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Stability Issues in Kalb-Ramond/Dilaton Braneworld Scenarios

Stephen C. Young, M.A.

The University of Texas at Austin, 2009

Supervisor: Willy Fischler

I summarize the Randall-Sundrum braneworld scenario, and its application

to solving the hierarchy problem in the Standard Model of elementary particles. A

generalized Randall-Sundrum scenario is presented, which includes the presence of

string-inspired massless Kalb-Ramond and dilaton fields, and includes their backre-

action on the metric. It is shown that in such a scenario, solutions exist which can

achieve the desired warping on the Standard Model brane, and which stabilize the

modulus corresponding to the radius of the extra dimension.
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Chapter 1

Introduction

The Standard Model of elementary particle physics has been extremely suc-

cessful in accounting for experimental observations. It has, however, a number of

confusing features that suggest the existence of new physics that are not incorpo-

rated into this model. One of these features is what is called the Gauge Hierarchy

Problem. This refers to the difference between the energy scale of electroweak uni-

fication (246 GeV) and the Planck scale (1.22× 1019 GeV). This difference in scale

is unnatural within the minimal Standard Model since it requires a fine tuning or-

der by order within perturbation theory. A number of ideas on how to extend the

Standard Model have been proposed to solve this problem, such as technicolor and

low energy supersymmetry.

An alternative solution to the hierarchy problem can come from the existence

of large compactified extra dimensions [2, 1]. In these, the observed Planck mass

MP l is related to the fundamental higher dimensional Planck mass M via M
2
P l =

M
n+2

Vn, where Vn is the volume of the compact dimensions. By making Vn large,

we can obtain a fundamental M which is on the order of the electroweak scale.

However, unless the number of extra dimensions is large, this introduces another

hierarchy between the compactification scale V
−1/n
n and the mass M .

Randall and Sundrum [15] proposed another method to resolve the hierarchy
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problem which does not require the use of large extra dimensions. In their scenario,

the metric is not factorizable, but instead takes the form of a ”warped” product

ds
2 = e

−2krcφηµνdx
µ
dx

ν + r
2
cφ

2
. (1.1)

Here, k is a scale on the order of the Planck scale, xµ are the familiar 4

dimensional coordinates, and 0 ≤ φ ≤ π is the coordinate of an extra compact fifth

dimension whose size is set by rc. This metric is a solution to Einstein’s equations in

a setup with two 3-branes and an appropriate five-dimensional cosmological constant

term. The extra dimension takes the form of an S
1
/Z2 orbifold, with (x,φ) and

(x,−φ) identified, and the two 3-branes lie at the fixed points at φ = 0 and φ =

π. These two branes extend in the x
µ directions and form the boundaries of the

five-dimensional space. In this space, four-dimensional mass scales are related to

five-dimensional mass scales via the warp factor e
−2krcφ. Since the warp factor

is an exponential function of the size of the compactified dimension, large extra

dimensions are not required in order to achieve a substantial hierarchy.

There is another important issue to be resolved in this model, however. The

value of rc is associated with the vacuum expectation value of a massless four-

dimensional scalar field. This modulus field has zero potential, and so its value is

not determined by the dynamics of the model. So some other mechanism has to be

included which generates a potential for this field. Goldberger and Wise [9] showed

that by including a bulk scalar in the setup, with interaction terms localized to the

two branes, a potential could be generated for rc which stabilized it at a value which

generated the desired warp factor. Further studies [13] analyzed the effect of the
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backreaction of this scalar field on the metric, and found that stability could still be

achieved. [16] and [3] give pedagogical introductions to braneworld scenarios and

the stabilization issue.

Given that we have a scenario for resolving the hierarchy problem in the

context of an higher-dimensional spacetime, one might ask whether this scenario

could be realized in a theory which involves higher dimensions, such as string theory.

Indeed, elements of warped geometry have been applied in explicit string theory

models which also serve as models for inflation. See eg the work of KKLMMT [11].

With an eye towards the construction of string theory-based models, we

consider the presence of additional background fields which may be present in a

Randall-Sundrum type scenario. In addition to gravity, two other massless closed

string modes can propagate in the bulk, namely the scalar dilaton and the Kalb-

Ramond field. One might hope that the dilaton, given some mass in a particular

string theory compactification, could serve as the scalar that Goldberger and Wise

used to stabilize the size of the fifth dimension. Das et al. [7] studied this setup in the

context of small fluctuations around the original Randall-Sundrum solution, while

taking into account the full backreaction of the scalar dilaton and Kalb-Ramond field

strengths on the metric. They concluded that solutions which achieved sufficient

warping to resolve the hierarchy problem could only be attained by fine-tuning the

Kalb-Ramond field to a very small value, and that in general, such solutions could

not be stabilized.

We extend this analysis to the case of solutions which are not fluctuations

around the Randall-Sundrum solution, and find that for a wide range of adjustable
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parameters within the theory, solutions can be found which achieve the desired

warping and in addition stabilize the value of the extra dimension.

