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Recent developments in the Rapid Prototyping technology establish it as a new
manufacturing technique, enabling localized material addition to build a part. Thus,
heterogeneous structures, consisting of more than one material can be produced. The aim of this
paper is to present an optimization tool to find the best material distribution in a multi-material
structure due to given objectives and constraints. The tool is based on genetic algorithms using a
discrete material model and FE"'analysis to evaluate the objective functions. It can optimize the
distribution materials in 2D-structures with up to 1500 DOF's at reasonable
VVA,Jl.Jl.i-/ ... "'","'AV.LA.....'" costs. Its performance is shown on a bi-objective optimization of a turbine blade.

1

the past, the intuition and experience of engineers played the key role in designing
structures. years seen the development of numerical tools, which provide conceptual
designs a given design space and specified boundary conditions. aim of these tools is to

intuition and experience of an engineer. addition, most of these tools are
focused on the optimization traditional structures consisting of one material. Examples of such

tools are the topology optimization method using homogenization introduced by
Kikuchi [1], and the 'Soft-Kill-Option' (SKO) method introduced by Mattheck [2].

development of new manufacturing technologies and new materials such as Rapid
Prototyping [3] or the use of composite structures expands the demands for numerical tools to
design structures. These new techniques offer possibility to manufacture anisotropic and/or
multi-material structures. This makes it more to design parts just by intuition.
Numerical optimization algorithms are needed to develop solutions which consider all the
different aspects of such a problem. The present project starts at this point, concentrating on the
design of multi-material structures manufactured in Rapid Prototyping. This leads to the main
research question for this paper:

How can one optimize the distribution ofdifferent materials
in a multi-material structure for given objectives and given constraints?

The paper presents a methodology based on genetic algorithms to solve this type of
optimization problems.

2 Genetic Algorithms

Genetic Algorithms can be described as search algorithms based on the mechanics of
natural selection and natural genetics. They belong to a of stochastic search methods,
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UUl,IJ.J.i:lJ..l....U as shown below:
u..lL"'",u.L"L"V.:"l ~""J.J."".L~"".L l,.l..:HJ....'v"..:J of genetic CP'!:l1"l"h

Jakiela [6] apply genetic algorithms to problems of
[7] investigate the combination of approximation

structural optimization procedures. flywheel
presented by the GARAGe .[8] group at Michigan State

not by .........u'''''v ...... \,......J.uv'~u .....,'"'uJ.j;;:,J.J. st)ac(~s

.............' .............'J. ...J.'-I'\,...""4.....J. programming principles. On the other side there
requirement associated with the use this method. Therefore genetic ........F\v .........J.J.J. ... J.u n:mn~Se]lt

good solution approach standard mathematical
techniques are inefficient. can be formulated as follows:
• work on function evaluations,
• GA's proceed from several points in the design space, to find global

optima.
• GA's work on a coding of the design variables. allows them to work design spaces

consisting of a mix of continuous, discrete, and integer variables.

GA's in Automated 1l8llJ'·U~1D

Much work

and topology optimization.
structural topology design. Nair
concepts with genetic
optimization with a genetic
University.

Other projects are more concerned in the application of genetic search on practical
problems. For example there are papers investigating multidisciplinary rotor blade design [9], the
design of a satellite boom [10] or the optimization of truss structures [11].

Finally, several publications examine the optimization of composite structures with
genetic algorithms [12],[13],[14] .
All these works establish the use of genetic search in automated design optimization.

LonC4ent and Additional GA's
The concept is briefly discussed in this paragraph, a detailed description can found in

the book frol11 Goldberg [4].
After the coding of the design variables an initial population is generated randomly. Then

the iteration process starts. fitness values for each individual in a population are evaluated.
The first GA operator which is applied to the population is reproduction. Individuals are
selected for the next generation according to their fitness. The crossover operator mates and
crosses the individuals in this newly generated pool ofindividuals. Mutation as the last operator

v"'..' .....UJ.v............. random alteration of the value of a string position. This concludes one iteration
new generation results.

some additional"GA features which are used in the project are briefly introduced:
• Elitist This strategy ensures, that the best individuals stay in the population.
• Overlapping Populations. The pool of individuals before reproduction consists of a GA with

overlapping populations in the previous population and a specific amount of new individuals.
worst individuals of the pool are removed in order to return the population to its



original size. Since only part of the population is generated, this strategy saves computation
time.

