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Supervisor:  Christine Julien 

 

The software that operates mobile and embedded devices, the embedded 

operating system, has evolved to adapt from the traditional desktop environment, where 

processing horsepower and energy supply are abundant, to the challenging resource-

starved embedded environment. The embedded environment presents the software with 

some difficult constraints when compared to the typical desktop environment: slower 

hardware, smaller memory size, and a limited battery life. Different embedded OSs tackle 

these constraints in different ways. We survey two of the more popular embedded OSs: 

Linux and Windows CE. To reveal their strengths and weaknesses, we examine and 

compare each of the OS’s process management and scheduler, interrupt handling, 

memory management, synchronization mechanisms and interprocess communication, and 

power management. 
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Chapter 1:  Introduction 

Embedded systems, generally speaking, represent a category of small to miniature 

computing devices with an ever-increasing number of applications, though even some 

large systems are characterized as an embedded system if they are part of a larger system: 

e.g., an in-car entertainment system. These diminutive but smart systems offer invaluable 

services in personal computing, with devices that offer on-the-go connectivity and 

multimedia experience, home automation, vehicular control and entertainment, industrial 

automation, and many other services. As a descendant of traditional computing systems, 

embedded systems are similarly designed around a microprocessor with memory and 

some peripherals that may include non-volatile storage and some Input/Output (I/O) 

devices. Common examples of I/O devices include a communication radio, serial port, 

audio, or even a keypad and display for the high end systems like a mobile phone. Unlike 

traditional desktop devices, however, the amount of each resource such as processor 

speed or memory size is much more limited. Owing to their small size, embedded 

systems find most use in mobile applications; therefore, the system is typically powered 

from a battery with a limited life.  

Advancements in manufacturing technology, such as the System on Chip (SOC) -

- which combines the processor with many specialized peripheral controllers into one 

package -- make it possible to add more of the resources to the embedded system while 

reducing the overall size and cost. The increase in the hardware capabilities has paved the 

way for an exponential growth of applications for embedded systems. Naturally, this had 

led to an equally explosive growth in the market for the software that runs the embedded 

system -- the operating system (OS). The OS plays a primary role in the overall success 

of the applications to be run on the system. While there are many competing embedded 



 2 

OSs, Linux® and Windows® CE are two of the leaders in this market, as evidenced by 

the survey in [1]. In this paper, we examine how the two OSs handle the common 

challenges presented to an embedded operating system to reveal their similarities and 

differences. 

The operating system software is an essential component of the embedded 

software stack. As the layer closest to the hardware, the OS’s primary responsibilities lie 

in the area of hardware management to best suit the needs of the user applications. 

Among common tasks for operating systems are process management and scheduling, 

interrupt handling, memory management, synchronization and interprocess 

communication, and a particularly important one for an embedded OS: power 

management. Additionally, the OS provides an interface that exposes the hardware 

resources to the user applications. Resource allocation, therefore, is an inherent task of an 

operating system. The limited amount of resources in an embedded system presents some 

interesting challenges for the OS.  

 The two different 32-bit embedded operating systems under consideration in this 

paper are Linux 2.6, and Windows Embedded CE 6.0. We compare how each OS handles 

the common tasks enumerated above to reveal the different approaches taken to meet the 

challenges of an embedded environment. The rest of the paper is organized as follows: 

The next chapter introduces the concept of an operating system and presents a quick 

overview. Chapter 3 presents brief backgrounds behind both Linux and Windows CE, 

and covers the architecture of each from a high level perspective. Chapters 4, 5, 6, 7, and 

8 examine the process management and scheduler, interrupt handling, memory 

management, synchronization and interprocess communication, and power management 

aspects of each OS. The paper is concluded in chapter 9 with some observations about the 

strengths and weaknesses of both operating systems. 
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Chapter 2:  Operating System Overview 

Before delving into the specifics of Linux and Windows CE, a basic overview of 

an operating system is presented in this chapter. An operating system is the set of 

software that controls the hardware and enables user applications to execute.  Without a 

central piece of software to manage the hardware, supporting multiple applications on the 

system becomes virtually impossible. How conveniently applications can execute and 

how efficiently the hardware resources are utilized depends on the design of the OS [2]. 

Naturally, for an embedded OS, efficient resource utilization is a point of emphasis.  

Given the considerable complexity of hardware management as well as 

application support, an OS typically comprises many components. The core piece of the 

OS is the kernel. The kernel invokes device drivers to perform I/O on a particular 

peripheral such as keyboard or display, as needed by applications. The kernel performs 

various other essential tasks such as process management, interrupt handling, interprocess 

communication, file system management, power management, resource allocation and 

accounting, error detection, as well as protection. [2] 

 A process refers to a program or execution unit. Process management involves 

loading an application or user space process into memory and executing it, while 

enforcing a certain scheduling policy. The scheduling policy is a key factor in the 

performance of applications in the system. Events in a computer system, whether 

originating in the hardware or software, can cause interrupt signals to fire, serving as a 

fundamental communication method. For example, a press of a key on a keyboard can 

indicate an interrupt to the processor, which suspends the current process and executes 

the interrupt handler for the key press. While processing the interrupt, whether another 

interrupt event is handled or not depends upon the interrupt handling policy of the OS. 
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Different strategies can be employed to enable different system behavior based on 

requirements for the system.  

Whenever an application is to be executed for the first time, the OS is required to 

allocate memory for the program. Memory is limited in an embedded system, and it must 

be shared with other applications, so this task must be performed judiciously. The higher 

level responsibility of resource allocation and accounting encompasses the task of 

memory management. Accounting involves tracking the amount of the resource available 

and allocated. An I/O device is also treated as a resource, so the OS needs to track which 

applications have opened which devices. Files are a basic form of data storage that most 

applications use; therefore, file system management is a key function of an OS. This 

involves creation, deletion, reading, and writing of files by any number of applications. 

The OS must also be capable of providing a mechanism for processes to share 

information with each other, also known as interprocess communication. Given 

concurrent execution of processes, access to shared resources is managed via 

synchronization. [2] 

Errors are not an uncommon occurrence in most computer systems, and 

embedded systems are no exceptions. Error detection is also the responsibility of the OS. 

Whether originating in the software or hardware, errors must be handled properly so that 

normal execution can continue after the occurrence of an error. The degree of error 

handling offered by the OS is, once again, a design decision that is driven by the 

requirements of the applications. Furthermore, given a multi-application environment, the 

OS may also be required to implement some degree of protection or security. A basic 

example of protection is an OS restricting access for each application to its assigned 

memory space. [2] 
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In order to implement all the services expected from it, an OS typically includes, 

besides the core kernel, several other programs, utilities, and libraries, which may 

include, for example, the C library for applications. Additionally, an OS may include 

middleware such as the TCP/IP stack, an essential service for any application that needs 

to communicate over the Internet. [2] 
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Chapter 3:  Overview of Linux and Windows CE 

The two operating systems examined in this paper have emerged from two very 

different histories. A high level overview of each is provided below. 

