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Abstract 

 

Extraction of useful signals from noise using advanced 

time-frequency analysis in Enhanced Oil Recovery 

 

 

Sotiris Komodromos, M.S.E. 

The University of Texas at Austin, 2017 

 

Supervisors: Nanshu Lu 

                                     Dragan Djurdjanovic 

 

In Enhanced Oil Recovery (EOR), the injected CO2 does not distribute evenly 

through ground layers and often is not going to the desired direction. The key issue of this 

research, was to extract the useful signal from noise for a novel CO2 subsurface imaging 

solution which uses surfaced based sensors only, in comparison with conventional seismic 

technology which requires downhole equipment [5, 7, 8, 19, 20]. That could potentially 

reduce the cost drastically due to its simplicity in installation, performance, less labor 

intensive and faster process of data. The extremely low signal-to-noise (S/N) ratio required 

the utilization of binomial time-frequency domains (TFDs) to process the collected field 

data as the problem involves extremely non-stationary signals. Binomial Cone-Kernel 

function is arguably the most advanced signal independent kernel; it allowed us to extract 

useful signals embedded in noise and observe repeatable waves for the first time. 
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Chapter 1 Introduction 

1.1 BACKGROUND 

An oil reservoir is located at a depth below a series of porous and permeable rock 

layers, covered by an impermeable layer which is called caprock. An aquifer forms due to 

the water saturated porous and permeable layers. Over the years, water gets replaced by oil 

in certain locations and thus an oil reservoir is formed. The reservoir pressure is considered 

as hydrostatic due to the connection of the aquifer to the surface [1]. During drilling for 

oil, reservoir pressure of the oil column is less than the reservoir pore pressure and since 

oil is lighter than water, it allows the oil to flow to the surface naturally. When oil is 

removed from the reservoir during the production stage, the pressure and energy decrease 

and so does the production rate. The well production rate is a function of the pressure 

drawdown which is the difference of the pressure at the bottom and further from the well 

[1-4]. 

When the energy associated with the reservoir is not sufficient, in order to increase 

the recovery and maintain the desirable oil production, gas or water is injected to maintain 

the reservoir pressure and to sweep the oil towards the producers [1-5]. The implementation 

of such methods is called Enhanced Oil Recovery (EOR) and it involves many different 

techniques. This project considers the EOR process where CO2 gas is injected. CO2 is 

miscible with oil. The purpose of CO2 injection is to change the capillary properties to 

mobilize the trapped oil in pores.[1-12] 

Injected CO2 does not distribute evenly through ground layers and often is not going 

to the desired direction. This leads to reduced production and waste of funds on 

unsuccessful CO2 injections [1-12]. Mapping fluid migration allows the operator to 

evaluate different strategies to optimize the reservoir performance. Existing conventional 

seismic technologies can achieve this. However, these techniques are expensive and time 
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consuming. They require significant time for both data acquisition and processing, and in 

addition, production operations must be disrupted in order to run them. Computerized 

processes such as stacking, filtering and migrating are utilized to process raw seismic data 

into useable data [13-18]. Data processing can be very expensive and time-consuming. A 

typical analysis can take six months or even longer and the associated costs reach hundreds 

of thousands of dollars. [1-12] 

 

 

Figure 1: Carbon Dioxide EOR [4]. 

The key issue of the research presented in this MS thesis, is to extract the useful 

signal from noise for a different CO2 mapping technology which uses surfaced based 

sensors only, compared to the conventional seismic technology which use downhole 

equipment [5, 7, 8, 19, 20]. That could potentially reduce the cost drastically due to its 

simplicity in installation, performance, less labor intensive and faster process of data. The 

extremely low signal-to-noise (S/N) ratio from energy scattering and absorption in the 

highly porous surface makes this problem very challenging [21]. The signals are weak 

compared to the large noise and thus very hard to recover [13-15]. The challenge is to 



 3 

recover the signals embedded in noise and in this thesis, it is done utilizing advanced 

Cohen's class time-frequency analysis [22]. The next section discusses the organization of 

the thesis. 

1.2 ORGANIZATION OF THE THESIS 

The remainder of the thesis is organized as follows: 

• Chapter 2 presents the literature review which covers the explanation of tube waves 

and guided waves that were investigated in this project. In addition, it covers the 

history and theory of Cohen's class time-frequency analysis which was the method 

applied. 

• Chapter 3 covers the field and equipment setup used for data acquisition and how 

data processing was performed. 

• Chapter 4 presents and discusses the results obtained using time-frequency 

analysis. 

• Chapter 5 discusses conclusions and presents suggestions for future work.  
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Chapter 2 Literature Review 

This review of the literature attempts to familiarize the reader with the signals of 

interest, which include tube waves generated in the source well, converted into laterally 

propagating guided waves and convert back to tube-waves in the receiver well. A brief 

explanation of these waves follows in Section 2.1 and Section 2.2 offers a brief review of 

Cohen’s time-frequency analysis used for processing acoustic signals collected during this 

study. 

2.1 TUBE WAVES AND GUIDED WAVES FOR OILFIELD APPLICATIONS 

A tube wave is an interface wave which propagates down cased wellbores through 

two media, typically a borehole fluid and the wall of the surrounding elastic rock (interface 

between the fluid and the wall of the wellbore) [12]. They are usually considered as a 

source of noise due to their reflected late time arrival in the borehole seismic data [8, 11, 

19, 23-28]. Thus, it is a standard procedure to eliminate them from the recorded data. Their 

high amplitudes allow the wave to propagate long distances with little energy loss [12, 19, 

23-27]. Based on the definition provided at the Schlumberger Limited online oilfield 

glossary [12], “because the tube wave is coupled to the formation through which it is 

propagating, it can perturb the latter across open fractures intersecting the borehole”. This 

squeezing effect potentially yields secondary tube waves that propagate both up and down 

from the fracture location [8, 11, 12, 19, 23-28]. Such events can be indicative of the 

presence of open fractures and their amplitude are related qualitatively to the length and 

width, i.e. the volume of the fluid-filled fracture space[12, 29]. Shallow formations where 

the overburden pressure is lower, generally suffer from this effect. [8, 11, 12, 19, 23-28] 
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A guided wave is a type of elastic wave that propagates and the surrounding low 

velocity beds are acting as waveguides. Many researchers have utilized guided waves to 

predict discontinuity and continuity of reservoir structures between wells[23, 30] 

