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Abstractions are widely used in building reliable distributed systems

as they simplifies the task of building complex systems and aid in reason-

ing about them. Implementing these abstractions, however, requires making

certain assumptions about the environment in which they will be used.

We find that there is a mismatch in the set of assumptions used to

implement abstractions in the different layers of a distributed system. This

leads to a costlier design and may render the implementation unusable in

situations where the assumptions do not hold.

In this dissertation we provide alternative implementations for the ab-

stractions of distributed registers and communication channels that rely on a

unified set of assumptions across the different layers of a distributed system.
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Chapter 1

Introduction

This dissertation revisits some of the fundamental abstractions behind

implementing reliable distributed systems. Abstractions simplify the design

and implementation of complex systems by identifying the properties pro-

vided by re-usable components in the system. This allows such components

to be used across different systems saving development effort. It also allows

for a simpler design and facilitates better reasoning by allowing the devel-

oper to build upon these higher-level components, that may provide stronger

properties, than lower-level components which are used to implement them.

Ultimately however, to be used in building systems these abstractions

must be implemented by making assumptions about the environment in which

the implementation will be used. Making stronger assumptions about the

environment allows us to implement an abstraction more efficiently; while

making weaker assumptions allows the implementation to be applicable across

a wider set of scenarios.

We find that there are many instances in distributed systems where

abstractions are implemented using assumptions that different significantly

from the assumptions that hold in the environment where the abstractions are

used.

• In some cases, we find that certain abstractions are implemented using
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fewer assumptions than what the environment allows for; thus, leading

to costlier implementations.

• In some other cases, we find that existing implementations require as-

sumptions that are too strong to hold in many practical situations where

the corresponding abstractions might be useful.

Abstractions allow us to build reliable distributed systems in a layered

manner. In this work, we view distributed systems as implementing a 3-layered

architecture1 as shown in Figure 1.1. The bottom communication layer masks

Application Layer

Replication Layer

Communication layer

Figure 1.1: A three-layered architecture for distributed systems.

network failures and provides abstractions that allow processes to commu-

nicate securely with each other. The abstractions of authenticated channels

and private channels, for example, are implemented in the communication

layer. The middle replication layer builds upon the abstractions provided

1These layers can be further refined into more sub-layers. But, for the purpose of this
work, we only focus on the abstractions at the interface between these three layers.
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by the communication layer to replicate the processes’ tasks. The replica-

tion layer masks process failures and provides higher-level abstractions. For

example, distributed storage applications widely use the abstraction of a dis-

tributed register, which is implemented in the replication layer using quorum

systems [5, 7, 17, 18, 32, 55, 66, 87, 90, 95, 96, 121]. Compute-centric applications

use the abstraction of a single-reliable-node that can be implemented using

state machine replication [1, 11, 29, 35, 36, 45, 48, 80, 103]. The top application

layer uses the abstractions from the replication layer (distributed register,

single-reliable-node etc.) to implement a distributed service or an application.

In this work, we focus on the implementations of distributed regis-

ters and the implementations of underlying communication abstractions where

there is a mismatch in the assumptions between different layers:

First, we find that communication abstractions are commonly implemented

based on assumptions that are weaker than the assumptions used in the repli-

cation layer. These communication abstractions are commonly implemented

using cryptographic primitives that allow any number of faulty processes in the

systems. The replication layer, on the other hand, provides meaningful guar-

antees only when the number of faulty processes in the system is bounded.

Second, we find that the existing implementations of the distributed register

abstraction rely on assumptions that do not hold in the environments in which

this abstraction is being used. Consider, for instance, large-scale storage appli-

cations spanning geographically distributed data centers. These applications

need both high availability and the ability to tolerate network partitions, in

the rare event where different data centers may not be able to communicate

with each other. Unfortunately, existing quorum techniques that implement

the distributed register abstractions provide only one of these two properties.
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Strict quorum systems [15, 17, 52, 59, 61, 65, 89, 90, 91, 95, 94, 106, 118] can im-

plement register abstractions that provide strong consistency guarantees in

spite of an asynchronous network. However, unlike non-strict quorum systems

such as probabilistic quorum systems [92] and signed quorum systems [121],

strict quorum systems cannot provide high availability during transient fail-

ures. Probabilistic quorum systems and signed quorum systems provide higher

availability at the cost of weakening the consistency guarantees provided, by

allowing the register to sometimes return stale (old) values. If the network

is synchronous, then these implementations can bound the probability of re-

turning stale values. However, if the network may suffer from periods of asyn-

chrony, these implementations can provide no guarantee on the staleness of

the returned values. Thus, for a system that may deal with transient failures

and may also be subject to network partitions, neither of the two approaches

is satisfactory.

1.1 Outline and contributions

In this work, we address these problems by developing alternative im-

plementations for communication abstractions and by proposing and imple-

menting new register abstractions. The alternative implementations that we

propose for communication abstractions utilize the additional assumptions

present in the replication layer to replace the costly cryptographic primitives

currently used in the communication layer with cheaper ones. The distributed

register implementations we develop combine the salient features of existing

distributed register implementations to provide high availability during peri-

ods of synchrony and withstand intermittent periods of asynchrony, ensuring

a definite bound on the worst-case staleness.
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Chapter 2 introduces the communication and register abstractions.

Chapter 3 introduces the cryptographic primitives used in implementing var-

ious communication abstractions, and Chapters 4–6 provide the implementa-

tions. Chapter 7 introduces the quorum techniques used to implement dis-

tributed registers. Chapter 8 implements a novel register semantics, known as

a k-atomic register, that can guarantee a definite bound on staleness despite

asynchrony and provide higher availability when the system is synchronous.

We make the following contributions:

• We provide an alternative implementation of an authorized channel2

that, under certain restrictive conditions, can be implemented using se-

cret sharing techniques [23, 33, 113, 119] instead of digital signatures.

Secret sharing techniques are computationally less expensive than digi-

tal signatures and also provide better security guarantees (Chapter 3).

We discuss the techniques used to implement the authorized channel in

Chapter 6.

• We provide an alternative implementation of a verifiable channel2 that,

under certain restrictive conditions, can be implemented using MACs

instead of digital signatures. MACs are known to be computationally

less expensive than digital signatures (Chapter 3). We discuss techniques

used to implement the verifiable channel in Chapter 5.

• We provide alternative implementations for private channels and authen-

ticated channels2 among a group of n processes that, under restrictive

conditions, use just O(log2 n) keys at each process instead of O(n) keys.

We discuss these implementations in Chapter 3.

2Defined in Section 2.1

5



• We implement the k-atomic register which allows for a higher availabil-

ity when the system is synchronous while ensuring a definite bound on

staleness even under asynchrony.
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Chapter 2

Architecture

In this chapter, we introduce the architecture we use for reasoning about

reliable distributed systems.

Distributed systems consist of a set of processes that communicate with

each other over a collection of communication links, known as the network;

wherein both processes and the communication links may be subject to fail-

ures. Building a reliable distributed system is a complex task because it re-

quires the system to be functional in spite of failed processes and communica-

tion links. A well-known technique to reduce the complexity of large systems

is to build a layered architecture. A layered architecture implements a system

as a series of layers one above the other. Each layer in the architecture pro-

vides a clear interface to the layers above and below it, while implementing a

specific functionality.

A layered approach to system building provides several advantages: (i)

It allows the designer to focus on relatively smaller problems in each layer;

thus, simplifying the task of building and reasoning about the system. (ii) It

allows the designers to potentially reuse the components in these layers across

different systems; thus, saving development time and costs.

The number of layers in the architecture and the granularity of each

layer is a subjective choice. For any given layering, it is always possible to

imagine splitting each layer into multiple sub-layers or combining multiple

7



adjacent layers into a single one, depending on the anticipated level of reuse

and reasoning. The ISO-OSI network stack model, for example, sub-divides

the communication link between two processes into seven layers [116]. How-

ever, distributed systems that build over the communication links, without

modifying the details of their implementation, are unaware of all but the top

application layer.

In this dissertation, we view the architecture of distributed systems to

consist of three layers as shown in Figure 1.1. The bottom layer is the commu-

nication layer: it allows processes to communicate with each other in a reliable

and secure manner. The communication layer masks network faults and pro-

vides useful security guarantees for the messages received over the network.

The middle layer is the replication layer: it masks process failures by repli-

cating the state of the application across multiple processes. The replication

layer builds upon the communication layer to provide higher-level abstrac-

tions for implementing reliable storage systems and for implementing general

deterministic services, which may include storage and computation. The top

layer is the application layer: it implement the desired application, over the

replication layer, to provide the required levels of reliability and availability.

To understand this architecture in the context of a real system let us

consider the example of Dynamo, which is used for implementing the shopping-

cart application at Amazon [50]. For the shopping cart application to be func-

tioning in a reliable manner Dynamo should function in spite of process failures

and network losses. Moreover, given the scale at which Amazon operates, Dy-

namo must store many more key-value pairs than a single node can hold. The

application layer in Dynamo consists of a distributed hash-table that stores all

the key-value pairs in the system. Each key-value pair is stored in an abstract
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register that is designed to tolerate process failures and network outages. To

tolerate process failures, the replication layer implements the abstract register

replicating the task of storing the data across multiple processes in the system.

To store or retrieve the data, a designated leader process contacts a quorum of

replicas to perform the desired operation. The communication layer provides

abstractions to help the leader process communicate with the replicas in a

secure manner.

2.1 The communication layer

The communication layer provides abstractions to facilitate communi-

cation between processes in a secure and reliable manner, inspite of network

faults. The basic abstraction provided is that of a channel.

Definition. A channel C(s, r) is a communication abstraction between two

processes, a sender s and a receiver r, that implement the send and deliver

methods. The send method allows the sender s to send a message on the

channel. The deliver method allows the receiver r to receive a message that

was sent on the channel; if there is no outstanding message to be received

deliver blocks.

A process s is said to have sent a message msg (to r) on channel C if it

has invoked the send method with the message msg on channel C. Similarly,

a process r is said to have delivered a message msg (from s) on channel C if an

invocation to the deliver method on the channel C returned msg. We denote

by Sents,C (τ) (respectively, Deliveredr ,C (τ)) the set of messages that, at time

τ , have been sent by s on (delivered by r from) the channel C. Both these

sets grow monotonically with time.

9



2.1.1 Additional requirements

2.1.1.1 Timeliness

The definition of a channel does not specify anything about the timeli-

ness or the order in which messages are delivered. If there is a known bound

by which any message sent by the sender will be delivered at the receiver, the

channel is said to be synchronous. Otherwise, it is said to be asynchronous.

2.1.1.2 Message loss

A channel may drop messages on the channel, reorder them, or modify

them (as discussed below). A channel is said to be FIFO if messages are

delivered by the receiver in the same order in which they are sent by the

sender. A channel is said to be reliable if it does not drop messages. A channel

is said to be fair if the channel may drop messages; but, a message sent an

infinite number of times by the sender will be delivered by the receiver an

infinite number of times. In an asynchronous network, reliable channels can

be implemented over fair channels by retrying until the message is delivered.

2.1.2 Other security requirements

Untrusted networks Messages sent over a communication link 1 may be

modified inadvertently because of factors, such as interference (e.g. wireless

networks [108, 109]) or collision (e.g. Ethernet [98]). Malicious routers, in

an untrusted network, could also modify messages. To protect against such

scenarios we require additional properties for the channel. Privacy ensures that

1We use the term channel to denote an end-to-end message passing abstraction. Link
is a term we use to refer to a physical communication medium between two neighboring
processes that may be used to implement the channel.
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a message sent over the channel cannot be eavesdropped upon by a malicious

process. Authentication ensures that the receiver does not deliver any modified

messages. We define communication channels that provide these properties:

2.1.2.1 Authenticated channel

Definition. An authenticated channel C(s, r) guarantees that if the sender

and receiver are correct, then the receiver r delivers a message msg only if the

sender s sent the message.

Authenticated channel : msg ∈ Deliveredr ,C (τ)⇒ msg ∈ Sents,C (τ)

Authenticated channels are used in distributed systems to ensure that

a malicious process cannot masquerade as the sender to send an arbitrary

messages.

2.1.2.2 Private channel

Definition. A private channel C(s, r) guarantees that if the sender and receiver

are correct, then messages sent on the channel cannot be read by any other

process.

Private channels are used to send confidential information. Bank trans-

actions and other transactions that involve exchanging sensitive information

are implemented over private channels.

Untrusted senders Authenticated and private channels protect the receiver

in an untrusted network when the sender is correct. However, when the sender

is malicious these channels do not protect the receiver. A malicious sender may,

11



for example, send unauthorized messages to corrupt the state at the receiver.

Or, a malicious sender may also disown the messages it has sent to the receiver.

Verifiable and authorized channels can protect the receiver in such scenarios.

2.1.2.3 Verifiable channel

A verifiable channel allows messages delivered through the channel to

be attributed to the sender, such that not just the receiver but also other

processes that do not directly receive the message from the sender can verify

that the message was indeed sent on the channel. This property is known as

verifiability. A k-verifiable channel provides verifiability for processes up to k

hops from the original sender.

Definition. A k-verifiable channel Ck(s, r0) guarantees that

1. Whenever a correct receiver r0 delivers a message msg, r0 obtains a proof

π1(s,msg) that is guaranteed to be accepted by any correct process r1

as a proof that the sender s has sent the message msg.

2. For any chain of k+ 1 processes r0, r1, r2, r3, . . . rk, if a correct process ri

(for i < k) accepts πi(s,msg) as a proof that the sender s has sent the

message msg on Ck(s, r0), then ri can produce a proof πi+1(s,msg) that

will be accepted by any correct process ri+1 as a proof that the sender s

has sent the message msg on Ck(s, r0).

3. If the sender s is correct, a correct process r will not accept a proof

π(s,msg′) for a message msg′ that s has not sent on Ck(s, r0).

12



2.1.2.4 Authorized channel

Authorized channels protect a correct receiver from delivering unau-

thorized messages that a malicious sender may send.

Definition. Let P (s,msg, τ) be a predicate that evaluates to true only if the

sender s is authorized to send the message msg by global-time τ . An authorized

channel guarantees that a correct receiver r shall deliver a message msg from

the channel C(s, r), only if the sender is authorized to send the message.

Authorized channel : msg ∈ Deliveredr ,C (τ)⇒ P (s,msg, τ)

Byzantine fault tolerant systems have implicitly used the notion of an

authorized channel to ensure that a correct receiver only delivers messages

that the sender is authorized to send.

2.2 The replication layer

The replication layer builds upon the abstractions provided by the com-

munication layer to handle process faults and provides higher-level abstractions

that can be used by the application layer.

2.2.1 Process faults

A process is considered to be faulty if at any point during an execution,

its behavior deviates from the specified protocol. A faulty process may deviate

from the protocol in different ways.

1. Crash: A faulty process stops prematurely, and from there onwards it

does not take any actions. Before stopping, however, it behaves correctly.

13



2. Send omission: A faulty process stops prematurely, or intermittently

omits to send messages that it is supposed to send, or both.

3. Receive omission: A faulty process stops prematurely, or intermittently

omits to receive messages that are sent to it, or both.

4. General omission: A faulty process is subject to send or receive ommis-

sion failures, or both.

5. Byzantine: A faulty process may exhibit any behavior whatsoever. It

can make arbitrary state transitions and send any arbitrary message to

other processes.

2.2.2 Abstractions in the replication layer

The replication layer provides abstractions that allow the application

to replicate the application’s state and services in a transparent manner. The

abstraction of a state machine can be used to support any deterministic ap-

plication using techniques such as primary-backup [30] and active replica-

tion [1, 11, 29, 35, 36, 45, 48, 80, 103]. For more specific applications, such as

storage systems, the abstraction of a distributed register is used [5,7,17,18,32,

55, 66, 87, 90, 95, 96, 121]. In this thesis, we focus on the different abstractions

of distributed registers that are implemented over a static set of processes i.e.

one where the membership of the set does not change.

2.2.3 Register abstractions

The abstractions of a distributed register are useful to model the guar-

antees provided by storage systems. A register supports two operations: a

write operation that allows one or more clients (writers) to update the value
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stored in the register, and a read operation that allows one or more clients

(readers) to access the value stored in the register. Each of these operations

has a start time and an end time that are assigned using a global clock.

An operation OA is said to happen before operation OB (OA → OB)

if OA ends before OB starts. If neither OA → OB, nor OB → OA then the

operations OA and OB are said to be concurrent. A serialized order is a total

order on the operations that is consistent with the partial order imposed by the

happens before relation. A write operation Ow is said to be latest completed

write to a read operation Or if Ow → Or and there is no other write operation

Ow′ such that Ow′ → Or and Ow → Ow′ [85, 93].

The consistency semantics of a register specifies the set of values that a

read operation is allowed to return any under different scenarios. Lamport [85]

defines three commonly-used consistency semantics of safe, regular, and atomic

semantics for a single-writer system. These definitions have been extended to

support multiple-writers as well [114]:

• Safe register: Any read operation that does not overlap with a write

operation is guaranteed to return the result of latest completed write.

The result of a read that overlaps with a write operation is unspecified.

• Regular register: Any read operation that does not overlap with a

write operation is guaranteed to return the result of latest completed

write. A read that overlaps with a write operation either returns the

result of the last completed write, or one of the results of the write that

it overlaps with.

• Atomic register: All read and write operations can be ordered in a

total order that is consistent with the real time order, such that any read
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operation returns the result of the last write operation that precedes the

read operation in that order.

For systems that require higher availability and fault-tolerance, re-

searchers have also considered weaker consistency semantics that relax the

guarantees provided. Lee et al. have proposed the notion of a P -random

register [87]:

• P -random register: A P -random register guarantees that a read op-

eration will only return a value that was once written to the system.

Moreover, the probability that a read operation returns a value that is

more than l writes old is P (l).