LINUX 2.6 

Linux 2.6 is the most recent stable kernel version of the Linux operating system, 

which was originally developed by Linus Torvalds, with assistance from several other 

people in the early 1990s. Since then, the online community of Linux developers 

(http://www.kernel.org) has continued to collaborate to evolve the OS. Although the 

internals of the Linux OS were developed from scratch, the APIs are very much like 

UNIX. Furthermore, many UNIX concepts are designed into Linux, creating a simple yet 

refined OS. The Linux OS is targeted to run on desktops, servers, and -- as relevant to 

this paper -- embedded devices. Figure 1, which was borrowed from [3], depicts the 

architecture of the Linux OS. 

 

Figure 1: Linux 2.6 Architecture. 
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In Linux, the software system is split into two categories – user space and kernel 

space. Kernel space is compiled into one monolithic binary file consisting of device 

drivers that control the hardware and the kernel with subsystems that include code for 

important functions such as process management, memory management, file system 

management, and networking. Besides the device drivers, which control a specific 

peripheral on the hardware, the kernel space also contains hardware specific code, or the 

machine layer, that facilitates the portability of the Linux OS to different architectures, 

which is one of the reasons why the OS can run on a wide range of hardware – a small 

embedded device to a powerful server [3]. This code manages the processor, memory 

subsystem, and includes a device tree that contains all the peripherals on a particular 

hardware platform. The device tree is used to match up each peripheral with its driver 

when the driver registers with the kernel during initialization. Linux offers some 

flexibility in loading modules, which may contain one or more drivers. Modules can be 

built into the kernel so that the modules will load upon OS boot, or a module can be 

loadable, which means that it can be dynamically loaded and unloaded after the OS has 

completed booting. Loadable modules can also be part of the kernel space.  

User space consists of user applications as well as any OS code that does not 

require execution in the privileged kernel mode. One example of such a piece of code is 

the GNU C library. One of the key requirements of an OS is to facilitate application 

execution on the hardware. Applications can request resources or services from the Linux 

OS through the system call interface. For example, when an application requires access to 

a storage disk, it can make a system call to the kernel space, which carries out the read or 

write on the application’s behalf. Once the kernel space code completes the disk access 

via the device driver in privileged mode, the execution is returned to the application in 
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user space. Since kernel space code is trusted, it is ensured that precious system resources 

are not used in an illegal or malignant manner. 

The memory footprint of a Linux kernel varies depending upon the configuration 

selected by the developer. Many modules can be optionally compiled into the image, 

allowing Linux to function in a system with 4 MB or 4 GB of storage space – a 

demonstration of its flexibility. [2] 

WINDOWS EMBEDDED CE 6.0 

Microsoft has long enjoyed a dominant share in the desktop computing market 

with the Windows operating system. In the mid 1990s, they introduced the first version of 

Windows CE that was designed specifically for embedded devices. While there are many 

different flavors of embedded Windows operating systems today, in this paper, we focus 

on Windows Embedded CE 6.0 OS, which is the flagship embedded OS from Microsoft. 

The familiar Windows interface not only appeals to users of embedded systems but also 

enables desktop application developers to more easily write applications for the 

embedded world due to the fact that application support libraries in Windows CE are 

similar to the desktop version of Windows. Over the years, many features that users 

expect from desktop Windows systems have been made available in CE. Windows CE 

also offers the advantage of a large commercial ecosystem created by Microsoft. Figure 

2, which was reproduced from [4], depicts the Windows Embedded CE 6.0 architecture. 
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Figure 2: Windows CE 6.0 Architecture. 

Similar to Linux, there are two categories of software – kernel mode and user 

mode. The core kernel, Nk.exe, is an executable process into which the kernel mode 

Dynamic Link Libraries (DLL) are loaded. The kernel.dll and Original Equipment 

Manufacturer (OEM) Adaptation Layer (OAL) are linked together to form the Nk.exe 

process. The OAL contains hardware architecture specific code that facilitates portability 

of the OS to different hardware platforms. All device drivers, which control a specific 

peripheral, are kernel mode DLLs. Additionally, numerous other functionalities, such as 

file system management (filesys.dll and fsdmgr.dll), graphics, and user interface support 

(GWES.dll), driver and resource management (device.dll and devmgr.dll), as well as 

debugging (kitl.dll) and networking support, are part of kernel space code. 
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The user mode software consists of all the user applications, the shell, user mode 

services, as well as user mode drivers that run in udevice.exe process. All executables in 

the system, including user applications, must link to the system API library – coredll.dll, 

which provides many functionalities to the process in the areas of graphics, time, 

synchronization, and system calls, to name a few. Coredll performs a system call into 

kernel mode from user mode that serves as a mechanism to access some kernel 

functionality from the applications. Calls to coredll in a kernel mode process are routed at 

run time to k.coredll.dll, which is the kernel mode version of the library [4]. 

Servicesd.exe is responsible for loading such services as HTTP and FTP. The Win32 CE 

API is the embedded equivalent of the desktop Win32 APIs used by applications. The 

APIs enable a rich set of features made available for application development in 

Windows CE that are touted by Microsoft as a major advantage of CE. Similar to Linux, 

the Windows CE developer has the power to optionally include or exclude many 

components during compile time. This flexibility results in memory footprints that can 

range from kilobytes to megabytes. [4] 
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Chapter 4:  Process Management and Scheduler 

To load and run a process, which is called an application if it is user space, is one 

of the primary reasons of existence of the operating system. In a multi-process 

environment, in order to prevent one process from monopolizing cycle time on the 

processor, the OS may choose to suspend the currently running process in favor of 

another process. Or the running process may make a system call that blocks execution 

until the request is serviced by the OS. In any case, when switching execution to a new 

process, the current process’s context -- such as the register values and currently held 

resources -- is saved, and the new process’s state is restored based on data structures that 

the OS maintains for each process. This scenario is referred to as a context switch. 

Process management involves the creation, maintenance, and deletion (when the process 

exits) of processes and related data structures. The scheduler is the part of the OS that 

decides which process gets to execute based on scheduling policy, which can greatly 

affect overall system performance [2].  

