

Copyright

by

Nasim Mahmood

2007

The Dissertation Committee for Nasim Mahmood

Certifies that this is the approved version of the following dissertation:

 Productivity with Performance: Property/Behavior-Based Automated

Composition of Parallel Programs from Self-Describing Components

Committee:

James C. Browne, Supervisor

Don S. Batory

Douglas C. Burger

Yusheng Feng

Calvin Lin

Dewayne E. Perry

Productivity with Performance: Property/Behavior-Based Automated

Composition of Parallel Programs from Self-Describing Components

by

Nasim Mahmood, M.S., B.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May, 2007

Dedication

To my parents, Rafique Ahmed and Jahanara Akter

To my wife, Farhana Wasik (Joya)

To my son, Zafir Abrar Nasim

 v

Acknowledgements

I would like to thank many people who have helped me during my time in

graduate school. First and foremost I must thank my advisor, Professor James C. Browne,

for taking me in as a doctoral student. He has offered me all the guidance and help that I

could ever ask for and more. His broad knowledge has guided my research through many

challenges and difficulties. When I was frustrated with my research, he has always

encouraged me. He has not only helped me become a better researcher, but also made me

a better person. He has taught me the courtesy, integrity, and responsibility in research

and other aspects of life.

I am also grateful to my doctoral committee, Prof. Don Batory, Prof. Douglas

Burger, Dr. Yusheng Feng, Prof. Calvin Lin, and Prof. Dewayne Perry, have made

invaluable contributions to my dissertation. They offered their perspectives to my

research, gave feedback to my papers.

My life as a graduate student has been enriched by the interactions with my fellow

graduate students, especially, the fellow students of Prof. Browne. I would like to thank,

in no particular order, the following people: Fei Xie, Huaiyu (Kitty) Liu, Guosheng

(Simon) Deng, Young Yoon, and Kevin Kane. Although our research topics were quite

different, they have always been willing to help whenever possible. I have benefited

significantly from interactions with this outstanding group of people.

 vi

This dissertation is not possible without the love, support, and encouragement

from my parents Rafique Ahmed and Jahanara Akter, my brother Ashique Mahmood

(Rupam), my sister Rafiqa Sharmin (Luna), and last, certainly, not least, my lovely wife

Farhana Wasik (Joya). Joya is the source of my happiness, strength, and energy. She has

always been there for me with her love, care, support, and encouragement.

 vii

Productivity with Performance: Property/Behavior-Based Automated

Composition of Parallel Programs from Self-Describing Components

Publication No._____________

Nasim Mahmood, Ph.D.

The University of Texas at Austin, 2007

Supervisor: James C. Browne

Development of efficient and correct parallel programs is a complex task. These

parallel codes have strong requirements for performance and correctness and must

operate robustly and efficiently across a wide spectrum of application parameters and on

a wide spectrum of execution environments. Scientific and engineering programs

increasingly use adaptive algorithms whose behavior can change dramatically at runtime.

Performance properties are often not known until programs are tested and performance

may degrade during execution. Many errors in parallel programs arise in incorrect

programming of interactions and synchronizations. Testing has proven to be inadequate.

Formal proofs of correctness are needed.

This research is based on systematic application of software engineering methods

to effective development of efficiently executing families of high performance parallel

programs. We have developed a framework (P-COM2) for development of parallel

program families which addresses many of the problems cited above. The conceptual

innovations underlying P-COM2 are a software architecture specification language based

 viii

on self-describing components, a timing and sequencing algorithm which enables

execution of programs with both concrete and abstract components and a formal

semantics for the architecture specification language. The description of each component

incorporates compiler-useable specifications for the properties and behaviors of the

components, the functionality a component implements, pre-conditions and post-

conditions on the inputs and outputs and state machine based sequencing control for

invocations of the component. The P-COM2 compiler and runtime system implement

these concepts to enable: (a) evolutionary development where a program instance is

evolved from a performance model to a complete application with performance known at

each step of evolution, (b) automated composition of program instances targeting specific

application instances and/or execution environments from self-describing components

including generation of all parallel structuring, (c) runtime adaptation of programs on a

component by component basis, (d) runtime validation of pre-and post-conditions and

sequencing of interactions and (e) formal proofs of correctness for interactions among

components based on model checking of the interaction and synchronization properties of

the program. The concepts and their integration are defined, the implementation is

described and the capabilities of the system are illustrated through several examples.

