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Preface 

In 1956, Mr. Henry Beckman of Austin, Texas, donated to The University of 
Texas a sum of money for the "Henry Beckman Engineering Conservation Crea­
tive Graduate Award" for the most acceptable creative research in the College of 
Engineering. The award is based upon the most creative and ingenious contribu­
tion offered by a graduate student of the College of Engineering in the form of a 
thesis study and is to be selected from theses submitted during the calendar year. 
The selection is made by the Graduate Faculty of the College of Engineering 
from Master's theses on some facet of engineering related to the conservation of 
resources in Texas. This competitive award is to be made annually from the pro­
ceeds of the invested funds. A summary of the winning award is to be published 
in the annual Henry Beckman Conservation Bulletin of the Bureau of Engineer­
ing Research. 

This is the first bulletin of the Henry Beckman Conservation series and con­
tains the summary of the winning thesis for the 1956 calendar year. In addition, 
abstracts of other theses considered in this competition are included as a supple­
ment to this publication. 

It is with genuine pleasure that the College of Engineering inaugurates this 
award for outstanding work among the graduate students in the College of 
Engineering. 

W.R. WooLRICH 
Dean of Engineering 





Application of a Two-Dimensional Potential 
Analog to the Solution of 

Root-Locus Problems 

BY 

D. R. ZIEMER* 

I. Introduction 

The field of automatic control has witnessed a tremendous growth of interest 
and activity in the past fifteen years. The many military applications of servo­
mechanisms were no doubt the largest contributing factor. However, because of 
the military n ecessity for higher performance control systems, the required 
servomechanisms became more complex, and the resulting design problems grew 
more complicated. 

During and immediately after World War II, the main emphasis was placed 
on the frequency response method of analysis. This was due in no small way to 
the extensive work of men like Nyquist and Bode in the fields of feedback ampli­
fier design and related circuit theory. 

As the complexity of the systems increased, the transient response of the sys­
tem became a very important criterion for design. Since the transient response 
is not easily obtained from the Nyquist and -Bode techniques, a new design tool 
was urgently needed . About 1950 Evans6 introduced his root-locus method utiliz­
ing the complex frequency plane concept as a means of obtaining transient and 
frequency responses with equal ease. The root-locus method is straightforward 
and has obtained rather wide acceptance. 

The purpose of this paper is to discuss a two-dimensional potential analog 
utilizing the concepts of the root-locus method as a further tool in the design and 
synthesis of automatic control systems. 

• Master of Science in Electrical Engineering, January, 1956; now with Temco Aircraft Cor· 
poration. Dallas, T exas. 



II. Review of the Root-Locus Method 

Design in terms of the complex singularities of a system, which is essentially 
what the root-locus method does, is greatly facilitated if the design is accom­
plished in terms of two parameters, the undamped natural frequency w11 and the 
damping ratio t. 

Consider the transfer function relating Laplace Transforms of the output and 
input functions. 

G(s) = c 
2 

as + bs + c 
(1) 

S = CT + jw 
If the damping term is set equal to zero (i .e., b =0) , the characteristic equation 
becomes 

as2 + c = 0 (2) 

The quantity «>n is defined as the magnitude of the roots of Eq. (2). 

= (3) 

The parameter t or damping ratio is defined as the ratio of actual damping to 
critical damping. Critical damping is defined from Eq. (2) to be that value of the 
dam ping coefficient b which makes b2 = 4 ac, or 

The damping ratio is then 

= 
actual damping 
critical damping 

(4) 

If "'n and ' are used as parameters to replace appropriate combinations of a, b, 
and c, Eq. ( 1) becomes 

G = 2 s s 

= 
[ (s + 

w 

+ 2w 

2 
n 

n ss 
w 

n 
2 

2 + w 
n 

2 ~2 w s) + (w 1 - s ) ] n n 

(5) 

(6) 