The Krauklis wave (“K-Wave”) is a low frequency sound energy transmitted, late 

arrival seismic wave. Dr. Pavel V. Krauklis was the first to predict the existence of these 

waves in 1962 and they were later recorded by the Lawrence Berkeley National Laboratory 

(LBNL) amidst late arrival seismic data. According to Frehner [31], it has a dominant 

characteristic frequency compared to conventional seismic waves and can repeatedly 

propagate back and forth along a fracture and eventually fall into resonance emitting a 

seismic signal [31]. Historically, it has been considered as noise by the industry. [32, 33] 

The cross well seismic data relevant to this research, have the trajectory as shown 

on Figure 2. Tube waves are generated in the source well and later converted into laterally 

propagating waves [20] due to hydraulic conductivity through the reservoir in gas/water 

layers, which convert back to tube-waves in the receiver well [19]. 

 

Figure 2: Cross well scheme and wave paths trajectory. 
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However, representing a system with a single input signal and a single output signal 

like on Figure 2 seems too simplistic for any real application [5]. It is expected that in any 

oilfield there will be multiple reflected waves with different paths[23, 28, 30, 34]. Possible 

scenarios are illustrated on Figure 3. On Figure 3 (a), the signal travels through reservoir, 

on (b) a direct wave propagates on the surface and (c) multiple waves reflect on different 

geologic strata. Most likely all three hypotheses take place. 

 
Figure 3: Possible hypothesis of the signal trajectory. 

2.2 COHEN’S CLASS TIME-FREQUENCY STATIONARY SIGNAL ANALYSIS 

Most signals in nature are highly non-stationary signals, with frequency content 

varying over time. An aircraft engine transitioning from one regime of operation into 

another emits non-stationary vibrations and sounds because excitation caused by variable 

rotational speeds causes variations in the frequency contents of the signals. Most real life 

signals, such as speech, music, machine tool vibration, acoustic emission etc. are non-

stationary signals, which places strong emphasis on the need for development and 

utilization of non-stationary signal analysis techniques, such as wavelets, or joint time-

frequency analysis. 



 7 

Most traditional time-domain or frequency-domain based monitoring techniques 

for monitoring of dynamic systems (bearings, gears, machine tools, engines, DC/AC 

motors and drives etc.) utilize stationary signal characterization methods, such as time-

series modeling or Fourier domain analysis (modal and spectral analysis) [35]. These 

methods assume that frequency content of the signal does not change over time, smearing 

the information when various frequency components appear or disappear in the signal. In 

simple terms, one is aware of what frequencies exist in the signal, but not when they existed 

[22]. 

Figure 4 depicts inadequacy of applying a stationary signal processing technique, 

such as spectral analysis, to non-stationary signals such as simple frequency-hopping 

signals shown in Figure 4. Spectral analysis is able to discern the three sinusoids present 

in the signals, but is unable to deduce when each one of those sinusoids occurred. 

Therefore, when the order of sinusoids is altered, the spectrum is unable to detect this 

change, as indicated in the Figure. 
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Figure 4: Application of Spectral analysis on two frequency hopping signals. 

Applications based on the Wavelet signal transforms [36] have been used in 

geophysical seismic signal processing and interpretation for oil & gas exploration and 

production, petrophysical imaging for oil & gas reservoir, evaluation of hydrocarbon 

reservoirs, advanced seismic stratigraphy, high resolution subsurface imaging and 

modeling for complex earth media [36-42]. Even though wavelet techniques seem to be 

already a widely accepted method for processing and feature extraction in the presence of 

non-stationary, frequency varying signals [41, 43], advances in computing technology are 

slowly allowing a more intensive use of signal processing and feature extraction tools based 

on the Cohen’s class of joint, time-frequency distributions [22, 44, 45].  

The origins of this powerful signal description can be traced back to 1930s and 

advances in quantum physics in the work of Eugene Wigner [46] where he needed to 

Spectral 

Analysis 

Spectral 

Analysis 
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calculate a joint distribution of a particle having a given position and momentum. However, 

the position and momentum in quantum physics are connected through a Fourier transform, 

very much in the same way time and frequency contents of a signal are connected to the 

time-domain representation of the signal in the signal processing theory. This was noticed 

by a French engineer Ville [47], who realized that the same approach could be utilized to 

describe joint distributions of signal energy in both time and frequency. 

At the same time spectrograms were developed independently. The time domain 

data is divided in shorter sub-sequences (windows) which usually overlap, and for each 

sequence, the calculation of the squared magnitude of the Fourier transform is made, giving 

frequency spectra for all windows. These frequency spectra are then ordered on a 

corresponding time-scale and form a three-dimensional picture (time, frequency, squared 

magnitude). The major problem with spectrograms is that it cannot be known how big the 

window should be. In addition, the windowing interferes with the signal. If a big window 

was used, a better spectral resolution could be achieved. But if a big window was used, the 

data got smeared in the time direction, which means if a bump was very short, it got 

smeared with a lot of things that did not happen with that bump. As a result, long windows 

yield a better frequency resolution with bad time resolution. If the window is shortened, a 

better time resolution is achieved but with very poor frequency resolution i.e. the frequency 

content will not be estimated well. 

In 1966 Leon Cohen, a physicist, congealed these techniques into a comprehensive 

formulation known today as the Cohen’s class time-frequency distribution. The 

formulation by Cohen was restricted with constraints of the ambiguity domain kernels in 

order to satisfy the so called Marginals. Cohen’s class of time-frequency distributions for 

the signal 𝑠(𝑡) is defined as the triple integral, 

𝐶(𝑡, 𝜔) =
1

4𝜋2 ∫ ∫ 𝜑(𝜃, 𝜏) 𝛢(𝜃, 𝜏) 𝑒−𝑗(𝜃𝑡+𝜏𝜔)𝑑𝜃𝑑𝑡      ( 1 ) 
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where 

𝐴(𝜃, 𝜏) = ∫ 𝑠∗(𝑡 −
𝜏

2
) 𝑠(𝑡 +

𝜏

2
)𝑒𝑗𝜃𝑡𝑑𝑡 

is the ambiguity function (signal independent kernel function of Doppler) of the signal and 

𝜑(𝜃, 𝜏) is the time-frequency kernel [22]. An intuitive interpretation of 𝐶(𝑡, 𝜔) is that it 

describes the energy distribution of 𝑠(𝑡) in time - 𝑡 and frequency – 𝜔 [51]. In other words, 

the triple integral is the 2-D Fourier transform of the ambiguity domain.  