In Linux 2.6, when a process is to be created, an existing process calls the fork 

command, which duplicates the calling process to create a child process. Thereafter, if a 

new piece of code is to be executed in the child process, the exec command is run, which 

creates a new address space with the new program specified with the exec command. In 

contrast, each Windows Embedded CE 6.0 process contains the finer grained thread as 

the basic unit of execution. Each process has one designated primary thread and can have 

other threads that are similar to child processes in Linux. Therefore, unlike Linux, 

processes in Windows CE do not share address spaces, threads within a process do. 

Windows CE supports an even finer grained unit of execution, called a fiber, which can 

be created within a thread. Because the scheduling policy of fibers within a thread can be 
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controlled by the developer, the use of fibers can empower the developer to define a 

custom scheduling policy within a given thread. Such control over scheduling between a 

parent and child processes is not available under Linux.  

When a Linux process calls fork, the kernel creates the child process’s data 

structure, the process descriptor. This data structure is referred to as the thread context in 

Windows CE. In Linux, the child process’s memory pages are not created by the fork 

command, but they are the same as the parent’s until a page is written to. In effect, the 

child process is like a Windows CE thread within the parent process because it is sharing 

the same program and memory as the parent process. Only when exec is called does the 

program change and a new address space created. This delays or prevents needless 

copying of the parent’s address space and enables quick execution of the child process 

with very little overhead [3]. In Windows CE, process creation is not as fast because the 

entire address space has to be created and assigned at the time of creation, but thread 

creation is fast. 

In Linux, the process state identifies whether a process is executing or executable, 

blocked waiting for a signal, blocked for a definite period of time, stopped, or waiting to 

be terminated [3]. Similarly, Windows CE uses the following thread states: running, 

runnable but not currently executing, blocked waiting for a shared resource, suspended 

until resume is explicitly called, and sleeping [5]. These states are used by the scheduler 

of both OSs when switching or deciding to switch execution between processes for 

Linux, or threads for Windows CE.  

The Linux OS uses preemptive multitasking, where process execution can be 

stopped by the scheduler based on the scheduling policy. Two primary metrics are used 

by the standard Linux scheduler to make scheduling decisions: the process priority and 

timeslice. A process with a higher priority is allowed to execute for a specific amount of 



 13 

time, the process’s timeslice, before another process with a lower priority.  Users can set 

the priority of a process, via system calls, just as the kernel can [3]. Windows CE uses 

preemptive multitasking, as well, using timeslices and priorities when decision points are 

reached in scheduling [4]. 

Where they are quite different, however, is that Linux, in addition to preemptive 

multitasking, employs dynamic priority based scheduling, where heuristics about the 

process’s behavior are used to raise or lower the priority and, thus, the timeslice increased 

or decreased. Windows CE does not re-calculate priorities like Linux does. Timeslices 

are fixed at 100 ms unless modified by the user or the device manufacturer. Dynamic 

priority recalculation is justified based on the following theory: The more a process 

blocks, the higher probability that it relies on I/O; therefore, its response to any event 

must be fast, requiring a higher priority. Conversely, the less a process blocks, the higher 

chance that it is a background process that is less interactive; therefore, its priority is 

lowered. The timeslice is also changed dynamically based on the priority: more 

interactive (higher in priority) processes are allotted a greater time slice (up to 200 ms). 

Every time a process runs, its timeslice is reduced by the amount of time it ran. Since an 

interactive program will spend most of its time blocked, it will retain its timeslice that 

will be needed when reacting to events. Once the timeslice reaches 0, the process is no 

longer active but it is considered expired, and the next process in the active queue with 

the highest priority is selected for execution. The timeslice of an expired process is 

recalculated, based on heuristics, before it is moved to the expired array. Expired 

processes cannot run again as long as there are processes available in the active queue. 

This policy tries to implement some level of fairness by ensuring that lower priority 

processes will always get a chance to execute since higher priority processes will 

eventually exhaust their timeslices. When all active processes have exhausted their 
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timeslices, a simple swap of the active and expired arrays is performed that is very 

efficient compared to the alternative of calculating timeslices for all expired processes at 

one time. This design ensures a constant-time scheduling task regardless of the number of 

processes in the system [3].  

Without dynamic priority recalculation, it is possible for the highest priority 

thread in Windows CE to continue execution for as many timeslices as needed, provided 

it does not block, over lower priority threads, which may result in a less responsive 

system. Nevertheless, dynamic priority recalculation does add scheduling overhead in 

comparison with Windows CE. The lone situation when Windows CE does reassign 

priorities dynamically is when a lower priority thread is holding a resource that causes a 

higher priority thread to block. In this case, the scheduler inverts the priorities of the 2 

threads. With priority inversion, the thread holding the resource is allowed to execute, 

which results in a release of the resource eventually, at which point the priorities are set 

back to the original values. The thread waiting for the resource is then able execute and 

obtain the resource. [4] 

Many embedded applications require real time capabilities from the OS. Real time 

means meeting certain timing requirements for particular tasks. Here is an example of a 

real time requirement: in an automobile, a computer usually controls the deployment of 

air bags when a collision is detected. The software running on the processor must start the 

air bag deployment mechanism within fractions of a second after the collision. Owing 

partially to the scheduling overhead described above, Linux can only exhibit soft real 

time capabilities, which means that timing deadlines can be met most of the time, but it is 

not guaranteed. At a minimum, however, separate queues for real time processes in Linux 

ensure that they are guaranteed to run over non-real time processes [3]. Windows CE, on 

the other hand, is a hard real time OS, which means that timing deadlines are guaranteed 
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to be met. The scheduler is written such that it can be preempted by an event requiring 

real time processing. However, the real time support is dependent upon avoidance of 

priority inversion and long unbounded operations performed by interrupt handlers that 

may create long latencies, which would result in failure to meet the hard real time 

deadline [6]. 

DISCUSSION 

 

Process Management or Scheduler 
Property 

Linux 
2.6 

Windows Embedded 
CE 6.0 

Basic unit of execution Process Thread 

Address space created at time of process 
creation 

No Yes 

Ability to schedule execution of code within 
a unit of execution 

No Yes, via fibers 

Preemptive multitasking support Yes Yes 

Dynamic priority based scheduling Yes No 

High priority process/thread can lock out 
lower priority processes/threads 

No Yes 

Hard real time capable scheduler No Yes 

Table 1: Process Management and Scheduler Comparison. 

Table 1 summarizes the key process management and scheduler characteristics 

examined in this chapter for both Linux and Windows CE. While Linux uses a process as 

the basic unit of execution, Windows CE designates a thread as a basic unit of execution. 

Linux does not create address space for the newly created process until the shared 

memory pages are modified by either the parent or the child process. Windows CE, on 

the other hand, does create the process address space at the time of creation, which results 
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in significant up-front overhead when compared to Linux. Accounting for a smaller unit 

of execution, thread, within a process also adds to the Windows CE process creation 

time. Linux, therefore, is better suited for applications that require newly spawned 

processes that quickly start executing.  