The locus of the variation of the roots of the characteristic equation of Eq. (6) 
as a function of fixed "'n and variable t (0,,:; t < oo) are shown in Fig. 1. 
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As motivation for the development of the root-locus method, consider Fig. 2. 
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H(S) 

FIG. 2 

SINGLE-LOOP FEEDBACK SYSTEM 
In the usual feedback control system , G ( s) is the ratio of two polynomials in s 
which is a rational algebraic function , 

G(s) = 

m 
K II 

i=l 
n 
II 

j =l 

(s 

(s 

- z .) 
1 

- p.) 
J 

(7) 
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where K is the gain constant of the open-loop transfer function. The closed-loop 
function of s, G(s) can be obtained from the open-loop function by the well 
known expression 

G(s) 
G( 8 ) = _l_+__,,,G,..;.(--;s ),_..,H=r( s"'t"')- (8) 

The root-locus method is a graphical procedure for determining the zeros of 
[1 +G(s) H(s)]. To illustrate this , equate the denominator of Eq. (8) to zero 
g1vmg 

G(s) H( s ) = -1 

G( s) H ( s ) = 1 ~ = 1 Ej;r 
(9) 

The complex singularities (poles and zeros) of G (s) H(s) are located on the 
complex s-plane. The locus of these roots as the open-loop gain K is varied is 
the curve of all points for which the vectors from the poles and zeros to these 
points contain angles measured from the positive real axis which add up to 180°. 
In addition, the product of G ( s) H (s) at any point on the locus must be unity. 

Consider a system with unity feedback containing a forward-loop transfer 
function given by Eq. ( 7). The conditions of the root-locus implied by Eq. (9) 
demand that 

m n 

/G(s) = l /s - z. L 1 /s - p . 
J 

= 180° ± n3 60 ° 

i =l j =l 
ill id 

n 
II (s - p .) 

j =l J 
K = ( 10) 

m 
II (s - z.) 

i=l 
1 



III. A Two-Dimensional Potential Analog 

T o motivate the development of a two-dimensional potential analog, we m ay 
start by taking the natural logarithm of both sides of Eq. ( 7) 

m n 

V + jcj> = ln q<s) = ln K + l ln (s - zi) - I ln (s - pj) ( 11 ) 

i=l j =l 

Equating the real and the imaginary parts gives 

m n 

V(s) = ln K+ l ln I s _ z . -l ln Is - Pjl l (12) 

i=l j=l 
and 

m n 

cj>(s) = l /s z. l /s - p . 
l J 

(13) 

i=l j=l 

where V ( s) is defined to be the potential function and <I> ( s) the stream function. 
If V ( s) is the gain in nepers, then <I> ( s) is the phase shift in radians. Further­
more, V (ir, w) and <I> (ir, oi) are conjugate functions, since Eq. (7) is analytic 
except at the points s = z 1 and s = p;, and therefore generate orthogonal tra jec­
tories. These functions atisfy the Cauchy-Riemann conditions 

8V(s) :::: ;w<j>(s) ao-
:t(s) _ -8V(s) ., - aw 

The nomenclature of Eqs. ( 12) and ( 13) is illustrated in Fig. 3. 

( 14) 

In view of the simplicity of Eqs. (12) and (13), it would be highly desirable 
if a practical physical analog could be constructed to mechanize their solution. 
Consider the electric field surrounding a small wire fi lament carrying a current 
of I amperes into a thin homogeneous sheet effectively infinite in extent. Since 
the current is restricted to two dimensions, the relationship between the current 

-> 
I entering or leaving the sheet and current density Jin amperes per unit length is 
for any closed curve C enclosing the wire filament 

I = s ~ -+ 
(J • n) dl ( 15) 

· c 
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VECTOR DIAGRAM ILLUSTRATING EQUATIONS 
NO. 12 AND 13 

where n is a unit vector whose direction is normal to the curve at any point. If 
the path of integration is conveniently chosen to be a circle, then Eq. (15) 
becomes 

Then, 

_, 

I = 2rrrJ. 