The Reduced Interference Distribution (RID) time-frequency kernels, developed in 

mid 90-s at the University of Michigan [48, 49], represent a class of signal-independent, 

and therefore computationally less demanding, time-frequency kernels that result in time-

frequency distributions (TFDs) whose favorable mathematical properties include [48, 49]: 

time-shift, frequency-shift and scale covariance properties, frequency and time marginal 

properties and instantaneous frequency and group delay properties. In addition, the RIDs 

have the property of suppressing the TFD cross-terms, which necessarily exist whenever 

multi-component signals are processed. Cross-terms are sometimes indistinguishable from 

the auto-terms and can hamper the time-frequency based signal interpretation and pattern 

recognition [44, 45]. Suppression of cross-terms is therefore a desirable mathematical 

property and RIDs achieve it in a signal-independent manner, which is computationally 

quicker to accomplish than the signal-dependent suppression pursued for example in [50].  

On Figure 5, observe 2-D transformation because of the variables t, ω. 

Integrating |𝑠(𝑡)|2 yields the Time Marginal and Integrating  |𝑆(𝜔)|2 yields the Frequency 

Marginal. 
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Figure 5: Two dimensional transformation and the mathematical properties of binomial 

distribution [51]. 

Figure 6 shows the RID signal energy distribution of the same signals shown in 

Figure 4. One can readily distinguish the 3 sinusoids present in the signal, as well as when 

those sinusoids existed. Figure 7 shows applicability of joint time-frequency signal analysis 

techniques to vibration signatures from a gearbox taken while gearbox was accelerating. 

Close observation of energy patterns in the time-frequency plane indicates a series of 

energy “bumps” that occur closer and closer together, and correspond to the mashing of 

the gear teeth. As it can be seen on the left chart, the signal was embedded in noise, however 

the processed data show clearly in a very high resolution the signal created by teeth 

machining in the gearbox. Another example, on Figure 8 observe the oscillations of tissue 

dampening created by a click of a jaw [51]. 
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Figure 6: Reduced Interference joint time-frequency distribution of the two frequency 

hopping signals identical to those analyzed in Figure 4. 

 

 

Figure 7: RID of gearbox vibrations emitted during acceleration of the gearbox. 

 

Intel	Confidential	

	 5	

	
	

Figure	3:	Reduced	Interference	Distribution	(RID)	of	gearbox	vibrations	emitted	
during	acceleration	of	the	gearbox.	

	
	

Figure	 4	 shows	 a	 particularly	 interesting	 application	 of	 the	 same	 signal	
description	 method	 (RID	 distribution)	 to	 a	 sound	 emitted	 by	 the	
temporomandibular	 (jaw)	 joint	 (TMJ)	 during	 opening	 of	 patient’s	 mouth.	 During	
that	opening,	a	“clicking	sound”	was	observed,	which	corresponds	to	the	displaced	
cartilage	 disk	 between	 the	 upper	 and	 lower	 jaw	 slipping	 back	 into	 its	 normal	
position	between	the	2	bones.	The	sound	lasts	for	only	about	10	milliseconds	and	is	
highly	non-stationary.	 Initially,	 in	the	RID	of	 the	sound,	one	can	observe	a	ridge	of	
high	frequency	activity,	which	corresponds	to	the	impulse	caused	by	slipping	of	the	
disk	into	its	normal	position	between	the	upper	and	lower	jaw	bones.	This	impulse	
is	then	followed	by	a	prolonged	(several	milliseconds	long)	lower	frequency	activity,	
which	corresponds	to	residual	oscillations	of	 the	disk,	dampened	by	the	 ligaments	
and	muscles	surrounding	the	joint.	Progressive	pathology	associated	with	TMJ	disk	
displacements	causes	loosening	of	the	tissues	(ligaments	and	muscles)	surrounding	
the	 joint,	 which	 results	 in	 lowering	 of	 dampening	 capabilities	 of	 those	 tissues	and	
ultimately	 prolonged	 disk	 oscillations	 that	 occur	 at	 higher	 frequencies.	 A	 recent	
study	 [15]	 proved	 that	 people	 with	 TMJ	 pathology	 have	 significantly	 higher	
frequency	of	sounds	emitted	by	their	TMJs,	which	can	easily	be	explained	from	these	
“x-ray	–	like”	shots	that	depict	intricate	activities	inside	the	joint,	without	the	need	
for	more	invasive	methods	(early	detection	of	TMJ	pathologies	can	prevent	the	need	
for	 expensive	 surgeries	 and	 facilitates	 the	 use	 of	 a	 much	 simpler	 and	 cheaper	
therapy	based	on	anti-inflammatory	drugs).	

Vibrations	 associated	 with	 material	 handling	 devices	 are	 usually	 very	 non-
stationary	and	utilization	of	Cohen’s	class	of	 time-frequency	distributions	 for	their	
analysis	carries	significant	potential	benefits.	Furthermore,	 interaction	with	 Intel’s	
engineers	 indicated	 that	 modal	 (frequency	 based)	 analysis	 showed	 no	 difference	
between	 FOUP	 vibrations	 in	 different	 material	 handling	 devices	 (same	 modes	 of	
oscillations	showed	 in	 all	 tested	FOUPs	on	 both	 the	“good”	 and	 the	“bad”	material	
handling	 devices).	 Hence,	 the	UT	 team	 opted	 to	 utilize	 the	 binomial	 RID,	 the	 most	
powerful	signal	independent	(and	hence	computationally	tractable)	time-frequency	
distribution,	for	analysis	of	vibrations	in	Intel’s	material	handling	devices.	
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Figure 8: Example of Using Reduced Interference Cohen’s Class Distributions [51]. 