While Linux and Windows CE both support preemptive multitasking, only Linux 

supports dynamic priority based scheduling. In that regard, Linux increases the priority of 

I/O bound processes and decreases the priority of processor bound processes since they 

do not block as much and, consequently, may not allow an I/O bound process, which has 

to respond to events much faster, to execute as much as it needs to. It is a fine tuning of 

the overall system performance on the fly to alleviate any sluggishness perceived by the 

user. Windows CE, on the contrary, relies on the developer to select the proper thread 

priority and fine tune the overall system performance. From another perspective, the 

developer created priorities in Windows CE are not mutated by the scheduler, 

empowering her to customize the system performance. It is difficult, however, to predict 

the behavior of processes that require user I/O as opposed to processes that can run in the 

background. Therefore, developers of an embedded system can better engineer a system 

for performance by using Windows CE rather than Linux, but only for applications that 

do not require a lot of user interactivity. The fact that the Windows CE scheduler is 

simple and quick helps it to qualify as a hard real time OS, whereas Linux does not 

qualify due to the fact that its scheduler collects some metrics on all processes.  

From a scheduler fairness perspective, however, Linux has the advantage because 

the scheduler ensures that lower priority processes will eventually get a chance to 

execute, when the higher priority process is moved into the expired array after its 

timeslice is exhausted. In Windows CE, when the timeslice of the higher priority process 

is exhausted, it will be selected for execution again over a lower priority thread until it 



 17 

completes or blocks, It is easy to imagine that if a higher priority thread in Windows CE 

does not block much and does not complete for a long time, lower priority threads will 

not be able to make any progress. Therefore, if a high degree of multitasking is required 

in an embedded system, Linux is a better choice. 
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Chapter 5:  Interrupt Handling 

Another of the operating system’s primary responsibilities is to manage the 

hardware on which the applications are to be run. The hardware periphery surrounding 

the processor typically runs at a much slower rate than the processor itself. Therefore, it 

is imperative that the processor be free to do some other useful work, such as to run a 

different application, while a particular application is blocked waiting for a peripheral 

(e.g., a key press). When the peripheral wants to indicate an event to the processor, it 

enables a specific hardware interrupt line. Based on the interrupt line, the kernel can 

suspend the currently executing process, and service the interrupt in an interrupt handler 

that is part of the device driver. Upon returning from the interrupt handler, the kernel may 

resume the originally executing code or schedule a new piece of code for execution. The 

longer an interrupt handler takes to process the interrupt, the more delay is induced into 

the previously executing process. It can lead to a degradation of performance in a system; 

therefore, it is highly desirable for interrupt handlers to return as quickly as possible. [2] 

In Linux 2.6, interrupt handlers for each peripheral are supplied as part of the 

device driver for that peripheral. When the driver is loaded, it registers the interrupt 

handler function with the kernel identifying the hardware interrupt number, or IRQ, with 

which the handler is associated. In Windows Embedded CE 6.0, each IRQ is mapped to a 

software interrupt (SYSINTR). The device driver registers an Interrupt Service Thread 

(IST) against the SYSINTR. Upon receiving an interrupt, each OS runs an architecture-

specific function, known as do_IRQ in Linux and the Interrupt Service Routine (ISR) in 

Windows CE. This is where the similarities in the two OSs interrupt handling scheme 

end.  In Linux, do_IRQ identifies the interrupt handlers registered against the IRQ, and 

disables all interrupts if the handler has registered as a fast interrupt handler. Disabling all 
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interrupts for the duration of the interrupt handler adversely affects the real time 

capabilities of Linux, which cannot meet hard real time deadlines. Interrupt handlers, 

therefore, are required to be simple and fast, performing only the most essential tasks, 

such as moving received data from peripheral to memory, and leaving non-essential 

tasks, such as processing received data, for a later time. Postponing non-essential tasks 

ensures that the task is preemptible by other higher priority tasks [3].  

Windows CE, in contrast, is a hard real time OS. Initially, while the OS identifies 

which ISR to run1, all interrupts are disabled. When the ISR for the particular IRQ is 

executing, all higher priority interrupts are enabled, allowing preemption of the current 

ISR. The ISR finds the SYSINTR mapped to the IRQ and sets the event on which the 

device driver’s IST is blocked. At the end of the ISR, all previously enabled interrupts, 

except the one being handled, are re-enabled. Interestingly, the Windows CE scheduler 

has to get involved to run the IST since an event has been set by the ISR. If the device 

driver developer is not careful to assign a high enough priority to the IST, it may not be 

selected by the scheduler to run next, causing a delay in servicing the peripheral that has 

interrupted [4]. It is in sharp contrast to the fast interrupt handling protocol in Linux, 

which blocks other higher priority interrupts in order to process the current one. The 

more complex Windows CE interrupt handling protocol is illustrated in Figure 3, 

reproduced here from [4]. 

                                                 
1On ARM processors, there is only one hardware interrupt, so there is only 1 ISR in the system that 
identifies the interrupt source(s). 
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Figure 3: Windows CE 6.0 Interrupt Handling. 

DISCUSSION 

Table 2: Interrupt Handling Comparison 

Table 2 summarizes the key interrupt handling characteristics examined in this 

chapter for both Linux and Windows CE. Linux employs a more straightforward interrupt 

handling strategy than Windows CE: for an interrupt handler registered as a fast interrupt, 

Interrupt Handling Property Linux 2.6 Windows Embedded CE 6.0 

Main interrupt handling routine Interrupt handler IST 

Interrupts disabled during handling All if registered 
as fast interrupt 

Lower priority disabled 
during ISR, no interrupts 
disabled after ISR 

Scheduler involved in interrupt 
handling 

No Yes 

Hard real time capable interrupt 
handling mechanism 

No Yes 
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which is common, all interrupts are disabled while it is executing. In the time that the the 

interrupt handler is running, other interrupts that may fire during this time, but they will 

remain unhandled until the interrupt handler completes, regardless of the fact that it may 

be higher in priority than the currently handled interrupt. Now, if the unhandled interrupt 

is something critical like the indication of a collision in an automobile, the system will 

fail with disastrous consequences for the occupants of the vehicle if the resulting reaction 

of deploying air bags does not start within a handful of milliseconds, which is a likely 

scenario if the currently executing interrupt handler does not complete rapidly.  