Distributed registers are implemented using quorum systems. We dis-

cuss these techniques in Chapter 7.
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Chapter 3

Background: Cryptographic techniques

Secure communication abstractions are implemented using cryptographic

primitives. In this chapter we introduce some of the commonly used crypto-

graphic primitives and compare them with each other [62,97].

3.1 Encryption

Encryption schemes enable processes to communicate privately with

each other, over an untrusted network. An encryption scheme consists of two

methods called Encrypt and Decrypt . The Encrypt method takes as input the

message to be transmitted and outputs a string, known as the ciphertext or

the encrypted message, that can be revealed to the adversary without giving

away the contents of the message. The Decrypt method is used to retrieve the

original message from the ciphertext. Both these methods are parameterized

by keys which are kept secret. The encryption key (Ke) used to encrypt a

message is known only to the sender(s); while the decryption key (Kd) used to

decrypt the ciphertext is known only to the receiver(s). An encryption scheme

is defined as follows:

Definition (Encryption scheme). An encryption scheme consists of the two
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methods Encrypt and Decrypt.

Encrypt : Σ∗ × Σ∗ 7→ Σ∗ (3.1.1)

Decrypt : Σ∗ × Σ∗ 7→ Σ∗ (3.1.2)

The Encrypt method takes as input a message and the encryption key, and

returns the ciphertext. The Decrypt method takes the decryption key and

the ciphertext to return the decrypted message. These methods satisfy the

following properties:

1. (Consistency) For all messages, msg,

Decrypt(Kd, Encrypt(Ke,msg)) = msg

2. (Confidentiality) It is impossible for an adversary to decrypt any message

without the decryption key Kd.

Public/Private encryption. Encryption schemes are classified into two

types, namely, public-key encryption and private-key encryption schemes. Private-

key encryption schemes use the same symmetric key as both encryption key

and decryption key. Thus, any process that can encrypt a message can also

decrypt it. Such schemes are commonly used to implement private point-to-

point channels. Public-key encryption schemes use different encryption and

decryption keys, and thus allow for the set of processes that can encrypt a

message to be different from the set of processes that can decrypt a message.

These schemes are used to implement many-to-one channels and are also used

for setting up private point-to-point channels.
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3.2 Message authentication codes

Message authentication codes (MACs) allow processes to communicate

with each other in an authenticated manner.

Definition (MAC scheme). A scheme for message authentication codes consists

of two methods, MAC-Generate and MAC-Verify, parameterized by a common

shared key:

MAC-Generate : Σ∗ × Σ∗ 7→ Σ∗ (3.2.1)

MAC-Verify : Σ∗ × Σ∗ × Σ∗ 7→ Boolean (3.2.2)

The MAC-Generate method takes as input a message and the secret key, Ks,

to return the message authentication code. The MAC-Verify method takes as

input the secret key, Ks, the message and the message authentication code

to verify weather the message authentication code is valid for the message.

The verify method returns a boolean value indicating weather the message

authentication code is valid for the message. These methods are required to

satisfy the following properties:

1. (MAC-Consistency) For all messages, msg,

MAC-Verify(Ks,msg,MAC-Generate(Ks,msg)) = true

2. (MAC-Validity) It is impossible for an adversary who does not have

access to the symmetric key Ks, to generate a message authentication

code µ for a message msg, such that MAC-Verify(Ks,msg, µ) = true.

3.3 Digital signatures

Signature schemes [63,110] allow data to be attributed to a process such

that multiple processes can verify the claim. Thus, digital signature schemes
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can be used to implement one-to-many communication schemes where a mes-

sage generated by the sender can be authenticated by multiple verifiers, who

can exchange the message among themselves. While, in general, digital sig-

nature schemes are allowed to be non-deterministic, commonly used digital

signature schemes are deterministic. We define a deterministic digital signa-

ture scheme as follows:

Definition (Deterministic Digital Signature scheme). A deterministic digital

signature scheme consists of two deterministic methods DS-Sign and DS-Verify,

parameterized by a pair of private and public keys, respectively:

DS-Sign : Σ∗ × Σ∗ 7→ Σ∗ (3.3.1)

DS-Verify : Σ∗ × Σ∗ × Σ∗ 7→ Boolean (3.3.2)

The DS-Sign method takes as input a message and the private key Ks,

known only to the signer, and returns the signature. The DS-Verify method

takes the public key, Kv, a message, a signature, and returns a boolean value

indicating weather the signature is valid for the message. These methods are

required to satisfy the following properties:

1. (DS-Consistency) For all messages, msg,

DS-Verify(Kv,msg,DS-Sign(Ks,msg)) = true

2. (DS-Validity) It is impossible for an adversary, who is given access to

Kv but not Ks, to generate a signature σ for an unsigned message msg

such that DS-Verify(Kv,msg, σ) = true.
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3. (DS-Verifiability) If the verification method DS-Verify(Kv,msg, σ) eval-

uates to true once, then DS-Verify(Kv,msg, σ) evaluates to true always,

regardless of which process invokes DS-Verify.

If the verification method DS-Verify is deterministic, then the scheme

satisfies DS-Verifiability. We prefer to state this property explicitly because

DS-Verifiability is crucial in achieving verifiability. This property allows one

process, say r1, who has verified that a message was signed by s, to forward the

message and the signature to a different process r2, who has Kv, to convince

r2 that the message was signed by s.

3.4 Secret sharing

Secret sharing [23,33,113,119] primitives allow a secret S to be split into

multiple shares, Sh1, Sh2, . . . , Shn, such that the secret can be reconstructed

if and only if at least k such shares are pooled together. Specifically, a (k, n)-

secret sharing scheme provides the following guarantees:

1. Knowledge of k or more shares from Sh1, Sh2, . . . , Shn makes the secret

S easily computable.

2. Knowledge of any k − 1 or fewer shares from Sh1, Sh2, . . . , Shn leaves

the secret S completely undetermined (i.e. it could take any possible

value).

Property (2) essentially differentiates secret sharing from erasure cod-

ing [32, 40, 72, 73], where receiving fewer than k shares might provide partial

information. We later show in Chapter 6 how secret sharing can be used to

implement certain authorized channels.
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3.5 The costs involved

Cryptographic primitives provide strong security properties that are

very useful. However, the use of cryptographic primitives has various costs

associated with it. We consider three such costs:

1. The computational costs required to compute the primitives. These

computational costs are incurred each time the cryptographic primitive

is used. Thus, for efficiency reasons distributed systems implementations

may choose using cryptographic primitives that are less costly.

Implementations of message authentication codes (MACs), for example,

are known to be 2-3 orders of magnitude faster than implementations

of digital signatures [34]. Thus, several systems try to restrict the use

of digital signatures and use MACs instead to achieve better perfor-

mance [34,37,48,80].

2. The storage costs needed to set up the required infrastructure to enable

using these cryptographic primitives. Cryptographic primitives com-

monly require the use of secret keys shared between two or more com-

municating parties. The amount of storage space needed to store these

keys is an important consideration in practice.

Implementations of encryption schemes and authentication schemes based

on one-time pads are stronger than the implementations based on sym-

metric keys. However, using one-time pads requires storage in the same

order of magnitude as the total size of messages exchanged over the life-

time of the system. This is a very high cost: thus, in practice systems

use symmetric keys instead of one-time pads.
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3. The set of additional assumptions required on the adversary. Every as-

sumption on the adversary that is required to implement a primitive

restricts the use of the primitive because, if the assumption does not

hold, then the cryptographic primitives based on such an assumptions

will be vulnerable and not provide any useful guarantee. Public-key

encryption schemes, for example, require that the adversary be compu-

tationally bounded. If the adversary is not computationally bounded,

then the adversary can guess the secret keys, and the primitives do not

provide the guarantees they should. Symmetric encryption based on

one-time pads or secret sharing primitives do not require such additional

assumptions and can be deployed even when the adversary has unlimited

computational resources.

A cryptographic scheme that provides the required guarantees when the

adversary only has bounded computational resources is said to be com-

putationally secure. A cryptographic scheme that provides the required

guarantees even when the adversary has unbounded computational re-

sources is said to be unconditionally secure.
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Chapter 4

Authenticated and private channels

In this chapter, we discuss the implementation of authenticated chan-

nels and private channels. Authenticated and private channels are useful to

ensure that the communication between the sender and the receiver is secure

against other processes. An authenticated channel ensures that outside pro-

cesses cannot inject messages into the channel; while a private channel ensures

that outside processes cannot eavesdrop on the messages sent over the channel.

We first revisit the definitions for these channels and provide an imple-

mentation for authenticated and private channels, respectively in Section 4.1

and 4.2. We then discuss in Section 4.3 protocols to implement these channels

among a group of processes such that any two process can communicate with

each other.

4.1 Authenticated channels

Definition. An authenticated channel C(s, r) guarantees that if the sender

and receiver are correct, then the receiver r delivers a message msg only if the

sender s sent the message.

Authenticated channel : msg ∈ Deliveredr ,C (τ)⇒ msg ∈ Sents,C (τ)
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4.1.1 Implementation

Authenticated channels can be implemented using message authenti-

cation codes (MACs)1. To implement an authenticated channel, the sender s

and the receiver r share a secret key, Kauth (known only to the two processes

s and r) that is used to generate and verify message authentication codes.

Figure 4.1 shows an implementation of the authenticated channel.

AuthenticatedChannel extends Channel {
Authenticated−Send ( Message msg) {

h = MAC−Generate (Kauth , msg) ;
Channel−Send (〈msg, h〉) ;

}

Message Authenticated−De l i v e r ( ) {
do {

〈msg, h〉 = Channel−De l i v e r ( ) ;
i f (MAC−Ver i fy (Kauth , msg , h) = true})

r e turn msg ;
} while (true) ;

}
}

Figure 4.1: Implementation: Authenticated channel.

Theorem 1. The algorithm in Figure 4.1 implements an authenticated channel.

Proof. If both the sender and the receiver are correct, then the secret key

Kauth is not revealed. Since a correct receiver delivers a message only if it

is accompanied by a valid MAC, it follows from the MAC-Validity property

of the underlying message authentication scheme (Definition 3.2) that the

message must have been sent to the receiver, by either the receiver itself, or

by the sender s. Since the receiver is correct, the sender must have sent the

message.

1Authenticated channels can also be implemented using digital signatures; however, mes-
sage authentication codes are preferred because they are computationally less expensive.
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4.2 Private channels

Definition. A private channel C(s, r) guarantees that if the sender and receiver

are correct, then messages sent on the channel cannot be read by any other

process.

4.2.1 Implementation

Private channels are commonly implemented using symmetric encryp-

tion schemes2. To implement a private channel, C(s, r), the sender s and the

receiver r share a common secret key Kenc that is used to encrypt and decrypt

messages.

PrivateChannel extends Channel{
Private−Send ( Message msg) {

encrypted message = Encrypt (Kenc , msg) ;
Channel−Send ( encrypted message ) ;

}

Message Private−De l i v e r (msg) {
encrypted message = Channel−De l i v e r ( ) ;
o r i g i n a l m e s s a g e = Decrypt (Kdec , msg) ;
return o r i g i n a l m e s s a g e ;

}
}

Figure 4.2: Implementation: Private channel.

Theorem 2. The algorithm in Figure 4.2 implements a private channel.

Proof. If both the sender and the receiver are correct, then the secret key Kenc

is not revealed to any other process. It follows from the underlying encryption

scheme’s confidentiality requirement (Definition 3.1) that no process, other

than s and r, can read the messages sent on the channel.

2 Private channels can also be implemented using public key encryption. However, public
key encryption is computationally more expensive than symmetric key encryption.
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4.3 Communication in a group

To implement an authenticated channel or a private channel between a

pair of processes, the sender and the receiver are required to share a symmetric

key that is not known to any other process. Thus, implementing authenticated

channels or private channels among a group of n processes requires assigning a

secret key to each of the
(
n
2

)
channels such that the symmetric key assigned to

channel CA,B is known only to processes A and B. Current implementations

generate these keys independently: thus, implementing authenticated channels

or private channels among a group of n processes requires generating a total

of O(n2) keys, where each process is required to store the O(n) keys that it

uses for communication.

For settings such as sensor networks [54,104], ad-hoc networks [78,117],

and mobile networks [79,120], where the amount of computational and storage

resources available to each process is limited, storing O(n) keys at each process

may not be desirable. Using solutions based on public-key encryption or digital

signatures may be computationally expensive. We explore techniques aimed

at reducing the number of symmetric keys to be stored by each process.

The problem of reducing the number of keys stored at each process has

been studied before [64,83]. It is known that under more restrictive conditions,

the number of keys that each process needs to store can be drastically reduced.

If processes do not collude with each other, then the symmetric keys used for

communication need not be independent of each other: it is enough to ensure

that no process – by itself – can generate the keys that two other processes use

for communication. Gong and Wheeler [64] use this observation to develop a

scheme that allows n processes to communicate with each other while storing

just O(
√
n) keys at each process.
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We improve upon their result to present a family of protocols that

allows processes to communicate with each other using just O( k
√
n) keys for

any constant k.

Section 4.3.1 presents the protocol by Gong and Wheeler [64]. Sec-

tion 4.3.2 presents our contribution, which is a family of key distribution pro-

tocols that generalizes Gong and Wheeler’s technique to reduce the number

of keys to O(k2 k
√
n) keys for any 1 ≤ k ≤ log n. In the extreme case, when

k = log n this results in a scheme that assigns only O(log2 n) keys to each

process. Section 4.3.3 presents a lower bound on the number of keys required,

and Section 4.3.4 discusses the related work.

4.3.1 The Basic Grid Protocol

Model Consider a set of n processes. Each process in the network has a

unique identifier in the range 0 . . . n − 1, represented by log n bits. The pro-

cesses need to be able to communicate among each other securely (i.e. over

private or authenticated channels) using as few keys as possible.

Construction We partition the log n bits of the process identifiers into two

groups, called A-bits and B-bits. The A-bits can have umax distinct values, 0

through umax − 1, and the B-bits can have vmax distinct values, 0 through

vmax − 1. We require the two groups to be as close as possible to equally

sized, so that both umax and vmax are O(
√
n).

Each process is mapped to a point on a umax × vmax grid. An element

(u, v) in this grid corresponds to the process whose A-bits has the value u and

whose B-bits has the value v. We refer to this process as p(u, v).
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Key assignment We specify two types of symmetric keys, called grid keys

and direct keys, for the different elements in the grid, according to the following

two rules.

i. For each grid element (u, v), specify a random grid key denoted g(u, v).

ii. For each pair of grid elements (u, v) and (u′, v′), where u = u′ or v = v′,

specify a random direct key denoted d(u, v)(u′, v′). Note that the direct

key d(u, v)(u′, v′) can also be denoted by d(u′, v′)(u, v), since the order

of the two pairs (u, v) and (u′, v′) is immaterial in the name of a direct

key.

The specified grid and direct keys are assigned to the system processes

as follows.

a. Each process p(u, v) is assigned a copy of every grid key of the form

g(u, v′) and a copy of every grid key of the form g(u′, v). Thus, each

process is assigned approximately (umax+ vmax) grid keys.

b. Each process p(u, v) is also assigned a copy of every direct key of the

form d(u, v)(u, v′) and a copy of every direct key of the form d(u, v)(u′, v).

Thus, each process is assigned approximately (umax+vmax) direct keys.

It follows that the total number of keys assigned to each process is

2(umax + vmax) keys. Since each of umax and vmax is O(
√
n), the total

number of keys assigned to each process is O(4
√
n).

Computing symmetric keys When a process p(u, v) needs to communi-

cate securely with another process p(u′, v′), p(u, v) uses (u, v) and (u′, v′) to
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1 . I n i t i a l l y , SK i s empty .

2 . if u 6= u′ and v 6= v′ →
add the two gr id keys , g(u, v′) and g(u′, v) to SK

[ ] u 6= u′ and v = v′ →
add the d i r e c t key d(u, v)(u′, v) to SK

[ ] u = u′ and v 6= v′ →
add the d i r e c t key d(u, v)(u, v′) to SK

[ ] u = u′ and v = v′ → / impos s ib l e
sk ip

fi

Figure 4.3: Algorithm 1 for selecting keys.

compute a non-empty subset SK of its own keys that satisfies the following

two conditions.

1. Sharing:

Each key in the computed subset SK is assigned to both p(u, v) and

p(u′, v′).

2. Exclusion:

No process, other than p(u, v) and p(u′, v′) is assigned all the keys in the

computed subset SK.

After computing the subset SK, process p(u, v) applies an exclusive-

OR on the keys in SK in order to compute a single shared key that p(u, v)

can use to communicate securely with p(u′, v′). Process p(u′, v′) also computes

the same subset SK and applies an exclusive-OR on the keys in SK in order

to compute a single shared key that p(u′, v′) can use to communicate securely

with p(u, v).

The algorithm that each of p(u, v) and p(u′, v′) use to compute the

subset SK is shown in Figure 4.3.
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Theorem 3. The key subset SK computed by Algorithm 1 satisfies the two

conditions of sharing and exclusion.

Proof. Assume that process p(u, v) needs to communicate securely with pro-

cess p(u′, v′) and so it uses Algorithm 1 to compute the set SK of shared keys

between p(u, v) and p(u′, v′). There are three cases to consider:

1. (u 6= u′ and v 6= v′): In this case, SK = {g(u, v′), g(u′, v)}. Both p(u, v)

and p(u′, v′) are assigned the two grid keys in SK and no other process

is assigned both these keys. Thus, the computed SK satisfies the two

conditions of sharing and exclusion.

2. (u 6= u′ and v = v′): In this case, SK = {d(u, v)(u′, v)}. Both p(u, v)

and p(u′, v′) are assigned the direct key in SK and no other process is

assigned this key. Thus, the computed SK satisfies the two conditions

of sharing and exclusion.