Enhanced Oil Recovery (EOR) field data are extremely non-stationary. Seismic 

surveys which are often used in EOR, are conducted using external energy sources which 

induce vibrations. The seismic waves are generated usually by large vehicles also known 

as “Veibroseis trucks” which are equipped with heavy plates that vibrate on the ground or 

by special forms of blasting using explosives, such as dynamite [5, 52]. As discussed in the 

next chapter, the collected field data for this research involve a rapid release of CO2, which 

results to an active pulse whose frequency content changes over time. Therefore utilization 

of Cohen’s class of time-frequency distributions for the analysis of these data carries 

significant potential benefits. Stationary tools, such as Fourier analysis, or tools with 

limitations in terms of temporal and frequency resolutions, such as wavelets, may not be 

able to reveal minute details buried in often highly noisy signals.  
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2.3 NON-STATIONARY SIGNAL ANALYSIS METHODS FOR SEISMIC SIGNAL ANALYSIS 

It is a common practice in seismic engineering to use the non-stationary analysis 

for the processing and interpretation of seismic signals [42]. Partyka et al. [54] applied 

short-time Fourier transform (STFT) to quantify thin-bed interference and detect subtle 

discontinuities within large 3-D surveys [55]. Chakraborty and Okaya showed that 

continuous wavelet transform (CWT) offers improved processing algorithms and spectral 

interpretation methods [56]. The S-transform proposed by Stockwell et al. [57], is a time-

frequency analysis technique that combines elements of CWT and STFT, which has been 

widely applied on seismic data processing and the analysis of behavior of soil and 

structures. As discussed by Cheng et al. [58], a common issue of the classic symmetric 

Gaussian window is the degradation of time resolution in the time-frequency spectrum due 

to the long front taper. In addition they suggested an improved S transform with a bi-

Gaussian window used to construct asymmetry bi-Gaussian windows. 

Matching pursuit was also applied in seismic signal analysis to decompose seismic 

trace. Li and Zheng adopt Wigner–Ville distribution to carbonate reservoir characterization 

[59]. Liu et al. proposed a methodology to detect channels and low-frequency anomalies 

in seismic data using an inversion-based time-frequency [60]. Han and van der Baan [61] 

propose the instantaneous spectra combined with empirical mode decomposition for 

seismic data analysis. The synchrosqueezing transform (SST), provides a powerful method 

for analyzing signals with time-varying behavior. It was originally introduced for the 

analysis of audio signals and even today is powerful tool for time-frequency analysis. The 

main advantage of SST in comparison to traditional time-frequency methods, is its 

capability to analyze spectrally and decompose various types of signals with higher 

precision in time and frequency domain. Regardless of advances in computational 

resources, it is still computationally intensive method which requires further development. 
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The synchrosqueezed wavelet was applied transform to seismic time–frequency analysis 

and obtained significantly higher resolution than the WT. The synchrosqueezed wavelet 

transformcombines a classic wavelet analysis and a reallocation method of the time–

frequency plane information to increase the spectral resolution [42, 57]. 
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Chapter 3 Methodology 

This chapter covers the different stages followed for the field data collection, 

including information regarding the field and equipment setup. The steps followed to 

process the data will be discussed at the end of this section.   

3.1 DATA ACQUISITION SCHEDULE 

Three wells were used for data acquisition, where one was an injector well and the 

other two were producing wells. All three CO2 flooded. The source was mounted on the 

flowline of the injector well and the hydrophone receivers were mounted on the flowline 

of the two producing wells.  

The source consists of a control unit operated using a laptop via WiFi. A main 

control valve on the source, opens and closes at about 100 psi. In this project, the source 

was releasing CO2 upon opening. The hydrophone sensor was installed on the wellhead 

using a hookup. A preamp cable (3 channels) was connected to the sensor and the digitizer 

where the data are stored. 
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Figure 9: Equipment synopsis – Injector well with the source and receiver installed on the 

flowline. 

Figure 10 demonstrates the layout of the cross wells, their relevant depths and 

distances from each other. 
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Figure 10: Layout distances. 

Every time the valve opened on the source, CO2 was released and created an active 

pulse. As a result, a change in pressure and energy occurred. In total, there were 72 active 

pulses with an interval time of approximately 45 seconds. The sampling rate was 4 kHz.  

3.2 PROCESSING 

Binomial TFDs were used to process the collected field data as the problem 

involves extremely non-stationary signals. Once the CO2 gets released, an active pulse is 

created. The raw data were imported from the digitizer to the computer. Matlab was used 

to process the data. 

The source data after its activation can be seen on Figure 11. Each active pulse was 

processed as a different time series i.e. the first 45 seconds was representing one time series 

and from 45 to 90 seconds a different time-series. In other words, each active pulse and its 

45 duration was processed individually. 
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Figure 11: Raw data at source after source activation. 

In Figure 12, the raw data of the first active pulse were plotted. Clearly, the signal is not 

visible through the noise. The data were analyzed at 160 Hz [62, 63] cause a higher rate 

would overwhelm the computing power available. The signals were processed using 

binomial kernel time-frequency domains. Binomial Cone-Kernel function is arguably the 

most advanced signal independent kernel [22, 49, 50, 53, 64, 65]. 

Lastly, visual inspection and manual procedures were used to observe the signals 

and their time of appearance was recorded. These observations will be presented and 

discussed in the next chapter. 
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Figure 12: Raw data from Active Pulse #1. 
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Chapter 4 Results 

In this chapter, the first fifteen active pulses will be processed and analyzed in 

detail. The charts consist of three subplots where the top represents the source and below 

the two receiver wells. 

In Figure 13, the red arrows point at the detected signals (refer to Figure 10 for the 

layout of the field). To identify the “bumps”, the figure was zoomed on Matlab and was 

visually inspected. The spider web structures is noise. The “bump” has a structure and it 

represents a bounce. For example, for the receiver connected to Digitizer 3 which is 

represented on the second plot of the figure, the first “bump” is detected at 4.26 seconds 

after the first active pulse at the source. Table 1 summarizes the time readings that were 

visually observed using Figure 13. Figure 14 and Table 2 are the corresponding results 

from the second trigger of the source. Note that on Figure 14 the time on the x axis 

continues since 𝑡0 = 0 seconds, which is at the first trigger of the source. 
 