-+ I ~ 
J =-A 

2rrr r 
(16) 

where Ar is a unit vector in the radial direction. The relationship between the 
_, 

electric field intensity E and the current density is by Ohm's law 
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... 
E = -+ 

pJ ( 17) 

where p is the resistivity of the homogeneous sheet. Furthermore, the potential 
Vas a function of r, the distance from the filament, is 

-dr 
( 18) 

Finally, substituting Eq. ( 16) in Eq. ( 17) and the result in Eq. ( 18 ) and inte­
grating gives 

V = ln r + c ( 19) 

where c is the potential at some reference point. 
To obtain a general potential function consider several wire filaments passing 

into the homogeneous sheet. Let the currents into the sheet be positive and those 
out be negative. Let the location of the positive electrodes be designated by the 
complex numbers PJ and the location of the negative electrodes by z;. The gen­
eral expression for the potential at some point on the sheet designated by the 
complex numbers due to the positive and negative electrodes is from Eq. ( 19 ) 

n 

kl ln Is -pj (20) 

j =l 

where k is a constant of the homogeneous sheet and contains the constant c in 
Eq. (19) . 

Eq. (20) is identical in form to Eq. (12) . 
An expression analogous to Eq. ( 13) can also be obtained quite easily. Exam­

ine Fig. 4. 

The current flow across any line connecting A and B is given by the integral 

s - ~ 

1AB = J. n dl (21) 

AB --Since J. n dl = Jr da, 

1
AB 

s I I I /s- p = -- r da = -- a - 2ir AB 2irr Zir 
(22) 
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A 

FIG. 4 
Applying this to the current source configuration shown in Fig. 5, it can be seen 
that the total current flowing across the line AB depends upon the sum of angles 
a and a'. Furthermore, it is obvious from the geometry of the configuration that 

a = /s-pj + 13, 

a' = /s -Pj* - 13~ 

and (23) 

since fl = fl'. 
It then follows that the current flowing across a curve such as AB due to a 

complex of current sources and sinks located at points designated by complex 
numbers Pi and z 1, respectively, is 

(24) 

Eq. ( 24) is identical in form to Eq . (13). The potential analog is based on the 
analogy which exists between Eq. (24) and Eq . (13) and between Eq. (20) and 
Eq. (12) . 
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Ifs lies at some point on the jw axis; i.e., s = j"''" then <l>(s) = <1>(jo>0 ) which is 
the phase shift for sinusoidal excitation at radian frequency "'o· V ( s) = V (jw0 ) 

is the gain in ncpers for sinusoidal excitation. Correspondingly, ifs lies at some 

point on the sheet designated by j,,,,,, then ¢ (S) = :P (j'''o) is analogous to 

<1>(jw0 ) andV(s) = V(jw0 ) isanalogoustoV(j,.,o). 

Consider the logarithm of a characteristic equation, G ( s) = -1, which may 

be written as 

m n 

ln k + l ln 
i=l 

s - z. 2. ln s - pjl + 1 
j =l 

m n 

j l~i 
i=l 

j l /_ s -' p . = 0 + j iT ( 2n + 1) (25) 

j=l 
J 
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The locus of the roots of the characteristic equation is given by the following 
equation 

m n 

= (2n + l)ir (26) 

i=l j =l 

This equation is analogous to a set of flow lines on the sheet, one line for each 
required value of n. 

Since it is rather difficult to measure current in the sheet in any practical po­
tential analog, the total current I flowing between any two points can most easily 
be obtained by applying the Cauchy-Riemann equation, Eq. ( 14). For example, 
the current flow across the joi axis between 0 at (0, 0) and Bat (0, ~0 ) in Fig. 5 is 

= k dw = dw (27) 

where k is again a constant of the homogeneous sheet and can easily be obtained 
by direct measurement. In practice a more satisfactory process is to evaluate 
Eq. (27) discretely giving 

roB = k 2_' (v(<r + A~;i) - v(<T,wi))~i (28) 

i=l 

Since a potential analog to Eq. (12) and Eq. (13 ) has been shown to exist, 
there remains the problem of inherent errors in a practical application of the 
mechanization of the analog. Other than the usual errors in measurement and 
lack of homogeneity, the major sources of error are the lack of point source elec­
trodes and the necessity of a finite size of the conductive sheet. 

