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The interaction of electromagnetic waves with materials is at the basis of several
phenomena influencing our everyday lives. Throughout the past few decades we are
witnessing a rapid progress in the development of new platforms to engineer and design
different aspects of wave-matter interaction for applications ranging from green energy
harvesting, to high speed data communication, and medicine. In line with these
developments, the advent of metamaterials, or artificially structured materials, introduces
an alternative path to mold and control electromagnetic waves with degrees of freedom
that are not accessible in natural materials. There is, however, a strong need to broaden
the range of applicability of metamaterials thorough strong nanoscale light management,
real-time tunability, ease of fabrication, and lowering the losses. In this study we discuss
that to what extent it is possible to engineer the scattering, absorption, and local wave-
matter interaction of metamolecules, as the basic building-blocks of metamaterials, as

well as assembles of them forming complex systems.

vi



In this work, first, we propose and investigate new nanoparticle geometries with
tailored complex absorption and scattering signatures. We demonstrate that plasmonic-
based nanostructures can be tailored to provide unprecedented control of their scattering
and absorption/emission response over broad bandwidths, specifically in the optical
frequency range. We show that judicious combination of plasmonic-dielectric singular
nanoparticles provides very efficient broadband and controllable light absorption and
amplification. Based on these composite elements, we propose a nanoscale optical switch
with strong sensitivity and tunability. These engineered nanoparticles are also particularly
interesting for applications in nonlinear optics, spasing, and energy-harvesting devices.

Next, we answer the fundamental question of "to what extent the unwanted
scattering from a general absorbing body may be reduced?". We demonstrate the
theoretical limitations of a furtive sensor and provide a proof of the concept
implementation of minimum-scattering superabsorbers at optical and microwave
frequencies. Based on our theoretical analysis, we also explore experimental realization
of microwave low-scattering antennas. This study is of particular importance for the near-
field subdiffractive probing and closely-packed antenna designs.

Last, we propose a new degree of freedom in controlling the propagation and
scattering of light through proper arrangements of dissimilar metamolecules over a
surface, i.e. gradient metasurfaces. We theoretically investigate and design metasurfaces
that are capable of performing complex wave shaping functionalities such as cloaking,
yet, over a single ultrathin volume. Our full analytical approach enables us to underline
the inherent limitations and wide range of capabilities of metasurfaces, and we propose
novel techniques to significantly improve the efficiency of wave manipulation by
metasurfaces. We also investigate the proposed concept of local wave manipulation in

several practical applications in beam steering, improved energy harvesting, and cloaking
vii



arbitrary obstacles, accompanied by experimental realization of negative reflection from
optical metasurfaces. Such unprecedented control of optical wave propagation along with
compatibility of metasurfaces with standard lithographic techniques and on-chip
technology will significantly impact the future application of metasurfaces, paving the

way toward flat, compact optical devices.
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respectively. The loss/gain profile of the optimal metasurface is
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Figure 5.6: (a) Spatial distribution of admittance profile and (b) local reflection

coefficient of the grounded metasurface designed to redirect a normal

TE incident plane wave towards 6. =75 degrees. The admittance layer
isat d =4,/20 distance from the ground plane and the passive, lossless

approximation is considered, i.e., R(x)= 1) The amplitude of the

reflected plane wave is set at |Ar| = 1/ Veos75" in Eq. (5.3). Solid lines

show the discretized profiles for N, =8 and dashed line correspond to

the original continuous pattern. (c) Frequency variation of the power

reflected into different diffraction orders of the quantized metasurface.

n=+1,0,—-1 correspond to 8, =75,0,—75 degrees at the center design

frequency f = f,. Dashed lines indicate the coupling efficiency of the
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Figure 5.7: (a) Schematic of the microwave building block to implement gradient

metasurfaces designed to redirect a normal incident plane wave toward

6. =75 degrees at 1 GHz. Each block consists of a grounded 10 mm

thick Eccostock®PP foam with relative permittivity &, =1.06.

Elements are assumed to be passive and lossless, and the local reflection
phase on top of each element is controlled by varying the surface
capacitors and inductors. Thirty-two blocks are utilized in order to
implement one supercell period of the intended gradient metasurfaces,
and X = |4, /(sin 6, —sin6,)| ~310.6 mm . (b) Distribution of the
reflected power toward different Floquet harmonics. Solid lines indicate
the performance of the gradient metasurface designed based on the
passive, lossless approximation of our analytical solution, i.e.,

R(x)=1¢’ %) , and the dashed lines demonstrate analogous results for

the metasurface designed based on the ray optics approximation, i.e.,
R(x) =1e™ /™% Except for the LC surface components listed in Table
1, all physical properties of the two metasurfaces are similar. Red lines

indicate the percentage of power successfully redirected in the direction

of the first Floquet harmonic, i.e., 6, =75 degrees at f =1GHz. The

inset shows a time-snapshot of /7, at 1GHz for the metasurface

designed based on our approach, demonstrating the clean scattered wave
profile even in close proximity to the surface. The field amplitude is

normalized to the incident plane wave...........ccccevveenieniiieneeneenne. 103
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Figure 5.8: (a)-(b) Metasurface local reflection coefficient R(x)= r(x)
required to convert a normally incident wave (8; = 0 degrees) into a
guided wave with B, =-1.5k,, in a passive-lossy metasurface, i.e.
|Ar| =k, / | ﬂx| . (¢) Distribution of the scattered magnetic field H,, for

0.=0 and B, =-1.5ky, d =1,/20, for the all-passive surface

illustrated in Fig 5.8 (a,b). The field is normalized to the amplitude of
the incident magnetic field...........coccoviiiiiiniiiiii 106

Figure 5.9: Comparison between the scattering properties of ideal (solid lines) and
ray-optics based (dashed lines) metasurface reflecting lenses with local
distribution of loss and gain and (a) NA =0.9578 and (b)

NA =0.9981. Amplitude and phase of the local reflection coefficient

R(x)= r(x)ej %.(x) are plotted along the lens surface for (a) @ =7 and

(b) « =r/2. Metasurface lenses are extended between x = (—L,L) ,

excited by a plane wave propagating along —z direction. ............ 109
Figure 5.10: Comparison between the power distribution in passive-lossless planar
lenses with optimal (a, ¢), and hyperbolic (b, d) lateral phase profiles.

Plots in the same row have the same color bar, and all metasurfaces have

equal thickness d = 4;/50 . Imparted local reflection coefficients
R(x)= 1) calculated for (a) a=x and (c) a=4.4 radians.

Metasurface lenses in panels (a, b) and (c, d) are designed to collimate

the normally incident plane wave at f; =34, and f, =0.254,,

respectively. (e, f) Field profile along the x- and z- directions across the
focal points corresponding to panels (c) and (d), respectively. For better

comparison, the plots are all normalized to the same value. .......... 112
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Figure 6.1: Spatial phase modulator. (a) Basic element of the metasurface made of
alternated plasmonic (blue) and dielectric (orange) materials deposited
on a grounded substrate layer (gray). The element lies in the xy plane
and is invariant along the y axis. (b) Equivalent circuit model for the
structure shown in (a). The metasurface layer is modeled by the

appropriate shunt electric surface impedance Z, ..,

and Z , includes
the effect of the substrate and ground plane. (c) Magnetic field
distribution in a sample periodic metasurface composed of the elements
shown in (a) and excited with a plane wave (E y,HX) along the —z
direction. The opposite direction of rotation of the magnetic field
indicates a reverse sign of local reactance in each portion. ............ 122

Figure 6.2: (a) Surface reactance and resistance per unit length as a function of the
width of the plasmonic portion for the structure shown in Fig. 6.1(a).
Material and geometry specifications are included in the main text. (b)
Corresponding reflection coefficient. Parallel combination of the
nanoelements is considered. (Reproduced with permission from Physical
Review B, Vol. 89, Issue 23, pp. 235419 (2014). Copyright 2014
American Physical SOCIEtY). .....cccevieviiviniiniiiiiiiecieeceeeeen 125

Figure 6.3: Tunability and intrinsic dispersion. (a) Reflection phase from a periodic
metasurface with unit cells shown in Fig. 6.1(a). Dielectric permittivity
is swept from ¢, =11 to &, =13 to tune the frequency response. (b)
Evolution of the reflection phase with the wavelength. (Reproduced with
permission from Physical Review B, Vol. 89, Issue 23, pp. 235419
(2014). Copyright 2014 American Physical Society)..........cccc.... 127
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Figure 6.4: Effect of loss. Amplitude and phase of the reflection coefficient for the
unit cell shown in Fig. 6.1(a) with different amounts of intrinsic loss in
the plasmonic portion and (b) replacing the back mirror with realistic
optical MEtals. ......coouiiiiiiiiii 131

Figure 6.5: Polarization response. (a) Reflection coefficient from a grounded
metasurface with the unit cell shown in Fig. 6.1(a) under two orthogonal
excitations. (b) Effect of the geometry and incident polarization on the
distribution of electric field over the metasurface. Two adjacent unit
cells from the periodic metasurface are shown...........cccoeceeeeennnen. 132

Figure 6.6: Polarization management. (a) Reflection phase variation for two

dimensional periodic metasurfaces composed of the unit cell shown in

the inset as a function of thickness d, of the plasmonic segment.
Dimensions are setat £/=50nm, d =d, +dp =50 nm, and

[ =31.25nm. The phase is calculated at A, =500 nm using full-wave

numerical simulation and the permittivities of constitutive materials are

& = (-8.14-0.095))¢g, (silver), &, =12g, (Aluminum Arsenide), and
&, =&, atthe center frequency. (b) Same as in (a) for the concentric
nano-block shown in the inset. Dimensions are set at £ =100 nm,

d =40 nm, and /=31.25 nm; the diameter of the nanorods are changed
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Figure 7.1: Tunable beam steering. (a) Normalized reflected power toward the desired
direction when a TE-polarized plane wave illuminates the gradient

metasurface shown in (b) toward the —z direction. Permittivity of the

dielectric portion of the surface nanoblocks is swept from ¢, =11 to

&, =13 to tune the frequency response. (b) Linear phase function to

bend a normal impinging wave by 45°. Quantized phases are shown by
stars on the curve, and the corresponding metasurface is shown in the
lower panel. (c) Distribution of the scattered field on the incident plane
(xz) at three freqUENCIEs. ........eevveerieeiiecie e 139
Figure 7.2: Discretization effect. Coupling efficiency to the propagating diffraction
orders as a function of quantization levels for the phase profile shown in
Fig. 7.1(b). Inset illustrates the case of N =5.....cccccoovviiriiieninnns 141
Figure 7.3: Operation principle of a metasurface backreflector. (a) Schematic
illustration of negative reflection from a gradient metasurface. (b,c)
INlustrative representation of scattering channels. (b) Specular reflection
from an ideal mirror: incident light (s, ,black) is specularly reflected (s,
,blue) from an ideal mirror due to momentum conservation at the
interface. (c) Backreflection from a gradient metasurface: incident light

is reflected back (s, ,red) toward the source due to the transverse

momentum imparted by the inhomogeneous interface. The additional

negative momentum k , (green) is introduced by a tailored gradient of
the reflection phase. Momenta in the x-direction are shown by k ; and

k,  for incident and reflected waves, respectively............ooeuene. 144
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Figure 7.4: Wide angle operation of an ideal negative reflection metasurface (a)

Calculated local phase profile of the ideal surface ¢(x) =/R (x) ,

designed for an incoming angle &, =35.7 degrees following (7.1), with

surface period A = ﬂ/ (2 sin 6’0) . (b) Numerically calculated coupling

efficiency of the ideal surface in panel (a) for different incident angles

and for s-polarized illumination. Blue and red curves show the

percentage of power coupled toward the specular direction (s, ) and first

diffraction order (s, ), respectively. (c) Calculated (solid black line), and

measured (yellow circles) angular dispersion of the gradient surface for
the *1 diffraction orders. The black lines correspond to the ideal

surface in panel (a) and the yellow circles are analogous results

measured at 4 =700 nm for the fabricated sample. A and B correspond

to the ideal retroreflection points where €

retro

=-0, =%35.7 degrees.

Inside the highlighted gray region, the non-specular diffraction orders
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Figure 7.5: Fabricated structure and measurement setup (a) SEM image (top view,
under 40% tilt) and (b) cross section of the fabricated sample. One unit
cell of the structure is composed of three regions: two TiO, nanorods
and the bare mirror. See Methods section for detailed geometry
information. The Pt layer on top of the sample was added in the cross-
section fabrication process to get a clean cross-section. (¢) Schematic of
the measurement setup: Angle of illumination 6, can be changed by
rotating the sample on the inner rotation stage while the illumination arm
is kept fixed. The coupling intensity to the different diffraction orders is
measured by independently rotating the detector on the outer rotation
stage to positions I to measure 6, ,,. or position II to measure 6.,.
[llumination and detection planes are slightly tilted horizontally to allow
retroreflection measurements without blocking the illumination. (d)-(f)
Photographs of the fabricated structure on the right (1.5x1.5 mm? square
in the center of 12x12mm? silver mirror, bare Si residual from
fabrication process in left lower corner) and schematic of photography
setup on the left. (d) Specular response under illumination from the back
with a commercial flashlight: observing no reflection in the specular
direction from the structure (dark square in the middle). (e)-(f) Negative
reflection response of the sample when illuminated with a commercial
flashlight for different angles. The angle between light and camera was

increased in (f) compared to (€). .....eevveervierieriieienieeeeeeeee e, 149
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Figure 7.6: (a) Angular response at A =700 nm . Comparison between measurements

(circles) and numerical simulations (solid lines). Coupling efficiencies

for the specular reflection s, and the first-order negative reflection s, ,

are shown with blue and red colors, respectively. The empty circles
indicate reflection measurements for angles above |t9m| = 60degrees, for
which the spot size of the beam is larger than the structure and part of
the beam is specularly reflected by the mirror next to the structure. The
measurements and simulations of the bare mirror are depicted in grey.
The homogenous surface supports specular reflection with
approximately 10% absorption across all angles. (b) Numerical
simulation results of the angular/frequency dispersion of the structure
with the fabricated dimensions, showing the coupling efficiency toward
the first-order negative reflection s; and highlighting the 75 %-power
and 50 % - power operation regions. The dark red line indicates the
retroreflective loci, for which the incoming and the reflected wave are
aligned. More than 50% retroreflection is achieved across
A=490-940nm and 6,, =24—-51 degrees. .....cccocerverreveucnnenn 153
Figure 7.7: Broadband beam collimation. (a) Power density distribution of a flat
mirror lens at three sample frequencies. The metasurface is illuminated
along the —z axis with a Gaussian beam profile and under TE
polarization. (b) Quadratic phase function to focus the impinging wave
at distance 24, from the surface. Quantized phases are shown by stars,
and the corresponding metasurface is shown in the lower panel. The
numerical aperture of the lens is 0.9. (c) Power density along the focal

plane, indicated by dashed lines in ().........ccoeeeerieenieniiienienenee, 155
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Figure 7.8: (a) Upper panel: surface admittance units used to realize the graded beam
splitting metasurface. The filling ratio between dielectric and plasmonic
portions are varied to imprint the desired surface pattern. Lower panel:
local reflection coefficient along the surface to deflect an incident TE
plane wave (solid lines). Circles indicate physically implemented
elements, with each superlattice period divided into eight steps. (b)

Power density distribution when the metasurface is illuminated with a

Gaussian circularly polarized beam at A, =500 nm . The illumination
angle is ¢, =10° and the reflection angles are designed at 6, 1 =50°

and 60, 1\, =10°. Time snapshot of the (¢) TM and (d) TE components

of the total electric field. (Reprinted with permission from Philosophical
Transactions A, Vol. 373, Issue 2049, pp. 20140351 (2015). Copyright
2015 The Royal Society Publishing). ........cccccecuervenenieneencnicnene 156
Figure 7.9: (a) Ideal local reflection coefficient on the graded surface to deflect
obliquely incident TE wave toward 6, 1 =50°. (b) Reflection
coefficient from a periodic metasurface with surface elements shown in
Fig. 6.1(a), under TE illumination, varying the filling ratio of plasmonic
metal (solid lines). Circles indicate the realized element and triangles
show the reflection phase of the same surface if illuminated by a TM
plane wave. (Reprinted with permission from Philosophical Transactions
A, Vol. 373, Issue 2049, pp. 20140351 (2015). Copyright 2015 The
Royal Society Publishing).........cccccecverieiiniiniiiiniinicicnicceeee 159
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Figure 7.10: (a) Schematic illustration of light trapping inside an organic PV solar
cell. The active layer is backed by a metasurface imparting the desired
linear momentum to the impinging wave. Green arrows indicate the
process of light trapping within one unit cell. (b) sketch of one period of
the thin film absorbing structure. Dimensions and material properties are
indicated in the figure. The PV material characteristics are shown in the
inset of panel c.(c) Absorption spectrum for normally incident light on a
180 nm organic material without nanoscale metasurface (gray line), in
comparison to a metasurface-backed solar cell with same thickness
(black line). The structure is designed to redirect the outgoing field by

45 degrees. Each unit-cell is 88 nm wide, partially filled with silicon

(n=4.25) and silver. Metasurface and substrate (SiO,,n , =1.45)

sub
thicknesses are #=50nm and d =30 nm, respectively. The impinging
electric field is polarized parallel to the cubic nano-rods on the surface,
along the y-axis. Complex refractive index of the absorbing layer is also
depicted in the inset. (d) Time snapshot of the normalized electric field
distribution for three sample frequencies at 500, 600 (center design
frequency), and 1000 THz. The metasurface and active region are
included in the field plots. (Reprinted with permission from
Philosophical Transactions A, Vol. 373, Issue 2049, pp. 20140351
(2015). Copyright 2015 The Royal Society Publishing). ............... 163
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Figure 8.1: Reconstruction of initial field distribution in the presence of an obstacle.
Based on the equivalence principle, the fields are uniquely determined
by the electromagnetic field distribution over the surface enclosing the
obstacle. (Reprinted with permission from AWPL, Vol. 13, pp. 1775 -
1778 (2014). Copyright 2014 IEEE).......ccccooiriiniiinienicicnicnee 169

Figure 8.2: (a) Illustration of the cloaking setup. A PEC triangular obstacle with
lateral size L and center height H is placed on a PEC ground plane.
The excitation signal is a TE polarized plane wave (E = JE,),
illuminating the structure at the angle of 45 degrees toward the x-axis.
The gradient metasurface is shown with a dashed line, covering the
structure on both sides. (b) Electric surface admittance of the cloaking

metasurface plotted versus local distance to the ground plane, with

Ay, =500 nm . The physical dimensions of the obstacle are set at

H =800nm and L =5 pum. The metasurface substrate is 50 nm thick

with ng, =1. Snapshot in time of the electric field distribution when the

structure is illuminated by a Gaussian beam: (c) free-standing obstacle;
(d) obstacle covered with a graded metasurface characterized in panel
(b); (e) cloaking metasurface approximated by its reactive components.
(Reprinted with permission from Philosophical Transactions A, Vol.
373, Issue 2049, pp. 20140351 (2015). Copyright 2015 The Royal
Society Publishing). ........ccocevvieriiiiiiiniiiccecece 172
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Figure 8.3: (a) Physical implementation of the carpet cloak. Designed surface
admittance is implemented by varying filling ratio of silver inside each
element (data provided in Table 8.1). (b) Time snapshot of the electric
field distribution when the object is covered with the analytically
designed metasurface with parameters given in Table 8.1-second
column. (Reprinted with permission from Philosophical Transactions A,
Vol. 373, Issue 2049, pp. 20140351 (2015). Copyright 2015 The Royal

Society Publishing). .....c..ccoceviiriiiiiiiniiiicceeee 175
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Figure 8.4: (a) A time snapshot of the electric field distribution when the object
(without cloak) is illuminated by a 45° Gaussian beam. The ground
plane and the scatterer are made of PEC material, and the length and

height of the object are L =1500nm and H =200 nm . (b) Electric

field distribution when the object is covered with the designed

metasurface (cloaked). The metasurface thickness is 4 =50 nm, placed

on top of the original object and conformally following its shape with

d =100 nm spacing. (c) 3D sketch of the deigned cloaking set-up. (d)
Phase of the total electric field on a hypothetical boundary placed at 20
nm distance above the metasurface, as indicated by the white arrow in
panel (c). The corresponding amplitude is also shown in the inset. ()
Angular dependence of the carpet cloak metasurface: the total field
intensity along a half circle enclosing the system (dashed-line in panel a)
is shown for three different incident angles. Blue and red curves refer to
cloaked and uncloaked cases, and the gray curve indicates the reference
response in the absence of any surface bump. All fields are calculated
through full-wave simulations of the entire setup [19]. (Reprinted with
permission from Philosophical Transactions A, Vol. 373, Issue 2049, pp.
20140351 (2015). Copyright 2015 The Royal Society Publishing).177
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Figure 8.5: (a) Schematic of the concentric nanoresonator used to implement
metasurface cloak. (b) Electric field distribution along the cloak surface
(white arrow in panel (e)-inset) when the object is illuminated at 500 nm
with a Gaussian beam. An ideal mirror, bare object, and cloaked object
cases are shown in gray, red, and black, respectively. (c)-(d) Time
snapshot of the electric field distribution without and with the cloaking
surface. (e) Field intensity along the dashed line in panel (c) for the three
cases. Deviation of scattering signature for the bare obstacle from the
ideal scenario is highlighted in red. Inset shows a 3D view of the dome
and cloaking surface. (f) Same as (e) when the angle of incident is
changed by £10°. (Reprinted with permission from AWPL, Vol. 13, pp.
1775 - 1778 (2014). Copyright 2014 IEEE). .....cccooiviieniiiinienenne 181
Figure 8.6: (a) The 3D cloaking setup. A spherical PEC dome is placed on a semi-

infinite ground plane, illuminated by a Gaussian beam at 500 nm, at

45° angle. Observation plane is set in the mirror-symmetric position of
excitation plane. Inset shows the graded metasurface wrapped on the
dome. (b) Power intensity along dashed line in panel (a). Gray, red, and
black lines indicate flat surface, uncloaked, and cloaked dome cases,
respectively. (c)-(e) Power intensity on the observation plane. All plots
are in same scale. (Reprinted with permission from AWPL, Vol. 13, pp.

1775 - 1778 (2014). Copyright 2014 IEEE). .......covvvvverreeerrecrene. 182
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Chapter 1: Introduction

The final goal of this work is to underpin novel interactions of waves with
engineered nanoparticles and nanostructures that provides platforms for several
interesting applications in various frequency ranges, specially at optics. For this reason I
want to start by giving a brief introduction on the history of light manipulation and how it
influenced the advent of metamaterials and metasurfaces. Contents of this chapter
partially appeared/to appear in "Farhat, M.; Chen, P.; Guenneau, S.; Enoch, S.,
Transformation Wave Physics: Electromagnetics, Elastodynamics, and Thermodynamics,
Pan Stanford, to be published" and " Mohammadi Estakhri, N. ; Argyropoulos, C.; Alu,
A., Graded metascreens to enable a new degree of nanoscale light management. Phil.

Trans. R. Soc. A 2015, 373 (2049), 20140351".

1.1 METAMATERIALS AND HISTORY OF LIGHT MANIPULATION

Light, the narrow visible portion of the electromagnetic spectrum to which the
human eye is sensitive, has fascinated mankind since ancient times, and the interest in
controlling and utilizing it draws back to well before the development of modern
electromagnetic theory. Early scientists were able to build simple optical elements such
as lenses, prisms, and mirrors to efficiently collimate, split, or redirect rays of light.
Color, as the visual perception of the interaction of light with different materials, have
been identified for centuries. By relying on simple empirical rules, scientists even
discovered much more advanced phenomena such as plasmon resonances of
nanoparticles. Since 7th century it was well-known that adding metallic salts to glass can
create beautiful stained glasses that have been used in many significant building across
the world [1]. However, the major progress in understanding the nature of light matter

interactions, and in general the electromagnetic wave theory, started following the
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establishment of Maxwell's equations in the 19th century. Governing all forms of
electromagnetic waves, Maxwell's equations enabled studying wave—matter interactions
at spatial ranges even smaller than the wavelength scale and explained the behavior of
electric and magnetic fields in relation to the properties of the background medium. This
field gradually evolved toward engineering the structures’ shape, orientation, and
composition to enable larger degrees of molding of the electromagnetic response.

Natural materials provide the simplest way to control and tailor electromagnetic
waves and have been widely utilized throughout the history of science. The intrinsic
electromagnetic properties of materials are based on the shape, orientation and lattice
profile of their constitutive molecules, providing a wide range of refractive indices,
chirality, nonlinearity, optical activity and dichroism. This variety in bulk constitutive
parameters of natural materials is at the basis of many applications in electromagnetics
and optics [2]-[6]. However, at the same time, it is not often sufficient to ultimately
control the wave in the desired way and fulfill the growing demand for efficiency,
compactness, speed, and cost-effectiveness, particularly in advanced applications and for
integrated optical devices. The need for a broader space of degrees of freedom to
arbitrarily manipulate the flow of light has stimulated a large interest in metamaterials
during the past years [7]-[10], with which we can achieve the desired functionalities by
engineering the shape and composition of metamolecules or by embedding
subwavelength resonances into them. The prefix "meta" comes from Greek and means
"beyond", as metamaterials are artificial composites that are designed to go beyond the
properties found in the natural materials. This field has been strongly advanced form
many aspects, particularly owing the recent progresses in micro- and nano-fabrication

methods, enabling giant light-matter interactions at the nanoscale [11]-[13].



During the past decades several new functionalities have been accomplished or
greatly enhanced by incorporating metamaterials in the design of new devices, ranging
from negative-refraction and super-resolving lenses [10],[14] to invisibility cloaks [15]-
[16], extreme nonlinearity effects [17]-[20] and absorption enhancement [21]. Bulk
metamaterials offer an enormous potential in terms of design and optimization, yet at the
same time their applicability is somewhat challenged by the complicated requirements on
fabrication, especially at optical frequencies [12].

Wave manipulation in three-dimensional metamaterials is typically achieved
relying on the continuous propagation through these media, which is necessarily related
to undesired losses and strong dispersion in metamaterial-based devices [22]. Many of
these limitations and drawbacks, associated with the wave-matter interaction properties
inside these artificial media, can be circumvented with metasurfaces, the two-dimensional
counterparts of bulk metamaterials [23]-[25]. Metasurfaces provide a platform for
efficient and largely enhanced light-matter interaction over subwavelength thicknesses,
compatible with current nano-lithographic techniques. In addition, their ultrathin,
planarized features are particularly appealing in the prospect of direct integration into
nanophotonic systems. Important results have been recently attained in this context, and
properly designed metasurfaces have been introduced to efficiently control and
manipulate phase, amplitude, polarization and momentum of the optical waves at the
nanoscale [26]-[31]. Single and stacked metasurfaces have been exploited to implement
several optical elements, such as polarizers, compact lenses, meta reflect- and
transmitarrays, optical vortex plates, optical holograms, and quarter wave plates over
ultrathin volumes [27],[31]-[34].

The advent of metamaterials and metasurfaces provided new possibilities to

approach, improve, and re-think many of the current scientific and technological
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challenges. The ongoing research in the field is also extremely multidisciplinary and
entails extensive study on the physics of light-matter interaction at the nanoscale and
engineering subwavelength configurations to attain various desired functionalities at the
optimal level, along with theoretical studies to provide new designer tools for
metamaterials and advancing the nanofabrication techniques. The focus of this work is
across the first two areas: initially engineering novel nanoparticles and metamolecules
that go beyond the regular response achievable from subwavelength structures —in terms
of absorption, scattering, resonance bandwidth, and so on— and next, showing
theoretically and experimentally how metasurfaces can improve many aspects of different
technologies. In the first three chapters we discuss how engineered nanoparticles can
provide unprecedented absorption and scattering properties associated with careful
excitation of localized resonances in their geometries. Many of the topics studied here are
relevant to a wide range of frequencies, in addition to the optical waves. For instance,
inspired by the theory of minimum-scattering nanoparticles provided in chapter 4 we later
design minimum-scattering microwave antennas. In the following chapters, we then
discuss the main theory of wave-shaping with arrays of metamolecules forming
"metasurfaces" and propose several interesting functionalities enabled and improved
through local wave engineering at the subwavelength level, and that completes the

subject matter of this thesis.
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Chapter 2: Single Plasmonic Nanoparticles for Unbounded and
Broadband Absorption/Gain Efficiency

In order to achieve the desired local control on the light-matter interaction,
discussed in chapter 1, we start by studying basic metamolecules with strong and
controllable absorption properties. In this chapter and the next, we will discuss the
fundamental physics behind inducing broadband local resonances in deeply
subwavelength structures with specific geometrical characteristics, namely, sharp
corners. Developing a closed-form analytical solution for response of composite
plasmonic double-caps enables us to uncover interesting physical phenomena associated
with the broadband adiabatic focusing of surface plasmons in these nanoparticles. We
will provide detailed analysis of the characteristics of our proposed metamolecules along
with the shape and material effects on the bandwidth and efficiency of absorption.
Throughout this chapter we will demonstrate that it is essentially possible to induce finite
amount of absorption/amplification in these metamolecules even in the limit of
infinitesimally small intrinsic material loss/gain. We will discuss our findings for
potential applications in nonlinear optics, switching, and sensing. Numerical simulations
are also presented to verify the analytical solutions. Contents of this chapter partially
appeared in "Mohammadi Estakhri, N.; Alu, A., Physics of unbounded, broadband
absorption/gain efficiency in plasmonic nanoparticles. Physical Review B 2013, 87 (20),

205418".

2.1 INTRODUCTION

The growing interest in the optical properties of nanoparticles [1]-[2] has led to
the discovery of many counterintuitive scattering features in plasmonic nanostructures.

Due to their negative real part of permittivity, these particles support surface plasmon



resonances at the nanoscale that have been proposed for many exciting applications,
including field concentration, sensing, nanolasing and optical guiding [3]-[8]. Different
configurations have been analyzed in recent years, from simple nanospheres and core-
shell structures [6]-[7] to more complicated shapes, like crescent-shaped cylinders [9]. If
simple structures are known to support strong, sharp plasmon resonances, more
complicated shapes may provide more complex scattering responses, such as Fano and
EIT (Electromagnetically Induced Transparency) resonances [10]-[11], or broadband
operation [9]. Including gain may further boost these effects and compensate the
detrimental effects usually caused by losses [12]-[13]. Many of the exotic properties of
these geometries, however, often appear to contradict well-established physical
limitations of resonant subwavelength systems [14], and the underlying physics is often
difficultly captured because of the complex interaction between multiple resonances and
plasmonic effects. On the other hand, a key parameter to consider in choosing a specific
plasmonic geometry is the fabrication limitations dictated by technological challenges.
Particles with exotic shapes and very fine features, although showing interesting
electromagnetic properties, may be impractical to realize from the experimental point of
view, and to apply to real-life devices.

As an example that may shed new light into these phenomena, in this chapter we
analyze the anomalous electromagnetic response of a rather simple composite

nanoparticle, formed by two conjoined half-cylinders of arbitrary complex permittivity

g, & relative to the background permittivity, and radius a, as shown in the inset of

Fig. 2.1. This geometry has been recently proposed in the special configuration & =—¢,

to form a resonant optical nanocircuit and previous attempts to analytically solve its
scattering properties using mode-matching analysis [15], integral transformations [16]

and coordinate mapping [17] have led to nonphysical solutions and strong numerical
9



instabilities. In this chapter we show that these challenges are associated with remarkably
counterintuitive resonant phenomena, which lead to a continuous frequency range over
which distributed plasmon resonances may support unbounded values of absorption or
gain efficiency, i.e., finite absorption or gain even in the limit of infinitesimally small
material loss/gain. By extending the analytical approach originally introduced in [17] to
evaluate the polarizability of a hemicylinder, we are able to solve the complete scattering
problem associated with this geometry and derive closed-form expressions for the
induced fields inside and outside this composite particle. This solution provides valuable
physical insights into the complex wave interaction of this particle over a broad range of
frequencies, which may provide, as we discuss in the following, exciting possibilities for

energy concentration, harvesting and spasers [18]-[22].

2.2 THEORETICAL FORMULATION OF QUASI-STATIC POLARIZABILITY EXTRACTION

We start by solving the scattering problem in the quasi-static limit, under the
assumption a<</4, . An incident monochromatic wave with electric field E,
illuminates the nanostructure under an e’” time convention and the permittivities of the
two half-cylinders can take arbitrary complex values, whose imaginary parts correspond
to material loss or gain depending on their negative or positive sign. Due to symmetries
and linearity, the problem may be split into two orthogonal excitations with respect to the
common diameter of the structure. By using separation of variables in the 2D bipolar
coordinate system [17], the potential distribution in each material may be written in

integral form as

o.(u,v)= TU(L{)[C” (A)cosh(Av)+C;, (i)sinh(lv)] A, (2.1)
0

10



in which the subscript i =1,2,0 refers to upper, lower and outer regions, respectively, 4

is the continuous eigenvalue, U (u) is either cos(/iu) or sin(/”tu) for longitudinal and

transverse polarizations respectively, and -owo<u<ow , —-z<v<xz are bipolar
coordinate variables. The unknown coefficients C;(4) may be found by applying
suitable boundary conditions at the various boundaries to calculate the general form of

potential distribution in all space from Eq. (2.1). In [17], this integral expansion was used

to determine the electric polarizability « = p/E, of an isolated hemicylinder, where p

is the induced electric dipole moment, evaluated using the asymptotic expression of ¢,
in the far-field.

In the present case of two conjoined hemicylinders, the normalized polarizability
may be analogously derived for arbitrary relative permittivity values. For longitudinal
excitation we obtain

. 7 (e, + & (-1462,) | +12(2+ &) (Liy (£7) + Liy (7))

1577 (& + &, +28&,)

s (I1+&)(1+&)(& +&)

. (22

gzi\/—(gl—gz)z (2+¢ +52)(£1+52+25152)+51[1+52(4+51 +52)]

in which Li, (x) is the polylogarithm function of second order, and analogously for the

transverse excitation

Pl o620 )L+ )+ L)

a, = (2.3)

1577 (2+¢& +¢&,)
Having derived in closed-form the polarizability of this particle, we may
efficiently analyze its extinction properties as a function of the available design

parameters. We start from the lossless configuration, for which all involved permittivities

11



are purely real. Fig. 2.1(a,b) shows the calculated longitudinal polarizability for different
values of & and ¢,, assuming lossless materials (real-valued ¢). Since so far we have
been working in the quasi-static limit, there is no radiation loss and, in the limit of no
Ohmic absorption, we expect the absorbed power to be identically zero. This requires that
the polarizability 1is purely real, as in absence of scattering loss

P, =-w/2|E| Im[a]=P, (P, and P

) b - ’»s  are extinction and absorbed powers,
respectively). On the contrary, the results in Fig. 2.1(b) highlight continuous frequency
ranges over which the polarizability has an imaginary component even in this lossless
limit, consistent with some of the findings in [17] for a single hemicylinder.

To gain a better understanding of the behavior of the polarizabilities and their

dependency on the permittivity and excitation, Fig 2.1(c,d) also shows the longitudinal

and transverse polarizabilities of the structure fixing the lower half at ¢, =3 and varying

g, ;yellow shades highlight the resonance regions in these plots. Since plasmonic

properties require frequency dispersion, these plots may be also read as the variation of

polarizability versus frequency, once an appropriate dispersion model for & is assumed,

as discussed in the following section.
The paradoxical result illustrated in Fig. 2.1, for which a complex polarizability

may be obtained in the static limit for lossless materials, is mathematically associated

with the range of permittivities for which the arguments of Li, have magnitude larger

o _k
than one. However, the polylogarithm function Li, (z) = ZZ_N is strictly convergent
k=1

only for |z|<1, requiring that its value should be analytically continued over the whole

complex plane. Two branch-cuts are associated with this range of complex solutions, and

complex conjugate values are admissible solutions of (2.2) and (2.3). This implies that

our geometry may be able to extract (or produce, depending on the sign of Im[a])

12



power even in the case of purely lossless (or gainless) materials. In Fig. 2.1(c,d) we
indicate with solid (dashed) lines the solution with Im[a] <0 ( Im[a] >0 ),
corresponding to absorbing (amplifying) nanoparticles We notice that the author of [17]
arbitrarily selected one of the two admissible branches, choosing opposite signs of the
imaginary part in the different ranges with complex polarizability. Mathematically there
is no reason to choose one branch or the other, as both solutions satisfy all boundary
conditions of the system. By choosing opposite signs, we imply that the particle absorbs
and emits in the two different permittivity ranges. We notice that a similar response has
been highlighted in the case of other plasmonic geometries involving sharp corners [23].

a b

-15 15 0 40
|

’ I w ““ I Re[a]

5

25} 5 25F

=5

o] E —Rela]
L4 —Im[a]
41 E { & =3
! =
4
M >
-84
k = 0 2

Figure 2.1: Normalized complex polarizability of two conjoined half-cylinders for
different permittivity values under longitudinal excitation. (a) Real part of polarizability,
(b) imaginary part. Polarizability of the structure with &, =3 (c) for longitudinal and (d)

4 5 4 2 0 2 4

transverse excitation. Particle geometry and excitation fields are shown in the inset.
Shaded regions highlight the resonant ranges of this geometry, as defined in (2.4).
(Reprinted with permission from Physical Review B, Vol. 87, Issue 20, pp. 205418
(2013). Copyright 2013 American Physical Society).
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2.3 SINGULARITIES AND THE ABSORPTION/GAIN PARADOX

In this section we discuss the reasons behind the paradox highlighted in the
previous section. We start by looking at a simple dielectric wedge structure, which
models the wave interaction at the corner region shown to be at the foundation of this
phenomenon. We then present novel closed-form expressions for the polarizability and
potential distribution in all regions of space, which allow us to discuss the nature of the
induced electric field inside and around the particle. Finally, we study the absorption
properties of the proposed geometry in the electrodynamic case and investigate how
realistic considerations affect these conclusions.

As shown in the following, the counterintuitive response of the composite particle
under analysis is physically associated with the singularities induced at the two corners of
the structure, which have so far been assumed as ideal mathematical edges with zero
curvature at the tip. In the corner proximity, the geometry may be statically modeled as a
double dielectric wedge described by Laplace equation. Independent of the polarization
of the applied field, eigen-solutions may be supported by the wedge configuration for
some specific values of material permittivities [24]. Not surprisingly, the permittivity
range over which Im[a] #0 in Fig. 2.1(b) exactly corresponds to the quasi-static eigen-
resonance of a 90° double dielectric wedge. It is possible to show, in fact, that the

resonance of a 90° double wedge arises when

—&, —2 <& <min{-¢,,—1}, max{-¢g,,-1} < g < for &, >0
+2¢,
—&, <& <-— =& —2<g <-1 for —1/2<¢&,<0
2e, +1
(2.4)
—&, <& <00,—0< & < — ,—&—2 <g<-1 for —1<eg,<-1/2
28, +1
—&,—2<& <—&,-1<g <— 2 for &, <-1

28, +1
14



These inequalities provide, in general, two/three separate continuous resonant

windows of unbounded absorption/gain efficiency, defined as the ratio Im[a]/ g with

g being Im[g ] or Im[g,]. In the permittivity range of Eq. (2.4), the corners support

continuous eigenmodes that are at the basis of the anomalous response discussed in the
previous section.

