where the particles are aligned perpendicular to

the incident beam is arguably the most basic form of optical binding. Both

particles are excited by the incident beam simultaneously (in phase), which

makes the mathematical and conceptual understandings simpler. However, if

particles are separated by some distance in the direction of light propagation,

their induced dipole moments are now likely out of phase by an amount depen-

dent on the distance they are separated. If the particles are perfectly aligned

on the optical axis, this type of optical binding is known as longitudinal optical

binding.
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8.3 Longitudinal Optical Binding

Optical binding between two particles aligned along the propagation

axis of the excitation light is known as longitudinal optical binding. This

is the most well studied experimental system, although the theoretical de-

scription is not a simple as in the lateral binding case. There are two main

differences between lateral and longitudinal binding. First, the particles in

question are not excited in phase with one another but rather with a phase

difference associated with the distance between them. Second, the binding

forces on the two particles are not symmetric. The scattered photons between

the particles are either propagating in the same direction as the incident beam,

or in the opposite direction [196, 252, 256]. For example, assume particle A is

excited first and particle B is downstream of A. Particle A scatters a photon

towards particle B in the same direction as the incident excitation beam with

the same wavelength. Since the phase shift between scattered and incident

light does not change, the optical binding force on particle B is independent

on the separation distance between the two particles. In contrast, particle

B scatters a photon toward particle A which is in the opposite direction of

the incident beam. Therefore the phase shift between the scattered and inci-

dent light depends on twice the distance between the particles and gives the

oscillatory behavior of the optical binding force on particle A.

Experimentally however, stable trapping of the two particles along the

optical axis requires two counter-propagating beams [242, 246, 249, 250, 252,

256, 269, 271, 272]. So the binding forces on each particle are symmetric in
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Figure 8.3: Schematic of a typical longitudinal optical binding experiment. An
incident laser beam is split evenly between two fiber optical cables. The ends
of the fibers are mounted in the sample chamber and particles are trapped
between them. Difference in lengths of the fibers is much longer than the
coherence length of the laser, thus no standing wave pattern is generated in
the sample. Optionally, traditional optical tweezers may be used to position
particles within the fiber trap. Figure from reference [250].

this case. Figure 8.3 shows a typical configuration for studying longitudinal

optical binding between two or more particles.

While stable trapping of objects is much easier in this longitudinal,

counter-propagating system compared to the lateral system, this system has

its drawbacks as well. In order to measure optical binding phenomena the

particles must be free to move along the axis of binding such that any in-

fluences on the motion of the particles along that axis can be attributed to

the binding forces. This prohibits use of counter-propagating beams which
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generate standing wave patterns which would strongly confine the particles

into discrete positions. However, just like Ashkin’s original work with counter

propagating beams [32], this type of trapping is generally not very stable since

the intensity gradients perpendicular to the optical axis are very weak (see

chapter 1.2). Therefore, usually particles which are very large compared to

the wavelength of excitation light can be stably trapped and studied. How-

ever, it becomes difficult to compare with theoretical predictions since simple

analytical descriptions are provided only for Rayleigh particles [196], and bind-

ing between larger particles generally requires advanced numerical simulations

[249, 260, 263, 265, 266].

Improvement to the trapping stability of the counter-propagating ge-

ometry has come through using Bessel beams which can generate stronger

radial intensity gradients [256]. However, Bessel beams have the unique prop-

erty that the wavefront propagates as the conical intersection of plane waves

traveling at an angle θ with respect to the optical axis. Thus, the component

of the wave vector ~k along the optical axis is |~kz| = |~k| cos θ. This complicates

the optical binding description because while the particles scatter photons with

wave vector ~k, the excitation beam propagates with wave vector ~kz along the

optical axis. So the interplay between the relative phases of the scattered pho-

tons and the excitation photons incurs additional phase shifting dependent on

the beat frequencies, as shown in figure 8.4. This leads to both long-range and

short-range modulation in the optical binding force on the particles. Therefore

the optical binding measurements using this configuration must be interpreted

103



Figure 8.4: Conceptual model of longitudinal optical binding using counter-
propagating Bessel beams. Particles are trapped within the field of two
counter-propagating Bessel beams. The Bessel beam wavefront propagates
with wave vector ~kz along the optical axis, but the scattered photons prop-
agate with wave vector ~k. Thus, the relative phases between incident and
scattered photons are modulated by the beat frequencies yielding both long
and short wavelength binding positions. Figure adapted from reference [256].

under this even more complicated understanding of the interaction [256]. Still,

this non-interfering counter-propagating Bessel beam geometry has yet to pro-

duce stable trapping of particles small enough to be suitable for measurements

of the optical binding force in the Rayleigh regime.

8.4 Optical Binding in 2D

The optical binding forces are not simply attractive or repulsive, but

can also generate torques in two and three dimensions. These multidimensional

forces would only be observable if the particles had freedom to rotate about
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Figure 8.5: Schematic of torques produced by optical binding forces between
Rayleigh particles acting in 2D. Green arrows represent the optical binding
force field. a) In the near field, the force pulls the particles to align along the
axis of light polarization. b) In the far field, the force pulls particles to align
perpendicular to the axis of light polarization. Figure from reference [196].

each other, rather than be confined to a single line. Figure 8.5 illustrates the

complexity of the optical binding force in 2D and how it can generate torques

in the near field and far field. In addition, the organization and self-assembly

[273] of nanoparticles through optical binding forces may be better studied in

multiple dimensions where much more complex geometries can be accessed.

For example, figure 8.6 shows results from numerical simulations of optical

binding [199, 274] predicting stable configurations of multiple particles which

are held together only through optical binding forces. We can see a distinct

difference between the predictions in the ray optics regime and in the Rayleigh

regime. Notably, the preferred alignment of the particles with respect to the

axis of light polarization is parallel to that axis (horizontal axis) for the ray

optics regime which is the opposite of what is predicted for Raleigh particles
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Figure 8.6: Numerical simulations of 2D optically bound clusters in the ray
optics regime and in the Rayleigh regime. Left panel: Stable configurations
of optically bound particles in the ray optics regime. Right panel: Stable
configurations of 33nm diameter Rayleigh particles. All panels drawn to scale.
The axis of light polarization is horizontal. Figure adapted from reference
[199].

(see also figure 8.5).

Studying optical binding in two dimensions is especially difficult since

point-focused or line-focused optical traps do not allow the particles to have

freedom of motion in 2D. The current best attempts at observing 2D optically

bound structures used evanescent field optical traps [196, 201, 275]. Figure 8.7

shows the experimental system studied and the resulting cluster formations.

As described in chapter 1.5.1, there are several challenges to using

evanescent field trapping techniques. First, trapping of particles to a 2D plane

is achieved by pulling the particles into contact with a flat surface using the

strong gradient forces of the evanescent wave. Thus the mobility of the par-

ticles is greatly reduced due to strong frictional forces between particle and

surface, and they cannot freely explore all possible binding configurations.

Furthermore, in order to compensate for the scattering force which would
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Figure 8.7: Optically bound clusters on a glass surface formed in evanescent
field optical trapping. Polystyrene particles 520nm in diameter can be seen to
form hexagonal structures due to both optical binding forces and the interfer-
ence pattern generated by the two counter-propagating beams. The red lines
show the locations of the intensity maxima of the interference pattern. Figure
adapted from reference [201].

otherwise push the particle out of the field of view, a retroreflector was incor-

porated to generate a counter-propagating beam of equal strength. However,

this imposes additional problems. If the interfering beams have the same po-

larization state, an interference pattern is generated, and therefore the particle

arrangement is dominated by this intensity pattern rather than by the optical

binding interaction. Figure 8.7 shows that particles are primarily aligned with

the interference fringes while optical binding effects play a lesser role. It is

possible to rotate the polarization of one of the beams such that the beams

are cross polarized. However, the optical binding interaction is strongly de-

pendent on the polarization state of the excitation beam (see figure 8.2 for

example). Understanding of optical binding in this case is not straightforward
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as the net polarization of the intensity pattern would be elliptical and would

vary in its ellipticity as a function of position on the sample surface. Lastly,

evanescent field geometries using metal-dielectric interfaces have been used to

try to amplify the optical forces. However, these techniques have displayed

other effects as thermophoresis, optical spatial soliton propagation, and sur-

face plasma polariton excitation [196, 276, 277], and these effects tend to mask

the intrinsic behavior of the optical binding mechanism.

8.5 Why a SWOLT or Pancake Trap is More Efficient

Many of the limitations to measuring the optical binding interaction

between Rayleigh particles can be eliminated by using the standing wave op-

tical line trap (chapter 2) or the pancake trap (chapter 6) designs. There are

four important criteria in which only these designs can simultaneously meet.

First, the trapping stability must be sufficient to trap Rayleigh particles for

long timescales (minutes to hours). Second, the particles must be trapped free

in solution such that their motion is not dampened from proximity to or con-

tact with a surface. Third, the polarization of the beam must be in a single

defined direction at all locations in the trap. And finally, the phase of the

incident beam must be uniform at all locations in the plane perpendicular to

the propagation axis. As I have described in chapter 1, there are no techniques

currently available which simultaneously meet all of these criteria. However,

I have shown that the optical trapping instruments developed in Part I, the

SWOLT and the pancake trap, do meet these criteria.
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Let’s consider for example the current best attempts at measuring the

optical binding interaction between Rayleigh particles. In the experiments

described in reference [118], a line focused optical tweezer was used to trap

particles free from surface contact. However, due to the weakened gradient

to scattering force ratio in this trapping geometry, their nanoparticles could

only be trapped for timescales on the order of 30 seconds. This was only long

enough to show qualitative agreement already known optical binding behavior.

In contrast, I can improve these measurements by the dramatically

enhanced trapping efficiency of the standing wave optical line trap which allows

for stable trapping of nanoparticles for timescales of hours. This potentially

allows for gathering at least two orders of magnitude more data of particle

positions, which is a significant statistical improvement. Figure 8.8 shows an

example of the binding interaction between two 500nm polystyrene particles

in the SWOLT over the course of 4.7 minutes. We can clearly see that the

particles are separated by discrete steps of approximately λ spacing. We can

then generate a histogram of the separation distances, which is shown in the

top panel of figure 8.9, and again we can see clear peaks which indicate the

stable binding positions.