We begin with a review of the basic structure of the Randall-Sundrum model

and the Goldberger-Wise stabilization mechanism, and then move on to a summary

of the results of Das et al. We then present our analysis and discuss open questions.
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Chapter 2

The Randall-Sundrum Braneworld

2.1 The original RS setup

The Randall-Sundrum model [15] exists on a five-dimensional warped space-

time with metric

ds
2 = e

−2σ(φ)
ηµνdx

µ
dx

ν − r
2
cdφ

2
. (2.1)

We choose our metric to have signature ηµν = (+,−,−,−). The fifth di-

mension is the orbifold S
1
/Z2 so that (xµ,φ) and (xµ,−φ) are identified. There

are two 3-branes, located at the fixed points φ = π and φ = 0, which are referred

to as the visible and hidden branes, respectively. These serve as boundaries of

the five-dimensional spacetime. Both branes couple to the purely four-dimensional

components of the metric:

g
vis
µν (x

µ) ≡ Gµν(x
µ
,φ = π), g

hid
µν (xµ) ≡ Gµν(x

µ
,φ = 0) (2.2)

where GMN , (M,N = µ,φ) is the five-dimensional metric.

5



The action describing this set-up is given by

S = Sgravity + Svis + Shid

Sgravity =

�
d
4
x

� π

−π
rc dφ

√
G [Λ+ 2M3

R]

Svis =

�
d
4
x
√
−gvis [Lvis − Vvis]

Shid =

�
d
4
x
√
−ghid [Lhid − Vhid]. (2.3)

Here, M is the five-dimensional Planck mass, Vvis and Vhid are constant vacuum

energies on the two branes which act as gravitational sources even in the absence of

any matter content, and Lvis and Lhid are matter lagrangians on the branes, which

will not affect the form of the classical 5-dimensional metric.

Varying the action with respect to the metric, we obtain the Einstein equa-

tions:

√
G

�
RMN − 1

2
GMNR

�
= − 1

4M3
[Λ
√
G GMN + Vvis

√
−gvis g

vis
µν δ

µ
Mδ

ν
N δ(φ− π)

+ Vhid
√
−ghid g

hid
µν δ

µ
Mδ

ν
N δ(φ)]. (2.4)

The key assumption of the Randall-Sundrum solution is that a solution exists

which obeys four -dimensional Poincare invariance, motivating the form of the metric

in Eq.(2.1). With this ansatz, the Einstein equations following from Eq. (2.4) are

6σ�2

r2c
=

−Λ

4M3
, (2.5)

3σ��

r2c
=

Vhid

4M3rc
δ(φ) +

Vvis

4M3rc
δ(φ− π). (2.6)

which have the following solution, consistent with the orbifold symmetry

σ = rc|φ|
�

−Λ

24M3
. (2.7)
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This solution only makes sense if Λ < 0, so the five-dimensional space in

between the two 3-branes will be a slice of an AdS5 geometry.

As the metric is a periodic function in φ, Eq.(2.7) implies

σ
�� = 2rc

�
−Λ

24M3
[δ(φ)− δ(φ− π)]. (2.8)

From this we see that we only obtain a solution to Eq.(2.6) if Vvis, Vhid and Λ are

related in terms of a single scale k,

Vhid = −Vvis = 24M3
k, Λ = −24M3

k
2
. (2.9)

This relation must hold between the boundary and bulk cosmological terms if we are

to obtain a solution which respects four-dimensional Poincare invariance. Substi-

tuting these relations into the ansatz 2.1 gives us the form of the metric mentioned

in the introduction,

ds
2 = e

−2krcφηµνdx
µ
dx

ν − r
2
cφ

2
. (2.10)

Since we are considering a small rc, the fifth dimension cannot be detected

in present experiments, and it makes sense to consider a four-dimensional effective

field theory description. This yields a value for the four-dimensionsal Planck mass

of

M
2
P l =

M
3

k
[1− e

−2krcπ]. (2.11)

Although this does not produce a significant reduction in the four-dimensional

Planck mass relative to the five-dimensional one, in this setup, the mass parameters

that we observe are those of fields confined to the visible 3-brane. The warp factor
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will change any fundamental mass parameter m0 on the visible 3-brane in the five-

dimensional theory to another physical mass m, which is what is measured by the

metric in the effective four-dimensional theory.

m ≡ e
−krcπm0 (2.12)

Thus if ekrcπ is of order 1015, or equivalently krc ≈ 12, this mechanism produces

TeV physical mass scales from fundamental mass parameters not far from the Planck

scale, 1019 GeV.

2.2 Goldberg-Wise stabilization of rc

In Randall and Sundrum’s initial scenario, rc is the vacuum expectation

value of a massless four-dimensional field. This field has zero potential and rc is

therefore not determined by the dynamics of the model. Goldberger and Wise [9]

found a mechanism by which to generate a potential to stabilize rc at a particular

value. To do this, they included an additional massive scalar in the bulk, by adding

an additional term to the action 2.3.

Sscal =
1

2

�
d
4
x

� π

−π
rc dφ

√
G
�
G

AB
∂AΦ∂BΦ−m

2
scalΦ

2
�
, (2.13)

where GAB with A,B = µ,φ is given by Eq. (2.1). They also included interaction

terms on the hidden and visible branes given by

Sint = −
�

d
4
x
√
−ghid λhid

�
Φ2 − v

2
h

�2 −
�

d
4
x
√
−gvis λvis

�
Φ2 − v

2
v

�2
(2.14)

The terms on the branes cause Φ to develop a φ-dependent vacuum expec-

tation value Φ(φ) which is determined classically by solving the equations of motion
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derived by varying the action Sint + Sscal. Plugging this solution back into the ac-

tion and integrating over the compact dimension yields an effective four-dimensional

potential for rc.

Goldberger and Wise considered a simplified case in which the parameters

λhid and λvis are infinitely large. They were able to find minima of the potential

which yielded krc ≈ 12 without having to extremely fine tune any other parameters

in the model. In this case, krc ≈ 12 corresponded to vhid/vvis = 1.5 and m
2
scal/k

2 =

1/10.