From the physical point of view, in this resonant range a highly oscillatory
potential distribution is induced around the corner of the composite nanoparticle, with
strongly enhanced electric fields. In practice, this behavior is limited by nonlocal effects
and the minimum corner curvature of a realistic structure. In the special case of a

hemicylinder (&, =1) previously studied in [15],[17], divergent or nonphysical solutions

were found in the same range. Under this condition the two windows merge into
-3 <& <-1/3, separated by a single point & =—1, corresponding to the special internal
resonance analyzed in [25].

In the ideal lossless limit, there is no way to distinguish between the two branch-
cuts, and both conjugate solutions in Fig. 2.1 are equally admissible. This implies that the
boundary-value problem is not well defined, as the uniqueness theorem does not apply to
an ideal lossless scenario [26]. Small losses are required to select the correct Riemann

sheet and assign proper meaning to the solutions in Fig. 2.1. In order to address this issue,

Fig. 2.2 shows the effect of loss/gain in & on Im[e] for different values of Re[g].
Outside the resonance region, e.g., Re[g]=-6.5 (blue lines in Fig. 2.2), Im[a] is a
well-behaved continuous odd function of Im[e ], and it is identically zero for zero
material loss. For values that lie in the continuous resonant range in Eq. (2.4), Im[a] is
still an odd function of Im[¢,], but it has a discontinuity at Im[e, ] — 0", associated with

the ambiguity in selecting the correct Riemann sheet in the lossless case. By introducing

an arbitrary amount of loss & <0 or gain & >0, we are able to select either the
15



absorptive (Im[a] <0) or emissive (Im[a] > 0) branch in Fig. 2.2. This implies that an

arbitrarily small (but mathematically nonzero) value of loss or gain in the material can
provide finite absorption or emission over a continuous bandwidth corresponding to (2.4)
and in this continuous range absorption or gain efficiencies are effectively unbounded.
Interestingly, smaller absorption/gain in the material can lead to larger overall
absorption/gain in the nanoparticle, as the plasmonic effect at the corner is less quenched.

a b
7.5 50

—Re[5]=-0.8 —Re[5]=-35
5.0] — Rel51=-4 —Rel51=-0.9
Re[e,]=+2 2.5 —Re[¢]=-65
2.51
T =
€ 0.0 £ 0.0
-2.51 E
-2.54 g
5,0.\] EOTQ _)Q

-7.5 T T T -5.0 T T —
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

&, E.

1 1

Figure 2.2: Imaginary part of polarizability versus Im[eg,] for different values of Re[g]
and &, =3 for (a) longitudinal and (b) transverse illumination. Particle geometry and

excitation fields are shown in the inset. (Reprinted with permission from Physical Review
B, Vol. 87, Issue 20, pp. 205418 (2013). Copyright 2013 American Physical Society).

Power extraction or generation can arise only in regions where the quadrature

component of the potential Im[gol.] is nonzero. In the quasi-static lossless limit, we

would expect ¢, to be exactly in phase with the excitation at all points, but in the

resonant range of Eq. (2.4), analogous to (2.2), we need a nonzero imaginary component
to justify power extraction. Our mathematical formalism allows calculating in closed-
form also the imaginary part of the potential distributions in Eq. (2.1): by applying

proper boundary conditions at all boundaries of the structure, the unknown coefficients

C,;(4) can be found for arbitrary values of & and ¢&,, such as [17]
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_ 2(& —&,)(& + &)
& +e(l+6,4+6+6))+(+&)(1+&)(& +&)cosh(7h)

Coi(2) (2.5)
for the longitudinal polarization. Similar expressions may be found for all the other
coefficients, and for transverse excitation. Outside the resonant range in Eq. (2.4), these
coefficients are continuous functions of the eigenvalue A, and may be integrated over
the entire spectrum to evaluate the potential and field distributions in Eq. (2.1) using a
conventional numerical integration technique, i.e., the Euler method [27]. In this regime,
the potential and fields will be real-valued at all points in space, as expected. However, in

the resonant range of Eq. (2.4) the coefficients C;(4) have a simple pole in the

denominator at

J) :lcosh_l(_gz+gl(1+52(4+81+82))]’ (2.6)
(I+ &) +¢&)(g + &)

implying that the coefficients, which all share the same denominator, hold a nonzero
residue in this range [28]. In other words, each coefficient contains an integrable
imaginary component at the pole location with Dirac- ¢ distribution sustaining the
imaginary part of (2.1)-(2.2). The amplitude of the ¢ distribution may be calculated in

closed-form by solving the residue problem as follows

| N CErS CRTS
c () = Cy (L), A |= o(A-4,), 2.7
01( )‘/1 j Res[ 01( )’ p] J(1+82)(1+81)(gl+gz)sinh(7r/1p) ( p) (2.7)

and a similar result may be derived for all the other coefficients. Therefore, the potential
distribution in Eq. (2.1) may be determined everywhere without ambiguity using the

Cauchy's principal value integration:
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Re[o. (1,v)] = p.v. I:U(u)[Cﬂ (4)cosh(Av)+C,y (2)sinh (Av)]dA

; (2.8)
m{g, (u,v)]=U ()], | Ca (4, )cosh(4,v)+Cpr (2, )sinh(2,v)

leading to a closed-form expression for the imaginary part of potential and field
distribution. As an example in the case of conjoined hemicylinders and longitudinal
excitation, the imaginary part of the potential distribution in the upper half-cylinder may
be written in closed-form as:

2E cos(A,u)
X
& +1)(&, +1)(& + &, )sinh(4,7)

Im[¢, (u,v)] = (

N
& —¢&
_(gl—l)(gz-i-l)(gl+52)coth(/1p7r/2)+£inlh(—/£7)[) x|. (2.9)

sinh(4,(7/2-v))
sinh(4,7 /2)

sinh(4, (7 -v))+2(&, - &)

We recall that this component of the potential is responsible for absorption/gain,
and can therefore provide interesting insights into the apparent paradox outlined in the
previous section. Analogous expressions may be derived for the potential distribution at
every point in space. It is quite remarkable that in this geometry we are able to derive in
closed-form the imaginary component of the potential distribution everywhere in space.
Similarly, we can write the imaginary part of the polarizabilities in Egs. (2.2) and (2.3)

in a simple closed-form using direct integration of the singularity in the integrand:

18



Im[e;] =84 sign {M} X

& +e+2

[(6‘1 +&,) (&8, —1)coth(4, 7/ 2)sinh(A,7) - (& — &, )2 J

1 1 inh? (1
(&, +1)(&, +1)(& +&,)sinh( 77 | .10

+
Im[e, ] =84 sign {M} X
& +é+2

(& +&,) (816, —1)cosh(A,7) + £&, (& + &, —2)+ & +& —& &,
(51 + 1)(52 + 1)(51 + 52)sinh2 (4,7)

=—a)/2|E0|2 Im[a]=F,, in closed-form. These

which allows calculating P "

ext
expressions are consistent with (2.2)-(2.3) and are clearly valid only in the resonant
range in Eq. (2.4), and zero elsewhere. The sign term in this last equation ensures the
proper choice of the branch cut in the lossless limit. By adding an infinitesimally small
amount of loss/gain the solution will automatically collapse to the correct branch,
consistent with Fig. 2.2.

Figs. 2.3(a,b), as an example, show the real and imaginary parts of the potential
distribution for a hemicylinder (&, =1) with ¢ =-1.1 and longitudinal excitation. The
imaginary part is calculated using our closed-form expressions, whereas the real part is
obtained by numerical integration of (2.1). The imaginary component of the potential
essentially represents an eigenmode of the structure, in quadrature with the impinging
field and supported by plasmonic resonances at the two corners, with an amplitude linked
to the value of excitation. This distribution, integrated over the nanoparticle volume,
effectively sustains the extracted/generated power. Our analytical solution ensures that in
the corner proximity the potential varies in the form p", in which v is purely imaginary
inside the resonance region, forming a highly oscillatory distribution analogous to Figs.

2.3(a-b) around these points. It should be noted that in the ideal lossless limit this

19



distribution is not square-integrable, as it leads to a finite value of extracted/generated
power for & — 0 [29]. This finding, consistent with the unbounded energy density
found near sharp corners in other geometries [30], explains the reason behind the non-
uniqueness of our solution in the lossless limit. Figs. 2.3(c,d) show the corresponding
field distributions in the same structure, calculated analytically as E =—-V¢. Plasmonic
oscillations around the corners (Figs. 2.3(a,b)) result in enhanced fields, which may

become infinite at the edge point in the lossless case for an ideal corner.

4 +4 -2 +2

Figure 2.3: (a) Real part and (b) imaginary part of the potential distribution for a half-
cylinder with permittivity & =-1.1 under longitudinal excitation, normalized to the

impinging potential amplitude; (c) real and (d) imaginary parts of the field distribution in
the particle. (Reprinted with permission from Physical Review B, Vol. 87, Issue 20, pp.
205418 (2013). Copyright 2013 American Physical Society).

Inspecting the imaginary part of the potential distribution in Fig. 2.3(b), we
indeed notice strong plasmonic oscillations around the nanoparticle corners. The
variation of potential along the particle diameter is plotted in Fig. 2.4(a), highlighting that

the surface plasmon supported by the metal-dielectric interface is adiabatically focused
20



towards the corners, with a finer and finer spatial variation as the corner is approached.
This effect, supported over the whole resonant range in Eq. (2.4), produces broadband,
largely enhanced electric fields and it sustains absorption/amplification even for
infinitesimally small values of material loss/gain. Essentially, the surface plasmon is
adiabatically focused towards the corner, as if it were traveling to infinity (inset of Fig.
2.4), explaining the reason why negligible losses (gain) are sufficient to sustain large
absorption (amplification). Different from conventional adiabatic focusing of surface

plasmons, in this geometry this effect is achieved at the nanoscale.

Re[¢]

» | —Im[}] y /\\)‘e’\m -

1.0

Figure 2.4: (a) Real (blue) and imaginary (red) parts of the normalized potential
distribution for a half-cylinder with ¢, =—1.1 under longitudinal excitation along the x -

axis, (b) same distributions when & =-2. Closer views of the calculated potential

around the corner points are shown in inset. (Reprinted with permission from Physical
Review B, Vol. 87, Issue 20, pp. 205418 (2013). Copyright 2013 American Physical
Society).

Fig. 2.4(b) shows the potential variation along the common diameter of the

particle for a different example ( & =-2,5,=1). The different behavior between
g =-1.1 and & =-2 can be interestingly explained considering the wedge solution.
For values of & near —1 the frequency of spatial oscillations is much larger compared

to ¢ =-2, resulting in oscillations extended farther from the corners. For these

situations the field enhancement may be extended more broadly all over the particle, with
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interesting possibilities to more effectively enhance optical nonlinearities. These
distributed resonances and adiabatic focusing have direct analogies with the resonant
distribution highlighted in [9],[31]-[32], for crescent-shaped and touching plasmonic
cylinders, but it is obtained here in an arguably simpler geometry over a flat surface and

controllable frequency bands.

2.4 RADIATION LOSSES AND ABSORPTION CROSS-SECTION

The previous analysis highlights that the apparent paradox of unbounded
absorption/gain efficiencies in the proposed nanoparticle is related to two relevant
assumptions: ideal singularities in the nanoparticle geometry (perfect corners) and quasi-
static solution. In the following we relax both these assumptions and analyze how these
effects may be translated into realistic geometries and setups. In the long-wavelength
limit, as long as the dipolar contribution dominates the scattering response, the quasi-

static solution can be easily extended to the dynamic regime to include effects of

radiation and retardation [33]. The dynamic Mie dipolar coefficient C, is related to the

-1
static polarizabilities in Eqgs. (2.2) and (2.3) via C, :<—1—|-j8x(§20f1 /72) , Xy =kya,

which includes now radiation losses. This procedure is consistent with the fact that, in the
long-wavelength limit, the second-order correction to the polarizability response is due to
dipolar radiation, taken into account by the additional imaginary term.

Fig. 2.5 shows the absorption cross-section normalized to the physical width of
the particle for composite cylinders with 2a=40nm, compared to the case of a
homogeneous cylinder of same size. In this case, in order to include also frequency

dispersion and realistic material absorption, the upper half-cylinder is chosen to be silver

with gr=goo—a)[27/a)(a)—jf) » €x=5, @,=27x2175THz and T'=27x4.35THz

[34]. We compare the case of a silver hemi-cylinder (&, =1) and the case ¢, =3, which
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have different resonant bands following (2.4). The results confirm that absorption/gain
may be largely enhanced over a continuous and controllable frequency band, significantly
broadening the range and level of absorption/gain compared to a full circular rod of same
material. For a half cylinder, the absorption is drastically enhanced in the frequency

bands corresponding to the resonance region (-3 <¢ <—-1 and -1<¢ <-1/3), and is

negligible at other frequencies. We observe that this particle shows a lower amount of
absorption around the frequency for which & =-1, at which we actually have the
highest absorption in the full cylinder case, consistent with the previous analysis. Quite
counterintuitively, this absorption band does not rely on material losses and in fact is
larger in the limit of zero losses, as discussed in Fig 2.2. Another example of this
phenomenon, although much more limited in bandwidth, is evident in transition
metamaterials [35]. Compared to a full cylinder of the same material, the absorption is
drastically enhanced and its bandwidth significantly broadened. Since we can control the
resonance range with &, following (2.4), the structure can be designed to show high
absorption efficiencies in two separate bands over the desired frequency ranges.

a b
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Figure 2.5: Normalized absorption cross-section for (a) longitudinal (b) transverse
excitation of a composite nanoparticle with upper half-cylinder made of silver and
different values of ¢, . The full cylinder case is also shown for comparison. (Reprinted
with permission from Physical Review B, Vol. 87, Issue 20, pp. 205418 (2013).
Copyright 2013 American Physical Society).
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Figure 2.6: Normalized absorption cross-section for different configurations: the upper
half-cylinder is gold while the lower part is either &, =1 (blue curves) or &, =3 (red

curves). A full cylinder composed of gold (black curves) is also included for comparison.
(a) Longitudinal excitation (b) transverse polarization. (¢) Normalized absorption cross-
section for transverse excitation under the quasi-static approximation; (d) same as (b), but
neglecting gold losses. (Reprinted with permission from Physical Review B, Vol. 87,
Issue 20, pp. 205418 (2013). Copyright 2013 American Physical Society).

In order to gain further insight into the effect of material and radiation losses on

the resonance behavior of the structure, we also separately study these effects in a gold-
dielectric configuration. We consider conjoined half-cylinders with diameter 2a =40 nm
, in which now the upper half is made of gold following a Drude model with ¢, =1.53,

w, =27x2069THz, and I'=27x17.64THz based on experimental measurement data

[34]. Again, three configurations are studied separately: &, =1, &, =3, and a full gold

cylinder for comparison. Fig. 2.6 shows the normalized absorption cross-section versus
frequency for three different scenarios: in the first two panels we consider both realistic

losses and retardation effects for different polarization of the impinging wave. Panel (c)
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shows the absorption for transverse excitation neglecting retardation but including
realistic losses. Panel (d) on the other hand includes the retardation effect but assumes
I'=0 (lossless gold).

Compared to silver (Fig. 2.5), gold provides slightly lower absorption due to
damping of the plasmonic resonance near the corners in presence of a larger material and
radiation losses. This can be explained also inspecting Fig. 2.6(d), in which we totally
neglect material loss. In general, with conventional low-loss plasmonic materials (e.g.,
silver and gold), the focusing effect still dominates the absorption features of these
particles. The effect of retardation can be observed in Fig.2.6(c). By including scattering
loss, as expected, the absorption cross-section is broadened and dampened. It is
interesting that in the case of a single full cylinder, scattering loss affects the total

absorption much more drastically than in the composite configurations.

2.5 REALISTIC CONFIGURATIONS

In order to demonstrate the realistic applicability of the proposed structure, we
analyze now the effect of finite curvature at the corners. As discussed in Ref. [30], when
a mathematical edge is replaced by one with nonzero curvature, the continuous eigen-
resonance range is necessarily converted into a set of discrete resonance frequencies,
which ensures that Chu’s fundamental limit is satisfied [14]. The amount of realizable
absorption will depend on how adiabatically surface plasmon resonances may be focused
and absorbed before the edge is terminated. We used full-wave simulations to study this
effect for different curvature values. Absorption cross-section of a blunted hemi-cylinder
with permittivity & =-0.529— jg, and 2a =40nm is compared in Fig. 2.7 to an ideal
geometry with same parameters. The full cylinder case is also shown for comparison. We

notice that the absorption phenomenon is pretty robust for finite values of material loss,
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and the edge bluntness effectively sets the lower level of |gl.| for which large

absorption/gain may be achieved. In other words, when considering corners with finite
curvature, absorption/gain efficiencies are inherently bounded and fundamentally limited
by how sharp (relative to the radius of the particle), the corner may be made. Similar
results are found in the case of the singular geometry simulated with finite-integration
methods (blue curve), as a finite curvature is automatically introduced by numerical
meshing. Our results show that significantly large and broadband absorption/gain effects

may be achieved with realistic nanoparticle geometries.
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Figure 2.7: Normalized absorption cross-section vs. material loss for a hemi-cylinder
with & =-0.529— j&;, compared to full-wave simulations for 1 and 2 nm curvature radii.

The full cylinder is also shown for comparison. (Reprinted with permission from Physical
Review B, Vol. 87, Issue 20, pp. 205418 (2013). Copyright 2013 American Physical
Society).

Our full-wave simulations confirm the robustness of this phenomenon on the
corner curvature and edge bluntness, consistent with previous results for other types of
plasmonic resonances [36]. For sharper edges, the number of quantized resonances

increases and the overall effect gets closer to the ideal solution [37]. Figs. 2.8(a,b) show

the field distribution for a silver half-cylinder having an ideal corner using our analytical

solution in the quasi-static limit versus a blunted structure with 2a =40 nm and radius
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of curvature »=2nm using full-wave simulations at f =925THz for longitudinal

excitation. Fig. 2.8(c) also shows the power flow in the blunted structure. Interestingly,
even with a relatively large edge curvature, and including scattering losses and dynamic
effects, highly oscillatory fields are still induced around the corners and field
enhancement is pretty comparable with the ideal case. The small asymmetry in the
distribution is due to the direction of the impinging wave, but since the particle is small
compared to wavelength, this effect is almost negligible. Power flow is plotted in a
log100 scale, implying large power concentration inside the particle, responsible for large
absorption efficiencies. In other words, under the resonance condition power is strongly
concentrated inside the particle giving rise to very large absorption regardless of the

small amount of material loss.

25

Figure 2.8: Amplitude of the electric field distribution for (a) an ideal silver half-cylinder
with & =-0.529-0.026,, calculated with our analytical formulation, and (b) a blunted
configuration at the corresponding frequency. (c) Power flow inside and outside the
geometry under monochromatic plane wave excitation for the blunted configuration.
(Reprinted with permission from Physical Review B, Vol. 87, Issue 20, pp. 205418
(2013). Copyright 2013 American Physical Society).
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2.6 EFFECT OF SHAPE ON THE ABSORPTION/GAIN CHARACTERISTICS OF NANOPARTICLE

Through previous sections we have demonstrated that the anomalous resonance
behavior observed in composite half-circles is related to the presence of the sharp
corners, enabling excitation of localized modes that are in quadrature phase with the
incident wave. In this sense, we notice that the bandwidth of enhancement is effectively
controlled by the corner geometry, and sharper corners can support eigenmodes over
even broader continuous bandwidths. Indeed, the simple composite particle shown in the
inset of Fig. 2.1 (c) is a special case of a larger class of particles shown in Fig. 2.9,
forming two conjoined cap-shaped cylinders with different corner angles. Following
analogous procedure o solve Laplace equation in section 2.2 we were able to find the
general form of potentials and fields (and polarizability), for an arbitrary corner angle 6.

In this regard, the resonances of a double wedge with corner angle € and &, >0 arises

when,

[max{—gz,—l} <8< 829 5 0]”[_2“4299_829 <gl<min{—g2,—1}j,(2.ll)
ey +60-2¢,

which simplifies to (2.4) for the double hemi-cylinder case.

a (o
@& & O\
7 -
TR
A
y
b L

Fig. 2.9: Particle geometry and excitation field for different corner angles. The structures
are infinite in z direction. Panel (b) shows conjoined hemicylinders studied in sections
2.3 through 2.5. » =0 degrees corresponds to the longitudinal and y =90 degrees

corresponds to the transverse polarizations of the incident wave.
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Figs. 2.10 shows the field distributions assuming the upper halves of the particles

are made of realistic gold modeled by Drude model dispersion
=&, —a)f)/(a)(a)—j}/)) where ¢, =1.53, ®,=272069THz, and y =2717.64THz

[34]. The lower half is either air (&, =1) or silicon dioxide (&, =2.4) in different
examples, and the fields are calculated analytically as E=-V¢ for € =45°90°,135°
and both input polarizations, at various sample frequencies. We notice that as we
discussed previously and based on the edge solution, the oscillations may be extended all
over the particle (as in Fig. 2.10(a,c)) or be focused at the corner (as in Fig. 2.10(e,f)).
Plasmonic oscillations around the corners (Fig. 2.4) result in enhanced fields, which may

become infinite at the edge point in the lossless case for an ideal corner.
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Figure 2.10: Electric field distribution (snapshot in time) in different conjoined particles.
The upper half is gold, and the lower halves are either (a,c,e) air or (b,d,f) silicon dioxide.
The component of the field parallel to the input direction is plotted in each case.
Operation frequency and polarization are indicated in the insets. The corner angles are set
at (a,d) =135°,(b,e) #=90° and (c,f) & =45°.
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Since we can control the resonance range with permittivities and 6 following
(2.11), the structure can be designed to show high absorption efficiencies in two separate
bands over the desired frequency ranges. In order to gain further insight into the effect of
material and geometry on the resonance behavior of the structure, we also separately
study these effects in a gold-dielectric configuration. Fig. 2.11 shows the normalized
absorption cross-section versus the corner angle and frequency of operation for the two
normal exciting polarizations. The upper half is made of gold, hence it is frequency
dispersive, and the lower halves are either air (a,b) or silicon dioxide (c,d). Notably, both
the bandwidth and position of resonance regions can be independently controlled through
edge angle and ¢, , respectively. In addition, excitation angle directly influences the
resonance strength in different bands. The black dashed lines in each figure indicates the
resonance region predicted from (2.11) for a lossless gold-dielectric configuration.
Remarkably, owing to the robustness of the resonance modes to the material loss in this

configuration, a simple lossless wedge accurately predicts the resonance bands.

2.7 CONCLUSION

In this chapter we have analyzed the scattering boundary-value problem of two
conjoined subwavelength half-cylinders and analyzed its drastically enhanced absorption
properties. We have shown that in the ideal case of perfect corners, this geometry may
provide broadband light absorption or amplification in the limit of negligible material
loss or gain, respectively. This absorption paradox has been shown to be associated with
the singularities in the geometry and the adiabatic focusing of broadband surface
plasmons supported at the corners. A closed-form solution was derived for the scattering
and absorption properties of the composite nanostructure and simple conditions on the

material permittivities have been derived to control the position of the absorption band.

30



The distributed resonances and anomalous behavior of the proposed composite
nanoparticle may have many exciting applications, including enhanced energy harvesting
and spasers [12],[18] based on materials with limited absorption/gain coefficients and an
arguably simple configuration from the fabrication point of view. These resonances may
be broadband and with a bandwidth and enhancement level controllable by geometry and

design, as discussed in the previous section.
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Figure 2.11: Normalized absorption cross-section vs. corner angle and frequency for
2a =40 nm composite particles - plotted in logarithmic scale. The upper half is gold,

and the lower halves are either (a,b) air or (c,d) silicon dioxide. Input polarizations are
indicated in the insets. Black dashed lines show the predicted resonance range from

(2.11).

Adiabatic plasmonic focusing at the corners may be used for exciting applications
such as enhanced optical nonlinear effects e.g. switching and nanomemories [11]. The
field enhancement may be tailored to be extended all over the particle volume or be

confined only around the corners, with exciting implications for these applications (Fig.
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2.4). The rapid and sharp variation of absorption versus frequency observed in Figs. 2.5

and 2.6 can also be used for sensing [38], with sharp linewidths that are comparable to

the ones associated with Fano phenomena [10]. These effects may also have a great

interest in boosting the usually low values of gain coefficients in natural optical materials,

of great interest for loss compensation in metamaterials and plasmonics [13],[39]-[41], as

well as for efficient spasers [12],[18]-[19],[42]. Finally, these structures can provide

strong switching and modulation effects at the nanoscale, which we discuss in the next

chapter.
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Chapter 3: Parity-Time Symmetry Breaking and Loss-Gain
Transitions in Scattering

In the previous chapter, we discussed how the geometry and composition of
nanoparticles can create strong absorption properties, even in the limit of small intrinsic
material absorption. An interesting and quite unusual property of these plasmonic
nanoparticles resides in the strong switching between the absorption/gain properties of
the metamolecules as we switch between small amount of intrinsic loss to gain and vice
versa. This property suggests a platform to implement optical nanoswitches and
modulators at the single particle level. In this regard, in this chapter we look at the
electromagnetic properties of composite nanoparticles that incorporate gain medium. In
particular, we focus on the scattering properties of a class of active structures with
balanced loss and gain, known as parity-time symmetric structures. Our studies reveal
that the spontaneous real to complex spectrum transitions typically observed in large-size
parity-time symmetric systems can be scaled down to the quasi-static regime by
exploiting plasmonic nanoparticles, as the result of a unique form of interplay of
localized plasmons at a gain-loss interface. We will provide physical insights to elucidate
the underlying mechanisms involved in this parity-time induced scattering transition,
occurring at the single particle level. The obtained response has ideal features for ultrafast

optical switching and sensing.

3.1 INTRODUCTION

The notion of parity-time (PT)-symmetry has been recently adapted from
quantum mechanics to optical systems, attracting significant attention to a range of quite
extraordinary phenomena supported by PT-symmetric optical components [1]-[7].

Despite being non-Hermitian, quantum-mechanics Hamiltonians that commute with the
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combined parity and time-reversal operators can possess real-valued energy spectra
below certain thresholds of the non-Hermiticity parameter [8],[9], and can undergo
spontaneous symmetry breaking as this threshold is passed. In the context of optics, a
system with balanced distribution of loss and gain, i.e. refractive index modulated, is PT-
symmetric, with analogous intriguing possibilities of undergoing spontaneous symmetry-
breaking transitions [2]-[4]. The direct implication for the modal characteristics of
bounded and unbounded PT-symmetric systems is the presence of real-valued eigen-
frequencies in the unbroken phase spectrum at which absorption and amplification are
balanced in different regions of the system [3],[10]. This is in contrast with conventional
lossy systems that only support decaying modes. At a certain level of non-Hermiticity,
i.e., of the loss-gain coefficient, such symmetry is broken and eigen-frequencies emerge
as pairs of complex-conjugate values, corresponding to modes skewed towards different
parity regions [3],[10]. These unique properties have enabled several exciting
applications including, loss-free propagation, directional coupling and asymmetric power
transmission [3], and single mode lasing [6]. So far, however, the majority of works on
optical PT-symmetric systems have been based on wavelength-scale closed systems
without radiation features, and/or 1D systems with only specific radiation channels
enabled by symmetries. Here, on the contrary, we show that PT-symmetric
subwavelength nanoparticles with the geometry described in the previous chapter can
support highly unusual optical responses in spite of their quasi-static nature.

The optical properties of open optical systems are mirrored in their scattering
properties under external excitation. The scattering eigenvalues of PT-symmetric systems
have been studied in a few recent works, showing that they remain unimodular provided
that PT-symmetry is unbroken [4], and thus the externally excited electromagnetic fields

inside the structure remain balanced. Passing an appropriate threshold for the non-
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Hermiticity factor, the scattering response can undergo unimodular to inverse-moduli
spectrum transitions and generate sets of joined amplifying and dissipating scattering
eigen-states [4]. Previous works on PT-symmetric scattering systems have been focused
on large configurations, mostly in 1D setups [4],[5],[7],[11],[12]. The large size of the
structure effectively provides sufficient interaction domain for the incident wave to create
perceptible loss/gain scattering effects. At optical frequencies, however, plasmonic
effects offer an interesting opportunity to strongly engage light-matter interactions at
deeply subwavelength scales [4]-[14]. In this chapter, we demonstrate that the scattering
properties of PT-symmetric plasmonic nanoparticles can sustain highly localized PT
transitions at deeply subwavelength scales. Quite contrary to wavelength-scale
configurations, we show that in the symmetry-broken regime, quasi-static nanoparticles
can support only one non-unimodular scattering mode, triggered by small perturbations

of the ideal PT-symmetry condition.

3.2 THEORETICAL FORMULATION

In the following, we explore the scattering properties of a basic PT-symmetry
nanoparticle, a double hemi-cylinder with diameter D < 4, where 4, is the free-space
wavelength, and a spatially modulated permittivity that satisfies the PT-symmetry
condition. As shown in the inset of Fig. 3.1, both half-cylinders have the same real
permittivity &, , yet with a symmetric amount of loss (upper half) and gain (lower half).
Intuitively, at a deeply subwavelength scale it is expected that the optical properties of
the particle average out, providing zero net loss/gain in the scattering signature. In the
following, however, we show that the combination of PT-symmetry and plasmonic

effects can provide highly unusual scattering responses in subwavelength systems, and

averaging is not possible above a certain threshold of the non-Hermiticity parameter &;.

38



Although in the quasistatic regime the nanoparticle response is still dominated by its
effective dipole response [15], above such threshold the polarizability can become
complex with a controllable amount of amplification or dissipation.

We formally start by solving for the quasistatic dipolar electric polarizability of
the particle in Fig. 3.1. Under the ¢/* time convention, the solution takes the semi

closed-form presented in chapter 1 [16]

4 oo
ae=?j0 AC(e,,6,,A)dA, 3.1)

Here, S is the particle's cross-section and A denotes the continuous spatial

frequency in the bipolar coordinates. The coefficient C(g,&,,4) 1s analytic and in
general anisotropic, i.e., it is different for excitation along x and y in Fig. 3.1. The

integral equation in (3.1) may be also expressed explicitly in terms of polylogarithm

functions, as a function of the permittivity coefficients [16]

7 (382 +357 — &, )+125, (Li2 (¢7)+Li, (g+))

“= 1.571S(5r2 +5l.2 +5,)
(3.2)
7’ (&, -3)—12¢, (Li2 (g_)+ Li, (g+ ))
%= 1578 (2, +1)

in  which Li, () is the polylogarithm function of second order and
& =—¢, (5,.2 +(€, + 1)2 )/(g, +(5r + 2)(53 +& ) + 2\/3[.2 (gr + 1)(5,2 +&f + g,)j . The

scattering response of the structure, therefore, may accept multiple values for the

solutions that lie upon different Riemann surfaces. The position of the branch cuts in the
material space is determined by the angle of the sharp corners in the structure [16]-[17],

which is fixed at 7/2 in our geometry. In the absence of the branch cut, the scattering
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response of the particle is in phase with the incident wave, as if the particle is made of an
entirely lossless material. This is consistent with the initial intuition at the quasi static
limit, as the overall effects of the loss and gain portions average out in the far-field. The
presence of the branch cut, however, is the indication of regions (in the material space),
over which the structure supports solutions that are highly oscillatory with strong
focusing effects and local field enhancements at the two corners. Subsequently, the
composite particle may demonstrate significant power dissipation or power amplification
depending on an infinitesimal asymmetry in the geometry or material properties. In this
range the response cannot average out as it asymptotically non-square-integrable at the
corners. As we demonstrated in the previous chapter, this effect is also observable in low-

loss composites and nanoparticles that comprise sharp features [18]-[20].

Figure 3.1 sketches the response of the polarizability in the (gr,gl.) parameter-
space: the white areas correspond to real-valued «,, while the gray area corresponds to a

strictly complex ¢, with either a finite positive or negative imaginary component. These

regions occur independent of the polarization of the excitation field. Physically, this
implies that the net dissipation/amplification P00 % —Ag ! Im[ae], is non-zero in the
shaded area, even in the quasi-static limit for which radiation loss are negligible.
Mathematically both complex conjugate solutions are admissible for this range of
parameters, i.e., the boundary value problem does not support a unique solution. Before
discussing the solution to this ambiguity, we notice that Fig. 3.1 illustrates the phase
diagram of the PT nanoparticle, which is found to be identical for orthogonal
polarizations. The dashed lines represent the boundaries across which PT-symmetry is
spontaneously broken and the scattering spectrum ceases to be real. Interestingly, this is

only possible if plasmonic effects are available, for this cylindrical geometry in the range
g, e(—l,O). In this range, the threshold non-Hermiticity factor required to break the
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symmetry is found to be ¢, =—¢.(1+¢&,) . At the boundaries of this range, for
& ——1" and & — 0 the transition is threshold-less, meaning that the scattering

spectrum is complex even with an infinitesimal amount of non-Hermiticity coefficient ¢,

. The first of such conditions represents the quasistatic resonance of a loss-free
homogeneous cylinder, and our theory shows that a negligible amount of balanced
loss/gain can trigger a PT-symmetry breaking transition in the scattering spectrum. The
second case corresponds to an epsilon-near-zero (ENZ) cylinder, which supports similar
properties. We discuss in the following that the PT-transition in our nanoparticle can be
attributed to edge modes adiabatically focusing around the interface tips. It is interesting
that an ENZ PT-symmetric infinite slab also supports threshold-less guided modes at the
interface of loss and gain media [22], and our geometry translates these effects to a sub-

wavelength nanoparticle response.
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Figure 3.1: Phase diagram of scattering from the PT-symmetric double particle shown in
the inset. The structure under study is a single 2D particle at the deep subwavelength
limit D/, — 0, with complex-conjugate permittivities in the upper and lower halves.
White areas show the PT-symmetric case where the scattering amplitude is purely real.
The gray region correspond to the spontaneously-broken PT-symmetry where
polarizability is in general complex and a portion of incident power is dissipated or
amplified in the particle. Dashed lines show the non-Hermiticity factor threshold given
by &1, =+—¢.(1+¢,) . The points indicated by star (¢,,&,)=(-1.4,0.5), and triangle
(gr, 51') = (—0.4, 0.9) , correspond to the examples studied in Figs. 3.3 and 3.4,

respectively.
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An interesting property of the scattering system in Fig. 3.1 is the possibility of
breaking PT-symmetry through variations in the real component of the permittivities. PT-
symmetric optical potentials have been originally created through spatial modulations of
the imaginary component of permittivity [2], in accordance to non-Hermitian quantum
potentials. Therefore, it is common to break this complex continuation of the real-

spectrum by increasing the non-Hermiticity factor [3],[7],[10]. However, Fig. 1 shows

that PT-symmetry can be broken also for a fixed amount of loss/gain by varying ¢, .

3.3 A RESIDUE INTEGRATION APPROACH TO ANALYZE THE SCATTERING
CHARACTERISTICS OF PT-SYMMETRIC NANOPARTICLES

A simple yet powerful method of evaluating the integral in (3.1) and explicitly
calculate the field distribution inside and around the particle invokes residue integration
[23]. The analytical properties of (3.1) in the complex plane can reveal important
phenomena occurring in the nanoparticle based on the position and dynamics of the

complex poles. Utilizing periodicity of the coefficient C(s,¢,,&), with A= Re[f], in

the complex plane, the polarizability can be rewritten in the standard residue integration
form a, :% F(;“z —2i§)C(€l,82,§)d§. The closed contour I' is shown in Fig. 3.2

with solid black lines, and the arrows determine the direction of integration. Quite

conveniently, independent of the exact value of ¢, and &, only three poles contribute to

the overall response of the particle.

The first pole, p,, is always located at & =i, associated to the geometrical shape

of the particle as it is not affected by the material properties. Under the symmetric-phase
condition which is inside the white regions in Fig. 3.1, if &, >0 the additional two poles

p, and ps in Fig. 3.2 are symmetrically located on the Im[é]:l line. On the other

hand, when ¢, <0, both poles ( p, and p;) are on the imaginary axis Re[ﬁ] =0, and
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move toward £=0 and £=2i as the permittivities approach the grey area in Fig. 3.1,

and the response moves toward the broken-symmetry region. At the exact threshold line,

g =+4—¢€,(1+¢,) the poles coalesce and then split on the real axis. Considering the
periodicity of the kernel the poles on the real axis result on total of four poles p, to p,

residing on I'. By further increasing &; particle's response enters the broken-symmetry

region for which the quasistatic particle supports confined modes that adiabatically focus
toward the corners [16],[18]. These modes support extremely fine spatial resolutions,
particularly in the vicinity of the corners. In this regime, loss and gain effects do not
average out and the scattering is not unimodular. Both amplifying and absorbing modes
are valid solutions of the scattering problem, and minor perturbations from the ideal
geometry in Fig. 3.1, which break the ideal PT-symmetry assumption, can allow a

dramatic switching between amplifying and absorbing responses.