We can further quantify the binding interaction by calculating the en-

ergy landscape from the position histogram using Maxwell-Boltzmann statis-

tics (see chapter 10.1.1 for details on this type of calculation). The lower panel

of figure 8.9 shows the measured energy landscape of the two particle optical

binding interaction. We see now a quantitative measurement of the depths and
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Figure 8.8: Separation distance vs time data series for two 500nm diameter
polystyrene particles in the standing wave optical line trap. Optical binding
effects cause the particles to take on primarily “quantized” position states at
distances of multiples of the excitation wavelength (λ = 800nm in water). This
is indicated in the time series by the discrete steps of the separation distance.

locations of the energy minima. We see that the energy minima get shallower

as the distance between the particles increased with the exception of the first

energy minimum. The higher energy state of the particles when they are in

closer proximity is due to the contribution of electrostatic repulsion between

the pair. Aside from this exception, the binding energy of the minima can be

seen to decrease roughly linearly with distance, as is predicted in references

[115, 116, 196, 241]. Until now, this level of precision in measurement of the

optical binding interaction between nanoparticles has not been possible [196].

With this level of improvement, we now aim to study even smaller particles

which have a size nearer to the Rayleigh regime. In order to provide the

strongest possible optical binding interaction for measurement, we now will

use gold particles which are much stronger scatterers than polystyrene. Thus,
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Figure 8.9: Optical binding interaction energy between two 500nm diameter
polystyrene particles in the standing wave optical line trap. a) Histogram of
the separation distances measured from the time series shown in figure 8.8. b)
Measured energy landscape of the optical binding interaction in the SWOLT
determined from the histogram data. We see clear energy minima at positions
near multiples of the excitation wavelength (λ = 800nm in water). The depth
of the energy minima is seen to decrease with distance, indicating weaker
binding strength. The exception is the first minima near 800nm, which is a
higher energy state due to electrostatic repulsion between the particles.

the optical binding interaction between gold should be more easily observed

even for smaller particles.
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Chapter 9

1D Optical Binding in a SWOLT

Optical binding between a pair of particles can be described by classi-

cal electrodynamics, and most simply for Rayleigh particles (ka � 1, where

k = 2π/λ is the wavenumber of excitation light in the medium and a is the

particle radius). However, until now, a detailed quantitative experiment deal-

ing with nanoparticle binding has not been reported [196]. By utilizing the

standing wave optical line trap (SWOLT) (see chapter 2), it is possible to

stably confine nanoparticles to essentially one-dimension due to the shape of

the optical intensity field (see figure 9.1). Individual particles are free to dif-

fuse over many microns along the long axis of the trap (x-axis) while confined

to only tens of nanometers along the other two axes. When two or more

particles are confined in the same SWOLT, their thermal motion becomes fur-

ther restricted by optical binding forces. However, this restriction is placed

on their relative positions, not absolute positions, resulting in coupled mo-

tion. The optical binding energy landscape between two particles is known

to be a series of roughly equally spaced energy minima at particle-particle

separations of RN ≈ Nλ where N = {1, 2, 3 . . .}. Therefore, it has been ob-

served that particle pairs transiently “hop” between these minima due to their

combined thermal energy being larger than the optical binding energy bar-
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Figure 9.1: 3D schematic representation of two gold nanoparticles trapped and
aligned in the first intensity maximum of the standing wave optical line trap.
The intensity gradients along the y- and z-axes are much greater than along
the x-axis, essentially restricting motion to 1D along the x-axis. Figure from
my publication [278].
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riers [115, 116, 118]. In the case where optical binding forces dominate over

thermal forces, we would expect that the particles maintain a constant sep-

aration distance determined by the nearest optical binding energy minimum

when the particles become first illuminated. This effect has previously been

observed only for very large particles (ka > 1) along the axis of light propaga-

tion (termed longitudinal optical binding) [242, 246, 256] or for particles whose

thermal motion is dampened from contact with a surface [115, 116, 200] as in

total internal reflection methods.

In our experiments, we observe dramatic binding strength between par-

ticles with size closer to the Rayleigh regime (ka ≈ 0.8) and in a direction

perpendicular to the direction of light propagation (termed lateral or trans-

verse optical binding). This lateral optical binding configuration allows us to

precisely image the particles using the same microscope optics which focus

the laser and also study the polarization dependence of the optical binding,

which is not possible in longitudinal optical binding experiments. Using the

SWOLT, we confine 200nm diameter gold particles in water (nm = 1.33) us-

ing a λ0 = nmλ = 1064nm wavelength laser at roughly λ/4 = 200nm above

the reflecting coverslip surface. At this distance above the surface, about two

particle radii, near-surface effects to optical binding forces have been shown

to be minimal [196, 241, 279, 280], and more importantly there is no contact

between particle and surface due to the strong axial intensity gradients [88].

There is, however, an effect to the optical binding due to the addition of the re-

flective coverslip. Figure 9.2 shows a simple ray diagram of the optical binding
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Figure 9.2: Diagram showing the interaction of two particles of radius a via
scattered light waves (wavy lines). The optical binding force in this system
is due to the direct scattered wave from particle A to particle B (path length
AB), as well as the portion of the scattered wave reflected off the dichroic
coverslip surface (AB′). Figure from my publication [278].

interaction when the particles are near a reflective surface.

Since the particles are only λ/4 above the coverslip surface, but are

separated by distances of multiples of λ, the angle φ is small. Therefore we

can still consider the binding to be lateral rather than longitudinal, but the

magnitude of the binding is roughly doubled by inclusion of this reflection.

Additional minor effects on the binding of particles due to this small angle of

reflection φ can be measured and are discussed in chapter 9.1.2.
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9.1 Stable Positions for Optically Bound Particle Pairs

A major discovery of this work was the direct measurement of the

optical binding forces between metallic nanoparticles. We actually find that

the strength of the optical binding can be one of the strongest optical forces

measured when normalized to the required input laser intensity. This was

initially noted in my work when I observed that optically bound particles

would maintain a precise separation distance of several microns with deviations

from that precise separation distances of only a few tens of nanometers. In

addition, this precise separation could be maintained over very long timescales

(several hours), even when using only modest laser power (typically P ≈

70mW , measured in the focal plane). Images of this optical binding behavior

is shown in figure 9.3.

Figure 9.3 shows dark-field images of optically bound particles in the

SWOLT in different binding positions. We stress that these binding positions

are stable for many hours despite thermal fluctuations at room temperature.

We prompt particles to hop to different positions either by briefly decreasing

laser power (below 10%), thus lowering the optical binding energy barrier, or

by releasing and re-trapping the particles (turning the laser off then on). For

each binding position, we obtain a video of the particle motion for quantitative

tracking and analysis. Figure 9.4 shows histograms of the measured separa-

tion distance R between the particles. Eight individual data sets are shown

corresponding to the eight peaks in Fig 9.4.
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Figure 9.3: Dark-field images of 200nm diameter gold particles exhibiting
optical binding while confined to 1D motion along the x-axis in the SWOLT.
These optically bound particles diffuse easily along the x-axis, but maintain a
precise separation distance R over long timescales (typically hours) with only
slight fluctuations. Only by releasing and re-trapping the particles can they
quickly fall into different binding configurations. The closest (most stable) 4
binding positions are shown. Videos were recorded at 70fps with 10µs exposure
time and particle positions were obtained by video tracking. Scale bar: 1µm.
Figure from my publication [278].

The histograms in figure 9.4 show particle separation distances near

multiples of the laser wavelength RN ≈ Nλ. However, we can also see devi-

ation from this simple approximation. Notably, we see distinct shifts in the

histogram centers when the polarization is rotated for a given binding position

N . This shift is on the order of tens of nanometers, and becomes smaller as

R increases. This is in agreement with theoretical predictions [196, 240, 241].
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Figure 9.4: Histograms of the particle separation distance were constructed
from the data of particle motion. Shown are individual histograms from 8
different data traces using the same pair of gold nanoparticles but in 4 different
binding positions and for 2 different polarization angles of the incident laser
relative to the binding axis (x-axis). Each histogram is composed of 30, 000
data points (≈ 7min video) except for the histogram of N = 4 with θ = 45◦

which consists of only 10, 000 data points due to the lower stability. Bin
width = 1nm. The average binding distance is notably different than simple
multiples of the wavelength and shifts when the polarization of the incident
light is rotated. The widths of the histograms, while only tens of nm wide,
can be seen to increase with greater separation distance, indicating weaker
binding as the scattered field decreases in strength with distance. Figure from
my publication [278].
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9.1.1 Theoretical Optical Binding Stable Positions

We can calculate the theoretically predicted values of separation dis-

tance for our specific system parameters for quantitative comparison with the

measurements. We start with the formulation of the lateral optical binding

(OB) force as given in references [196, 240]:

FAB
x =

|α|2|E0|2

8πε0εmR4

{ [
2k2R2

(
2 cos2 θ − 1

)
+ 3

(
1− 3 cos2 θ

)]
cos (kR)

+
[
k3R3

(
cos2 θ − 1

)
+ 3kR

(
1− 3 cos2 θ

)]
sin(kR)

}
(9.1)

where R is the distance between the two particles, k is the wavenumber of the

excitation light in the medium, θ is the polarization angle of the incident light

with respect to the binding axis, α is the effective complex polarizability of

the particles [39, 196], E0 is the amplitude of the electric field on each particle,

ε0 is the dielectric permittivity of free space and εm is the dielectric constant

of the medium. This model assumes the particles are in the Rayleigh regime

(ka� 1, where a is the particle radius) such that the electric field throughout

the particles volume is uniform, and is induced only by the incident laser.

While our experiments are not entirely at the Rayleigh limit (ka ≈ 0.8), they

are closer to the Rayleigh regime than previously reported experiments which

have shown reasonable agreement with Rayleigh theory for values of ka > 1.