Windows CE, on the other hand, employs a layered interrupt handling 

mechanism. At each stage, except the initial one when the firing IRQ and its 

corresponding ISR that is to be executed are identified, all higher priority interrupts are 

allowed to preempt the interrupt that is currently being handled. The IRQ and its 

registered ISR identification consumes a much shorter windows of time compared to the 

rest of the stages, therefore it cannot significantly delay any higher priority interrupts that 

fire during that initial stage. The ISR is also relatively short and simple since its job is 

only to find the SYSINTR value that corresponds to the IRQ and to notify the kernel to 

set any events registered against that SYSINTR value. After that stage, all interrupts of 

lower and higher priority are re-enabled. The IST, which performs the bulk of the work 

required by the interrupt, does not run until the scheduler selects it for execution, but then 

only if there is no higher priority thread currently running. Critical interrupts are 

guaranteed to be handled without delays caused by lower priority threads and interrupts. 

Therefore, Windows CE, with its hard real time qualification, is better suited than Linux 

for applications having strict timing requirement. Windows CE also places the onus on 



 22 

the developers of the system to fine tune the priorities in the system to ensure that a 

critical interrupt or IST is not mistakenly assigned a low priority.  

Similar to fairness in scheduling, Linux also is fairer in interrupt handling 

compared to Windows CE. It ensures that the currently handled interrupt is not 

preempted by a higher priority one. Preemption may also be less desirable when interrupt 

priorities are not far apart in a system. Suspending a currently executing interrupt service 

routine in order to service another interrupt that is only slightly higher in priority may be 

costlier in the long run since it requires a context switch, which means additional 

processing and, therefore, additional power. Consequently, Linux is a better choice for an 

embedded system without much distance between the interrupt priorities. 
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Chapter 6:  Memory Management 

Like processor time, the system’s main memory is a precious resource in an 

embedded system. Via process management and the scheduler, the OS manages the 

sharing of time on the processor among the applications. Similarly, the OS has to manage 

the sharing of main memory. Any code that is to be executed and any data that is to be 

accessed by the code needs to reside in main memory. The size of the memory on the 

hardware is usually too small to fit all the applications, system libraries, and the kernel. 

Yet, the application developers are not burdened with any concerns about how the 

application’s memory needs might be satisfied. A primary reason for that is to keep the 

applications portable to platforms with different sized physical memory. From the 

application’s perspective, it looks as though the entire system memory is available for its 

sole use. It is responsibility of the OS to allocate or free memory when requested by 

applications. An approach employed by most operating systems, including Linux 2.6 and 

Windows Embedded CE 6.0, is the use of virtual memory. [2] 

Virtual memory space is the maximum possible addressable space, which for 32-

bit systems is 4 GB – typically much larger than physical memory. The OS maps the 

virtual memory to the physical memory on the hardware as needed and is responsible for 

divvying up the virtual memory address space among the kernel and the processes. The 

use of virtual memory requires swapping out a memory page, if the memory is full, 

whenever a new page is requested that is not resident in the physical memory. A page is 

the smallest unit of memory that is used during memory management; it is typically 4 KB 

for 32-bit systems. When a page is swapped out, a page of physical memory containing 

data is replaced with another page of memory that is read in from storage, such as a disk. 

The page to be swapped is written out to disk, but it can be brought back into main 
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memory if it is accessed. The selection of the page to be replaced is a pageout policy 

decision that depends upon the OS. [2] 

The Linux 2.6 kernel, as most modern operating systems, uses virtual memory. 

Each process is permitted to have its own virtual memory space, which means that it is 

possible for the same virtual address to exist in multiple processes. The kernel maintains 

a set of page tables for each process, which maps each virtual address of that process to a 

unique physical memory address [3]. The Windows Embedded CE 6.0 virtual memory 

implementation is very similar. Also similar is the memory protection implemented for 

user space process in both operating systems: For a particular user process, the kernel 

restricts access to the kernel address space as well to other processes’ address spaces to 

prevent malicious or unintended corruption of another process’s memory. When 

accessing user memory, both kernels have to map the buffer into its address space [4]. 

How the virtual memory space is divided between the kernel and user space code is one 

of the key differences between the two operating systems’ memory management domain.  

For 32-bit architectures, of the maximum possible 4 GB virtual address space, the 

Linux kernel consumes 1 GB, leaving 3 GB for each process (although this configuration 

can be changed to a split such as 2 GB / 2 GB or 3 GB / 1 GB). Windows CE, however, 

has a fixed 2 GB / 2 GB split between kernel and user space [4]. In both OSs, the kernel 

directly maps 1 GB of the address space to the physical memory on the system for 

improved performance as fewer page faults are encountered. Of the 1 GB of kernel 

address space, the Linux kernel directly maps 896 MB to the physical memory on the 

system, which means a page table lookup is not required to translate the virtual address to 

its corresponding physical address [3]. The Windows CE kernel only directly maps 512 

MB, in comparison. Another non-cached version of the same 512 MB is also mapped by 

the Windows CE kernel to allow direct access to hardware registers for memory mapped 
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peripherals [4]. Part of the 1GB kernel space in Linux contains user memory that is 

mapped into kernel space (e.g., a device driver wants to dump data from peripheral 

memory directly into user memory), and so it requires page table access and is not direct 

mapped. Windows CE allocates some memory from the remaining 1 GB of the kernel’s 

address space for a similar mapping of user memory. Typically, embedded systems have 

less than 1 GB of physical memory, so although the kernel region is direct mapped, the 

kernel may still encounter a page fault, which occurs when the page is not in physical 

memory and must be read in from the disk.  

From a user process perspective, Linux provides 3 GB of address space, while 

Windows CE provides 2 GB. The user process’s address space has to fit code and data 

pages along with mapping of shared libraries, which would otherwise require a copy of 

the library to be loaded in each process’s address space. Some portions of the process’s 

address space are also reserved for interprocess communication and memory mapped 

files, covered in the next chapter. [3] [4] 

Memory allocation in support of executing programs is a key responsibility of the 

operating system. A process requires memory for the variables declared in the code. 

Variables declared statically are allocated from the process or thread stack. Whereas, 

dynamically allocated variables consume memory from the process heap, rather than 

entire pages, typically 4 KB, for small amounts of memory needed for the variables. 