3. (u = u′ and v 6= v′): In this case, SK = {d(u, v)(u, v′)}. Both p(u, v)

and p(u′, v′) are assigned the direct key in SK and no other process is

assigned this key. Thus, the computed SK satisfies the two conditions

of sharing and exclusion.

4.3.2 A General Multi-Grid Protocol

We now generalize the basic grid protocol [64] to build a family of

protocols that allow n processes to communicate with each other by storing

just O(k2 k
√
n) keys for any 1 ≤ k ≤ log n.
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Construction Processes are represented by unique identifiers from 0 to (n−
1) using log n bits. These log n bits are partitioned into k parts – A0-bits, A1-

bits,. . . Ak−1-bits. For every i, 0 ≤ i < k, the Ai-bits have umaxi distinct

values, 0 through umaxi − 1. We want the number of bits in each part to

be as equal as possible: for any two parts Ai-bits and Aj-bits, | log umaxi −
log umaxj|1. Note that each umaxi is O( k

√
n).

The processes are mapped on to a k-dimensional hypercube of sides

umax0 × umax1 × . . . × umaxk−1. This k-dimensional hypercube is then

represented using
(
k
2

)
2-dimensional projections as demonstrated in Figure 4.4.

The two-dimensional grid consisting of dimensions i and j (for each 0 ≤ i <

j ≤ k − 1) is called the Aij-grid, and has umaxi × umaxj elements.

3- dimensional
hypercube

Representation in 2-dimensions
using 3 different planes

(0, 0, 0)

(0, l, 0) (l, l, 0)

(l, 0, 0)

(0, l, l) (l, l, l)

(l, 0, l)

(l, 0, ∗)(0, 0, ∗)

(0, l, ∗) (l, l, ∗)

(∗, 0, 0) (∗, l, 0)

(∗, l, l)(∗, 0, l)

(0, ∗, 0) (l, ∗, 0)

(l, ∗, l)(0, ∗, l)

Front View Side View Top View
x x x

y y

y

zz

z

Figure 4.4: Representing a 3-dimensional hyper-cube in 2 dimensions.

Each element (ui, uj) in an Aij-grid corresponds to the set of all pro-

cesses where the Ai-bits have the value ui and where the Aj-bits have the

value uj. Each process p(u0, u1, . . . , uk−1) corresponds to
(
k
2

)
elements: ele-

ment (u0, u1) in the A01-grid, element (u0, u2) in the A02-grid, . . ., and element

(uk−2, uk−1) in the A(k−2)(k−1)-grid.
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Key assignment Grid and direct keys are specified for the elements of every

Aij-grid according to the following two rules.

i. For each element (ui, uj) in the Aij-grid, specify a random grid key de-

noted Aij-g(ui, uj).

ii. For each pair of elements (ui, uj) and (u′i, u
′
j), where ui = u′i or uj = u′j

specify a random direct key denoted Aij-d(ui, uj)(u
′
i, u
′
j).

The specified grid and direct keys are assigned to the system processes

as follows.

a. Each process p(u0, . . . , uk−1) is assigned a copy of every grid key of one

of the following two forms: Aij-g(ui, u
′
j) and Aij-g(u′i, uj). Thus each

process is assigned (k − 1)(umax0 + umax1 + . . .+ umaxk−1) grid keys.

b. Each process p(u0, . . . , uk−1) is assigned a copy of every direct key of one

of the following two forms: Aij-d(ui, uj)(ui, u
′
j) and Aij-d(ui, uj)(u

′
i, uj).

Thus, each process is assigned (k− 1)(umax0 +umax1 + . . .+umaxk−1)

direct keys.

Since each umaxi is O( k
√
n), the total number of keys assigned to each

process is O(2k(k − 1) k
√
n).

Computing symmetric keys When a process p(u0, . . . , uk−1) needs to

communicate securely with another process p(u′0, . . . , u
′
k−1), p(u0, . . . , uk−1)

computes a non-empty subset SK of its own keys that satisfies the follow-

ing two conditions.
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1 . I n i t i a l l y , SK i s empty .

2 . For each Aij−g r id do
if ui 6= u′i and uj 6= u′j →

add the two gr id keys , Aij−g(ui, u
′
j) and Aij−g(u′i, uj) to SK

[ ] ui 6= u′i and uj = u′j →
add the d i r e c t key Aij−d(ui, uj)(u′i, uj) to SK

[ ] ui = u′i and uj 6= u′j →
add the d i r e c t key Aij−d(ui, uj)(ui, u

′
j) to SK

[ ] ui = u′i and uj = u′j →
add the d i r e c t key Aij−d(ui, uj)(ui, uj) to SK

fi

Figure 4.5: Algorithm 2 for selecting keys.

1. Sharing:

Each key in SK is assigned to both p(u0, . . . , uk−1) and p(u′0, . . . , u
′
k−1)

2. Exclusion:

No process other than p(u0, . . . , uk−1) and p(u′0, . . . , u
′
k−1) is assigned all

the keys in SK.

After computing SK, process p(u0, . . . , uk−1) applies an exclusive-OR

on the keys in SK in order to compute a single shared key that p(u0, . . . , uk−1)

can use to communicate securely with p(u′0, . . . , u
′
k−1). Process p(u′0, . . . , u

′
k−1)

also computes the same subset SK and applies an exclusive-OR on the keys

in SK in order to compute a single shared key that p(u′0, . . . , u
′
k−1) can use to

communicate securely with p(u0, . . . , uk−1).

The algorithm that each of p(u0, . . . , uk−1) and p(u′0, . . . , u
′
k−1) use to

compute the subset SK is shown in Figure 4.5.

The number of keys in the computed subset SK depends on (u0, . . . , uk−1)

and (u′0, . . . , u
′
k−1). For example, SK has the maximum number of keys,

k(k − 1), when ui 6= u′i for every i = 0, . . . , k − 1.
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Theorem 4. The key subset SK computed by Algorithm 2 satisfies the two

conditions of sharing and exclusion.

Proof. Assume that process p(u0, . . . , uk−1) needs to communicate securely

with process p(u′0, . . . , u
′
k−1) and so it uses Algorithm 2 to compute set SK of

shared keys between the two. It can be seen from Figure 4.5 that keys added

to SK are assigned by both the communicating processes. Thus, Algorithm 2

satisfies the sharing condition.

To prove exclusion, we argue that no process other than p(u0, . . . , uk−1)

and p(u′0, . . . , u
′
k−1) is assigned all the keys in SK. Let p(v0, . . . , vk−1) be a

process that is different from p(u0, . . . , uk−1) and p(u′0, . . . , u
′
k−1). There exists

indices 0 ≤ i, j ≤ (k − 1):

ui 6= vi and u′j 6= vj

There are two cases to consider:

• (i 6= j): Consider the keys assigned from the Aij-grid: Since (vi, vj) is

different from both (ui, uj) and (u′i, u
′
j), p(v0, . . . , vk−1) is not assigned

the grid keys that Aij-grid contributes to SK.

• (i = j): Consider the keys assigned from the A
i,i+1 mod k

-grid: Since

(vi, vi+1 mod k
) is different from both (ui, ui+1 mod k

) and (u′i, u
′
i+1 mod k

),

p(v0, . . . , vk−1) is not assigned the keys that A
i,i+1 mod k

-grid contributes

to SK.
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4.3.3 Lower bound

If processes do not collude with each other, we have shown that n

processes can communicate securely with each other using O(log2 n) keys. We

now show a tight lower bound that each process needs to store at least O(log n)

keys.

Theorem 5. In a a network of n processes, each process needs to be assigned at

leastO(log n) symmetric keys in order that each process is able to communicate

securely with every other process in the network.

Proof. Assume that each process p in this network is assigned x keys. Process

p needs to use a different non-empty subset of its x keys to communicate

securely with every other process in the network. Because there are 2x − 1

non-empty subsets of the set of x keys, and process p needs to communicate

securely with (n− 1) processes, we have

2x − 1 ≥ n− 1

⇒ x ≥ log n

Theorem 5 establishes a lower bound on the number of keys that each

process should store in order to be able to communicate securely with each of

the other (n− 1) processes. We now show that this bound is tight by proving

that it is possible to assign O(log n) keys to each of the n process so that they

can communicate securely with each other.

To show that such a key distribution scheme exists, we use the prob-

abilistic method. The probabilistic method [14] is a non-constructive proof
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technique that is useful for showing that among a family of elements (here,

key assignment protocols) there exists an element that satisfies a certain de-

sired property. To prove the existence of such an element, we derive an upper

bound on the probability that a randomly chosen element from the family

does not satisfy the desired property. If we can show that this upper bound is

strictly less than 1, we have proven that there exists an element in the family

that satisfies the desired property.

Theorem 6. Given a network of n processes and a set of 12 log n distinct keys,

there is a protocol for assigning 9 log n distinct keys from the given set of keys

to each process in the network such that each process can use its assigned keys

to communicate securely with each other process in the network.

Proof. Consider a family of key distribution protocols, where 12 log n distinct

keys are to be randomly distributed among n processes such that each process

is assigned 9 log n keys. In this case, any two distinct processes have at least

6 log n keys in common.

Because the keys are assigned randomly to the network processes, the

resulting key assignment can be either secure or insecure. In what follows

we show that the probability that the resulting key assignment is insecure is

strictly less than one. This implies that the probability that the resulting key

assignment is secure is strictly more than zero.

Let Pin be the probability that a randomly generated key assignment

from the family is insecure. If a key assignment is insecure there exists three

distinct processes p, p′ and p′′ such that all the keys that are assigned to both

p and p′ (and so can be used by p and p′ to communicate securely with one
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another) are also assigned to p′′. Thus,

Pin ≤
(
n

2

)
(n− 2)

X

Y

<
n3

2

X

Y

Note that the factor
(
n
2

)
is the number of choices of the distinct pro-

cesses p and p′ from the set of n processes in the network; the factor (n− 2) is

the number of choices of process p′′ that is distinct from both p and p′. X is the

number of ways of assigning 9 log n keys to process p′′ under the assumption

that 6 log n of those keys are those shared keys between p and p′′; and Y is the

number of ways of assigning 9 log n keys to process p′′.

X =

(
6 log n

3 log n

)
and Y =

(
12 log n

9 log n

)
Therefore, the probability Pin that the randomly generated key assignment is

insecure is:

Pin <
n3

2

(
6 logn
3 logn

)(
12 logn
9 logn

)
=

n3

2

(6 log n)(6 log n− 1) . . . (3 log n+ 1)

(12 log n)(12 log n− 1) . . . (9 log n+ 1)

<
n3

2

(6 log n)(6 log n) . . . (6 log n)

(12 log n)(12 log n) . . . (12 log n)︸ ︷︷ ︸
3 log n times

=
n3

2

(1

2

)3 logn
=
n3

2

( 1

23 logn

)
=

n3

2

( 1

n3

)
=

1

2
< 1
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4.3.4 Related work

Gong and Wheeler [64] proposed the basic grid protocol to enable n

processes to communicate with each other using O(
√
n) keys. Kulkarni et

al. have proved the optimality of this result, assuming that two processes

combine no more than two shared keys to generate a unique key used for

communication [83].

In our work, we do not bound the number of shared keys combined to

generate the unique key. Thus, we are able to show the existence of a key

distribution protocol that assigns only O(log n) keys to each process. We have

further shown that this result is asymptotically optimal.

The family of keys presented in Section 4.3.2 can construct a key dis-

tribution protocol that assigns to each process only O(log2 n) keys. Following

our work, Elmallah et al. [53] have explicitly constructed a key distribution

protocol assigning only O(log n) keys to each process, which is optimal.

Kulkarni and Bezawada [82] consider the scenario in which processes

may collude with each other and define metrics that quantify a key distribution

protocol’s vulnerability to collusion among processes.
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Chapter 5

The verifiable channel

In this chapter we discuss the verifiable channel and its implementa-

tions. First, we revisit the definition in Section 5.1. In Section 5.2, we present

an implementation based on digital signatures. Later, in Sections 5.3–5.5 we

present implementations based on message authentication codes.

5.1 Verifiable channels

Verifiable channels are stronger than authenticated channels and pro-

vide verifiability in addition to authentication. This property is useful in

Byzantine fault tolerant systems, where a faulty process could send mutually

inconsistent messages to different processes. Moreover, a faulty process may

also falsely implicate another process by claiming to have received a message

that was not sent. Verifiability helps in ensuring that a process is held re-

sponsible only for messages that it has sent. The k-verifiable channel, defined

in Chapter 2, provides verifiability up to k hops. As we are dedicating the

rest of this chapter to an efficient implementation of the verifiable channel, for

convenience we repeat the definition below:

Definition. A k-verifiable channel Ck(s, r0) guarantees that

1. Whenever a correct receiver r0 delivers a message msg, r0 obtains a proof

π1(s,msg) that is guaranteed to be accepted by any correct process r1
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as a proof that the sender s has sent the message msg.

2. For any chain of k + 1 processes r0, r1, r2, r3, . . . rk, if a correct process

ri (for i < k) accepts πi(s,msg) as a proof that the sender s has sent

the message msg on Ck(s, r0), then ri can produce a proof πi+1(s,msg)

which will be accepted by any correct process ri+1 as a proof that the

sender s has sent the message msg on Ck(s, r0).

3. If the sender s is correct, a correct process r will not accept a proof

π(s,msg′) for a message msg′ that s has not sent on Ck(s, r0).

Broadcast channels The abstraction of a broadcast channel has also been

widely used for building reliable distributed systems [25, 26, 70, 84, 112]. A

reliable broadcast channel among a set of processes guarantees that a message

sent by a sender will be delivered by all correct processes; further, if a correct

process ri delivers a message msg from s, then every correct process rj in the

set will deliver the message msg from s. Thus, the properties provided by a

verifiable channel are closely related to the properties provided by a reliable

broadcast channel [26, 49, 70]. With a verifiable channe, the process ri+1 is

convinced that a message was sent on the channel by the sender s – in a lazy

manner – as needed, when ri+1 receives the proof π(s,msg) from ri; an imple-

mentation using a broadcast channel would ensure that all correct processes

deliver the message msg from s, regardless of whether it is used. Pease et

al. [103] show that under synchronous conditions a reliable broadcast channel

can be implemented using an∞-verifiable channels. Srikanth and Toueg [115]

show that a broadcast channel can be implemented over authenticated point-

to-point channels if the number of Byzantine faulty processes in the system is

less than one-third.
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5.2 An implementation using digital signatures

Verifiable channels are commonly implemented using digital signatures.

Figure 5.1 shows an implementation of an ∞-verifiable channel. The sender

Ver i f i ab l eChanne l extends Channel {
// Sender s , with p r i v a t e / pub l i c key pa i r (Ks,Kv)
V e r i f i a b l e−Send ( Message msg) {

σmsg = DS−Sign (Ks , msg) ;
Channel−Send (〈msg, σmsg〉) ;

}

// r e c e i v e r r1
( Message , proo f ) V e r i f i a b l e−De l i v e r ( ) {

do {
〈msg, σ〉 = Channel−De l i v e r ( ) ;
if (DS−Ver i fy (Kv , msg , σ ) = true)

return (msg , σ ) ;
} while (true) ;

}

// proce s s ri f o r i ≥ 1
( Boolean , S ignature ) SentByTheSender ( msg , proo f ) {

if (DS−Ver i fy (Kv , msg , proo f ) = (true , new proof ) )
return (true , new proof ) ;

return (false , ∗) ;
}

}

Figure 5.1: Implementation: Verifiable channel.

s digitally signs every message msg that is sent on the channel C(s, r0). To

deliver a message, receiver r0 verifies that the digital signature on the message

is from the sender s and then delivers the message only if it is signature

is correct. This convinces the receiver that the sender must have sent the

message. Now, any correct process ri that has verified the signature can send

the signature, as a proof, to convince any other correct process ri+1 that the

message was sent by the sender s.

Theorem 7. The algorithm in Figure 5.1 implements an ∞-verifiable channel.
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Proof. A correct process r accepts that a message msg was sent by the sender

s if and only if it is accompanied by a valid signature σmsg from s. Thus,

1. A correct receiver r0 delivers a message msg only if the accompanied by

a valid digital signature σmsg for the message. The signature σmsg serves

as a proof that will be accepted by any correct process r1.

2. Any correct process ri that accepts σmsg as a proof, will only do so

after verifying that DS-Verify(Kv,msg, σmsg) = true. DS-Verifiability

guarantees that ri can use σmsg as a proof πi+1(s,msg) that will be

accepted by any correct process ri+1.

3. If the sender s is correct, then the private key Ks is not revealed to any

other process. Thus, from DS-Validity, it follows that a correct process

r will not accept a proof π(s,msg′) for a message msg′ that s has not

sent.

Unfortunately, digital signatures are not cheap. In particular, digital

signature are two to three orders of magnitude more expensive to generate

and verify that message authentication codes [34]. The rest of this chapter is

dedicated to a very natural question: is it possible to use MACS to achieve

the same properties of digital signatures? If so, it would be possible to achieve

dramatically more efficient implementations of verifiable channels.

5.3 A MAC-based implementation

Although in general it is impossible to use MACs to implement digital

signatures, we show that under certain circumstances it is possible to achieve
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the properties of digital signatures, and hence implement k-verifiable channels,

using message authentication codes.

Model We assume that the system consists of two sets of processes: a set of n

server processes and a finite set of client processes (signers and verifiers). Less

than one-third of the n servers may be faulty; and faulty servers may behave

arbitrarily. Clients communicate with the servers over authenticated point-

to-point channels. Inter-server communication is not required. The network

is asynchronous and fair—but, for simplicity, our algorithms are described in

terms of reliable FIFO channels.

5.4 Deterministic digital signatures

We now describe constructions that use MACs to provide the same

properties as digital signatures [10]. These constructions can thus replace dig-

ital signatures from the implementation in Figure 5.1 to develop an alternative

implementation that only uses MACs.