A more exact analysis of this scenario for λhid and λvis large but finite was

carried out by Das et al. [8]. They found the existence of closely space minima

and maxima of the potential, with the value of rc associated with a minima slightly

shifted from the value derived by Goldberger and Wise. It remained the case that no

fine-tuning of parameters was necessary to achieve sufficient warping at the visible

brane.
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Chapter 3

Kalb-Ramond and dilaton background with
Backreaction

3.1 The Kalb-Ramond-dilaton braneworld

In the context of string theory, the Neveu-Schwarz Neveu-Schwarz (NS-

NS) sector contains massless closed-string modes corresponding to the graviton and

scalar dilaton, as well the second-rank antisymmetric Kalb-Ramond field. Higher

order effects in string theory can give the dilaton a mass, and so we might won-

der if the dilaton could serve as the massive Goldberger-Wise scalar. All of these

modes propagate in the bulk, so it is natural to consider a more general version

of the Randall-Sundrum model with all three of these fields present. Das et al.

[7] investigated the resolution of the hierarchy problem, as well as the stabilization

of the modulus within the context of a scenario such as this. They included the

backreaction of the scalar diliaton and Kalb-Ramond fields on the metric, deter-

mined an expression for the modified warp factor, and found solutions which had

the form of small fluctuations around the original RS solution, Eq.(2.7). Within

this perturbative regime, they found that solutions with sufficient warping caused

the fine-tuning problem to appear in another guise: the value of the background

Kalb-Ramond energy density had to be fine-tuned to a value b � 10−64.

In what follows, we will substitute y = rc φ, dφ = dy/rc, and define our warp
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factor as A(y), in contrast to the 2σ(φ) that was used in Eq.(2.1). In this form, the

metric is

ds
2 = e

−A(y)
ηµνdx

µ
dx

ν − dy
2
. (3.1)

Now consider the action for the massless Kalb-Ramond field, conformally

coupled to the scalar dilaton, in the Einstein frame:

SKR =

�
d
4
x dy

√
G exp(−Φ/M3/2) [2HMNLH

MNL]. (3.2)

Note the sign of the H
2 term, which is taken as positive due to our choice of metric

signature. We add this to equations (2.3), (2.13), and (2.14) to get the total action

for the Kalb-Ramond-scalar dilaton-gravity system,

S = Sgravity + Svis + Shid + SKR + Sdilaton + Sint, (3.3)

where

Sgravity =

�
d
4
x dy

√
G [Λ+ 2M3

R] (3.4)

Svis =

�
d
4
x
√
−gvis [Lvis − Vvis] (3.5)

Shid =

�
d
4
x
√
−ghid [Lhid − Vhid] (3.6)

SKR =

�
d
4
x dy

√
G exp(−Φ/M3/2) [2HMNLH

MNL] (3.7)

Sdilaton =

�
d
4
x dy

√
G

1

2
[GAB

∂AΦ∂BΦ−m
2
dilΦ

2] (3.8)

Sint = −
�

d
4
x
√
−ghid λhid

�
Φ2 − v

2
h

�2 −
�

d
4
x
√
−gvis λvis

�
Φ2 − v

2
v

�2
(3.9)

Varying this action with respect to the metric, we obtain the five-dimensional

Einstein equations (here we define � ≡ d/dy),
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3

2
A

�2 = − Λ

4M3
− 1

2M3
[3Gνβ

G
λγ
HyνλHyβγ exp(−

Φ

M3/2
) +

1

4
(Φ�2 −m

2
dilΦ

2)] (3.10)

3

2
(A�2 −A

��) = − Λ

4M3
+

1

8M3
[Φ�2 +m

2
dilΦ

2]

− 1

2M3
exp(− Φ

M3/2
)[−12ηλγHy0λHy0γ + 3Gνβ

G
λγ
HyνλHyβγη00]

(3.11)

3

2
(A�2 −A

��) = − Λ

4M3
+

1

8M3
[Φ�2 +m

2
dilΦ

2]

− 1

2M3
exp(− Φ

M3/2
)[−12ηλγHyiλHyiγ + 3Gνβ

G
λγ
HyνλHyβγηii]

(3.12)

In Eq.(3.12), the index i on the right hand side runs over the three spatial compo-

nents x, y, z, and there is no sum over i. Also, ηij ≡ g
im
g
jn
ηmn.

Adding Eq.(3.11) to the x, y, z components of Eq.(3.12), we get

3

2
[A�2 −A

��] = − Λ

4M3
+

1

8M3
[Φ�2 +m

2
dilΦ

2]. (3.13)

Subtracting Eq.(3.13) from Eq.(3.10) yields

3

2
A

�� = − 1

4M3
Φ�2 − 3

2M3
G

µν
G

αβ
HyµαHyνβ exp (−Φ/M3/2) (3.14)
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To get the equation of motion for the Kalb-Ramond 2-form field, we vary

the action (3.4-3.9) with respect to BAC , which gives

∂A

�
exp(−2A)exp(−Φ/M3/2)HABC

�
= 0, (3.15)

where HABC = ∂[ABBC] is the associated field strength.