)23
L« \Y Dy D ™ Ps A N\>00
P
> —t— — 5] >
Py 23 Re{f}

& —Plane

Figure 3.2: The analytic properties of the polarizability integrand in the complex &
plane. Poles are indicated by x, and each three poles correspond to a specific material
distribution: p,, p,, ps for &,>0; p;, p,, p; for ¢, <0,¢ <& 1,5 and p;, p;, pg (

i
D1> P> Do) for &, > &, 1y, . Poles on the real axis convey confined modes in the
nanoparticle. Red (blue) lines follow the trajectory of poles when the exact PT-symmetry
condition is perturbed with &, =& +J (&, =& +id). Arrows on p, — p, trajectories
show that depending on the perturbation sign, different poles are located inside the
integration contour I". Position of pole p, is independent of material characteristics.
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In order to better understand this dynamics, we inspect in more detail the residue
integration and the analytic properties of the scatterer polarizability. In the unbroken-
symmetry scenario the polarizability is directly related to the sum of the residues of
(52—2i§)C(51,52,§) at p,,p,,p; Or p;,p4,Ps, Which are all real-valued. In the
broken-symmetry scenario, instead, we must determine which of the four poles on the
integration contour move inside I' (and therefore contribute to the scattering), and
which ones move outside the contour. This is to be determined by slightly perturbing the

exact PT-condition of the particle. The permittivity of the lower half is modified as

g, =& +0,with § >0 being a small perturbation. This is shown in Fig. 3.2 with red
lines and corresponding arrows, indicating the trajectory of p, — p, in the complex plane

after variations in ¢ . For any fixed perturbation, only two of the poles move within T",

as a function of the sign of ¢ . For instance, for ¢, =-0.4,5 =0.9, if the real

permittivity of the lower half slightly decreases (increases) from the exact PT-condition,
Di»De» Py (D15 P75 Pg) are the contributing poles. The residue at these sets of poles have
complex-conjugate values, implying that one set corresponds to a dissipative scattering
state, while the complementary set supports amplification. Therefore, over this regime the
scattering response of the ideal PT particle &, = el* violates uniqueness, associated with
the quasi-static edge modes [24]. The dipolar mode, yet, can exhibit preferred non-
unimodular scattering stemming from the perturbation of the PT-symmetry condition. We
note that similar effects may be induced if PT-symmetry is broken on the imaginary parts
of the permittivities. This is shown with blue lines in Fig. 3.2, for which we slightly vary
the gain factor in the lower half. In the same figure, we also look into the variations of
simple poles corresponding to the unbroken phase region, p,—ps upon small
perturbations. As expected, the poles stay within the contour, and small perturbations do

not drastically modify the overall response.
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Figure 3.3: (a) Real and (b) imaginary components of ¢, for the PT-symmetric particle
shown in Fig. 3.1, for excitation along the y -axis, plotted for &, =—1.4 while varying
the non-Hermiticity factor ¢,. Black, pink, and green lines correspond to unperturbed,

0 =-0.01,and 6 =0.01, respectively. Pink and green curves in panel (b) monotonically
converge to zero as the absolute value of ¢ 1is decreased. The inset shows the magnitude
of total electric field across the particle and its close proximity for & =0.5,6 =0 (black

star). (c) Magnitude of the total electric field

EX+E, j/‘ normalized to the amplitude of

the incident field, for the two cases of perturbation. Contours of constant field amplitude
are plotted to highlight the small asymmetry in the field distribution. For ¢ =-0.01 (

0 =0.01) fields are slightly larger in the upper (lower) half, consistent with the negative
(positive) small imaginary component of polarizability in panel (b). Field distributions
are calculated based on Ref. [16] and polarizabilities are calculated utilizing the residue
integration theorem discussed here.

To confirm our findings and gain further insights into the rich scattering response
of these nanoparticles, in the following we discuss two examples corresponding to

symmetric and symmetry-broken phase regions (indicated with a star and a triangle in
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Fig. 3.1). In both examples, we fix the real part of permittivity and increase the non-

Hermiticity parameter ¢, from 0 to 5. Figure 3.3 shows the case for &, =—-1.4. The
incident electric field is polarized along the y -axis, i.e., normal to the interface, and the

real and imaginary components of the polarizability are plotted with black lines in Figs.
3.3(a) and 3.3(b). The particle is overall lossless, implying that the local loss and gain
cancel out, independent of the value of non-Hermiticity factor. Indeed, as plotted in the
inset of Fig. 3.3(b) for ¢ =0.5, the distribution of the electric field intensity is fully
symmetric between the two halves. The solution is stable around this point and after
perturbing the PT-symmetry condition the polarizability and field distributions remain
unaffected (see Fig. 3.3(c)). Due to the small asymmetry imposed on the material
properties, field distributions slightly lean to the lower or upper half and a small
amplification or absorption is induced by the asymmetry. Decreasing the absolute value
of perturbation, this asymmetry converges smoothly to zero and at the infinitesimally
small perturbation limit, the scattering remains unimodular. These observations are
consistent with our previous discussion, highlighting the expected scattering response of
a subwavelength non-resonant particle with balanced loss and gain.

The response is drastically different, however, if PT-symmetry is combined with

plasmonic phenomena, and we can enter the gray-shadowed region in Fig. 3.1. Figure

3.4(a) shows the polarizability for ¢, =—-0.4. When &6=0 (ideal PT-symmetry), the

imaginary and real components of «, are calculated for different values of &;. As long

as & <&, =+40.4-0.6 (black lines), the poles lie on the imaginary axis and the
i i,Th p g ry

polarizability is well-defined and purely real, similar to the previous example. However,
beyond this threshold, the solution is not unique in the ideal PT-symmetry scenario, since
we enter the broken symmetry region with supported edge modes, and complex conjugate

polarizabilities are yielded. To find a unique solution, we need to slightly perturb the PT
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condition with 6 =10.01, as shown with green and pink lines in Fig. 3.4(a). First, we
notice that each of the two cases yields significant amount of dissipation (amplification).

These numbers should be compared with those in Fig. 3.3(b).
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Figure 3.4: Imaginary component of ¢, for the PT-symmetric particle with ¢, =-0.4,

excited along the x -axis. Black line indicates the polarizability below threshold. Pink
and green curves correspond to perturbed configuration with 6 =—-0.01, and 6 =0.01,
respectively. Inset shows the real part of polarizability, almost unaffected with
perturbation. (b) Magnitude of the total electric field normalized to the incident signal.
Two different scattering modes are observed solely based on the sign of & . The excited
edge modes are significantly localized around corners, with very large field amplitudes,
leaning toward loss (green triangle in panel a) or gain (pink triangle in panel a) elements.

More importantly, the attained Im[ae] is nearly independent of the amount of

perturbation and even very small asymmetries would enforce the scattering to converge
to one of the absorptive or amplifying branches. This is due to the contribution of poles
with complex conjugate residues in Fig. 3.2, whose positions are only weakly affected by

the exact perturbation amplitude. Physically, a small perturbation creates edge modes that
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lean toward either the loss or the gain region and due to their extreme field enhancement

they produce noticeable scattering loss or gain. Quite interestingly, even at the threshold

the response is not required to be continuous and it can launch from Im[ae] — too at

& — g[.’Tth [25].

As mentioned above, this unusual scattering response is associated with resonant
modes focused at the corners of the nanoparticle. This is visualized in Fig. 3.4(b) where
we plot the field intensity for & =-0.4,5 =0.9, inside the broken-symmetry region.
Distinct from the previous example, although panels (b) and (c¢) correspond to very small
perturbations of an identical particle, they support modes that are specifically
concentrated in one half of the cylinder, and are excited based on the sign of the
perturbation. The strong super-oscillatory fields around the edges create the large

absorption/ amplification effect which is absent outside the PT broken-phase region.

3.4 CONCLUSION

In conclusion, in this chapter we have shown that spontaneous symmetry breaking
in PT-symmetric optical particles can be attained in the deeply subwavelength limit,
utilizing confined plasmon polaritons. The scattering signature of the particle is found to
be quite distinct from wavelength-scale or large structures, as it supports single
dissipative or amplifying modes, with threshold-less symmetry-breaking in special cases.
The PT symmetry-broken region corresponds to the range over which localized
plasmonic modes are excited at the particle corners. It is predictable that similar
scattering responses may be observed in other nanoparticle geometries, such as PT-
symmetric kissing cylinders that support confined plasmonic modes [20]. Here, we have
overlooked the radiation effects due to the particle's small size. However, it has been

shown that radiation correction is negligible in this regime [16], and it does not affect the
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scattering behavior. In practice, radiation loss slightly unbalances the dissipation and

amplification branches. The observed extreme localization of light along with the abrupt

switching may find interesting applications in nanophotonic sensors, modulators, and

optical logics.
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Chapter 4: Theoretical Study and Experimental Validation of
Minimum-scattering Superabsorbers

Absorption and scattering are inherently related, as it is not possible to absorb
power without creating a far-field shadow. In previous chapters we looked into the
possibility of creating strong absorption/gain effects in plasmonic nanoparticles. In this
chapter we answer a very general question: to what extent it is possible to maintain
absorption properties of a receiver, while at the same time minimizing the scattering from
it. We show that properly overlapped resonant modes in suitably designed receiving
systems may in principle lead to arbitrarily large absorption levels, while at the same time
minimizing the total scattering. We present the theoretical formulations of our analysis
and provide experimental verifications at the microwave frequencies. Namely, we present
the design of microwave antennas based on our theory observing over 7-dB scattering
suppression without sacrificing absorption. The presented technique is of special interest
for non-invasive sensing, imaging, and radar technology. Contents of this chapter
partially appeared in "Mohammadi Estakhri, N.; Alu, A., Minimum-scattering

superabsorbers. Physical Review B, Rapid Communications 2014, 89 (12), 121416".
4.1 INTRODUCTION

Scattering from sensors and receivers is in general unavoidable, but at the same
time it is often undesired, especially in near-field sub-diffractive imaging [1]-[2] or for
closely spaced receivers or energy harvesters, due to unwanted perturbations on the
incoming wave. To address this problem, optimal designs for ‘minimum-scattering’
receiving antennas and sensors have been extensively discussed at radio-frequencies [3]-
[6], yet typically producing largely sub-optimal absorption levels. A sensor or an

absorber designed to maximize the amount of received power is typically required to
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operate under a conjugate-matched condition [7]-[9], also known in optics as coherent
perfect absorption [10], but this comes at the price of scattering an equal amount of
power as it receives, significantly perturbing the impinging wave [11]-[12]. It is
reasonable to believe that this property is a somewhat necessary feature of good
absorbers; however, and quite counterintuitively, we show in the following that it is in
principle possible to design a scatterer that absorbs as much power as desired, without
any minimum bound on its scattering level. In a related context, it has been recently
shown that cloaking layers may be able to arbitrarily decrease the scattering from a
receiving sensor [13]-[19] and efficiently form minimum-scattering designs. However,
while the ratio of absorbed over scattered power may be unbounded, also here a
fundamental trade-off appears between total available absorption and the amount of
achievable scattering reduction [18]. To overcome this issue, arrays of impedance-
matched receivers have been proposed to minimize reflections, or the scattering in
specific directions, while being able to retain an optimal absorption level by increasing
the scattering towards other directions [20]. It appears that all these solutions are
fundamentally limited to a trade-off between maximum achievable absorption and

minimum scattering signature when integrated over all angles.

4.2 MULTIPOLE SCATTERING THEORY: OPTIMAL PROPERTIES OF LOW-SCATTERING
ABSORBERS

In order to devise a way to overcome these limitations, in this chapter we discuss
the possibility of staggering multiple absorption channels in a single receiver in order to
increase the overall absorption efficiency 7., , defined as the ratio between absorbed and
scattered power, while not sacrificing the accessible amount of absorption. Our theory
envisions the possibility of realizing superabsorbing minimum-scattering sensors,

applicable to a broad range of frequencies, ranging from radio-frequency receiving
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antennas to optical sensors and absorbers, with exciting possibilities in biomedical
technology, security, energy harvesting, sensing and imaging.

Assuming for simplicity a spherical scatterer, its Mie coefficients C,"™*, fully

describing its scattering and absorption properties as a function of its geometry, may be

—iot

written under an e time convention in the form

n

-1
CMTE = (—1+ig ™M) (4.1)

These coefficients relate the impinging transverse-electric (TE) and transverse-
magnetic (TM) spherical harmonic amplitudes to the scattered ones, and expressions for

the case of layered spheres may be found in closed-form [21]. In the limit of no

absorption, £, is a real number, which determines the strength of the corresponding
scattered spherical harmonic: for £, =0, in particular, we hit the » -th harmonic
resonance in the lossless limit, which maximizes the associated scattering. In the case of
loss, it is easy to prove that ¢ , =Re[{,] specifies the modal dispersion and reactive

response, while £, =Im[{,]>0 for passive inclusions is directly related to the level of

absorption.

The total absorption cross-section of the sphere is generally given by

cm 2j+i(2m+1)(Re[q§E]+\C§f

m=1

G =;—ﬂj(§:(2n+l)(Re[CnTMJ+

n=1

jj , (4.2)

y ™ d TE
= Z O-abs,n + Z Gabs,m
n=l1

m=1

in which we assumed that only the first N TM and M TE harmonics are of practical

relevance, since the summations over all harmonics are convergent series.
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Figure 4.1: Absorption efficiency versus normalized absorbed cross-section for an
arbitrary passive receiver, considering TM,; or TE, (blue region), TM, & TE, (red

region), TM;&TM, or TE,&TE, (black region), TM, ,&TE; or TE, ,&TM,
(green region), TM, ,&TE, , (dark blue region) spherical harmonics to contribute to the

total scattering signature. Solid-lines limiting each region correspond to the balanced
resonance condition (4.3). Conjugate matched points, corresponding to maximum
absorption, all lie along 7, =1 (dashed white line) and the black dashed lines indicate

the achievable values of absorption efficiency for a given level of absorption. A typical
absorption/scattering cross-section diagram is shown in the inset as a function of the level
of loss ¢, for aresonant harmonic &, =0. (Reprinted with permission from Physical

Review B, Vol. 89, Issue 12, pp. 121416 (2014). Copyright 2014 American Physical
Society).

The partial absorption cross-section associated with each harmonic reaches its

maximum ol =(2n+1) 45 / 87 under the condition ¢,=0,4,, =1 , which

abs,n

corresponds to ideal conjugate matching, i.e., to the case in which the reactive energy is
balanced (resonance) and the radiation and absorption resistances are equal. Conventional
antennas [22] are typically tuned to hit this condition, at the price of producing a

scattering cross-section equal to the absorption cross-section, o, =0, Lm0 .1 [6], as

54



illustrated in the inset of Fig. 4.1, showing the variation of absorption and scattering as a

function of the amount of loss (¢, ) in a scatterer at resonance ¢,, =0. As expected, at

the crossing between red ( o, ) lines absorption is maximized.

abs

) and blue (o,

Passivity (£,; >0) poses inherent restrictions on the allowed values of total

absorption efficiency 7, =0, /0,, achievable for a given level of total absorption.

abs ! Osca
This is shown in Figure 4.1, which plots the absorption efficiency versus normalized
absorption cross-section for various receiving systems. The blue shaded region refers to
the common situation in which the scattering is dominated by only one dipolar (n=1)

harmonic, either electric or magnetic, usually the case for small absorbers and receivers.

The plot confirms that it is not possible in this scenario to absorb more than o, , which
corresponds to the right-most point of the blue shadowed region, for which 7, =1
(conjugate matched absorber). For lower levels of absorption, 7, is necessarily
bounded between a maximum and minimum value, as indicated by the solid blue line (
&g =0), and a value of 7, >1 may only be achieved trading off some absorption [18].

A way to overcome these inherent limitations is to consider the possibility of
exciting at the same time more than one harmonic: for instance, the limit on maximum
possible absorption may be overcome by staggering a few resonant harmonics, realizing a
super-absorber [23] in some sense analogous to the super-scatterer concept originally
introduced in [24]. Higher-order scattering harmonics may be excited by increasing the
electrical size of the object [25]. The different shaded regions in Fig. 4.1 correspond to
different combinations of consecutive scattering orders for n,m=1,2: the red region
corresponds to the combination of electric and magnetic dipolar scattering, the black
region to the combination of one dipolar and one quadrupolar mode, the green region to
two dipolar and one quadrupolar, and finally the dark blue region to the combination of

two dipolar and two quadrupolar modes, as indicated by the symbols in the figure. It is
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seen that, as we consider the contributions of different scattering harmonics, it is possible

to push the maximum available o,

, to larger values, and the maximum absorption for

spherical scatterers is generally given by o,. = (N PN+ M?+2M )g

Also in this case unitary absorption efficiency (white line) is obtained at these
maxima, when all scattering harmonics are independently conjugate matched. Operating
such superabsorbing system, however, is challenging in practice, especially when
considering nanoparticles, because the Q-factor and corresponding inverse bandwidth of
a subwavelength resonant system grows very fast with n for fixed volume, and therefore
the available bandwidth and sensitivity of such designs would be inherently limited [25]-
[26]. This explains why practical realizations of small sensors and absorbers are typically
limited to one or two resonant dipolar modes and do not involve higher-order resonances.

Figure 4.1, however, provides useful insights into the possibility of staggering

various harmonics in order to minimize the scattering, while keeping the absorption at a

desired large level « Imagine, for instance, that our goal is to absorb

abs *

___max

Uy = gy =345 /(87) , i.e., the maximum absorption available with one dipolar

harmonic (vertical dashed line in Fig. 4.1). The figure indicates that, by staggering a few
harmonics, we can attain in principle any arbitrary value of absorption efficiency, without
sacrificing absorption. For example, by operating with one dipolar and one quadrupolar
order (black shadowed region), we may be able to achieve an absorption efficiency as

high as 8.55 while absorbing «,, . Two dipolar and two quadrupolar modes (cyan

region) may achieve a scattering almost twenty times lower than the absorption, for the

same «,, . For a given level of absorption, it is found that scattering is minimized if and

only if
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[NN+2)+ MM + 2V
dra

(4.3)
(1+\/1_ 5 87z.aabs ]:é/é\;[t,N
A IN(N +2)+ M (M +2)]

P, S L, S

Interestingly, substituting these values into the expressions for scattering and
absorption cross-sections, we find that the corresponding maximum absorption efficiency

M,N

has the identical value 7., = opt

. Equation (4.3) shows, as expected, that for

Oyps = O We get 1. =1, which is obtained when all coefficients are conjugate

matched, i.e., all & =i.For smaller «

abs >

however, still equal or larger than 34; / (87:) ,

large absorption efficiencies are accessible. To achieve maximum efficiency, according

to condition (4.3) each harmonic has to be at resonance ¢,.z"' " =0, but they should be

all largely mismatched, at the same level ¢,°™ > 1. All contributing harmonics, under

this condition, provide an amount of absorption proportional to their order, proving that
the optimal strategy is to combine various mismatched harmonics, all balanced together
to realize an optimal superabsorber with minimized visibility. Even more remarkably, the
excitation of higher-order harmonics does not introduce in this scenario relevant
constraints on the bandwidth of operation, since each mode is largely mismatched,
lowering the Q-factor and sensitivity, and broadening the overall bandwidth.

This result is perfectly consistent with the optical or forward-scattering theorem
[27]: large absorption is directly associated to a proportional amount of real-valued
scattered fields in the forward direction (a far-field shadow behind the object produced by
a polarization current in phase with the impinging field) [28] and all other residual
scattering does not directly impact power conservation. For this reason, a directive
scattering pattern in phase with the impinging field and pointing towards the forward

direction is ideal to minimize the overall scattering of the object [4], and this may be only
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realized by relying on higher-order scattering harmonics. There is in principle no limit on
absorption efficiency, independent of the level of desired absorption, as long as we can
rely on the suitable excitation of higher-order scattering harmonics to generate this
directive pattern. Eq. (4.3) determines the optimal excitation based on the suitable

interference of N+ M spherical orders.

4.3 PLASMONIC CORE-SHELL NANOPARTICLES TO IMPLEMENT OPTICAL MINIMUM-
SCATTERING ABSORBERS

To provide further insights into this finding, we propose in the following a few
examples of minimum-scattering superabsorbers in the form of layered nanospheres, as
schematically shown in the inset of Fig. 4.2. We optimize the geometry of all our
absorbers to operate at the operating wavelength 4, =500nm . We stress that this choice
of operating frequency is completely arbitrary and the proposed concept is applicable to
different classes of sensors and absorbers, ranging from simple loaded wire antennas at
radio-frequencies to nanoparticle sensors and absorbers at optical frequencies. In the next
section we will look into the loaded wire antenna example in more details.

In our first example, the structure consists of a low-loss dielectric core with

permittivity & /&, =3.5+i0.3 and a concentric shell made of a plasmonic metal, i.c.,
2
1)
gold, modeled with Drude permittivity &, / g =¢&,———— with ¢, =153,
o(w+il)

w,=272069THz and I'=2717.64THz [29]. We fix the outer radius of the
nanoparticle to be subwavelength, a =0.154;(second row in Table 1), and explore the

possibility of simultaneously exciting the first two electric harmonics TM,;&TM, ,

corresponding to the shaded black region in Fig. 4.1. We set our desired absorption level

2
to the maximum achievable with a single dipolar resonance «,, :%’ black dashed
Vs

line in Fig. 4.1, and tune the ratio a,/a =0.83 to satisfy conditions (4.3).
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Figure 4.2: Amplitude and phase spectra of the first three scattering harmonics for the
proposed superabsorber. The core-shell nanoparticle consists of a nonmagnetic dielectric
core with permittivity &, /&, =3.5+i0.3 and radius a, =0.1264,, and a plasmonic gold

shell with outer radius a =0.154,,, designed to operate at A, =500 nm . A schematic plot

of the core-shell nanoparticle is shown in the inset. (Reprinted with permission from
Physical Review B, Vol. 89, Issue 12, pp. 121416 (2014). Copyright 2014 American
Physical Society).

Table 4.1. Design parameters and performance characteristics of the proposed optical
superabsorber designs. (Reproduced with permission from Physical Review B, Vol. 89,
Issue 12, pp. 121416 (2014). Copyright 2014 American Physical Society).

Contributing Peak Efficienc
Harmonics and Radiuses and Permittivities absorption Q-fac tory
Number of layers efficiency
{a.,a.,,a}=10.13,0.16,0.194} 4,
Tl;/lll&TEl &/, =1.29+i0.01 7.1 6.9
ayers &, Ag, )6, =8.4+i2.33
™, &TM, {a.,a} ={0.126,0.15} 4,
. 7.9 10.4
2 layers & /ey =3.5+i0.3,¢&,: Au
{a.,a.,,a} ={0.25,0.28,0.31}
™, ,& TE, b , &
’ &/, =1.25+i0.03 13.5 17
3 layers

& 1 Ag, & /&, =8.6+i0.96
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The spectral dependence of the first three scattering coefficients for this optimized

superabsorber is shown in Fig. 4.2. Around the central frequency, both amplitude and

phase of TM,&TM, coefficients match each other: MxdM =0,
MM ~8.51, in excellent agreement with condition (4.3). The corresponding

scattering coefficients become purely real, with value C™ =C;™ =-0.105 ,

guaranteeing the most directive scattering pattern in the forward direction that can be
supported by the interference of these two harmonics and suppressing the unwanted out

of phase component of the scattering. As seen in the plots, in this regime the next

scattering coefficient, TE,, is negligible.
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Figure 4.3: (a)-(c) Absorption (red line) and scattering (blue line) cross-sections of
optimal minimum-scattering superabsorbers relying on TM,; & TE; (a),TM, , (b), and

T™, , & TE, (c) harmonics, consistent with the geometries in Table 4.1. The absorption

cross-section of a conjugate matched dipole is also plotted for comparison in each panel
(red dashed line). The E-plane scattering pattern is shown in each inset at the central
frequency @,. The absorption efficiency of the sensor is shown in each panel by green
lines. (d) Absorption (red) and scattering (blue) cross-sections of conjugate matched
absorbers with one (solid lines) and two (dashed lines) harmonics and outer radius
a=0.154,. (Reprinted with permission from Physical Review B, Vol. 89, Issue 12, pp.

121416 (2014). Copyright 2014 American Physical Society).
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By increasing the number of layers it is possible to further increase the available
degrees of freedom in our design, and study the evolution of this response as a function
of the number of involved scattering orders. Figures 4.3(a-c) show the scattering and

absorption efficiencies versus frequency of different nanoparticles optimized to meet

conditions (4.3) for two harmonics (TM, & TE,, panel a), (TM, ,, panel b, consistent

with Fig. 4.2), and three harmonics (TM, ,& TE,, panel c), with design parameters

summarized in Table 4.1, respectively first to third row. In each panel we also show for
comparison the maximum absorption attainable from a conventional dipolar absorber
with same size (dashed red line), and the frequency dispersion of the calculated
absorption efficiency (green dash-dot line). In the insets, we also show the scattering
pattern from each particle in the E-plane at the central frequency, showing a
progressively more directive response as the number of modes and corresponding 77,
are increased.

We note various interesting features in these plots: first, despite the
subwavelength features of all these designs, higher-order resonances can be excited quite
straightforwardly with realistic parameters and materials since each harmonic is deeply

mismatched by an intentionally large level of absorption resistance, bringing down the Q-

factor of each resonance. In particular, Cn‘ =0.146,0.105,0.07 for the three examples in

C

Fig 4.3(a-c), respectively, significantly far from the conjugate matched condition |C,|=1

. This implies that the bandwidth is not significantly worsened, even after increasing the
number of harmonics and their resonant order. To highlight this point, we calculated an
effective Q-factor (inverse fractional bandwidth) for the dispersion of the absorption
efficiency, reported in the last column of Table 4.1, indicating that the Q-factor grows
linearly with the absorption efficiency, remaining manageable even if a few higher-order

harmonics are involved and the nanoparticle is still deeply subwavelength.
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This property is in stark contrast with the example in Figure 4.3d, which shows
for comparison the case of conjugate-matched resonant nanoparticles with the same size
as the superabsorber of Fig. 3b, but now designed to support a dipolar (dashed lines) or a
combined TM, , conjugate matched resonances. It is found that in this case the Q-factor
drastically increases from 3 to 45 moving from one to two harmonics, while the
absorption is increased by only a factor of three. Our optimized minimum-scattering
superabsorbers show the same absorption as an ideally conjugate-matched resonant
dipole, or a coherent perfect absorbing dipole, while scattering 7 to 13 times less, over a
reasonable bandwidth and with realistic materials and robustness to imperfections in
realization. The proposed balanced design may be practically implemented with
considerable tolerance on the design parameters. In the following, we study the effect of
variations on these parameters on the scattering and absorption response of the system.
As we discussed previously, the multipoles contributing to scattering and absorption are
intentionally designed to be deeply mismatched in order to satisfy the optimum criteria of
Eq. (4.3). As a result of working in this regime we predict low sensitivity of the response
to the material or geometrical parameters as well. Also, we note that at the optimum
design condition the scattering strength of the contributing harmonics should be low
(specifically ‘Cn‘:0.146,0.105,0.07 for the three examples in Fig 4.3(a-c)), which
implies that any dielectric and plasmonic material with realistic dispersion can be used
and we are still guaranteed to excite weak higher order harmonics to maintain the main
features of the response.

The results presented in the chapter have been analytically derived based on Mie
theory for scattering from spherical objects (see e.g. Ref. [25]), which allows us to
accurately study the effect of parameter variations on the scattering and absorption

spectrum. As an example, we show in Fig. 4.4 (a-b) the effect of 20% variation in the
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material properties of the two-mode superabsorber (row two in Table 4.1 and Fig. 4.3(b))
on the absorption and scattering cross-sections. Apart from minor variations, the main
features of the response, including low scattering and high absorption at the design
frequency are totally preserved. As expected, the variation of scattering and absorption
cross-sections is minimal around the design point. Besides practical implementation, the
robustness of the design to material variations further confirms the Q factor sustainability

of the structure to the intrinsic dispersion of constitutive materials.
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Figure 4.4: Sensitivity of the scattering and absorption cross-sections to perturbations in
the material properties (£10% from the values reported in Table 4.1, column 4-row 2).
The other parameters are kept the same. (Reprinted with permission from Physical
Review B, Vol. 89, Issue 12, pp. 121416 (2014). Copyright 2014 American Physical
Society).

Some of the material parameters of the dielectric layers considered in the previous
examples may not be directly available at the frequency of interest. While variations
around these optimal values do not significantly affect the overall performance, we stress
that significantly more flexibility on the choice of materials may be attained by adding
degrees of freedom to the geometry, such as considering asymmetric shapes, or compact
clusters of nanoparticles. In this case, it may be possible to realize the optimal condition

(4.3) with a wide variety of available materials. In fact, suitably chosen asymmetric
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geometries may allow coupling different scattering channels together, further boosting

the described effect.

1.5

z/a
AL borNvwahs

4321012 34 4321012 34
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Figure 4.5: Far-field scattering pattern of (a) the designed invisible absorber shown in
Fig. 4.2 compared to (b) a similar configuration when filling ratio is changed to
a,/a=0.5. Plots are in the same scale and a closer image of the invisible particles

pattern is shown on the right panel. (c)-(d) Total magnetic field distribution (a snapshot in
time) in the xz plane (E-plane). Field distribution is normalized to the amplitude of the
incident plane wave and the black circles indicate the position of the core-shell
nanoparticles. (Reprinted with permission from Physical Review B, Vol. 89, Issue 12, pp.
121416 (2014). Copyright 2014 American Physical Society).

It is also worth emphasizing that this is not simply the result of scattering
cancellation, but it requires the careful excitation of various resonant modes in a balanced
multi-modal absorber. To demonstrate the importance of balanced excitation in the

minimum-scattering superabsorber concept, we consider here two core-shell

nanoparticles with geometry shown in the inset of Fig. 4.2. One of the particles is

designed to operate at the TM,& TM, balanced point with geometrical and material
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parameters provided in the second row of Table 4.1, consistent with the results in Fig. 4.2

and 4.3(b). The second nanoparticle, on the other hand, is composed of the same

materials and same overall size of a=0.154,, but the filling ratio is changed to
a,/a=0.5 moving farther from the optimal design point. Figures 4.5(a,b) compare the
far-field scattering pattern of these two particles. The real part of the total near-field
distribution at A, =500nm is also plotted for both cases, assuming an incident plane-
wave polarized in the x direction and propagating along z axis (Fig. 4.5(c,d)).

While our superabsorbing sensor is essentially transparent to the impinging wave,
the second particle significantly perturbs the wave propagation, with scattering cross
section equal to o, = 0.35202 approximately 22 times larger than the invisible sensor.
At the same time, the absorption cross section of the balanced sensor is 9 times larger.
The residual small scattering of the superabsorber design is directed along the z axis,

consistent with our previous discussions [4].

4.4 EXPERIMENTAL IMPLEMENTATION OF LOW-SCATTERING, SUPERABSORBING
MICROWAVE SENSORS

At microwaves, antennas are the essential components to bridge signals from
sources to distant detectors/receivers. Throughout the last century, special interest has
been devoted to their design, resulting in comprehensive techniques and design methods
for various applications [22]. For various applications, such as noninvasive sensing and
closely packed antenna systems, it is of special importance that the receiver picks up the
incoming electromagnetic signal without affecting its original distribution, acting as an
invisible ‘eye’ that is capable of seeing the surrounding medium without being detectable
by an external observer. A rather straightforward approach to suppress the unwanted
scattering is to place the antenna inside an electromagnetic cloak. Such a possibility has

been discussed in the past few years, incorporating antennas in transformation-optics and
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scattering cancellation cloaks [4],[6]. However, the antennas' capability to collect the
incident energy directly relies on how strongly they can interact with the incident signal.
As we discussed in the previous sections, by reducing this interaction with an
electromagnetic cloak, the power absorbed by the antenna is also expected to drop,
indicating that it is not possible to extract energy from a wave without creating some sort
of distortion or shadow, which is also a direct consequence of the optical theorem [4].
Interestingly, however, we have proved in the first part of this chapter [30], that
staggering different absorption channels in a receiver provides a venue to relax these
constraints. We discussed the possibility of designing low-scattering optical nanoparticles
with large absorption, based on the proper excitation of multiple scattering modes in
section (4.3). In the following, we extend this theory to radio-frequency (RF) antennas,
designing and implementing a poof-of-concept low-scattering sensor based on this
principle. The power absorbed by the realized antenna is larger than the one of an ideally
resonant conjugate-matched dipole antenna, yet the scattering signature is reduced by

over 75% across the operation bandwidth.

4.4.1 Design of low-scattering RF sensors

The field distribution around the antenna of interest may be also expanded into
the orthogonal base of spherical harmonics, each one excited with an amplitude and
phase related to the antenna shape, size and loading. In general, the complex Mie
scattering coefficients C,™ and C° correspond to the excited n-th electric and m-th
magnetic multipolar modes. For instance, the contribution of the #» =1 mode dominates
the response of a linear wire antenna, while other higher-order harmonics are negligible.

In a wire loop antenna, on the contrary, the m =1 or magnetic dipolar mode dominates

the response of the system. Studying the total scattered P, and absorbed P,  powers
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of a generic antenna, we proved in Eq. (4.3) that, for a fixed amount of desired P,

(proportional to the detected signal), minimal P, can be achieved by designing the

antenna so that all contributing modes are excited with equal amplitude and phase. For
instance, in the simplest scenario we consider a receiving antenna supporting two modes,
electric and magnetic dipole moments. We note that this corresponds to the core-shell

nanoparticle example of Fig. 4.3(a). The optimal scattering coefficients for such antenna

to minimize P, while absorbing the desired value P, for incident power intensity

P, =1 W/ m?® equals

27[Pabs
,10(3/10 +\/—12ﬂpabs+9,1§)

™ _ ~TE _
Cl It

(4.4)

Conveniently, Eq. (4.4) can be translated into the dipolar polarizabilities of the
low-scattering sensor, a, = j67&,/ki C™ and «, = j6mu,/ki CT°. To compare our
antenna with conventional receiving dipoles, we fix P, to the maximum value available

in a resonant dipole antenna, i.e., P, =345 / (87) per unit incident power intensity. In a

conventional single mode antenna, this amount of absorption is achieved at the conjugate
matched condition (see Fig. 4.1), for which the scattered power necessarily equals

absorption, i.e., P, =P, . Yet, considering an additional scattering mode and applying

(4.4), a decrease of 7.65 dB on the total scattering of the antenna can be expected for the

same level of absorbed power.

4.4.2 Sensor realization and measurement

Based on the optimal polarizabilities for the two-mode antenna derived in Eq.
(4.4), we implement the low-scattering sensor as the combination of two symmetrically-

loaded printed antennas, an electric dipole and a magnetic loop, shown in Fig. 4.6(a).
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Based on the availability of discrete loading elements (SMT 0603), the center frequency
is set at 2.85 GHz and the two dipoles are designed to satisfy Eq. (4.4) through an
accurate analytical modeling [31]. Interestingly, since the optimal conditions require each
mode to be weakly excited, the antenna dimensions are deeply subwavelength and the
designed low-scattering receiver fits in a 10.5mmx11.7mmx9.6mm volume. The
scattering and absorption properties of the sensor are calculated through a retrieval
method adapted from [32], in which the antenna is placed at the center of a rectangular
waveguide (WR284) and the S-parameters are measured across the range 2.5-3.1 GHz.
The measurement is calibrated with four known scatterers, two electric and two magnetic
dipoles, shown in Fig. 4.6(b) together with the waveguide used for the retrieval. In
summary, the general relation between the electric and magnetic fields across ports 1 and

2 of the waveguide and the local fields at the position of the known dipolar particles can
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Following the definition of scattering parameters and after some simplifications it

be written as [32],

can be shown that the four unknown parameters K2 ,K ;’;,ij, and C;”y , associated with

the geometry of the waveguide, are uniquely determined from scattering parameters of

our four independent dipolar calibrating particles. For an unknown particle with

68



polarizability matrix of g:[af,O;O,a;"} , polarizability is then retrieved from the

measured full scattering matrix S = [Sll,Slz;Sﬂ,Szz] as,

g—l — ga _émod +(::1b , (4.6)
in which
Ki Ky ce. 0
C = N
R S0 13 00 7 B
248, =8, =85+, (Sll =S +8y _Szz) ) 4.7)
gmod _ —1+8, +8) =818 + 81180 —1+81, +85 =8125,, + 51155
- S+ =85, (—2+S“+S12+S21+S22)

14+ 8, +8 =818 + 8118 148, 85 =818 + 81152

a sidel b
[ ]

A

Figure 4.6: (a) The designed two-mode low-scattering antenna consisting of adjacent
electric and magnetic dipoles mounted on two sides of a 9.6 mm thick Styrofoam fixture.
(b) Four calibrating particles and the WR284 waveguide used for polarizability retrieval.

After retrieval of ¢, we can calculate the scattering coefficients c™ and C'F,

as shown in Fig. 4.7 (a), and the total absorbed and scattered powers of the low-scattering

sensor, as shown in Fig. 4.7(b) with solid red and blue lines, respectively. The power
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levels are normalized to an incident power intensity P, =1 W/ m?®, and in the same

figure the maximum reachable absorption by a single dipole is shown with the dark gray
line. Our measurements in Fig. 4.7 demonstrate the successful implementation of a low-
scattering sensor that is able to absorb comparable power to a conjugate matched dipole,
yet with significantly reduced scattering signature. Interestingly, the bandwidth of
operation is comparable to a resonant dipole antenna of similar size, despite the improved
performance in terms of scattering, which is due to the detuning of each scattering
channel. In other words, the strong reduction in scattering does not require a strong
narrowing of the involved resonances. Fig. 4.8(a) also shows the ratio of absorbed and
scattered powers for the realized sensor, compared to full-wave simulations, and to the
theoretical limits for a conjugate matched dipole and of a two-mode sensor based on Eq.
(4.4). The small discrepancy between measured and simulated curves is associated to the
difference between nominal and realistic values of the loading elements, as well as to

fabrication errors.
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Figure 4.7: (a) Amplitude (solid) and phase (dashed) of the complex Mie scattering
coefficients C™ and C/". (b) Total scattered (blue) and absorbed (red) power levels:

measurement (simulation) results are shown with solid (dashed) curves. The gray line
indicates the maximum absorption attainable from a wire dipole at the conjugate matched
condition.
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It is also insightful to look into the scattering pattern of the designed sensor at the
frequency of operation. The excitation of balanced electric and magnetic dipoles implies
that the residual scattering has a Huygens-like pattern (Fig. 4.8(b)), consistent with the
optical theorem requirement that a minimum-scattering antenna has a directive scattering
distribution pointing in the forward direction. The pattern is also consistent with or
previous studies of layered nanoparticles with analogous scattering and absorption

properties (see inset of Fig. 4. 3(a)) [4],[25].
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Figure 4.8: (a) Ratio of total absorbed and scattered powers for the measured (solid blue)
and simulated (dashed blue) low-scattering sensor. A conjugate-matched dipole is shown
in gray for comparison. The pink line indicates the optimal ratio theoretically achievable
by a two-mode antenna. (b) 3D scattering pattern of the antenna under plane-wave
excitation.