5.4.1 The high-level idea

We first present the high-level idea assuming two trusted entities in the

system. One trusted entity acts as a signing witness and one acts as a verifying

witness. The two witnesses share a secret-key K which is used to generate and

verify MACs.

Signing a message A signer delegates to the signing witness the task of

signing a message. This signing witness generates, using the secret key K, a

MAC value for the message m to be signed and sends the MAC value to the
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signer. This MAC-signature certifies that the signer s wants to sign m. It can

be presented by a verifier to the verifying witness to validate that s has signed

m.

Verifying a signature To verify that a MAC-signature is valid, a verifier

(client) delegates the verification task to the verifying witness. The verifying

witness computes, using the secret key K, the MAC for the message and

verifies that it is equal to the MAC presented by the verifier. If it is, the

signature is accepted; otherwise, it is rejected.

Since the two witnesses are trusted and only they know the secret key

K, this scheme satisfies consistency, validity, and verifiability.

5.4.2 Implementing deterministic digital signatures with MACs

We now show that when n > 3f , MACs can be used to implement a

deterministic digital signature scheme.

Construction In our signature scheme, the signatures produced are vectors

of N =
(

n
2f+1

)
MAC values, one for each subset of 2f + 1 servers. The i’th

entry in the vector of signatures can be generated (and verified) with a key

Ki that is shared by all elements of the i’th subset Gi of 2f + 1 servers,

1 ≤ i ≤
(

n
2f+1

)
. For each Ki, the MAC scheme used to generate MAC values

is common knowledge, but Ki is secret (unless divulged by some faulty server

in Gi).

Sign The protocol to sign a message is shown in Figure 5.2. To sign a

message, the signer sends a request to all the servers. A server generates the
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Signature Client-Sign (Msg Msg) {
∀s : 1 ≤ s ≤ n, 1 ≤ g ≤ N,MACS[s][g] :=⊥
∀g : 1 ≤ g ≤ N, signature[g] :=⊥

send 〈SIGN,Msg, signer〉 to all.

// gather responses until we have f + 1 matching
// MAC values for each of the N macs.
while ( ∃g : signature[g] =⊥ )
{

on receive 〈MACS,macsi[1 . . . N ]〉 from server i.
foreach g = 1 . . . N

if (i ∈ Gg)
MACS[i][g] := macsi[g]

if ( ∃x 6=⊥: |{i : MACS[i][g] = x}| ≥ f + 1 )
signature[g] := x

}
return signature[ . . . N ];

}

void Signing-Witness-Server(Id i) {
∀g : 1 ≤ g ≤ N,macsi[g] =⊥

while(true) {
rcv 〈SIGN,Msg, signer〉 from signer

for each g in 1 . . . N
if( i 6∈ Gg )

macsi[g] :=⊥;
else

macsi[g] := HMAC(signer : Msg,Kg);

send 〈MACS,macsi[1 . . . N ]〉 to signer
}

}

Figure 5.2: Signing procedures for MAC signatures.

MAC values for each group Gi that it belongs to and sends these values to the

signer. The signer collects responses until it receives (f + 1) identical MAC

values for every group because each Gi contains at least f + 1 correct servers.

Also, receiving (f + 1) identical MAC values guarantees that the MAC value

is correct because one of the values must be from a non-faulty server.
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(bool, Signature) Client-Verify(Msg Msg, Signer S, Signature signature[1 . . . N ]) {
{
∀s : 1 ≤ s ≤ n, received responses[s] := false;
∀g : 1 ≤ g ≤ N, yes count[g] := ;
∀g : 1 ≤ g ≤ N,no count[g] := ;

send 〈VERIFY,Msg, signer, signature[..N ]〉 to all.

// gather responses until we have f + 1 matching
// responses for each of the N MACs.
while ( ∃g : yes count[g] < f +  )
{

on receive 〈RESULT, resi[]〉 from server i.
foreach g := 1 . . . N

if (i 6∈ Gg)
continue;

else if (resi[g] = CORRECT)
yes count[g] = yes count[g] + 1;

else if (resi[g] = WRONG)
no count[g] = no count[g] + 1;

// If even one MAC-value is bad, we fail.
if (no count[g] ≥ f + 1)

return (false, signature);
}

return (true, signature);
}

void Verifying-Witness-Server(Id j) {
∀g : 1 ≤ g ≤ N, resulti[g] :=⊥

while(true) {
on receive 〈VERIFY,Msg, signer, signature[ . . . N ]〉 from a verifier

foreach g in 1 . . . N
if( i 6∈ Gg )

resulti[g] :=⊥
else if (signature[g] = HMAC(signer : Msg,Kg))

resulti[g] := CORRECT;
else

resulti[g] := WRONG;

send 〈RESULT, resulti[1 . . . N ]〉 to the verifier
}

}

Figure 5.3: Verifying procedures for MAC signatures.

Verify The protocol to verify a signature is shown in Figure 5.3. To verify

a signature, the verifier sends the signature, comprising of the N MACs to all

the servers, along with the message. The i’th entry Mi is verified by server
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p if p ∈ Gi and Mi is the correct MAC value generated using Ki. A verifier

accepts the signature if each entry in the vector is correctly verified by f + 1

servers. The verifier rejects a signature if at least one of its entries is rejected

by f + 1 servers. Since the underlying MAC schemes are deterministic and

each Gi contains 2f + 1 servers, a signature is accepted by one correct verifier

if an only if it is accepted by every other correct verifier and no other signature

is accepted for a given message.

Correctness We now show that the Sign and Verify algorithms presented

in Figure 5.2 and 5.3 implement a deterministic digital signature scheme.

Lemma 1. A signature consisting of correct MAC values at all the N positions

will pass the verification procedure.

Proof. A non-faulty server will never send WRONG if the MAC value is cor-

rect. Thus, the verification procedure can get no more than f WRONG re-

sponses (from the faulty servers) for any of the N MACs in the vector.

Each MAC in the vector can be verified by (2f + 1) servers, at least

(f + 1) of which are non-faulty. These non-faulty servers will send a response

that the MAC value is CORRECT. Thus, on receiving the responses from

all non-faulty servers, the verification procedure will accept the signature as

it will have (f + 1) CORRECT responses for each of the N positions in the

vector.

Lemma 2 (DS-Consistency). The signature generated by the signature proce-

dure in Figure 5.2 contains the correct MAC values for every position in the

vector.
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Proof. The signer waits for (f + 1) matching MAC values for each of the N

positions in the vector of MACs. Since at least one of the (f + 1) responses is

from a non-faulty server, each of the MAC in the vector is correct.

Lemma 3 (DS-Validity). A vector containing all N correct MACs cannot be

generated unless the signer invokes the signing procedure.

Proof. For any set of f faulty servers, there is a group of (2f + 1) nodes that

contains only non-faulty servers in it (because n ≥ 3f + 1). The MAC value

corresponding to this group can only be generated correctly by one of these

non-faulty servers, which will only do so if they receive a SIGN message from

the signer.

Lemma 4 (DS-Verifiability). If a signature passes the verification procedure

in Figure 5.3, then the signature contains the correct MAC value for every

position in the vector.

Proof. The verification procedure waits for (f + 1) CORRECT responses for

each of the N MACs in the vector. Since at least one of the (f+1) responses is

from a non-faulty server, and a non-faulty server sends a CORRECT response

only if the MAC is correct, each of the N MACs in the vector is correct.

Theorem 8. The algorithm presented in Figures 5.2 and 5.3 implements a

deterministic digital signature scheme.

Comments The Sign and Verify methods in Figure 5.2 and 5.3 satisfy all

the properties of deterministic digital signatures. Thus, they can be used to

implement the DS-Sign and DS-Verify functionality in Figure 5.1 to implement

∞-verifiable channels.
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Unfortunately, the number of MACs required to implement the signa-

ture functionality grows exponentially with the number of servers. We show

that one cannot do better and that trying to implement a deterministic digital

signature scheme using MACs in this model requires an exponential number

of MACs.

5.4.3 Complexity of deterministic digital signature implementa-
tions

We consider a general implementation that uses M secret keys. Every

key Ki is shared by a subset of the servers; this is the set of servers that can

generate and verify MAC values using Ki. We do not make any assumptions

on how a signature looks. We simply assume that the signing procedure can

be expressed as a deterministic function S(msg, k1, k2, . . . , kM) of the message

to be signed (msg), where k1, . . . , kM are the values of the keys K1, . . . , KM

used in the underlying MAC schemes.

The lower bound proof relies on two main lemmas which establish that

(1) every key value must be known by at least 2f + 1 servers, and (2) for any

set of f servers, there must exist a key value that is not known by any element

of the set. Then, we use a combinatorial argument to derive a lower bound on

the number of keys.

Since we are proving a lower bound on the number of keys, we assume

that the signature scheme uses the minimum possible number of keys. It

follows, as shown in the following lemma, that no key is redundant. That is,

for every key Ki, the value of the signature depends on the value of Ki for

some message and for some combination of the values of the other keys.

Lemma 5 (No key is redundant). For every key Ki used in the deterministic
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digital signature scheme S, there are two different key values kαi and kβi and a

message for which S produces different signatures when Ki = kαi and Ki = kβi .

∀i,∃msg, k, k, . . . ki−, kαi , kβi , ki+, ki+, . . . , kM :

S(msg, k1, k2, . . . , ki−1, k
α
i , ki+1, . . . , kM) = σ1,

S(msg, k1, k2, . . . , ki−1, k
β
i , ki+1, . . . , kM) = σ2,

and σ1 6= σ2

Proof. If the signature produced for a message is always independent of the

key Ki, we can get an equivalent signature implementation by using a constant

value for Ki. The resulting signature implementation will have one fewer key

(since it does not use Ki), contradicting the assumption that the signature

scheme uses the minimum possible number of keys.

Now, we can establish the two main lemmas.

Lemma 6 (2f + 1 servers know every key). At least (2f + 1) servers know

the value of Ki.

Proof. Proof by contradiction. Assume that key Ki is only known by a group

G of servers, where |G| ≤ 2f . Since |G| ≤ 2f , G is the union of two disjoint

sets A and B of size at most f each. From Lemma 5,

∀i, ∃msg, k, k, . . . ki−, kαi , kβi , ki+, ki+, . . . , kM :

S(msg, k1, k2, . . . , ki−1, k
α
i , ki+1, . . . , kM) = σ1,

S(msg, k1, k2, . . . , ki−1, k
β
i , ki+1, . . . , kM) = σ2,

and σ1 6= σ2
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Consider the following executions, where message msg is being signed. In all

executions, the value of Kj is kj for j 6= i.

• (Exec α) The symmetric key value for Ki is kαi . All servers behave

correctly. The resulting signature value is σ1.

• (Exec α′) The symmetric key value for Ki is kαi . Servers not in B be-

have correctly. Servers in B set the value of Ki to be kβi instead of kαi .

The resulting signature value is also σ1 because the signature scheme is

deterministic and tolerates up to f Byzantine failures and |B| ≤ f .

• (Exec β) The symmetric key value for Ki is kβi . All servers behave

correctly. The resulting signature value is σ2.

• (Exec β′) The symmetric key value for Ki is kβi . Servers not in A be-

have correctly. Servers in A set the value of Ki to be kαi instead of kβi .

The resulting signature value is also σ2 because the signature scheme is

deterministic and tolerates up to f Byzantine failures and |A| ≤ f .

Executions α′ and β′ only differ in the identities of the faulty servers

and are otherwise indistinguishable to servers not in G and to clients. Thus,

the resulting signatures in both cases should be the same, implying σ1 = σ2,

which is a contradiction.

Lemma 7 (Faulty servers do not know some key). For every set of f

servers, there exists a secret key Ki that no server in the set knows.

Proof. If a given set of f servers has access to all the M secret keys, then, if

all the elements of the set are faulty, they can generate signatures for messages

that were not signed by the signer, violating DS-Validity.
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We now establish a lower bound on the number of keys required by a

MAC-based deterministic digital signature implementation.

Theorem 9. Any MAC-based implementation of a unique signature scheme

requires at least
(
n
f

)
/
(
n−(2f+1)

f

)
keys.

1
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Figure 5.4: Example bipartite graphs G and G′.

Proof. Let G = (K, R,E) be a bipartite graph over the set of keys K =
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{K1, K2, . . . , KM} and the set of servers R, such that there is an edge between

the key Ki and server j if and only if j is not assigned the key Ki by the

unique signature scheme (that is j is not given the value of Ki as part of the

scheme). Since every Ki is known by at least (2f + 1) servers (Lemma 6) it

follows that, in G, the degree of vertex Ki is at most
(
n− (2f + 1)

)
.

Let G′ = (K,A, E ′) be the bipartite graph over K and the set A of f -

subsets of R. The set A consists of those subsets of R that could be controlled

by the adversary. An edge (K,A) belongs to E ′ if and only if (K, a) belongs

to E for every a ∈ A.

(K,A) ∈ E ′ ⇐⇒ ∀a ∈ A : (K, a) ∈ E

If a node Ki ∈ K has degree di in G, then in G′, Ki would have a degree

d′i =
(
di

f

)
≤
(
n−(2f+1)

f

)
. From Lemma 7, it follows that for each A ∈ A, d′A ≥ 1

in G′.

In any graph, the sum of out-degree must be equal to the sum of in-

degree. From graph G′, it follows that:∑
ki∈K

d′i =
∑
A∈A

d′A

⇒
∑
ki∈K

(
n− (2f + 1)

f

)
≥

∑
A∈A

1

⇒ M ≥
(
n

f

)
/

(
n− (2f + 1)

f

)

It follows that for n = 3f + 1, the unique signature implementation

described in Section 5.4.2 is optimal. In general, if the fraction of faulty nodes

f
n
> 1

k
, for k ≥ 3, then the number of MACs required is at least ( k

k−2
)f .
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5.5 Non-deterministic digital signatures

We now present a signature scheme, called matrix signatures, that does

not require an exponential number of MAC implementations. Unlike the de-

terministic signature scheme presented in Section 5.4, the matrix signature

scheme is non-deterministic. Thus, it is possible that there may be certain

signatures that may non-deterministically be accepted or rejected by the ver-

ifier. The signature scheme provides DS-consistency and DS-validity, but not

DS-verifiability. Matrix signatures provide a weaker set of properties, but one

that is still sufficient to implement ∞-verifiable channels.

Matrix signatures are a non-deterministic signature scheme defined over

a set of signers S and a set of verifiers V and consisting of a signing method

MS-SignS,V and a verification method MS-VerifyS,V :

MS-SignS,V : Σ∗ 7→ Σ∗ (5.5.1)

MS-VerifyS,V : Σ∗ × Σ∗ 7→ Boolean× Σ∗ (5.5.2)

The signing procedure MS-SignS,V is used to sign a message. It out-

puts a signature, which can convince the verifier that the message was signed.

The set S contains all the processes that can invoke the signing procedure.

The set V contains all processes that may verify a signature in the signature

scheme. The verification procedure, MS-VerifyS,V , takes as input a message

and a signature and outputs two values. The first value is a boolean and indi-

cates whether the verification procedure accepts or rejects the signature. The

second value returned by the verification method is a signature, whose role

needs some explaining.

Matrix signature schemes guarantee that (i) a verifier always accepts

signatures that are generated by invoking the signing procedure and that (ii)
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any message whose signature is accepted was, at some point, signed by a

member of S by invoking the signing procedure. A signature accepted by the

verification procedure does not have to be the one produced by the signing

procedure. We call these second type of signatures derivative. Derivative sig-

natures present a challenge in terms of ensuring verifiability, as they can either

be non-deterministically accepted or rejected by the verification procedure. To

address this challenge, we require the verification procedure to produce as out-

put a new derivative signature that – by construction – is guaranteed to be

accepted by all verifiers whenever the original signature is accepted. This new

signature can then be used by v to authenticate the sender of m to all other

verifiers. If the first output value produced by the verification procedure is

false, then the second output value is irrelevant.

Matrix signature schemes satisfy the following properties:

• (MS-Consistency) A signature produced by the signing procedure is

accepted by the verification procedure.

MS-SignS,V (msg) = σ ⇒ MS-VerifyS,V (msg, σ) = (true, σ′)

• (MS-Validity) A signature for a message m that is accepted by the

verification procedure cannot be generated unless a member of S has

invoked the signing procedure.

MS-VerifyS,V (msg, σ) = (true, σ′)⇒ MS-SignS,V (msg) was invoked

• (MS-Verifiability) If a signature is accepted by the verification proce-

dure for a message m, then the verifier can produce a signature for m

that is guaranteed to be accepted by the verification procedure.

MS-SignS,V (msg, σ) = (true, σ′)⇒ MS-VerifyS,V (msg, σ′) = (true, σ”)
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MS-Verifiability is recursively defined; it ensures verifiability. If the

verification procedure accepts a signature for a given message, then it outputs

a signature that is accepted by the verification procedure for the same message.

In turn, the output signature can be used to obtain another signature that will

be accepted by the verification procedure and so on.

Ver i f i ab l eChanne l extends Channel {
V e r i f i a b l e−Send ( Message msg) {

σmsg = MS−Sign (Ks , msg) ;
Channel−Send (〈msg, σmsg〉) ;

}

// r e c e i v e r r1
( Message , proo f ) V e r i f i a b l e−De l i v e r ( ) {

do {
〈msg, σ〉 = Channel−De l i v e r ( ) ;
if (MS−Ver i fy (Kv , msg , σ ) = (true , σ′ ) )

return (msg , σ′ ) ;
} while (true) ;

}

// proce s s ri f o r i ≥ 1
Boolean SentByTheSender ( msg , proo f ) {

if (MS−Ver i fy (Kv , msg , proo f ) = true)
return true ;

return false
}

}

Figure 5.5: Alternative implementation: Verifiable channel.