 ix

Table of Contents

List of Tables .. xii

List of Figures .. xiii

Chapter 1: Introduction ..1
1.1 Problem statement...1
1.2 Innovations and Contributions of This Dissertation2

1.2.1 An Architecture Specification Language based on Self-
Describing Components..3

1.2.2 Automated Composition ...3
1.2.3 Automated Adaptation ..4
1.2.4 Performance Modeling and Evolutionary Development4
1.2.5 Robustness and Formal Verification...5

1.3 Dissertation Outline ..5

Chapter 2: Software Architectures and Self-Describing Components7
2.1 Software Architecture and Domain Analysis ...7
2.2 Self-Describing Components ..8
2.3 Associative Interface...10
2.4 Software Architecture Based Programming Model................................12

2.4.1 Programming Model ...12
2.4.2 Domain Analysis and Component Implementation....................13
2.4.3 Program Instance Development..14

2.5 Interface Definition Language ..15

Chapter 3: Automated Composition ..18
3.1 Motivation...18
3.2 Automated Composition ...19

3.2.1 Program Composition Process..20
3.2.2 Example of Composition Process ...21

 x

3.2.3 Containment Relationship and Approximate Matching24
3.3 Case Study ..25

3.3.1 Case Study – A Generalized Fast Multipole Solver26
3.4 Related work ...29

3.4.1 Component-based development..30
3.4.2 Composition Techniques ..31
3.4.3 Architecture Description Languages (ADL)...............................34

Chapter 4: Dynamic (Runtime) Adaptation...36
4.1 Motivation and Overview ...36
4.2 Implementation ...37
4.3 Case Study ..38

4.3.1 Componentization of the h-p Adaptive Finite Element Code.....39
4.3.2 Experiments ..40
4.3.3 Illustrations of Automated Composition.....................................41

4.4 Related Work ..44

Chapter 5: Performance Modeling and Evolutionary Development......................48
5.1 Motivation and Overview ...48
5.2 Integration of Direct Execution and Simulated Execution51

5.2.1 Data Flow Graph Model of Execution..51
5.2.2 Unification of Simulated Execution and Direct Execution.........52
5.2.3 Example ..54

5.3 Case Study ..57
5.4 Related Work ..61

Chapter 6: Robustness and Formal Verification..65
6.1 Motivation and Overview ...65
6.2 Features of P-COM2 for Improving Reliability and Robustness............67

6.2.1 Preconditions and Postconditions ...67
6.2.2 Fault-Tolerance by Component Replication...............................69
6.2.3 Runtime Verification of State Machines.....................................70

6.3 Compile Time Semantics..70

 xi

6.4 Execution Model Semantics ...77
6.5 An Example Showing Semantics..80

6.5.1 2D FFT Application Example...80
6.5.2 Semantics of the 2D FFT Application ..84

6.6 Related Work ..89

Chapter 7: Conclusions and Future Research ..94
7.1 Future Research Directions...96

Bibliography ..98

Vita ...107

 xii

List of Tables

Table 1. Performance data for tree depth of four.. 29
Table 2. Properties of solutions from multiple models... 42
Table 3. Execution time improvement with dynamic solver replacement........................ 43
Table 4: Comparison of estimated & actual runtimes .. 57
Table 5: Estimated execution times for experiment 1. ... 59
Table 6: Estimated execution times for experiment 2. ... 60
Table 7: Actual execution times for optimal configuration .. 60