4.5 CONCLUSION

In conclusion, in this chapter we have shown that there is a possibility to
independently control the scattering and absorption properties of a receiver. Our
analytical, full-wave simulations and experimental results confirm that the judicious
excitation of multiple absorption channels in a suitably designed sensor can produce large

total scattering reductions without sacrificing the overall absorption, compared to
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conventional single-mode conjugate matched antennas. The balanced resonant design and
minimum-scattering superabsorbing response described here may have exciting
applications, including subdiffractive near field imaging [1]-[2] and optimal absorbers
with minimal impact on the impinging field distribution. We have shown in fact that,
with proper design, both absorption and absorption efficiency can be made in principle
arbitrarily large over a moderate yet reasonable bandwidth. These findings also relax the
constraints on absorption of minimum-scattering antennas, providing an exciting venue to
minimize the mutual coupling between closely packed receiving antennas. Probably the
most striking feature of this concept resides in the moderate values of Q-factor associated
with it, making the proposed designs realistic and quite robust to fabrication tolerances,

as verified by our experiment.
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Chapter 5: Theory of Wave Transformation with Gradient
Metasurfaces

Throughout chapters 2-4 we introduced methods to design and implement
metamolecules with engineered absorption and scattering properties. In this and
following chapters we will discuss how thin arrays of suitably arranged metamolecules,
known as metasurfaces, can enable a new degree of wavefront control, suitable for many
applications ranging from cloaking to energy harvesting. In this chapter, we present the
theoretical analysis of gradient (i.e. nonperiodic) metasurfaces as a platform to generate
arbitrary wavefronts and will derive general requirements of an ideal metasurface to
perform functionalities such as beam steering, lensing, and free-space to bounded mode
coupling beyond the scope of ray-optics. We furthermore outline the inherent limitations
of passive gradient metasurfaces and will introduce several techniques to improve the
efficiency of arbitrary wave manipulation over ultrathin surfaces. The theoretical
formulation presented in this chapter will be used in the following chapters to design and
implement practical metasurfaces for several applications. The contents of this chapter
partially appeared/to appear in "Mohammadi Estakhri, N.; Alu, A., Wavefront
Transformation with Gradient Metasurfaces, under review" and "Mohammadi Estakhri,
N.; Argyropoulos, C.; Alu, A., Graded metascreens to enable a new degree of nanoscale

light management. Phil. Trans. R. Soc. A 2015, 373 (2049), 20140351".

5.1 INTRODUCTION

Devising physical systems that grant full control of the distribution of
electromagnetic waves has been an emerging area of research in the past decades.
Photonic crystals [1] and metamaterials [2] represent the two major milestones in this

direction, and several unusual wave phenomena have been put forward based on these
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artificially engineered structures, most notably negative refraction and perfect lensing,
improved optical fibers, extreme wave localization, and invisibility cloaks [3]-[6]. One of
the long-standing challenges in this context, originally considered at radio frequencies
(RF), is to come up with practical and efficient techniques to arbitrarily mold the
emerging wavefront of an antenna or a localized source. Conventional methods to solve
this problem date back to glass lenses and prisms, which rely on engineering the gradual
accumulation of phase delay as the wave propagates in the device, reshaping the scattered
wavefront and beam profile at will. In the context of metamaterials, transformation optics
has become a paradigm to realize arbitrary wave manipulation in volumetric devices [7]-
[9]. On top of the unavoidable loss induced along the propagation path, often substantial
when metamaterial components are considered [10], these devices suffer from bulky
profiles and are typically at least several wavelengths thick. A relevant question we
address in this chapter is whether it would be possible to realize a transformation
platform similarly capable of molding wave propagation at will, but with a much thinner
and low-profile geometry, in other words over a metasurface.

At RF, low-profile devices for wavefront patterning are available in the form of
arrays of printed antennas, also known as reflect- and transmit-arrays, which are used to
modify the spatial distribution of reflected and transmitted waves over deeply
subwavelength thicknesses [11]-[13]. In contrast to the gradual transformation of the
wave in a volumetric component, these printed structures create a transversely
inhomogeneous impedance profile that imposes an effective field discontinuity,
controlling the transverse phase distribution over a surface. Such impedance surfaces can
be designed with extremely subwavelength thickness, forming the foundation for a
transformation-optics paradigm over two dimensions. Passive printed antenna arrays are

at the basis of planar microwave lenses and mirrors that can replace inconvenient bulky
76



mirrors in reflector antennas and, at the same time, can enable fully-electric beam
steering by exploiting appropriately engineered surface resonances. The simplicity of
surface-based wave manipulation at RF has inspired scientists to extend these concepts to
shorter wavelengths, up to the infrared and visible spectrum, using artificial arrays of
subwavelength polarizable particles, or metasurfaces [14]-[17]. In analogy to RF
patterned surfaces, optical metasurfaces can be fruitfully modeled with a local averaged
surface impedance [18]. However, different from their RF counterparts, metasurfaces can
largely benefit from plasmonic effects, allowing their surface constituents, i.e.,
nanoantennas [19], to resonate over spatial scales much smaller than the free-space
wavelength, providing a route to a much larger control of the transverse spatial
resolution. Plasmonic metasurfaces have enabled the concept of reflect- and transmit-
arrays to shorter wavelengths, under the assumption that a suitably tailored transverse
phase discontinuity profile imparted over an ultrathin surface may redirect an impinging
wave toward a new direction, depending on the lateral phase gradient [20]-[22]. The
abrupt phase shift introduced by nanoantennas is exploited to compensate for the phase
difference between the incident and desired wave profile, e.g., linear, circular, and
hyperbolic scattering phases, to create tilted waves, vortex beams, and focusing lenses.
The prospect of full control on the distribution of the scattered wave with a single
ultrathin patterned surface has created excitement in the scientific community, and the
initial proposals have been now extended to different frequency ranges, and numerous
optimized surface elements have been studied to provide efficient (i.e. with almost
unitary amplitude) full phase coverage in both reflection and transmission scenarios [23]-
[27].

In this chapter, we raise the fundamental question of to what extent a phase

gradient on a metasurface is sufficient to guarantee an ultimate control of its scattering
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signature. First, it is obvious that, different from volumetric metamaterials, a metasurface
can transform a wavefront to another one only provided that both fields are solutions of
the source-free wave equation in the background medium. With rigorous treatment, in
this paper we show that it is not possible to funnel the incident wavefront into an arbitrary
solution of choice if we are limited to using passive metasurfaces, and even basic
functionalities, such as wave deflection, have fundamental limitations on the overall
efficiency of the transformation process in the ultrathin limit. Second, we show that the
optimal phase distribution that maximizes the transformation efficiency in the case of a
passive surface drastically deviates from the simple phase correction recipe stemming
from ray optics, and widely used in the current literature. This is particularly important
for extreme cases, such as large-angle beam deflection or near-field focusing, for which

metasurfaces can outperform conventional volumetric devices or gratings.
5.2 BEAM STEERING WITH IDEAL METASURFACES: ACTIVE VERSUS PASSIVE

5.2.1 General formulation

We start by considering the general problem of EM wave interactions with a

transversely inhomogeneous metasurface of arbitrary profile, as shown in Fig. 5.1(a). We

assume that the surface thickness is deeply subwavelength, d/4, —>0 , where

Ay =27/k, is the free space wavelength and &, is the corresponding wave number. The

subwavelength thickness of the structure allows to describe it, in a local sense, by

equivalent transverse surface electric and magnetic currents J, and M, forming local

electric admittance J, =Y, (r)-E,, and magnetic impedance M, =Z, (r)-H

e

, tensors,

related to the tangential components of the local fields over the surface [14],[18]. For

simplicity, in the following we assume that the symmetries of the problem allow us to

consider scalar impedances Y, and Z, for the excitation of interest. It is possible to
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characterize the surface also by its local reflection (R = r(r)em'(r)) and transmission (

T =t(r)ej¢'(r)) coefficients, defined assuming a uniform surface built with such local

impedances and excited at normal incidence. As shown in Eq. (5.1), these quantities are

directly related to ¥, and Z, [28], and ¢ and ¢ are the phase distributions imparted

on the reflected and transmitted waves at the metasurface interface, respectively. A

lossless ultrathin surface has locally r*+¢* =1 or, equivalently, Y, and Z, are purely

imaginary.

Re_ 2(7702Ye—Zm) T__(_2+770Y;)+ 2(7702Ye_zm) (5 1)
(2+770Ye)(2770+zm), (2+770Ye) (2+770Ye)(2770+zm). .

In order to highlight the potential and limitations of a gradient metasurface for
wave transformation, we first consider an ideal planar metasurface whose elements can
be engineered to locally provide unitary transmission, zero reflection, and a full control
on the transmission phase, so that ¢, (r) can take any value between 0 and 27 over the
surface. This implies that the metasurface can in principle impart any phase profile to the

transmitted wave, with 100% local efficiency. In order to transform a normally incident

plane  wave E, = JE,e’** into an  obliquely  transmitted = wave

E = );Eoejko(7Sin(a )x+cos(6, )z)
t

propagating toward the angle 6, in the xz -plane
(anomalous refraction, a common target for gradient metasurfaces), the available
literature has so far considered designs based on phase compensation, which requires that
the metasurface provides a constant phase gradient ¢, (x) =k, sin(@t)x [20]-[22]. This
is at the basis of the so-called ‘generalized Snell’s law of refraction’, which allows
challenging the usual refraction response at a transversely homogeneous interface.

We show in the following that this picture is inherently approximate, as it does

not consider the relevance of impedance matching in the scattering process [29].
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Changing the refraction angle from normal to oblique implies a different ratio of the
transverse components of electric and magnetic fields on the surface, which in turn
requires that the local transmission coefficient ¢ should be different for local tangential
electric and magnetic fields. In other words, contrary to the common assumptions in
recent metasurface works, a passive-lossless surface whose sole role is to imprint a
locally engineered linear momentum to the scattered wave, necessarily fails to generate a
plane wave tilted toward an arbitrary direction with unitary efficiency, and the impedance
mismatch is expected to grow for steeper angles. This is consistent with earlier papers
analyzing linear gradient metasurfaces (see, e.g., [30]), which have commonly found a
degradation of coupling efficiency as the steering angle grows away from the normal.

It is possible to rigorously derive the impedance requirements for a single

ultrathin metasurface to transform an arbitrary impinging wavefront (El.,Hl.) into the

scattered waves (E,;,H, ) in region 1 and (E, ,H,) in region 2, with the only

s>
assumption that all three field distributions are valid solutions of source-free Maxwell's
equations in the respective regions. The averaged induced current distributions on the
metasurface should be suitably designed to compensate for the field discontinuity across
the interface [28], and surface admittance and impedance need to satisfy the boundary
condition at each point on the surface [23],[31],

. 1
Aix(H, —Hl)\s =5Y6(E2t +Eh)\S

| (5.2)
Aix(E, —El)\s ==

Z,(H, +H, )‘S
Assuming that impinging and scattered fields are known, Eq. (5.2) formulates the

exact isotropic metasurface boundary condition that allows converting the impinging

wavefront into the desired reflected and transmitted waves, and the formulation may
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straightforwardly be extended to the anisotropic case when polarization coupling is
present [32]-[33]. The subscript ¢ represents the tangential field components in each
region. The extracted electric admittance and magnetic impedance from (5.2) can be
directly used in (5.1) to calculate the local reflection and transmission coefficients along
the metasurface.

a b Y, =41m,/2,,0.=0°

Region 1 N ) A(El.s’Hl.s)
\ Ay
Soneanse’

Region 2 \\

Imaginary
Real

0. =75 Ray Optics

0
X/ 2

Figure 5.1 (a) An arbitrary incident wavefront is transformed into the desired scattering
profile employing a transversely inhomogeneous metasurface with local distribution of
loss and gain. (b) Metasurface impedance profile and (c) local reflection coefficient

R(x)=r (x) /) required to convert a normally incident wave (6, = 0 degrees) into
refracted waves at 6, =25,45,75 degrees. In each example, the amplitude of the
= \/ cos &, / \/ cosd, to ensure that total incident and reflected

powers are equal towards the normal direction. The real component of the surface
admittance in panel (b) and non-unitary local reflection amplitudes in panel (d) indicate
the requirement of loss/gain modulation of the surface.

reflected plane wave is |A,

In the particular case of a wave-bending metasurface, the incident and scattered

fields are plane waves propagating in specified directions. As a basic example, we look
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into the case of redirecting an impinging plane wave toward the desired direction in

reflection, with zero transmission. Incident and scattered fields are linearly polarized

transverse-electric (TE) plane waves with wave vectors k; =k, (— sin (6, ) X +cos(6)) 2)

and k, =—k, (sin(@,,)fc+ cos(@,,)é) in region 1, whereas the total fields are enforced to

be zero in region 2 (Fig. 5.1(a)). The metasurface is located in the xz -plane as shown in
the inset of Fig. 5.4(b). Following (5.2), the required electric surface admittance and

surface magnetic impedance to realize this scattering signature are

v —o )e‘(Hl_ +H1s) Zicos(@)e—jkusm(e,)x "y COS(Hr)e—jkusin(&,)x
e );.(EiJrEls) o o e—jkosin(e,)x_'_A e—jkosin(a)x
' . (53
j/(E +E ) e—jkosin(ﬁ,)x ny e—jkosin(a_)x (53)
Zmzz,\l—ls =2770 — r —
x(H;+H,) N cos(6,)e” psin(8)x —A,cos(6,)e”’ »sin(6,)x

in which 4, is the amplitude of the electric field in the reflected plane wave, normalized

to the incident one. Based on the general condition (5.2), it is possible to show that total
reflection is possible if and only if Y,Z =4 which is indeed satisfied by (5.3). In this
regard we notice that with the intention of arbitrarily manipulating the reflected wave

with zero transmission, Eq. (5.2) reduces to,

. 1
() =Y. (B, ),
, (5.4)

N 1
”X(El)‘g =5§m '(Hlt)‘s

with the total fields set at zero inside region 2. We set the local right-handed coordinate

system on the surface as (ﬁ,fl,fz ) , with 7 indicating the normal unit vector as shown in

Fig. 5.1(a), and (fl,fz) are the two orthogonal transverse unit vectors along the surface.

In the most general format, the surface may be anisotropic with admittance dyadic profile
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Y, =Y, 4t +Y, i,t, and impedance dyad of Z =Z .if,+Z,  t,t,. Rewriting and

decomposing Eq. (5.4) we get,

Y = 22\1'H1 7 :_2f2'E1
o fz 'El o fl H1

i,-H i, -E -2
Ye,tl =+2-2 El ’Zm,tz 24—

f - Ky 1, -H,

Equation (5.5) demonstrates the relation Y, , Z, . =Y, , Z, , =4 between electric

and magnetic properties of a general surface operating in reflection mode. In an isotropic

surface, this condition simplifies to Y,Z,, =4, as noted. Under this condition, the local

transmission coefficient 7', as defined in Eq. (5.1), is also zero along the surface.

Fig. 5.1(b) shows the required distribution of Y, and Z, along the metasurface
that ensures anomalous reflection with unitary power efficiency, plotted for normal
incidence and various reflection angles. Following the periodicity of the incident and
scattered waves, the attained surface holds a superlattice periodicity X along the x-

axis, as shown in Fig. 5.1(b), related to the incident and reflection angles by

X =|4/(sin6, —sin )

[24]. The reflected wave, hence, corresponds to the first
diffraction order of the gradient metasurface. To ensure unitary efficiency, the relative
amplitude of the reflected wave should also be |Ar| =,/cos b, / \Jcos@. in (5.3), so that
-z-P

incoming and outgoing power flows are equal, i.e. Z-P, reflected *

incident =

In this regard we notice that a regular homogenous interface, such as the boundary
between two plain dielectrics, supports simple specular reflection. This means that, when
illuminated by a plane wave, any percentage of power reflected by such interface is
funneled into the single wave propagating away from the surface in the mirror direction.
This wave is highlighted as the »=0 arrow in Fig. 5.2. When the interface is not

homogenous, the scattered wave is in general a combination of all plane waves in the
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radiation continuum, and for a periodic structure, their integral sum straightforwardly
reduces to discrete waves propagating toward specific directions (the discrete diffraction
orders). As pointed out previously, a surface designed to transform an incident plane
wave into another plane wave with different wave vector is inherently periodic.
Therefore, one appropriate measure to determine the performance of the surface is to
calculate the percentage of power coupled to each of these diffraction orders when
illuminating the structure. This is applied to later examples in this and next chapters. For
instance in Fig. 5.4 we summed over all undesired orders and compared it to the power
coupled into the intended one . In our frequency range of interest, each surface couples

non-negligible power to a maximum of three orders n=0,%1, with n=+1 referring to

the desired plane wave (solid arrows in Fig. 5.4(b) and Fig. 5.2).

incident

Figure 5.2: Trajectory of a plane wave illuminating a periodic gradient metasurface with
incident wave vector k; =k, (—sin (6.)%+cos (6’1 ) 2) , and the desired reflected plane

wave (solid arrows) with wave vector k, =—k, (sin(6,)Z+cos(6,)2). Dashed arrows

indicate other allowed scattering directions in such configuration. The metasurface is
realized as an electric admittance surface mounted in a subwavelength distance from the
ground plane.

The required surface properties are extracted from Eq. (5.2) and Eq. (5.4),

considering the appropriate distribution of incident and scattered waves as,
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(E,.H,)= (JA/ xcosd. +Zsin b, JEOejsianoxejcostoz

12 1 )
n,

’ : (5.6)

—xcos6. +zsind i iy

H — 5 r r jsin@kx —jcos@kz

(Els9 ls)_Ar (yv n one e
0

where the term 4, = \/cosH[ / \/COS 0. takes care of ensuring that the power reflected in

the direction normal to the surface is equal to the impinging power, assuming TE

illumination. The averaged total power supplied to the surface can be expressed as

P _ 1 (Y Ht|2)dx [34], in which X=‘20/(sin0r—sin6?i)‘ is the

2
surface _ﬁ X El | + Zm

surface superlattice. After some algebraic simplification, the supplied electric and
magnetic power can be written in terms of the incident and scattered angles as,

2jrx 2jrx

— _ E? _
P ucee = Paufucem = —ﬁ lecosﬁi secd. Lcos e X —cosfe ¥ de, (5.7)

both equal to zero. This property further verifies that the metasurface as a whole does not
pump any power into the scattered wave or absorb any part of it, but rather transforms the
incident wave to the desired field by proper, locally distributed, balanced absorption/gain.
The averaged net power emerging from the surface is equivalently zero in this scenario:

3 1 E; ((:03(491.)—|Ar|2 cos(@r))

Pansace =~ [ (Re(2-P,), . )de=— o =0. (5.8

Equation (5.8) also verifies that for |Ar|:\/cost9i/ \/cosé?r , the net power

generated by the surface is zero and wave bending efficiency is 100%.
Interestingly, the required surface to achieve unitary efficiency always involves
local loss and gain (passive and active portions correspond to simultaneous positive and

negative values of both Re[Y,] and Re[Z, ] in Fig. 5.1(b)), and it is not passive in a

85



local sense, consistent with Huygens transmit-arrays introduced in [23]. This is expected,

since  the total power emerging right above the  metasurface,
Re (2P, (x))=—1/2Re(E, H; |

tota

, can be explicitly calculated from the required
z—0"

field distribution, superposition of the impinging and reflected waves,
. E;
RG(Z ) Ptotal (X)) = 2_0 X
770 ,(5 9)
[ 4 ]? cos(6,)—cos(6;)+|4,|(cos(6,)—cos (6, ))cos(ZAr +ko (sin(6,)—sin(6, ))x)}
whose value oscillates from positive to negative values along x. The only exception is

7

6. =x0. or accordingly for the specular and retro-reflection, for which

Re(Z-P,,,(x))=0 everywhere. This is expected, as the incident and reflected local

impedances are matched for these special cases, and interestingly a passive-lossless
metasurface is sufficient to fully transform the incident wave (see Eq. (5.17)). Apart from
this condition, the optimal surface described by Eq. (5.2) necessarily requires that the
local power absorption/gain oscillates around zero along x. Note that by optimal, here
and in the following, we mean the surface that allows realizing conversion to the desired
wavefront with unitary efficiency.

It follows that the only way to keep a unitary conversion efficiency towards the
desired direction with a steering ultrathin metasurface is to locally absorb and pump a
portion of the incident power in different regions within the superlattice. At the same
time, as we mentioned the surface remains globally lossless, in the sense that the

1 E[ds+] z,[H[ds is

averaged net power supplied by the surface Rurface = _EJ.S v,

identically zero, as required by the choice of |Ar| to ensure unitary power efficiency.

This raises interesting connections with the field of parity-time symmetry and balanced
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loss and gain [35]-[37], a feature that has been recently shown to open exciting
opportunities in optics. Highly efficient steering metasurfaces appears to also require a
specific balance of loss and gain. After transforming the derived impedance profile into
local reflection and transmission coefficients using (5.1), we find the local phase and
amplitude profiles required to create the desired wavefront deflection with an ultrathin
metasurface,

27-(E, +E,) |
J?'(Ei+Els)+n0)%'(Hi+Hls)

R(x)=r(x)e") =1+ ,T=0. (5.10)

These are visualized in Fig. 1(c), which shows the local reflection phase ¢, (x)

and amplitude r(x) at the metasurface, highlighting alternating regions with local loss

and gain, with »>1 and r <1, respectively. While unitary power conversion efficiency
is possible only using local gain and loss elements, it is interesting that also the phase
requirements are quite different from the simple linear distribution predicted by ray
optics.

Egs. (5.9)-(5.10) and Fig. 5.1 show the first important conclusion of our analysis:
efficient beam steering towards arbitrary angles with an ultrathin surface cannot be
achieved using passive-lossless linear phase profiles. Interestingly, when the anomalous
reflection angle is close to specular reflection, linear phase compensation along the
surface provides a very good approximation for the optimal surface. However, as we
increase the deflection angle, and we get into the regime in which metasurfaces can
outperform conventional gratings in terms of efficiency, thanks to their subwavelength
control of the transverse resolution, our rigorous solution significantly deviates both in
amplitude and phase from the linear phase approximation commonly used in the

literature.
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5.2.2 All-electric implementation of metasurfaces

Prior to this point, we have assumed ideal metasurfaces with negligible thickness

that possess simultaneous electric and magnetic surface properties. In general, the desired
reflection profile R(x) and zero transmission may be implemented without relying on a

series impedance distribution Z,, (x) , which would inherently require magnetic effects,

by simply using a gradient non-magnetic surface admittance backed by a ground plane

[24],[30]-[31], as schematically shown in Fig. 5.2. It is possible to prove that in the limit

of subwavelength thickness, d/4,—0 , a grounded isotropic surface with

Y,

o surface = Ye [2+ jng, cot(n kod ) /770 is equivalent to a reflecting isotropic magneto-

sub
electric interface. Here n,, is the refractive index of substrate material shown by gray
color in Fig. 5.2. To prove this property we notice that in addition to its local surface
admittance and impedance, any surface can be equivalently characterized by its local
reflection and transmission coefficients, R and 7, defined in (5.1) for an isotropic
surface. These scattering parameters are defined for a strictly periodic metasurface and
under normal plane wave illumination. For an strictly reflecting metasurface (5.1) further

simplifies to

R _1 O ’R _1 0 - _0, 5.11
TE 27, Zm, ™ Trg =Tty ( )

in which we generalized the surface to be anisotropic along x and y directions. The

grounded metasurface shown in Fig. 5.2 can be analogously described by its local
scattering parameters following conventional transmission-line analysis. The scattering

parameters for normal incidence of this surface can be written as,
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R _ 1- UOYe,sw_’face,yy + jnsub cot (nsukad)
surface,TE — ( )

1+77 Yesurizce _jnsu cot ng, kod
O comfacesy Tl e (5.12)

s
1- nOYe,Avurface,xx + jnsub cot (nsubkod)
1+ nOYe,surface,xx - jnsub cot (nsubkod)

Rsui_’face,TM =

and it can be straightforwardly shown that the grounded structure is equivalent to free-

standing magneto-electric metasurface under the general condition ,

Ye surface,yy — Y&W + ] Rt COt(nsukad)
>SUT; VY 2 770
. (5.13)
Ye xx . nsub cot (nsubkod)
e,surface,xx =—0"1J
’ ’ 2 Mo

which simplifies to Y

o surface =Y, / 24+ jngy, cot(nsubkod )/770 if the surface is isotropic.
Provided that the grounded structure has deeply subwavelength thickness, it effectively
models a single physical interface, and its in-plane characteristics are fully described by
means of normal reflection and transmission coefficients [15], as illustrated in (5.12).
Yet, it is important to evaluate the effects of finite thickness of the structure, which
allows out-of-plane polarizability under oblique excitations. In this regard, we update

Eq.(5.12) for an arbitrary oblique illumination when the incident plane wave is tilted by

an angle ¢ from the normal direction. For TE illumination R and 7 read,

cos 3—1,Y, + jng,, cot(ng,,kod cos 9)cos §

kod cos 9)cos I '

surface,yy,yy

(5.14)

Rsm_‘face,TE ( )

cos d+ UOYe,surface,yy,yy — JMup cot (nsub

Correspondingly, we calculate the scattering parameters of the infinitely thin

magneto-electric surface under same oblique illumination,

41
R (9)=1- 4 . 5.15
e (9) 2ny+Z, . cosd .15)
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Solving (5.14) and (5.15) for electric sheet admittance of the grounded structure

we straightforwardly get,

ey upkod €O 9) cos 4
Ye,smjface,yy = 9 + ,

o

Y N cot(n
J (5.16)

e

which simplifies to the angle-independent solution ¥, ;... ., =¥, , / 2+ / (cpyd) after

replacing the cotangent function with its Laurent expansion in the small argument limit
(i.e. d < 4y/ny, ). In other words, when (5.13) satisfied, the two systems with magneto-
electric metasurface and all-electric grounded metasurface follow the same scattering
response under arbitrary illumination, and the effects of finite thickness are negligible for
TE polarized waves. For TM illumination, the conditions are more stringent. Following a
similar procedure, the orthogonal components of the sheet electric admittance becomes
Y, curpices = Yore |2 J / (a),uod cos’ 9) , and the surface profile is in general angle-
dependent. This condition is the result of enhanced light-matter interactions at the PEC
interface for an oblique TM wave (which has a large magnetic component parallel to
surface), and can be addressed by replacing the PEC mirror in Fig. 5.2 with a
metamaterial perfectly magnetic (PMC) mirror [38]. It can be straightforwardly shown
that by employing the PMC mirror, the required electric admittance of the surface

=Y, . [2— jos,dn,

becomes angle-independent and equals Y, b

,surface,xx

After calculating Y.

v.surface 0s€d on the derived formulas the grounded structures
are simulated in COMSOL Multiphysics 4.4 in a periodic setup to calculate the
percentage of power coupled to each Floquet harmonic or the scattering field distribution
under arbitrary illumination. In the simulations in this chapter no frequency dispersion is

embedded in Y 1e., Y

o surface > o.surface 18 assumed constant over the entire spectral range.
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This technique would significantly facilitate the synthesis of the desired response
in a practical design, especially in the optical range for which magnetic responses are
typically weak. We also note that there is a wide range of metasurface configurations that
may physically implement high-resolution surface elements in various setups, from
microwave to infrared and optical frequencies. Plasmonic and dielectric nanoantennas,
composite particles, printed circuits, multilayered meta-atoms, and wire antennas
[20],[23]-[26],[39]-[41] provide a fertile ground for local phase (and also amplitude)
manipulation. We will extensively look into plasmonic-dielectric metamolecules in the
next chapter. In addition, in section 5.3.2 we will implement one of our metasurfaces

based on grounded, microwave capacitor-inductor pairs.

5.2.3 Passive metasurfaces

In the following, we focus on passive metasurfaces in order to avoid the
requirement of active elements, which may be difficult to realize and may introduce
challenging stability limitations. First, it is interesting to notice that, while the previous
analysis shows that balanced gain and loss is necessary to achieve ideal energy steering
with a metasurface, it may still be possible to route all the scattered energy towards a
preferred direction with proper design. The requirement of unitary power efficiency
implies that the power density steered towards the desired angle grows as cosd,/cosé, ,
simply following the projection of the wave vector to the surface normal. If we allow the

scattered power in the normal direction to be less than the incident one, the surface will

provide a net absorption, Re(P

surface

)< 0, up to the point for which the ideal surface

would exhibit only lossy components (i.e., at all points <1 ), implementing a

distributed loss pattern over the surface similar to [42].
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Interestingly, as we show in the following, selective coupling to the desired
diffraction order can be achieved with a passive-lossy surface, provided that the relative
amplitude of the reflected wave is equal or lower than |Ar |max =min (1, cos(6,) / cos (6, )) ,
valid for both TE and TM waves.

To prove this formula we notice that the local passivity of the metasurface can be

enforced considering either its local admittance, i.e., Vx, Re(Ye(x) &7, (x)) >0, or the

local emerging power, i.e., Vx, Re(é-P

 otal )z_>0+ < 0. The first condition implies that, if

the surface possesses any resistive component, it must be positive to avoid local power
generation. The second condition, equivalently, requires that at no point along the
surface, the total power flows toward the outgoing direction from the surface. This means
that, locally, the metasurface is either lossless (corresponding to »=1), or absorptive
(corresponding to » <1). The local emerging power on the surface is found in (5.9).

Enforcing Re (2 -P

 otal )z—>0* <0 and solving (5.9), the maximum acceptable reflection

amplitude is found to be |Ar|max = min(l,cos(ﬁi) / cos(@r)). The conversion efficiency of
the surface under this condition may be found by calculating the incident and reflected
power along the z -direction

_ Re (2 ’ Preﬂected ) _ COS 9,,
Re(-2-P, ) cos6,

incident

A

7

n 2 :minLCOSHr ﬂj, (5.17)

9
cosd; cosb.

consistent with the reciprocity theorem [43]. A similar argument holds for TM waves

where we have

A

(E,H,)= [—)2 cos 6, — Zsin Q,lj Eje /3 0kx gl costhz
o (5.18)

_ o 2ol )A; —jsin@kx _—jcosbk,z
(E,,,H)=4, [xcos 0, — Zsin Hr,n— Eye e g
0
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with 4, =\/COSQI- / \/cos 0. . The general format of power, as presented in equations

(5.7) through (5.8), also holds for the TM polarization of incident and scattered waves

with same upper bounds on the scattering amplitude.

a R=r(x)e™,7=0,6=0": c d e
0,=45 6,=80°

X/ %

Figure 5.3: (a)-(b) Local reflection coefficient R(x)= r(x) /) required to convert a
normally incident wave (6, = 0 degrees) into (a) refracted waves at 6, =45,80,88
degrees while preserving its amplitude, i.e. |A,| =1. Distribution of the scattered
magnetic field H,, for . =0 and (c) 8, =45, d =1,/20,(d) 6, =80, d = 1,/20, (e)
0, =88, d = 4,/200, for the passive-lossy surfaces illustrated in (a) and (b). Parts (c)-(e)

correspond to overall efficiencies of 70.7, 17.36, and 3.49%, respectively. All plots are
normalized to the amplitude of the incident magnetic field and the metasurfaces are
realized in an all-electric grounded setup, as shown in the inset of Fig. 5.4(b).

This analysis indicates that, using Eq. (5.3), it is possible to design a passive-

lossy surface that steers a normally incident beam exclusively to an arbitrary direction of

choice, while preserving the amplitude of electric and magnetic fields, i.e., [4,|=1. This

surface would necessarily lose a portion of the impinging power since the outgoing
power is less than the impinging one, but scattering to other diffraction orders can be

made identically zero at the cost of efficiency. Figures 5.3(a,b) illustrate the required
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reflection phase and amplitude for three reflection angles in this scenario. As expected,
the local reflection amplitude varies along the surface, yet, its maximum value is limited
to unity, 7, =1. In accordance to our previous discussion, as the reflection angle
increases, the required local reflection phase along the surface departs from the linear
approximation.

Using the calculated local reflections in Fig. 5.3(a,b) and based on the
implementation approach described in section 5.2.2, Fig. 5.3(c,e) show the corresponding
normal component of the magnetic field distribution (which is present only in the
reflected beam), showing full coupling towards the desired direction, and zero scattering
toward unwanted directions. The synthesis of amplitude modulation along the surface, as
in Fig. 2b, may be achieved either by varying locally absorbing elements, or by using
anisotropic inclusions and modulating the cross-polarization coupling or loss, as recently
suggested in [42] and [44], to simultaneously realize desired amplitude and phase
modulation with a metasurface.

The designs of Fig. 5.3 provide the maximum coupling efficiency to achieve
exclusive scattering in a desired direction of choice with a passive-lossy metasurface. As
described in the caption, the efficiency may become drastically low for large steering
angles (an efficiency of 3.49% is available for a steering angle of 88 degrees), which may
not be desirable or practical. These results, however, show again the relevance of going
beyond the ray optics approximation, and properly tailor amplitude and phase of the local
reflection coefficient to design efficient gradient metasurfaces. Yet, in several
applications it may be important to maximize the amount of power coupled towards the
desired direction with a lossless surface, even though this may require coupling a small
portion of it towards other diffraction orders [45]. Since we proved that no passive

metasurface can achieve unitary power efficiency beam steering in near- and far-field, we
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explore next what impedance profile is needed to boost its overall coupling. In such case,
loss over the surface should be avoided, and we focus therefore on lossless impedance
profiles.

Considering normal incidence, Fig. 5.4 shows the simulated power distribution

scattered from lossless surfaces designed to steer towards 6. =45,80,88 degrees at the

design frequency «,, while the response considers the natural frequency dispersion of

the grounded metasurface related to the finite distance between the surface and ground
plane. Solid lines indicate the percentage of incident power coupled into the desired
diffraction order, while dashed lines indicate the portion of power scattered into other
orders, based on the superlattice periodicity of the beam steering surface (Fig. 5.1(b,c)).
The black lines refer to the case in which the structure is designed to impart the phase
profile extracted from (5.10), as in Fig. 5.1(c), while the local reflection amplitude is
unitary, i.e. R= 1) As we discussed above, the imparted phase gradient in this case
is different from the phase difference between incident and reflected waves, especially
for steep deflection angles. The blue curves refer to the case in which the metasurface is

designed by simply discarding the real part of the impedance profiles in Fig. 5.1 (b), i.e.,
Y,

o surface ], and thus the reflection amplitude is once more

is replaced with j Im[Y

e,surface
unitary. Finally, the red curves refer to the case when the linear phase predicted from ray-

optics is imprinted over the surface, as in most conventional metasurface designs.
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Figure 5.4: Frequency variation of the power reflected into the desired diffraction order
for 6 =0 and (a) 6, =45, d =4,/20,(b) 6, =80, d =14,/20,(c) 6, =88, d=1,/50,
(d) 6, =88, d = 4,/200. The inset shows the geometry of an all-electric grounded

metasurface. Solid lines indicate the percentage of power coupled into the desired
direction. All examples correspond to passive-lossless metasurfaces with different
approximations indicated in the inset of panel (a).

Quite predictable from our previous discussions, for a deflection angle 6. =45

degree, the constraints on loss/gain are moderate, and all cases provide very large
conversion efficiencies. Yet, as the deflection angle increases, the linear phase approach
fails to follow the desired scattering profile, and at 8, =80 degrees and 88 degrees
only 50% and 13% of power is coupled to the desired directions, respectively. With the
phase profile retrieved from Eq. (5.10), on the other hand, more than 87% and 50%
efficiency can be attained. Pushing down the thickness of the structure, the reflecting
surface better mimics a metasurface, and the coupling efficiency to 6, =88 degree
grows to over 76%, as shown in Fig. 3d. Despite the clear difference between the

approximate phase profile and our approach, both profiles are quite smoothly varying
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(Fig. 5.1(c)) and the coupling efficiency is predicted to be robust to spatial discretization
of the surface profile, even for large deflection angles, as we study in the next section.
Clearly, for larger angles the superlattice footprint shrinks and proper quantization
requires smaller surface granularities to maintain high efficiency. While no passive
ultrathin surface may provide unitary power efficiency, a design that considers the
impedance mismatch of the deflected wave makes indeed possible to steer a significant

portion of the impinging wave towards an arbitrary angle, in both near- and far-fields,

|

well beyond the limits of conventional gratings.

(9
5

-5.5 B, e 3

+2.5 +

+1

i n
Figure 5.5: Distribution of the scattered magnetic field H,, for 6. =0 and (a)

0, =45, d=12,/20,(b) 6, =80, d=1,/20,(c) 8, =88, d=4,/200, for the lossless
approximation scenario. All plots are normalized to the amplitude of the incident
magnetic field and parts (a)-(c) correspond to overall power conversion efficiencies of
98.5, 87.1, and 76.2%, respectively. The loss/gain profile of the optimal metasurface is

approximated by its local reflection phase, i.e. R(r)= 1)

The striking features of the proposed wave shaping metasurfaces may be better
appreciated by investigating the field distributions plotted in Fig 5.5, corresponding to the
designs in Fig. 5.4(a,b,d). Still relying on lossless gradient metasurfaces, and without ad-
hoc optimization but simply following Eq. (5.2) and neglecting the amplitude
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modulation, we are able to efficiently rotate the incident wave vector (normal) toward
extremely oblique angles, with minimal unwanted scattering. The key factor to achieve
these close-to-optimal efficiencies is to go beyond the ray approximation and linear phase
gradients, and instead to engineer the phase distribution following the previous
formulation.

Imparting the phase profile extracted from (5.10) also allows us to go beyond the
maximum efficiencies attainable from multimode Huygens metasurfaces [29],[40].
Multimode metasurfaces rely on the presence of one or more additional scattering modes
to ensure surface passivity, and they may suffer from low efficiencies and a large number
of evanescent modes close to the metasurface, particularly at large deflection angles.
Designing the metasurface in the near-field, however, allows us to create efficient wave-
shaping metasurfaces that maintain their performance even in the proximity of the
surface. This property allows achieving complex near-field operations, such as near-field

focusing, as discussed in section 5.5.
5.3 EFFECT OF REALISTIC APPROXIMATION OF THE IDEAL METASURFACE PROFILE

5.3.1 Discretization

The nonlinear, relatively fast-varying phase profiles in Fig. 5.1(c) raise important
questions regarding the stability of the response to surface discretization, which may be
necessary in a practical implementation. To investigate this effect, we design, based on
the previous formulation, a metasurface reflect-array to convert a normally incident plane
wave into a plane wave propagating towards 6, =75 degrees, with minimal coupling to
spurious modes in near- and far-field. The reflection phase and amplitude of this surface

are shown as solid blue lines in Figs. 5.1(c,d). Each period of the surface is then divided

into N, segments, where we set Ny = 4,8,16, and we enforce unitary local reflection
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coefficient, implementing a passive lossless approximation of the ideal metasurface. Fig.

5.6(a) illustrates the spatial distribution of the surface electric admittance Y, over

e,surface

one period of the grounded metasurface (shown in Fig. 5.4(b)), calculated for N, =8

and d = 4,/20. The corresponding continuous and quantized local reflection phases on

the surface are also shown in Fig. 5.6(b). Analogous to the examples provided in section
5.2, full-wave simulations of the periodic setup are used to evaluate the percentage of
power coupled toward each Floquet harmonic, shown in Fig. 5.6(c). For easier
comparison, we also report the efficiency of the continuous (non-quantized) surface in
the same panel with dashed lines.