We now make the assumption that Φ is a function only of the y direction,

in which case this equation becomes

�
−2A� − Φ�

M3/2

�
e
−2A

e
−Φ/M3/2

H
yµν + e

−2A
e
−Φ/M3/2

∂yH
yµν

+ e
−2A

e
−Φ/M3/2

∂ρH
ρµν = 0 (3.16)

We will also assume that H
ρµν = 0, which allows us to drop the last term. A

solution to this simplified equation is

H
yµν = k

µνexp(2A)exp(Φ/M3/2)

Hyµν = kµνexp(Φ/M
3/2) (3.17)

where kµν is a constant antisymmetric tensor, independent of y.

We will express this solution in terms of a squared Kalb-Ramond field

strength,

G
µα

G
νβ
HyµνHyαβ = exp (2A)ηµαηνβHyµνHyαβ

= exp (2A)ηµαηνβkαβkµνexp(2Φ/M
3/2)

= bM
5 exp (2A)exp(2Φ/M3/2) (3.18)

where bM
5 = η

µα
η
νβ
kαβkµν and we have defined b as a dimensionless parameter

measuring the energy density of the Kalb-Ramond field.
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Finally, varying the action with respect to the dilaton gives its equation of

motion,

Φ�� − 2A�Φ� −m
2
dilΦ+

6 exp (−Φ)

M
3
2

(Gµα
G

νβ
HyµνHyαβ) = 0 (3.19)

We now substitute the expression (3.18) for the squared Kalb-Ramond field

strength into the equations of motion (3.19) and (3.14) for the dilaton and the

metric, and obtain the following two equations:

Φ�� − 2A�Φ� −m
2
dilΦ+ 6M

7
2 b exp (2A) exp (Φ/M3/2) = 0 (3.20)

A
�� = − 1

6M3
Φ�2 − bM

2 exp (2A) exp (Φ/M3/2) (3.21)

These two coupled, non-linear differential equations will be the starting point of the

bulk of our analysis.

3.2 Perturbative solutions to Randall-Sundrum

We will first look for solutions of Φ which correspond to solutions for A which

are close to the Randall-Sundrum solution, A = 2krcφ = 2ky. We will assume that

this corresponds to taking the value of b to be small, so that we are perturbing about

the Randall-Sundrum solution with a small Kalb-Ramond field energy density. We

look for a solution as a power series in b. To zeroth order, Eq.(3.20) becomes

Φ�� − 4kΦ� −m
2
dilΦ = 0 (3.22)

which has a solution Φ0(y) = C0 exp (2ky(1− ν)), where ν =
�
4 +m2/k2.

To first order in b, we assume the solution is of the form Φ(y) = Φ0(y) +

14



bΦ1(y) and Taylor expand the exp (Φ/M3/2) term in Eq.(3.20), yielding

Φ�� − 4kΦ� −m
2
dilΦ+ 6M

7
2 b exp (4ky)

∞�

n=0

(Φ/M3/2)

n!

n

= 0 (3.23)

from which we can obtain a series solution for the first order b term. Thus to leading

order in b, the solution reads

Φ(y) = C0 exp [2kr(1− ν)φ] + b

∞�

n=0

6M7/2

k2

�
Φ0/M

3/2
�n

n!

exp [krφ(2n(1− ν) + 4)]

(ω2
n + 4ωn −m

2
dil/k

2)

(3.24)

Note that in order for this perturbation series to be valid over the entire

bulk spacetime, we must require that b � exp (−4krπ) ≈ 10−64. In other words, the

existence of a perturbative solution around RS requires b to be severely fine-tuned.

The leading order contribution in the above equation comes from the n = 0 term

in the summation. Considering only this term, and using ν =
�
4 +m

2
dil/k

2, the

truncated solution for Φ is

Φ(y) = Φ0 exp[−m
2
dily/4k]−

6bM7/2

m
2
dil

exp[4ky] (3.25)

Substituting this into Eq.(3.21), we obtain a solution for the warp factor A(y) to

leading order in b,

A(y) = ky − Φ0

M3/2
exp[−m

2
dily/2k]− 32b

Φ0M
1/2

k
2

(16k2 −m
2
dil)

2
exp(4k −m

2
dil/4k)y

− bM
2
� ��

exp

�
2ky +

Φ0

M3/2
exp[−m

2
y/4k]

�
dy

�
dy (3.26)

In the last term on the RHS of the above equation, Φ0

M3/2 exp[−m
2
dily/4k] << 2ky,
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so we can approximate the integrand and obtain

A(y) = ky − Φ0

M3/2
exp[−m

2
dily/2k]− 32b

Φ0M
1/2

k
2

(16k2 −m
2
dil)

2
exp(4k −m

2
dil/4k)y

−
bM

2 exp( Φ0

M3/2 )

(2k −m
2
dil/4k)

2
exp[(2k −m

2
dil/4k)y] (3.27)

Eq.(3.27) is the back-reacted expression for the warp factor A(y), where the

second and third/fourth terms on the RHS are the contributions from the dilaton

and KR field respectively. In the absence of the dilaton field, this expression reduces

to the one for the warp factor in a KR-gravity bulk spacetime [6].

We now consider the expression for the physical mass parameter on the

visible brane, given by

mphys = m0 exp[−A(y)]y=rπ (3.28)

where m0 is the fundamental mass parameter. We use Eq.(3.27) and take krc ∼ 12,

k ∼ MP l, and rc ∼ lP l in order to agree with the values that Randall and Sundrum

used in their original model. We also take Φ0 ∼ M
3/2. Using these values, we

estimate the warp factor at the visible brane as

[A(y)]y=π = 37− 10−16 − b1062 − b1031 (3.29)

Since the perturbative solution is only valid for b � 10−64, the backreacted value

of A(y) on the visible brane is always positive, and very close to the RS value.