ACTIVE PULSE 

#1 

TIME ELAPSED 

(seconds) 

1st 

Signal 

2nd 

Signal 

3rd 

Signal 

4th 

Signal 

Digitizer 3 4.26 6.57 10.71 26.44 

Digitizer 1 4.43 7.85 9.08 14.83 

Table 1: “bumps” detected by observing Figure 13 
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Figure 13: Active Pulse #1 - Processed data. 
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Figure 14: Active Pulse #2 - Processed data. 

ACTIVE PULSE 

#2 

TIME ELAPSED 

(seconds) 

1st 

Signal 

2nd 

Signal 

3rd 

Signal 

4th 

Signal 

Digitizer 3 7.68 10.57 13.19 13.79 

Digitizer 1 -0.21 3.12 11.19 13.01 

Table 2: “bumps” detected by observing Figure 14 

The observed “bumps” for the first fifteen active pulses are summarized in the next section. 
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4.1 Summary of observed “bumps” for the first fifteen active pulses 

Digitizer 1 

TIME ELAPSED 

1st 

Signal 

2nd 

Signal 

3rd 

Signal 

4th 

Signal 

5th 

Signal 

ACTIVE PULSE #1 4.43 7.85 9.08 14.83 23.66 

ACTIVE PULSE #2 -0.21 3.12 11.19 13.01 14.86 

ACTIVE PULSE #3 -0.16 1.20 7.76 9.96 12.56 

ACTIVE PULSE #4 -0.40 2.20 11.10 14.20 16.30 

ACTIVE PULSE #5 0.20 12.70 25.00 37.80 38.40 

ACTIVE PULSE #6 2.00 5.60 7.70 9.30 11.30 

ACTIVE PULSE #7 1.00 6.00 8.30 15.60 16.70 

ACTIVE PULSE #8 -0.30 6.00 7.20 11.40 16.60 

ACTIVE PULSE #9 -0.60 2.30 10.10 11.90 12.90 

ACTIVE PULSE #10 0.00 4.50 7.70 10.40 20.60 

ACTIVE PULSE 11 4.10 4.90 18.50 21.40 31.20 

ACTIVE PULSE 12 1.70 8.70 9.70 13.40 30.10 

ACTIVE PULSE 13 12.40 10.80 15.10 20.50 25.50 

ACTIVE PULSE 14 11.10 18.60 21.00 29.40 - 

ACTIVE PULSE 15 5.00 7.50 8.30 12.60 27.00 

Table 3: Time elapsed since active pulse to observe signal on receiver connected to 

Digitizer #1. 
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Figure 15: Histogram showing the number of times a “bump” was detected at       

Digitizer #1 well. 

Digitizer 1 

TIME ELAPSED 

1st 

Signal 

2nd 

Signal 

3rd 

Signal 

4th 

Signal 

5th 

Signal 

Average Value 2.68 6.80 11.85 16.38 21.26 

Median 1.00 6.00 9.70 13.40 18.65 

Standard Deviation 4.13 4.58 5.51 7.95 8.23 

Table 4: Descriptive statistical results for Digitizer 1 well. 
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For the well where Digitizer 1 was positioned, the 1st bounce was observed in 15 

out of 15 active pulses. Among the 15 active pulses, based on measurements the mean time 

was 2.68, the median was 1 and the sample standard deviation was 4.13. The 2nd bounce 

was observed in 15 out of 15 active pulses. Among the 15 active pulses, the mean time was 

6.80, the median was 6.00 and the sample standard deviation was 4.58. The 3rd bounce 

was observed in 15 out of 15 active pulses. Among the 15 active pulses, the mean time was 

11.85, the median was 9.70 and the sample standard deviation was 5.51. The 4th bounce 

was observed in 15 out of 15 active pulses. Among the 15 active pulses, the mean time was 

16.38, the median was 13.40 and the sample standard deviation was 7.95. The 5th bounce 

was observed in 14 out of 15 active pulses. Among the 14 active pulses, the mean time was 

21.26, the median was 18.65 and the sample standard deviation was 8.23. It is worth 

mentioning, that there were active pulses where more than five bounces were noticed. 

Moreover, observing the histogram at Figure 15, most of the bounces occurred between 

the 7th and 8th second, and 11th to 12th second since the trigger of the source. This is likely 

a good starting point for geological and geophysical analysis. 
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Digitizer 3 

TIME ELAPSED 

1st 

Signal 

2nd 

Signal 

3rd 

Signal 

4th 

Signal 

5th 

Signal 

ACTIVE PULSE #1 4.26 6.57 10.71 26.44 34.91 

ACTIVE PULSE #2 7.68 10.57 13.19 13.79 14.72 

ACTIVE PULSE #3 9.16 12.46 17.46 - - 

ACTIVE PULSE #4 5.70 16.10 25.00 33.20 42.40 

ACTIVE PULSE #5 10.20 10.80 14.50 31.90 32.80 

ACTIVE PULSE #6 13.70 22.60 24.90 25.30 27.30 

ACTIVE PULSE #7 5.90 6.60 8.20 6.50 15.90 

ACTIVE PULSE #8 2.90 4.50 8.10 10.90 13.70 

ACTIVE PULSE #9 1.10 3.70 7.40 10.90 17.00 

ACTIVE PULSE #10 4.10 8.10 15.50 22.70 25.40 

ACTIVE PULSE 11 11.10 15.40 24.90 - - 

ACTIVE PULSE 12 0.90 8.40 9.40 9.50 20.30 

ACTIVE PULSE 13 15.40 16.70 18.20 - - 

ACTIVE PULSE 14 19.10 23.10 28.60 36.80 - 

ACTIVE PULSE 15 16.10 27.30 28.30 - - 

Table 5: Time elapsed since active pulse to observe signal on receiver connected to 

Digitizer #3. 
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Figure 16: Histogram showing the number of times a “bump” was detected at      

Digitizer #3 well. 