Heaps permit more efficient use of memory in the system, but they are not immune to 

fragmentation, when repeated allocations and deallocations by the process leave gaps of 

free memory in the contiguous heap space. In Linux, a user process’s stack is virtually 

unlimited, while it defaults to 64 KB on Windows CE. But, user thread stack size in 

Windows CE can be changed by the developer through the use of a linker flag. The same 

is true for kernel thread stacks. In contrast, the Linux kernel process stack is strictly 
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limited to 8 KB for 32-bit architectures. In Windows CE, a process heap, which is shared 

by all the threads in the process can suffer from fragmentation. The Linux heap includes a 

layer known as the Slab that prevents fragmentation by rearranging the allocated and 

freed blocks to make the heap contiguous again. Keeping the heap contiguous not only 

enables more efficient use of memory but also improves performance during memory 

allocation of a process since the search for free memory blocks completes faster for a 

contiguous heap. [3] [4] 

DISCUSSION 

Table 3: Memory Management Comparison 

Table 3 summarizes the key properties related to memory management in Linux 

and Windows CE. While both use virtual memory and employ a similar memory 

protection scheme, they greatly differ in many areas. Linux provisions a bigger chunk of 

Memory Management Property Linux 2.6 Windows Embedded 
CE 6.0 

Use of virtual memory Yes Yes 

Kernel/User memory split 1 GB / 3 GB 2 GB / 2GB 

Memory split configurable Yes No 

Kernel direct mapped memory 896 MB 512 MB, cached and 
uncached copies 

Memory access and protection 
scheme 

User process cannot 
access kernel or other 
user process memory; 
kernel can access 
entire memory map 

Same as Linux 

User stack size / allowed to grow 
dynamically 

As big as needed / 
yes 

64 KB or developer 
defined / no 

Kernel stack size / allowed to grow 
dynamically 

8 KB / no 64 KB or developer 
defined / no 

Heap can suffer from 
fragmentation 

No Yes 
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the virtual address space for user processes: 3 GB as opposed to 2 GB in Windows CE. 

This means that user processes in Linux are allowed to grow much bigger than in 

Windows CE. In the embedded systems space, however, user processes hardly ever grow 

this big; therefore, this seems to be a negligible difference. It does mean, however, that 

the kernel space is bigger in Windows CE than Linux, so the kernel has more room to 

include objects like the Windows registry, which can be helpful for user processes for 

storing settings. Therefore, Windows CE offers more flexibility with the bigger kernel 

space. With a smaller direct mapped region and the bigger virtual address space, the 

Windows CE kernel can potentially suffer from more page faults, leading to slower 

kernel performance. However, that disadvantage is tempered for embedded systems since 

the physical memory size is typically small enough to be entirely direct-mapped by both 

the Windows CE and Linux kernels. Linux offers more flexibility for the developer of the 

system through configuration of the user-kernel memory split. 

Of the memory management properties examined, by far the most important one, 

from the perspective of an embedded system, which has limited memory, is how each OS 

handles memory allocation for processes. At first glance, it seems that Windows CE 

kernel is better because of the bigger default stack size and the ability for the developer to 

choose a particular stack size. However, the fixed 8 KB stack size for Linux kernel 

processes forces the developers to make more use of the heap with dynamic memory 

allocation. The heap in Linux is managed to a much higher degree than Windows CE in 

an effort to keep memory contiguous and prevent fragmentation. Less fragmented 

memory means more of it is available and memory requests from processes can be 

serviced faster. Therefore, Linux is the better choice for embedded systems, from the 

perspective of efficient memory allocation. 
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Windows CE, on the other hand, empowers the developer to fine tune the memory 

usage for her process since the stack size is definable during compile time. The developer 

of the system can collect some empirical data on her system to determine optimal stack 

size for the kernel and user space processes. However, when not carefully selected, stack 

sizes that are too large can quickly deplete the memory pool in an embedded system. 

Linux may encounter similar problems due to poorly written user processes, whose stack 

is allowed to grow as much as needed during run time. 
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Chapter 7:  Synchronization and Interprocess Communication 

In a modern embedded system, it is typical to have multiple applications 

executing concurrently, which are managed through scheduling. Many applications 

require synchronization with other processes or the kernel. The degree of synchronization 

may vary; it could be as little as requiring notification that an event occurred or as much 

as transferring huge chunks of data back and forth with another process. The system 

hardware typically possesses one or two instances of a peripheral, such as a serial port or 

Ethernet port. If one process is currently using a resource, the other process has to wait its 

turn. But how will the other process realize when the resource is free? Concurrent 

execution means preemption by the scheduler at any time. How would the newly 

scheduled process, which accesses some shared critical region of code, be sure that there 

no process is currently executing in the critical region? Synchronization is the solution to 

these problems. Synchronization can be viewed as a subset of interprocess 

communication, which includes data exchanges between processes. [2] 

The Linux 2.6 OS provides many forms of synchronization, both for the kernel 

and for applications. One of the basic synchronization tools available in the kernel is 

atomic operations, such as test-and-set, at the integer and bit levels. Atomicity ensures 

that no other process can interrupt that particular operation. This is useful when sharing a 

small piece of shared data, which can be employed as a method to obtain a shared 

resource [3]. Windows Embedded CE 6.0 provides similar atomic operations known as 

interlocked functions [4]. For critical sections of code that must be executed exclusively, 

and for protecting shared data structures from concurrent access, which could put the data 

in an inconsistent state, both OSs provide similar synchronization mechanisms in kernel 

mode: spin lock in Linux and Critical Section in Windows CE. When a process in Linux 
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tries to acquire a spin lock, it will either succeed if no other process is holding the spin 

lock or it keeps executing a wait loop until the other process releases the lock. However, 

in Windows CE, the thread trying to acquire the Critical Section blocks until the thread 

holding the Critical Section releases it. Processes holding a spin lock are not premptable 

and are not allowed to sleep; whereas, no such restrictions exist for threads holding a 

Critical Section in Windows CE. Therefore, it is possible for threads holding a Critical 

Section to sleep which could negatively impact the overall system performance if there is 

a lot of contention for the Critical Section. In Linux, a process holding a spin lock is also 

expected to complete its work as quickly as possible to avoid affecting the overall system 

performance. [3] [4] 

A Linux semaphore is a version of the spin lock that enters a queue and sleeps if 

the semaphore is not free. When the semaphore is released, a process from the queue is 

awakened. Semaphores can be configured to allow more than one process access to the 

shared resource by simply setting the count appropriately. Windows CE also provides an 

equivalent Semaphore object to permit one or more threads in the kernel to access a 

shared resource concurrently. Completion variables are another form of synchronization 

between processes in the Linux kernel. Each process that is interested in a particular 

event can wait on a completion variable; when the event occurs, all (or one) waiting 

processes can be woken up. Windows CE’s equivalent synchronization object is known 

as an Event. The Windows CE kernel and user address spaces also provide for a one way 

communication pipe from the kernel to the user process, referred to as the system heap. 

[3] [4] 

For user processes, shared memory is the most direct, therefore the most efficient, 

form of interprocess communication available in Linux, but not in Windows CE.  