Considering the problem of finite size electrodes first, the conclusion is reached 
that as long as the equipotential lines are concentric circles about the electrodes 
no error results. If a pole and zero are located in close vicinity of one another, an 
error will result since the correct equipotential lines are no longer concentric 
circles. The amount of this error is easily calculated since it is the same problem 
as finding the field around a pair of transmission lines. As an indication of the 
amount of correction required, consider an electrode about 0.02 inch in diam­
eter (e.g., a pointed welding rod) then for 0.5-inch spacing the correction re­
quired is 0.002 inch which is negligible. 

The problem of simulating an infinite medium by using finite dimensions is 
not so easily disposed of as was the problem of finite-sized electrodes. Of course, 
one could always calculate the error due to the use of a finite medium by the 
methods of potential theory. 8 Fortunately, a medium that is effectively .infinite 
in extent can be realized by two uniform sheets, finite in size, insulated from one 
another, and joined at their boundaries. Consider Figs. 6 and 7. The regions 
D and i5 in these figures are r elated by the conformal transformation zz = a2 • 
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It can be shown that on the circle of inversion; i.e., the circle of radius a in 
each plane, the following equations hold. 

V(a, e } = V(a, 9 } + constant (29) 
0 0 

av j -:~/- (30) or = 
r=a r=a 
9=0 0=0 

0 0 

Consequently, if the sheets are cut along the circle of inversion and joined to­
gether along the periphery of the circles, the potential and flow functions in the 
regions C and C will not be perturbed from the values existing when C and C 
are parts of sheets of infinite extent. This operation is analogous to the application 
of the compensation theorem in network theory. 

To summarize, if sheet C has n sources and m sinks of current positioned at 
arbitrary points to satisfy the desired pole-zero configuration in the complex 
s-plane, then sheet C can be made effectively infinite in extent by joining another 
conducting sheet C of diameter equal to that of c along their boundaries where C 
has a single current sink of strength, n - m, at its origin. 

There is one other very important point concerning the analog and this is the 
desirability of using only a half sheet. This will readily be recognized when it is 
pointed out that the a-axis is a flow line since the singularities of any physical 
function that do not lie on the <r-axis must be complex conjugate and hence be 
symmetrical about the a-axis. 
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IV. A Practical Laboratory Potential Analog 

A laboratory model based on the potential analog theory described above was 
fabricated in the Electrical Engineering Laboratories of The University of Texas. 
A photograph of the model is shown in Fig. 8. "Teledeltos" paper, a uniform re­
sistance paper of approximately 2,000 ohms per square, manufactured by the 
Western Union Corporation, was used for the homogeneous medium. Two semi­
circles of this paper approximately 34 inches in diameter and insulated by a one­
quarter-inch plywood core were fastened together, conducting face out, along the 
circumference of the core by paper clips. These clips were placed about one-half 
inch apart. Details of the construction of the conducting sheet are shown in Fig. 9. 

To approximate the theory a current electrode must be as small as possible. 
To be practical the current electrodes must be readily movable and easily posi­
tioned. One such electrode fabricated at The University of Texas consists of a 
length of one-sixteenth-inch brass welding rod pointed on one end. A coaxial 
weight supports the rod and provides the necessary weight for adequate contact 
pressure by means of a spring coupling. A felt insulator was attached to the bot­
tom of the weight. 