It is accepted that Rayleigh theory is a reasonable approximation even for

such large nanoparticles [196]. To find the stable binding positions, we solve

equation (9.1) for distances R where the optical binding force is zero (FAB
x = 0)

and small displacements relative to that location results in a restoring force
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Binding Position, N 1 2 3 4

θ = 90◦ 757nm 1579nm 2386nm 3190nm

θ = 45◦ 799nm 1600nm 2400nm 3200nm

Table 9.1: Theoretical calculation of stable binding separation distances RN

for parameters matching experimental conditions. Parameters used: λ0 =
1064nm, nm = 1.33, and θ = {90◦ or 45◦}

( ∂
∂R
FAB
x < 0). With these conditions, we find that the locations of the stable

positions RN are only a function of k and θ. We solve equation (9.1) for

the two above conditions numerically. Table 9.1 shows the calculated stable

separation distances for our experimental conditions of θ = {90◦ or 45◦} and

k = (2πnm)/λ0 , where nm = 1.33 is the index of refraction of the medium

(water) and λ0 = 1064nm is the vacuum wavelength of the trapping laser.

9.1.2 Measurements Compared with Theory

Figure 9.5 shows measurements of the average separation distance RN

compared with theoretical predictions of the stable positions for our system

and illustrates the precision of our measurements. While the difference be-

tween measurement and theory is relatively small (< 100nm = λ/8), we can

see that the particles tend to be separated by greater distances than predicted,

especially at larger average separations. This difference arises because the par-

ticles are not point objects and from the inclusion of the reflective surface

The theoretical values were calculated using an analytical description

of the optical binding force given in references [196, 240]. The model assumes
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Figure 9.5: The measured average separation obtained from the histograms
is compared with theoretical predictions (see chapter 9.1.1). The particles
sit further apart than theoretical predictions, but are pulled closer together
at shorter separations due to path length differences between the direct and
reflected scattered waves (see figure 9.2). The error bars include consideration
of the error in least squares fitting, particle tracking algorithm, camera field
of view calibration, long timescale drift and the standard error. Figure from
my publication [278].

Rayleigh particles (ka� 1) are used such that the electric field throughout the

particle volume is uniform and is induced only by the incident laser. Since we

use metal particles, it is likely that the electric field amplitude is not uniform

throughout the particle volume, but rather decays exponentially as it passes

from particle surface to center by a characteristic length scale known as the skin

depth [281]. So it is likely that the particles are not completely transparent,

and thus surface atoms of the particles exhibit somewhat stronger optical
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binding forces than atoms at the particles centers. Also, the near surfaces likely

exhibit stronger binding than the far surfaces which may be slightly shielded

by the particle volume itself. Therefore the average optical binding force on

the pair would displace the particle centers to be further apart than the above

model predicts but still within one particle diameter, which is in agreement

with the data shown in figure 9.5. The reflections of the scattered light off the

coverslip surface were also neglected in the above model. Figure 9.2 illustrates

the paths of the scattered light which determine the binding position. For

shorter binding distances, the difference in path length for the direct (AB)

and reflected (AB′) rays becomes significant, and can be approximated by

RN − RN cosφ ≈ 115nm for N = 1. Figure 9.5 shows that as N decreases (φ

increases), the particles are pulled closer together by up to about 60nm, half

this path length difference. In the future, more comprehensive calculations or

simulations of metal particles may be required [241, 249, 260, 279].

9.2 Characterizing the Strength of the Optical Binding
Force

If we are to consider the optical binding observed in these experiments

as one of the strongest optical forces, it is then important to accurately quan-

tify the strength of these optical binding forces so they can be compared to

the strength of typical optical forces used for manipulation of nanoparticles in

the optics, biophysics, and nanotechnology communities. The widths of the

histograms in figure 9.4 can be used as reporters on the precision and strength
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of the optical binding forces. A stronger force would yield stronger coupling of

the motion of the two particles. This in turn would cause their separation dis-

tance to become more precisely confined around the specific binding distances

noted in the previous section (chapter 9.1). We can see in figure 9.4 that as

the separation distance increases, the widths of the histograms also increase

which indicates weaker binding. This is due to the magnitude of the scattered

field decaying with distance from the scatterer. We also see weaker binding

when the polarization angle θ decreases because the scattered field is weaker

and decays much more quickly along the axis of the induced dipole moment.

These qualitative results are in agreement with theory [196, 199, 240, 241].

9.2.1 Quantitative Binding Strength Measurement

Quantitative measurements of the optical binding spring constants can

be made using the time-series data of the particle motion. Since the optically

bound particles keep a precise separation distance RN with only slight ther-

mal fluctuations about this distance, we can model the optical binding force

between them as a spring of rest length RN and spring constant κN which

joins the particles. This model is illustrated in figure 9.6.

The thermal fluctuations of the particle-particle separation distance

about the average binding position RN is related to the spring constant κN

through Maxwell-Boltzmann statistics. From each of the 8 individual time-

series data sets (for N = {1, 2, 3, 4} and θ = {90◦, 45◦}), we calculate the

probability (W ) of the particles to be separated by a distance R and plot the
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Figure 9.6: Ultra-stable optically bound particle pairs can be modeled as two
particles attached by a spring of rest length RN and spring constant κN . Each
particle contains thermal energy of kBT which causes fluctuations in the mea-
sured center-to-center distance R(t) about RN . Figure from my publication
[278].

histograms of the probability distributions W (R) (which is what is shown in

Figure 9.4). The probability of finding the particles at a given separation R

is related to the energy U of being in that position normalized to the thermal

energy of the system (2kBT for a two particle system) through Boltzmann

statistics as:

WN(R) =
1

Z
e
−U(R−RN )

2kBT (9.2)

where kB = 1.38×10−23m2kg
Ks2

inf is Boltzmanns constant, T ≈ 295K is the tem-

perature of the sample (room temperature), and Z =
∫∞
−∞ e

−U(R−RN )
2kBT dR is a

normalizing factor ensuring the total probability is 1. Since the measured prob-

ability distributions are approximately Gaussian, modeling the energy land-

scape as a harmonic potential is reasonable: U (R−RN) = 1
2
κN [R−RN ]2.
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Thus the probability can be expressed as:

WN(R) =
1

A
e
−[R−RN ]2

σ2
N =

1

Z
e
−κN [R−RN ]2

4kBT (9.3)

where σN is the width of the Gaussian probability distribution, and A =∫∞
−∞ e

−[R−RN ]2

σ2
N dR = σN

√
π and Z =

∫∞
−∞ e

−κN [R−RN ]2

4kBT dR =
√

4πkBT
κN

each nor-

malize their respective descriptions of the probability distribution. It is then

a simple matter to solve equation (9.3) for the relationship between σN and

κN . The next few steps leading from equation (9.3) to (9.6) are shown:

1

σN
e
−[R−RN ]2

σ2
N =

√
κN

4kBT
e
−κN [R−RN ]2

4kBT (9.4)

− [R−RN ]2

σ2
N

+ ln

[
1

σN

]
=
−κN [R−RN ]2

4kBT
+ ln

[√
κN

4kBT

]
(9.5)[

κN
4kBT

− 1

σ2
N

]
[R−RN ]2 +

1

2

[
ln

(
1

σ2
N

)
− ln

(
κN

4kBT

)]
= 0 (9.6)

This equation must be true for any position of the particles [R−RN ], so each

term must individually be zero: [
κN

4kBT
− 1

σ2
N

]
= 0 (9.7)

ln

(
1

σ2
N

)
− ln

(
κN

4kBT

)
= 0 (9.8)

The solution to both of these equations is the same:

κN =
4kBT

σ2
N

(9.9)

We can now calculate the spring constants κN of each binding posi-

tion by first fitting Gaussian functions to the probability distributions of the
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Binding θ = 90◦ θ = 45◦

Position, N σN(nm) κN( pN
µm

) σN(nm) κN( pN
µm

)

1 36.8± 1.6 12.0± 1.1 45.9± 2.0 7.7± 0.7

2 44.0± 1.7 8.4± 0.7 62.0± 2.9 4.2± 0.4

3 54.5± 1.2 5.5± 0.3 75.4± 1.5 2.9± 0.1

4 73.1± 2.2 3.0± 0.2 110.1± 2.5 1.3± 0.1

Table 9.2: Measured values of the optical binding spring constants κN . Values
were calculated from the measured Gaussian widths σN of the probability
distribution data shown in figure 9.4 using equation (9.9). The temperature of
the sample was estimated to be approximately room temperature (T ≈ 295K).

particle separation distances (see figure 9.4) to find the widths of the distri-

butions σN . Then we use equation (9.9) to calculate κN from σN for each

of the eight data sets. Table 9.2 shows the measured values of σN and the

corresponding values of κN for each of the four binding positions and two an-

gles of polarization of the incident beam. The error bars for σN in table 9.2

include consideration of the error in least squares fitting, particle tracking al-

gorithm, camera field of view calibration, room temperature fluctuations, and

long timescale drift. The error bars for κN are calculated from σN by error

propagation through equation (9.9).

9.2.2 Consideration of Particle Heating by Laser Excitation

Heating of objects in optical traps due to laser radiation has been

well documented [282–286]. Metallic nanoparticles, such as gold and silver,

are known to be especially heated due to their high electrical conductivity
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[101, 287–290], and this can affect the interpretation of the measurements due

to increased thermal motion. Note that the value of the binding strength de-

termined from the measured thermal fluctuations of the particles requires one

to know the temperature T of the sample (see equation (9.9)). Recent exper-

iments [288] have characterized the heating of trapped 200nm diameter gold

nanoparticles using a 1064nm vacuum wavelength laser (equivalent parame-

ters to the experiments described here) in a standard optical tweezer design.

They found the heating of the gold nanoparticles to be about 242K
W

. How-

ever, the standard optical tweezer design utilizes a point-focused laser beam,

whereas the focal volume of our standing wave optical line trap (SWOLT) is

stretched greatly in one dimension to form a line-focus. Thus the laser power

is widely distributed, and much of it misses the trapped gold particles all to-

gether. The important parameter to consider is the local laser intensity at the

particle location rather than the total laser power used. Using the method

described in chapter 9.2.4, we can estimate the peak field intensity (equation

(9.20)) of a 1W point-focused (by NA=1.3 objective lens) optical tweezer to

be about 3.5 W
µm2 . Thus, relative to the local laser intensity rather than the to-

tal laser power, we estimate the gold particles are heated by about 69 K
[W/µm2]

.