We observe over 94%, 90% (shown in Fig. 5.6(c)), and 87% coupling efficiency
toward the desired direction, respectively for N, =4,8&16. Quite interestingly, the
original continuous gradient surface provides 85% overall efficiency and the quantized
profiles appears to be closer to the best possible profile for a passive lossless wave-
bending metasurface. This improved performance is associated with the elimination of
singular impedance values due to the discretization of the impedance profile, and it
appears quite favorable for experimental implementation of these surfaces. In addition,
the stability of the response to a rough discretization implies that, with the
implementation of the local impedances in a realistic setup, one can expect increasingly
improved performance for metasurfaces designed based on our analytical solution in

comparison to those designed based on the ray optics approximation.
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Figure 5.6: (a) Spatial distribution of admittance profile and (b) local reflection
coefficient of the grounded metasurface designed to redirect a normal TE incident plane
wave towards 6, =75 degrees. The admittance layer is at d = A4,/20 distance from the

ground plane and the passive, lossless approximation is considered, i.e., R(x)= 1)

The amplitude of the reflected plane wave is set at |Ar| = 1/ Veos75  in Eq. (5.3). Solid
lines show the discretized profiles for N, =8 and dashed line correspond to the original

continuous pattern. (¢) Frequency variation of the power reflected into different
diffraction orders of the quantized metasurface. n=+1,0,—1 correspond to

6. =175,0,-75 degrees at the center design frequency f = f,. Dashed lines indicate the
coupling efficiency of the continuous metasurface.

5.3.2 RF implementation

We demonstrate these findings by implementing the structure studied in Fig. 5.6

in a realistic setup, designed for operation at 1 GHz . Each of the eight admittance/phase

steps in Figs. 5.6(a,b) are realized using four individual inductor-capacitor (LC) series-

resonators, placed on a 10 mm thick (= 4,/30) Eccostock®PP foam [46], as shown in
Fig. 5.7(a). Each period of the gradient metasurface, thus, contains thirty-two surface
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resonators in the x-direction and one resonator in the y-direction. The LC components are
electrically connected through metallic patches placed on the foam and the entire
structure is grounded at the back surface. To design the gradient metasurface, we first
calculate the local reflection phase on the top surface of each building block for
commercially available chip inductors and capacitors [47], in a periodic setup.
Subsequently, the element values are appropriately selected in accordance to Fig. 5.6(b).
Columns two and three in Table 5.1 list the final design parameters. For comparison, we
also repeated the same procedure to design another metasurface based on the ray optics
approximation, i.e., using a linear local reflection phase (Columns four and five, Table
5.1), as commonly done in conventional gradient metasurface designs.

The overall performance for the two cases are evaluated through full-wave
simulations, and the percentage of total incident power coupled into each propagating
Floquet harmonic is shown in Fig. 5.7(b). As expected, the performance of the
metasurface designed based on our analytical approach significantly outperforms the
metasurface designed based on the linear phase approximation (shown with dashed lines
in Fig. 5.7(b)), using similar discretization. Specifically, at the center frequency, our
technique provides around 89% coupling from a normally incident wave to the n=1
Floquet mode, while ray optics provides only around 59% efficiency. It is quite
fascinating that, although we implement each admittance/phase step with only four
elements, our realistic metasurface design provides comparable performance to a
quantized surface implemented with ideal surface profile (Fig. 5.6). In this regard, the
predicted efficiency of an ideal quantized surface with similar substrate material and

overall thickness is 90% (59%) for our approach (the ray optics) solution.
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Table 5.1. Design parameters for the wave-bending metasurface to redirect a normal TE
incident plane wave toward 6. =75 degrees. Metasurface consists of thirty-two surface

series-resonators and is designed at 1 GHz . The lossless approximation is considered
here as and the ray optics approximation is implemented with the linear local phase

R(x)=1le™’ 2723/X Al local phases are calculated on top of the surface. Capacitor and
inductor values are specified in pico-Farad and nano-Henry, respectively.

FElement Local phase Element values Local phase for FElement Vglues
types and for ) RO =1e X R(x)=1ei2mX
numbers  R(x) =1/ R(x)=1e
(C 4,L1 4) 117.1° (1.1,10) 157.5° (0.1,2.2)
(Css:Lss) 69.5° (1.7,4.7) 112.5° (1.5,4.3)
(CoipsLoys) 39.7° (1.3,10) 67.5° (1.8,3.9)
(Cisi6:Lazae) 13° (1.9,4.3) 22.5° (1.2,12)
(Ci7-205L17-20) -13° (1.9,4.7) —22.5° (1.3,11)
(CoragrLorag)  =39.7° (1.6,7.5) 67.5° (1.8,6.2)
(CosagoLosg)  —69.5° (1.5,9.1) —112.5° (1.5,10)
(Cos2slag ) —117.1° (22,4.7) ~157.5° (3.6,2.2)

Following these results, it is expected that, with appropriate implementation of the
surface impedance, and even with quite rough discretization of N, =4,8, it is possible
to design highly efficient metasurfaces for wavefront transformation. For instance, for the
aforementioned example of bending a normally incident beam toward 75 degrees, at
4 =500nm and N, =4, each surface element is approximately 130 nm wide, which
can be practically implemented using subwavelength high-index nanoparticles. Over
visible wavelengths, the strong mutual interactions between adjacent particles (which can
be calculated analytically for dissimilar surface components [48]), and the enhanced local
density of states combined with low absorption, make high-index dielectric metasurfaces
an excellent choice, with the intriguing prospect of tunability [41],[49]-[50].
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Figure 5.7: (a) Schematic of the microwave building block to implement gradient
metasurfaces designed to redirect a normal incident plane wave toward 6, =75 degrees

at 1 GHz. Each block consists of a grounded 10 mm thick Eccostock®PP foam with
relative permittivity &, =1.06. Elements are assumed to be passive and lossless, and the

local reflection phase on top of each element is controlled by varying the surface
capacitors and inductors. Thirty-two blocks are utilized in order to implement one

supercell period of the intended gradient metasurfaces, and X = ‘ﬁo / (sind, —sin6, )‘
~310.6 mm. (b) Distribution of the reflected power toward different Floquet harmonics.
Solid lines indicate the performance of the gradient metasurface designed based on the
passive, lossless approximation of our analytical solution, i.e., R(x)= 1) , and the
dashed lines demonstrate analogous results for the metasurface designed based on the ray
optics approximation, i.e., R(x)=1le/>** Except for the LC surface components listed

in Table 1, all physical properties of the two metasurfaces are similar. Red lines indicate
the percentage of power successfully redirected in the direction of the first Floquet
harmonic, i.e., 8, =75 degrees at f =1 GHz. The inset shows a time-snapshot of H,

at 1 GHz for the metasurface designed based on our approach, demonstrating the clean

scattered wave profile even in close proximity to the surface. The field amplitude is
normalized to the incident plane wave.

In this line, we study beam steering metasurfaces in chapter 7. Another
particularly interesting scenario is the case of graphene ribbons or patches, which may be
able to model atomically-thick tunable impedance sheets at terahertz frequencies.
Graphene-based metasurfaces may be an ideal implementation of the structure envisioned

in Fig. 5.2, and may be fabricated with deeply subwavelength resolution and rigorously

designed based on our accurate analytical model [51]. For instance, at 1 THz and for
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NQ =16, each surface element is over 19 um wide, which is well above the state of the
art fabrication resolution for graphene metasurfaces [52]-[53].

5.4 METASURFACE COUPLERS

An extreme example of beam steering is the case in which we aim at converting a

propagating wave into a bound state, as in a surface coupler, which corresponds to the

case of complex 6, in our previous formulation. As €. approaches 90 degrees, the
reflection wave vector lg, =—ky,x will be solely along the tangential direction, with

transverse momentum equal to the free-space wave number. Beyond this point, the wave

vector is larger than k;, which can be conveniently modeled by a complex reflection

angle 6, =90+ j|ar|. This problem has been approached in the literature using gratings

or linear phase gradient metasurfaces, providing the required momentum mismatch
between incident and guided waves [54]-[58]. Artificial symmetry-breaking in the
scattering properties of the graded surface, along with proper optimization of the
coupling structure, has been exploited to enhance the coupling efficiency [59]-[60].
However, following the previous discussion, we can rigorously explore the conditions to
achieve optimal coupling with a gradient metasurface, and we expect a linear phase
gradient to be far from optimal. Similar to (5.3), given the incident and scattered wave

profiles,

<E[,Hi)=(y,

] Eoejkoz

§|><>

: (5.19)

A ‘ kono

the required surface impedances to couple a normally incident plane wave into a guided

mode along the x -direction with transverse momentum /3, = —k, cosh(«, ) equals
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y o2 ko + A ke

g : Z, =4/Y,, (5.20)
My Akye™ +k, /

=] cosh(|ar|). The required surface impedance is in this case

in which g, = j‘w/ﬂf —kg

complex, with alternating regions of loss and gain depending on the relative amplitude of

the guided wave 4. . Notice that this infinite surface coupler is an extreme example,

inherently ill-posed, presented here to confirm the generality of our proposed theory:

while the gradient metasurface supports the desired guided mode along the surface, the

normal incident power z-P, cannot contribute to the power propagating in the

incident
lateral direction, since the power flowing along the surface is constant for a guided mode

over an infinite periodic structure. Indeed, in the infinite metasurface coupler described

by (5.20), the net power absorbed by the surface Re(-P

surface

) over each superlattice

period is equal to the incident power, independent from 4,

= 1 x
Re(_Psurface) =Re |:EJ.X (Ye

2
El+2, |Ht|2)dx}:E—°, (5.21)
21,

with X =27z/p, . The graded surface absorbs the entire incident power independent of

the amplitude of the scattered bound states A4, , consistent with the power conservation.

The surface inhomogeneous loss/gain profile is then responsible for generating the
desired guided mode under the excitation of such plane wave. For a beam of finite cross-
section, on the other hand, we can expect efficient coupling to the desired modal profile,

using Eq. (5.2).
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Figure 5.8: (a)-(b) Metasurface local reflection coefficient R(x)= r(x) () , required to
convert a normally incident wave (6, = 0 degrees) into a guided wave with S =-1.5k,,
in a passive-lossy metasurface, i.e. |AV| =k, / | ,Bx| . (c) Distribution of the scattered

magnetic field H,, for §.=0 and B, =-1.5k,, d = 4,/20, for the all-passive surface

illustrated in Fig 5.8 (a,b). The field is normalized to the amplitude of the incident
magnetic field.

Interestingly, even limiting ourselves to passive surfaces, the required surface

scattering phase is far from linear, as shown in Fig. 5.8(a) for S, =-1.5k,. Here, the

relative amplitude of the guided mode is chosen to assure passivity of the surface,

following the previously discussed approach (Fig. 5.8(b)). To ensure passivity of the

gradient metasurface, the reflection amplitude |Ar| is chosen so that the local emerging

power on the surface is always negative, i.e. Vx, Re(Z-P,,,

)., <0. Following (5.19),

the local emerging power on the surface can be simplified as,

2

E
Re(2Ry) Ly =7 27+
z 7[770

A}"

B Ay sin( 24, + Bx—tan” (ky/

. ))} (5.22)
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Enforcing Re ( z-P

 otal )z_>o+ <0, the maximum tolerable reflection amplitude is

found to be |Ar|max =ky/p, . A linear scattering phase approximation may allow coupling

a portion of incident power to a guided wave with parallel wave vector [56]-[58], similar
to a conventional grating. However, it fails to provide the optimal surface profile to
maximize the coupling efficiency [55]. Conversely, as shown in Fig. 5.8(c), the rigorous
formulation described here is capable of creating a pure secondary guided wave with the
desired distribution using a metasurface, and zero coupling into other scattering orders.
We conclude this section noting that this approach can be extended to the
practical problem of the design of finite-sized surface couplers. In this case, the excitation
field is not an infinite plane wave, but the finite incident beam profile that excites the
coupler. At the same time, the desired scattered wave should be a gradually growing
surface wave that adiabatically matches the mode profile of the fed waveguide. Quite
distinct from infinite couplers, the total power carried by the incident wave is finite in this
case, and it matches the total guided mode power. In addition, the normal component of
the incident wave directly feeds the guided mode. Interestingly, a ray-optics approach is
unable to provide any adaptation on the size or profile of the coupler based on these
specifications, and is thus limited in overall efficiency and in impedance matching to the
fed waveguide. Consequently, ray-optics based couplers are typically limited to low

conversion efficiencies, analogous to traditional grating based couplers [55].

5.5 METASURFACE LENSING AND FOCUSING

The approximations of the ray-optics approach highlighted in the previous section
are not limited to wave bending and coupling. Here, we examine the design of an
ultrathin planar lens with extreme focusing properties. Reducing the volumetric size of a

dielectric lens into a single patterned surface is of great interest in nano-optics and
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integrated photonics, and the local phase compensation approach has been incorporated
in the designs of numerous flat focusing structures [27],[62]. To generate a spherical
outgoing phase front from an incident plane wave, ray-optics suggests a hyperboloidal
phase profile to be imprinted over the surface (i.e., all normally incident rays will be
redirected towards the desired direction and collimate at the focal point). However, the
previous results suggest that this approach would provide a reasonable performance only
in the limit of small numerical apertures (NA), and when the focal point is located far
from the lens. Under such condition, the rays traced from the corner of the lens, which
experience the largest local deflection angle, are far from the grazing angle and the phase
difference between scattered and incident waves is close to the phase (and amplitude)
profile of the optimal surface. For NA <0.96 the cone angle of the lens is smaller than
73 degrees and, as illustrated in Fig. 5.9(a), the hyperboloidal interfacial phase pattern
(dashed line) mimics the exact surface profile (solid lines) with about 35 degrees error
range, while the ideal reflection amplitude oscillates around unity. As we increase the
numerical aperture to ranges that are not achievable with conventional diffraction
elements, the line shape of the optimal phase drastically deviates from a simple
hyperbolic pattern and we find over 70 degrees error range for NA =0.998. To design
the optimal surface in accordance to (5.2), a normally incident plane wave is transformed
into an outgoing cylindrical wave. The scattered wave can be considered as the time
reverse of the wave radiated by a line source (point source in a two-dimensional lens),

and fields take the general format [61],
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Figure 5.9: Comparison between the scattering properties of ideal (solid lines) and ray-
optics based (dashed lines) metasurface reflecting lenses with local distribution of loss
and gain and (a) NA =0.9578 and (b) NA =0.9981. Amplitude and phase of the local

reflection coefficient R(x) = r(x) ) are plotted along the lens surface for (a) a =7

and (b) a =/2. Metasurface lenses are extended between x = (—L,L) , excited by a

plane wave propagating along —z direction.

We note that the field distributions in (5.23) are accurate if an ideal drain, i.e. the
time-reversed equivalent of the line source, is also positioned in the focal point. In

practice, the absence of such point may reduce the overall performance of the designed

lens. The metasurface lens is placed in the xz -plane with focal point at z= f and
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H ,gl) [r] refers to the Hankel function of type 1 with order n. Assuming a finite length of

2L for the lens, power conservation determines the relation between E, and /,, so as

the surface on the whole is lossless,

E 2
_|Pincident| = _%21’
To . (529

—1 z
M x (Power radiated by current I, ) = 108]‘_0770tan1 (L/1)
. 7

Pre_ﬂecled

tan”' (L/ f) k
which simplifies to the relation |E0| =|IO|770 —8—2. The relative phase of the
7

fields is determined by the focusing properties of the surface. In fact, any relative phase
between E, and [,, a=ZE,—ZI,, transforms the incident plane wave into the
cylindrical wave with the corresponding phase. However, since we are working in
reflection, we want to create a hot spot for the total field, and not only the scattered field.
This means that, for a given «, the scattered cylindrical beam can constructively or
destructively add to the incident wave at the focal point. To achieve the sharpest focus,
we theoretically predict the optimal phase difference for the design process. The total
power  flowing toward the focal point in its  vicinity  equals
P.=k-P,, (x=5cosy,z= f+5sin 7)‘ , in which we define & as the radial

5—0,—-7<y<0

unit vector around the focal point. After some mathematical simplification and replacing

Hankel functions by their approximation around zero, derivative of P_ versus o is

found to be proportional to a;P" o« —4 sin(ko f +a). The local power toward the focal
a

point is then maximized for a=7—k,f . This optimum value of « is valid for a
lossy/gainy metasurface lens and when we approximate the surface as lossless (by
ignoring the amplitude modulation), the best value of o changes. To account for this

lossless approximation, the finite thickness of the lens, and also the absence of a sink at
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the focal point, in Fig. 5.10 we tuned this relative phase in Eq. (5.23) to maximize the
total power at the focal point.

As we move toward higher numerical apertures, as expected, the optimal surface
requires extremely localized loss and gain segments, and the scattering phase
significantly diverges from the hyperboloidal approximation. We stress that these
limitations are independent of the resolution of the gradient metasurface, and a surface
designed based on local phase compensation inevitably exhibits unwanted spherical
aberrations and fails to create focusing effects in the near-field region.

In accordance to the previous results on wave bending, the optimal active/passive
surface can be approximated by its passive-lossless counterpart to preserve the ideal
phase pattern, and provide an improved passive-lossless low-aberration, high numerical

aperture lens design, by sacrificing a small portion of the focused energy. This is

illustrated in Fig. 5.10, where we compare two lenses with overall lengths of 20 4, and

8 4y, designed to focus the incident wave at f, =34, and f, =0.254,, with numerical

apertures NA =0.958 and NA =0.998, respectively. Both lenses are lossless, and
implemented with grounded all-electric metasurfaces, shown in Fig. 5.4(b). The first
column illustrates the power distribution above the reflecting lenses that are designed
based on the optimal phase distribution on the surface. The second column shows the
power distribution when a hyperbolic phase distribution is imprinted over the surface. As
expected, for a small numerical aperture and reasonably large focal distance, ray optics
provides a very good approximation of the exact solution, yet it fails to create near-field
focusing effects (Fig. 5.10(d)). On the contrary, the passive-lossless metasurface lens,
designed based on our analytical solution, provides strong near-field focusing effects, as

shown in Fig. 5.10(c). Compared to the ideal lens, the focal point is slightly shifted from

the intended position (less than 0.06 4)), toward +z direction. This minor deviation is
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associated with the lossless approximation of the ideal lens, as well as the absence of an
active drain at the focal point [63]. Quite interestingly, we also found that the half power

beam width of the focal image is similar in both approaches, and it is approximately

0.32 4, (Fig. 5.10(c,f)).

= 0.32
-l

M

0
3210123
xIn,

P
tota

Figure 5.10: Comparison between the power distribution in passive-lossless planar lenses
with optimal (a, ¢), and hyperbolic (b, d) lateral phase profiles. Plots in the same row
have the same color bar, and all metasurfaces have equal thickness d = 4,/50 . Imparted

local reflection coefficients R(x)= 1) calculated for (@) a=x and(c) a =44

radians. Metasurface lenses in panels (a, b) and (c, d) are designed to collimate the
normally incident plane wave at f; =34, and f, =0.254,, respectively. (e, ) Field

profile along the x- and z- directions across the focal points corresponding to panels (c)
and (d), respectively. For better comparison, the plots are all normalized to the same
value.

5.6 CONCLUSION

In this chapter, we have investigated the theoretical limitations and potentials of

passive gradient metasurfaces for arbitrary wave manipulation. Our study is based on a
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rigorous treatment of the wave equation, which allows deriving relevant results for the
field of gradient metasurfaces and wave manipulation over a surface. First, we proved
that wave transformations over an ultrathin surface, even in their simplest form, e.g., for
beam steering, inherently require the presence of balanced loss and gain to achieve
unitary efficiency. Then, we derived a bound on the maximum coupling efficiency that
allows exclusively coupling to the desired diffraction order, and we derived a path
towards maximizing the coupling efficiency to the wavefront of choice, showing the
inaccuracy of conventional ray optics approximations commonly used in the literature to
realize wave transformations not achievable with conventional diffraction gratings.

We inspected practical examples of anomalous wave deflection, coupling from
propagating waves to surface bounded modes, and lenses, showing that passive-lossless
metasurfaces following the derived gradient profiles can significantly outperform designs
based on conventional design rules derived from ray optics. We further studied the effect
of surface quantization on the overall performance of the device and provided a realistic
implementation of a gradient metasurface at microwave frequencies, designed following
our analytical derivation. Our findings confirm a considerable improvement of 30% to
the overall efficiency for an extreme-angle wave-bending metasurface, compared to a
similar metasurface designed using the conventional ray-optics approach. For simplicity,
here we considered two-dimensional reflection scenarios, yet, similar restrictions may be
derived for three dimensions, polarization coupling surfaces, and transmitting
metasurfaces. Our results shed light into the physical limitations of passive metasurfaces
and provide a practical route toward highly efficient wave shaping metasurfaces, beyond

the extent attainable from current techniques based on ray optics.
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Chapter 6: Design of Composite Plasmonic Nanoparticles as Building
Blocks of Metasurfaces to Manipulate Local Light Scattering

In the previous chapter we illustrated that a complex beam-forming task can be
simplified to the design of a spatially modulated reactive surface, and local capacitive and
inductive elements are essential to ensure effective wave manipulation in such
configuration. In view of these finding on ideal, zero-thickness metasurfaces, in this
chapter we will study practical metamolecules suitable to implement passive
metasurfaces at optical frequencies. To physically realize such metasurfaces we get
inspiration from RF concepts. One of the main reasons behind the rapid and widespread
development of the microelectronic technology at radio frequencies is the modularization
of lumped circuit elements. Basic building blocks such as chip resistors, capacitors, and
inductors are readily available in this range and combined to synthesize complex
functionalities, which subsequently build large operational circuits at radio frequencies.
Optical and IR designs, on the other hand, are conventionally performed at the physical
level where the complex light-matter interactions are directly exploited via different
methods to achieve the desired effect. Here we utilize a nanocircuit paradigm to
modularize surface elements creating local nanoresonators with controllable reactances
based on the combination of two different materials. We will also study performance of
these subwavelength metamolecules in terms of bandwidth, tunability and loss. These
surface elements are used in the following chapters to physically implement wave
shaping metasurfaces at optical frequencies. Contents of this chapter partially appeared/to
appear in "Farhat, M.; Chen, P.; Guenneau, S.; Enoch, S., Transformation Wave Physics:
Electromagnetics, Elastodynamics, and Thermodynamics, Pan Stanford, to be published"
and "Mohammadi Estakhri, N.; Alu, A., Manipulating optical reflections using

engineered nanoscale metasurfaces. Physical Review B 2014, 89 (23), 235419".
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6.1 NANORESONATORS AS OPTICAL PHASE ELEMENTS

Quite recently, a comprehensive nanocircuit paradigm has been proposed to
bridge the design gap between optics and microwaves and to extend the conventional
circuit theory to shorter wavelengths [1]. This paradigm allows to quantitatively describe
subwavelength nanoparticles in terms of equivalent lump circuit elements, proposing an
ideal solution for what we are seeking for the gradient metasurfaces. As the wavelength
shrinks, the contribution of the conduction current versus the displacement current in the
material drops down rapidly and eventually becomes negligible. Based on this

phenomenon, nanocircuit theory defines an intrinsic equivalent optical impedance for

subwavelength particles as the ratio of the E effective optical voltage V =|E|h across

the particle, and the flux of the electric displacement current / = |J d|S flowing through

it. In analogy to circuit theory, the voltage is related to the local electric field across the
particle and height of the nanoparticle along this field (/4 ), while retardation effects are
neglected in view of the small size of the structure (quasi-static approximation).
Similarly, the displacement current density J; = joc E integrated over the transverse
cross section of the particle, S, sustains the total flux of the electric displacement
current, which is in quadrature phase with the effective voltage when the material is
lossless (i.e., real permittivities). Based on this concept, a dielectric nanoparticle, £ >0,
has a capacitive effective impedance while a plasmonic one, & <0, is characterized by
an inductive effective impedance. In the presence of loss (i.e., complex permittivities) a
resistive component is added to the impedance, taking absorption into account.

Alongside modeling the scattering response of quasi-static nanoparticles, the
nanocircuit paradigm allows translating various low-frequency concepts to IR and visible
range. For instance, the input impedance is one of the characterizing parameters of RF

antennas, typically utilized to match the antenna to arbitrary feeding networks and tuning
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its resonance frequency. In a similar fashion, nanocircuit theory allows defining an
effective optical voltage, current, and impedance for nanoantennas (e.g., a plasmonic
dipole) and adjust their scattering dispersion employing nanoloads [2].

The contribution of the nanocircuit modeling in realizing of gradient wave-
shaping surfaces is evident now. Particles with different equivalent impedances need to
be arranged properly on the surface to realize the electric surface reactance profiles
derived in Eq. (5.13). These particles are inherently subwavelength in this quasi-static

regime, guaranteeing a satisfactory transverse resolution on the surface. For the

capacitive portion (i.e., Im[Y, 1> 0), dielectric particles may be utilized, and for the

,surface

inductive elements (Im[Y, ]1<0), plasmonic nanoparticles are required, both widely

,surface
available at IR and visible range. To tailor the value of the impedance, the shape of
nanoparticle (i.e., # and S) may be modified or different materials can be employed.

Besides, nanoparticles may be combined to create more complex impedance responses.

a b c
I . Z surface Z sub
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Figure 6.1: Spatial phase modulator. (a) Basic element of the metasurface made of
alternated plasmonic (blue) and dielectric (orange) materials deposited on a grounded
substrate layer (gray). The element lies in the xy plane and is invariant along the y axis.
(b) Equivalent circuit model for the structure shown in (a). The metasurface layer is

modeled by the appropriate shunt electric surface impedance Z,,,..,and Z, includes

the effect of the substrate and ground plane. (¢c) Magnetic field distribution in a sample
periodic metasurface composed of the elements shown in (a) and excited with a plane

wave (E 79 Hx) along the —z direction. The opposite direction of rotation of the magnetic

field indicates a reverse sign of local reactance in each portion.
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We explore here the idea of implementing lumped nanoresonators on the surface,

realized with pairs of local inductors and capacitors connected in series/parallel. In the

simplest format, Fig. 6.1(a) illustrates a 2D cubical nanoresonator (/ < 4,,) consisting of

two materials with permittivities ¢, <0 and &, >0, deposited on a grounded substrate.

We will later apply these elements to implement a variety of gradient surfaces in the
following chapters. Employing such hybrid particles to realize the required surface
impedance, rather than a homogenous dielectric or plasmonic nanoparticle, brings out
several advantages. First, the equivalent impedance of the particle cluster now depends
on the ratio between the size of the inductive and capacitive elements (i.e., w/ (l —w))
rather than their absolute geometrical size / [3]. This enables us to shrink the footprint
of the resonator arbitrarily, basically as far as fabrication techniques allow us. Second,
two materials would be essentially sufficient to sweep the entire impedance spectrum.
Here, the surface impedance can be easily controlled through changing the filling ratio
along the surface, rather than employing a range of different materials at different points,
which is relatively impractical.

The electromagnetic response of the fundamental element shown in Fig. 6.1(a)
can be accurately modeled employing simple transmission-line concepts together with the
nanocircuit paradigm [1]. When arranged in a periodic fashion, these elements create an

effective, homogenous surface impedance Z

surface  @ssOCIated to the corresponding

impedance of each nanoparticle cluster. In this regard, if the flux of the electric

displacement current is continuous between the two particles, that is, E=|E x , the

particles form a series connection and Z

_ s S : . Ky .
surface =2, + 24, in Which Z°) , are equivalent

series impedances of the plasmonic and dielectric portions. Alternatively, if analogous

voltages are induced across the particles, that is, E=|E

vy, they form a parallel
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connection and waace

=Z)||Z] , where now Z], indicate the parallel equivalent
impedance of the two particles (see Fig. 6.1(b,c)).
For the 2D configuration considered here, these unit length impedances can be

easily found as [4],

23 = w(jod(s, ~£0)) .23 = (1-w) (jod(s, &))"

~ s (6.1)
z7 =(ja)wd(gp—go)) I,Zf,’ =(ja)(l—w)d(8d—eo))

1

which are purely imaginary in the lossless case. Equation (5.12) already showed that if

-1 o .
Z tuce :(wam) can be designed arbitrarily at each point on the surface, the local

reflection phase is also arbitrarily controllable. With an embedded resonance in Z

surface >
we expect to be able to efficiently control its magnitude by means of common optical
dielectrics and metals. In fact, it is clear from Eq. (6.1) that if the total length of the
element, /, is fixed, by simply changing the filling ratio of the plasmonic portion we
move from a capacitive surface to an inductive surface, and a broad range of impedances
=0 in

is accessible. For a specific filling ratio, a resonance is achieved (i.e., Z

surface

series connection, and Z =oo in the parallel case) around which a rapid variation of

surface
impedances and reflection phases are expected.

As an example of a practical implementation of such surface in the visible range (
Ay =500 nm ), the equivalent surface impedance of this hybrid particle is plotted in Fig.
6.2(a) as a function of the width of the plasmonic portion. To construct the capacitive and

inductive portions we select an optical semiconductor and silver as the constitutive

materials, and particle dimensions are set at /=/4,/16=31.25nm and d =40nm. At
optical frequencies silver follows a Drude type dispersion, ¢, =¢&, — fp2 / f ( f- j]/),

with &, =5, plasma frequency of f, =2175 THzand collision frequency y =4.35 THz
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[5]- The real part of the permittivity of silver takes negative values in optical regime and
at the same time it shows relatively low intrinsic loss, which makes it a suitable candidate
for the inductive element. We note that due to the realistic losses included in this model,
the equivalent inductor calculated from Eq. (6.1) is now complex with a resistive
component. For the dielectric portion an optical semiconductor with relative permittivity
of &,=12 [6], is employed. Semiconductors are particularly appealing at optical
frequencies due to negligible loss, high refractive index, and the possibility of tuning the
permittivity through proper doping. Another option is to use Titanium dioxide to

construct the metasurface, which we look into in chapter 7.
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Figure 6.2: (a) Surface reactance and resistance per unit length as a function of the width
of the plasmonic portion for the structure shown in Fig. 6.1(a). Material and geometry
specifications are included in the main text. (b) Corresponding reflection coefficient.
Parallel combination of the nanoelements is considered. (Reproduced with permission
from Physical Review B, Vol. 89, Issue 23, pp. 235419 (2014). Copyright 2014
American Physical Society).

Figure 6.2(a), which is plotted for a parallel combination of nanoresonator

-1
elements —i.e. incident electric field is along the y axis and Z,.., =(Ye,mface,yy) —

demonstrates the capability of the proposed composite particle to achieve any arbitrary

local impedance on the surface. Around the resonance, which occurs approximately at
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w=17nm in this example, both ranges of inductive and capacitive elements can be
easily obtained by varying the filling ratio. It is particularly important that such wide
range of variation of impedance is obtained over only 31.25 nm lateral dimension of the

unit cell, 40 nm depth of the surface, and simply employing two materials. This implies

that if embedded in a nonperiodic and gradient metasurface, these elements are capable of
practically controlling the local impedance at each point, with an ultrathin depth along the
direction of the propagation of wave (z axis). As the result of wave matter interaction
over a surface, effect of loss is also negligible. Evident from Fig. 6.2(a), except around
the resonance point where an inevitable surface resistance is created, the hybrid particle is
effectively reactive. We will specifically look at the effect of material absorption on the

performance of the metasurface in section 6.2.

The corresponding scattering coefficient, that is, R,..te » When such

impedance surface is loaded over a ground plane with d =100 nm spacing and n,, =1,

is plotted in Fig. 6.2(b) (setup shown in Fig. 5.2). Unsurprisingly, we successfully cover
almost the entire 360° phase variation due to the artificial in-plane resonance created with
the composite nanoparticle. This effect is clearly independent of the gap size between the
metasurface and the back mirror because we don't rely on the propagation effects in this
region to provide the required phase variation. Changing the gap distance will simply
shift the entire phase curve [4]. The performance of the proposed metasurface regarding
the covered spectrum of impedance, ultrathin thickness, spatial resolution, and efficiency,
is far superior to other proposals at IR and optical frequencies [7]-[10]. In the following,

we will refer to these surface elements as spatial phase modulators.
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6.2 TUNABILITY, FREQUENCY DISPERSION, AND EFFECT OF LOSS

When a gradient metasurface is implemented based on the general class of
conjoined nanoparticles with deeply subwavelength size, introduced in the previous
section, we theoretically predict very large conversion efficiency to the desired scattered
wave. In practice, however, several parameters may affect the ideal performance of the
metasurface, including loss, deviation from center design frequency, surface granularity,
and fabrication defects. Here and in the following sections we will qualitatively look into
these imperfections and nonidealities to estimate their effect on the performance of the
phase modulator and gradient metasurfaces. In addition, we investigate the possibility of
including tunability in the design, envisioning a broader set of applications for switchable

and reconfigurable wave-manipulating optical elements.
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Figure 6.3: Tunability and intrinsic dispersion. (a) Reflection phase from a periodic
metasurface with unit cells shown in Fig. 6.1(a). Dielectric permittivity is swept from
g; =11 to g, =13 to tune the frequency response. (b) Evolution of the reflection phase

with the wavelength. (Reproduced with permission from Physical Review B, Vol. 89,
Issue 23, pp. 235419 (2014). Copyright 2014 American Physical Society).

Examining Eq. (6.1), there is an interesting possibility to add tunability to the
introduced spatial phase modulator through controlling the material properties of the

particle. This control may be attained in various manners such as varying temperature,
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external bias, intensity (when nonlinear materials are included), or doping. Figure 6.3(a)
illustrates the effect of the dielectric permittivity on the phase response of the element.
Dimensions and the inductive portion are kept unchanged compared to the example in
Fig. 6.2, however, we assume that through one of the aforesaid methods we are capable
of slightly varying the capacitive element, that is, the permittivity of the dielectric
portion. Altering the nanocapacitor, the surface resonance frequency is expected to
slightly shift. Indeed, as shown in Fig. 6.3(a), reflection phase which is a direct function
of the surface impedance (via Eq. (5.12)) is moving along the frequency axis for different
values of &,. Two sample filling ratios are shown here to demonstrate the tunability of
the operational frequency. Such tunability may be incorporated in many applications such
as a beam deflecting surface to adjust the operational frequency of the surface.

The bandwidth of operation of a gradient metasurface implemented with hybrid
nanoelements depends on the frequency dispersion of the constitutive materials, as well
as the dispersive propagation effect in the substrate (or spacing layers between
transmitting metasurfaces). Such frequency-dependent constituents anticipate a narrow-
band behavior for gradient metasurfaces that are realized with these building blocks.
However, and quite surprisingly, the proposed spatial phase modulators, exhibit an
exceptional frequency response that makes them a suitable choice for a wide range of
radiation engineering applications. This effect resides in the rather stable frequency
dispersion of the effective impedance surface when a parallel nanoresonator is utilized.
Inspecting Eq. (6.1), the equivalent local reactance of the surface can be written in the

-1
general format Z .. oc(a)(ngrgd)) . In reality, and especially at shorter

wavelengths, both dielectric and plasmonic permittivities are decreasing toward higher

frequencies and, thus, Z exhibits suppressed frequency dispersion compared to its

surface

constitutive materials. The remaining phase variation in the surface impedance as well as
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the contributing propagation in the thin substrate create a relatively linear dispersion, as
verified in Fig. 6.3(b). Here, we are inspecting the variations in the reflection phase
signature of the particle cluster in Fig. 6.2(b), but now for various operating wavelengths.
Interestingly, although the absolute scattering phase is frequency dependent, its gradient
is more or less dispersion-less. In other words, if we rely on the gradient of the scattering
phase for a specific radiation pattering purpose, the operation is expected to be
broadband. This is in fact the condition of interest for many applications including
moderate-angle beam steering, mid- and far-field focusing, and so on. We note that this is
not necessarily the case if we employ a series nanoresonator. In general, the nanoblock
configuration must be chosen in view of the intrinsic material properties and the
application of interest. As the proposed unit cell is simple and can be accurately and
efficiently modeled with nanocircuit concepts, it is straightforward to predict the
dispersion behavior of the surface and to select appropriate set of materials and
geometrical combinations (parallel vs. series) to tailor the dispersion in the desired way.
Exploiting a resonant unit cell for the metasurface may rise concerns on the
effects of ohmic loss in the response. This is particularly important at IR and optical
frequencies as plasmonic metals typically show considerable losses over these regimes.
Intrinsic material losses, however, only marginally affect the response since they are very
much concentrated around the resonant point (e.g., in Fig. 6.2(a)). In addition, the
interaction of the metasurface with the impinging wave is over a subwavelength thickness
(e.g., d =40nm in the previous example) which furthermore reduces the effect of the
surface resistance on the reflection efficiency. This is the reason behind very high
reflectivity of the metasurface even around the resonance point, as plotted in Fig. 6.2(b).
Typically, less than 6% of the input power is absorbed in a gradient metasurface

constructed with silver-based spatial phase modulators [4]. Employing even more lossy
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plasmonic metals does not drastically affect the performance. Figure 6.4(a) exemplifies
the effect of higher intrinsic loss in the surface. Reflection coefficient is plotted here
when we purposefully increase the collision frequency from the one of silver (low-loss
metal) to moderate (7,,%2) and high plasmonic losses (7., x5 ). Interestingly, the
reflection phase is very stable to the surface absorption while the amplitude is also
reasonably high even incorporating large plasmonic losses.

The second source of unwanted absorption in a reflecting metasurface is a non-
ideal back-plane mirror. Up until here, we assumed perfect reflection from the ground
plane which is modeled with a perfect electric conductor (PEC) surface. A more realistic
scenario is to employ a real metal, such as silver or gold to more accurately estimate the
amount of absorption due to the penetration of the fields inside the metal. Figure 6.4(b)
illustrates the effect of the back-plane material on the reflection from the silver-
semiconductor metasurface in Fig. 6.2. Due to the low concentration of power around this
surface (as the tangential component of the electric field vanishes on the metal) an
imperfect ground only slightly increases the absorbed power. The reflection phase, on the
other hand, may shift down a little bit since the permittivity of the metallic plane is now a
realistic finite value. It is important to underline that with the recent advances in film
synthesis, it is in fact possible to realize plasmonic surfaces with absorption even less
than conventional silver films [11]. In general, the total effect of loss in plasmonic

metasurfaces is relatively insignificant for these effects.
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Figure 6.4: Effect of loss. Amplitude and phase of the reflection coefficient for the unit
cell shown in Fig. 6.1(a) with different amounts of intrinsic loss in the plasmonic portion
and (b) replacing the back mirror with realistic optical metals.

6.3 POLARIZATION CONTROL IN OPTICAL LUMPED RESONATORS

One of the rather challenging problems in the design of gradient metasurfaces is
the one of providing a suitable control on their polarization response. We discussed
earlier that to grant an acceptable control over the local scattering phase, some sort of
resonance needs to be embedded on the surface constituents, for instance employing
plasmonic nanoantennas or the proposed lumped nanoresonators. Quite remarkably, the
artificial quasi-static resonance we create on the surface enables perfect control on the
polarization response of the structure. We are capable of designing nanoresonators with

and Y

e,surface,yy

strong polarization preference (i.e., Y are drastically different)

e,surface,xx

or, on the contrary, with the minimum sensitivity to the excitation axis, that is, Y

e,surface,xx

=Y

e,surface,yy *

Clearly, geometrically symmetric nanoresonators, such as plasmonic posts

embedded in a dielectric substrate, will operate without any polarization preference. The
2D example of Fig. 6.1(a), on the other hand, can be feasibly designed to operate under a

specific polarization of the incident wave.
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Figure 6.5: Polarization response. (a) Reflection coefficient from a grounded metasurface
with the unit cell shown in Fig. 6.1(a) under two orthogonal excitations. (b) Effect of the
geometry and incident polarization on the distribution of electric field over the
metasurface. Two adjacent unit cells from the periodic metasurface are shown.