Positive and negative d-c. currents of five milliamperes are applied by means 
of the small wires to the electrodes representing the poles and zeros respectively . 
Power supplies in the neighborhood of 100 volts positive and 25 volts negative 

Fig. 8. Laboratory Model of the Polential Analog 
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were found to be ample for most problems. A schematic diagram of the labora­
tory model of the potential analog is shown in Fig. 10. 
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V. Application of the Potential Analog to 
Root-Locus Problems 

Maximum use of the potential analog can be obtained if a general knowledge 
of the possible location of the root-locus is known. With this knowledge, a great 
deal of information about a particular physical system can often be obtained by 
inspection of the location of its poles and zeros. 

Space does not permit a general discussion of these aids so only a list of those 
most helpful in connection with the potential analog will be given. (A very 
detailed account of these aids in locating the loci may be found in Evans and 
Truxal. 6

• 
11

) 

1. Direction of travel of loci 

2. Number of loci 

3. Conjugate value of loci 

4. Asymptotic behavior of loci 

5. Loci on real axis 

6. Angles of departure and arrival of loci 

The construction of a root-locus plot consists of two operations; first, the deter­
mination of the loci, and second, the evaluation of the open-loop gain K for 
various points along the loci. 

There is no simple direct way to find the locus or line of 180° phase shift on 
the analog. There is, however, an indirect method that is not too complicated. 
The indirect method utilizes constant gain contours. (These are lines of constant 
voltage on the analog and are easy to sketch.) If one point on each of the com­
plex loci can be located accurately, then a line drawn from these points orthogo­
nal to the constant gain contours will give the required loci. The loci along the 
real axis can, of course, be drawn from inspection of the singularities lying along 
the real axis. Probably the easiest way to locate one point on each of the complex 
loci is to make a guess at the location of the point and then check the location by 
algebraically adding the phase angles from the poles and zeros. If the angle sums 
to 180° ± n 360°, the desired point is determined. Finding the location of the 
probable region in which the complex loci lie can be enhanced by utilizing the 
asymptotic behavior of the loci. 

Evaluation of the open-loop gain constant K for various points along the loci 
is particularly simple on the analog and constitutes one of the chief advantages 
of the analog method in obtaining root-locus plots. To evaluate the open-loop 
constant K, Eqs. (20) and (10) will be utilized. If Eq. (20) is evaluated at two 
points on the sheet, e.g., at s = 1 and s = 2, then the constant k of the homo­
geneous sheet can be evaluated. 

V 1 = k ln G(1) (3 1) 

V2 = k ln G (2) (32) 
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SubtractingEq. (31) fromEq. (32) gives 

k = 

If the voltmeter reference is placed at s = 1, Eq. ( 33) reduces to 

k = G(2) 
ln ( G(l) ) 

(33 ) 

(34 ) 

and the sheet constant k can be evaluated. From Eq. ( 10) we can obtain the 
result that 

Substituting Eq. ( 35) in ( 34) gives 

1 
G(I) 

1 
G(2) 

In (~J = 

= 

(35 ) 

( 3G ) 

The general expression for the open-loop gain K for any point along the loci cal'. 
be obtained by writing the general expression for K 11 with the help of Eq. (36) 

v 
n 

K 
n = K(k 

1 

1 . 
where K1 =JG ( 

1
) I and the voltmeter reference is at s = 1. 

(37) 
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As soon as the root-locus has been sketched, we are in a position to obtain im­
mediately the closed-loop frequency and transient responses for any value of 
open-loop gain K of the original open-loop configuration of poles and zeros. 

Suppose the closed-loop frequency and transient responses are desired for an 
open-loop gain K sufficient to give the complex conjugate poles in a closed-loop 
system a damping ratio oft = 0.4. See Fig. 11. 

To obtain this information it is first necessary to lay off a radial line from the 
origin making an angle of() = cos- 1 t = cos- 10.4 or 66.4 degrees. The potential 
is noted at the point of intersection of the locus and the radial line of constant 
damping. The same potential is located on the other two loci in order to deter­
mine the position of the remaining two closed-loop poles. The closed-loop poles 
are shown corresponding to a gain of K = 1.46 in Fig. 11. If the three poles are 
now placed at these points on the conducting sheet, the closed-loop frequency 
response can be obtained by measuring the potential along the jw-axis proceeding 
from the origin toward the edge of the sheet. These voltages must be multiplied 
by the constant k of the sheet given by Eq. (20) and Eq. (28). The resulting 
products will be the gain response in nepers and the phase response in radians. 