• Scaling the Objective Function. In order to control the sensitivity of the GA, the objective
values are linearly scaled. The aim of a scaling function is to avoid premature convergence in
the GA.

2.3 Parameters in Genetic Search
The initiation ofgenetic search requires specification ofsome key parameters:
• Population Size:. popsize. The number of strings processed in each generation must be kept

small to· minimize the overall computation· effort. A population size between 25 and 125
represents a good choice for structural optimization problems [5].

• Number of Generations: ngen• Usually a value in the hundreds is needed to make sure that
the solution has time to converge.

• CrossoverProbability:pcross.Valuesranging from 0.6 to 0.8 have been used in numerical
experiments with very)satisfactoryr~sults.

• Mutation Probability:Pmut.Probability values between 0.005 and 0.05 produce in general
good results.

• OverhlJ.>ping Gap: Prepl. The overlap parameter specifies how many new individuals are
created for each generation. A typical value is Prepl=0.5, meaning that 50 % of the population
has to be evaluated new for each generation.

3 Modeling of Materials and Structures

3.1 Discretization ofthe Design Domain
Any kind of chromosome used as a representation of the design variables in GA's is

discrete. Therefore a finite design domain must be selected and discretizedinto elements.
For atopology optimization the design domain represents the maximal volume in which

the structure is to be constructed. For a multi-material optimization, one can either fix the
topology and only optimize the material distribution, or both, the topology and material
distribution can be unknown.

The representation of the design space in a mathematical way is the space T = R 3 [15].
A typical obJectin the design space is called a class A, while members of this class are noted as
r-sets, for example an element of the discretized structure.

3.2 Modeling of Multi-Material Structures

Currently, most solid modeling techniques are capable of capturing only the geometric
and topological information of an object. In this project, a modeling method for general
heterogeneous objects proposed by Kumar and Dutta [151 is used:

Modeling of Heterogeneous Objects ConSisting of a Finite Number of .• Distinct
Materials (HD)116]. In the previous paragraph, the design space T = R 3 was definedin which
t1}egeometry of an.obJectcat1l'erepresented. In order to model multi-material objects,this space

ofintegers I .• TheproductspaceT =R 3 xI formsthentl1enewmodeling§pac.e including both,
geometrical topology and material distribution. A new class Am=A x K is defined where K c
is a finite set of integers. A typical member of this class is then defined as anrm-set. It is
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Figure 1: Mapping to GA Chromosome
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composed of an r-set describing the geometry and an integer k E K defining the material. Each
rm-set, typically an element in this project, is homogeneously filled with one material.

The design variables for the optimization are now defined with the type of material for
each element in the discretized design space. The approach provides thus a discrete and finite set
of design variables.

3.3 Mapping the Design Variables to GA Chromosomes

The design vat'iables for.a GA1111.lstb~coded,••• amapping domain to
chromosomes must be defined. Using the HD approach above, the coding results a binary or
integer string which defines the type of material for every element inthe design domain. A binary
string .can be used if there are only two materials to distribute, while an integer string is able to
handle a whole set of materials.

Figure 1 shows the mapping. for a
cantilever structure with three materials mappe<i
into a two dimensional integer string. To consider
topology optimization as well as optimal material
distribution, the material 1 is defined as void. To
prevent numerical singularities, the material void
is implemented with very small property values.

4 Optimization Procedure

The genetic algorithm library GAlib in C++ by Matthew Wall (MIT) provides all the
neededfunctionalityand is used in this project.

A GA needs a function which determine the fitness of each individual in a population. For
a multi-material. optimiJ!';ationthisfunctionincludes an analysis of the discretized structure. For a
typical GAevaluation, the fitness has to be computed for thousands of individuals. Therefore it.is
imperative that the analysis method.has to be fast. This can only be reached if the method for the
fitness evaluation has a close interface to the GA.