For our SWOLT at 70mW , the method in chapter 9.2.4 is used again to es-

timate the peak intensity (equation (9.21)) to be about 0.018 W
µm2 . This laser

intensity would yield a temperature increase of the gold nanoparticles of about

1.2K (0.4%) which is insignificant. Therefore, we do not expect heating of the

gold nanoparticles to play any significant role in our current measurements,
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and we can assume the temperature of the sample to be room temperature

(T ≈ 295K).

Additionally, if there were significant heating of the particles this would

have two primary effects. Heated particles would exhibit greater thermal fluc-

tuations than compared to room temperature, and local heating of the fluid

surrounding the particles would lower the local fluid viscosity. If this heating

were unaccounted for in our measurements, it would mean our measurements

are underestimates of the actual optical binding strength since we would have

assumed that the larger thermal fluctuations are occurring at room tempera-

ture. Thus the binding strength would be even stronger than measured here

thereby reinforcing our main point that optical binding is ultra-strong.

9.2.3 Consideration of Position Autocorrelation Time

In addition to the temperature of the sample, it is important to con-

sider the exposure time of the camera used to image the motion of the parti-

cles. Long exposure times would cause moving objects to appear elongated or

smeared. This is also known as motion blurring. Such a motion blurring effect

would reduce the measurement accuracy of the particle location at any instant

in time. The center of the blur may be tracked, but if the object is exhibiting

oscillatory motion this would cause the measured amplitude of the fluctuations

to be smaller than the actual fluctuations. This is a similar effect to low pass

filtering of the “true” time series position data. Since our measurements of

the optical binding strength depend on the Gaussian widths of the particle
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fluctuations, we must take this motion blurring effect into account. In fact, if

significant motion blurring were to be present, we would measure the widths

(σN) to be smaller than they actually are, which would lead us to calculate

stronger optical binding forces than actually exist in our experiments. Since

the unprecedented strength of these forces is a primary result of my work, I

must take care to reduce the motion blurring or to take it into account in the

calculations if it is unavoidably significant.

To determine if there is significant motion blurring when imaging a

Brownian oscillator [291, 292] confined in a harmonic potential of spring con-

stant κN , we consider its position autocorrelation time (τ):

τ =
γ

κN
=

6πηa

κN
(9.10)

where γ is the Stokes drag coefficient, η = 0.001Ns
m2 is the viscosity of the

surrounding fluid (water at 20◦C), and a = 100nm is the particle radius.

This is the characteristic time scale for the particle to traverse the potential

energy well it is contained in. In order to obtain accurate measurements of the

location of the particle through dark-field imaging, we must make sure that

the camera exposure time is much shorter than this time scale to avoid the

motion blurring effect. We calculate that the shortest autocorrelation time in

our series of experiments is:

τ ≈
6π
(
10−3Ns

m2

)
(10−7m)

12× 10−6N
m

= 157µs (9.11)

Therefore we set the exposure time of the CCD camera used to image the

particles to 10µs, more than an order of magnitude shorter which is sufficient to
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avoid significant motion blur and accurately image the instantaneous positions

of the particles. Using the method described in references [207, 293], we find

that the error in our measurements due to motion blurring is less than 2%

when using this exposure time.

9.2.4 Theoretical Calculation of Optical Binding Strength

Now we can also compare our quantitative measurements of the optical

binding spring constants with theoretical estimates using equation (9.1) with

one correction. The introduction of the reflective surface (reflectivity > 99%

for 1064nm vacuum wavelength in water) in our system creates an additional

optical binding path, AB′, in addition to the direct path, AB (see figure 9.2).

But since the particle-coverslip distance is small (≈ λ/4) compared to the

particle-particle separation distance (RN ≈ Nλ), the angle of reflection and

path length difference are also small. Thus the binding due to reflection has

approximately the same magnitude as the direct binding, and we can estimate

the total binding force to be:

FAB
x + FAB′

x ≈ 2FAB
x . (9.12)

The optical binding spring constants κN are then calculated for each stable

position RN using Hookes law:

κN = −
[
∂

∂R
2FAB

x

]
R→RN

(9.13)

The values of κN are computed numerically using equation (9.1) with (9.13)

and using the data in table 9.1 as the values of RN . Experimentally measured
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values or estimates are used for the remaining parameters: λ0 = 1064nm,

nm =
√
εm = 1.33, ε0 = 8.85× 10−12 s2C2

m3kg
, and θ = {90◦ or 45◦}. The complex

effective polarizability α was calculated as in references [39, 196]:

α =
α0

1− ik3α0

6πε0εm

(9.14)

α0 = 4πε0εma
3

[
εp − εm
εp + 2εm

]
(9.15)

where α0 is the polarizability of the particle using the Clausius-Mossotti rela-

tion, and α is the radiative reaction correction to α0. Values of the particle

radius (a = 100nm) and dielectric constant (εp = −26.18+i1.85 for gold [203])

were estimated from the manufacturers specifications of particle size and from

the known dielectric constant of gold. The amplitude of the electric field E0 at

the locations of the particles in the standing wave optical line trap (SWOLT)

was calculated as:

|E0|2 =
2Ix,y
cε0nm

(9.16)

=
2(4P )e

−x2

σ2
x e

−y2

σ2
y

cε0nmπσxσy
(9.17)

≈ 2(4P )

cε0nmπσxσy
(9.18)

where c = 3 × 108m
s

is the speed of light in vacuum, and Ix,y is the intensity

of the light field at a location (x, y) relative to the location of peak intensity

defined as (0, 0). For a 2D Gaussian beam centered about the origin (0, 0), the

intensity at each location is related to the total power (P ≈ 70mW , measured
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in the focal plane) and the dimensions (σx,σy) by:

Ix,y =
Pe

−x2

σ2
x e

−y2

σ2
y

πσxσy
(9.19)

Since the particles are only displaced from the center of the SWOLT intensity

profile by at most a few microns along the long axis (x-axis) compared to

the width of the beam (σx ≈ 15µm), and are not displaced along the y-axis

(except by small thermal fluctuations), we can approximate the intensity as:

Ix,y ≈ I0 =
P

πσxσy
(9.20)

If we now take into account the amplification of the intensity due to the stand-

ing wave (interference of two counter-propagating waves of equal power), the

intensity increases by a factor of four:

ISW0 =
4P

πσxσy
(9.21)

Finally, the width of the diffraction limited focal spot is estimated using the

well-known relation:

σy ≈
λ0

2nmNA
(9.22)

where NA is the numerical aperture of the focusing lens. We use a Plan-

Neofluar 100x/1.3 Oil Iris (Carl Zeiss, Germany) objective lens for focusing

the laser and forming the SWOLT. The built in iris allows us to reduce the

numerical aperture slightly in order to image using dark-field microscopy. We

estimate the adjusted numerical aperture to be NA ≈ 1.2. Taking into account

the above parameters, we perform the calculation of the spring constants κN
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Binding Position, N 1 2 3 4

θ = 90◦ 12.0 pN
µm

6.2 pN
µm

4.1 pN
µm

3.1 pN
µm

θ = 45◦ 6.6 pN
µm

3.2 pN
µm

2.1 pN
µm

1.6 pN
µm

Table 9.3: Theoretical calculation of optical binding spring constants κN for
the first 4 stable binding positions. Parameters used match experimental con-
ditions (see text).

using equations (9.1) and (9.13) at the stable positions RN given in table 9.1.

The results are listed in table 9.3:

9.2.5 Theory of Binding Strength Decay vs. Distance

If one intends to use the optical binding force for assembly of optical

matter or for optical manipulation of matter, it is important to know how the

optical binding force decays with distance. While equation (9.1) provides the

lateral optical binding force for all particle pair orientations within a plane

perpendicular to the direction of light propagation, the form is very complex

with multiple oscillatory terms. Here, I will simplify the equation to reveal the

“envelope” function which describes the general decay of the optical binding

strength of the stable binding positions.

A simple approximation to equation (9.1) can be made in the case of

the far-field limit (kR � 1). If all variables are non-zero (including θ), the

dominant term is:

FAB
x ≈ −|α|

2|E0|2k3

8πε0εmR
sin2 (θ) sin(kR) (9.23)
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If we then solve equation (9.23) for the stable separation distances R (when

FAB
x = 0, and ∂

∂R
FAB
x < 0), we find that these distances occur when kR = 2Nπ

where N = {1, 2, 3 . . .}. If we solve for the spring constants using equation

(9.13) with (9.23) and substitute this condition for the stable binding positions

we get:

κN ≈
|α|2|E0|2k5 sin2 θ

8π2ε0εmN
∝ 1

N
(9.24)

We find in this simple approximation that the magnitude of the optical binding

spring constants decay proportionally to 1/N in the far field. This is essentially

the same as a 1/R dependence if the stable positions are at roughly RN ≈ Nλ.

9.2.6 Binding Strength Measurements Compared with Theory

Now we directly compare our measurements of the optical binding

strength with values calculated from theory. Figure 9.7 compares the measured

values of κN (see also table 9.2) with calculated values (see table 9.3). We see

good agreement between our measurements and the predictions by Rayleigh

theory. This confirms that my optical trapping scheme (the SWOLT) was able

to provide the foundation for direct quantitative study of nanoparticle inter-

actions near the Rayleigh regime. We also see that the optical binding spring

constant decreases as roughly 1/N as predicted by the simple approximation

made in the previous chapter (chapter 9.2.5).
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Figure 9.7: The measured optical binding spring constant is compared to the-
oretical predictions and a β/N fit to the data where β is the only fitting
parameter. The inter-particle spring constant κ is calculated directly from
the widths of the histograms. The strength of the binding is seen to decrease
with distance and with rotation of the polarization of the incident beam as
predicted by the theory. The error bars include consideration of the error in
least squares fitting, particle tracking algorithm, camera field of view calibra-
tion, room temperature fluctuations, and long timescale drift. Figure from my
publication [278].

9.2.7 Comparing Optical Binding to Optical Tweezers

The strength of the optical binding force and its decay with distance

is an important consideration if one intends to design an instrument for opti-

cal manipulation using optical binding forces [245, 248], but equally important

is the laser intensity used to generate these forces. Trapping smaller objects

generally requires larger laser intensities which may eventually heat or damage

the objects [230, 236, 237]. Additionally, it has been shown that biological ob-
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jects are particularly susceptible to heating and photo-damage during optical

manipulation and can be a limitation for certain biological experiments [236].