The transient response can most easily be determined for a unit-impulse or a 
unit-step function input. The process of convolution may be applied to obtain the 
output response for any desired input. The response for a unit-impulse input is 
given by Eq. (38). 

n 

gz (t) = I A. 
[ (pit) 

(38) 
-1 

i=l 

For complex conjugate roots Eq. ( 38) becomes 

n (39) 

l IA-i I [ 
Re(p.t) 

cos (rm(pi t) &) g. (t) 2 
1 + = 

1 

i=l 

The real and imaginary parts of p 1, being the decrement and frequency func­
tions of oscillation respectively, are obtained by noting the coordinates of the 
location of the poles in the s-plane. The magnitude IA._1 I and phase / A._ 1 of the 
residues are obtained quite readily by a graphical procedure. For simple poles, 
the residue in a pole is by definition 

A = Lim [ (s - p.) G(s) ] 
-pi 1 (40 ) 

s-pi 

From Eq. ( 7) this becomes 

= Lim 
s-pi 

K 1 2 ~
s - z. )(s - z ) 

{s - PzHs - p 3) 
(41 ) 
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The factor (s - zi) s~r; can be represented by a vector from the zero at s = zi 

to the pole at s = Pi· Therefore, A_ r is simply the open-loop constant K multi-
' 

plied by the vectors from the various zeros to s = Pt divided by vectors from the 
various poles to s = Pt· Thus, for a location of closed-loop poles given by an open­
loop gain of K = 1.46 in Fig. 11, the three residues are 

A_l = 1. 46 
(2. 2)(2. 2) & = o. 302 Li: 

A_l = 1. 46 
/.108° ( 1. 37)(2. 2) = 0.485 ~o (42) 

A 1. 46 
~ 0.485 ~o -1 = ( 1. 37)(2. 2) = 

The closed-loop transient response by virtue of Eq. (38) and (39) is 
(43) 

g(t) = 0.302[.- 2 · 4 t + 2(0. 485) E., O. 3t cos(O. 69t - 108) 
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Abstracts 

RELATION OF THE HEAD LOSS AT BRIDGE PIERS AND 

THE DRAG RESISTANCE OF THE PIERS 

BY JERRY GARRETT* 

The investigation was undertaken to find a reliable method of predicting the 
head loss in an open channel due to the presence of piers. 

An equation giving the head loss as a function of the drag coefficient, the 
boundary geometry, and the velocity of flow was derived. It was checked in the 
Hydraulic Laboratory at The University of Texas by the use of models for sym­
metrically placed piers in a single row with conditions in which the drag coef­
ficient was independent of the Froude and Reynolds numbers. 

Values of the head loss calculated from the equation using measured values of 
the drag coefficient were in reasonable agreement with measured values of the 
head loss. 

PHASE EQUILIBRIA IN THE SODIUM CHLORIDE­

SODIUM SULFIDE-WATER SYSTEM 

BY SALIHS ALPARGUNt 

To maintain the balance in production of and demand for the different prod­
ucts of a process is a major concern of the chemical industry. An increased de­
mand for one product might cause the accumulation of another and create a 
surplus product problem. In recent years, because of an increased demand for 
chlorine, electrolytic caustic producers had such a problem, surplus caustic soda. 
At times this material has been taken by barge some distance out into the Gulf 
of Mexico and dumped into the ocean. This represents an economic waste. 

A process that would make it possible to use the effluent liquor from the 
diaphram of the electrolytic caustic-chlorine cell without requiring th_e evap­
oration of this effluent would make possible the utilization of this solution. 