 xiii

List of Figures

Figure 1: Conceptual view of a self-describing component. .. 9
Figure 2: Accepts interface of gather_transpose component.. 15
Figure 3: Requires interface of gather_transpose component... 17
Figure 4: Requires interface of gather_transpose component... 22
Figure 5: Accepts interface of print component ... 22
Figure 6: Requests interface of initialize component ... 23
Figure 7: Accepts interface of distribute component.. 23
Figure 8: Requests interface of distribute component .. 24
Figure 9: Data flow graph of FMM code.. 28
Figure 10: Workflow diagram for h-p adaptive finite element code 40
Figure 11: Data flow graph for Laplace solver... 55
Figure 12: Workflow graph of 2D FFT application.. 81
Figure 13: Requires interface of INIT component.. 82
Figure 14: Accepts interface of DISTR component ... 82
Figure 15: Requires interface of DISTR component .. 82
Figure 16: Accepts interface of FFT_1D component ... 83
Figure 17: Requires interface of FFT_1D component.. 83
Figure 18: Accepts interface of GATHER component... 83
Figure 19: Requires interface of GATHER component ... 84
Figure 20: Accepts interface of PRINT component ... 84
Figure 21: Semantics of FFT program using FDR CSP syntax.. 85
Figure 22: Semantics of FFT program using FDR CSP syntax (continued) 86
Figure 23: Properties checked on FFT_PROGRAM.. 87
Figure 24: Accepts interface of DISTR component with erroneous state machine.......... 88
Figure 25: FDR translation of erroneous DISTR component... 88

 1

Chapter 1: Introduction

1.1 PROBLEM STATEMENT

Many application packages in the high performance computing domain can be

applied to a wide spectrum of problems in engineering and sciences [4], [11]. These

application codes must operate robustly and efficiently across a wide spectrum of

application parameters and on a wide spectrum of execution environments. The

properties and behavior of the program may vary widely with change of the problem or

with change of the execution environment. Thus adaptability and optimization based on

problem or execution environment is a highly desirable feature of these application

packages. Establishing correctness of parallel structures is a difficult task. Often the

implementation has to be modeled manually in a particular formal language. It would be

desirable to establish correctness of the implementation without going through a manual

modeling step.

The complexity of the parallel structures of these codes combined with the

complexity and diversity of parallel execution environments makes predicting the

performance of these programs difficult. Conventional development methods for parallel

programs where a program is fully developed before its performance properties are

evaluated worsen the problem.

Modern computational algorithms utilize adaptive methods where the behavior of

the program may change substantially during its execution so that the performance (and

accuracy) of programs optimized for the initial conditions of execution may deteriorate

during execution. Common practice in development of adaptive codes is to construct

them as an integrated and comprehensive package of functional modules based on

common, shared data structures. These packages are usually composed of a large number

 2

of parameterized functions. A package which is robust and offers a spectrum of

implementations giving efficient execution across application parameters and execution

environments may be very complex and very difficult to debug and to maintain and

modify. These codes are often sub-optimally efficient on many of the problems to which

they are applied and many of the execution environments upon which they may be

hosted. Thus one has to choose between performance and productivity. This problem is

aggravated by the multiplicity of and constant change in parallel execution environments.

Porting across execution environments with retention of efficiency often requires effort

intensive redesign and re-implementation. Finally, conventional monolithic program

structures make evolution of parallel programs particularly difficult.

1.2 INNOVATIONS AND CONTRIBUTIONS OF THIS DISSERTATION

This research is based on innovative application of software engineering methods

to effective development of efficiently executing families of high performance parallel

programs. We have developed a framework (P-COM2) for development of parallel

program families which addresses many of the problems cited above. The conceptual

innovations upon which P-COM2 is based are: (i) a software architecture specification

language (ASL) based on self-describing components, (ii) a timing and sequencing

algorithm which enables execution of programs with both concrete and abstract

components and (iii) a formal semantics for the architecture specification language. The

description of each component in the ASL incorporates compiler-useable specifications

for the properties and behaviors of the components, the functionality a component

implements, pre-conditions and post-conditions on the inputs and outputs and state

machine based sequencing control for invocations of the component. P-COM2 utilizes

these concepts in a compiler for the architecture specification language and a runtime

system which unifies direct and simulated execution and runtime substitution of

 3

components. The unique capabilities implemented by the P-COM2 compiler and runtime

system include: (a) evolutionary development where a program instance is evolved from

a performance model to a complete application with performance known at each step of

evolution, (b) automated composition of program instances targeting specific application

instances and/or execution environments from self-describing components including

generation of all parallel structuring, (c) runtime adaptation of programs on a component

by component basis, (d) runtime validation of pre-and post-conditions and sequencing of

interactions and (e) formal proofs of correctness for interactions among components

based on model checking of the interaction and synchronization properties of the program

Each of these capabilities is summarized below and detailed in separate chapters of this

dissertation.