Of course the damage increases with increased laser intensity used and has

been shown to be highly nonlinear above a given threshold due to generation

of multiphoton effects (see for instance references [238, 239]). This threshold

can be near intensity levels of a typical optical trapping experiment, only a few

tens of mW/µm2. Thus it is necessary for researchers to minimize the laser

power in order to minimize damage. I therefore use this section to compare

my measurements of the optical binding strength relative to the laser intensity

needed to generate those forces with the most well developed and commonly

used optical manipulation technique, optical tweezers (OT).

We therefore define the trapping efficiency (ξ) as the spring constant of

the trapping force (κ) normalized to the local intensity of the light field at the

location of the particle (Ix,y). If the intensity field is Gaussian distributed and

the particle is near the location of peak intensity (I0) we can approximate:

ξ ≡ κ

Ix,y
=

κ

I0e
−x2

σ2
x e

−y2

σ2
y

≈ κ

I0

(9.25)

where x and y are the coordinates of the particle relative to the center of the

2D Gaussian intensity profile, and σx and σy are the widths of the profile.

The peak intensity of a Gaussian beam is related to the total power (P ) by

I0 = P
πσxσy

. In the case of a standing wave, the interference of the incident

and reflected beams amplifies the peak intensity by a factor of 4. So in that

case ISW0 = 4P
πσxσy

. We calculate the trapping efficiency due to strongest op-
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tical binding forces measured here (at N = 1, θ = 90◦) for our experimental

parameters:

ξOB =
κ

4P
πσxσy (9.26)

=
12 pN

µm

4× 70mW
× π × 15µm× 0.33µm (9.27)

= 0.67
pN/µm

mW/µm2
(9.28)

where the total power P was measured in the focal plane, σx was measured

as in chapter 9.2.4, and σy was calculated using equation (9.22) (see chapter

9.2.4).

To calculate the trapping efficiency of similar sized gold particles in

an optimized optical tweezer (OT) of the same wavelength and in the same

medium (water), we use the data presented in reference [193]. Using figure 2

of reference [193] we estimate the value κ
P
≈ 0.1pNm

mW
for 200nm diameter gold

particles. Thus we calculate the trapping efficiency to be:

ξOT =
κ

P
πσxσy (9.29)

= 0.1
pN/µm

mW
× π × (0.30µm)2 (9.30)

= 0.03
pN/µm

mW/µm2
(9.31)

where σy = 0.30µm was calculated for a NA = 1.3 lens using equation (9.22)

as described in chapter 9.2.4. The ratio of these values is:

ξOB
ξOT

=
0.67 pN/µm

mW/µm2

0.03 pNµm
mW/µm2

= 22.3 (9.32)
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Therefore, under these experimental conditions, optical binding requires about

22.3 times less laser power to generate the same strength optical trap as even

the best optimized optical tweezers. Thus, sensitive biological experiments

may benefit from applying strong optical forces using far less laser power,

thereby causing far less photo-damage and heating.

9.3 Optical Trapping Using Optical Binding Forces

This ultra-efficient optical binding force has potential to be used in new

optical trapping designs where sensitivity to laser intensity is a concern. One

possible design uses the strong optical binding forces generated between large

particles to assist trapping of smaller particles. The dark-field images in figure

9.8 show configurations of large (200nm diameter) and small (100nm diameter)

gold particles in the SWOLT. The smaller particles individually fluctuate long

distances in the SWOLT, but in the presence of larger anchor particles, they

are effectively contained by optical binding forces.

Additionally, optical binding between three or more particles has pre-

viously shown intriguing results, such as changes to inter-particle spacing as

more particles are added to the system [196, 200, 242, 256]. We find similar

results, notably the appearance of spacings of 1.5λ as can be seen in figures

9.8a and 9.8e. This is in distinct contrast to binding between only 2 particles

where we only observe spacings near multiples of λ.
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Figure 9.8: Assisted trapping of nanoparticles using optical binding forces.
A mixture of 200nm and 100nm diameter gold particles were trapped and
aligned in the SWOLT. For the trapping laser power used (70mW in the focal
plane), the smaller particles on their own exhibit large thermal fluctuations
along the x-axis. However, by using the larger particles as an anchor, the
smaller particles become effectively confined due to the strong optical binding
forces. Shown are a few sample configurations of small particles trapped with
help from the larger anchor particles. c) Scale bar: λ = 800nm. Figure from
my publication [278].

9.4 Predictions of Optical Binding at the Plasmon Res-
onance

I have shown that the ultra-strong optical binding interactions between

nanoparticles can localize their positions to within a few tens of nanometers.

Since the binding strength between two particles (A and B) is dependent on

the polarizabilities of the particles (proportional to αAαB), and the polariz-

ability is dependent on the wavelength of excitation light (see equation 9.14),

we expect that we can tune the excitation wavelength to generate maximum

optical binding strength for a given set of conditions. This wavelength is

known as the plasmon resonance, and has been used to increase the strength

of traditional optical gradient force traps [102, 255, 294–299]. We calculate

the plasmon resonance using the data for the wavelength dependent refractive
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Binding θ = 90◦ θ = 45◦

Position, N σN(nm) κN( pN
µm

) σN(nm) κN( pN
µm

)

1 3.74 1162 5.02 645

2 5.22 597 7.29 306

3 6.38 400 8.98 202

4 7.37 300 10.4 151

Table 9.4: Calculations of optical binding spring constants for 200nm diameter
gold particles excited at the plasmon resonance. Additional parameters: λ0 =
638nm and I0 = 468mW

µm2

index of gold as given in references [203, 300–304] and the Clausius-Mossotti

relation including the radiative reaction term as in equation (9.14). For 200nm

diameter gold particles, we calculate the wavelength needed to excite the plas-

mon resonance as λ0 ≈ 638nm in vacuum (λ ≈ 480nm in water). While the

plasmon resonance for gold particles of this size is relatively broad compared

to smaller (sub 100nm) particles, it can still be used to assist in generating

even stronger binding between metal nanoparticles (about a 3.5 times stronger

spring constant compared to using a λ0 ≈ 1064nm laser at the same power). If

we assume we use this wavelength laser and the field intensity on the sample is

comparable to typical optical tweezer experiments (peak intensity of a diffrac-

tion limited Gaussian focal spot when considering 50mW of laser power in the

sample plane focused by a NA = 1.3 objective lens is about I0 ≈ 468mW
µm2 , we

can calculate the expected width of the thermal fluctuations of the particles

as described in chapters 9.1.1, 9.2.1 & 9.2.4. We see in the table 9.4 that
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Binding θ = 90◦ θ = 45◦

Position, N σN(nm) κN( pN
µm

) σN(nm) κN( pN
µm

)

1 41.1 9.64 55.2 5.35

2 57.3 4.96 80.1 2.54

3 70.1 3.32 98.6 1.68

4 80.9 2.49 114 1.25

Table 9.5: Calculations of optical binding spring constants for 45nm diameter
gold particles excited at the plasmon resonance. Additional parameters: λ0 =
524nm and I0 = 694mW

µm2

we should be able to achieve precision of only a few nanometers under these

reasonable conditions, even over long range (distance of many wavelengths).

We can also determine the size of the smallest particles that would ex-

hibit similar ultra-strong optical binding behavior under plasmon resonance

conditions compared to our experiments with larger 200nm particles but ex-

cited off resonance. The plasmon resonance wavelength is size dependent, and

so we determine that for gold particles 45nm in diameter (2 orders of magni-

tude smaller in terms of volume than 200nm diameter particles) the plasmon

resonance is at about λ0 ≈ 524nm in vacuum (λ ≈ 394nminwater). The field

intensity when we again consider 50mW of laser power in the sample plane

is I0 ≈ 694mW
µm2 (the peak intensity increases because the shorter wavelength

results in a smaller focal spot). The results of the calculations are in table 9.5.

We see that even for such small particles, if we take advantage of the plasmon

resonance we expect to see binding roughly as strong as we currently find in
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our experiments for 200nm diameter gold with λ0 = 1064nm, and I0 ≈ 18mW
µm2

(see also table 9.2). We suspect that clusters of more than 2 particles should

be even more stable, however more in depth calculations or simulations are

needed to solve such multi-bodied systems [199].

9.5 Summary

A description of how the standing wave optical line trap (SWOLT) can

be used to study the optical binding force was presented. Pairs of 200nm

diameter gold nanoparticles were trapped in the SWOLT for timescales on the

order of an hour. It was observed that the particles would maintain a precise

separation distance on the order or microns with only small fluctuations, on

the order of a few tens of nanometers, about distance. This mechanism of

particles “locking” into a precise configuration was previously never observed

for nanoparticles, and we present a model where two particles are joined by a

spring which accurately describes this ultra-strong optical binding interaction.

By recording the positions of the particles over 7 minutes, sufficient

statistics could be gathered to accurately and quantitatively determine the

optical binding interaction. With the increased trapping stability of SWOLT,

over two orders of magnitude more data could be gathered compared to pre-

vious best attempts at similar measurements even when we use particles with

size much closer to the Rayleigh regime. Therefore the first quantitative mea-

surements of the optical binding force between Rayleigh particles was achieved.