Semaphores have to be used to synchronize access to the shared memory in Linux as the 
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kernel does not ensure exclusivity. Memory mapped files are the most efficient way to 

transfer large amounts of data between user threads in Windows CE, also requiring the 

use of semaphores for synchronization. Processes in Linux can also communicate with 

each other through memory mapped files, similar to Windows CE. For medium sized 

data transfers, both Linux and Windows CE support TCP/IP sockets that are available in 

both operating systems’ networking library. The Windows CE registry is a space that can 

be used for medium sized data transfers. In Linux, a pipe can be used to funnel data 

between processes; however, it only provides one way communication. Pipes have a 

built-in flow control mechanism so that the writer does not overflow the reader and the 

reader blocks if the pipe is empty. Similarly, Windows CE provides point-to-point 

message queues for one way communication. Both the pipe and the message queue are to 

be used for small amounts of data transfers due to overhead associated with the tools. [7] 

[8] 

 



 32 

DISCUSSION 

Table 4: Synchronization and Interprocess Communication Comparison 

Table 4 summarizes the synchronization and interprocess communication tools 

and characteristics in Linux and Windows CE. In kernel space, an examination of the 

policy surrounding critical sections reveals some important differences. Linux does not 

permit preemption or sleeping in processes that are holding a spin lock. Whereas, threads 

holding a Critical Section in Windows CE can be preempted for higher priority threads or 

for interrupt handling. Sleeping is also allowed in the thread which holds the Critical 

Section. This behavior is consistent with Windows CE’s hard real time credentials. Since 

a real time interrupt, and its related ISR and IST, may need to be processed without 

delay, the current thread, whether it is holding a Critical Section or not, can be 

preempted. Subsequently, the synchronization in Windows CE is better for an embedded 

system with hard real time requirements. 

Synchronization and 
Interprocess Communication 
Property 

Linux 2.6 Windows Embedded CE 6.0 

Kernel mode synchronization tools Spin lock, 
semaphore, 
completion 
variable 

Critical Section, Semaphore, 
Event 

Sleeping allowed when holding 
lock or critical section 

No Yes 

Preemption allowed when holding 
lock or critical section 

No Yes 

User mode synchronization tools Semaphore Semaphore, Event 

User mode interprocess 
communication tools 

Shared memory, 
memory mapped 
files, socket, 
pipe 

Memory mapped files, socket, 
registry, point-to-point 
message queue, system heap 
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Under Linux, the process holding a spin lock has to complete without sleeping or 

being preempted. Although such a policy can result in delayed reaction to critical 

interrupts, it has the advantage that processes vying for a heavily contended lock will 

eventually progress in their execution since the process holding the lock will eventually 

yield. Heavily contended locks often protect scarce resources in the system without 

which processes may starve. A communication radio on an embedded device is a good 

example since, typically, there is only one of those in a system but many processes may 

be interested in transmitting or receiving on it. Without the strict policy employed by 

Linux, there is a possibility that a thread that sleeps or gets preempted while holding a 

heavily contended critical section will cause severe degradation in performance for all 

processes or threads. In Windows CE, priority inversion is employed to guard against 

long waits by higher priority threads for acquiring a Critical Section, but the thread 

holding the Critical Section with its bumped up priority can still sleep. Therefore, Linux 

synchronization mechanism seems to be better suited for systems with heavily contended 

resources. 

Both operating systems offer similar sets of tools for interprocess communication 

between user processes. Some tools, however, are unique to each OS. Linux shared 

memory, for example, serves as an efficient transfer mechanism for large amounts of 

data. Shared memory is not available in Windows CE; therefore, the developer of user 

applications that require large data transfers between processes may be better served with 

Linux. The Windows CE registry, on the other hand, provides a communication medium 

between processes that does not exist in Linux. The system heap is another tool not 

available in Linux. It permits the Windows CE kernel to communicate directly with user 

processes. For user processes, this can be beneficial because information from the kernel 

can be received by the user process without making any system calls. 
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Chapter 8:  Power Management 

An embedded system is typically powered by a limited life battery instead of the 

inexhaustible AC power; therefore, the system has to proactively look for ways to reduce 

power consumption whenever possible. There are many opportunities to conserve power 

in various situations ranging from idle time to system suspend. The system hardware has 

a prime role to play in saving power. Modern embedded processors support varying 

degrees of power savings, while many peripherals also support clock and power gating. 

The operating system, however, is responsible for managing and coordinating the power 

state transitions in the system. The device drivers and board-specific code implement the 

power saving features over the hardware domain. 

Originally targeted for the desktop environment, there was very little power 

management support in the early Linux kernels. Windows CE, on the other hand, was 

created for embedded systems so it was much further ahead in the area of power 

management. As it has evolved for use in laptops and most recently for embedded 

systems, Linux has undergone a substantial revolution in the power management field. In 

Windows Embedded CE 6.0, basic suspend and resume are supported in addition to more 

fine grained power levels for individual device drivers. Similarly, basic support for 

suspend and resume can be implemented in Linux’s machine layer by registering board 

specific implementations of suspend and resume related functions with the kernel’s 

suspend_ops structure. Device drivers can also register specific implementations of 

suspend and resume functions with the kernel provided hooks in dev_pm_ops. Upon 

request to suspend or resume the system, the kernel calls the registered drivers and the 

machine layer functions to enter the requested power state. One of the easiest ways to 

conserve power in a system while it remains on is to turn off the clock to a peripheral 
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when it is not in use. Device drivers are expected to proactively gate and ungate clocks, 

assuming hardware support, using clock APIs that must be implemented in the machine 

layer.  

In Windows CE, multiple device driver power states, which can range from D0, 

the fully on state, to D4, the fully off state, can be used to perform the clock and power 

gating. Unlike Linux, a clock gating framework is not provided. Drivers and applications 

alike are notified of a power state change if they have registered to receive the 

notifications. While suspend and resume calls require a power-aware driver to implement 

the XXX_PowerUp and XXX_PowerDown interface, the D0-D4 power notifications are 

provided via an IOcontrol call. [4] [9] [10] 

In Windows CE, the Power Manager driver manages and coordinates the overall 

system power management scheme. An advantage for Windows CE over the Linux is 

that, since the Power Manager driver is written in a layered form, power management can 

be easily customized for a particular platform.  On the contrary, an advantage for Linux 

over Windows CE is that drivers could take advantage of the voltage regulator 

framework to control their power sources when suspend or resume is called. Windows 

CE does not provide a framework for power regulator control, which must be provided 

by the device manufacturer. [4] [10] 

Another situation where power savings can be maximized is when the processor is 

idle because there are no processes or threads to execute. In the case of Linux, the device 

manufacturer provides an implementation of cpu_idle function specific to the processor. 