We now show that matrix signatures are sufficient to implement ∞-

verifiable channels. Figure 5.5 shows an implementation of the ∞-verifiable

channel using matrix signatures. The sender s signs every message msg that is

sent on the channel C(s, r0) using the matrix signature scheme, where s is the

only signer in the set S and the set V contains all the processes in the system

that may receive the message. The sender sends the message along with the

signature σmsg to the receiver r0. To deliver a message, receiver r0 verifies

the matrix signature, σ, for the message and delivers the message only if the
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MS-Verify procedure returns true. This convinces the receiver that the sender

must have sent the message. Now, any correct process ri that has verified the

signature can send the new signature σ′, as a proof, to convince any other

correct process ri+1 that the message was sent by the sender s.

Theorem 10. The algorithm in Figure 5.1 implements an∞-verifiable channel.

Proof. A correct process r accepts that a message msg was sent by the sender

s if and only if msg is accompanied by a valid signature σmsg from s. Thus,

1. A correct receiver r0 delivers a message msg only if accompanied by a

valid digital signature σmsg for the message. The signature σmsg serves

as a proof that will be accepted by any correct process r1.

2. Any correct process ri that accepts σmsg as a proof will only do so after

verifying that MS-Verify(Kv,msg, σmsg) = (true, σ′msg). MS-Verifiability

guarantees that ri can use σ′msg as a proof πi+1(s,msg) that will be ac-

cepted by any correct process ri+1.

3. From MS-Validity, it follows that a correct process r will not accept a

proof π(s,msg′) for a message msg′ that s has not sent.

5.5.1 Matrix signature implementation

We now show how matrix signatures can be implemented.

A matrix signature consists of n2 MAC values arranged in n rows and n

columns, which together captures the servers’ collective knowledge about the

authenticity of a message.
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We have n ≥ 3f + 1 witness servers which share pairwise secret keys

that are used to generate/verify MACs. Each witness server functions both as

a signing witness server to implement the signing witness, and as a verifying

witness server to implement the verifying witness.

Clients can sign (or verify a signature) by contacting all the signing

witness (or, respectively, verifying witness) servers. The key difference with

the protocol described in the previous section is that the signature being used

is a matrix of n×n MACs as opposed to a single MAC value. Each MAC value

in the matrix is calculated using a secret key Ki,j shared between a signing

witness server i and a verifying witness server j.1

The ith row of the matrix signature consists of the MACs generated by

the ith signing witness server. The jth column of the matrix signature consists

of the MACs generated for the jth verifying witness server. In Figure 5.6, the

row in bold font is generated by the 2nd signing witness server, and the column

in bold is generated for the 3rd verifying witness server.

We distinguish between valid and admissible matrix signatures:

Definition (Valid). A matrix signature is valid if it has at least (f + 1) correct

MAC values in every column.

Definition (Admissible). A matrix signature is said to be admissible if it has

at least one column corresponding to a non-faulty server that contains at least

(f + 1) correct MAC values.

An admissible matrix signature captures the minimum requirement for

it to be successfully verified by a non-faulty verifier. A valid matrix signa-

1Although a signing witness server and a verifying witness server can both be mapped to
a single witness server, for the time being it is useful to think of them as separate entities.
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h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4

(a) A Matrix-signature

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

? ? ? ?
? ? ? ?

(b) A Valid Signature

? h1,2 ? ?
? h2,2 ? ?
? ? ? ?
? ? ? ?

(c) An Admissible Signa-
ture

Figure 5.6: Example matrix-signatures.

ture captures the minimum requirement for being guaranteed to be always

successfully verified by any non-faulty verifier. Thus, every valid signature is

admissible, but the converse does not hold.

The protocol for generating and verifying matrix signatures is shown

in Figures 5.7 and 5.8.

Generating a Signature To generate a matrix signature, the signer s sends

the message msg to be signed, along with its identity, to all the signing witness

servers over authenticated channels. Each signing witness server generates a
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Signature Client-Sign (Msg msg) {
∀i : σmsg,s[i][] :=⊥
send 〈SIGN,msg, s〉 to all
do {

// Collect MAC-rows from the servers
rcv 〈σi[1 . . . n]〉 from server i
σmsg,s[i][1 . . . n] := σi[1 . . . n]

} until received from ≥ 2f + 1 servers
return σmsg,s

}

void Signing-Witness-Server(Id i) {
while(true) {

rcv 〈SIGN,msg, s〉 from s
∀j : compute σi[j] := MAC(K i,j , s : msg)
send 〈σi[1 . . . n]〉 to s

}
}

Figure 5.7: Generating matrix signatures.

row of MACs, attesting that s signs msg, and responds to the signer. The

signer waits to collect the MAC rows from at least (2f + 1) signing witness

servers to form the matrix signature.

The matrix signature may contain some empty rows corresponding to

the unresponsive/slow servers. It may also contain up to f rows with incorrect

MAC values, corresponding to the faulty servers.

Verifying a Signature To verify a matrix signature the verifier sends to

the verifying witness servers: (a) the matrix signature, (b) the message, and

(c) the identity of the client claiming to be the signer. A verifying witness

server admits the matrix signature only if at least (f + 1) MAC values in the

server’s column are correct; otherwise, it rejects the matrix signature. Note

that a non-faulty server will never reject a valid matrix signature.

The verifier collects responses from the servers until it either receives

(2f + 1) 〈ADMIT, . . .〉 responses to accept the matrix signature, or it receives
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(bool, Signature) Client-Verify(Msg msg, Signer s, Signature σ) {
∀i : σnew[i][] :=⊥
∀i : resp[i] :=⊥
send 〈VERIFY,msg, s, σ[][]〉 to all
do {

rcv 〈ADMIT, σi[1 . . . n]〉 or 〈REJECT〉 from server i
if received 〈ADMIT, σi[1 . . . n]〉 {

σnew[i][1 . . . n] := σi[1 . . . n]
resp[i] := ADMIT
// Accept: If (2f + 1) admit it
if ( Count(resp, ADMIT) ≥ 2f + 1 )

return (true, σnew);
} else {

if (resp[i] =⊥)
resp[i] := REJECT

// Reject: If at least one non-faulty server rejects
if ( Count(resp, REJECT) ≥ f + 1 )

return (false, ⊥);
}

// If cannot accept or reject: retry with σnew

if ( Count(resp, ADMIT) + Count(resp, REJECT) ≥ (n− f) ) {
send 〈VERIFY,msg, s, σnew[][]〉 to { r : resp[r] 6= ADMIT}

}
} until (false)

}

void Verifying-Witness-Server(Id j) {
while(true) {

rcv 〈VERIFY,msg, s, σ〉 from V
correct cnt := |{i : σ[i][j] == MAC(K i,j , s : msg)}|
if (correct cnt ≥ f + 1)
∀l : compute σj [l] := MAC(K j,l, s : msg)
send 〈ADMIT, σj [1 . . . n]〉 to V

else
send 〈REJECT〉 to V

}
}

Figure 5.8: Verifying matrix signatures.

(f + 1) 〈REJECT〉 responses to reject the matrix signature as not valid.

Regenerating a valid matrix signature Receiving (2f+1) 〈ADMIT, . . .〉
responses does not guarantee that the matrix signature being verified is valid.

If some of these responses are from Byzantine nodes, the same matrix signature

could later fail the verification if the Byzantine nodes respond differently.
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Verifiability requires that that if a matrix signature passes the verifica-

tion procedure, then the verifier gets a matrix signature that will always pass

the verification procedure. This is accomplished by constructing a new matrix

signature that is a valid matrix signature.

Each witness-server acts both as a verifying witness server and a signing

witness server. Thus, when a witness-server admits a matrix signature (as a

verifying witness server), it also re-generates the corresponding row of MAC

values (as a signing witness server) and includes that in the response. Thus,

if a verifier collects (2f + 1) 〈ADMIT, . . .〉 responses, it receives (2f + 1) rows

of MAC values, which forms a valid matrix signature.

Ensuring termination The verifier may receive (n−f) responses, and still

not have enough admit responses or enough reject responses, to decide. This

can happen if the matrix signature being verified, σ, is maliciously constructed

such that some of the columns are bad. This can also happen if the matrix

signature σ is valid, but some non-faulty servers are slow and Byzantine servers,

who respond faster, reject it.

To ensure receipt of (2f+1) 〈ADMIT, . . .〉 responses, the verifier retries

by sending σnew, each time σnew is updated, to all the servers that have not

sent an 〈ADMIT, . . .〉 response. Eventually, the verifier either receives (f + 1)

〈REJECT〉 responses from different servers (which guarantees that σ was not

valid), or it receives (2f + 1) 〈ADMIT, . . .〉 responses (which ensures that the

regenerated matrix signature, σnew is valid).
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5.5.2 Correctness

We now show that if n ≥ 3f + 1, then matrix-signatures satisfy all

the requirements of digital signatures and ensure that the signing/verification

procedures always terminate.

Lemma 8. Every valid matrix signature is admissible.

Proof. A valid matrix signature by definition has at least (f + 1) rows of all

correct MAC values. Every column has at least (f+1) correct MAC values.

Lemma 9. The matrix signatures generated by a non-faulty signer (Figure 5.7)

is valid.

Proof. A non-faulty signer has to collect MAC rows from at least (2f + 1)

servers to generate a matrix signature. At least (f + 1) of these rows are from

non-faulty servers and consist only of correct MAC values.

Lemma 10. A valid matrix signature always passes the verification procedure

for a non-faulty verifier.

Proof. A valid matrix signature consists of all correct MAC values in at least

(f + 1) rows. So, no non-faulty server will send a 〈REJECT〉 message. When

all non-faulty servers respond, the verifier will have (2f + 1) 〈ADMIT, . . .〉
messages.

Lemma 11. If a matrix signature is not-admissible, then it will fail the verifi-

cation procedure for any non-faulty verifier.

Proof. If a matrix signature is not admissible, then all non-faulty servers will

reject it by sending the 〈REJECT〉 message. On receiving (n− f) responses,
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the verifier will have (n − 2f) ≥ (f + 1) 〈REJECT〉 messages causing the

verification procedure to fail.

Lemma 12. If a matrix signature passes the verification procedure for a non-

faulty verifier, then it is admissible.

Lemma 13. An adversary cannot generate an admissible matrix signature for

a message msg, for which the signer did not initiate the signing procedure.

Proof. Consider the first admissible matrix signature, σ, that is generated for

msg. By the definition, σ should have at least (f + 1) correct MAC values in

a column corresponding to a non-faulty server (say j). At least one of these

MAC values is in a row that corresponds to a non-faulty server (say i). The

key Ki,j is only known to the non-faulty servers i and j.

Only server i might generate the MAC value and give it to a client.

If the message was not signed by the signer, then the MAC must have been

generated as part of the verification procedure. In the verification procedure,

a non-faulty server i only generates the MAC value if it has already received

an admissible matrix signature that has (f + 1) correct MAC values in col-

umn i. This is not possible because σ is the first admissible matrix signature

generated.

Lemma 14. If a matrix signature passes the verification procedure for a non-

faulty verifier, then the newly reconstructed matrix signature is valid.

Proof. For a matrix signature to pass the verification procedure, the verifier

must receive at least (2f + 1) 〈ADMIT, . . .〉 responses. At least (f + 1) of

these are from non-faulty servers and include a correct MAC row along with
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the response. Thus the reconstructed matrix signature consists of at least

(f + 1) correct rows.

Lemma 15. If a non-faulty verifier accepts that s has signed msg, then it can

convince every other non-faulty verifier that s has signed msg.

Proof. A non-faulty verifier, v1, accepts that a message is signed only if it

passes the verification procedure. The newly generated matrix signature that

it gathers, σnew, is valid and will pass the verification for any non-faulty verifier

v2, convincing the verifier (v2) that the message was signed.

Theorem 11. The matrix-signature scheme presented in Figures 5.7 and 5.8

satisfies consistency, validity and verifiability.

Proof. Consistency follows from Lemmas 9 and 10. Validity follows from Lem-

mas 12 and 13. Verifiability follows from Lemmas 10 and 14.

Theorem 12. If n ≥ 3f + 1 the signing procedure always terminates for any

non-faulty signer.

Proof. There are at least (n − f) non-faulty servers that will respond to the

signer. Thus eventually, it will get (n− f) ≥ (2f + 1) responses.

Theorem 13. If n ≥ 3f + 1 the verification procedure always terminates for

any non-faulty verifier.

Proof. Suppose that the verifier does not terminate even when it gets the re-

sponses from all the non-faulty servers. It cannot have received more than

f 〈REJECT〉 responses. Thus, it would have received at least (f + 1)

〈ADMIT, . . .〉 responses from the non-faulty servers that is accompanied with

66



the correct row of MACs. These (f +1) rows of correct MACs will ensure that

the new matrix signature σnew is valid.

Thus all non-faulty servers that have not sent a 〈ADMIT, . . .〉 response

will do so when the verifier retries with σnew. The verifier will eventually have

(n − f) ≥ (2f + 1) 〈ADMIT, . . .〉 responses thus enabling the verification

procedure to terminate.

Discussion Many practical Byzantine fault tolerant (BFT) state machine

replication [34,37,48,80] have used MAC-based verifiable channels to improve

performance. However, such constructions could only provide verifiability up

to two hops. It has been shown that relying on 2-verifiable channels instead

of ∞-verifiable channels exposes these system to advanced attacks in which

the system makes little progress [45]. The UpRight system uses MAC-based

implementation of the ∞-verifiable channels to prevent these attacks [44].

67



Chapter 6

The authorized channel

In this chapter we discuss the authorized channel and its implemen-

tations. First, we revisit the definition in Section 6.1. In Section 6.2, we

present an implementation based on digital signatures. Later, in Section 6.3

we present implementations based on secret sharing.

6.1 The authorized channel

A distributed protocol specifies the messages that each participating

process is allowed to send, depending upon the process’ initial state and the

sequence of messages it has delivered. While correct processes follow the pro-

tocol exactly, faulty processes may skip sending or receiving the appropriate

message (omission failures) or may send messages that they are not supposed

to send (Byzantine failures).

An authorized channel aims to restrict the harm that a malicious sender

can inflict on a correct receiver. Authorized channels ensure that a correct

receiver will only deliver messages that the sender is authorized to send. Thus,

any unauthorized message that a malicious sender may attempt to send will

not be delivered by the receiver.

For example, many atomic storage protocols require a reader to write-

back the value it read, to ensure that a later read operation does not return
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an older value. If readers are trusted to follow the protocol, then the servers

may accept a write-back from the reader without any checks. However, if

readers can be faulty, malicious readers may spoil the state of the system by

writing-back a value that has never been written by the writer. Accepting

such a write-back message, without any checks, can violate the system’s safety

requirements.

It is thus important to ensure that certain messages be accepted only

after validating that the sender is authorized to send the message. An autho-

rized channel, Cauth, formalizes such a requirement by ensuring that a (correct)

receiver delivers a message only if the sender (who may or may not be correct)

is authorized to send the message. For convenience, we repeat the definition

given in Chapter 2:

Definition. Let P (s,msg, τ) be a predicate that evaluates to true only if the

sender s is authorized to send the message msg by global-time τ . An authorized

channel guarantees that a correct receiver r shall deliver a message msg from

the channel C(s, r), only if the sender is authorized to send the message.

Authorized channel : msg ∈ Deliveredr ,C (τ)⇒ P (s,msg, τ)

6.2 Implementing authorized channels

If the sender process is known to be benign, then authorized channels

can be trivially implemented without requiring any action on the part of the

receiver. However, if the sender may be malicious, then the receiver must

verify that the sender is authorized to send a message msg before delivering

it. To enable the receiver to verify that the sender is authorized to send the

message, the sender s will have to provide a proof for the same.
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In general, verifying that the sender is authorized to send a message

involves validating (a) the initial state of the sender, (b) the local history

(of local or send/receive events) at the sender, and (c) the protocol to be

followed by the sender [19, 28, 46]. Validating all these items is not always

possible. First, in many protocols, a malicious process may lie about its initial

state by reporting a state σ′ instead of σ without being detected. Second, in

asynchronous systems, a process may lie about the order in which it received

messages. Third, for non-deterministic protocols, a malicious process can lie

about the outcomes of non-deterministic events (such as coin-tosses etc.) that

are locally generated. In such cases, we can only ensure that a malicious

process behaves consistently with other processes [19].

Fortunately, for many distributed systems the set of conditions that

determine whether or not a process is authorized to send a message is a lot

simpler. Many storage protocols require that processes initialize their local

state to a common value that is known to all. In such cases, a malicious

sender cannot lie about its initial state without being detected as faulty. Also,

the precise order in which messages are received does not always matter. For

example, in the case of an atomic storage protocol, the reader has to wait

until it collects at least (f + 1) identical responses before it performs a write-

back. The order of message receipt does not effect whether or not the reader

is authorized to perform a write-back. Finally, there are many protocols that

are inherently deterministic.

6.2.1 Threshold authorized channels

Many distributed protocols replicate processes to achieve fault toler-

ance and improve performance. Such replicated state machine architectures

70



typically ensure that each replica sends the same the message to all other repli-

cas and that replicas act on a received message only after receiving a threshold

number of them from different replicas. For example, in many Byzantine fault

tolerant systems a correct process waits for at least f + 1 identical responses

to act on a received message. Threshold-authorized channels formalize this

requirement.

Definition. Let Next(msg1,msg2) be a predicate, denoting that message msg2

is a valid response to msg1; and let P be a set of processes. The authoriz-

ing predicate for a threshold-authorized channel Auth(s,msgnext, H) allows a

sender to send a message msgnext only if, given the current history H, the

sender has received at least t messages msg1,msg2, . . .msgt, from different

processes in P , such that Next(msgi,msgnext) is true.