In addition, it was discovered that the optical binding force can be over 20
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times stronger than the optical gradient force used for trapping in even the

best optimized optical tweezers. These measurements were compared with the-

oretical calculations and were in agreement. We demonstrate that this ultra

strong optical binding force could be used as the basis for new optical trapping

schemes, such as trapping smaller particles between two or more larger “an-

chor” particles. Finally we show through calculation that even stronger optical

binding forces can be generated by exciting the particles with a wavelength

near their plasmon resonance.
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Chapter 10

2D Optical Binding in a Pancake Trap

Direct quantitative measurements of the optically coupled motion of

nanoparticles within a light field, known as “optical binding” (OB), have un-

til now proven difficult [196]. This has been largely due to a lack of tools

which can stably confine nanoparticles free from surface contact and simulta-

neously allow precise optical imaging. However, I have now provided direct

quantitative measurement of the optical binding force between nanoparticles

in one-dimension (see chapter 9). These results were only possible through the

development of the standing wave optical line trap (SWOLT), which allows

nanoparticles to be precisely confined along one-dimension away from surfaces

and observed with high resolution video imaging. While numerous new and

fascinating dynamics were observed in this 1D experiment, allowing particles

to self-assemble in two-dimensions would dramatically increase the possible

arrangements and behaviors which can be observed [273]. We can also begin

to study the motion of nanoparticle clusters as a whole and how they may cou-

ple differently with the external optical field depending on the specific cluster

geometry. For example, 2D patterned structures of nanoparticles have been

shown to be of use in surprising new plasmonic nanodevices and materials such

as for broadband light absorption and photocurrent generation [305, 306].
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Until now, quantitative optical binding experiments between nanopar-

ticles in two dimensions has not been possible. This was due to a lack of

an efficent tool which can confine nanoparticles to a wide two dimensional

plane far from surface contact. However, with the development of the optical

pancake trap (PT) (see chapter 6), I solve this exact problem. Figure 10.1

illustrates how multiple nanoparticles can be trapped far from surfaces while

confined to a two dimensional plane.

10.1 Optical Binding Energy Landscape for 2 Particles
in 2D

While the motion of a single particle in an optical field can be used to

study the gradient and scattering forces (see chapter 3 for example), studying

the optical binding force requires at least two particles as it is an inter-particle

force. It is known that the shape of the 2D optical binding energy landscape

depends on the distance (R) between the two particles and the angle (θ) be-

tween the inter-particle axis and the polarization axis of the optical field (in

our case, aligned with the x-axis) [196, 199, 240]. We can directly measure

this energy landscape by trapping exactly two particles in the same plane

within the pancake trap and observing the motion of the pair through high

resolution dark-field microscopy. The videos can then be analyzed to quantify

the 2D interaction. By using a sufficiently weak field intensity (I0 ≈ 8.2mW
µm2

peak intensity) such that the particles are free to explore the energy landscape

through thermal motion, we can then measure the relative positions of the
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Figure 10.1: Illustration of the optical trapping mechanism of the pancake
trap. The intensity distribution of the wide collimated standing wave gener-
ates strong axial confinement of particles while generating very weak confine-
ment radially. Particles trapped in a given anti-node of the standing wave are
relatively free to move in a single 2D plane. Optical binding effects between
strong scattering particles (such as gold particles) can then be observed. The
result is generally a self assembly the nanoparticles into different contactless
geometries.
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Figure 10.2: Diagram showing how the relative position between two particles
is measured in 2D within the pancake trap. The positions of the centers of the
two particles (labeled A and B) are tracked for each frame of video, and the
relative separation distances can then be calculated.

two particles (figure 10.2) over long timescales. We can use this data to gen-

erate a 2D position histogram of the particle-particle separation and from this

histogram we can directly determine the energy landscape of the interaction.

10.1.1 Measured Energy Landscape

The probability of finding a pair of particles in a given configuration is

related to the potential energy of being in that configuration through Boltz-

mann statistics:

W∆x,∆y =
1

Z
e
−U∆x,∆y

2kBT (10.1)
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where the configuration of the two particles in two dimensions can be repre-

sented by their relative separation distances along the x and y axes (∆x,∆y),

and the total thermal energy of the two particle system is 2kBT . If the proba-

bility distribution (W∆x,∆y) is measured, it is then a simple matter to calculate

the energy landscape (U∆x,∆y) by taking the natural logarithm of equation

(10.1):

U∆x,∆y

2kBT
= − ln (W∆x,∆y)− ln (Z) (10.2)

where ln (Z) can be considered as an arbitrary additive constant to the energy

landscape.

Figure 10.3 shows the measured energy landscape of the 2D, pairwise

optical binding interaction within the pancake trap. While the inter-particle

axis is essentially free to rotate through any angle (θ), the two-fold symmetry

of this interaction allows us to directly map all the data from quadrants 2→ 4

into quadrant 1, thus increasing the statistical significance of each bin of the

histogram and corresponding energy landscape. We can see from the measured

energy landscape that two particles within the same optical field no longer have

complete freedom of motion, but are in fact coupled through optical binding

forces, even over long distances. A distinct wavelike pattern is observed which

corresponds to the oscillatory nature of the optical binding force with distance.

We can also see a strong dependence of the interaction with respect to the

orientation of the particle pair. The strongest interaction occurs when the

particles are oriented perpendicular to the polarization axis, and the radial

locations of the energy minima shift slightly as the orientation is rotated. This
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Data

Figure 10.3: Pairwise optical binding energy landscape in 2D. The relative
positions over 5.3 × 105 frames (3 hours of video at 50fps) are used to con-
struct the energy landscape of the pairwise optical binding interaction in two
dimensions. We observe a distinct wavelike pattern radially with energy min-
ima at roughly multiples of the laser wavelength (λ = 800nm in water). A
strong dependence on the angle (θ) can also be seen. This indicates a pref-
erence for the pair to orient perpendicular to the polarization axis (x-axis).
The energy is normalized to the thermal energy of a two particle system. Bin
size = 25nm × 25nm. We can see excellent agreement with the theoretical
calculations shown in figure 10.4.
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is in excellent agreement with theoretical predictions, and these theoretical

calculations are described in the next section (chapter 10.1.2). We also mention

that the optical binding interaction may still be significant at much farther

separation distances than shown here, as the diameter of the pancake trap

was chosen to prevent the particles from straying too far in order to acquire

enough statistics in a reasonable timeframe.

10.1.2 Theoretical Energy Landscape

We start with the formulation of the lateral optical binding (OB) force

as given in references [196, 240]. The particles within the pancake trap are

confined such that movement is restricted to a 2D plane perpendicular to the

axis of light propagation. Therefore, we can consider only the two components

of the force acting within the trapping plane since there is no significant motion

along the third dimension:

FOB
r =

|α|2|E0|2

8πε0εmR4

{ [
2k2R2

(
2 cos2 θ − 1

)
+ 3

(
1− 3 cos2 θ

)]
cos (kR)

+
[
k3R3

(
cos2 θ − 1

)
+ 3kR

(
1− 3 cos2 θ

)]
sin(kR)

}
(10.3)

FOB
θ =

|α|2|E0|2

8πε0εmR4
sin(2θ)

[(
k2R2 − 3

)
cos (kR)− 3kR sin(kR)

]
(10.4)

where R is the distance between the two particles, θ is the angle between the

inter-particle axis and the polarization direction of the incident light and E0

is the amplitude of the electric field on each particle. In order to calculate

the potential energy due to the optical binding force at a given point (R2, θ2)

relative to a reference point (R1, θ1), we must integrate the force along a given
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path (s) connecting these two points:

UOB
R,θ = −

∫ (R2,θ2)

(R1,θ1)

~FAB · d~s (10.5)

We compute that the curl of this 2D force field is equal to zero, and there-

fore is a conservative force. Thus the energy difference between two points

is independent of the path chosen. Therefore, to simplify the integration, we

convert equations (10.3) and (10.4) from polar to Cartesian coordinates and

integrate numerically. We fix the reference energy point to be (∆x1,∆y1) =

(20µm, 20µm) and integrate to the point (∆x2,∆y2) along two straight line

paths: (20µm, 20µm) → (∆x2, 20µm) → (∆x2,∆y2). Since only the energy

difference between two configurations is important, this result is correct up to

an arbitrary additive constant.

Finally, we account for the energy contribution of the gradient forces

acting on the particles due to the pancake trap (PT) intensity distribution.

For a single particle in a 2D Gaussian intensity distribution a distance r from

the peak intensity (see also equation (6.6)):

U grad
r = − α

cnmε0

(
4P

σ2
Iπ

)
e
−r2

σ2
I (10.6)

For the case of two optically bound particles, we make the approximation that

the distance each single particle is from the peak intensity is equal to half

the separation distance between the particles, r = 1
2
R. Therefore the total

potential energy for two particles due to the pancake trap intensity distribution

is:

UPT
r = − 2α

cnmε0

(
4P

σ2
Iπ

)
e
−(R/2)2

σ2
I (10.7)
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And the total potential energy due to the optical binding forces and the gra-

dient forces is then:

UTotal
R,θ = UPT

R + UOB
R,θ (10.8)

where UPT
R and UOB

R,θ are given by equations (10.7) and (10.5) respectively, and

are calculated numerically as described above. The results of this calculation

are shown in figure 10.4. These theoretical predictions are in excellent agree-

ment with the measured pairwise optical binding energy landscape shown in

figure 10.3 and with my previous experiments done in 1D in the standing wave

optical line trap (see chapter 9).

10.2 Two-Dimensional Optical Binding Between 3 or
More Particles

Now that the energy landscape of the two particle optical binding in-

teraction has been experimentally measured in detail, the next step is to add

more particles to the system and observe multi-body behavior. Again, we use

low laser intensity (I0 ≈ 8.2mW
µm2 ) in order to let the particles explore different

configurations through thermal motion. Figure 10.5 shows examples of 2D

multi-particle optical binding configurations observed in the pancake trap (see

also Supplementary Videos 2-5).

While many different configurations can be seen, they are not equally

stable. Among the most stable configurations are those that are elongated

perpendicular to the polarization axis such as the linear configurations on

the left-hand side of figure 10.5. This preference to align perpendicular to
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Theory

Figure 10.4: The theoretical optical binding energy landscape is calculated for
two particles in the pancake trap under the same conditions as used in the
experiment. The energy is normalized to the thermal energy of a two particle
system. We can see excellent agreement with the experimental measurement
shown in figure 10.3.
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Figure 10.5: Optical matter formations in the pancake trap imaged using dark-
field microscopy. Clusters containing exactly 3, 4, 5, and 6 particles are shown
in rows a, b, c, and d respectively. Each row shows multiple images of the
same number of particles. The most stable configurations seem to be those
which are elongated perpendicular to the polarization axis (horizontal axis),
such as the mainly linear conformations on the left-hand side. Particle pairs
in contact are denoted with an arrow, and we note that these pairs only occur
horizontally which is in agreement with theory (see figure 10.4).

the polarization axis is in agreement with the interaction potential shown in

figures 10.3 and 10.4. We can also see that while inter-particle separation

distances are roughly multiples of the laser wavelength (λ = 800nm in water),

some particles are actually in contact. This contact only occurs along the

polarization axis, and is in agreement with theory which predicts that the near-

field optical binding potential transitions from a repulsive force to an attractive

force depending on the particle pair orientation [196, 240, 241] (figure 10.4). In

addition, we note that there has been theoretical study of the formation of 2D
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optical matter for both micrometer-scale particles and nano-scale (Rayleigh)

particles [199]. Predictions of cluster geometries depend on the size of the

particles, and our results shown in figure 10.5 are in agreement with those

simulations for Rayleigh particles indicating our experimental measurements

are clearly in the Rayleigh regime. We invite the reader to compare our images

in figure 10.5 with those configurations predicted through simulation described

in reference [199].