cpu_idle usually runs a special instruction that puts the processor in a low power state 

from which it can rapidly return to active state. If the hardware permits, it may also 

disable the periodic timer that would otherwise regularly wake up the processor just to 

service the timer interrupt. Likewise, in Windows CE, the device manufacturer has to 
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provide an implementation of the OEMIdle function that can save power when the 

processor is idle, with a provision to disable the periodic timer interrupt. Newer 

processors may support Dynamic Voltage and Frequency Scaling (DVFS), which permits 

reducing the processor’s clock frequency and voltage at runtime. Linux 2.6 contains the 

cpufreq framework that can be customized to the processor for implementing DVFS in 

accordance with a certain policy such as on-demand, which uses the CPU utilization 

metrics to adjust frequency and voltage. Unlike Linux, the DVFS implementation in 

Windows CE is left entirely up to the device manufacturer. [4] [10] 

DISCUSSION 

 

Power Management Property Linux 2.6 Windows Embedded CE 6.0 

Suspend/resume support Yes Yes 

Idle time power savings Yes Yes 

Granular device power states No D0-D4 

DVFS, clock and power gating 
frameworks 

Yes No 

Easily customizable power 
management scheme 

No Yes 

Table 5: Power Management Comparison 

Table 5 summarizes the key power management characteristics examined in this 

chapter for both Linux and Windows CE. Although Linux matches the suspend-resume 

and idle time power saving features offered by Windows CE, the Power Manager driver 

and the granular device power states of Windows CE make it easier for the developer to 

implement a consistent power management scheme throughout the system, including 
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both kernel and user space. For example, the Power Manager can transition a system to 

the D2 power state when the system has been idle for a certain period of time. It sends 

out a D2 power state to all drivers and applications registered for the D2 power 

notification; subsequently, the driver can gate the clock to the peripheral and the 

application can change its behavior based on the system power state. Flexibility is not 

lost, however, since each driver can choose to support only the power states that make 

sense for the peripheral. Linux expects device driver developers to be proactive in 

implementing power savings, which makes the system more decentralized. Different 

developers may end up implementing varying degree of power savings in each 

component of the system, making it difficult to attain a uniform power scheme across the 

system. Additionally, user processes cannot receive power notifications like they can in 

Windows CE. Moreover, the ability to customize the Power Manager in Windows CE 

makes it better suited for developers wishing to fine tune the power policy to a platform. 

Linux, on the other hand, provides more tools to the developers to save power. 

The clock and power gating frameworks shortens the development time to support these 

features in the drivers. The DVFS framework, cpufreq, can be adapted to the processor to 

save more power by reducing frequency and voltage at run time. Windows CE requires 

device manufacturers to develop their own frameworks for these items from scratch. 

While this provides more flexibility to the developer, it can increase development time. 

Therefore, implementation of power management is faster for embedded systems using 

Linux rather than Windows CE. 
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Chapter 9:  Conclusions 

In this paper, we examined two 32-bit embedded operating systems: Linux 2.6 

and Windows Embedded CE 6.0. As the layer of software that controls the hardware, the 

operating system is responsible for managing the hardware to suit the needs of 

applications that execute on the system. The key aspects of both OSs – process 

management and scheduler, interrupt handling, memory management, synchronization 

and interprocess communication, and power management – were discussed to reveal their 

strengths and weaknesses.  

In the area of process management, Linux is better for quick process creation and 

execution, while Windows CE offers finer grained execution units: threads and fibers. An 

examination of the two schedulers revealed that Windows CE may be the better choice 

for less interactive systems since the developer has more control over the system 

performance. Although both operating systems exercise preemptive multitasking, Linux 

has the potential for better overall system performance on systems that need to support a 

high degree of multitasking due to the fairness policy implemented by its scheduler. 

Windows CE, however, is hard real time capable, whereas Linux can only meet soft real 

time deadlines, in part owing to the fact that its scheduler does some extra accounting 

work.  

Linux’s interrupt handling scheme revealed another reason why Linux is not a 

hard real time OS: all interrupts, even critical ones, are disabled while an interrupt 

handler is executing. Whereas, in Windows CE, all higher priority interrupts are enabled 

while the ISR is running, and all other interrupts are enabled after the ISR completes. 

Therefore, for an embedded system that has to support applications with strict timing 

requirement, Windows CE is better. Linux, however, offers more fairness in interrupt 
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handling since the servicing of the interrupt currently being handled is allowed to 

complete without preemption in favor of another interrupt. This scheme can be better 

suited for systems with interrupt priorities that are close together since power-consuming 

context switches are avoided. Windows CE, however, places more burden on the 

developer to ensure that thread and interrupt priorities are tuned carefully to ensure that 

the overall system performance does not degrade. 

Both operating systems possess a similar memory management scheme that 

ensures each process is provided its own unique virtual memory space in which to grow. 

However, Linux comes out as a clear winner in terms of more efficient memory usage 

due to a fixed small kernel stack size and better managed process heap that tries to avoid 

fragmentation. Windows CE, in keeping with the theme discovered in the study of its 

process management, scheduler and interrupt handling mechanism, allows the developer 

more flexibility to choose an optimal stack size, but sufficient care must be taken to avoid 

using needlessly large stack sizes that can deplete the already scarce memory on 

embedded systems.  

In the area of synchronization, Windows CE is better suited for hard real time 

applications due to the policy that allows thread preemption while holding any Critical 

Section. Linux, on the other hand, can perform poorly for hard real time applications 

since a process holding a spin lock cannot be preempted in order to service a higher 

priority event in the system. Linux is better suited to manage heavily contended resources 

in an embedded system. Windows CE is not able to guarantee that a thread will not sleep 

while holding the heavily contended resource. From an application developer perspective, 

interprocess communication tools in both OSs are comparable to a large degree. 

However, a couple of tools unique to each OS may provide an advantage. In Linux, 

shared memory provides an efficient mechanism for transferring large amounts of data. 
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Whereas, the Windows CE registry is an effective means to transfer data between 

processes and the system heap is useful for transferring data from the kernel to the user 

process. 

While the Power Manager component makes power management a strong suite 

for Windows CE, recently added support in the Linux 2.6 kernel has managed to 

significantly close the gap between the two operating systems. Windows CE is the better 

choice for implementing a centralized, uniform, and custom power management scheme 

across the system. Although Linux power management falls short in those areas of power 

management, the frameworks provided for clock and power gating, as well as for DVFS, 

enables developers to more quickly implement power savings for their particular 

platform.  

In general, the Linux OS emphasizes efficiency and fairness, while the Windows 

CE OS emphasizes quick reaction time and flexibility for the developer to optimize the 

system manually.  

 

Linux® is the registered trademark of Linux Torvalds in the U.S. and other 

countries. 

Windows® is a registered trademark of Microsoft Corporation in the United 

States and other countries.
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