By converting the caustic soda into sodium sulfide a number of advantages 
would be realized: ( 1) the surplus caustic problem would be solved, (2) evap­
oration would not be required, ( 3 ) the sodium sulfide could be used instead of 
salt cake in the kraft pulp industry, and ( 4 ) steam production in the recovery 
unit would be increased due to the decrease in reduction load. Industrial fea­
sibility of this process depends upon the possible economical ways of separating 
sodium sulfide and sodium chloride. For this reason the phase relationships in 
the system, sodium chloride-sodium sulfide--water, were investigated at 0°, 
25°, 40°, and 60° C. 

•Master of Science in Civil Engineering, January, 1956. 
t Master of Science in Chemical Engineering, June, 1956. 
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Results. The solubility of pure sodium chloride and pure sodium sulfide were 
determind over the range 0° to 60 ° C. At 48.3° C., Na2S·9H20 undergoes a 
transition to Na2S· 5H20. Solubilities in the three component system are reported 
in tables. 

From the solubility data it is seen that concentration of the solution by evap­
oration will cause crystallization of sodium chloride until the invarient point is 
reached. Cooling will then cause crystallization of Na~S · 9H20 after which the 
solution may be concentrated again by evaporation to remove more sodium 
chloride. Using this cyclic process all of the sodium sulfide may be separated 
from the sodium chloride. 

Conclusion. A process has been devised based on physical-chemical data for the 
separation of sodium sulfide from caustic-chlorine cell effluent to give a product 
which may be used in the kraft pulp industry. 

FUNDAMENTAL STUDIES OF PARAFFIN DEPOSITION IN THE 

PRODUCTION OF CRUDE OIL 

BY JAMES N. HOWELL* 

No paraffin deposits occur in tubing or flow lines when the existing tempera­
ture is above the cloud point of the oil. When the cloud point is reached, paraffin 
particles begin to appear and deposition takes place. The rate of deposition varies 
directly with the flow rate up to Reynolds' numbers of approximately 2,000 
(linear flow) but decreases rapidly with increased velocity of flow, i.e., in the 
region of turbulent flow. 

Plastic pipe shows less tendency to accumulate paraffin, yet all the varieties of 
plastic pipe tested showed some deposition. Greater amounts of paraffin were 
deposited when the initial temperature of the oil passed through the pipes was 
above the cloud point thus effecting cooling by heat transfer through the pipe 
wall. This latter phenomenon indicates adherence is greater when initial depo­
sition occurs as a thin film rather than when a solid phase is present prior to 
contact with the surface of the pipe. 

Some correlation was found between the rate of deposition and the wettability 
characteristic of the crude oil as indicated by the contact angle. 

A SOLID PARTICLE HEAT EXCHANGE SYSTEM FOR 

NUCLEAR POWERED AIRCRAFT 

BY RUSSELL ARCHIBALDt 

Air-borne silicon-carbide pellets about 5/ 16-inch diameter are proposed as a 
means to increase the heat transfer rate from the surfaces of the fuel element in 
a nuclear reactor. The pellets would be circulated through the reactor and to a 

• Master of Science in Petroleum Engineering, June, 1956. 
t Master of Science in Mechanical Engineering, January, 1956. 
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fixed-bed, or helical-path, heat exchanger where the gases for the turbine would 
be heated. The pellet movement system would require a compressor, an energiz­
ing device such as an ejector, and a means of separating the pellets from the 
transporting air. 

The arguments for such a system are the high heat transfer rate per unit vol­
ume in the reactor and air-to-gas heat exchanger, especially in the radiation re­
gion, and a flexible location of the reactor with respect to the propulsion system. 
This would permit shorter "cooling-off" time since the pellets would have low, 
induced radioactivity. It would also mean leaks in the gas system could occur 
without shut-down requirements. The pellets would also serve as a circulating 
moderator. The principal objections to such a sys tem would be possible added 
weight and erosion or spalling of the pellets. 