A first . approach to evaluate the fitness of the individuals is to use Numerical
Approximation Concepts. Keane [7] used this concept to optimize a lObar truss structure. It is
based on the exact analysis Jor a limited number of individuals, the fitness for the rest of the
population is evaluated using an approximation model. Although this approach can save a lot of
computation time, one would have to verify the accuracy of the results carefully, because only a
small part of the individuals are evaluated exactly. This method was not pursued any further in
this project.

A Finite Element Analysis for each individual in the genetic algorithm represents
another approach to evaluate the fitness values required by the genetic search. This method is
favored for this project, because it provides in general a good accuracy for the solution and
adaptionsofthe method can be found for analyses in a lot of different fields. The computational
cost for analyzing each individual in the GA is the main concern. Therefore a big effort was put
in minimizing the computational time needed for one single analysis. In order to keep the
Qptimization tool as compact as possible, a FE-code in C++ was developed. With this approach,
the optimization procedure can be packed in one single C++ program, the time consuming
processes such as storing temporary data on the hard drive are eliminated.
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II Terminate GAil

Figure 2: Procedure Using FE-Code in C++
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The FE-code was developed to provide

analyses for the applications in section 5. Therefore
FE-codes for heat conduction and thermal stress
analyses had. to.be implemented. The concepts of
the FE-codes can be found iu[17],[18],[19], and are
not discussed here. The detailed procedure is. shown
in the flow chart in Figure 2.

The computational performance of this app­
roach was tested for a simple topology optimization
of a· Cantilever. It represents a small application
with 352 DOFfs, where not much.computation time
should be needed to solve it. In a typical optimi­
zation for this problem the fitness function has to be
evaluated approximately 3000 times. The
evaluation on a computational server with 2 CPU's
(200 MHz) and 1 GB RAM needs approximately
75s. This is promising for bigger applications.

In an earlier approach Ansys was used for
the FE part. But the time consuming processes of
storing interface files on the hard disk makes the
GA evaluation for the same application about 300
times slower.

The optimization procedure using the FE­
Code in C++ is therefore used for all applications.

5 Multi-Material Optimization of a Turbine Blade

The· application in this section shows the performance of the developed optimization
method. The distribution of two materials in a turbine blade shall be optimized.

5.1 Problem Definition
The design domain considered is a 2D cross section of a turbine blade. It is a non-cooled

blade and has therefore no internal holes in the structure. This cross section is discretized into
951 linear triangle elements.

Materials. A turbine blade is subject to pressure gradients over the boundary, which
introduce high mechanical stresses in the structure. Furthermore, certain regions of the blade in a
gas turbine are heated to very high temperatures. This results in the wish to use one material,
such as Titanium, to deal with the mechanical stresses in the structure, and a heat withstanding
material such as a Ceramic to place at high temperature locations. Therefore, in this example, the
materials Titanium Alloy and Silicon Nitride are used.

Boundary Conditions. The temperatures applied on the boundary are based on
experimental data described in [20]. Figure 3 shows the resulting temperature distribution for a
titanium blade. The purpose of this application is to show the optimization algorithm. Therefore
the complexboun.dary conditions on a real turbine blade were simplified:
• Prescribed temperatures on the boundary replace convection and radiation effects.
• The bladeis not cooled, there are 110 in.ternal holes in the structure.
• Pressure distributions on the boundary are not applied.
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The service temperature ~erv/ce(mat) does not represent a physical property.ofthe material,it

is fictive. Since the conductivities for the two materials are different, the temperature distribution
in the blade changes for every new chromosome. A heat conduction analysis has to be performed
for each individual in. the GA. The design variables are represented by the material of each
element, they are mapped in a binary$tring fpr the GA.
The GA.is evaluated for 2000 generations with a population size of 100. This corre$ponds to
100'000 heat conduction analyses. A typical evaluation takes about 70niin. Figure 4 shows the
fitness scores for this evaluation, the best individual found is shown in Figure 5.