Thus the above solution results in a small fluctuation to the RS value of A(y) in a

self-consistent manner. We conclude from this analysis that the hierarchy problem

can be resolved even in the presence of the dilaton and Kalb-Ramond fields, albeit

at the cost of the parameter b necessarily being very fine-tuned. It is important

16



to emphasize that this conclusion applies only to the case of perturbative solutions

around the original Randall-Sundrum model. The question remains of whether there

exist non-perturbative solutions to the equations of motion (3.20) and (3.21) was

not treated by Das et al., and it is to this question that we now turn.
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Chapter 4

Non-perturbative solutions to the Kalb-Ramond-dilaton
braneworld

4.1 Goals and the nondimensionalized equations of motion

There may be solutions to the equations of motion for this system that are

not simply small fluctuations around the Randall-Sundrum solution. A goal would

be to find solutions which satisfy three criteria:

• Sufficient warping at the visible brane. We need to achieve a warp factor

at y = π which achieves a reduction in the physical mass scale on the visible

brane to ∼ the electroweak scale. Ie reduction by a factor of 10−16 − 10−17

from the Planck scale.

• No fine-tuning of any parameters. In the perturbative case, we achieved suf-

ficient warping, but only at the cost of fine-tuning b � 10−64. We would like

to find solutions for values of the Kalb-Ramond field strength that are not

so fine-tuned. although we will be limited by observational constraints on just

how big this background value can be.. see torsion.

• Stability of the rc modulus. Our solutions should generate a potential for the

value of rc which has a local minimum at a value which is ∼ lP l.
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We return to the equations of motion,

Φ�� − 2A�Φ� −m
2
dilΦ+ 6M

7
2 b exp (2A) exp (Φ/M3/2) = 0 (4.1)

A
�� = − 1

6M3
Φ�2 − bM

2 exp (2A) exp (Φ/M3/2) (4.2)

Before looking for solutions to these equations, we first express them in terms

of dimensionless parameters. We define Φ = PM
3/2 and mdil = m

�
M , where P and

m
� are dimensionless. We also go back to a dimensionless bulk interval, 0 < φ < π,

by substituting y = rc φ. Plugging these into Eq.(4.1), we get

1

M7/2 r2c

M
3/2

P
��(φ) − 2

M7/2 r2c

M
3/2

A
�(φ)P �(φ)

− m
�2

M3/2
M

3/2
P (φ)

+ 6b exp (2A(φ)) expP (φ) = 0 (4.3)

where the prime now denotes differentiation with respect to φ.

Lastly, we define rc = r
�
lp ∼ r

�
/M , where lp is the Planck length, and obtain

P
��(φ)− 2A�(φ)P �(φ)− r

�2
m

�2
P (φ) + 6 b r�2 exp (2A(φ)) expP (φ) = 0 (4.4)

Nondimensionalizing Eq.(4.2) in a similar fashion yields

A
��(φ) = −1

6
P

�(φ)2 − b r
�2 exp (2A(φ)) expP (φ) (4.5)

4.2 Boundary conditions and the computational setup

In order to solve this system of equations, we begin by fixing boundary

conditions, and then employ a shooting method in an attempt to find solutions
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which gain a value of the warp factor at φ = π sufficiently large to reduce the

physical mass by 10−16 − 10−17 orders of magnitude. This translates to a value of

A(π) between 36.84 and 39.14. We have two second-order ODEs, so we must choose

four boundary conditions in order for the problem to be well posed. We choose to

fix

1. The value of A(0) = 0.

2. The value of A�(0). Note that in the original Randall-Sundrum scenario, the

slope of A is discontinuous at the orbifold fixed points at φ = 0,π. This is due

to the localized energy density in the Vhid and Vvis terms on the branes.

3. The value of P (0)

4. The value of P �(0)

The shooting method will vary the value of P
�(0) for a given choice of values

(b,m�
, A

�(0), P (0)), and look for a solution with 36.84 ≤ A(π) ≤ 39.14.

We now consider some properties of the individual terms in Eqs.(4.4) and

(4.5), in order to identify characteristics that a general solution must have. The

following arguments come from experience in looking at numerical solutions to the

equations, and serve as a qualitative explanation of why the solutions we present

will have the form and parameter values that they do.

Looking at Eq.(4.5), we see that both terms on the right hand side are always

negative. Thus any solution for A will have a slope that is monotonically decreasing

over the interval. If A� decreases too quickly, we will not achieve the desired warping
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of A(π) = 36.84. Therefore we must attempt to either minimize the magnitude of

these two terms, pick a sufficiently large value of A
�(0), or some combination of

the two. The exponential term in Eq.(4.5) presents a particular problem, since e.g.

for b ∼ 1, the factor of exp(2A) will quickly turn A
� negative. The only way to

minimize the influence of this term is to make the value of the dilaton negative over

the interval. P must be negative enough to make this exponential term sufficiently

negligible over the entire interval. This exponential term, which also occurs in

Eq.(4.4), is the only place that b is present. It follows that we can take b as large

as we like, at the cost of P being sufficiently negative to make the exponential term

negligible 1.

The P
�(φ)2 term in Eq.(4.5) also presents a problem. We would also like to

keep this as close to zero as possible.. Naively, we might look for a solution with

P
�(0) = 0 and hope that it does not change much over the interval, but a quick

inspection of Eq.(4.4) shows that this is impossible. In Eq.(4.4) we can minimize

the exponential term in the same fashion as we did for Eq.(4.5), but minimizing

P
�(φ) then implies P

��(φ) ≈ r
�2
m

�2
P (φ). This results in |P �(φ)| rapidly becoming

large, A� becoming negative, and the occurrence of the kink in P . See Fig. 4.2.