Digitizer 3 

TIME ELAPSED 

1st 

Signal 

2nd 

Signal 

3rd 

Signal 

4th 

Signal 

5th 

Signal 

Average Value 8.49 12.86 16.96 20.72 24.44 

Median 7.68 10.80 15.50 22.70 22.85 

Standard Deviation 5.68 7.19 7.66 10.80 9.81 

Table 6: Descriptive statistical results for Digitizer 1 well. 
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For the well where Digitizer 3 was positioned, the 1st bounce was observed in 15 

out of 15 active pulses. Among the 15 active pulses, based on measurements the mean time 

was 8.49, the median was 7.68 and the sample standard deviation was 5.68. The 2nd bounce 

was observed in 15 out of 15 active pulses. Among the 15 active pulses, the mean time was 

12.86, the median was 10.80 and the sample standard deviation was 7.19. The 3rd bounce 

was observed in 15 out of 15 active pulses. Among the 15 active pulses, the mean time was 

16.96, the median was 15.50 and the sample standard deviation was 7.66. The 4th bounce 

was observed in 11 out of 15 active pulses. Among the 11 active pulses, the mean time was 

20.72, the median was 22.70 and the sample standard deviation was 10.80. The 5th bounce 

was observed in 10 out of 15 active pulses. Among the 10 active pulses, the mean time was 

24.44, the median was 22.85 and the sample standard deviation was 9.81. It is worth 

mentioning, that there were active pulses where more than five bounces were noticed. 

Moreover, observing the histogram at Figure 16, most of the bounces occurred between 

the 10th and 11th second since the trigger of the source. 

These waves that appear on the results are coming from the multiple reflections as 

mentioned in the literature review (see Figure 3).  There were time-series with more and 

less than five “bumps” appearing on the chart. Clearly, a tube-wave was generated at the 

source well. This can be justified with the repeatable reflection observed after 6.183 

seconds in all 72 resulting charts. Taking in consideration the 1,317 m depth of the injector 

well where the source was, (see Figure 10) can estimate the velocity of the tube-wave. The 

reflection translates to the tube-wave travelling to the bottom of the well and up to the top, 

covering a distance of 1,317 m in 6.183 seconds. The tube-wave velocity is 426 m/s. [12] 

The result aggress with the predicted velocity (425-427 m/s) of the signal in CO2 which is 

estimated based on the pressure and temperature of the well [24, 27]. Therefore, one can 

have confidence the observed “bumps” are caused by seismic waves. Where the oil and 
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CO2 are based on the responses remains a question that geologists and geophysicists may 

try to answer, but this is beyond the scope of this thesis. 
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Chapter 5 Conclusions 

5.1 CONCLUDING REMARKS 

Utilization of binomial time-frequency domains enabled us to extract the useful 

signals embedded in noise where no other method could before this study. The repeatability 

and variability of those signals was analyzed. The results showed repeatable bounces. The 

multiple “bumps” appearing on the results could represent multiple reflections as 

mentioned in the literature review (see Figure 3). Identifying the paths is a very important 

task. However, it is beyond the scope of this thesis and requires geophysicist or a geologist 

to interpret the resulting processed data. As McFarland [5] said, “all seismic data is subject 

to interpretation, and no two experts will interpret data identically. Geology is still a 

subjective science” [5, 18]. The proper interpretation of the resulting data important 

information that could be useful in EOR [4, 5]. Various possibilities for future work based 

on this study will be discussed next. 

5.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

A proposal for future work would be the creation of physical models. In addition, 

data mining techniques could be applied in order to automate the process of recording the 

time where a “bump” appears/ This would allow the process of all active pulses instead of 

only fifteen. This could potentially improve the interpretation of the processed data and 

exponentially reduce the required time compared to visual inspection. 

Another proposal would be the process of the unstimulated data (before any tests 

were performed) which could provide valuable information regarding the ambient noise at 

the field. 

Most importantly the interpretation of the resulting processed data should be done 

by a geologist or a geophysicist. The wave paths can be identified. A method that could be 
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applied to identify the paths, is influenced by the work represented in Improvements in 

Capacitance-Resistive Modeling and Optimization of Large Scale Reservoirs [3]. In 

oilfields, a tracer is added while pumping the wells. On this paper, a technology is 

described which is mainly for water flooding. The method relies on the rate changes and 

not the pressure changes like on this project. However, the equations could be modified to 

consider the parameters that serve the scope of this project. The rates of an injector well 

and the rates of a producing well always fluctuate. These rates are measured and can be 

correlated. This method could potentially be applied on this project to identify the wave 

paths. Using discrete element modeling (a simpler form of it) consisting of springs and 

dashpots in parallel can also potentially result to the wave paths. 

  



 33 

References 

[1] IFPEN - IFP School, TOTAL SA, IFP Training, Oil & Gas - From exploration to 

distribution, in: J.-M. Voirin (Ed.) Week 2 – V11 – Production Mechanisms and 

Hydrocarbon Recovery, IFP School, 2015, pp. 1-12. 

[2] L.W. Lake, M. Walsh, A Generalized Approach To Primary Hydrocarbon Recovery Of 

Petroleum Exploration & Production, Elsevier Science BV, Amsterdam, 2003. 

[3] D. Weber, T. Edgar, L. Lake, L. Lasdon, S. Kawas, M. Sayarpour, Improvements in 

Capacitance-Resistive Modeling and Optimization of Large Scale Reservoirs., 

Society of Petroleum Engineers  (2009). 

[4] RIGZONE, What Is EOR, and How Does It Work?  . 

www.rigzone.com/training/insight.asp?insight_id=313. (Accessed July 25 2017). 

[5] J. McFarland, How do seismic surveys work?, Oil and gas lawyer blog, Seismic 

Surveys, 2009   

[6] M. Blunt, F.J. Fayers, F.M. Orr Jr, Carbon dioxide in enhanced oil recovery, Energy 

Conversion and Management 34(9–11) (1993) 1197-1204. 

[7] J.B. Ajo-Franklin, J. Peterson, J. Doetsch, T.M. Daley, High-resolution characterization 

of a CO2 plume using crosswell seismic tomography: Cranfield, MS, USA, 

International Journal of Greenhouse Gas Control 18 (2013) 497-509. 

[8] T.M. Daley, L.R. Myer, G.M. Hoversten, J.E. Peterson, V.A. Korneev, Borehole 

Seismic Monitoring of Injected CO2 at the Frio Site, 2006. 

[9] T. Daley, R. Solbau, J. Ajo-Franklin, S. Benson, Continuous active-source seismic 

monitoring of CO2 injection in a brine aquifer, GEOPHYSICS 72(5) (2007) A57-

A61. 