10.3 Geometry Dependent Cluster Motion

While the multi-body optical binding interaction between nanoparti-

cles is seen to form complex arrangements of particles relative to each other,

we also observe geometry specific coupling of the optically bound clusters with

the external optical field of the pancake trap. We can track, for example, the

center of mass (CoM) motion of the cluster as a simple reporter of the clusters

behavior as a single entity. However, since the cluster motion is expected to

be dominated by the sum of the optical gradient forces (as well as thermal

forces) on each constituent particle rather than by inertia, we calculate an

effective center of mass (eCoM) which weights each particles location propor-

tionally to its polarizability (α) rather than its mass. The weighting for each

constituent particle is easily determined since the polarizability is proportional

to the square-root of the total scattered intensity. Additionally, the particles

polarizability is also proportional to its volume (and therefore also its mass)

meaning the CoM and eCoM should be identical calculations. Through this
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tracking of the clusters eCoM, we can observe changes in cluster behavior de-

pending on the cluster geometry. For example, in general we observe that as

the number of particles in the cluster increases, the standard deviation of the

eCoM fluctuations (due to thermal forces) decreases which indicates stronger

confinement. This is expected, as more particles would collectively experience

a stronger total optical gradient force.

However, while one might expect that the sum of the gradient forces

on each constituent particle in the cluster would solely determine the average

eCoM location in the optical field, our measurements contradict this expecta-

tion. For example, for a pair of identical particles trapped in a single plane

in the pancake trap we would expect a completely axially symmetric system,

and thus for any orientation of the pair the average eCoM position should

not change. We can check this assumption in our measurements by keeping

track of the identity of each particle (we label them as A and B) throughout

the videos. Since the particle pairs prefer to align perpendicular to the polar-

ization axis due to the optical binding interaction potential (see figures 10.3

and 10.4), we can separate the data into two groups: one where particle A is

“on top” of particle B (yA > yB), and one where particle B is “on top” of

particle A (yA < yB). In doing so, we find a surprising result (see figure 10.6)

in that the entire cluster shifts several microns to a new position in the 2D

trapping volume depending on which particle is “on top” (the specific ordering

of the particles). We know that the particles used in the experiments cannot

be exactly identical, and there must be some differences, most likely in their

156



1µm
B B

A A

rA/rB ≈ 1.038

∆ ≈ 2.2µm ∆ ≈ 1.1µm

1µm

A A

B B
y

x

Figure 10.6: Center of mass tracking of an optically bound particle pair in
the pancake trap. The colored regions represent the set of measured locations
of the center of mass of the particle pair (which thermally diffuses within the
pancake trap) for a given arrangement and orientation. The black squares rep-
resent the average center of mass position of the regions. The black dots in the
top and bottom panels represent the arrangements of the gold nanoparticles
(drawn to scale) and the arrows indicate the center of mass regions corre-
sponding to those particle arrangements. The average center of mass position
is seen to shift depending on the order of the particles, likely due to a differ-
ence (3.8%) in particle diameter. The larger particle is marked as A, and the
smaller as B. This effect indicates a coupling to the external optical field that
is specific to the particle formation. The panel on the right overlays all the
sets of center of mass positions and is scaled by a factor of 2.
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shapes and sizes, which cause the observed asymmetry. While it is not pos-

sible to measure the details of the particles’ surface landscapes in diffraction

limited optical microscopy, their relative sizes can be estimated by measuring

the total scattered light intensity of each particle (Ii). Assuming the particles

are approximately spherical, the total scattered intensity is proportional to

the radius (ri) of the particle by Ii ∝ r6
i and thus even a small difference in

radius should yield a measureable intensity difference. We find that the ratio

of the particle intensities is IA/IB ≈ 1.25 which indicates the relative sizes of

the particles to be rA/rB ≈ 1.04. Although this is only a 4% difference in

size between the two particle, the cluster always dramatically translates in the

direction of the smaller particle (figure 10.6). It may be that there is some

small effect due to the calculation of the eCoM since the brighter particle is

weighted more heavily, however such an effect would only cause a shift to-

ward the larger particle and would be much less than the distance between

the two particles, whereas we observe the opposite of both of these effects in

our measurements. In fact, when the particles are in the first binding position

(separated by R ≈ λ = 0.80µm) we see a translation of about 2.2µm between

the average positions of the eCoMs. This is a shift of over 275% of the distance

between the two particles for only a 4% difference in size. When we calculate

the eCoM for each particle ordering when the particle pair separation is dou-

bled (R ≈ 2λ = 1.60µm) we find that the shift in average eCoM position

between the two configurations decreases by half to about 1.1µm. This reduc-

tion in the eCoM shift may be due to a stronger gradient force since the greater
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separation between the particles causes them to be nearer to the edges of the

trapping volume. If this were true, we would also expect that the stronger gra-

dient forces would reduce the standard deviation of the thermal fluctuations

of the pair, but we find no significant change in those measurements. It is then

likely that the distance between the particles, in addition to the particle size

and ordering, plays a strong role in the coupling of the optically bound cluster

to the external field. It is likely that when the particles are in closer proximity,

they couple more strongly to each other and their specific interaction with the

external field becomes more pronounced.

Similarly, as more particles are added to the cluster thus allowing a

variety of geometrical arrangements (figure 10.5), we find that different cluster

geometries also exhibit strong shifts in eCoM location. Furthermore, we now

also see changes in the shape of the area it may explore. Figures 10.7 and

10.8 show different cluster configurations along with the corresponding regions

explored by the eCoM through thermal motion of the cluster in the pancake

trap. We see that for even small differences in geometry can cause the entire

cluster to shift to a different region of the trapping volume. This shift is also

dependent on the orientation of the cluster, as seen in the 1st and 2nd columns

of the second row of figure 10.7 as well as in figure 10.6. Since the clusters

prefer to align with their long axis perpendicular to the polarization direction,

cluster generally do not rotate. However, the 4th column from the left of figure

10.8a depicts a small triangular formation which was seen to rotate much more

freely due to its symmetry. Thus the region which is explored by the cluster
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Figure 10.7: Center of mass tracking of 4-particle optical matter formations
within the pancake trap. For different arrangements of the gold nanoparti-
cles, the center of mass of the cluster shifts to different locations in the PT
indicating geometry specific coupling to the external optical field. The black
dots represent the arrangements of the gold nanoparticles (drawn to scale)
and the colored shaded regions represent the set of center of mass locations for
each given arrangement. Plotted above or below each cluster diagram are the
corresponding sets of measured center of mass positions. In some plots, mul-
tiple colors are used indicating separate portions of the analyzed video where
the formation occurred. We distinguish the separate occurrences because it
is possible for the same geometry to reoccur while the specific order of the
particles may have changed (as in the two particle case shown in figure 10.6).
The panel on the far right overlays all the center of mass regions observed for
comparison and is scaled by a factor of 2.
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(a) 3-particle clusters

(b) 5-particle clusters

Figure 10.8: Center of mass tracking of 3- or 5-particle optical matter for-
mations within the pancake trap. See figure caption 10.7 for more details.

sweeps a broad region as it rotates.

In general, these regions are specific to the cluster geometry and orienta-

tion, and the cluster will always return to the same region when in a particular

configuration. We observe exceptions to this rule in a few instances, such as

shown in figure 10.7. This is likely because the specific constituent particles

within the cluster have rearranged, and since they are likely have small dif-

ferences in size or shape, this reordering of the particles can cause large shifts
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in eCoM location as demonstrated for the 2 particle system (figure 10.6). For

example, the 3rd and 4th columns of the top row of figure 10.7 show that for

the same cluster configuration, an eCoM region can have a “mirror image”

region which is likely due to the cluster reforming as its own “mirror image”

of constituent particles about the same axis.

These results showing strong geometry dependent coupling with the

external optical field are particularly interesting and quite dramatic. While

there has been a strong focus in the optics and nanotechnology communities

on plasmonic devices, typical plasmonic coupling between nanoparticles oc-

cures at distances far smaller than the excitation wavelength (on the order

of 10s of nanometers). This coupling of particles over the long distances of

many wavelengths and the subsequent coupling and interaction of the clusters

with external optical fields may provide a new frontier for optical nano-device

development.

10.4 Summary

I described how the pancake trap can be used to study the optical bind-

ing interaction between nanoparticles in two dimensions. The high trapping

stability of the pancake trap was used to trap a pair of 200nm gold particles in

a single plane for 3 hours. Thus enough statistics of particle positions could be

gathered in order to accurately and quantitatively measure the optical binding

interaction in 2D. I provide the first detailed quantitative measurement of the

pairwise optical binding energy landscape between nanoparticles in 2D. These
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measurements show excellent agreement with theoretical calculations of the

energy landscape.

When multiple particles are trapped, they are observed to self-assemble

into a variety of geometrical shapes due to the optical binding interaction.