The kinklike rapid change in P is correlated with A
� becoming negative, and

our goal in finding a solution which realizes A(π) ≥ 36.84 will be trying to eliminate

this kink. To accomplish this, we will attempt to minimize the P
��(φ) term in

eq. (4) over as much of the interval as possible. This is equivalent to minimizing the

1Note that the requirement of a large and negative value of P differs from the the assumption
by Das et al. above Eq.(3.29) that P ≡ Φ0 ∼ M3/2. This choice was for the perturbative case,
however.
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Figure 4.1: Solutions are sensitive to P
�(0).

exponential term and also requiring

A
�(φ)P �(φ) ≈ −r

�2
m

�2
P (φ). (4.6)

This latter condition, which we will refer to as the slope-tuning condition, turns out

to be possible for a wide range of initial parameters r
�,m�, and A

�(0). Since P (φ)

is always negative, we can satisfy this condition for A�(φ) and P
�(φ) both positive.

We can envision a solution with A
�(φ) positive over the entire interval, so our only

constraint is that P �(φ) must be positive. A sufficient fine-tuning of P �(φ) at φ = 0

can result in solutions in which the kink is pushed essentially all the way to φ = π,

as in Fig. 4.2.
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Figure 4.2: A good solution. A(π) = 36.84, b = 10−3, r� = 12, m� = 1/11, P (0) =
−102, and A

�(0) = 17.

4.3 Value of the dilaton and higher order curvature terms

In the solutions that we have described so far we have set r
� = 12 in ac-

cordance the original Randall-Sundrum solution. We still take k ∼ MP l. Due

to the monotonically decreasing nature of A�(y) in our solutions, it is clear that

we will require a value of A�(0) which is greater than the Randall-Sundrum value

in order to achieve the desired warping at the visible brane. For example, in

Randall-Sundrum, we have a linearly increasing warp factor with a constant value

of A�(φ) = ln(1016/π) � 11.7. In contrast, the solution in Fig. 4.2 has A
�(0) = 17,

which decreases over the bulk interval to A
�(π) = −0.37. The curvature is clearly

not constant, and if we compute the value of the Ricci scalar, we obtain

R = gµνR
µν =

5A�(φ)2 − 4A��(φ)

r�2
(4.7)
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which for r� = 12 and A
�(φ) = 11.7 yields an R which has a maximum at the Planck

brane of � 4.75.

The original Randall-Sundrum model with the scalar dilaton included could

potentially have terms which involve coupling of the dilaton to scalars formed out of

higher order derivative terms of the metric. Terms such as Φ2/3
R

2, Φ2/3
RµνR

µν , or

Φ2/3
RµνρσR

µνρσ could potentially be large enough that our classical approximation

would no longer be valid. In the case of Goldberger-Wise stabilization, however, the

constraint that determines the value of the minimum is

krc =

�
4

π

�
k
2

m2
ln

�
vh

vv

�
. (4.8)

Goldberger and Wise avoid any fine-tuning of the value of vh with respect to vv by

taking ln(vh/vv) ∼ 1, but otherwise the magnitudes of vh and vs are not constrained.

Thus v
2
h/M

3 and v
2
h/M

3 can be taken small enough to be to make Φ2/3
R

2 or any

other higher derivative term in the Lagrangian small enough that we do not have

to worry about these terms affecting the validity of our approximation. Indeed,

v
2
h/M

3 and v
2
h/M

3 being small was taken by G&W as a condition in order to be

able to neglect the backreaction of the scalar field on the background geometry for

the computation of V (rc).

Our non-perturbative solutions present a problem in the context, however,

as a large negative value of the scalar dilaton is required to achieve sufficient warping

at the visible brane. A term such as Φ2/3
R is clearly not negligible here, and other

higher derivative couplings may also present problems. To resolve this problem,

note that given a solution, we can rescale the parameters b, m�, and r
� to obtain an
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otherwise identical looking solution. These parameters must satisfy m
�
r
� = const

and br
�2 = const. For example a solution with m

� = 1/11, r� = 12, and b = 10−3

looks the same as one with m
� = 1/110, r� = 120, and b = 10−5. Looking at at

Eq.(4.7), the latter solution will have a scalar curvature which looks identical to

the former, except 2 orders of magnitude smaller. This still does not introduce a

significant fine tuning in either r
�
,m

�
, or b, but it reduces the magnitude of terms

such as Φ2/3
R

2 to manageable levels.

In fig. 4.3, we show R
2 plotted over the bulk interval for the solution shown

in fig. 4.2, except with b = 10−5, r� = 120, and m
� = 1/110, as described above. R2

for the original solution would look identical, but with a value on the Planck brane

of ∼ 100 rather than .01. Fig. 4.4 shows the associated value of Φ2/3
R

2.

Other curvature invariants such as the Ricci tensor squared and Riemann

tensor squared can appear in higher derivative couplings. In our warped geometry,

these have the form

RµνR
µν =

5A�(φ)4 − 8A�(φ)2A��(φ) + 5A��(φ)2

r�4
, (4.9)

and

RµνρσR
µνρσ =

3A�(φ)4 + 2
�
A

�(φ)2 − 2A��(φ)
�2

2r�4
(4.10)

Figs. 4.5 and 4.6 show the behavior of these curvature invariants over the bulk

interval, for the r
� = 120 solution. As these are even smaller in magnitude than R

2,

terms such as Φ2/3
RµνR

µν or Φ2/3
RµνρσR

µνρσ will also be sufficiently small. Thus

we see that we can adjust the parameters r
�
, b, and m

� to obtain solutions where

higher derivative coupling terms do not ruin our classical approximation.