1.2.1 An Architecture Specification Language based on Self-Describing Components

A P-COM2 self-describing component consists of one or more sequential

computations written in some conventional procedural programming language and a

specification written in the P-COM2 ASL. The P-COM2 ASL specifications for a

component may incorporate information on any or all of its functionality, its non-

functional properties such as performance or robustness, preconditions and

postconditions and a state machine which specifies the correct sequences of invocation

for stateful components. Self-describing components and the ASL are detailed in

Chapter 2.

1.2.2 Automated Composition

The P-COM2 system automates composition of parallel programs from the self-

describing components sketched in the previous subsection. The meta-information

associated with the components by the ASL specifications, together with the

 4

programming model enables automated composition. Given specifications of a particular

instance of a program family (See Chapter 2 for a definition of a program family and an

instance of a program family.), the P-COM2 compiler searches the library for matching

components and instantiates an appropriate application instance. “Smart” matching based

on containment relationships among components allows closest matching rather than

exact matching and thus allows program instantiation in the absence of complete domain

libraries.

1.2.3 Automated Adaptation

The P-COM2 compiler automatically adds performance monitoring code to each

component. This monitored information is available to the adapt component type. Users

of the application can put their adaptation logic in the adapt component and use the

information collected by the monitors to evaluate the effectiveness of system execution

and to determine when a component replacement is needed. Adaptation is achieved by

runtime replacement of components using dynamic linking.

1.2.4 Performance Modeling and Evolutionary Development

The P-COM2 framework allows performance modeling of parallel programs

starting from the design stage. The feature is based on a unified execution model which

combines simulated execution with direct execution. Users can supply a performance

model of a component instead of an actual implementation and the system will include its

simulated execution time with the program execution time. The network is also modeled

using a performance model. The unified execution model allows execution of both the

abstract performance models and concrete implementation of components in the same

program. Thus development can start with all abstract components and we can see if the

program can meet the performance goal without providing actual implementations. Once

 5

the abstract program meets the performance goal, users can replace abstract components

with actual concrete implementation and can periodically execute the program to

incrementally verify performance properties. Thus in our framework a program can

evolve from abstract performance model to complete program. Performance of the

program can be estimated at any stage of realization.

1.2.5 Robustness and Formal Verification

The P-COM2 framework facilitates development of robust components through

provisions in the ASL for definition of preconditions and postconditions and specification

of sequencing behavior of component operations. It allows runtime verification of the

preconditions and postconditions and runtime verification of correct sequencing behavior

by the use of interface state machines. The preconditions and postconditions work as a

contract where the component guarantees the postconditions when users meet the

obligations of the preconditions. Also through the use of interface state machines correct

sequencing behavior of the component interactions can be ensured and verified at

runtime. Finally we have provided formal semantics of the P-COM2 ASL which can be

used to reason about component interactions. By providing the semantics of the ASL and

automatically generating the semantics in the formal language Communicating

Sequential Process (CSP) [44] we can formally verify the interaction behaviors of a

parallel program using the CSP model checker FDR [31].

1.3 DISSERTATION OUTLINE

The remainder of this dissertation is organized as follows. In Chapter 2, we

present the P-COM2 ASL and the programming model. Chapter 3 presents automated

composition in detail together with related work and a case study. Automated adaptation

and its related work and case studies are discussed in Chapter 4. Chapter 5 presents

 6

details about the performance modeling and evolutionary development capability

together with related work and a case study. Chapter 6 gives details on how the P-COM2

ASL enables writing robust components and formal verification of the interaction

behaviors of parallel programs. Finally Chapter 7 concludes this dissertation and

discusses future research directions.

 7

Chapter 2: Software Architectures and Self-Describing Components

This chapter informally defines and describes the elements of the P-COM2

programming system including its programming model.