It is interesting to underline that this freedom in working with different
polarizations is the result of exploiting lumped circuit elements. We can arbitrarily move
around these circuit components on the surface to artificially create different effects for
opposite polarizations (i.e., linearly polarized waves) or vice versa. This is not the case
for plasmonic nanoantennas that naturally work only for the incident wave polarized
along the antenna rod.

One exciting application for controllable polarization response is to create
completely different effects toward opposite excitation directions. For instance, the unit
cell proposed in Fig. 6.1(a) may be tailored to provide 0° to 360° phase variation under y-
polarized illumination, while the same structure creates a constant scattering phase for an
x-polarized wave. We designed such elements based on Eq. (6.1), and intentionally

created very distinct phase signatures for parallel and series nanoresonators. The

operation wavelength is 4, =500nm and silver-semiconductor nanoresonators are
utilized in this case. The particle dimensions are set at [=+2 A /8=88.4nm ,

d=50nm , and the metasurface is deposited on a 50nm grounded quartz (
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Si0,, n =1.55) substrate. Figure 6.5(a) shows the reflection coefficient under TE (y-

polarized) and TM (x-polarized) illuminations versus the width of the plasmonic portion

in the cell. In the range between w=20nm and w =288 nm, the resonance condition is

hit under the TE illumination and a large span of scattering phase is therefore attainable.
On the other hand, the TM resonance is confined around w=15nm and, over the same
region, less than 20° variation is created by the metasurface for this polarization.
Different interactions of the input wave and the metasurface elements are also highlighted
in Fig. 6.5(b). Changing the filling ratio does not affect TM waves but it drastically
modifies the TE reflection phase. The designed element can be used to realize interesting
devices, such as ultrathin polarization beam splitters, which we will investigate in the
next chapter.

In other scenarios, it may be of interest to realize more isotropic, and polarization-
independent, devices. The concept of optical nanocircuits can be applied again in this
context: it is possible to consider three-dimensional elements, as shown in Fig. 6.6, in
such a way to realize polarization-independent building blocks with similar phase control
features. We used numerical full-wave simulations [12] in Fig. 6.6 to demonstrate these

structures, shown in the inset, are able to cover almost the entire 27 range by changing

the filling ratio of the plasmonic portion over a lateral dimension of /= 4,/16.

6.4 TRANSMITTING METAMOLECULES

To conclude this chapter we briefly discuss transmitting metamolecules that are
appropriate for molding the transmitted wave from the metasurface. For such purpose, It
has been shown that rather than a single metasurface, a symmetric stack of three
impedance surfaces is required to provide the necessary control on the phase of the

transmitted wave [13], while keeping unitary transmission amplitude. Following our
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discussions in this chapter, each of these layers may be straightforwardly implemented
employing nanoresonator structures shown in Fig. 6.1(a). The filling ratio and spacing
between different layers can be then tuned to provide the necessary requirements on the

local amplitude and phase of transmission. More discussion can be found in [13].
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Figure 6.6: Polarization management. (a) Reflection phase variation for two dimensional
periodic metasurfaces composed of the unit cell shown in the inset as a function of
thickness d, of the plasmonic segment. Dimensions are setat /=50nm, d =d, +d,
=50nm, and /=31.25nm. The phase is calculated at A4, =500 nm using full-wave
numerical simulation and the permittivities of constitutive materials are & ~
(-8.14-0.095))g, (silver), &, =12¢, (Aluminum Arsenide), and ¢, =g, at the center

frequency. (b) Same as in (a) for the concentric nano-block shown in the inset.
Dimensions are setat #=100nm, d =40nm, and /=31.25 nm ; the diameter of the

nanorods are changed to span the entire phase spectrum. All phases are calculated at a
plane 300 nm above the metasurface. (Reprinted with permission from Physical Review

B, Vol. 89, Issue 23, pp. 235419 (2014). Copyright 2014 American Physical Society).
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Chapter 7: Gradient Metasurfaces for Improved Ultrathin Optical
Devices

The fundamental building blocks proposed in the previous chapter provide us
with the appropriate tool to manipulate the scattering phase over a surface. The general
method introduced in chapter 5 indicates that if it is possible to do so on a subwavelength
scale, it is also possible to mold the outgoing wave at will. In chapter 5 we provided
examples of ideal (zero-thickness) gradient metasurfaces along with a microwave
reflectarray based on LC resonators. Throughout the current and the following chapter we
look into various realistic devices employing this technique to imprint the desired pattern
on the output, yet at optical frequencies.

To realize gradient metasurfaces and satisfy the requirements on the local
scattering phase, each element is individually selected from a periodic metasurface with
the appropriate scattering phase. Throughout this process we implicitly assume that the
mutual coupling between neighboring elements (which are dissimilar in the gradient
device) does not significantly affect their scattering properties. In other words, each
nanoblock can individually provide a local scattering phase on its surface as if it is
arranged in a periodic fashion. This is an acceptable assumption due to small coupling
between neighboring elements in properly designed thin metasurfaces. Moreover, the
subwavelength nature of inclusions we employ here to synthesize the surface allows
strong field localization to implement smooth phase variations across several elements
with minimum mutual coupling. The contents of this chapter partially appeared/to appear
in "Mohammadi Estakhri, N.; Neder, V.; Knight, M.; Polman, A.; Alu, A., Wide-Angle,
Broadband Graded Metasurface for Back Reflection, under review", "Mohammadi
Estakhri, N.; Argyropoulos, C.; Alu, A., Graded metascreens to enable a new degree of

nanoscale light management. Phil. Trans. R. Soc. A 2015, 373 (2049), 20140351", and
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"Farhat, M.; Chen, P.; Guenneau, S.; Enoch, S., Transformation Wave Physics:

Electromagnetics, Elastodynamics, and Thermodynamics, Pan Stanford, to be published".

7.1 OPTICAL REFLECTARRAY AND TRANSMITARRAY

In analogy to microwave reflectarrays and transmitarrays, gradient metasurfaces
may be suitably designed to efficiently steer the direction of the outgoing wave
(anomalous reflection or refraction), realizing arbitrary beam-steering functionality. This
is somewhat similar to the operation of a blazed grating which, at one specific
wavelength, is able to transfer the incident energy to one of its diffraction orders. Yet,
distinct from conventional blazed gratings, here the desired outgoing beam is
reconstructed on the surface with very high spatial resolution enabling near-field
operation, steering at very steep angles, as well as broad bandwidth (see section 5.3.2).
We have studied these structures in the ideal form in chapter 5, where we realized
reflectarrays through zero-thickness impedance surfaces (section 5.2). Here we look into
realistic realization of these structures at optical frequencies exploiting the nanoresonator
building blocks introduced in the previous chapter.

To realize anomalous reflection (or refraction) on a metasurface, the outgoing
wave must follow a linear phase variation over the surface, separate from the phase
profile of the excitation wave. As discussed through Fig. 5.1, for moderately small
deflection angles the required surface properties can be attained with a simple ray
approximation and a linear scattering phase ZR(x)=ax must be enforced along the
metasurface. Here, the relation between the incident angle & and reflected angle 6, is
+aky =27z (sing, —sing;) and x denotes the bending axis toward the surface (a 2D setup
is assumed). The scattering phase profile is plotted in Fig. 7.1(b), assuming 6, =0 and

0. = —45 degrees (in accordance to Fig. 5.1). To implement this surface, we quantize the
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phase profile into steps of lateral size /= V2 4 /8, indicated by stars in Fig. 7.1(b). We

notice that due to the periodicity of the required phase pattern, the profile repeats itself
over each 8 elements as well. In other words, the surface exhibits a superlattice
periodicity of L= ‘ﬂﬂ / (sind, —sin@i)‘ = \/520 . This, however, is not an inherent
requirement and we may realize the exact same scattering phase profile employing a fully
nonperiodic surface. Here, to execute each phase step under TE illumination, we exploit

the nanoblocks designed in Fig. 6.5, as shown in Fig. 7.1(b), lower panel.
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Figure 7.1: Tunable beam steering. (a) Normalized reflected power toward the desired
direction when a TE-polarized plane wave illuminates the gradient metasurface shown in
(b) toward the —z direction. Permittivity of the dielectric portion of the surface
nanoblocks is swept from &, =11 to &, =13 to tune the frequency response. (b) Linear

phase function to bend a normal impinging wave by 45°. Quantized phases are shown by
stars on the curve, and the corresponding metasurface is shown in the lower panel. (c)
Distribution of the scattered field on the incident plane (xz) at three frequencies.
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Figure 7.1 illustrates the wave bending performance of the designed metasurface.
After imparting the linear phase profile on the scattered wave, a normally incident wave
is successfully deflected toward —45° at 600 THz. It is important to underline the effect
of subwavelength wave reconstruction in this technique. As demonstrated through the
near-field plots in Fig. 7.1(c), the outgoing plane wave is generated right above the
surface elements with minimal undesired evanescent waves in the surface proximity. This
is the direct consequence of satisfying exact boundary conditions of Eq. (5.2) over the
surface. Following the superlattice periodicity of the implemented surface, the scattered

wave may be also viewed as summation of multiple scattering orders, that is,
n=0,%1,£2,... Floquet modes, of a periodic structure. Enforcing a plane wave toward

0 =0, (similar to Eq. (5.6)) as the ideal scattered wave is subsequently equivalent to

entail the corresponding amplitude of all spatial orders to be zero, except for the n=+1
mode which is the plane wave toward the desired direction. In this regard the efficiency
of the anomalous reflection (as opposed to specular reflection) can be defined as the ratio
of the input power coupled to the first diffractive order (—45° in this example) to the total
incident power. Figure 7.1(a) shows the normalized power coupled to the first diffractive
order in comparison to the all other directions, versus excitation frequency. At the center
design frequency 600 THz around 90% of the total power redirects toward —45°, 5% is
scattered to unwanted spatial orders, and the rest get absorbed in the metasurface. We
recall here that for simplicity of implementation, the lossy/gain portions of the surface
response are forced to zero from the ideal scenario in Fig. 5.1, yet conversion efficiency
above 90% is achieved. The performance of the surface is also very stable with frequency
and sustains over 20% bandwidth (-3 dB bandwidth). We point out that a wave-squinting
effect is naturally present owing to the dispersion of the Floquet modes. As a result, the

reflection angle slightly varies over frequency, yet still the dominant portion of the input
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wave couples to the first diffraction order in this regime. The broadband operation of the
surface is predictable if we inspect the nature of the process: an additional linear phase is
imparted on the input, but, the absolute value of the phase is not a parameter in this
process and the curve in Fig. 7.1(b) may have any arbitrary offset on the vertical axis. We
discussed in Section 6.2 that the plasmonic-dielectric nanoblock maintains a stable phase
profile over broad bandwidths and it merely adds a dispersive phase offset to the surface
(Fig. 6.3(b)), which results in a broadband response for beam-steering applications. We
underline again that the total wave manipulation process is accomplished here simply

employing a single gradient metasurface with 50 nm ~ A/10 thickness, and composed of

two alternating materials.
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Figure 7.2: Discretization effect. Coupling efficiency to the propagating diffraction orders
as a function of quantization levels for the phase profile shown in Fig. 7.1(b). Inset
illustrates the case of N=5.

There is a possibility to tune the frequency response of the surface by tailoring the
properties of the nanoresonators. We looked at this option for the nanoblocks in Section
6.2 and here we examine this concept at the device level. As shown in Fig. 7.1(a),
maximum coupling range can be effectively tuned along the frequency by changing the

permittivity of the dielectric portion of nanoresonators. In practice, the permittivity may
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be altered with temperature, optical tuning or via nonlinear effects. Tunable, or
reconfigurable beam-steering surfaces are envisioned based on this effect, with which we
may efficiently control the frequency signature (i.e., color) of the steered beam with
external bias. While we looked into practical implementation of reflectarrays at optical
frequencies, we note that the building blocks introduced in section 6.4 can be used to
implement similar functionalities in transmission. In this regard, the scattering phase of a
moderate-angle transmitarray is enforced to be linear to deflect the wave as the wave pass
through the surface. More details on transmitting beam-steering metasurfaces can be
found in [1].

To conclude this section, we investigate the effect of surface granularity on the
performance of a gradient metasurface. Clearly, it is not possible to realize the required
phase with infinite resolution and we always need to somehow quantize the phase pattern.
Intuitively, more quantization levels appear to provide larger conversion efficiency to the
desired scattering pattern (see section 5.3.1 for a discussion on the effect of quantization
of ideal surface profile). To gain a quantitative rule for our design, we study the effect of

discretization on the performance of the beam-steering example. A gradient metasurface

is designed to deflect a normally incident plane wave toward —45 degrees at A, =500 nm
. The superlattice periodicity (Fig. 7.1(b)) equals \/5/10 =707 nm which is now filled
with N =2,3,...,8 different phase units (The previous example considered the case of
N =8). For each discretization number, the appropriate unit cell is designed employing
silver-semiconductor resonators with d =50 nm thickness, deposited on 50 nm quartz
substrate. Figure 7.2 indicates the distribution of the power to different diffraction orders
for these gradient metasurfaces. The incident power essentially couples to three
propagating Floquet modes, where n=+1 indicated the desired direction of —45°. As

expected, the efficiency of conversion to this mode increases as the discretization gets
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finer and finer. For N =2 and 3, the surface exhibits odd, and even scattering
symmetries and thus equal amount of power couples to »=%1 modes. For N >3 an
artificial directional preference is obtained on the surface and therefore efficiency of
coupling to n=+1 increases rapidly. Above N =4, which represents a unit cell size of
I=176 nm ~ 1,/2.8, we attain a reasonable performance from the structure. It must be
noted that in this particular example, the metasurface exhibits a superlattice profile which
in return creates a collective grating effect on top of the local phase management of the
nanoresonators. In other applications, and to create a strong sense of local variation, a
unit cell size of at least 4,/5 is desirable. The minimum size of the surface element is a
technological consideration related to the limitations of the considered fabrication
methods; the composite nanorasonator block considered here can inherently provide a

very large spatial resolution [2].

7.2 EXPERIMENTAL IMPLEMENTATION OF PLANAR NEGATIVE REFLECTION

In this section, we discuss the design of a specific kind of optical metasurfaces
that are tailored to couple the majority of the incident energy toward the first negative
diffraction order. These devices are typically known as Littrow gratings, which we
implement here using subwavelength textured metasurfaces. We devise the metasurface
to provide optimal retroreflection for an off-axis angle, and relying on the broadband and
non-resonant nature of the wave transformation from the gradient surface we achieve

negative reflection over considerably large bandwidth.

7.2.1 Design of ideal metasurface backreflector

Following the general approach in chapter 5, we focus first on the design of an
ideal gradient metasurface that reflects back all the impinging energy for a specific
frequency and angle. We will then study a practical realization obtained by simplifying
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the design for fabrication. Fig. 7.3(a) shows the concept and a schematic of the fabricated
structure. While an ideal homogeneous mirror as shown in Fig. 7.3(b), reflects the
impinging light towards the specular direction due to momentum conservation, an ideal
metasurface with tailored gradient of the reflection phase as shown in Fig. 7.3(c), can
impart a suitable additional negative transverse momentum to the impinging wave,

reflecting the entire impinging light flux back to the source.
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Figure 7.3: Operation principle of a metasurface backreflector. (a) Schematic illustration
of negative reflection from a gradient metasurface. (b,c) Illustrative representation of

scattering channels. (b) Specular reflection from an ideal mirror: incident light (s, ,black)
is specularly reflected (s, ,blue) from an ideal mirror due to momentum conservation at
the interface. (c) Backreflection from a gradient metasurface: incident light is reflected
back (s, ,red) toward the source due to the transverse momentum imparted by the
inhomogeneous interface. The additional negative momentum k, (green) is introduced
by a tailored gradient of the reflection phase. Momenta in the x-direction are shown by
k,; and k_ for incident and reflected waves, respectively.

X,i

The analytical expression of the local reflection coefficient that an ultrathin

metasurface needs to support to achieve retroreflection with unity efficiency for

illumination angle 6, inthe x—z plane, where Z is the normal to the surface, reads
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R(x)z —1+cosb, —e (1+cost90) . (7.1)
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—1-cosf, +e * (~1+cosb,)

As we discussed in chapter 5, for the special case of retroreflection the required

reflection coefficient is unitary all across the surface, implying that it can be achieved

with a fully passive interface with inhomogeneous phase profile ¢(x) , shown in Fig.

7.4(a) for 6, =35.7 degrees, with period A =

- , where A is the wavelength of
2sin G,

operation in free-space. This phase profile compensates for the momentum mismatch
between the incoming and the desired retroreflected waves (Fig. 7.3(¢)).
For an ideal continuously modulated metasurface with local reflection in (7.1),

given the periodicity of the reflection phase, the reflected power can couple to only two

propagating diffraction orders, the specular reflection s, and the backreflection order

s, . The numerically calculated coupling efficiency to these orders as a function of

illumination angle is shown in Fig. 7.4(b) for the surface with phase profile in Fig.
7.4(a).We implemented the phase profile following the method described in section 5.2.2.
The variation in the phase of the local reflection coefficient is effectively implemented by
varying the surface admittance at a subwavelength distance from an ideal mirror (a

perfect electric conductor). The obtained surface profile is modeled as a sheet admittance
in COMSOL, with d =4/20=35nm for the distance between the sheet admittance
Y

e,surface

and the ground plane. The relation between the local phase and the admittance is

10Y, surface = —itan(p(x)/2)+icotkyd where ¢(x)=ZR(x) and n, is the free-space

characteristic impedance [2].

As expected, we obtain 100% coupling efficiency at 6, =35.7 degrees, i.e.,

2
‘sf ‘ =1. In addition, the figure shows that the angular response is considerably robust,

and for the angular range 11<68, <80 degrees over half of the incident power is
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redirected into the non-specular direction. This broad angular response is associated with
the fact that the momentum imparted by the surface does not change with the incidence
angle [13], and it is sufficiently negative to ensure that the angle of the emerging
reflected beam stays negative over a very broad angular range. The negative reflection

angle varies as a function of impinging angle following the grating equation for first-

order diffraction @

retro

=sin”! (sin 0, $%j , where the ¥ sign refers to 6, >0 and

6., <0 respectively, as plotted in Fig. 7.4(c). Yet, the scattered beam always lies in the

m

same half-plane as the incident one. The lower cut-off for 8, =11 degrees is simply

determined by the cut-off of s, for close-to-normal incidence.

An interesting feature evident in Fig. 7.4(b) is the inherent symmetry in response
of the backreflective surface, a symmetry that arises despite the fact that its geometric
profile, is asymmetric and tailored for a specific oblique illumination. This symmetry is
not limited to this particular configuration, but it is a general result stemming directly
from reciprocity [3]-[4]. More specifically, if the surface is designed to backreflect with

unity efficiency for the impinging angle 6,, it ensures zero coupling to the specular

direction. Reciprocity then ensures that, when illuminating the surface from the specular
direction, no power can be coupled back towards 6, indicating that there is no trade-off
between directionality and efficiency in this metasurface. As we described in section 6.2
and discuss in the following section, the angular robustness of the metasurface response,
associated with its non-resonant performance properties, is also reflected in an inherently
broadband operation [2], and in strong robustness to variations in the spatial profile of

Fig. 7.4(a).
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Figure 7.4: Wide angle operation of an ideal negative reflection metasurface (a)
Calculated local phase profile of the ideal surface ¢(x) =Z/R (x) , designed for an

Coupling Efficiency |s|2 %

incoming angle 6, =35.7 degrees following (7.1), with surface period A = /”L/ (2sin (90) .

(b) Numerically calculated coupling efficiency of the ideal surface in panel (a) for
different incident angles and for s-polarized illumination. Blue and red curves show the

percentage of power coupled toward the specular direction (s, ) and first diffraction order

(87 ), respectively. (c) Calculated (solid black line), and measured (yellow circles)

angular dispersion of the gradient surface for the +1 diffraction orders. The black lines
correspond to the ideal surface in panel (a) and the yellow circles are analogous results
measured at 4 =700 nm for the fabricated sample. A and B correspond to the ideal

=-0, =%35.7 degrees. Inside the highlighted gray

region, the non-specular diffraction orders are evanescent.

retroreflection points where 6.,

7.2.2 Practical implementation of the metasurface

In order to practically realize the metasurface with a nanostructured surface, we
need to discretize the ideal profile. Assuming an equal discretization of the ideal phase
profile into N phase steps, the coupling efficiency to the retroreflected order gets closer

to 100% as the number of steps increases. Interestingly, however, even a coarse
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discretization, i.e., a phase profile with same period but only two discretization steps,
yields a retroreflection efficiency larger than 75%. Compared to Fig. 7.2, we notice that
here the surface supports only two propagating diffraction modes and thus we get large
coupling even with two phase steps.

We realized the device characterized in Fig. 7.4(a) using a nanostructured
dielectric metasurface (Fig. 7.5(a,b)) with subwavelength thickness ¢ =100 nm, made of
TiO, trapezoidal rods on top of an Ag mirror via e-beam lithography and evaporation.

An schematic of the fabricated structure is shown in Fig. 7.3(a). The dielectric nature of

TiO,, and its relative high index, are ideal to minimize absorption and provide enhanced

phase control over an ultrathin thickness. We designed the structure with three phase
discretization steps, N =3, for operation at A =700nm , tailored for s-polarized
excitation. The phase variation of the local reflection coefficient in the first two elements
is achieved by controlling the geometry of the nanorods, so that they impart the required
reflection phase uniformly over their width, while for the third segment we simply
employed the bare back-mirror (Fig. 7.5(a)).

For fabrication, a 1-mm-thick Si wafer was coated with 200 nm of Ag and 20-30
nm of SiO, by thermal evaporation. This protected mirror was then spin-coated with
ZEP520a, a high-resolution negative tone resist and Espacer 300z to improve the
conductivity of the sample. Then the asymmetric grating was written by E-beam
lithography using a 20 keV beam. The patterned area was 1.5x1.5mm?” square,
comprised of stitched 100x100 zm”write fields. Afterwards, the sample was rinsed 30
seconds in water to remove the Espacer and developed in pentylacetate for 45 seconds,
rinsed 15 seconds in a mixture of methyl isobutyl ketone and isopropanol
(MIBK:IPA,9:1), dipped into IPA and transferred to ethanol. To prevent collapse of the

fragile resist patterns the sample was dried at the critical point. The lines were then filled
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with 100 nm of TiO, by e-beam evaporation followed by lift-off which was done by

dissolving the resist for 10 minutes in an ultrasonic bath in anisole.

d Light Camera

A O
Samplk/v

Position |

Sample on inner
rotation stage

Detector on outer rotation stage

Figure 7.5: Fabricated structure and measurement setup (a) SEM image (top view, under
40% tilt) and (b) cross section of the fabricated sample. One unit cell of the structure is
composed of three regions: two TiO, nanorods and the bare mirror. See Methods

section for detailed geometry information. The Pt layer on top of the sample was added in
the cross-section fabrication process to get a clean cross-section. (¢) Schematic of the
measurement setup: Angle of illumination &,, can be changed by rotating the sample on

the inner rotation stage while the illumination arm is kept fixed. The coupling intensity to
the different diffraction orders is measured by independently rotating the detector on the
outer rotation stage to positions I to measure &, . or position II to measure @ ;.

spec
[llumination and detection planes are slightly tilted horizontally to allow retroreflection

measurements without blocking the illumination. (d)-(f) Photographs of the fabricated

structure on the right (1.5x1.5 mm? square in the center of 12x12 mm? silver mirror,

bare Si residual from fabrication process in left lower corner) and schematic of
photography setup on the left. (d) Specular response under illumination from the back
with a commercial flashlight: observing no reflection in the specular direction from the
structure (dark square in the middle). (e)-(f) Negative reflection response of the sample
when illuminated with a commercial flashlight for different angles. The angle between
light and camera was increased in (f) compared to (e).

149



TiO, was also evaporated directly on a Si wafer to allow a determination of the

TiO, dielectric function using spectroscopy ellipsometry, fitting the data using a

Gaussian-Cauchy model. Completed dimensions were measured using a focused ion
beam (FIB, FEI Helios Nanolab 600) to cut cross sections, with dimensions measured by
electron micrographs. The metasurface consisted of repeating in unit cells with a
periodicity of 605 nm. The taller line had a height of 100 nm, a bottom width of 180 nm
and a top width of 100 nm. The narrower line, separated from the tall line by a gap of 123

nm, had a height of 50 nm with bottom and top widths of 70 nm and 20 nm respectively
[5].
7.2.3 Measurement and performance characterization

We excited the fabricated structure with a weakly converging beam to allow a
well-defined excitation angle, and we measured the reflected intensity in the same half-
plane as the incident beam using an optical power meter. By measuring the total beam
power, the absolute reflectance was then determined. The sample was mounted in the
center and the power meter on the outer ring of a rotating stage, while the illumination
direction was held constant. This enabled independent control of excitation and sampling

angles, as depicted in the schematic of the measurement setup in Fig. 7.5(c). We chose

A=605nm to enable efficient retroreflection in the free-space wavelength range

A=490-940 nm.

Fig. 7.5(d-f) visualizes the negative and specular reflection efficiency of our
fabricated sample from the practical observer standpoint. The photographs of the samples
can be seen next to the schematic of the photography setup. In Fig. 7.5(d) the bright
specular reflection of the Ag mirror around the structure is visible while the dark square

in the middle of the sample where the metasurface is placed indicates that specular
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reflection is almost absent. In contrast, the center of the sample is noticeably bright for an
observer sitting close to the excitation source, as can be seen in Fig. 7.5(e,f) for different
incoming angles. The bright color that can be observed in negative reflection depends on
the angle of observation and illumination.

The efficiency of negative reflection is quantitatively demonstrated in Fig. 7.6.
Owing to the scattering symmetry of the device imposed by reciprocity, the measurement
process could be reduced to only half of the angular range, but to confirm our theoretical
results we performed measurements across the entire angular spectrum. In the figure, we
compare the specular reflection to the measurements obtained using a flat silver mirror,
similar to the ground plane utilized in our device, allowing a direct comparison that
provides a quantitative calibration of the measured efficiency. The grey circles in Fig.
7.6(a) present the measured angular response of the silver mirror when illuminated with
s-polarized light at 4 =700 nm. We observe that around 10% of the incident power is
absorbed in the silver or lost through diffused scattering as a result of the sample
roughness and disorder. The measured response of the silver mirror is slightly lower than
the simulated one, also shown in Fig. 7.6(a). This is due to the roughness of the surface
by evaporation and other fabrication defects. With the dielectric metasurface in place,

specular reflection significantly drops over a wide angular region around the

retroreflective angle 6, =35.7 degrees. The scattered power is focused toward the
backward diffraction channel (s; in Fig. 7.3(c)), yielding a coupling efficiency of 88%

under illumination at 6, =35.7, and with less than 10% of the impinging power being

absorbed or diffusely scattered at the design frequency under illumination from all
angles, except around the Wood's anomaly, consistent with the absorption levels obtained

from the bare silver back-mirror.
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7.2.4 Numerical simulations

For comparison, the solid lines in Fig. 7.6(a) show the calculated coupling to the
two scattering orders obtained using full-wave simulation for a structure with the same
geometry as the fabricated device. Numerical simulations were carried out by the 2D
finite-element software COMSOL Multiphysics in the frequency-domain radio-frequency
module. To model the fabricated device, we used the SEM images in Figs. 7.5(a,b) and
estimated the dimensions as described in the fabrication process. All materials are

modeled as dispersive and lossy and we used realistic values for the permittivities of

silver and SiO, from experimentally retrieved data sets [6]-[7]. For TiO,, we measured
the refractive index for a sample of TiO, on a Si wafer by spectroscopic ellipsometry.

Maximum element size of 20 nm is used for high-index TiO, rods and the remaining

parts are meshed with maximum element size of 28 nm. Silver layer with thickness of
200 nm is used as the back reflector which we truncated with perfectly matched layer to
model a semi-infinite ground plane. The scattering parameters of the port are used to
calculate the percentage of the power coupled toward each channel. The simulated results
agree very well with our experiment, even though a slightly lower cut-off at large angles
is observed in the measured data compared to the calculated curves. This is due to the
small size of our sample, as the area where the measurement beam hits the structure
increases with higher incoming angles and exceeds the structure area for |t9m| > 60
degrees. In this angular range, part of the light is specularly reflected by the bare mirror
next to the structure.

To further investigate the frequency dispersion of the surface, we also determined
the amplitude dispersion of the coupling to the two scattering modes for a structure with
the dimensions of the fabricated device through full-wave simulations for all incident

angles. As expected, the designed metasurface operates over an extremely broad half-
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power wavelength range 4 =490-940nm in terms of retroreflection efficiency. We

verified our simulations with experimental measurements at multiple wavelengths, in

addition to the A =700nm case, and as expected, they are in good agreement at all

measured wavelengths.
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Figure 7.6: (a) Angular response at A =700 nm . Comparison between measurements
(circles) and numerical simulations (solid lines). Coupling efficiencies for the specular
reflection s, and the first-order negative reflection s, , are shown with blue and red
colors, respectively. The empty circles indicate reflection measurements for angles above
|Hm| = 60 degrees, for which the spot size of the beam is larger than the structure and part

of the beam is specularly reflected by the mirror next to the structure. The measurements
and simulations of the bare mirror are depicted in grey. The homogenous surface supports
specular reflection with approximately 10% absorption across all angles. (b) Numerical
simulation results of the angular/frequency dispersion of the structure with the fabricated

dimensions, showing the coupling efficiency toward the first-order negative reflection s,

and highlighting the 75 %-power and 50 % - power operation regions. The dark red line
indicates the retroreflective loci, for which the incoming and the reflected wave are
aligned. More than 50% retroreflection is achieved across A =490-940 nm and

6, =24-51 degrees.

7.3 FLAT LENS

Figure 7.7 shows another planar device based on gradient metasurfaces: a flat

ultrathin lens. In the ray optics regime, flat lenses impart a quadratic phase distribution
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(as shown in Fig. 7.7(b)) on the outgoing wave so that an incident normal plane wave
efficiently converts to a spherical wave. Gradient metasurface-based lenses exhibit many
advantages in terms of compact size, conformability, and the possibility of direct
integration into optical systems. Through appropriately engineering the dispersion of unit
cells, it is also possible to reduce the typical aberration effects present in conventional
lenses [8]. These features make gradient metasurfaces an appealing choice to realize
electromagnetically thin lenses over wide range of frequencies (see, for example, Refs.
[1]-[2],[8]-[10]). The most interesting property of this technique, however resides in the
ability of tailoring the outgoing wavefront with high spatial resolution. This enables us to
set the focal point arbitrarily close to the surface and realize lenses with very high
numerical apertures (see section 5.5).

Here we construct a mirror lens at A, =500nm exploiting the nanoblocks

characterized in Fig. 6.2, assuming a 2D variation on the surface and TE polarization of

the incident wave. With the focal point at f; =24,, the required phase distribution along

the surface can be estimated with ray optics and as (see Fig. 5.9),

2R =27/ (Vo + £ - ). (7.2)

which is implemented in the form of a graded metasurface after proper discretization, as
shown in Fig.7.7(b). Owing to the relative value of the scattered phase, we expect
broadband focusing behavior from the structure, as demonstrated in Fig. 7.7(a,c). While

the surface is designed at 600 THz, it exhibits remarkable focusing properties over more

than 30% fractional bandwidth.
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Figure 7.7: Broadband beam collimation. (a) Power density distribution of a flat mirror
lens at three sample frequencies. The metasurface is illuminated along the —z axis with a
Gaussian beam profile and under TE polarization. (b) Quadratic phase function to focus
the impinging wave at distance 24, from the surface. Quantized phases are shown by

stars, and the corresponding metasurface is shown in the lower panel. The numerical
aperture of the lens is 0.9. (¢c) Power density along the focal plane, indicated by dashed
lines in (a).

7.4 POLARIZATION BEAM SPLITTER

A polarization beam splitter is an optical device intentionally designed to
distinguish different polarization states of an unpolarized optical beam. Conventionally,
natural birefringent materials, such as calcite crystals, may grant such functionality
through creating beam displacement between orthogonal polarizations or by reflecting
one polarization state while fully transmitting the other. These effects are yet naturally
weak and entail long-distance propagation of the optical beam inside the birefringent
crystal to accumulate the desired levels of extinction ratio. Graded metasurfaces offer a

potential solution to these inherent limitations, as the metasurface elements can be
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designed to exhibit a drastically polarization-dependent scattering signature as discussed
through section 6.3.
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Figure 7.8: (a) Upper panel: surface admittance units used to realize the graded beam
splitting metasurface. The filling ratio between dielectric and plasmonic portions are
varied to imprint the desired surface pattern. Lower panel: local reflection coefficient
along the surface to deflect an incident TE plane wave (solid lines). Circles indicate
physically implemented elements, with each superlattice period divided into eight steps.
(b) Power density distribution when the metasurface is illuminated with a Gaussian
circularly polarized beam at A, =500 nm . The illumination angle is €, =10° and the

reflection angles are designed at 6, 1, =50° and 6, 1, =10°. Time snapshot of the (c)
TM and (d) TE components of the total electric field. (Reprinted with permission from

Philosophical Transactions A, Vol. 373, Issue 2049, pp. 20140351 (2015). Copyright
2015 The Royal Society Publishing).

With the proper choice of surface admittance, graded metasurfaces can be
designed to enforce distinct functionalities based on the polarization of the excitation

field, e.g., to steer incident light into different directions under TE or TM illuminations

[11]. To further outline our proposed point-by-point scattering management technique
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introduced in chapter 5, in this section we design and implement a beam steering surface

to redirect an obliquely incident TE plane wave illuminating the surface at 6, =10°
toward 6. 1p =50° while the TM wave experiences a specular reflection and

0, tm =10°. The metasurface creates an abrupt birefringence with 40 degrees divergence

angle at the design wavelength of 500 nm, emulating the functionality of a Wollaston
prism over an ultrathin profile, with the potential of integrability into nanophotonic
systems and polarization control at the subwavelength scale.

The required local reflection coefficient of the surface is analytically calculated
and plotted in Fig. 7.8(a) (solid lines). For a physical implementation of the structure, the
surface profile is divided into eight equally sized segments within each supercell, which

we then realize using the conjoined particle illustrated in Fig. 7.8(a) (upper panel). In this

case we consider a substrate thickness d =50nm and ng, =1.45. The parallel sheet

admittance Y, (e

is effectively controlled by varying the filling ratio of the

plasmonic portion. Over this range, Y

osufacexx 1S approximately constant and the

variations in the TM reflection phase R,,;..rv 18 less than 30 degrees, ensuring

efficient specular reflection for this polarization. Incident and scattered TE waves are

expressed analytically as,

S~ xcos10+zsinl0 . -
I jsinl0k,x jcoslOk,z
( i l.)— ¥, Eqe e

o

(7.3)

(Es ’ I:Is ) | 5. —Xxc0s850+zsin50 | [cos10 Eoefjsin50k0xefjcos50k(,z
o cos 50

where a scaling factor /cos10/cos50 is added to the scattered wave to ensure power

conservation in the normal direction (i.e. along z-axis). Eq. (5.10) is then solved for the

local reflection coefficient of the ideal surface as plotted in Fig. 7.9(a). Since both
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incident and scattered waves are plane waves, the acquired surface is periodic with
fundamental period of L =4, / (sin 50 —sin 10) =844 nm. The local surface properties are
in general complex, as in this example, and as the result reflection magnitude is non-

unitary. In fact, the ideal surface hold alternative lossy/gainy portions as indicated by

|RI<1/|R[>1 in Fig. 7.9(a). To obtain the passive approximation of the structure, in this

example we simply enforced | R|=1 while keeping the ideal reflection phase profile at
p ply ping p p

eight discrete points in each period (shown by circles in Fig. 7.8(a)). Figure 7.9(b),
moreover, shows the variation of reflection coefficient under TE illumination for the
composite particle in Fig. 7.8(a), sweeping the filling ratio of silver in each cell (solid
lines). The circles correspond to picked dimensions for each element and the triangles
show the reflection phase for the exact same structure, under TM illumination (amplitude
is ~1). As discussed earlier, surface properties are almost constant under TM incidence
while the TE wave is deflected based on (7.3).

The discrete points on Fig. 7.8(a) indicate the physically realized local reflection
coefficients for the graded metasurface, also schematically shown in Fig. 7.8(b).
Numerical simulations [12] of the designed surface under plane wave illumination

confirm that over 91% of the incident TE component, and less than 0.19% of the TM

component, are redirected toward 6, =50° direction, while 98% of the incident TM

wave and less than 1% of the TE polarized wave is reflected toward 6, =10°. We further

examine the performance of the designed structure when illuminated by a finite size,
circularly polarized Gaussian beam, as shown in Fig. 7.8(b). The incident wave clearly
splits into two branches, which we verified to be TE and TM in the field plots presented
in Fig. 7.8(c,d). In addition, the considered plasmonic-dielectric composite particles have
been demonstrated to have a stable frequency dispersion (section 6.2). While the

scattering properties of each building block may change with frequency, the reflection
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phase from the surface maintains an approximately constant profile, as all elements

experience similar phase variations and dispersion. In a periodically arranged graded

metasurface (which is the case for polarization beam splitter), the absolute phase center is

arbitrary and hence, the device operation is predicted to be relatively broadband. Our

numerical simulations confirm more than 15% fractional bandwidth, ranging between

560-660 THz, over which at least -3db of the incident wave is coupled to the desired

modes (half power bandwidth). We note that the fixed periodicity of the surface, imposes

an additional wave squinting along frequency and the direction of the TE wave varies

between 6, 1 =53.9° and 6, 1y =45.4° as we move from 560 to 660 THz.
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Figure 7.9: (a) Ideal local reflection coefficient on the graded surface to deflect obliquely
incident TE wave toward 6, 1 =50°. (b) Reflection coefficient from a periodic

metasurface with surface elements shown in Fig. 6.1(a), under TE illumination, varying
the filling ratio of plasmonic metal (solid lines). Circles indicate the realized element and
triangles show the reflection phase of the same surface if illuminated by a TM plane
wave. (Reprinted with permission from Philosophical Transactions A, Vol. 373, Issue
2049, pp. 20140351 (2015). Copyright 2015 The Royal Society Publishing).