These configurations are the first experimental observations of self-assembled

“optical matter” in 2D using only optical binding forces and are in agreement

with theoretical predictions made by other researchers. The center of mass

motion of these clusters was then tracked and it was observed that the clusters

move to different locations in the optical field depending on their specific

geometries or particle order. This indicates that the positioning of the cluster

within the optical field depends not only as the sum of the gradient forces

on each constituent particle, but also depends on geometric properties of the

cluster as a whole. This phenomenon has never before been observed.
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Chapter 11

Outlook

We have shown that the optical binding force is a unique and powerful

tool for manipulation of multiple nanoparticles. In addition, this ultra-strong,

long-range interaction can be used to create complex rigid nanostructures with

very high precision. With reasonably increased laser intensity and by using

a laser wavelength near the plasmon resonance of the particles, precision of

only a few nanometers or better should be achievable. Even particles 45nm

in diameter or smaller should stably bind although with less precision (see

chapter 9.4). We also expect that optical matter should become more stable

as more particles are added. As we have indicated by our assisted trapping

design (chapter 9.3), binding of smaller nanoparticles to form larger optical

molecules should result in stable trapping of the object as a whole whereas the

individual components may normally be difficult to trap.

There is vast potential for commercial application of optical matter.

For example, metal particles or nanowires may be arranged precisely in 3D

using optical binding then frozen in place within light-activated resin [140],

thereby keeping the arrangement in a material for use in new electronics such

as novel photovoltaics with broadband absorption [305–309] or high-precision
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plasmonic nanodevices [4, 310]. Seeds or templates may be made for gener-

ating crystal structures or even biological tissue [196, 197]. New designs for

nanomachines based on optical binding forces are now possible which can

switch conformations or functions when illuminated by different wavelengths.

When sensitivity to laser intensity is a concern, such as with biological ex-

periments [236, 238, 239], optical binding provides the possibility for ultra-low

power optical manipulation thereby extending the realm of potential medical

research.
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Appendix A

List of Symbols and Variables

———English Letters———

a .............................. The radius of a spherical particle. Sometimes
the symbol r is also used.

A,B .............................. Lables for the two individual particles of an
optically bound particle pair.

AB .............................. The length of the direct path a scattered light
ray travels between two optically bound parti-
cles.

AB′ .............................. The length of the singly reflected path (off a
surface) a scattered light ray travels between
two optically bound particles.

c .............................. Speed of light in vacuum (c = 3.0× 108m
s

).

D .............................. The diameter of the objective lens back aper-
ture.

Df .............................. The diameter of the objective lens front aper-
ture.

|E0| .............................. The amplitude of the electric field vector of in
an optical field.

f .............................. The focal length of a lens (usually the objective
front lens).
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fb .............................. The focal length of the back lens of an objective
lens system.

F .............................. Force (typically an optical force).

I0 .............................. The peak intensity of a 2D Gaussian dis-
tributed intensity profile. The location of this
peak intensity generally defines the origin (0, 0)
of the coordinate system used.

Ix,y .............................. The intesity distribution of an optical field in
a given 2D plane (typically the sample plane).

k .............................. The wavenumber of a light wave. Related to
the wavelength of light by k = 2π/λ.

kB .............................. Boltzmann’s constant (1.38× 10−23m2kg
Ks2

).

L .............................. The luminosity of a radiating object. The lu-
minosity of the sun is Lsun = 3.85× 1026W

nm .............................. The refractive index of a medium. Usually this
medium surrounds the particles being studied
(and is typically water, nm = 1.33).

np .............................. The refractive index of a particle. Typically
polystyrene (np = 1.55) or gold (np = −26.18+
i1.85) is used. We must note that the complex
refractive index of gold is wavelength depen-
dent, and it is important to look up the exact
value in reference [203].

NA .............................. The numerical aperture of the objective lens.

p .............................. The force per unit area (pressure) on an object.

P .............................. The total laser power measured in the sample
plane.
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r .............................. The radius of a spherical object. Usually the
symbol a is used instead.

R .............................. The distance between a pair of particles, usu-
ally used to describe an optically bound parti-
cle pair.

~s .............................. Displacement vector along a given path of ar-
bitrary geometry.

T .............................. Temperature of the sample (usually room tem-
perature: T ≈ 295K).

U .............................. Potential energy function for a given system.

~v .............................. Velocity of a particle.

W .............................. Probability function for a given system.

———Greek Letters———

α .............................. The effective complex polarizability of a parti-
cle including the radiative reaction correction
to the Claussius-Mossotti relation.

α0 .............................. The complex polarizability of a particle given
by the Claussius-Mossotti relation (no radia-
tive reaction correction).

β .............................. A fitting parameter used to fit the optical bind-
ing spring constant data shown in figure 9.7.

β = |α|2|E0|2k5 sin2 θ
8πε0εm

γ .............................. Stokes drag coefficient. Related to the particle
radius (a) and fluid viscosity (η) by γ = 6πηa.
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δxCL .............................. The displacement of the cylinder lens focal line
in the SWOLT setup relative to the optical
axis.

δzCL .............................. The displacement of the cylinder lens focal line
in the SWOLT setup relative to the back focal
plane of the objective lens.

∆x .............................. The x-component of displacement between two
optically bound particles.

∆y .............................. The y-component of displacement between two
optically bound particles.

∆z .............................. The displacement of the image plane from the
focal plane. See chapter 4.2.

ε .............................. Correction factor for the Stokes drag coefficient
for motion near a surface. Generally takes on a
value between 1 (in bulk solution far from sur-
faces) to 3 (very near a surface). See reference
[195] for more details

ε0 .............................. The dielectric permeability of vacuum (ε0 =
8.85−12 s2C2

m3kg
).

εm .............................. The dielectric constant a medium. Generally
this is the medium surrounding the particles
being studied (and is typically water, εm =
1.77). It is related to the refractive index by
εm ≈ n2

m assuming the magnetic permiability
of the material is 1.

εp .............................. The dielectric constant of the particle(s) stud-
ied. It is related to the refractive index by
εm ≈ n2

m assuming the magnetic permiability
of the material is 1.
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η .............................. The fluid viscocity. For water, it is known to
be η = 1.0fNs/µm2.

θ .............................. 1) The angle of incidence of a light ray off a
reflecting surface. 2) The angle of polarization
of the incident light field relative to the axis
joining two particles (as for an optically bound
particle pair).

κ .............................. The spring constant of a harmonic oscillator.
Used to describe the strength of an optical trap.

λ .............................. The wavelength of a light wave in a medium of
refractive index nm.

λ0 .............................. The wavelength of a light wave in vacuum.

ξ .............................. The trapping efficiency of an optical trapping
system. Defined as ξ ≡ κ/I.

π .............................. The irrational number (π = 3.1415926535 . . .).

σ .............................. The width of a Gaussian distribution or func-
tion.

τ .............................. Position autocorrelation time. The character-
istic timescale for a Brownian oscillator to tra-
verse a harmonic potential energy well. τ =
γ/κ

φ .............................. The angle made by the scattered light ray
which travels along the path AB′ with respect
to the direct path AB (or equivalently to the
plane of the reflecting surface).
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Appendix B

List of Equations

The optical scattering force on a Rayleigh particle:

F s(~x) =
8π3α2

3cn3
mε

2
0λ

4
I(~x) (B.1)

=
128π5a6nm

3cλ4

[
(np/nm)2 − 1

(np/nm)2 + 2

]2

I(~x) (B.2)

The optical gradient force on a Rayleigh particle:

~F g(~x) =
1

4
α∇|E(~x)|2 (B.3)

=
2πnma

3

c

[
(np/nm)2 − 1

(np/nm)2 + 2

]
∇I(~x) (B.4)

The optical binding force on a Rayleigh particle (in cylindrical coordinates):

F b
r =

|α|2|E0|2

8πε0εmR4

{[
2k2R2

(
2 cos2 θ − 1

)
+ 3

(
1− 3 cos2 θ

)]
cos (kR)

+
[
k3R3

(
cos2 θ − 1

)
+ 3kR

(
1− 3 cos2 θ

)]
sin(kR)

}
(B.5)

F b
θ =

|α|2|E0|2

8πε0εmR4
sin(2θ)

[(
k2R2 − 3

)
cos (kR)− 3kR sin(kR)

]
(B.6)

F b
z = −<

{
(α∗)2|E0|2ke−ikR

8πε0εmR3
×
[
3i− 3kR− ik2R2

]
sin2 φ− 2i+ 2kR

}
(B.7)
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The intensity distribution for a point focused laser beam:

I(x, y, z) =
2P

π

[
1

ω2
0 + 4z2

]
e
− 2(x2+y2)

ω2
0+4z2 (B.8)

The relationship between the intensity and electric field amplitude:

I(~x) =
cnmε0

2
|E(~x)|2 (B.9)

The radius of the beam waist for a diffraction limited focal spot:

ω0 =
λ

2NA
(B.10)

The Clausius-Mossotti relation:

α =
α0

1− ik3α0

6πε0εm

(B.11)

α0 = 4πε0εma
3

[
εp − εm
εp + 2εm

]
(B.12)

The Stokes drag on a particle moving in fluid:

~F d = −6πεηa~v (B.13)

The Maxwell-Boltzmann probability distribution for energy states:

W (~x) =
1

Z
e
−U(~x)
kBT (B.14)
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The position autocorrelation time:

τ =
γ

κN
=

6πηa

κN
(B.15)

Radiation pressure due to a point source emitter:

p =
L

4πr2c
(B.16)
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trapping of nanoparticles and microparticles by a Gaussian standing

wave. Optics Letters, 24(21):1448–1450, November 1999.
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[252] V Karásek and Pavel Zemanek. Analytical description of longitudinal

optical binding of two spherical nanoparticles. Journal of Optics A:

Pure and Applied Optics, 9(8):S215–S220, July 2007.

[253] Justo Rodŕıguez, Luciana C. Davila Romero, and David L. Andrews.

Optically induced potential energy landscapes. Journal of Nanophoton-

ics, 1:019503, October 2007.

[254] A. Salam. Two alternative derivations of the static contribution to

the radiation-induced intermolecular energy shift. Physical Review A,

76(6):1–5, December 2007.

211



[255] Anna S Zelenina, Romain Quidant, and Manuel Nieto-Vesperinas. En-

hanced optical forces between coupled resonant metal nanoparticles.

Optics Letters, 32(9):1156–1158, May 2007.
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[260] V Karásek, Oto Brzobohatý, and Pavel Zemanek. Longitudinal opti-

cal binding of several spherical particles studied by the coupled dipole

method. Journal of Optics A: Pure and Applied Optics, 11(3):034009,

March 2009.

212
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