Threshold authorized channel : msg ∈ Deliveredr ,C (H)⇒ Auth(s,msg,H)

Current implementations of the threshold-authorized channels require

that, in order to be authorized to send some message B, the sender s receive

t instances of some “enabling message” A from t distinct processes. Each

of these messages must be received by s over a verifiable channel: this will

allow s to collect t proofs from distinct processes which together can convince

any correct process that s is indeed authorized to send message B. Before

delivering B, te intended recipient first verifies the proof that at least t different

processes did send message A to s, and then delivers the message only if the

proof is correct.
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6.3 Alternative implementation using secret sharing

Although verifiable channels are sufficient to implement a threshold

authorized channel, they are not necessary. Using verifiable channels to im-

plement an authorized channel provides additional features that, while not

required by authorized channels, come at a cost. For example, an authorized

channel only needs to verify whether or not the sender has received at least t

A messages, but does not need to distinguish between the case in which the

sender has received exactly t messages from the one in which it has received

t + 1. Similarly, the implementation of the authorized channel need not dif-

ferentiate between the case where the sender has received t− 1 messages and

the case where the sender has received t− 2 messages.

We show that threshold-authorized channels can be alternatively imple-

mented using secret sharing techniques, which are not only result in a cheaper

implementation but also provide superior, information-theoretic security guar-

antees.

6.3.1 Information theoretically secure channel

A trusted process ptrusted is used to generate a random secret SB for

each message B that the sender might send.

1. ptrusted splits the secret SB into n shares such that t of these shares are

necessary and sufficient to regenerate the secret.

2. The trusted process (i) sends the secret SB to the receiver r, and (ii)

distributes one share of the secret shi, over private channels, to each

process pi, 1 ≤ i ≤ n that might send a message Ai.
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3. Process pi keeps shi a secret until it sends the message Ai to the sender

s. On sending the message Ai to s, process pi also reveals the secret

share shi to the sender s.

On receiving k messages from different processes, the sender s will have

k such shares to reconstruct the secret.

4. To send message B on the channel Cauth, the sender s has to reconstruct

the secret S ′B and provide it as a proof that s is authorized to send the

message.

Secret sharing techniques ensure that the sender will be able to recon-

struct the secret correctly if and only if it has received message A from

at least t different processes.

5. Receiver r delivers the message B only if the secret S ′B reconstructed by

the sender is same as the secret SB given by the trusted process.

Theorem 14. The protocol described in Section 6.3.1 implements a threshold-

authorized channel.

Proof. The receiver r accepts the message B only if the sender s is able to

reconstruct the secret correctly. The adversary cannot find out the secret

as the shares are exchanged between correct processes over private channels.

Thus, the sender can reconstruct the correct secret only if at least t processes

have revealed their shares. Process pi reveals its share only when it sends the

appropriate message Ai. Hence, s can reconstruct the secret and convince r to

accept B only if s receives at least t messages with their corresponding shares.
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6.3.2 Computationally secure channel

The above implementation requires the use of private channels but it

is secure even against a computationally unbounded adversary. Thus the ad-

versary, no matter how powerful, cannot fool a correct receiver into accepting

an unauthorized message from the sender with any probability higher than

that of taking a random guess at the generated secret. If the generated se-

cret is of length ks bits, then the probability that the adversary guesses the

secret correctly is 1/2ks , which can be made as small as required by increas-

ing the length of the generated secret. To achieve this information-theoretic

security, however, the private channels used in the implementation need to be

information-theoretically secure themselves.

Many practical systems however do not require information-theoretic

security, either because they are willing to assume that the adversary is compu-

tationally bounded, or because certain other components of the system already

require the adversary to be computationally bounded. For such situations, we

can develop an alternative implementation of the authorized channel that uses

secret sharing combined with one-way hashing; this implementation is secure

as long as the computationally-bounded adversary is unable to reverse the

one-way hash. The implementation is as follows:

A trusted process ptrusted generates a random secret SB for each message

B that the sender might send.

1. ptrusted splits the secret SB into n shares such that t of these shares are

necessary and sufficient to regenerate the secret.

2. The trusted process sends (i) the hash of the secret h(SB) to the receiver

r, and (ii) privately distributes one share of the secret shi to each process
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pi, 1 ≤ 1 ≤ n that might send a message Ai.

3. Process pi keeps shi a secret until it sends the message Ai to the sender

s. On sending the message Ai to s, process pi also reveals the secret

share shi to the sender s.

On receiving k messages from different processes, the sender s will have

k of the shares needed to reconstruct the secret.

4. To send message B on the channel Cauth, the sender s has to reconstruct

the secret S ′B and provide it as a proof that s is authorized to send the

message.

Secret sharing techniques ensure that the sender will be able to recon-

struct the secret correctly if and only if it has received message A from

at least t different processes.

5. Receiver r delivers the message B only if the secret S ′B reconstructed by

the sender produces the same hash as h(SB).

Theorem 15. The protocol described in Section 6.3.2 implements a threshold-

authorized channel.

Proof. The receiver r accepts the message B only if the sender is able to

reconstruct the secret correctly. A computationally-bounded adversary cannot

invert the hash function, or access the shares that are exchanged between

correct processes over private channels. Thus, the sender can reconstruct the

correct secret only if at least t processes have revealed their shares. Process pi

reveals its share only when it sends the appropriate message Ai.
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Discussion We make two observations. First, an authorized channel pro-

vides guarantees about the message being authorized only as long as the re-

ceiver is correct. Second, if the receiver r can communicate with all processes

that send the message to authorize the sender, then the role of the trusted

process can be fulfilled by the receiver r itself.

Related work Notions similar to that of an authorized channel have been

used earlier, in the context of broadcast channels, to translate automatically

crash-tolerant protocols into Byzantine fault tolerant systems [16, 19, 20, 28,

47, 46, 68, 69, 101, 102]. Bracha [28, 29] and Coan [46] have proposed such

translation mechanisms for asynchronous systems. For synchronous systems,

such mechanisms have been proposed by Bazzi, Neiger, Toueg and Mpoe-

leng [16, 19, 20, 99, 101, 102]. Recently, PeerReview [71] and Nysiad [77] have

built upon such techniques to detect and mitigate Byzantine faults in scalable

distributed systems [76].
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Chapter 7

Background: Register abstractions

Register abstractions can be implemented using quorum systems [59,

118]. In this chapter we discuss existing quorum techniques to implement

register abstractions and their trade-offs. Section 7.2 introduces strict quo-

rum systems that are useful to implement registers with strong consistency

semantics. Section 7.3 discusses non-strict quorum systems that are useful

to implement registers that provide weaker consistency semantics in order to

achieve better availability.

7.1 Preliminary definitions

Definition. A quorum system over a set of elements P is a tuple
(
R,W

)
; where

R ⊂ 2P is the set of read quorums and W ⊂ 2P is the set of write quorums.

Quorum systems are widely used to implement distributed registers [15,

17,52,59,61,65,89,90,91,95,94,106,118]. To implement a distributed register,

we define a quorum system over the set of servers P that store the value.

To perform a read operation on the register, the reader contacts a quorum

of servers, R, from the set of read quorums R, and chooses the latest value

among the received values. Similarly, to perform a write operation, the writer

contacts a quorum of servers, W , from the set of write quorums W and updates

the value at the servers in W .
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In order to ensure that a reader is able to read the value written by a

writer, read quorums must intersect with write quorums. The requirement on

the intersection depends on (i) the type of faults that a server may be subject

to, and (ii) on the consistency semantics of the register that is implemented.

We classify quorum systems into two types: strict quorum systems and non-

strict quorum systems.

7.2 Strict quorum systems

Strict quorum systems require that any read and write quorum always

intersect with each other. The number of servers required to be in the inter-

section depends on the kind of faults that the servers may be subject to:

1. If all the servers are correct, then the intersection needs to contain at

least one server.

2. If the servers may be subject to benign failures (crash, omission etc.),

then the intersection must be larger. To tolerate f benign server failures,

the intersection needs to be at least f + 1. This ensures that every read

quorum intersects with a write quorum in at least one correct server.

3. Finally, if the servers may be Byzantine, then the intersection may need

to be even larger. This is to ensure that a reader is able to correctly

identify a value returned by the correct servers:

• If the data being written to the register is self-verifying in nature,

i.e. modifications to the data written by the writer is detectable,

then the intersection between the read and write quorums need to

contain at least f+1 servers in order to tolerate f Byzantine faults.

78



• If the data being written is not self-verifying, then the intersection

between the read and write quorums needs to contain at least 2f+1

servers in order to tolerate f Byzantine servers [90].

Implementing registers: Because of their strong intersection property,

strict quorum systems can be used to build registers that provide Lamport’s

safe, regular, and atomic semantics [85] and therefore guarantee that read

operations that are not concurrent with a write operation return the result of

the latest completed write. Unfortunately, these registers cannot provide good

availability if there are many failures, or if there are any network partitions [57,

60].

7.3 Non-strict quorum systems

Non-strict quorum systems are designed to achieve higher availability

at the cost of weakening the consistency guarantees. This is achieved by

relaxing the intersection requirement found in strict quorum systems. Non-

strict quorum systems studied in the literature are of two kinds: probabilistic

quorum systems (PQS) and signed quorum systems (SQS).

Probabilistic quorum systems Probabilistic quorum systems consist of

read and write quorums, along with an access strategy for choosing a quo-

rum [92]. Two quorums chosen according to the specified access strategy are

required to satisfy the intersection requirement with high probability; such

that, for a given ε where 0 < ε < 1, the probability of satisfying the intersec-

tion requirement is at least (1− ε). As with the case of strict quorum systems,

the requirements on the intersection is dependent on the kind of server failures
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that can occur. Malkhi et. al. [92] present various intersection requirements

depending on the kind of server failures tolerated and the nature of the data

stored in the register.

Signed quorum systems Signed quorum systems [121] also provide a prob-

abilistic guarantee of intersection between two quorums. Unlike probabilistic

quorum systems, signed quorum systems use the notion of a failure detec-

tor [4, 38, 39, 41] to estimate which servers are responsive and which servers

are not. Responsive servers are represented using positive elements, and non-

responsive servers are represented using negative elements. A quorum may

consist of both positive and negative elements, corresponding to the case where

a server that is contacted during an operation either is responsive or is believed

to be unresponsive. The intersection property requires that two quorum sets

(i) either intersect in a positive element, i.e. a responsive server, or (ii) contain

a minimum number of mismatches, where mismatch is the event where a server

is considered to be responsive during one quorum access, but not during the

other. If mismatches on different servers are independent, then signed quorum

systems guarantee that either two quorums intersect in a positive element, or

the probability that both quorums can be acquired is very small.

In a system with perfect failure-detectors, if the configuration of the

nodes does not change significantly, then signed quorum systems will behave

like a strict quorum system and provide safe semantics. However, with imper-

fect failure detectors, it is possible that the read and write quorums used do

not intersect.

Implementing registers: If the network is synchronous, P -randomized

register can be implemented using either probabilistic quorum systems or
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signed quorum systems. However, if the network is asynchronous, an ad-

versary may delay messages from the clients to various servers such that the

probability of non-intersection cannot be bounded. This may result in the read

operation returning arbitrarily old values or values that were never written to

the system (in case of Byzantine faults).

7.3.1 Limitations of existing approaches

Quorum systems are commonly used to improve the availability and

fault tolerance of a distributed service. However, asynchrony poses an in-

teresting challenge to the implementation of such services. If the network is

asynchronous, then it is not possible to distinguish effectively a crashed pro-

cess from a process that is slow [56]. Thus, if a distributed storage system is

prone to operating in conditions where the network can be asynchronous, or

where there is a possibility of a network partition, then it is not possible to

ensure both strong consistency and high availability [57, 60].

Strict quorum systems and non-strict quorum systems make different

trade-offs in terms of handling such asynchronous conditions. Register imple-

mentations based on strict quorum systems provide strong consistency guar-

antees at the cost of being unavailable under adversarial conditions; imple-

mentations based on non-strict quorum systems allow for high availability by

weakening the consistency guarantees they provide.

Unfortunately, with probabilistic quorum systems and signed quorum

systems the probability that the read and write quorum sets do not inter-

sect can be bound only when the network is synchronous. If the network

is asynchronous, then neither quorum system can be used to implement a

P -randomized register. Under asynchronous conditions, the adversary can
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orchestrate the message delays from clients to different servers such that the

read and write quorums never intersect. Thus, implementations based on these

quorum systems may return arbitrarily old values. Moreover, if the systems

is prone to Byzantine failures, then it is possible that the system may return

maliciously-fabricated values that were never written to the system.

7.3.2 Alternative register abstractions

To address these concerns, Bazzi [5] proposes an alternative way to relax

the consistency guarantees that allows for higher availability, while ensuring

that the worst-case staleness is bounded even under adversarial conditions.

In particular, the proposed k-safe, k-regular and k-atomic registers relax the

consistency guarantees defined by Lamport [85] to allow the system to return

any one of the latest k written values [5]. Unlike the P -random register, these

new register abstractions do not focus on bounding the probability of returning

stale values, but focus instead on bounding the worst possible staleness.

1. k-safe(k): A read that does not overlap with a write returns the result

of one of the latest k completed writes. The result of a read overlapping

a write is unspecified.

2. k-regular(k): A read that does not overlap with a write returns the

result of one of the latest k completed writes. A read that overlaps with

a write returns either the result of one of the latest k completed writes

or the eventual result of one of the overlapping writes.

3. k-atomic(k): A read operation returns one of the values written by the

last k preceding writes in an order consistent with real time (assuming

there are k initial writes with the same initial value).
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Allowing the system to return one of the last k written values allows for

the system to be achieve higher availability than in implementations based on

strict quorum systems, while ensuring good worst-case guarantees even when

the network is asynchronous.

Discussion Traditional notions of safe, regular and atomic semantics [85]

can be seen as a special case of the corresponding k semantics, where the

maximum allowed staleness is 1. The properties offered by k-safe, and k-

atomic registers are not comparable with those offered by a P -random register;

however, the k-regular register can be seen as a special case of the P -random

register that can be implemented even if the network is asynchronous.

For database applications, researchers have considered weakened con-

sistency semantics for increased concurrency [81, 107]. Epsilon consistency

attempts to increase availability by allowing query accesses to see some tem-

porary inconsistencies in the data; however these inconsistencies are bounded

and the system converges to a global serializability [107]. Krishnamurthy et

al. [81] present a technique called bounded ignorance for increasing the concur-

rency in database applications, where the application may be unaware of at

most N transactions.

File systems storing multiple data objects can try to enforce stronger

consistency semantics, where operations are applied in the same order also

across different objects [24, 75]. These requirements can be relaxed to allow

for higher concurrency [21,67,111,105]. For example, TACT [122,123,124,125]

is a toolkit that allows for the consistency level of the system to change and

can be used to specify various kinds of weakened semantics. PRACTI [21]

allows to implement easily different consistency semantics across different data
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objects under different network topologies. In this dissertation, we focus on

the consistency semantics defined with respect to a single data object.
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Chapter 8

Implementing k-atomic registers

In this chapter we provide an implementation for the k-atomic register.

Section 8.1 introduces the notion of a k-quorum system. In Section 8.2.1 we

propose a single-writer implementation of the k-atomic register tolerating only

benign failures. In Section 8.2.2 we show how to implement a single-writer k-

atomic register that handles Byzantine failures. Finally, in Section 8.3 we show

how single-writer k-atomic registers can be used to implement multiple-writer

registers.

8.1 k-quorum constructions

A k-quorum system consists of (i) an underlying strict quorum system,

(R,W), and (ii) a staleness parameter l that is the bound on the staleness

allowed.

Definition. A k-quorum system over a set P is defined as a triple
(
R,W, l

)
,

where R ⊂ 2P is the set of read quorums, W ⊂ 2P is the set of write quorums,

and l is a staleness parameter.

Read and write operations Read operations in k-quorums are similar to

reads in the traditional quorum systems. At a high level, the reader r contacts

a quorum of servers R ∈ R and returns the latest retrieved value.
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Writes are a little different. Writes in k-quorums may be written to

any subset of P, such that the servers contacted during l consecutive writes

form a write-quorum W ∈ W. We henceforth call the set of servers contacted

during a particular write a partial-write-quorum.

To tolerate f Byzantine servers failures, we require that for any R ∈
R, and W ∈ W, |R ∩W | ≥ 3f + 1 and |R|, |W | ≤ (n− f).

8.2 A single-writer register

We now present a single-writer-multiple-reader implementation of a k-

atomic register using k-quorums.

Model We consider a system consisting of a set P of n servers. The servers

can communicate with the clients (readers and writers) over authenticated

point-to-point channels. Each server (or node) can crash and recover. We

assume that servers have access to a stable storage mechanism that is persistent

across crashes. We place no bound on the number of non-Byzantine faulty

servers and, when considering Byzantine faults in Section 8.2.2, we assume

that there are no more than f Byzantine servers in the system. The network

is assumed to be asynchronous. The clients are assumed to be correct, and

the writers are assumed to have at most one outstanding write.

8.2.1 Handling benign failures

We first present a protocol that tolerates only benign server failures.

The single-writer-multiple-reader protocol for implementing a k-atomic regis-

ter is shown in Figure 8.1.
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// Protoco l f o r the s i n g l e−w r i t e r
static k := 0 ;
static ts := 0 ;

void Write( va lue )
begin

ts := ts+ 1 ;
k := k + 1 ;

Find an a v a i l a b l e p a r t i a l−write−quorum , Wk , such that :

∃W ∈W : W ⊆
Si=k

i=k−l+1Wi .

Write (value, ts, PW ) to Wk , where PW =
Si=k−1

i=k−l+1Wi

Wait f o r acknowledgments from Wk

return
end

// Protoco l f o r a reader
int Read ( )
begin

Find an a v a i l a b l e read quorum , R , and read from R .
( v , ts , PW) := value with the l a r g e s t time stamp .