7.5 BROADBAND ENERGY HARVESTING

Due to weak light matter interactions inside its absorbing material, a thin film

solar cell intrinsically absorbs only a small percentage of the incoming wave,

proportional to its physical thickness. However, around the natural Fabry-Perot
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resonances of the film, a strong vertical standing wave is created inside the slab and
relatively high absorption levels may be attained from the structure. Here, we present a
way to employ graded metasurfaces as ground planes for thin film photovoltaic cells in
order to artificially create large standing waves in the lateral direction and increase the
optical path of the impinging beam inside the cell. We show that the generated local hot
spots inside the active layer can significantly improve the absorption properties of the
film, and this effect may be induced over broad bandwidths.

Figure 7.6(a) schematically illustrates the proposed technique: a weakly absorbing
thin film is coupled to a graded metasurface back-reflector, and the whole configuration
is tailored to redirect the impinging wave toward a new direction (i.e., 45 degrees off-
normal, as shown in Fig. 7.10(a)). Wave deflection, which is equivalent to impose a
constant transverse momentum along the surface [13], enforces multiple partial internal
reflections inside the active layer, owing to the refractive index contrast between the
dielectric film and free space. This process successfully creates lateral standing waves
inside the semiconductor layer that are anticipated to increase carrier collection efficiency
due to enhanced light-matter interactions.

In order to demonstrate the proposed light trapping scheme, we consider a thin-
film active layer with refractive index n =~ V3 and absorption length ranging from 0.9 to
5.7 um (between 450-1100 THz). The optical properties of the thin film are shown in
Fig. 7.10(c) (inset). The semiconductor layer is assumed to be 180 nm thick and it is
placed on top of a graded metareflector composed of conjoined composite particles. The
structure is then designed to impart a transverse momentum able to bend the wave
impinging from normal incidence by an angle of 45 degrees at 500 nm. Analogous to the
polarization beam splitting surface, this functionality is realized with a superlattice

periodicity, suitable for large-scale solar cell designs. The required profile periodicity is
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discretized into eight steps, and in each segment the filling ratio of the plasmonic portion

(Ag) is tailored to replicate the calculated ideal reflection phase from the structure. We
set the metasurface thickness at d =50 nm and the entire structure is deposited on a thin

layer of d =30nm silicon-dioxide (7, =1.45) backed by a PEC ground plane, shown

sub
in Fig. 7.10(b). In this example the meta-reflectarray is designed for a one-dimensional
set-up, tuned for TE polarized impinging waves. A similar concept can be easily
extended into a 2D matrix in order to provide an isotropic response for all input
polarizations, for instance by employing the concentric graded metasurface shown in Fig.
6.6(b).

Figure 7.6(c) shows the numerically calculated absorption spectra of the solar
cell, highlighting the overall absorption enhancement [14]. The shaded area represents
the additional absorption attained by patterning the back reflector, indicating an
improvement factor of 2.6 at the design frequency. As predicted, while the total structure
aims at coupling the impinging wave to the first Floquet order (i.e. 6. =45°), the higher
refractive index in the semiconductor allows multiple internal reflections inside the
dielectric, ensuring an overall longer propagation distance inside the thin-film active
layer (Fig. 7.10(d)). Notably, the coupling efficiency to the first scattering order (i.e.,
wave bending) using graded metasurfaces is very high over a relatively broad range of
frequencies. This phenomenon resides in the inherently broadband response of the
exploited composite nanoparticles, and accordingly allows to predict that this light
trapping mechanism can be broadband, as verified in Fig. 7.10(d). The reflections build
up to ensure strong light concentration and trapping inside the cell, consequently
increasing the total collected photocurrent, except possibly in the vicinity of Fabry-Perot
resonances of the original configuration (occurring around 720 THz). In addition,

depending on its thickness, the film may support a number of guided optical modes [15]-
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[17]. Typically, a substantial light trapping effect may also be achieved at the resonant
frequency of these modes (around 540 and 1000 THz in the current example), over
narrow spectral widths of few nanometers. However, these resonances are considerably
broadened in our configuration and, combined with the broadband background absorption
enhancement produced by the gradient metareflector, they significantly boost the overall
efficiency, which is particularly important in the frequency bands where the original

material fails to properly harness the solar radiation.

7.6 CONCLUSION

In this chapter we applied the concept of local wave-shaping metasurfaces,
introduced in chapter 5, to a few relevant examples at optical frequencies. Exploiting the
nanoresonator metamolecules introduced in chapter 6, we have shown that a single
electrical metasurface with deeply subwavelength thickness can be used to fully control
the scattering signature of optical elements such as thin-film solar cells and polarization
beam splitters and drastically boost their performance, while minimizing the size of the
device and improve the robustness to losses. In addition, we have designed graded
metasurfaces to perform functionalities such as beam steering and focusing over large
bandwidths and with small insertion losses. Finally we provided an experimental
realization of a highly efficient beam steering surface at optical frequencies.

Due to their conformal profile and the fact that our designs are all based on the
alternation of commonly available optical materials, the proposed optical films may be
directly integrated into nanophotonic devices. These applications may also be scaled up
to longer wavelengths to realize ultra-thin infrared, terahertz or microwave elements. The
described control and manipulation of optical scattering through metasurfaces, along with

their compatibility with standard lithographic techniques and on-chip fabrication
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technologies, may pave the way to several applications in optics, and open up a new route

to design compact, planarized optical devices.
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Figure 7.10: (a) Schematic illustration of light trapping inside an organic PV solar cell.
The active layer is backed by a metasurface imparting the desired linear momentum to
the impinging wave. Green arrows indicate the process of light trapping within one unit
cell. (b) sketch of one period of the thin film absorbing structure. Dimensions and
material properties are indicated in the figure. The PV material characteristics are shown
in the inset of panel c.(c) Absorption spectrum for normally incident light on a 180 nm
organic material without nanoscale metasurface (gray line), in comparison to a
metasurface-backed solar cell with same thickness (black line). The structure is designed
to redirect the outgoing field by 45 degrees. Each unit-cell is 88 nm wide, partially filled
with silicon (n=4.25) and silver. Metasurface and substrate (Si0, , ny;, =1.45)
thicknesses are #=50nm and d =30 nm, respectively. The impinging electric field is
polarized parallel to the cubic nano-rods on the surface, along the y-axis. Complex
refractive index of the absorbing layer is also depicted in the inset. (d) Time snapshot of
the normalized electric field distribution for three sample frequencies at 500, 600 (center
design frequency), and 1000 THz. The metasurface and active region are included in the
field plots. (Reprinted with permission from Philosophical Transactions A, Vol. 373,
Issue 2049, pp. 20140351 (2015). Copyright 2015 The Royal Society Publishing).
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Chapter 8: Unidirectional Carpet Cloaks and Wavefront
Reconstruction with Gradient Metasurfaces

In addition to rather simple functionalities implemented with metasurfaces in
chapter 7, in this chapter we demonstrate that it is possible to design graded metasurfaces
to perform more complex functionalities. Wave reconstruction over a single textured
surface can provide an exciting platform for ultrathin carpet cloaking. In the previous
chapters, we described the process of creating arbitrary scattering distributions by
accurately engineering the profile of the surface to satisfy the required boundary
conditions in Eq. (5.2). Through this process, the ultrathin metasurface is tailored to
operate as a structure that scatters the incident wave in the predesignated manner. For
instance, the flat lens presented in section 7.3 operates analogous to a concave mirror or
the reflectarray presented in section 7.1 imitate a tilted mirror's functionality.
Interestingly, we can likewise reverse this process and create a non-planar gradient
metasurface that scatters resembling a flat mirror. This indeed creates an ideal
camouflage for any object put beneath such a surface so it can't be identified by an
external observer who inspects the scattered wave from such surface. We apply this
concept to hide electrically large 2D and 3D objects through several examples. Both ideal
and physical implementations of metasurface-based cloaks are discussed. The presented
graded metasurface-based cloaks may find interesting applications as low-profile, tunable
covers for low-observability and noise reduction in wireless commutation systems. The
contents of this chapter partially appeared in "Mohammadi Estakhri, N.; Argyropoulos,
C.; Alu, A., Graded metascreens to enable a new degree of nanoscale light management.
Phil. Trans. R. Soc. A 2015, 373 (2049), 20140351", and "Mohammadi Estakhri, N.; Alu,
A., Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded

metasurfaces. Antennas and Wireless Propagation Letters, IEEE 2014, 13, 1775-1778".
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8.1 INTRODUCTION

Metamaterials and artificial materials with effective properties that may be
controlled to a large degree, have been at the basis of exciting schemes for wave
manipulation, particularly well suited to hide an object from electromagnetic waves. To
realize practical invisibility cloaks, transformation electromagnetics methods [1] and
scattering cancellation techniques [2] are currently the most popular approaches, and
simplified versions of these proposals have been implemented and examined in recent
years (see e.g. [3]-[5]). TE-based cloaks exploit the fundamental connection between
spatial material properties of the surrounding medium and a suitable coordinate space
transformation, conserving the same format of Maxwell’s equations while effectively
isolating target object from the incoming wave. This paradigm inherently requires
specific profiles of anisotropy and inhomogeneity, which may be approximately
implemented employing metamaterials. Applying a quasi-conformal mapping can
minimize the required anisotropy under specific circumstances, such as in the case of
carpet cloaking, for which a reflecting surface with a bump appears as a flat mirror after
covering the bump with a suitably tailored transformation electromagnetics medium [6].
In contrast, scattering cancellation techniques do not directly manipulate the field
distribution around an object; instead, the dominant multipolar scattering orders are
suppressed by a cover which may be typically made with an isotropic metamaterial.
Similar effects may also be achieved employing isotropic metasurfaces (e.g., a frequency
selective surface (FSS) at radio frequencies [7], or a graphene monolayer at terahertz [8])
wrapped around the object of interest. These cloaking techniques have distinctly different
approaches to conceal an object, yet they both rely on the collective response of
artificially engineered materials (or surfaces) enclosing the target structure, in order to

attain the desired response.

167



In this chapter, we propose a different approach of cloaking applied to an
arbitrarily shaped object placed over a ground plane, inspired from point-by-point wave
reconstruction technique introduced in chapter 5. We show that a single, inhomogeneous
metasurface is sufficient to guarantee directional invisibility with no lower limit on the
overall thickness of the cloaking layer. After covering the target with a suitably designed
graded metasurface, an exterior observer will perceive the whole system as a flat
reflector, with several interesting advantages compared to transformation
electromagnetics based carpet cloaks in terms of ease of implementation, low-profile, and
conformability to the geometrical shape of the object. We investigate the performance of
the proposed method through several ideal and realistic examples, and demonstrate
successful concealment of electrically large 2D and 3D structures at optical wavelengths,
along with high angular stability in the cloaking performance. This technique may bring
cloaking devices one step closer to their practical implementation, especially at radio

frequencies where there is the additional advantage of straightforward reconfigurability.

8.2 CONCEPT OF WAVEFRONT RECONSTRUCTION

We aim at hiding an object over a reflecting surface similar to a unidirectional
carpet cloak. Let us first consider an empty region with a ground plane, as depicted in
Fig. 8.1(a). When illuminated by a plane wave, the ground plane generates a specularly
reflected wave, producing total electric and magnetic fields of (E1’H1) everywhere. Our
goal is to create a region (delimited by 0V ) above this mirror in which we can put an
arbitrary obstacle without deforming this original field distribution (see. Fig. 8.1(b)), so
that any observer placed above 0V would perceive the same field (El,Hl), assuming
the excitation direction is known. To attain this goal, we exploit the well-established

equivalence principle, based on the uniqueness theorem of Maxwell’s equations [9].
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Based on this general principle, two physical systems, as shown in Fig. 8.1, will have the
same field solution above 0V, provided that the exact same distribution of tangential

electric (or magnetic) field is imposed on the domain boundaries, i.e.,

(E.H)

L =(EH),| . (8.1)

2t

This implies that, as long as we satisfy the boundary condition in (8.1), an
external observer cannot distinguish between these two systems and (E,,H,)=(E,H,).
To replicate the primary field distribution in the presence of an obstacle, we employ an
ultrathin grounded metasurface, coating the structure along 0V . The metasurface needs
to be transversely inhomogeneous —direct consequence of (8.1)— and its composition is
tailored at each point to locally imitate the desired specularly reflected beam along oV ,

assuming a specific plane wave excitation.

a (E.H) b (E,.H,)

Figure 8.1: Reconstruction of initial field distribution in the presence of an obstacle.
Based on the equivalence principle, the fields are uniquely determined by the
electromagnetic field distribution over the surface enclosing the obstacle. (Reprinted with
permission from AWPL, Vol. 13, pp. 1775 - 1778 (2014). Copyright 2014 IEEE).

We note that this representation is equivalent to Eq. (5.2), when the scattered
field is replaced by the specular reflection of the incident wave. As we extensively
discussed in chapter 5, for moderate wavefront shaping the constraints on the metasurface

profile can be simplified to a requirement on the phase of the local reflection coefficient
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of an inhomogeneous surface (i.e. ray-optics approximation). This requires that the
chosen surface profile smoothly varies in the scale of a wavelength, and the incident and
reflected waves can be locally approximated by plane waves [10]. In practice, the ideal
plane wave excitation may be replaced by a finite size beam, as long as the incident and
reflected waves sufficiently overlap on the object surface. If the impinging beam is not a
uniform plane wave and it covers only a small portion of the object, however, condition
(8.1) would translate into a nonlocality requirement (i.e., it would require the response of
the surface at a given point to depend on the excitation at another point), or alternatively
into the necessity of introducing active elements in the metasurface. In the following we
will examine an ideal cloaking surface including the local loss and gain, and approximate
passive cloaks based on local phase compensation.

Anyhow, it is relevant to point out that this cloaking method does not necessitate
prior information on the input signal to set up the cloak. This is in contrast to Huygens-
based active cloaking approaches, for which surface currents must be induced based on
the formerly known magnitude and phase of input beam [11]. Here, the geometrical
shape of the object univocally determines the deviation of the local reflected phase (and
amplitude) from the ideal scenario (Fig. 8.1(a)), which can be then corrected employing

the metasurface cloak, provided that the incidence angle is known.

8.3 IDEAL LOCAL SCATTERING CANCELLATION

In this section, we demonstrate the ideal metasurface-based cloaking technique
through a comprehensive example. We aim at concealing the object between the
metasurface and a ground plane, such that the whole system mimics a flat reflecting

surface. For simplicity, let us first assume a 2D configuration illuminated by a TE

polarized Gaussian beam at 4, =500 nm, as depicted in Fig. 8.2(a). A triangular PEC
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bump with lateral size L =104, and center height H =1.6 4, is placed on the PEC

ground and illuminated at 45 degrees. The presence of the bump results in total
deformation of the input wave, as expected, and the incident beam experiences a new
boundary condition at each point on the surface of the obstacle, observable in Fig. 8.2(c).
The metasurface to cloak the object is readily characterized following equations (5.2)
and (5.13), by inserting the incident and desired scattered waves, implying that condition
(8.1) is exactly satisfied at each point on the surface. The admittance profile is calculated
assuming d = 4,/10 and n,, =1, as plotted in Fig. 8.2(b).The excitation field is a TE-
polarized plane wave propagating in xz-plane at an angle of 45° toward the x-axis and

the scattered wave is the ideal specularly reflected wave assuming a perfect mirror at

z=0, shown in Fig. 8.2(b),

(Ei H, ) _ (—f/, —Xxcos45—zsin45 J Eoe—_jsin A5k,x ,jcos4Sk,z
o
(8.2)

—Xxcos45+ zsin45 i _;

I jsind5kx —jcos45k,z

(ES,HS)—[y, ; Eye e
0

We design the cloaking layer conformal to the obstacle to follow its line shape.
Consequently, the surface covering the triangular object in Fig. 8.2(a) has a constant

normal vector ﬁ=(—2ch+L2)/\/4H2 +1? on side 1 and ﬁ=(2ch+L2)/\/4H2 +1?

on side 2. Magneto-electric properties of the surface are then found following Eq. (5.2),

v, - 4 :2b(Hl.x+st)—a(HiZ+Hsz), 8.3)
’ Zm,xx (Eiy + Esy)

where a=n-X,b=n-Z. E, is an arbitrary constant complex number, which does not

influence the acquired surface properties in (8.3).This indicates that the designed

metasurface cloaks are independent of the absolute phase and amplitude of the excitation
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signal. The magneto-electric surface properties are then exploited to characterize the

equivalent non-magnetic surface admittance 7Y following (5.13). The sheet

e,surface,yy
admittance of the grounded metasurface for H =800nm, L=5000nm, d=50nm,

and n_,, =1, at 4, =500 nm is shown in Fig.8.2(b,c).

side | side Il

% A
7 7
///

il

Figure 8.2: (a) Illustration of the cloaking setup. A PEC triangular obstacle with lateral
size L and center height H is placed on a PEC ground plane. The excitation signal is a
TE polarized plane wave (E = yE,)), illuminating the structure at the angle of 45 degrees
toward the x-axis. The gradient metasurface is shown with a dashed line, covering the
structure on both sides. (b) Electric surface admittance of the cloaking metasurface
plotted versus local distance to the ground plane, with 4, = 500 nm. The physical

dimensions of the obstacle are set at H =800 nm and L =5 pum . The metasurface
substrate is 50 nm thick with n, =1. Snapshot in time of the electric field distribution

when the structure is illuminated by a Gaussian beam: (¢) free-standing obstacle; (d)
obstacle covered with a graded metasurface characterized in panel (b); (e) cloaking
metasurface approximated by its reactive components. (Reprinted with permission from
Philosophical Transactions A, Vol. 373, Issue 2049, pp. 20140351 (2015). Copyright
2015 The Royal Society Publishing).

For cloaking, the optimal surface admittance is generally complex and,

interestingly, the requirement on the surface admittance is to have lossy elements (i.e.

Rel[Y, ]>0) on one edge and active components (i.e. Re[Y, ]1<0) on the

,surface,yy ,surface,yy

opposite side, while the reactive portions are symmetric. This shares interesting analogies
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with the recently proposed PT-symmetric cloaking configurations in which a balanced
combination of loss and gain may create unidirectional cloaking in various setups [12]-
[14]. The distribution of the electric field around the obstacle is shown in Fig. 8.2(d),
when the cloaking layer illustrated in panel (b) is applied at the predesignated position
around the object. The presence of the cloak successfully enforces the desired specular
reflection pattern, with negligible residual scattering associated to the finite thickness of

the configuration (d =50 nm). Next, we relax the requirement on spatially distributed

loss/gain over the surface and replace the exact complex admittance of Fig. 8.2(b) with its

reactive portion, ie. Y, u.. = 7Im[Y, Shown in Fig. 8.2(e) is the

surface.yy] -
corresponding electric field distribution of the passive cloak, clearly displaying sub-
optimal performance compared to the exact solution. Yet, even with the approximate
passive cloak, the unwanted scattering is largely suppressed, which is particularly
interesting considered the large dimensions of the obstacle compared to the operation
wavelength. The residual scattering can be minimized by further optimizing the passive
cloaking layer, which we do in the next examples, physically implementing a surface

cloak based on the admittance elements shown in Fig. 6.1(a). The results presented in this

example have been performed via full-wave simulations in COMSOL Multiphysics [15].

8.4 REALIZATION OF 2D AND 3D ULTRATHIN CARPET CLOAKS

In the previous section, the reactance profile presented in Fig. 8.2(b) is imposed
on the metasurface in a continuous fashion and with infinite spatial resolution. It would
be insightful to physically implement a metasurface-based cloak and study its
performance under realistic conditions. For this purpose, here we implement a graded

metasurface to effectively conceal a PEC triangle with physical dimensions of

L=1500nm and H =200nm at A, =500nm and under 45 degrees TE illumination.
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The metasurface thickness is set at 7= 4,/10 to ensure accurate sheet approximation,

and we choose d =100nm and ng, =1. The metasurface elements are the conjoined

dielectric-plasmonic particles shown in Fig. 6.1(a) and are made of combinations of a
high index dielectric (n=3.46) and a plasmonic metal (Ag). Silver dispersion and
realistic losses are taken into account considering the Drude type permittivity model
E4g = —a)f,/a)(a)—jy) , with &, =5, @,=27rx2175THz and y=27x435THz
based on experimental data [16]. The surface admittance is discretized into 13 elements
on each side, elements 1 to 8 with lateral size of 97 nm and elements 9-13 with lateral
size of 112 nm (approximately 4,/5), to guarantee an acceptable resolution at 500 nm.
These choice of dimensions follow geometrical specifications of the obstacle (8 equally
sized elements to cover the object and 5 equally sized elements to cover the corners). As
shown in Fig. 8.3(a), elements 9-13 are polygonic, rather than an exact rectangular shape.

The complex computed sheet admittance is approximated with its reactive portion

for ease of implementation, i.e. Y, i, s, =JjIm[Y, ]. Surface admittance of the

,surface,yy
composite dielectric-plasmonic nanoparticles have been shown to be widely controllable
by varying the filling ratio between the two materials (see section 6.2). Here, in order to
extract the properties of each element, first, we calculated the reflection coefficient of the
designed passive surface on each of the 13 segments using Eq. (5.12). The composite
particles are then simulated in CST full-wave electromagnetic solver and the required
reflection coefficients mapped to the filling ratio between the two materials in the cell.
The obtained parameters are reported in Table 8.1-second column. Figure 8.3(b) shows
the eclectic field distribution around the obstacle applying such analytically designed
cloak. As we discussed in the previous section, mutual coupling between adjacent
elements may modify their local admittance while assembled in the graded surface. In

addition, the polygonal shape of corners and surface granularity will also affect the
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performance, since the admittance is inevitably averaged on each portion. However, and
in spite of all these non-idealities and the passive approximation, the covered obstacle

restores the original field distribution to very good extent (uncloaked case in Fig. 8.4(a)).

Figure 8.3: (a) Physical implementation of the carpet cloak. Designed surface admittance
is implemented by varying filling ratio of silver inside each element (data provided in
Table 8.1). (b) Time snapshot of the electric field distribution when the object is covered
with the analytically designed metasurface with parameters given in Table 8.1-second
column. (Reprinted with permission from Philosophical Transactions A, Vol. 373, Issue
2049, pp. 20140351 (2015). Copyright 2015 The Royal Society Publishing).

To eliminate the remaining undesired effects, we further fine tuned the surface to
restore the local electric field over a hypothetical line with 20 nm spacing on the
metasurface and effectively realize our analytically calculated surface admittance, now
including all mutual couplings, discretization effects, and the approximation of neglecting
the resistive portion of the impedance. Optimized filling ratios of the silver portion are
reported in Table 8.1-third column and the distribution of electric field around the

optimized cloak are shown in Fig. 8.4(b). Comparing these two sets of data reveals the
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stability of the design to variations of surface parameters as well. A 3D sketch of the final

setup is shown in Fig. 8.4(c).

Table 8.1. Calculated and optimized silver filling ratio in each surface element of the
cloak shown in Fig. 8.3(a). Based on reciprocity, in this passive limit the metasurface is
symmetric on the two sides. (Reprinted with permission from Philosophical Transactions
A, Vol. 373, Issue 2049, pp. 20140351 (2015). Copyright 2015 The Royal Society
Publishing).

Element Calculated Optimized
Number  Filling Ratio  Filling Ratio

1 0.518 0.525
2 0.585 0.505
3 0.614 0.505
4 0.632 0.587
5 0.645 0.608
6 0.655 0.628
7 0.666 0.634
8 0.676 0.639
9 0.706 0.732
10 0.723 0.661
11 0.756 0.688
12 0.828 0.759
13 1 0.991

Figures 8.4(a,b) compare the electric field distribution in the incidence plane,
when the bare and optimized cloaked objects are illuminated by a Gaussian beam at 45
degrees (the design angle). As desired, the cloaked set-up scatters like a flat ground plane
and the near field around the scatterer is fully restored. This is quantitatively shown in
Fig. 8.43(d), in which we plot the total electric field (i.e. y-E) along a hypothetical line
placed 20 nm above the surface. Incorporating a single 50 nm thick graded surface, both
amplitude and phase of the electric field are successfully reconstructed at each point to

those of a reference flat mirror. Due to the subwavelength thickness of the metasurface
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and small lateral foot-print of the elements, the metasurface response is stable with

respect to the angle of incidence [17]-[18].
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Figure 8.4: (a) A time snapshot of the electric field distribution when the object (without

cloak) is illuminated by a 45° Gaussian beam. The ground plane and the scatterer are
made of PEC material, and the length and height of the object are L =1500 nm and

H =200nm . (b) Electric field distribution when the object is covered with the designed
metasurface (cloaked). The metasurface thickness is /4 =50 nm, placed on top of the
original object and conformally following its shape with d =100 nm spacing. (c) 3D

sketch of the deigned cloaking set-up. (d) Phase of the total electric field on a
hypothetical boundary placed at 20 nm distance above the metasurface, as indicated by
the white arrow in panel (c). The corresponding amplitude is also shown in the inset. (e)
Angular dependence of the carpet cloak metasurface: the total field intensity along a half
circle enclosing the system (dashed-line in panel a) is shown for three different incident
angles. Blue and red curves refer to cloaked and uncloaked cases, and the gray curve
indicates the reference response in the absence of any surface bump. All fields are
calculated through full-wave simulations of the entire setup [19]. (Reprinted with
permission from Philosophical Transactions A, Vol. 373, Issue 2049, pp. 20140351
(2015). Copyright 2015 The Royal Society Publishing).
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This is further studied in Fig. 8.4(e), in which we excite the object under different
incident angles and record the field magnitude on a half-circle placed at R =10 4,
(indicated in Fig. 8.4(a) by a dashed line). The numerical simulations confirm the angular

stability of the designed cloak over more than +10 degrees range [19].

8.4.1 Realization of ray-optic based carpet cloaks

As we discussed in the beginning of this chapter, the exact requirements on the
surface admittance and local phase/amplitude compensation may be simplified to merely
a local phase compensation as long as the chosen surface profile smoothly varies in the
scale of a wavelength. In addition, we notice that ultimately, and in order to eliminate the
effects of mutual coupling and passive approximation of an ideal surface cloak, fine
tuning of the initial metasurface design is usually necessary. Consequently, it is
reasonable to design regular surface cloaks based on ray-optics, where the role of the
metasurface is to compensate for the phase difference between the reflection from a flat
mirror and reflection from an elevated point on the object. In this section, we design two
surface-cloaks based on this simple ray-optics approach. As we will discuss, we obtain
very good cloaking performance relying on thin, conformal, and passive cloaking
blankets. In addition, and in contrast to the previous example, here we also exploit
polarization insensitive surface elements (as in Fig. 6.6(b)) to hide 2D and 3D objects.

As the first example, we design a carpet cloak to conceal a PEC cylindrical dome,
as shown in the inset of Fig. 8.5(¢). The dome is a circular segment, infinite in the y-
direction and lying in the xy-plane, with length of 1300 nm and height of 150 nm,
respectively. An incident perpendicularly polarized Gaussian beam (electric field along
the y-axis) illuminates the obstacle at 45°, as illustrated in Fig. 8.5(c). Again, as

expected, the presence of the bump distorts the original field pattern and a large shadow
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is formed in the forward direction, also highlighted in Fig. 8.5(e), where we plot the field
intensity along a quarter-circle trajectory in the far-field of the obstacle (red line). In
comparison to the reference beam (specular reflection, gray), the fields are diffracted and
scattered by the object.

In order to cloak the dome, we conformally cover it with a graded metasurface
composed of nanoblocks shown in Fig. 8.5(a). The metasurface follows the circular line
shape of the dome, so the unit cells are "curved sectors" rather than exact cubical units.
This, however, only minorly affects the estimated reflected field, as the radius of
curvature is large compared to the size of each nanoblock. The metasurface may also
follow simpler shapes, such as planar, triangular or smooth bell-shaped surfaces, and
does not necessarily have to be conformal to the object. Here we chose to keep the exact
shape of target to minimize the profile, and minor effects of unit cell approximation are
eliminated by fine tuning the design. The graded metasurface is discretized into 17
segments in the xz-plane (each with approximate length of 100 nm), repeated in the y-
direction with a 100 nm period, as shown in the inset of Fig. 8.5(e). The rod's radii are
theoretically determined to follow condition (8.1), and then optimized through a series of
simulations of the entire setup to account for mutual coupling between adjacent blocks,
their slightly different slopes, and fairly rough discretization of the field profile (4,/5).
Due to reciprocity, the geometrical symmetry of obstacle imposes a symmetry condition
on the cloak [20] that reduces the overall number of optimization variables to just nine.

Figure 8.5(b) shows the obtained phase and amplitude distribution of the total
electric field along a circular line above the metasurface (at 20 nm distance), as shown in
Fig. 8.5(e)-inset. Black curves indicate the near-field distribution around the cloaked
dome while red and gray curves represent the cases of an uncloaked dome and a flat

mirror, respectively. As expected, the metasurface successfully repairs the phase
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distortion caused by the obstacle, and it restores the near-field as if the object were not
there, Accordingly, Fig. 3d shows a snapshot of the electric field distribution with the
dome covered by the optimized cloak. The small residual scattering is associated to the
metasurface granularity. Even with just five nanoblocks per wavelength, we achieve a
very good level of scattering reduction.

Interestingly, our method also eliminates the inevitable lateral shift occurring in
isotropic realizations of transformation electromagnetic carpet cloaks [21], associated to
their transverse homogeneity and finite thickness. As shown in Fig. 8.5(¢), the main beam
is reconstructed to its original shape, employing a single 60 nm thick inhomogeneous
metasurface. The ultrathin profile is in direct contrast to transformation electromagnetic
based carpet cloaks, for which electrically large metamaterial covers must be placed
around the target even for unidirectional cloaking [3],[5], typically larger than the
obstacle itself. Metasurface cloaks, however, can have deeply subwavelength thicknesses,
and eliminate the requirement for precise control of 3D anisotropy.

Similar to the previous study, in this example we designed the cloak for an
incident angle of 45°; however, the cloaking performance is stable to variations in angle
as long as we employ a thin, gradually inhomogeneous surface. This is easily explained
considering that, in order to compensate the phase distortion imposed by the object, the

local reflection phase at each point on the metasurface is approximated as ZR,

esired

7w —2kyhcos@, with k, and h indicating the free-space wave number and local height

of the obstacle, and € being the incident angle. At the same time, the reflection phase

from a lossless normalized surface impedance jX, placed at distance d < 4, from a

ground plane, and illuminated at an angle @ by a perpendicularly polarized plane wave

can be approximately written as /R = 7 —2kydX ,cos& / (X, +kyd). Comparing the two

expressions, we see that, as we tune the surface impedance to operate for a specific
180



incident angle, it essentially maintains its performance for other angles. In practice, finite
thickness and slight angular dependence break this assumption for large variations in &;
yet, as illustrated in Fig. 8.5(f), the cloaking performance is maintained to a very good
extent over at least £10° variations from the original angle.
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Figure 8.5: (a) Schematic of the concentric nanoresonator used to implement metasurface
cloak. (b) Electric field distribution along the cloak surface (white arrow in panel (e)-
inset) when the object is illuminated at 500 nm with a Gaussian beam. An ideal mirror,
bare object, and cloaked object cases are shown in gray, red, and black, respectively. (c)-
(d) Time snapshot of the electric field distribution without and with the cloaking surface.
(e) Field intensity along the dashed line in panel (c) for the three cases. Deviation of
scattering signature for the bare obstacle from the ideal scenario is highlighted in red.
Inset shows a 3D view of the dome and cloaking surface. (f) Same as (e) when the angle
of incident is changed by +10°. (Reprinted with permission from AWPL, Vol. 13, pp.
1775 - 1778 (2014). Copyright 2014 IEEE).
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Finally, and in analogy with the previous example, we applied the same technique
to a 3D obstacle, shown in Fig. 8.6(a). The target now is a PEC spherical dome with
height and length of 150 nm and 1300 nm, illuminated with a 2D Gaussian beam at 45°.
The metasurface elements are kept unchanged compared to the design in Fig. 8.5,
however, in order to account for the 3D geometry, the elements are arranged so that the
surface is axially symmetric (Fig. 8.6(a)-inset). This assumption provides a good
approximation of the ideal cloaking surface in view of the angular stability of the design
(Fig. 8.5(f)). While the optimized 3D cloak is not required to be axially symmetric, as the
incident polarization and angle are slightly different for adjacent elements, this

assumption significantly reduces the computational cost and post-optimization steps.
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Figure 8.6: (a) The 3D cloaking setup. A spherical PEC dome is placed on a semi-infinite
ground plane, illuminated by a Gaussian beam at 500 nm, at 45° angle. Observation
plane is set in the mirror-symmetric position of excitation plane. Inset shows the graded
metasurface wrapped on the dome. (b) Power intensity along dashed line in panel (a).
Gray, red, and black lines indicate flat surface, uncloaked, and cloaked dome cases,
respectively. (c)-(e) Power intensity on the observation plane. All plots are in same scale.
(Reprinted with permission from AWPL, Vol. 13, pp. 1775 - 1778 (2014). Copyright
2014 IEEE).
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Figures 8.6(c,e) show the intensity distribution of the scattered power on the
observation plane. Compared to the case of a simple flat mirror, for which the Gaussian
profile is preserved, the bare object creates a funnel-shaped scattering pattern with a
distinct null at its center. Employing the cloaking metasurface, however, drastically
reduces these scattering lobes and restores the main beam. For a clearer comparison, the
trajectory of power flow along the dashed line is also shown in Fig. 8.6(b). Our study
indicates that also this 3D cloak maintains a good performance over £10° variations in

incidence angle.

8.5 CONCLUSION

In this chapter, we have introduced the concept of unidirectional carpet cloaking
based on ultrathin graded metasurfaces, showing that, by engineering the local field
distribution on the surface of an obstacle, we can realize ultrathin cloaks for arbitrary
structures. Practical examples have been presented at optical frequencies and the cloaking
performance has been shown to be stable to surface discretization, incident angle, and
polarization. The reflection signature of the proposed metasurfaces may be locally
managed with external signals for various applications such as, switching between
cloaked/uncloaked modes, or creating scattering illusions to deceive the observer [22].
Temperature control and nonlinear effects at optical frequencies, gate voltage in
graphene-based terahertz metasurfaces, and varactor loading in FSSs, are among possible
approaches to add tunability in this design. As we discussed, by considering nonlocal or
active metasurfaces, it will be possible to create ideal and excitation-independent carpet
cloaks. With the advantage of easier implementation and simple design methodology, we
envision a broad range of application for this concept, in camouflaging, switchable

invisibility, noise reduction in wireless communication systems, and specially in the
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context of cloaking electrically large objects, with potential controllability and

reconfigurability [23]-[25].
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Chapter 9: Conclusion and Future Directions

9.1 CONCLUSIONS

In this study we investigated that to what extent it is possible to engineer the
scattering, absorption, and local wave-matter interactions of metamolecules, which are
the basic building-blocks of metamaterials, as well as the possibility of wave
manipulation by two-dimensional assembles of them, known as metasurfaces. First, we
proposed a novel nanoparticle geometry with tailored complex absorption signature. We
demonstrated that these plasmonic-based nanostructures can be engineered to provide
unprecedented absorption efficiency over broad and controllable bandwidths, specifically
in the optical frequency range. Later, and based on these composite nanoparticles, we
proposed a nanoscale optical switch with strong sensitivity and tunability. Next, we
demonstrated the theoretical limitations of a furtive sensor and provided a proof of the
concept implementation of minimum-scattering superabsorbers at optical and microwave
frequencies. Our analysis provided the physical limitations imposed on cloaking general
absorbing bodies, which we also explored via an experimental realization of a low-
scattering microwave receiver. Finally, we proposed a new approach for controlling the
propagation and scattering of light through gradient or non-periodic metasurfaces. We
provided a comprehensive theoretical method to design wave-shaping metasurfaces that
are capable of performing complex functionalities over ultrathin surfaces. Based on our
full analytical approach, we underlined the inherent limitations and wide range of
capabilities of metasurfaces, and proposed novel techniques to significantly improve their
efficiency. We then investigated our proposed concept of local wave manipulation for
several practical applications in beam steering, improved energy harvesting, and cloaking

arbitrary obstacles.
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9.2 FUTURE DIRECTIONS AND OUTLOOKS

In spite of the significant developments in the field of metamaterials and
metasurfaces, there are several challenges that may hinder the technological advent of
these fields. For instance, many of metasurface configurations exploit localized plasmon
resonances that are known to be very lossy. Thanks to the advances in nanofabrication
techniques, recently, epitaxially grown plasmonic metals have been realized with the
lower levels of intrinsic loss [1]. In addition, exploiting high index low-loss dielectric
metamolecules in place of plasmonic elements is aimed to reduce the intrinsic loss of
metasurfaces [2]-[3]. Exploring other possibilities to reduce the insertion loss of
metasurfaces is an important direction of future works in this area. Besides the available
analytical techniques, numerical and approximate methods to optimize metamolecules
and metasurfaces are of significant importance. To be of broader interest, there are also
many efforts on engineering novel infrared and THz metamolecules. Advancing the
current nanofabrication techniques in order to achieve higher resolutions at the nanoscale
is of fundamental importance as well. Finally, adding tunability and reconfigurability into
wave shaping metasurfaces is highly desirable as it enables dynamic spatial light

modulation over an ultrathin surface.

9.3 REFERENCES

[1] Wu, Y.; Zhang, C.; Estakhri, N. M.; Zhao, Y.; Kim, J.; Zhang, M.; Liu, X. X.;
Pribil, G. K.; Alu, A.; Shih, C. K., Intrinsic optical properties and enhanced
plasmonic response of epitaxial silver. Advanced Materials 2014, 26 (35), 6106-
6110.

[2] D. Lin, P. Fan, E. Hasman, M. L. Brongersma, Dielectric gradient metasurface

optical elements, Science 345, 298 (2014).

188



[3] Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A., Dielectric metasurfaces for
complete control of phase and polarization with subwavelength spatial resolution

and high transmission. Nature nanotechnology 2015.

189



Bibliography

Adachi, S., GaAs, AlAs, and AlxGal— xAs: Material parameters for use in research and
device applications. Journal of Applied Physics 1985, 58 (3), R1-R29.

Aieta, F.; Genevet, P.; Kats, M. A.; Yu, N.; Blanchard, R.; Gaburro, Z.; Capasso, F.,
Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on
plasmonic metasurfaces. Nano letters 2012, 12 (9), 4932-4936.

Aieta, F.; Genevet, P.; Yu, N.; Kats, M. A.; Gaburro, Z.; Capasso, F., Out-of-plane
reflection and refraction of light by anisotropic optical antenna metasurfaces with
phase discontinuities. Nano Letters 2012, 12 (3), 1702-1706.

Alaeian, H.; Dionne, J. A., Parity-time-symmetric plasmonic metamaterials. Physical
Review A 2014, 89 (3), 033829.