2.1 SOFTWARE ARCHITECTURE AND DOMAIN ANALYSIS

A software architecture [76] is a representation of the set of components from

which a family of applications can be built and the relationships among them which

define the structures for the instances of the application family. An architecture

description language (ADL) is usually used to specify an architecture [63]. Domain

analysis [81] is the basis for gathering the information by which to define a software

architecture. It is also the process by which a set of attributes in which the properties and

behaviors of the components can be defined. Property based schemes are very well suited

[76] for describing the elements of a software architecture.

Conventional ADLs separate specification of components and the relationships

among components. ADLs typically provide means for specification of functional and

non-functional properties of components. The relationships among components are often

defined in terms of communication protocols and/or connectors (which define

interactions among components). In the P-COM2 language, all of the information

defining a software architecture is captured in a set of self-describing components. The

P-COM2 language is an architecture description language in which relationships and

connectors1 among components are implicitly defined. Connectors are synthesized at

compile time by matching property specifications and interaction behaviors when the

components are composed into a program. P-COM2 uses a property based scheme for

describing components. An architecture description in P-COM2 provides both functional

1 A connector is an instantiation of an interaction between components

 8

and non-functional properties of the components and can describe a component in the

context of an architecture.

2.2 SELF-DESCRIBING COMPONENTS

A component is one or more sequential computations and a specification for the

properties and interactions of the components. Each component, in addition to

implementing one or more functions, has an associated specification which defines its

properties and its interactions as well as its functional signatures2. We call our

components self-describing components. Self-describing components are the enabling

concept for all of automated composition, adaptation/optimization, evolutionary

development and the formal semantics of P-COM2. Interaction specifications include

both the interactions the component accepts and those that it initiates in order to fulfill the

interactions it accepts. The properties and interactions are specified in an associative

interface which specifies the information used for selection and matching of components,

a state machine which manages the interactions with other peers and the invocation of the

sequential computations and a set of pre-conditions and post-conditions which are used to

insure that the components execution behavior is robust. An interaction may be initiated

by an incoming message (or set of messages) or by an invocation of an operation. An

interaction triggers an action which is associated with some state of the state machine.

The action may include execution of a sequential computation. A sequential computation

executes in run to completion mode and refers only to its own local variables and its input

variables. Figure 1 shows the conceptual view of a self-describing component.

The attributes (variable domains) in which the properties and behaviors of the

components are defined are derived from the domain analysis for the family of

2 A component may implement multiple related functions.

 9

applications and the execution environments. The set of attributes in which the properties

of the components are expressed is common global knowledge for the components.

There can be multiple implementations of a component implementing the same

logical functionality but with substantially different behaviors, applicability, robustness,

and performance properties. A given implementation might have been optimized for a

particular execution environment. A component may be a complete implementation or

an abstract timing or performance model. Execution of a program which includes

abstract components reports estimated computation time of the program. The invocations

of other components by a given component may depend on which of the interactions it

implements it is currently executing.

Figure 1: Conceptual view of a self-describing component.

The interfaces of self-describing components carry specifications for all of these

properties. When a component specifies an interaction it will invoke, the invoking

 10

component will specify not only what functionality it needs, it will also specify the other

non-functional properties of the required components.

Components are allowed to be stateful. The interactions of a component may

depend upon its current state. Therefore invocations of the functions implemented by a

component are managed by a state machine defined in the interface specifications. The

state machine is defined by guards over the internal state of the component and pre-

conditions and post-conditions over the inputs and outputs of the functions.

Since this information is specified in the interfaces of the components, a compiler

can, given an initial condition which selects an initial component, automate the

composition process by matching requirements to capabilities in libraries of components.

The automated composition process is defined and described in Chapter 3.

The elements of a self-describing component together with a number of

definitions that will be used in later chapters are sketched in the following.

2.3 ASSOCIATIVE INTERFACE

An associative interface [13] encapsulates a component. It describes the behavior

and functionality of a component. One of the most important properties of associative

interfaces is that they differentiate among alternative implementations of the same

component. Properties of implementations such as degree of parallelism for a given

component are also specified in the associative interface as runtime determined

parameters. These interfaces are called "associative" because selection and matching is

similar to operations on content-addressable memories. An associative interface consists

of accepts specification/interface and requires specification/interface.