[10] T.M. Daley, J.B. Ajo-Franklin, C. Doughty, Constraining the reservoir model of an 

injected CO2 plume with crosswell CASSM at the Frio-II brine pilot, International 

Journal of Greenhouse Gas Control 5(4) (2011) 1022-1030. 

[11] E. Majer, T. Daley, V. Korneev, D. Cox, J. Peterson, J. Queen, Cost-effective imaging 

of CO2 injection with borehole seismic methods, The Leading Edge 25(10) (2006) 

1290-1302. 

[12] Schlumberger Limited, The Schlumberger Oilfield Glossary, 2017. 

www.glossary.oilfield.slb.com. (Accessed June 24 2017). 

[13] T. O'Haver, A Pragmatic introduction to signal processing, 1997, p. 146. 

[14] A.V. Oppenheim, Discrete-time signal processing, Pearson Education India1999. 

[15] A. Oppenheim, RES.6-008 Digital Signal Processing, 2011. https://ocw.mit.edu/. 

(Accessed September 15 2016   License: Creative Commons BY-NC-SA). 



 34 

[16] C. Wood, L., S. Treitel, Seismic signal processing, Proceedings of the IEEE 63(4) 

(1975) 649-661. 

[17] D. Mandic, M. Golz, A. Kuh, D. Obradovic, T. Tanaka, Signal processing techniques 

for knowledge extraction and information fusion, Springer2008. 

[18] M. Landefeld, C. Hogan, Seismic Testing and Oil & Gas Production, The Ohio State 

University Extension. 

[19] V. Korneev, J. Parra, A. Bakulin, Tube-wave Effects in Cross-Well Seismic Data at 

StrattonField, SEG Annual Meeting, Society of Exploration Geophysicists, 

Houston, TX, 2005, pp. 336-339. 

[20] V.A. Korneev, Tube-wave seismic imaging, Google Patents, 2009. 

[21] Ö. Yilmaz, Seismic Data Analysis, Investigations in Geophysics Seismic Data 

Analysis: Processing, Inversion, and Interpretation of Seismic Data, Society of 

Exploration Geophysicists2001. 

[22] L. Cohen, Time-frequency Analysis, Prentice Hall PTR1995. 

[23] A. Bakulin, V. Korneev, T. Watanabe, S. Ziatdinov, Time-lapse changes in tube and 

guided waves in cross-well Mallik experiment, SEG Technical Program Expanded 

Abstracts 2006, Society of Exploration Geophysicists2006, pp. 379-383. 

[24] D.R. Bums, C.H. Cheng, Determination Of In-Situ Permeability From Tube Wave 

Velocity And Attenuation, Society of Petrophysicists and Well-Log Analysts, 

1986. 

[25] V. Korneev, A. Bakulin, S. Ziatdinov, Tube-wave monitoring of oil fields, SEG 

Technical Program Expanded Abstracts 2006, Society of Exploration 

Geophysicists2006, pp. 374-378. 

[26] A.N. Norris, The speed of a tube wave, The Journal of the Acoustical Society of 

America 87(1) (1990) 414-417. 

[27] S. Ziatdinov, A. Bakulin, B. Kashtan, V. Korneev, A. Sidorov, Tube-wave monitoring 

at Mallik field: comparing modeled and experimental time-lapse responses, SEG 

Technical Program Expanded Abstracts 2006, Society of Exploration 

Geophysicists2006, pp. 3240-3244. 

[28] J.B.U. Haldorsen, D.L. Johnson, T. Plona, B. Sinha, H.-P. Valero, K. Winkler, 

Borehole acoustic waves, Oilfield review 18(1) (2006) 34-43. 

[29] V. Korneev, Low-frequency fluid waves in fractures and pipes, Geophysics 75(6) 

(2010) N97-N107. 

[30] J. Parra, C. Hackert, A. Gorody, V. Korneev, Detection of guided waves between gas 

wells for reservoir characterization, GEOPHYSICS 67(1) (2002) 38-49. 

[31] M. Frehner, Krauklis wave initiation in fluid-filled fractures by seismic body waves, 

Geophysics 79(1) (2013) T27-T35. 



 35 

[32] G. Goloshubin, V. Korneev, B. Kashtan, A. Bakulin, V. Troyan, G. Maximov, L. 

Molotkov, M. Frehner, S. Shapiro, R. Shigapov, Krauklis Wave-Half a Century 

After. 

[33] V.A. Korneev, L. Danilovskaya, B.M. Kashtan, Krauklis Wave in Rock Fractures 

Filled with Fluid. 

[34] R.i. Nolen-hoeksema, Beginner's guide to seismic waves, Oilfield Review 26(1) 

(2014). 

[35] S.L. Marple, Digital spectral analysis: with applications, Prentice-Hall Englewood 

Cliffs, NJ1987. 

[36] C.S. Burrus, R.A. Gopinath, H. Guo, Introduction to Wavelets and Wavelet 

Transforms: A Primer, Prentice Hall1998. 

[37] S. Sunjay, Wavelets Transforms: Time–Frequency Presentation, GeoCanada 2010 – 

Working with the Earth, Calgary, Alberta, Canada, 2010. 

[38] C. Liner, An overview of wavelet transform concepts and applications, University of 

Houston, 2010. 

[39] M. Saadatinejad, H. Hassani, Application of wavelet transform for evaluation of 

hydrocarbon reservoirs: example from Iranian oil fields in the north of the Persian 

Gulf, Nonlinear processes in geophysics 20(2) (2013) 231-238. 

[40] W. Liu, S. Cao, Y. Chen, Seismic Time–Frequency Analysis via Empirical Wavelet 

Transform, IEEE Geoscience and Remote Sensing Letters 13(1) (2016) 28-32. 

[41] S. Sinha, P.S. Routh, P.D. Anno, J.P. Castagna, Spectral decomposition of seismic 

data with continuous-wavelet transform, GEOPHYSICS 70(6) (2005) P19-P25. 

[42] P. Wang, J. Gao, Z. Wang, Time-Frequency Analysis of Seismic Data Using 

Synchrosqueezing Transform, IEEE Geoscience and Remote Sensing Letters 

11(12) (2014) 2042-2044. 