25



0.5 1.0 1.5 2.0 2.5 3.0
Φ

0.002

0.004

0.006

0.008

0.010

R

Figure 4.3: The scalar curvature squared. A(π) = 36.84, b = 10−5, r
� = 120,

m
� = 1/110, P (0) = −102, and A

�(0) = 17.
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Figure 4.4: |P |2/3R2 for A(π) = 36.84, b = 10−5, r� = 120, m� = 1/110, P (0) =
−102, and A

�(0) = 17.
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Figure 4.5: The Ricci tensor squared, RµνR
µν . A(π) = 36.84, b = 10−5, r� = 120,

m
� = 1/110, P (0) = −102, and A

�(0) = 17.
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Figure 4.6: The Riemann tensor squared, RµνρσR
µνρσ. A(π) = 36.84, b = 10−5,

r
� = 120, m� = 1/110, P (0) = −102, and A

�(0) = 17.
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4.4 Parameter space of solutions

Having found that non-perturbative solutions do in fact exist, we would

like to find the region of parameter space (b,m�
, A

�(0), P (0), P �(0)) in which so-

lutions exist. We do this here for a subset of this parameter space, namely for

b = 10−5and m
� = 1/110. After fixing the boundary condition A(0) = 0, we look for

solutions which gain a warp factor of at least A = 36.84 = ln(1016) on the visible

brane. We find that there is minimum value of A�(0) = A
�
crit for which sufficient

warping can be achieved. As we vary A
�(0), there exists a variable range of values

of P (0), always negative, for which we can find solutions. These solutions will not

necessarily be stable, which is an issue will we treat in the next section in order to

refine our space of solutions.

As previously mentioned, due to the −(1/6)P �(φ)2 term on the RHS of Eq.

(4.5), A�(φ) will be montonically decreasing over the interval. Thus A
�(0) must be

greater than the Randall-Sundrum value, A�(φ)RS � 11.7. The value of P (0) must

also be sufficiently negative to make the exponential term negligible, but as can be

seen from Eq.(4.5), it cannot be too negative, or else A
� will decrease too fast to

ever achieve the desired warping at the visible brane, see Fig. 4.7. We will thus have

a range of values of P (0), which will vary as a function of A�(0), for which we can

obtain solutions with sufficient warping.

In Fig. 4.8, we show a picture of the shape of this solution space. The vertical

lines correpond to values of A�(0) where we calculated the corresponding range of

valid P (0) values. Only a limited number of A�(0) values were considered due to

limited time and computational resources, but the general shape of the solution space
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is indicated. We see that Acrit is approximately 15.1, and that there is an increasing

range of valid P (0) values corresponding to increasing values of A�(0). The solution

space is unbounded as A
�(0) increases, but this correponds to the dilaton become

increasing more large and negative. This may present problems for solutions with

large values of A�(0) due to higher order derivative couplings as mentioned earlier,

but we leave discussion of this problem to future works.
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Figure 4.7: Solutions at boundaries of allowed P (0) range for b = 10−5
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Figure 4.8: Partial map of solution space for b = 10−5
,m

� = 1/110.
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4.5 A space of stable solutions

In the previous section, we fixed b,m
�
, and rc and found a range of values of

A
�(0) and P (0) for which solutions existed which achieved sufficient warping on the

visible brane. However we have not addressed the issue of stabilization of the value

of rc. To generate a potential for rc, we take our solutions for the scalar dilaton,

plug them back into the action, and integrate over φ (we are back to dimensionful

parameters, ie (�≡ d/dy)),

VΦ(yπ) =

� yπ

0
dy exp (−2A(y)) exp (−Φ(y)/M3/2)[−2HMNLH

MNL]

+

� yπ

0
dy exp (−2A(y))

1

2
[Φ�(y)2 +m

2
dilΦ(y)

2]

+ exp (−2A(0))λp(Φ
2(0)− v

2
p)

2 + exp (−2A(yπ))λs(Φ
2(yπ)− v

2
s)

2
.

(4.11)

Here, the factors of exp (−2A) in the bulk and interaction terms come from the

determinants of the bulk and brane metrics. For the ground state configuration of

Φ, we take

Φ(0) = vp Φ(π) = vs (4.12)

as we are considering the case in which λp and λp are infinite, and in this case it is

energetically favorable to do so. We therefore ignore the brane interaction terms.

In the first line of Eq.(4.11), we use H
µνρ = 0 to write

−2HMNLH
MNL = −6HyµνH

yµν = 6Gµα
G

νβ
HyµνHyαβ . (4.13)

31



We then use Eq.(3.18) to get

VΦ(yπ) =

� yπ

0
dy

�
6bM5 exp (Φ(y)/M3/2) +

1

2
exp (−2A(y))[Φ�(y)2 +m

2
dilΦ(y)

2]

�
.

(4.14)

We again nondimensionalize this equation as in section 4.1, yielding

VΦ(r
�) =

� π

0
r
�
M

4
dφ

�
6b exp (P (φ)) +

1

2
exp (−2A(φ))

�
P

�(φ)2

r�2
+m

�2
P (φ)2

��

(4.15)

where we have used dy = rcdφ ∼ (r�dφ/M), and we are back to � ≡ d/dφ. Given

this expression, we can compute the potential for the solutions that were found in

the previous section.