1300r---~----~---,

5.2 Single Objective Optimization
The objective is tp filld the optimal material
distribution due to given ..ulaximal service
temperatures for the materials. This is an
unconstrained optimization problem. The fitness
function for the genetic algorithm is formulated as a
maximization problem:
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Figure 4: Fitness Scores Figure 5: Resulting Material Distribution

Maximize fitness = (Wtemp • scoretemp + Wstress . scorestressr1

Where W and w represent the weighting factors. The objective functions are defined as:temp stress
Nele Nele

L (1'; - Tsev/ce(mat})
2 L O'eq

/=1 ..-!.:./=~I__
SCOretemp = SCOrestress =

nOrmtemp nOrmstress

5.3 Bi-Objective Optimization
In the $olution above, high thermal stresses occur because of the different thermal

expansion coefficients of Titanium and Silicon Nitride. Therefore a bi-objective optimization is
carried out which combine$ the temperature objective with a thermal stress objective.

The fitness function is defined as a combination of the two objectives using the weighting
method [21]:
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The temperature objective is defined similarly to section 5.2, it controls the material
distribution according to temperature distribution. The thermal stress objective is aims at
reducing the thermal stresses in the blade, it is the sum of an equivalent stress O"eq of all

elements. To evaluate the fitness of a single individual, a thermal conduction and a thermal stress
analysis have to be performed.

In a bi-objective optimization, many optimal solutions can be found. Therefore a Pareto­
set [21] of solutions is created in a first stage. The Pareto points result from a systematic variation
of the weight factors between 0 and 1. Figure 6 shows the resulting Pareto points for such a
variation. Each of this points represents the best population found by the GA in 1500 generations
with a population size of 100 and the specified weight factors. The temperature objective is
plotted in the x ..direction, the stress objective in the y-direction. A typical GA evaluation for this
problem takes about lOh, because of the two FE-analyses (thermal conduction & thermal stress)
for each fitness evalUation.

A decision making process is necessary to choose a single solution out of this set of
optimal Pareto solutions[21]. Figure 7 shows one single solution where the weight factors were
chosen as wtemp =0.3, Wstress =0.7. In addition the GA for this result is run over 2000 generations

with a population size of 150 to get a more converged result.

J;Titanium Alloy

jSilcon Nitride
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Figure 6: Pareto Points Figure 7: Best Individual for wt =0.3,w t =0.3emp s ress

6 Discussion and Conclusion

For the single objective optimization in section 5.2, the optimization puts as expected
Ceramic at the tip of the blade (see Figure 5), where the highest temperatures occur. The
Titanium in the rest of the structure provides the needed strength. Although the GA was
evaluated for 2000 generations, it's stochastic concept still influences the result. Several elements
have obviously the wrong material (assigned by mutation). Because of the high temperatures and
the different thermal expansion coefficients, it is imperative to include thermal stresses in the
optimization.

An approach to include thermal stresses is shown in the bi-objective optimization in
section 5.3. Figure 6 shows that the weight variation does not result in a convex pareto curve.
This indicates that probably the GA evaluations did not fully converge to the optima.
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Figure 7 with the best individual for a specific weight combination shows that the
Ceramic is smaller. But it is still not clear how the interface between the two materials should be
best configured. It was hoped to see a fuzzier mechanical interface between the two materials,
but the problem conditions and the way the objectives were formulated prevented this from
happening.

An optimization tool for 2D-multi-material structures was developed. It optimizes the
distribution of materials in a structure due to given objectives and constraints using genetic
algorithms. It can be said, that the developed optimization tool is able to handle structures with as
many as 1000 to 1500 DOF's in a reasonable computation time (a few hours). The turbine blade
application showed, how essential a fast objective function evaluation for GA's is, a run time of
10h for the bi-objective optimization shows the limits of the tool. Since the solution space for the
GA grows exponentially with the number of elements, the number of generations needed to
achieve a converged solution increases as well in an exponential way. This project has shown
some of the potentials of GA's in structural optimization, as their flexibility, their robustness and
ability to find global optima. But it has also demonstrated some of their shortcomings of high
computational needs and bad convergence performance towards the end of an optimization. To
overcome these shortcomings, future work could be concentrated on introducing parallel genetic
algorithms, using gradient based optimizers after the GAs pointed towards possible solutions
(memetic algorithms) or using a continuous material model.
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