[43] R. Du, M.A. Elbestawi, S.M. Wu, Automated Monitoring of Manufacturing Processes, 

Part 2: Applications, 117(2) (1995) 133-141. 

[44] W.J. Williams, Reduced interference distributions: biological applications and 

interpretations, Proceedings of the IEEE 84(9) (1996) 1264-1280. 

[45] D. Djurdjanovic, J. Ni, J. Lee, Time-frequency based sensor fusion in the assessment 

and monitoring of machine performance degradation, Proceedings of the 2002 

ASME International Mechanical Engineering Congress and Exposition, 2002. 

[46] E. Wigner, On the Quantum Correction For Thermodynamic Equilibrium, Physical 

Review 40(5) (1932) 749-759. 

[47] J. Ville, Théorie et Applications de la Notion de Signal Analytique, Cables et 

Transmissions Vol. 2A (1948) 61-74. 



 36 

[48] J. Jeong, Time-Frequency Signal Analysis and Synthesis Algorithms, University 

of Michigan, 1990. 

[49] J. Jeong, J.W. Williams, Kernel design for reduced interference distributions, IEEE 

Transactions on Signal Processing 40(2) (1992) 402-412. 

[50] D.L. Jones, R.G. Baraniuk, An adaptive optimal-kernel time-frequency representation, 

IEEE Transactions on Signal Processing 43(10) (1995) 2361-2371. 

[51] D. Djurdjanovic, S. Widmalm, W. Williams, C. Koh, K. Yang, Computerized 

classification of temporomandibular joint sounds, 47(8) (2010) 977   - 984. 

[52] M. Sandsten, Time-Frequency Analysis of Time-Varying Signals and Non-Stationary 

Processes, Centre for Mathematical Sciences, Lund University, 2016. 

[53] Q. Shie, C. Dapang, Joint time-frequency analysis, IEEE Signal Processing Magazine 

16(2) (1999) 52-67. 

[54] G. Partyka, J. Gridley, J. Lopez, Interpretational applications of spectral 

decomposition in reservoir characterization, The Leading Edge 18(3) (1999) 353-

360. 

[55] N. Zabihi, H.R. Siahkoohi, Single Frequency Seismic Attribute Based on Short Time 

Fourier Transform, Continuous Wavelet Transform, and S Transform. 

[56] A. Chakraborty, D. Okaya, Frequency-time decomposition of seismic data using 

wavelet-based methods, Geophysics 60(6) (1995) 1906-1916. 

[57] R.G. Stockwell, L. Mansinha, R.P. Lowe, Localization of the complex spectrum: the 

S transform, IEEE Transactions on Signal Processing 44(4) (1996) 998-1001. 

[58] Z. Cheng, Y. Chen, Y. Liu, W. Liu, G. Zhang, H. Li, W. Chen, Seismic Time-

frequency Analysis Using Bi-Gaussian S Transform. 

[59] Y. Li, X. Zheng, Spectral decomposition using Wigner-Ville distribution with 

applications to carbonate reservoir characterization, The Leading Edge 27(8) 

(2008) 1050-1057. 

[60] G. Liu, S. Fomel, X. Chen, Time-frequency analysis of seismic data using local 

attributes, Geophysics 76(6) (2011) P23-P34. 

[61] J. Han, M. van der Baan, Empirical mode decomposition for seismic time-frequency 

analysis, GEOPHYSICS 78(2) (2013) O9-O19. 

[62] L.T. Ikelle, L. Amundsen, Introduction to petroleum seismology, Society of 

Exploration Geophysicists2005. 

[63] A.E. Barnes, The calculation of instantaneous frequency and instantaneous bandwidth, 

Geophysics 57(11) (1992) 1520-1524. 



 37 

[64] P. Steeghs, G. Drijkoningen, Time-frequency analysis of seismic reflection signals, 

1996 IEEE International Conference on Acoustics, Speech, and Signal Processing 

Conference Proceedings, 1996, pp. 2972-2975 vol. 5. 

[65] F. Pérez-Cruz, O. Bousquet, Kernel methods and their potential use in signal 

processing, IEEE Signal Processing Magazine 21(3) (2004) 57-65. 

 

 


	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Background
	Figure 1: Carbon Dioxide EOR [4].

	1.2 Organization of the thesis

	Chapter 2 Literature Review
	2.1 Tube waves and guided waves for oilfield applications
	Figure 2: Cross well scheme and wave paths trajectory.
	Figure 3: Possible hypothesis of the signal trajectory.

	2.2 Cohen’s class time-frequency stationary signal analysis
	Figure 4: Application of Spectral analysis on two frequency hopping signals.
	Figure 5: Two dimensional transformation and the mathematical properties of binomial distribution [51].
	Figure 6: Reduced Interference joint time-frequency distribution of the two frequency hopping signals identical to those analyzed in Figure 4.
	Figure 7: RID of gearbox vibrations emitted during acceleration of the gearbox.
	Figure 8: Example of Using Reduced Interference Cohen’s Class Distributions [51].

	2.3 Non-stationary signal analysis methods for seismic signal analysis

	Chapter 3 Methodology
	3.1 Data acquisition schedule
	Figure 9: Equipment synopsis – Injector well with the source and receiver installed on the flowline.
	Figure 10: Layout distances.

	3.2 Processing
	Figure 11: Raw data at source after source activation.
	Figure 12: Raw data from Active Pulse #1.


	Chapter 4 Results
	Table 1: “bumps” detected by observing Figure 13
	Figure 13: Active Pulse #1 - Processed data.
	Figure 14: Active Pulse #2 - Processed data.

	Table 2: “bumps” detected by observing Figure 14
	4.1 Summary of observed “bumps” for the first fifteen active pulses
	Table 3: Time elapsed since active pulse to observe signal on receiver connected to Digitizer #1.
	Figure 15: Histogram showing the number of times a “bump” was detected at       Digitizer #1 well.

	Table 4: Descriptive statistical results for Digitizer 1 well.
	Table 5: Time elapsed since active pulse to observe signal on receiver connected to Digitizer #3.
	Figure 16: Histogram showing the number of times a “bump” was detected at      Digitizer #3 well.

	Table 6: Descriptive statistical results for Digitizer 1 well.


	Chapter 5 Conclusions
	5.1 Concluding remarks
	5.2 Recommendations for future research

	References