Al-Joumayly, M. A.; Behdad, N., A generalized method for synthesizing low-profile,
band-pass frequency selective surfaces with non-resonant constituting elements.
Antennas and Propagation, IEEE Transactions on 2010, 58 (12), 4033-4041.

Alu, A., Mantle cloak: Invisibility induced by a surface. Physical Review B 2009, 80
(24), 245115.

Alu, A.; Engheta, N., Achieving transparency with plasmonic and metamaterial coatings.
Physical Review E 2005, 72 (1), 016623.

Alu, A.; Engheta, N., Cloaked near-field scanning optical microscope tip for noninvasive
near-field imaging. Physical Review Letters 2010, 105 (26), 263906.

Alu, A.; Engheta, N., Cloaking a sensor. Physical Review Letters 2009, 102 (23), 233901.

Alu, A.; Engheta, N., Enhanced directivity from subwavelength infrared/optical nano-
antennas loaded with plasmonic materials or metamaterials. Antennas and
Propagation, IEEE Transactions on 2007, 55 (11), 3027-3039.

Alu, A.; Engheta, N., How does zero forward-scattering in magnetodielectric
nanoparticles comply with the optical theorem? Journal of Nanophotonics 2010, 4
(1), 041590-041590-17.

Alu, A.; Engheta, N., Multifrequency optical invisibility cloak with layered plasmonic
shells. Physical Review Letters 2008, 100 (11), 113901.

190



Alu, A.; Engheta, N., Optical nanoswitch: an engineered plasmonic nanoparticle with
extreme parameters and giant anisotropy. New Journal of Physics 2009, 11 (1),
013026.

Alu, A.; Engheta, N., Polarizabilities and effective parameters for collections of spherical
nanoparticles formed by pairs of concentric double-negative, single-negative, and/
or double-positive metamaterial layers. Journal of Applied Physics 2005, 97 (9),
094310.

Alu, A.; Engheta, N., Tuning the scattering response of optical nanoantennas with
nanocircuit loads. Nature Photonics 2008, 2 (5), 307-310.

Alu, A.; Maslovski, S., Power relations and a consistent analytical model for receiving
wire antennas. Antennas and Propagation, IEEE Transactions on 2010, 58 (5),
1436-1448.

Alu, A.; Salandrino, A.; Engheta, N., Coupling of optical lumped nanocircuit elements
and effects of substrates. Optics Express 2007, 15 (21), 13865-13876.

Ambichl, P.; Makris, K. G.; Ge, L.; Chong, Y.; Stone, A. D.; Rotter, S., Breaking of P T
Symmetry in Bounded and Unbounded Scattering Systems. Physical Review X
2013, 3 (4), 041030.

Andersen, J. B.; Frandsen, A., Absorption efficiency of receiving antennas. Antennas and
Propagation, IEEE Transactions on 2005, 53 (9), 2843-289.

Andrianov, E.; Pukhov, A.; Dorofeenko, A.; Vinogradov, A., Spaser operation in the
presence of external optical field. Journal of Communications Technology and
Electronics 2012, 57 (1), 106-116.

Andrianov, E.; Pukhov, A.; Dorofeenko, A.; Vinogradov, A.; Lisyansky, A., Dipole
response of spaser on an external optical wave. Optics letters 2011, 36 (21), 4302-
4304.

Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A., Dielectric metasurfaces for complete
control of phase and polarization with subwavelength spatial resolution and high
transmission. Nature nanotechnology 2015.

Argyropoulos, C.; Chen, P.-Y.; D’Aguanno, G.; Engheta, N.; Alu, A., Boosting optical
nonlinearities in g-near-zero plasmonic channels. Physical Review B 2012, 85 (4),
045129.

Argyropoulos, C.; Chen, P.-Y.; Monticone, F.; D’Aguanno, G.; Alu, A., Nonlinear
plasmonic cloaks to realize giant all-optical scattering switching. Physical review
letters 2012, 108 (26), 263905.
191



Aubry, A.; Lei, D. Y.; Maier, S. A.; Pendry, J., Broadband plasmonic device concentrating
the energy at the nanoscale: The crescent-shaped cylinder. Physical Review B
2010, 82 (12), 125430.

Aubry, A.; Lei, D. Y.; Maier, S. A.; Pendry, J., Interaction between plasmonic
nanoparticles revisited with transformation optics. Physical review letters 2010,
105 (23), 233901.

Avitzour, Y.; Urzhumov, Y. A.; Shvets, G., Wide-angle infrared absorber based on a
negative-index plasmonic metamaterial. Physical Review B 2009, 79 (4), 045131.

Balanis, C. A., Advanced Engineering Electromagnetics. John Wiley & Sons: 1989.
Balanis, C. A., Antenna theory: analysis and design. John Wiley & Sons: 1996.

Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics.
Nature 2003, 424 (6950), 824-830.

Baron, A.; Devaux, E.; Rodier, J.-C.; Hugonin, J.-P.; Rousseau, E.; Genet, C.; Ebbesen, T.
W.; Lalanne, P., Compact antenna for efficient and unidirectional launching and
decoupling of surface plasmons. Nano letters 2011, 11 (10), 4207-4212.

Bastys, V.; Pastoriza Santos, I.; Rodriguez Gonzélez, B.; Vaisnoras, R.; Liz Marzan, L.
M., Formation of silver nanoprisms with surface plasmons at communication
wavelengths. Advanced Functional Materials 2006, 16 (6), 766-773.

Bender, C. M.; Boettcher, S., Real spectra in non-Hermitian Hamiltonians having P T
symmetry. Physical Review Letters 1998, 80 (24), 5243.

Bender, C. M.; Brody, D. C.; Jones, H. F., Complex extension of quantum mechanics.
Physical Review Letters 2002, 89 (27), 270401.

Bergman, D. J.; Stockman, M. L., Surface plasmon amplification by stimulated emission
of radiation: quantum generation of coherent surface plasmons in nanosystems.
Physical review letters 2003, 90 (2), 027402.

Bermel, P.; Luo, C.; Zeng, L.; Kimerling, L. C.; Joannopoulos, J. D., Improving thin-film
crystalline silicon solar cell efficiencies with photonic crystals. Optics Express
2007, 15 (25), 16986-17000.

Bohren, C. F.; Huffman, D. R., Absorption and scattering of light by small particles. John
Wiley & Sons: 1983.

Boltasseva, A.; Shalaev, V. M., Fabrication of optical negative-index metamaterials:
Recent advances and outlook. Metamaterials 2008, 2 (1), 1-17.

192



Brown, J. W.; Churchill, R. V.; Lapidus, M., Complex variables and applications.
McGraw-Hill New York: 1996; Vol. 7.

C. H. Papas, C. H., Theory of Electromagnetic Wave Propagation. Dover, New York:
1988.

Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.;
Seitsonen, A. P.; Saleh, M.; Feng, X., Atomically precise bottom-up fabrication of
graphene nanoribbons. Nature 2010, 466 (7305), 470-473.

Castaldi, G.; Gallina, I.; Galdi, V.; Alu, A.; Engheta, N., Power scattering and absorption

mediated by cloak/anti-cloak interactions: A transformation-optics route toward
invisible sensors. JOSA B 2010, 27 (10), 2132-2140.

Chen, C.-Y.; Pan, C.-L.; Hsieh, C.-F.; Lin, Y.-F.; Pan, R.-P., Liquid-crystal-based terahertz
tunable Lyot filter. Applied physics letters 2006, 88 (10).

Chen, P.-Y.; Alu, A., Atomically thin surface cloak using graphene monolayers. ACS
nano 2011, 5 (7), 5855-5863.

Chen, P.-Y.; Alu, A., Optical nanoantenna arrays loaded with nonlinear materials.
Physical Review B 2010, 82 (23), 235405.

Chen, P.-Y.; Argyropoulos, C.; Alu, A., Enhanced nonlinearities using plasmonic
nanoantennas. Nanophotonics 2012, 1 (3-4), 221-233.

Chong, Y.; Ge, L.; Cao, H.; Stone, A. D., Coherent perfect absorbers: time-reversed
lasers. Physical Review Letters 2010, 105 (5), 053901.

Chong, Y.; Ge, L.; Stone, A. D., P T-Symmetry Breaking and Laser-Absorber Modes in
Optical Scattering Systems. Physical Review Letters 2011, 106 (9), 093902.

Chu, L. J., Physical Limitations of Omni Directional Antennas. Journal of applied physics
1948, 19 (12), 1163-1175.

Davis, L., Electostatic edge modes of a dielectric wedge. Physical Review B 1976, 14
(12), 5523.

Desurvire, E.; Bayart, D.; Desthieux, B.; Bigo, S., Erbium-doped fiber amplifiers: Device
and System Developments. J. Wiley: 2002.

Ding, F.; Kinsey, N.; Liu, J.; Wang, Z.; Shalaev, V. M.; Kildishev, A. In Unidirectional
surface plasmon polariton coupler in the visible using metasurfaces, 2014
Conference on Lasers and FElectro-Optics (CLEO)-Laser Science to Photonic
Applications, 2014.

193



Engheta, N., An idea for thin subwavelength cavity resonators using metamaterials with
negative permittivity and permeability. Antennas and Wireless Propagation
Letters, IEEE 2002, 1 (1), 10-13.

Engheta, N., Circuits with light at nanoscales: optical nanocircuits inspired by
metamaterials. Science 2007, 317 (5845), 1698-1702.

Engheta, N.; Ziolkowski, R. W., Metamaterials: physics and engineering explorations.
John Wiley & Sons: 2006.

Epstein, A.; Eleftheriades, G. V., Floquet-Bloch analysis of refracting Huygens
metasurfaces. Physical Review B 2014, 90 (23), 235127.

Epstein, A.; Eleftheriades, G., Passive lossless Huygens metasurfaces for conversion of
arbitrary source field to directive radiation. Antennas and Propagation, IEEE
Transactions on 2014, 62 (11), 5680-5695.

Esfandyarpour, M.; Garnett, E. C.; Cui, Y.; McGehee, M. D.; Brongersma, M. L.,
Metamaterial mirrors in optoelectronic devices. Nature nanotechnology 2014, 9
(7), 542-547.

Eustis, S.; El-Sayed, M. A., Why gold nanoparticles are more precious than pretty gold:
noble metal surface plasmon resonance and its enhancement of the radiative and
nonradiative properties of nanocrystals of different shapes. Chemical Society
Reviews 2006, 35 (3), 209-217.

Fan, P.; Chettiar, U. K.; Cao, L.; Afshinmanesh, F.; Engheta, N.; Brongersma, M. L., An
invisible metal-semiconductor photodetector. Nature Photonics 2012, 6 (6), 380-
385.

Farhat, M.; Chen, P.; Guenneau, S.; Enoch, S., Transformation Wave Physics:
Electromagnetics, Elastodynamics, and Thermodynamics, Pan Stanford, to be
published.

Farmahini-Farahani, M.; Mosallaei, H., Birefringent reflectarray metasurface for beam
engineering in infrared. Optics letters 2013, 38 (4), 462-464.

Feng, L.; Wong, Z. J.; Ma, R.-M.; Wang, Y.; Zhang, X., Single-mode laser by parity-time
symmetry breaking. Science 2014, 346 (6212), 972-975.

Feng, L.; Xu, Y.-L.; Fegadolli, W. S.; Lu, M.-H.; Oliveira, J. E.; Almeida, V. R.; Chen, Y.-
F.; Scherer, A., Experimental demonstration of a unidirectional reflectionless
parity-time metamaterial at optical frequencies. Nature Materials 2013, 12 (2),
108-113.

194



Fleury, R.; Soric, J.; Alu, A., Physical bounds on absorption and scattering for cloaked
sensors. Physical Review B 2014, 89 (4), 045122.

Fleury, R.; Sounas, D. L.; Alu, A., Negative refraction and planar focusing based on
parity-time symmetric metasurfaces. Physical Review Letters 2014, 113 (2),
023903.

Fuchs, R., Theory of the optical properties of ionic crystal cubes. Physical Review B
1975, 11 (4), 1732.

Garcia de Abajo, F. J., Graphene plasmonics: challenges and opportunities. Acs Photonics
2014, 1 (3), 135-152.

Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M., New
approaches to nanofabrication: molding, printing, and other techniques. Chemical
reviews 2005, 105 (4), 1171-1196.

Ge, L.; Stone, A. D., Parity-time symmetry breaking beyond one dimension: The role of
degeneracy. Physical Review X 2014, 4 (3), 031011.

Genevet, P;; Yu, N.; Aieta, F.; Lin, J.; Kats, M. A.; Blanchard, R.; Scully, M. O.; Gaburro,
Z.; Capasso, F., Ultra-thin plasmonic optical vortex plate based on phase
discontinuities. Applied Physics Letters 2012, 100 (1), 013101.

Gomez-Diaz, J. S.; Tymchenko, M.; Alu, A., Hyperbolic plasmons and topological
transitions over uniaxial metasurfaces. Physical Review Letters 2015, 114 (23),
233901.

Grady, N. K.; Heyes, J. E.; Chowdhury, D. R.; Zeng, Y.; Reiten, M. T.; Azad, A. K;
Taylor, A. J.; Dalvit, D. A.; Chen, H.-T., Terahertz metamaterials for linear

polarization conversion and anomalous refraction. Science 2013, 340 (6138),
1304-1307.

Green, R. B., Scattering from conjugate-matched antennas. Antennas and Propagation,
IEEE Transactions on 1966, 14 (1), 17-21.

Greenleaf, A.; Kurylev, Y.; Lassas, M.; Uhlmann, G., Cloaking a sensor via
transformation optics. Physical Review E 2011, 83 (1), 016603.

Gustafsson, M.; Sohl, C.; Kristensson, G. In Physical limitations on antennas of arbitrary
shape, Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, The Royal Society: 2007; pp 2589-2607.

Harrington, R., Time-Harmonic Electromagnetic Fields. John Wiley & Sons: 2001.

195



Hecht, B.; Sick, B.; Wild, U. P.; Deckert, V.; Zenobi, R.; Martin, O. J.; Pohl, D. W.,
Scanning near-field optical microscopy with aperture probes: Fundamentals and
applications. The Journal of Chemical Physics 2000, 112 (18), 7761-7774.

Helsing, J.; McPhedran, R. C.; Milton, G. W., Spectral super-resolution in metamaterial
composites. New Journal of Physics 2011, 13 (11), 115005.

Holloway, C. L.; Dienstfrey, A.; Kuester, E. F.; O’Hara, J. F.; Azad, A. K.; Taylor, A.J., A
discussion on the interpretation and characterization of metafilms/metasurfaces:

The two-dimensional equivalent of metamaterials. Metamaterials 2009, 3 (2),
100-112.

Holloway, C. L.; Kuester, E. F.; Gordon, J. A.; Hara, J. O.; Booth, J.; Smith, D. R., An
overview of the theory and applications of metasurfaces: The two-dimensional

equivalents of metamaterials. Antennas and Propagation Magazine, IEEE 2012,
54 (2), 10-35.

Holloway, C. L.; Mohamed, M. A.; Kuester, E. F.; Dienstfrey, A., Reflection and
transmission properties of a metafilm: With an application to a controllable

surface composed of resonant particles. Electromagnetic Compatibility, IEEE
Transactions on 2005, 47 (4), 853-865.

Houck, A. A.; Brock, J. B.; Chuang, 1. L., Experimental observations of a left-handed
material that obeys Snell’s law. Physical Review Letters 2003, 90 (13), 137401.

Husu, H.; Siikanen, R.; Mikitalo, J.; Lehtolahti, J.; Laukkanen, J.; Kuittinen, M.;
Kauranen, M., Metamaterials with tailored nonlinear optical response. Nano

Letters 2012, 12 (2), 673-677.

Ishimaru, A., Wave propagation and scattering in random media. Academic press New
York: 1978.

Jacob, Z.; Alekseyev, L. V.; Narimanov, E., Optical hyperlens: far-field imaging beyond
the diffraction limit. Optics Express 2006, 14 (18), 8247-8256.

Jelinek, L.; Machac, J., A Polarizability Measurement Method for Electrically Small
Particles. Antennas and Wireless Propagation Letters, IEEE 2014, 13, 1051-1053.

Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D., Photonic crystals:
molding the flow of light. Princeton university press: 2011.

Kahn, W. K.; Kurss, H., Minimum-scattering antennas. Antennas and Propagation, IEEE
Transactions on 1965, 13 (5), 671-675.

196



Karilainen, A. O.; Tretyakov, S. A., Circularly polarized receiving antenna incorporating
two helices to achieve low backscattering. Antennas and Propagation, IEEE
Transactions on 2012, 60 (7), 3471-3475.

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal
nanoparticles: the influence of size, shape, and dielectric environment. The
Journal of Physical Chemistry B 2003, 107 (3), 668-677.

Kettunen, H.; Wallén, H.; Sihvola, A., Electrostatic response of a half-disk. Journal of
Electrostatics 2009, 67 (6), 890-897.

Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M., Planar photonics with metasurfaces.
Science 2013, 339 (6125), 1232009.

Kim, M.; Wong, A. M.; Eleftheriades, G. V., Optical Huygens’ metasurfaces with
independent control of the magnitude and phase of the local reflection
coefficients. Physical Review X 2014, 4 (4), 041042.

Klar, T.; Perner, M.; Grosse, S.; Von Plessen, G.; Spirkl, W.; Feldmann, J., Surface-
plasmon resonances in single metallic nanoparticles. Physical Review Letters
1998, 80 (19), 4249.

Kuester, E. F.; Mohamed, M. A.; Piket-May, M.; Holloway, C. L., Averaged transition
conditions for electromagnetic fields at a metafilm. Antennas and Propagation,
IEEE Transactions on 2003, 51 (10), 2641-2651.

Kuiper, S.; Hendriks, B., Variable-focus liquid lens for miniature cameras. Appl. Phys.
Lett. 2004, 85 (7), 1128-1130.

Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J. D.; Fisher, P.; Soljaci¢, M., Wireless
power transfer via strongly coupled magnetic resonances. Science 2007, 317
(5834), 83-86.

Kwon, D.-H.; Pozar, D. M., Optimal characteristics of an arbitrary receive antenna.
Antennas and Propagation, IEEE Transactions on 2009, 57 (12), 3720-3727.

Lai, Y.; Ng, J.; Chen, H.; Han, D.; Xiao, J.; Zhang, Z.-Q.; Chan, C. T., Illusion optics: the
optical transformation of an object into another object. Physical Review Letters
2009, 102 (25), 253902.

Landy, N.; Sajuyigbe, S.; Mock, J.; Smith, D.; Padilla, W., Perfect metamaterial absorber.
Physical Review Letters 2008, 100 (20), 207402.

Landy, N.; Smith, D. R., A full-parameter unidirectional metamaterial cloak for
microwaves. Nature Materials 2013, 12 (1), 25-28.

197



Lee, J.; Nam, S., Fundamental aspects of near-field coupling small antennas for wireless
power transfer. Antennas and Propagation, IEEE Transactions on 2010, 58 (11),
3442-3449.

Leonhardt, U., Optical conformal mapping. Science 2006, 312 (5781), 1777-1780.

Li, G.; Kang, M.; Chen, S.; Zhang, S.; Pun, E. Y.-B.; Cheah, K. W.; Li, J., Spin-enabled
plasmonic metasurfaces for manipulating orbital angular momentum of light.
Nano letters 2013, 13 (9), 4148-4151.

Li, J.; Pendry, J., Hiding under the carpet: a new strategy for cloaking. Physical Review
Letters 2008, 101 (20), 203901.

Li, X.; Xiao, S.; Cai, B.; He, Q.; Cui, T. J.; Zhou, L., Flat metasurfaces to focus
electromagnetic waves in reflection geometry. Optics letters 2012, 37 (23), 4940-
4942.

Lin, D.; Fan, P.; Hasman, E.; Brongersma, M. L., Dielectric gradient metasurface optical
elements. science 2014, 345 (6194), 298-302.

Lin, Z.; Ramezani, H.; Eichelkraut, T.; Kottos, T.; Cao, H.; Christodoulides, D. N.,
Unidirectional invisibility induced by P T-symmetric periodic structures. Physical
Review Letters 2011, 106 (21), 213901.

Litchinitser, N. M.; Maimistov, A. I.; Gabitov, I. R.; Sagdeev, R. Z.; Shalaev, V. M.,
Metamaterials: electromagnetic enhancement at zero-index transition. Optics
Letters 2008, 33 (20), 2350-2352.

Liu, L.; Zhang, X.; Kenney, M.; Su, X.; Xu, N.; Ouyang, C.; Shi, Y.; Han, J.; Zhang, W.;
Zhang, S., Broadband metasurfaces with simultaneous control of phase and
amplitude. Advanced Materials 2014, 26 (29), 5031-5036.

Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H., Infrared perfect absorber and
its application as plasmonic sensor. Nano letters 2010, 10 (7), 2342-2348.

Lu, Y.-J.; Kim, J.; Chen, H.-Y.; Wu, C.; Dabidian, N.; Sanders, C. E.; Wang, C.-Y.; Lu,
M.-Y.; Li, B.-H.; Qiu, X., Plasmonic nanolaser using epitaxially grown silver
film. science 2012, 337 (6093), 450-453.

Luk'yanchuk, B.; Zheludev, N. 1.; Maier, S. A.; Halas, N. J.; Nordlander, P.; Giessen, H.;
Chong, C. T., The Fano resonance in plasmonic nanostructures and metamaterials.
Nature materials 2010, 9 (9), 707-715.

Luo, Y.; Lei, D. Y.; Maier, S. A.; Pendry, J., Broadband light harvesting nanostructures
robust to edge bluntness. Physical review letters 2012, 108 (2), 023901.

198



Ma, Y. G.; Sahebdivan, S.; Ong, C.; Tyc, T.; Leonhardt, U., Evidence for subwavelength
imaging with positive refraction. New Journal of Physics 2011, 13 (3), 033016.

Maci, S.; Minatti, G.; Casaletti, M.; Bosiljevac, M., Metasurfing: Addressing waves on
impenetrable metasurfaces. Antennas and Wireless Propagation Letters, IEEE
2011, 10, 1499-1502.

Maier, S. A., Plasmonics: fundamentals and applications. Springer Science & Business
Media: 2007.

Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N.; Musslimani, Z. H., Beam
dynamics in P T symmetric optical lattices. Physical Review Letters 2008, 100
(10), 103904.

Malitson, 1., Interspecimen Comparison of the Refractive Index of Fused Silica*,T. JOSA
1965, 55 (10), 1205-1209.

Mann, S. A.; Garnett, E. C., Extreme light absorption in thin semiconductor films
wrapped around metal nanowires. Nano letters 2013, 13 (7), 3173-3178.

McCall, S.; Platzman, P.; Dalichaouch, R.; Smith, D.; Schultz, S., Microwave
propagation in two-dimensional dielectric lattices. Physical Review Letters 1991,
67 (15), 2017.

McPhedran, R.; Perrins, W., Electrostatic and optical resonances of cylinder pairs.
Applied physics 1981, 24 (4), 311-318.

Milton, G. W., The theory of composites. Cambridge monographs on applied and
computational mathematics: 2002.

Mohammadi Estakhri, N.; Alu, A., Manipulating optical reflections using engineered
nanoscale metasurfaces. Physical Review B 2014, 89 (23), 235419.

Mohammadi Estakhri, N.; Alu, A., Minimum-scattering superabsorbers. Physical Review
B, Rapid Communications 2014, 89 (12), 121416.

Mohammadi Estakhri, N.; Alu, A., Parity-time symmetry breaking and amplifier-absorber
transitions in plasmonic nanoparticles. 2015 Conference on Lasers and Electro-
Optics (CLEO)-Laser Science to Photonic Applications, 2015.

Mohammadi Estakhri, N.; Alu, A., Physics of unbounded, broadband absorption/gain
efficiency in plasmonic nanoparticles. Physical Review B 2013, 87 (20), 205418.

199



Mohammadi Estakhri, N.; Alu, A., Ultra-thin unidirectional carpet cloak and wavefront
reconstruction with graded metasurfaces. Antennas and Wireless Propagation
Letters, IEEE 2014, 13, 1775-1778.

Mohammadi Estakhri, N.; Alu, A., Wavefront Transformation with Gradient
Metasurfaces, under review.

Mohammadi Estakhri, N.; Argyropoulos, C.; Alu, A., Graded metascreens to enable a
new degree of nanoscale light management. Phil. Trans. R. Soc. A 2015, 373
(2049), 20140351.

Mohammadi Estakhri, N.; Neder, V.; Knight, M.; Polman, A.; Alu, A., Wide-Angle,
Broadband Graded Metasurface for Back Reflection, under review.

Monticone, F.; Mohammadi Estakhri, N.; Alu, A., Full control of nanoscale optical
transmission with a composite metascreen. Physical Review Letters 2013, 110
(20), 203903.

Munson, R. E.; Haddad, H. A.; Hanlen, J. W., Microstrip reflectarray for satellite
communication and radar cross-section enhancement or reduction. Google
Patents: 1987.

Ni, X.; Emani, N. K.; Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M., Broadband light
bending with plasmonic nanoantennas. Science 2012, 335 (6067), 427-427.

Ni, X.; Kildishev, A. V.; Shalaev, V. M., Metasurface holograms for visible light. Nature
communications 2013, 4.

Ni, X.; Wong, Z. J.; Mrejen, M.; Wang, Y.; Zhang, X., An ultrathin invisibility skin cloak
for visible light. Science 2015, 349 (6254), 1310-1314.

Noginov, M.; Zhu, G.; Bahoura, M.; Adegoke, J.; Small, C.; Ritzo, B.; Drachev, V;
Shalaev, V., Enhancement of surface plasmons in an Ag aggregate by optical gain
in a dielectric medium. Optics letters 2006, 31 (20), 3022-3024.

Noginov, M.; Zhu, G.; Belgrave, A.; Bakker, R.; Shalaev, V.; Narimanov, E.; Stout, S.;
Herz, E.; Suteewong, T.; Wiesner, U., Demonstration of a spaser-based nanolaser.

Nature 2009, 460 (7259), 1110-1112.

Novotny, L., Effective wavelength scaling for optical antennas. Physical Review Letters
2007, 98 (26), 266802.

Orazbayev, B.; Estakhri, N. M.; Beruete, M.; Alu, A., Terahertz carpet cloak based on a
ring resonator metasurface. Physical Review B 2015, 91 (19), 195444,

200



Ordal, M. A.; Bell, R. J.; Alexander, R.; Long, L.; Querry, M., Optical properties of
fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni,
Pd, Pt, Ag, Ti, V, and W. Applied optics 1985, 24 (24), 4493-4499.

Ordal, M.; Long, L.; Bell, R.; Bell, S.; Bell, R.; Alexander, R.; Ward, C., Optical
properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared
and far infrared. Appl. Opt. 1983, 22 (7), 1099-1119.

Pala, R. A.; White, J.; Barnard, E.; Liu, J.; Brongersma, M. L., Design of plasmonic thin
film solar cells with broadband absorption enhancements. Advanced Materials
2009, 21 (34), 3504-3509.

Papakostas, A.; Potts, A.; Bagnall, D.; Prosvirnin, S.; Coles, H.; Zheludev, N., Optical
manifestations of planar chirality. Physical Review Letters 2003, 90 (10), 107404.

Pendry, J. B., Negative refraction makes a perfect lens. Physical Review Letters 2000, 85
(18), 3966.

Pendry, J. B.; Schurig, D.; Smith, D. R., Controlling electromagnetic fields. Science
2006, 312 (5781), 1780-1782.

Pfeiffer, C.; Grbic, A., Bianisotropic metasurfaces for optimal polarization control:
analysis and synthesis. Physical Review Applied 2014, 2 (4), 044011.

Pfeiffer, C.; Grbic, A., Metamaterial Huygens’ surfaces: tailoring wave fronts with
reflectionless sheets. Physical review letters 2013, 110 (19), 197401.

Pitkonen, M., A closed-form solution for the polarizability of a dielectric double half-
cylinder. Journal of Electromagnetic Waves and Applications 2010, 24 (8-9),
1267-1277.

Pohl, D. W.; Denk, W.; Lanz, M., Optical stethoscopy: Image recording with resolution
M20. Applied physics letters 1984, 44 (7), 651-653.

Polman, A., Plasmonics applied. Science 2008, 322 (5903), 868-869.

Pors, A.; Nielsen, M. G.; Bernardin, T.; Weeber, J.-C.; Bozhevolnyi, S. I., Efficient
unidirectional polarization-controlled excitation of surface plasmon polaritons.
Light: Science & Applications 2014, 3 (8), e197.

Pors, A.; Nielsen, M. G.; Eriksen, R. L.; Bozhevolnyi, S. 1., Broadband focusing flat
mirrors based on plasmonic gradient metasurfaces. Nano letters 2013, 13 (2), 829-
834.

Pozar, D. M., Microwave engineering. John Wiley & Sons: 1997.
201



Pozar, D. M.; Targonski, S. D.; Syrigos, H., Design of millimeter wave microstrip
reflectarrays. Antennas and Propagation, IEEE Transactions on 1997, 45 (2), 287-
296.

Pozar, D., Flat lens antenna concept using aperture coupled microstrip patches.
Electronics Letters 1996, 32 (23), 2109-2111.

Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P., A hybridization model for the
plasmon response of complex nanostructures. Science 2003, 302 (5644), 419-422.

Rainwater, D.; Kerkhoff, A.; Melin, K.; Soric, J.; Moreno, G.; Alu, A., Experimental
verification of three-dimensional plasmonic cloaking in free-space. New Journal
of Physics 2012, 14 (1), 013054.

Raki¢, A. D.; Djurisi¢, A. B.; Elazar, J. M.; Majewski, M. L., Optical properties of
metallic films for vertical-cavity optoelectronic devices. Applied optics 1998, 37
(22), 5271-5283.

Ramakrishna, S. A.; Pendry, J. B., Removal of absorption and increase in resolution in a
near-field lens via optical gain. Physical Review B 2003, 67 (20), 201101.

Ruan, Z.; Fan, S., Superscattering of light from subwavelength nanostructures. Physical
review letters 2010, 105 (1), 013901.

Rumsey, V., Reaction concept in electromagnetic theory. Physical Review 1954, 94 (6),
1483.

Ruschhaupt, A.; Delgado, F.; Muga, J., Physical realization of-symmetric potential
scattering in a planar slab waveguide. Journal of Physics A: Mathematical and
General 2005, 38 (9), L171.

Russell, P., Photonic crystal fibers. science 2003, 299 (5605), 358-362.

Riiter, C. E.; Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N.; Segev, M.; Kip, D.,
Observation of parity—time symmetry in optics. Nature Physics 2010, 6 (3), 192-
195.

Sadiku, M. N. O., Numerical techniques in electromagnetics. CRC, Boca Raton, FL:
2001.

Salandrino, A.; Alu, A.; Engheta, N., Parallel, series, and intermediate interconnections of

optical nanocircuit elements. 1. Analytical solution. JOSA B 2007, 24 (12), 3007-
3013.

202



Sautter, J. r.; Staude, 1.; Decker, M.; Rusak, E.; Neshev, D. N.; Brener, I.; Kivshar, Y. S.,
Active tuning of all-dielectric metasurfaces. ACS nano 2015, 9 (4), 4308-4315.

Savoia, S.; Castaldi, G.; Galdi, V.; Alu, A.; Engheta, N., PT-symmetry-induced wave
confinement and guiding in e-near-zero metamaterials. Physical Review B 2015,
91 (11), 115114.

Schurig, D.; Mock, J.; Justice, B.; Cummer, S. A.; Pendry, J. B.; Starr, A.; Smith, D.,
Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314
(5801), 977-980.

Selvanayagam, M.; Eleftheriades, G. V., An active electromagnetic cloak using the
equivalence principle. Antennas and Wireless Propagation Letters, IEEE 2012, 11,
1226-1229.

Selvanayagam, M.; Eleftheriades, G. V., Discontinuous electromagnetic fields using
orthogonal electric and magnetic currents for wavefront manipulation. Optics
Express 2013, 21 (12), 14409-14429.

Selvanayagam, M.; Eleftheriades, G., Polarization control using tensor Huygens surfaces.
Antennas and Propagation, IEEE Transactions on 2014, 62 (12), 6155-6168.

Shalaev, V. M., Optical negative-index metamaterials. Nature photonics 2007, 1 (1), 41-
48.

Shalaev, V. M.; Cai, W.; Chettiar, U. K.; Yuan, H.-K.; Sarychev, A. K.; Drachev, V. P
Kildishev, A. V., Negative index of refraction in optical metamaterials. Optics
letters 2005, 30 (24), 3356-3358.

Silveirinha, M. G.; Engheta, N., Theory of supercoupling, squeezing wave energy, and
field confinement in narrow channels and tight bends using & near-zero
metamaterials. Physical Review B 2007, 76 (24), 245109.

Sipe, J.; Van Kranendonk, J., Macroscopic electromagnetic theory of resonant dielectrics.
Physical Review A 1974, 9 (5), 1806.

Smith, D. R.; Padilla, W. J.; Vier, D.; Nemat-Nasser, S. C.; Schultz, S., Composite
medium with simultaneously negative permeability and permittivity. Physical
Review Letters 2000, 84 (18), 4184.

Soukoulis, C. M.; Wegener, M., Past achievements and future challenges in the

development of three-dimensional photonic metamaterials. Nature Photonics
2011, 5 (9), 523-530.

203



Sounas, D. L.; Alu, A., Extinction symmetry for reciprocal objects and its implications on
cloaking and scattering manipulation. Optics letters 2014, 39 (13), 4053-4056.

Sounas, D. L.; Fleury, R.; Alu, A., Unidirectional cloaking based on metasurfaces with
balanced loss and gain. Physical Review Applied 2015, 4 (1), 014005.

Stockman, M. 1., Spaser action, loss compensation, and stability in plasmonic systems
with gain. Physical review letters 2011, 106 (15), 156802.

Suchowski, H.; O’Brien, K.; Wong, Z. J.; Salandrino, A.; Yin, X.; Zhang, X., Phase
mismatch—free nonlinear propagation in optical zero-index materials. Science
2013, 342 (6163), 1223-1226.

Sun, S.; He, Q.; Xiao, S.; Xu, Q.; Li, X.; Zhou, L., Gradient-index meta-surfaces as a
bridge linking propagating waves and surface waves. Nature Materials 2012, 11
(5), 426-431.

Sun, S.; Yang, K.-Y.; Wang, C.-M.; Juan, T.-K.; Chen, W. T.; Liao, C. Y.; He, Q.; Xiao,
S.; Kung, W.-T.; Guo, G.-Y., High-efficiency broadband anomalous reflection by
gradient meta-surfaces. Nano Letters 2012, 12 (12), 6223-6229.

Sun, Y.; Xia, Y., Shape-controlled synthesis of gold and silver nanoparticles. Science
2002, 298 (5601), 2176-2179.

Taillaert, D.; Bienstman, P.; Baets, R., Compact efficient broadband grating coupler for
silicon-on-insulator waveguides. Optics letters 2004, 29 (23), 2749-2751.

Taillaert, D.; Van Laere, F.; Ayre, M.; Bogaerts, W.; Van Thourhout, D.; Bienstman, P.;
Baets, R., Grating couplers for coupling between optical fibers and nanophotonic
waveguides. Japanese Journal of Applied Physics 2006, 45 (8R), 6071.

Tretyakov, S., Analytical modeling in applied electromagnetics. Artech House: 2003.

Tsai, M.-W.; Chuang, T.-H.; Meng, C.-Y.; Chang, Y.-T.; Lee, S.-C., High performance
midinfrared narrow-band plasmonic thermal emitter. Applied physics letters 2006,
89 (17), 173116.

Wang, J.; Qu, S.; Ma, H.; Xu, Z.; Zhang, A.; Zhou, H.; Chen, H.; Li, Y., High-efficiency
spoof plasmon polariton coupler mediated by gradient metasurfaces. Applied

Physics Letters 2012, 101 (20), 201104.

Whitman, G. M.; Schwering, F., Reciprocity identity for periodic surface scattering. IEEE
Transactions on Antennas and Propagation 1979, 27, 252-254.

204



Wu, Q.; Hewitt, T.; Zhang, X. C., Twolldimensional electrolloptic imaging of THz
beams. Appl. Phys. Lett. 1996, 69 (8), 1026-1028.

Wu, Q.; Litz, M.; Zhang, X. C., Broadband detection capability of ZnTe electroloptic
field detectors. Applied Physics Letters 1996, 68 (21), 2924-2926.

Wu, Y.; Zhang, C.; Estakhri, N. M.; Zhao, Y.; Kim, J.; Zhang, M.; Liu, X. X.; Pribil, G.
K.; Alu, A.; Shih, C. K., Intrinsic optical properties and enhanced plasmonic
response of epitaxial silver. Advanced Materials 2014, 26 (35), 6106-6110.

Xiao, S.; Drachev, V. P;; Kildishev, A. V.; Ni, X.; Chettiar, U. K.; Yuan, H.-K.; Shalaev, V.
M., Loss-free and active optical negative-index metamaterials. Nature 2010, 466
(7307), 735-738.

Yu, N.; Capasso, F., Flat optics with designer metasurfaces. Nature materials 2014, 13
(2), 139-150.

Yu, N.; Genevet, P.,; Kats, M. A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z., Light
propagation with phase discontinuities: generalized laws of reflection and
refraction. science 2011, 334 (6054), 333-337.

Yu, Z.; Raman, A.; Fan, S., Fundamental limit of nanophotonic light trapping in solar
cells. Proceedings of the National Academy of Sciences 2010, 107 (41), 17491-
17496.

Zhang, B.; Chan, T.; Wu, B.-I., Lateral shift makes a ground-plane cloak detectable.
Physical review letters 2010, 104 (23), 233903.

Zhao, Y.; Alu, A., Manipulating light polarization with ultrathin plasmonic metasurfaces.
Physical Review B 2011, 84 (20), 205428.

Zhao, Y.; Belkin, M.; Alu, A., Twisted optical metamaterials for planarized ultrathin
broadband circular polarizers. Nature communications 2012, 3, 870.

Zhao, Y.; Engheta, N.; Alu, A., Homogenization of plasmonic metasurfaces modeled as
transmission-line loads. Metamaterials 2011, 5 (2), 90-96.

Zheludev, N. L.; Prosvirnin, S.; Papasimakis, N.; Fedotov, V., Lasing spaser. Nature
Photonics 2008, 2 (6), 351-354.

Zhu, X.; Feng, L.; Zhang, P.; Yin, X.; Zhang, X., One-way invisible cloak using parity-
time symmetric transformation optics. Optics letters 2013, 38 (15), 2821-2824.

205



Zou, L.; Withayachumnankul, W.; Shah, C. M.; Mitchell, A.; Bhaskaran, M.; Sriram, S.;
Fumeaux, C., Dielectric resonator nanoantennas at visible frequencies. Optics
express 2013, 21 (1), 1344-1352.

206