Write back the value , (v , ts , PW) to a p a r t i a l−write−quorum , Wr , such that
∃W ∈W : W ⊆ PW ∪Wr

Wait f o r acknowledgments from the p a r t i a l wr i t e quorum , Wr .

return (v , ts , PW) .
end

Figure 8.1: k-atomic register implementation.

Write operation The write operation in k-quorums differs from the write

operation in normal quorum systems and requires the value to be written

to only a subset of the write quorum known as a partial-write-quorum. To

ensure a bound on staleness, we require that any l partial-write-quorums used

for successive write operations must collectively contain a write quorum.

Formally, let Wi be the partial-write-quorum used in the ith write. We

require that

∀i : ∃W ∈W such that W ⊆
i⋃

j=i−l+1

Wj
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The protocol for write is shown in Figure 8.1. During the ith write, the

writer writes to each of the servers in Wi: (i) the value – v, (ii) the timestamp

– ts, and (iii) the set PW of servers accessed in the previous (l − 1) writes.

Read operation To perform a read operation, the reader contacts a read

quorum of servers to collects their responses and chooses the value with the lat-

est time stamp (v, tshst, PW ). The reader then writes back the tuple (v, tshst, PW )

to a set of servers W ′ such that ∃W ∈W : W ⊆ PW ∪W ′.

The protocol for a read is shown in Figure 8.1. Since a read quorum

always intersects with one of the previous l partial-write-quorums, a read is

guaranteed to return one of the l latest written values irrespective of the be-

havior of the scheduler.

Analysis To prove that the protocols achieve k-atomic(l) semantics, we show

the existence of a linearized schedule for reads and writes such that each read

returns the value written by one of the previous l writes.

Theorem 16. The read and write protocols shown in Figure 8.1 provide k-

atomic(l) semantics.

Proof. Let written-time denote the global time instance when a value that is

being written reaches a partial-write-quorum. We will order the reads and

writes such that:

• All writes are ordered as if they instantaneously take place at their

written-time.

• A read which returns a value (v, ts, PW ), which was written at time-

stamp ts, can be scheduled at any time between
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1. The written-time, τts of the value returned, (v, ts, PW ); and

2. The written-time of the next lth write, (v′, ts+ l, PW ′). i.e. before

τts+l.

It is easy to see that such an ordering satisfies the requirements of k-

atomic(l) semantics. We need to show that the ordering can be achieved in

a manner consistent with local history. The scheduling of writes is trivial,

because the written-time of a write occurs between the time a write has begun

and before the write ends.

We now show, by contradiction, that reads can also be scheduled. Sup-

pose that the read interval did not overlap with the interval [τts, τts+l
)
. There

are two cases:

1. The read finishes before τts: This senario is not possible, because a read

completes only after performing a write-back on the value. Therefore a

read can end only after the written-time of the value it returns.

2. The read begins after τts+l. Consider the union of the partial write

quorums for l previous writes – Wts+1 ∪Wts+2 ∪ . . . ∪Wts+l. From the

definition of a partial-write-quorum and the fact that any read quorum

intersects with a (complete) write quorum, it follows that the reader has

received a value from at least one server in Wts+1 ∪Wts+2 ∪ . . . ∪Wts+l.

However, since the reader chooses the highest timestamp received, a read

that starts after τts+l cannot return a value written before τl, which is a

contradiction.
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8.2.2 Handling Byzantine servers

We now show a protocol that implements a k-atomic(l) register in the

presence of Byzantine faults. We assume that the system consists of n servers

of which there are no more than f are Byzantine.

static Reading = ∅
static cur r en t data [ 1 . . k ] ;

while( true ) {
(msg , sender ) = rece iveMessage ( ) ;

if ( msg i n s t a n c e o f READ REQUEST)
Reading ∪ = {sender} ;
send cur r en t data to sender .

else if ( msg in s t ance o f STOP READ )
Reading = Reading \ {sender} ;

else if ( msg in s t ance o f WRITE )
// say msg i s WRITE 〈Tuple[tsnew, . . . , tsnew − k + 1]〉
if ( tsnew.ts > cur r en t data [ 1 ] . t s )

cu r r en t data [ 1 . . k ] = Tuple[tsnew, . . . , tsnew − k + 1] ;
send ACK(tsnew ) to sender ;
forward cur r en t data to a l l in Reading .

else
send ACK(tsnew ) to sender ;

}

Figure 8.2: k-quorum protocol for servers.

Server-side protocol Figure 8.2 shows the server-side protocol. Each server

s maintains in the structure current data information about the last write the

server knows of, as well as the l − 1 writes that preceded it. READ RE-

QUEST messages are handled using a “listeners” pattern [95]. The sender of

such requests is added to s’s Reading set, which contains the identities of the

clients with active read operations at s. A read operation r is active at s from

when s receives r’s READ REQUEST to when it receives the corresponding

STOP READ. On receipt of a WRITE message, s acknowledges the writer.
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Then, if the received information is more recent than the one stored in cur-

rent data, s updates current data and forwards the update to all the clients in

Reading; otherwise, it does nothing.

static ts := 0 ;
static Tuple [ ] ;
void Write( va lue v )
begin

ts := ts+ 1 ;
h = hash ( Tuple [ ts− 1, . . . , ts− k + 1 ] ) ;
// E i s the s e t o f s e r v e r s NOT used f o r the prev ious k − 1 w r i t e s

E = P \
Sj=ts−1

j=ts−k+1Wj

Tuple [ ts ] = (v, ts, E, h) ;
delete Tuple [ ts− k ] to save space

Find a s e t PW , such that : |PW
S
∪j=ts−1

j=ts−k+1Wj | = Qw

send WRITE〈Tuple[ts, . . . , ts− k + 1]〉 to a l l s e r v e r s in PW .

// wait f o r acknowledgements
Wts = ∅
do

recv ACK(ts) from serv
Wts = Wts ∪ {serv}

until ( | ∪j=ts
j=ts−k+1 Wj | ≥ Qw − f )

return
end

Figure 8.3: k-quorum write protocol tolerating f Byzantine servers.

Writer’s protocol Figure 8.3 shows the client-side write protocol. Each

write operation affects only a small set of servers, called a partial write quorum,

chosen by the writer so that the set of its last l partial write quorums forms a

complete write quorum. The information sent to the servers contains not just

a new value and timestamp, but also additional data that will help readers

distinguish legitimate updates from values fabricated by Byzantine servers.

Specifically, the writer sends l tuples to each server in the partial write quorum

– one for each of its last l writes. The tuple for the i-th of these writes includes:

i) the value vi; ii) the corresponding timestamp tsi; iii) the set Ei of servers
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that were not written to in the last l − 1 writes preceding i; and iv) a hash

of the tuples of the l − 1 writes preceding i. The write ends once the set of

servers from which the writer has received an acknowledgment during the last

l writes forms a complete write quorum1.

Thus, the value, timestamp, E, and hash information for write i are not

only written to i’s partial write quorum, but also to the partial write quorums

used for the next l − 1 writes. By the end of these l writes this information

will be written to a complete write quorum which is guaranteed to intersect

any read quorum in at least 3f + 1 servers.

Reader’s protocol Figure 8.4 shows the client-side read protocol. To per-

form a read operation, the reader contacts a read quorum of servers and collects

from each of them the l tuples they are storing. The goal of the read opera-

tion is twofold: first, to identify a tuple ti representing one of the last l writes,

call it i, and return to the reader the corresponding value vi; second, to write

back to an appropriate partial write quorum (one comprised of servers not in

Ei) both ti and the l − 1 tuples representing the writes that preceded i—this

second step is necessary to achieve k-atomic(l) semantics.

The read protocol computes three sets based on the received tuples.

The Valid set contains, of the most recent tuples returned by each server in

the read quorum, only those that are also returned by at least f other servers.

The tuples in this set are legitimate: they cannot have been fabricated by

Byzantine servers.

1Byzantine servers may never respond. The writer can address this problem by simply
contacting f additional nodes for each write while still only waiting for a partial quorum of
replies. For simplicity, we abstract these details in giving the protocol’s pseudocode.
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r e c e i v e d [ ] // s t o r e s the r e sponse s from s e r v e r s
CandidateValues // ho lds the s e t o f candidate va lue s
Read ( )
begin

choose a read quorum R;
send READ REQUEST to s e r v e r s in R;

r e c e i v e d [ i ] = nul l , 1 ≤ i ≤ |R| ;
CandidateValues = ∅
// r e c e i v e va lue s from a l l the s e r v e r s in R
while( |{i : received[i] 6= null}| < |R| )
begin

receive Tuple [ tss, . . . , tss − k + 1 ] from s e r v e r s ;
r e c e i v e d [ s ] = Tuple [ tss, . . . , tss − k + 1 ] ;
if ( i s V a l i d ( Tuple [ tss, . . . , tss − k + 1 ] ) )

add Tuple [ tss ] to the s e t CandidateValues ;
end

// try to choose a value : i f un succe s s fu l , wait f o r more r e sponse s
tshighest = LargestTimestamp ( r e c e i v e d ) ;
tryChoosing ( ) ;
while( va lue chosen == n u l l )
begin

receive Tuple [ tss, . . . , tss − k + 1 ] from s e r v e r s ;
if (tss ≤ tshighest )

r e c e i v e d [ s ] = Tuple [ tss, . . . , tss − k + 1 ] ;
tryChoosing ( ) ;

end

send STOP READ to s e r v e r s in R;

// wr i t e back the chosen value to a p a r t i a l−write−quorum
Find a p a r t i a l−write−quorum , PW, s u i t a b l e f o r va lue chosen .
send WRITE〈 va lue chosen 〉 to PW;
wait f o r acks from PW;

return va lue chosen ;
end

void tryChoosing ( )
begin

(1 ) Fresh = { Tuple [ tss, . . . , tss − k ] ∈ Received | tss i s one o f the 2 f+1 l a r g e s t
time−stamped e n t r i e s in Received r e c e i v e d from d i f f e r e n t s e r v e r s }

(2 ) Val id = { Tuple [ tss, . . . , tss − k ] ∈ Received | Tuple [ tss ] occurs in the
r e sponse s o f at l e a s t f + 1 s e r v e r s }

(3 ) Cons i s t ent = { Tuple [ tss, . . . , tss − k ] ∈ Received | the hash , h , in Tuple [ tss ]
matches hash ( Tuple [ tss − 1, . . . , tss − k ] ) }

(4 ) if ( V alid ∩ Fresh ∩ Consistent 6= ∅ )
va lue chosen = v ∈ V alid ∩ Fresh ∩ Consistent , with the l a r g e s t timestamp .

end

Figure 8.4: k-quorum read protocol tolerating f Byzantine servers.
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The Consistent set also contains a subset of the most recent tuples

returned by each server s in the read quorum. For each tuple ts in this set,

the reader has verified that the hash of the l− 1 preceding tuples returned by

s is equal to the value of h stored in ts.

The Fresh set contains the 2f + 1 most recent tuples that come from

distinct servers. Since a complete write quorum intersects a read quorum in at

least 2f + 1 correct servers, legitimate tuples in this set can only correspond

to recent (i.e. not older than l latest) writes.

The intersection of these three sets includes only legitimate and recent

tuples that can be safely written back, together with the l − 1 tuples that

precede them, to any appropriate partial write quorum. The reader can choose

any of the tuples in this intersection: to minimize staleness, it is convenient

to choose the one with the highest timestamp.

Protocol Correctness We first prove that the read protocol, shown in Fig-

ure 8.4, only returns values that are: (i) actually written by the writer (as

opposed to an arbitrary value generated by a Byzantine server), and (ii) are

not more than l writes old.

Lemma 16. If the algorithm in Figure 8.4 returns a value, Tuple[ts, . . . , ts −
l + 1], then the writer must have written Tuple[ts, . . . , ts− l + 1].

Proof. The algorithm returns a value, Tuple[ts, . . . , ts− l+1], only if the value

belongs to Valid ∩ Consistent. For Tuple[ts, . . . , ts − l + 1] to be present in

Valid, the latest of the l+ 1 values – Tuple[ts] – has to be reported by at least

f + 1 different servers. Since at least one of these servers is correct, it follows

that Tuple[ts] was written by the writer.
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Moreover, since Tuple[ts, . . . , ts − l + 1] also belongs to Consistent,

the the hash in Tuple[ts] has to matches hash(Tuple[ts − 1, . . . , ts − l + 1]).

Therefore, the history of the previous l − 1 writes is also correct and was

written by the writer.

Lemma 17. The set Fresh never contains a value that is more than l writes

old.

Proof. The intersection between a read and a write quorum consists of at least

3f + 1 servers. Hence, among the servers responding there are at least 3f + 1

servers who have “seen” one of the latest l writes. At least 2f + 1 of these

are correct and have a timestamp greater than or equal to the l-th latest write

that occurred before the read has begun. Since the timestamp at a correct

server monotonically increases, the correct servers in the intersection will never

return a value that is more than l writes old.

Since there are at least 2f + 1 correct servers who never report a value

more than l writes old, then the 2f + 1 latest values received from different

servers, Fresh, will never contain a value that is more than l writes old.

Theorem 17. The single-writer Byzantine k-quorum read protocol in Figure 8.4

never returns a value that is has not been written by the writer.

Proof. Follows from Lemma 16.

Theorem 18. The single-writer Byzantine k-quorum read protocol in Figure 8.4

never returns a value that is more than l writes old.

Proof. The read in Figure 8.4 only returns a value that belongs to V alid ∩
Consistent ∩ Fresh. From Lemma 17, we know that the set Fresh can never
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contain a value that is more than l writes old. Hence, a read will never return

a value that is more than l writes old.

In an asynchronous environment where there is no bound on the number

of nodes failing, no protocol can provide liveness guarantees always. If the

network is behaving asynchronously, or if the required number of servers is

not available, then our protocols will just stall until the systems comes to a

good configuration. We will now argue that if the required number of servers

is accessible, and the network behaves synchronously, then our protocols will

eventually terminate.

Theorem 19. If the network behaves synchronously and all non-Byzantine

nodes recover and stay accessible, then the Byzantine k-quorum protocol for

the writer in Figure 8.3 eventually terminates.

Proof. If network is synchronous, and the non-Byzantine nodes recover, then

the writer will be able to find an accessible partial-write-quorum. On receiving

the acknowledgements from all the servers in the partial-write-quorum, the

writer terminates.

Theorem 20. If the network behaves synchronously and all non-Byzantine

nodes recover and stay accessible, then the Byzantine k-quorum protocol for

the reader in Figure 8.4 eventually terminates.

Proof. New values from a server are allowed to overwrite old values only as

long as the time stamp of the new value is at most tshighest. Therefore values

cannot be overwritten indefinitely.
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Consider the situation, after the writer completes the latest write before

tshighest: say tslatest
2.

When this happens all correct servers in the intersection of the read

and write quorum will have a timestamp ts such that tslatest − l + 1 ≤ ts ≤
tslatest. The correct servers will forward the values and these values will not

be overwritten by any other value3.

Since the intersection between a read and a write quorum contains at

least 2f + 1 correct servers, eventually the reader will receive at least 2f + 1

values that have their timestamp in the range [tslatest− l+1, tslatest]. Consider

the (f+1)-th largest timestamped value, vc, received from some correct server.

Since vc is reported by a correct server, its hashes match and therefore

vc is present in Consistent. Since there are no more than f faulty servers that

may report higher timestamps, vc will be present also in Fresh. Further, since

all the 2f + 1 highest timestamped values from correct servers lie in the range

[tslatest− l+1, tslatest], it follows that the (f +1)-th value from a correct server

will be contained in the history of the first f highest-timestamped values from

correct servers. Hence, vc is also present in V alid. Therefore, tryChoosing

will set value chosen to a non-null value and the algorithm will terminate.

Theorem 21. The protocols described in Figure 8.2, 8.3 and 8.4 implement

k-atomic(l) semantics.

2If the writer has not performed a write operation with a timestamp greater than
tshighest, then tslatest will be the timestamp of the last write operation. Otherwise tslatest

will be tshighest.
3 if tslatest ≤ tshighest then the writer has not written any value with a time stamp

greater than tslatest, so these values are never overwritten. Otherwise, if tslatest is equal
to tshighest, then the values are not overwritten because we discard values with timestamps
greater than tshighest.
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Proof. To prove that the protocols achieve k-atomic semantics, we show a

linearized schedule of reads and writes such that every read returns one of the

l previously written values. Let written-time denote the global time when a

value that is being written reaches a partial-write-quorum. We will order the

reads and writes operations as follows:

• All writes are ordered as if they instantaneously take place at their

written-time.

• A read that returns a value (v, ts, E, h) can be scheduled at any time

between

1. The written-time, τts of the value returned, (v, ts, E, h); and

2. The written-time of the next lth write, (v′, ts+ l, E ′, h′). i.e. before

τts+l.

It is easy once again to see that such an ordering satisfies the requirements

of k-atomic semantics. We need to show that the ordering can be done in a

manner consistent with the local history.

The scheduling of writes is trivial, because the written-time of a write

occurs after the time the write has begun and before the write ends.

We now show, by contradiction, that reads can also be scheduled. Sup-

pose that the read interval did not overlap with the interval [τts, τts+l
)
. There

are two cases:

1. The read finishes before τts: This scenario is not possible, because a read

has to write-back the value. Therefore, a read can end only after the

written-time of the value it returns.
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2. The read begins after τts+l: From Lemma 17, any read that starts after

τts+l cannot return a value as old as τts, which contradicts the assumption

that the value returned has a timestamp ts.

8.3 Supporting multiple writers

We present a construction for a m-writer, multi-reader register with

using single-writer, multi-reader registers with k-atomic semantics. Using k-

atomic registers, our construction provides
(
(2m − 1)(k − 1) + m

)
-atomic

semantics.