These solutions were generated based solely on the condition of achieving a

sufficient warp factor on the visible brane, and so far we have said nothing about

whether they are near a minimum of the potential VΦ(r�), or whether a such a

minimum even exists. However, by looking at the behavior of our solutions in the

region where the kink in the dilaton is smoothed out, we can construct a general

argument for why such stable solutions should be expected to exist:

As we have seen in the process of tuning the value of P �(0) in order to achieve

a sufficiently warped solution, a failure to precisely match the slope-tuning condition

will result in a solution which has a kink in the dilaton field which either turns up

or down, and an accompanying downturn in the slope of A(φ). As we get closer

to satisfying the slope-tuning condition, these two solutions can converge to one in

which the dilaton has no kink. Consider a solution with no kink in the dilaton, for

which r
� = rcrit. For this solution, A(φ) will be larger than for solutions which have a
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dilaton kink. Start by perturbing the value of r� slightly downward, which results in

a solution with the kink up, and a smaller value of A(φ) over the rightmost part of the

interval. Now increase r
�, passing through rcrit, and consider what happens to the

terms in Eq.(4.15). As r
� increases, A(φ) increases until we pass rcrit, after which

it decreases again. Thus
�
exp(−2A(φ)) achieves a local minimum. The P

�(φ)2

term also decreases and then increases, due to the kink vanishing as we pass rcrit,

although it is affected by a constantly increasing r
�2 in the denominator. Finally,

the behavior of P (φ)2 is more complicated, but it is multipled by exp(−2A(φ)). We

see that, neglecting the term proportional to b, we expect to possibly see a local

minimum in the potential integral at some point around r
� = rcrit.

To confirm this, we employ a simple potential difference method to look at

the slope of the potential for our solutions, and find that if we vary the value of

r
�, we always come across a closely related solution which does lie at a minimum,

see Fig. 4.9. The shape of the potential VΦ(r�) that we generally find is far more

sensitive to changes in r
� for r� > r

�
min than for r� < r

�
min.

Note that the main effect of perturbing r
� on the shape of a solution is to

disturb the slope-tuning condition, Eq.(4.6). We can achieve the same effect by

perturbing the value of P
�(0) in the opposite direction. In addition, perturbing

r
� will slightly change the bounds on our solution space through its effect on the

exponential term in Eq.(4.1). For this reason, we choose to vary P
�(0) instead of r�.

This will allow to keep our previously generated solution space fixed, and look for

stable solutions within this space which lie at a fixed value of r� = 120.

Our approach will be to take each of the solutions from the previous section
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Figure 4.9: A typical potential VΦ(r�).

which achieve sufficient warping at the visible brane, and vary the value of P �(0)

(equivalently, vs) until a first order difference approximation to the slope dV/dr
�

indicates we are sufficiently near a minimum. We then consider this new solution,

and look at how the value of A(π) has changed.

Fig. 4.10 shows our results for b = 10−5
,m

� = 1/110, and r
� = 110. Within

our solution space, there is a region in which we can find a value of P �(0) which

simultaneously achieves a minimum of VΦ(r�) and results in a sufficient warping on

the visible brane. Notice that even though our general solution space is unbounded

except for limits due to higher order corrections, our stable solution space exists for

only a limited range of 15.2 � A
�(0) � 18.2.
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Figure 4.10: Stable solutions. b = 10−5
,m

� = 1/110, r� = 110
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Chapter 5

Discussion and Conclusions

We have analyzed the scalar dilaton-Kalb-Ramond-gravity system in a five-

dimensional Randall-Sundrum setup, interpreting the dilaton as the Goldberger-

Wise scalar which stabilizes the size of the extra dimension. Although solutions

perturbative around the original Randall-Sundrum solution require a fine-tuning

of the strength of the Kalb-Ramond field, we have found that non-perturbative

solutions exist which require no such fine-tuning of any parameters, and which

generate a potential for the radius of the extra dimension which in some cases has

a minimum.

A number of issues remain open for further analysis. We have not yet cal-

culated the steepness of the potential minima that we have found, corresponding to

the mass of the radius modulus. There are various observational constraints lower

bounding this value, see [10, 4, 5], and calculation of this value for our solutions,

as well as other regions of the parameter space would be a natural next step in the

analysis.

We also have not investigated the contact between our chosen value of

b = 10−5 and observational constraints. The Kalb-Ramond field is associated with

torsion in our bulk spacetime [14], although this torsion is suppressed on the visible

brane due to the warp factor. It would be interesting to explore the limits on the
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b parameter in our model due to the observed limits on the torsion. We have cho-

sen b = 10−5 semi-arbitrarily: big enough to distance ourselves from the fine-tuned

value of b � 10−64 necessary for perturbative solutions, but small enough to not

require extremely large values of the scalar dilaton, and with a glance towards the

observational constraints just mentioned.

Another interesting feature of our solutions is that some of them have neg-

ative value of A�(π), suggesting that the visible brane has an positive tension, in

contrast to the negative tension required in the original Randall-Sundrum scenario.

The total cosmological constant on the visible brane is a sum of the negative bulk

cosmological constant and the visible brane tension, so this suggests the possibility

of a deSitter solution in the segment of the model that is supposed to represent our

visible universe. See [12] for another example of a model which does not require

negative tension branes.
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