The single-writer registers can be constructed using the k-quorum pro-

tocols from Section 8.2.1 if servers are subject to crash and recover failures, or

using the construction from Section 8.2.2 if servers are subject to Byzantine

failures.

To differentiate between the single-writer and multiple-writer read and

write operations, we assume that the single-writer implementation provides

the following two operations.

1. val sw-kread( wtr ): returns one of the k latest written values, by the

writer wtr.

2. sw-kwrite( wtr, val ): writes the value val to the k-quorum system. It

can only be invoked by the writer wtr

Further, we assume that the read and write availability of the single-writer

k-quorum system is asr = 1− εsr and asw = 1− εsw respectively.
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8.3.1 Multiple writer construction

The multi-writer construction uses m instances of the single-writer k-

atomic register, one for each writer wi. It uses approximate vector timestamps

to compare writes from different writers. Each writer wi, 1 ≤ i ≤ m, maintains

a local virtual clock ltsi, which is incremented by 1 for each write so that its

value equals the number of writes performed by writer wi.

At a given time, let ~gts be defined by

∀i : ~gts[i] = ltsi

where the equality holds at the time of interest. The vector ~gts represents

the global vector timestamp and it may not be known to any of the clients or

servers in the system. The read and write protocols are shown in Figure 8.5.

Write Operation To perform a write operation, the writer first performs

a read to obtain the timestamp information about all the writers (lines 5-6).

Since the registers used are k-atomic, the received timestamp information is

guaranteed to be no more than k writes old for any writer.

A writer wtri executing a write would calculate (lines 9-10) an ap-

proximate vector timestamp ~ats, whose i-th entry is equal to ltsi and whose

remaining entries can be at most k older than the local time stamps of the en-

tries at the time the write operation was started. Let ~gtsbeg and ~gtsend denote

the global timestamps at the start and end of the write. Then,

~ats[i] = ~gtsend[i]

~ats[j] > ~gtsbeg[j]− k
~gtsend ≥ ~gtsbeg
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1 static ltsi = 0 ;
2 void mw-write( writeri , val )
3 begin
4 ltsi + +
5 f o r j = 1 to m

6 〈valj , ~tsj〉 = sw−read ( writerj )
7
8 // Estimate the approx time−stamp

9 ∀j 6= i : ~ats [ j ] = max1≤p≤m { ~tsp[j] }
10 ~ats [ i ] = ltsi ;
11

12 sw−wr i t e ( writeri , 〈val, ~ats〉 )
13 end
14
15 〈val, ts〉 mw-read( )
16 begin
17 f o r j = 1 to m

18 〈valj , ~tsj〉 = sw−read ( writerj )
19
20 Reject = ∅
21 f o r i = 1 to m
22 f o r j = 1 to m

23 i f ( ~tsj < ~tsi | |
`
~tsj [i] < ~tsi[i]− k

´
)

24 Reject = Reject ∪ {〈valj , ~tsj〉}
25

26 return any 〈valj , ~tsj〉 6∈ Reject
27 end

Figure 8.5: Multi-writer k-quorum protocols.

The writer then writes the value, val, along with the timestamp ~ats to

the single-writer k-atomic register for the writer.

Read operation To perform a multi-writer read operation, a reader reads

from all the m single-writer k-atomic registers. Because of the k-atomicity

of the underlying single-writer implementation, each of these m responses is

guaranteed to be one of the k latest values written by each writer. However, if

some writer has not written for a long time, then the value could be very old

when considering all the writes in the system. Finding the latest value among

these m values is difficult because the approximate timestamps are not totally

ordered.
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The reader uses elimination rules (lines 20-24) to reject values that can

be inferred to be older than other values. This elimination is guaranteed to

reject any value that is more than
(
(2m−1)(k−1)+m

)
writes old. Finally, after

rejecting old values, the reader returns any value that has not been rejected.

8.3.1.1 Protocol correctness

We now analyze the protocol in Figure 8.5 to give a bound on the

staleness.

Lemma 18. If a writer wi performs a write, beginning at the (global) time

~gtsbeg and ending at ~gtsend, with a (approximate) timestamp ~t, then

~t ≤ ~gtsend; ~t[i] = ~gtsend[i]; and

∀j : ~t[j] ≥ ~gtsbeg[j]− k + 1

Proof. The k-quorum implementation of the single-writer system for writer wj,

guarantees that any sw-read for writer wj will return one of the k latest values

written by wj. Thus, during the initial read phase, the writer wi will read one of

the last k timestamp values used by wj. Hence ~gtsend[j] ≥ ~t[j] ≥ ~gtsbeg[j]−k+1

for all j.

Moreover, the writer wi always sets the ith coordinate of the computed

vector timestamp to his local virtual timestamp ltsi (line 10). Therefore ~t[i] =

~gtsend[i].

Lemma 19. Let 〈valj, ~tsj〉 be one of the m values read in lines 17-18. If a

writer, say i, has performed 2k writes after 〈valj, ~tsj〉 has been written (and

before the read starts), then 〈valj, ~tsj〉 will be rejected in lines 20-24.
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Proof. Let 〈vali, ~tsi〉 be the value read from writer i. Let
~

gtsbegj , ~gtsendj and
~

gtsbegi , ~gtsendi denote the global timestamp at the beginning and end of the

writes for 〈valj, ~tsj〉 and 〈vali, ~tsi〉. Also, let
~

gtsbegread be the timestamp when

the read is started.

Since writer i has performed at least 2k−1 writes after writing 〈valj, ~tsj〉
we have

~
gtsbegread[i] ≥ ~gtsendj [i] + 2k

Also, from the k-atomic properties of the single writer system, we know

that

~tsi[i] = ~gtsendi [i] >
~

gtsbegread[i]− k

⇒ ~tsj[i] ≤ ~gtsendj [i] ≤ ~
gtsbegread[i]− 2k

< ~gtsendi [i]− k = ~tsi[i]− k

Hence 〈valj, ~tsj〉 will be added to Reject in line 24.

Theorem 22. The multi-writer read protocol never returns a value that is more

than
(
(2m− 1)(k − 1) +m

)
writes old.

Proof. Let 〈valj, ~tsj〉 be the value returned by the read protocol.

The writer j cannot have written more than k−1 writes after 〈valj, ~tsj〉
(and before the read begins). From Lemma 19 it follows that each of the

remaining (m− 1) writers could have written no more than 2k− 1 writes after

the write for 〈valj, ~tsj〉 (and before the read begins). Hence, 〈valj, ~tsj〉 can be

at most
(
1 + (k − 1) + (m− 1)(2k − 1)

)
writes old.

Lemma 20. At least one of the m received values is not rejected.
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Proof. A value 〈valj, ~tsj〉 is rejected if either of the following two condition

applies:

• Condition (i): ∃i : ~tsj < ~tsi

• Condition (ii): ∃i :
(
~tsj[i] < ~tsi[i]− k

)
Among all the m values received, consider the value 〈vall, ~tsl〉 whose

write started last. It cannot be rejected by Condition (i) because all other

writes started before it.

Consider the write for any other value 〈valj, ~tsj〉. Since this write has

started before
~

gtsbegl , it follows that

~
gtsbegl [j] ≥ ~

gtsbegj [j] = ~tsj[j]− 1

Since when writer l performs a read to estimate tsl[j] it is guaranteed

to receive a value no older than k writes,

~tsl[j] ≥ ~
gtsbegl [j]− k + 1

⇒ ~tsl[j] ≥ ~tsj[j]− k

Thus 〈vall, ~tsl〉 will not be rejected by Condition (ii) either.

Theorem 23. The multi-writer protocol described in Figure 8.5 provides
(
(2m−

1)(k − 1) +m
)
-atomic semantics.

Proof. To prove that the multi-writer protocols achieve
(
(2m−1)(k−1)+m

)
-

atomic semantics, we show that there exists a serialized schedule of reads and

writes, consistent with the local history, where each read operation returns a

value written by one of the last
(
(2m− 1)(k − 1) +m

)
write operations.
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Write operations are scheduled in the order of the approximate times-

tamp. Let Wi and W ′
j be two write operations by writers i and j, and with

approximate timestamps ~tsi and ~tsj respectively. Then, Wi is scheduled before

Wj if ~tsj[i] is greater than or equal to ~tsi[i]. Wj is scheduled before Wi if ~tsi[j]

is greater than or equal to ~tsj[j]. If neither of these two conditions hold, then

the two writes are considered concurrent and can be scheduled in either order.

We schedule the reads as follows: any read that returns a value 〈vali, ~tsi〉,
written during the write Wi, is scheduled to occur at some point after write

Wi but within the next
(
(2m− 1)(k − 1) +m

)
write operations.

It is easy to see that this ordering satisfies the requirements of
(
(2m−

1)(k− 1) +m
)
-atomic semantics. We need to show that such an ordering can

be done in a manner consistent with local history.

The ordering of the write operations is consistent with each other, be-

cause it is consistent with the local timestamps at the writers.

Suppose that a read operation that returns a value 〈vali, ~tsi〉, which

was written during the write Wi, cannot be scheduled in a manner consistent

with the local history. Then, either (i) the read operation ends before Wi

begins, or (ii) the read operation begins only after there are more than
(
(2m−

1)(k − 1) + m
)

write operations that succeed Wi. We show that both these

cases result in a contradiction:

1. Suppose the read ends before Wi begins. Note that mw-read only returns

a value that has been read from sw-read in line 6. Thus, if mw-read were

to finish before write i starts, this would contradict the assumption that

the underlying single-writer implementation satisfies k-atomicity.
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2. Suppose the read operation begins after there are more than
(
(2m −

1)(k − 1) + m
)

write operations that succeed Wi. It follows, from The-

orem 22, that the read operation could not return the value 〈vali, ~tsi〉
written during the write Wi, which is more than

(
(2m− 1)(k − 1) +m

)
writes old.

Availability of a Multi-writer System We now estimate the availabil-

ity of the multi-writer system, assuming that the underlying single-writer k-

quorum system has read and write availability of asr = 1−εsr and asw = 1−εsw
respectively.

Each multi-writer write operation involves reading from all them single-

writer k-atomic registers and writing to one single-writer register. Hence the

write availability of the multi-writer register, amw, is at least (asr)
masw. This

is a conservative estimate because we are assuming that, when the network

is synchronous, we treat finding a read quorum and finding a partial-write-

quorum as independent events. In practice, however, the fact that a particular

number of servers (size of read quorum) are up and accessible only increases

the probability of being able to find an accessible partial-write-quorum.

Moreover, if the m underlying single-writer k-quorum systems are im-

plemented over the same strict quorum system, then the potential read quo-

rums that can be used for all the m systems will be the same.4 Thus, we

can use the same read quorum to perform all the m read operations. In this

4The partial-write-quorums could still be different, if the writers have chosen different
partial-write-quorums in the past.
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case, either all reads are available with probability asr or all reads fail with

probability εsr. Hence the probability of the multi-writer write succeeding is

at least asrasw.

amw ≥ asrasw ≥ 1− εsr − εsw

To perform a multi-writer read, our read protocol performs m reads

from the m single-writer k-atomic registers. Thus, along similar lines, we can

argue that the availability amr is at least asr
m. Using the same underlying

strict quorum system for all the m single-writer registers, we can achieve an

availability of

amr = asr = 1− εsr

8.3.2 A lower bound

We now show a lower bound on the staleness of a multi-writer register

implementation built using single-writer k-atomic registers. Specifically, we

show that by using k-atomic single-writer registers as primitives for a multi-

writer register with m writers, one cannot provide a consistency that is better

than
(
(2m − 1)(k − 1) + 1

)
-atomic guarantees. Thus, the implementation in

Section 8.3 is less than m stale values away from the optimal.

Since we are interested in a multi-writer solution that has the same

availability as the underlying single-writer register, we should rule out solu-

tions that require a write in the multi-writer register to invoke multiple write

operations of the single-writer register. In other words, a write operation in

the multi-writer system should be able to terminate successfully if a read quo-

rum and a partial write quorum of the single-writer system are available. We

require that a read quorum be available because otherwise writers would be

forced to write independently of each other with no possibility for one writer
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to see other writes. We do not require that a read and a write quorum be

available at the same time. So, without loss of generality, we assume that the

implementation uses only m single-writer registers, one for each writer. The

implementation of a write operation of a the multi-writer register can issue a

write operation to the issuing writer’s register but not to the other writers’

registers; it can also issue read operations to any of the m registers. The read

operations on the multi-writer register can only issue read operations on the

single-writer registers.

In our lower bound proof, we assume that writers execute a full-infor-

mation protocol in which every write includes all the history of the writer,

including all the values it ever wrote and all the values it read from other

writers. If the lower bound applies to a full-information protocol, then it

will definitely apply to any other protocol, because a full-information protocol

can simulate any other protocol by ignoring portions of the data read. Also,

we assume that a reader and a writer read all single-reader registers in every

operation, possibly multiple times; a protocol that does not read some registers

can simply ignore the results of such read operations.

For a writer wtr, we denote with vwtr,i the i’th value written by wtr.

If a client reads vx,i, then it will also read vx,j, j ≤ i. We denote with ~tswtr a

vector timestamp that captures the writer’s knowledge of values written to the

system. ~tswtr[u] is the largest i for which wtr has read a value vu,i. In what

follows, we will simply denote values with their indices. So, we will say that

a writer writes a vector timestamp instead of writing values whose indices are

less than or equal to the indices in the vector timestamp.

We now describe a scenario where a reader would return a value that

happens to be
(
(2m− 1)(k − 1) + 1

)
writes old.
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Consider a multi-writer read operation, where the timestamps for all

the m values that the reader receives are similar—specifically, the timestamps

Rcvd =



〈k − 1, 0, 0, . . . , 0〉,
〈0, k − 1, 0, . . . , 0〉,
〈0, 0, k − 1, . . . , 0〉,

...
〈0, 0, 0, . . . , k − 1〉


where the timestamp for the value received from the i-th writer contains infor-

mation up to the (k−1)-th write by that writer, but only contains information

about the 0-th write for all remaining writers.

Since all the m timestamp values are similar, the reader would have

no reason to choose one value over the other. Let us assume, without loss of

generality, that the reader who reads such a set of timestamp returns the value

with the timestamp

〈k − 1, 0, 0, . . . , 0〉

written by the first writer.

We now show a set of writes to the system wherein the value returned

would be
(
(2m− 1)(k − 1) + 1

)
writes old. The writes to the system occur in

four phases.

In Phase 0, each of the m writers performs a write operation such that

the writer’s entry in the corresponding timestamp reads 0. For the sake of this

discussion, the non-positive values stored in the other entries of the timestamp

are irrelevant. We refer to this write as the 0-th write.

In Phase 1, writer 1 – whose value is being returned by the read –

performs (k − 1) writes. During each of these writes, the reads of the k-

atomic register of other writers returns their 0-th write. The timestamp vector

associated with each of these writes is shown in Figure 8.6.
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< 1, 0, 0, . . . , 0 >  

< 3, 0, 0, . . . , 0 >  
< 2, 0, 0, . . . , 0 >  

< k 1, 0, 0, . . . , 0 >  
. .

 .

< 0, 1, 0, . . . , 0 >  

< 0, 3, 0, . . . , 0 >  
< 0, 2, 0, . . . , 0 >  

. .
 .

< 0, k 1, 0, . . . , 0 >  

< 0, 0, 0, . . . , 3 >  

< 0, 0, 0, . . . , k 1 > 

< 0, 0, 0, . . . , 2 >  
< 0, 0, 0, . . . , 1 >  

k 1 
more writes

k 1 
more writes

k 1 
more writes

k 1 
more writes  3

Phase

Phase

  2

TI
M

E

Phase
  0

Phase
  1

< 0,?, ?, . . . , ? >  

Writer 1

< ?, 0, ?, . . . , ? >  

Writer 2 

. .
 .

Writer m

< ?,?, ?, . . . , 0 >  

. .
 .

Read Occurs Now

Figure 8.6: Write ordering in the multi-writer k-quorum system.

In Phase 2, each of the remaining (m−1) writers perform (k−1) writes.

Since the underlying single-writer system only provides k-atomic semantics,

also during this phase all reads to the underlying single-writer system returns

the 0-th write for that writer. Hence the timestamp vector associated with

these writes would be as shown in Figure 8.6.

At the end of Phase 2, each writer has performed k − 1 writes. The

total number of writes performed in this phase is (m− 1)(k − 1).

Finally, in Phase 3, each writer performs another k − 1 writes. There

are a total of m(k− 1) writes in this phase. The exact timestamps associated
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with these writes are not important.

At the end of Phase 3, the multi-writer read takes place. Since the

underlying single-writer system only provides k-atomic semantics, all the reads

to the underlying single-writer system during the read are only guaranteed to

return a value which is not any older than the (k − 1)-th write. Thus Rcvd

could be the set of values received by the reader where the reader chooses

〈k − 1, 0, 0, . . . , 0〉

which is
(
1 + (m− 1)(k − 1) +m(k − 1)

)
writes old.
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Chapter 9

Conclusion

In this dissertation, we look at distributed register abstractions and

abstractions of communication channels where there is a mismatch between

the strength of the assumptions used in their implementations and that of the

assumptions that prevail in the environment where they are used. We develop

alternative implementations for communication abstractions and implement

new register abstractions to address these mismatches:

• We provide an alternative implementation of an authorized channel using

secret sharing techniques instead of digital signatures.

• We provide an alternative implementation of a verifiable channel using

MACs instead of digital signatures.

• We provide alternative implementations for private channels and authen-

ticated channels among a group of n processes that use just O(log2 n)

keys at each process instead of O(n) keys.

• We implement the k-atomic register which allows for a higher availabil-

ity when the system is synchronous while ensuring a definite bound on

staleness even asynchronous conditions.
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