Accepts Interface: An accepts interface describes the set of interactions in which

a component is willing to participate. The accepts interface for a component is a three-

tuple (profile, state machine, protocol).

 11

• Profile: A profile characterizes the properties and behaviors of a component and

enables the compositional mechanism to select components meeting the

requirements for efficient implementation of a given instance of an application

family for a given execution environment. A profile is a set of attribute/value

pairs. The attribute names and values are derived by domain analysis.

• State Machine: The interaction behavior of a component is managed by a state

machine. Each state of the state machine is a guarded command with a condition

(which is evaluated at runtime) for the execution of the function and a function

signature. The state machine is defined as expressions in a linear propositional

temporal logic over the attributes and state variables of the component. A function

signature and its enabling condition are called an operation. An operation can be

enabled or disabled based on its current state and its current state can be used in

runtime binding of the components. The state machine can be used to represent

complex interactions such as precedence of transactions, "and" relationships

among transactions and "or" relationships among enabling states and transactions.

Each operation of a component can be specified with a contractual agreement

between the user of the component and the component itself. The contract is

specified using pre-conditions and post-conditions. Having explicit contract of an

operation helps in better understanding of the components functionally as well as

automatic runtime checking of the contract.

• Protocol: A protocol defines a sequence of simple interactions necessary to

complete the interaction specified by the profile. The most basic protocol is data-

flow (continuations), which is defined as executing the functionality of a

component and transmitting the output to a successor defined by the selectors at

that component without returning to the invoking component.

 12

Requires Interface: A requires interface describes the set of interactions which a

component must initiate if it is to complete the interactions it has agreed to accept. The

requires interface is a set of three-tuple (selector, state machine, protocol).

• Selector: A selector is a conditional expression over the attributes of the

components in the domain.

• State Machine: State machine specifications are similar to those for accepts

specifications except that the state machine is a single state.

• Protocol: Protocol specifications are as given for accepts specifications.

Start Component: A start component is a component that has at least one

requires interface and no accepts interface. Every program requires a start component.

There can be only one start component in a program which provides a starting point for

the program.

Stop Component: A stop component is a component that has at least one accepts

interface and no requires interface. A stop component is also a requirement for

termination of a program. There can be more than one stop component of a program

denoting multiple ending points for the program.

Adapt Component: An adapt component contains the logic for utilizing the

behavioral information measured in the execution of the code. The fact that the measured

data can be analyzed in the context of the known semantics of the components in which

the measurements are taken enables straightforward analysis and decision processes.

2.4 SOFTWARE ARCHITECTURE BASED PROGRAMMING MODEL

2.4.1 Programming Model

The software architecture-based, component-oriented programming model targets

development of a family of programs rather than single programs. The process defined by

 13

the programming model has two phases: development of an architecture in terms of self-

describing components and specification of instances from the family of programs which

can be instantiated from the set of components.

2.4.2 Domain Analysis and Component Implementation

The set of components which enables construction of a family of application

programs may include components which utilize different algorithms for the same

functionality for different problem instances or different implementation strategies for

different execution environments. A program for a given problem instance or given

execution environment is composed from appropriate components by selecting desired

properties for the components and the properties of the execution environment in the

Start component. The steps are:

a. Domain Analysis – Execute the necessary domain analyses to obtain the software

architecture. It is commonly the case that applications require components from

multiple domains.

b. Component Development – Specify and either design and implement or discover

in existing libraries, the family of components identified in the domain analysis in

an appropriate sequential procedural language. The specification for each

component should include pre-conditions and post-conditions defining the

applicability of this implementation of the functionality of the component.

c. Specify Properties and Interactions – Specify for each component (in the P-

COM2 interface definition language) its properties and the interactions in which it

can engage using the attributes identified in the domain analysis to specify

associative interfaces for the components. The interfaces must differentiate the

components by identifying their properties in terms of the attributes defined in the

domain analysis.

 14

The resulting set of P-COM2 self-describing components defines a software

architecture for a family of application instances in which the relationships are realized at

compile-time and runtime.

2.4.3 Program Instance Development

This section gives the basic process for specification of an application family

instance in the case where the system configuration is known in advance and the only

requirement is to compose the program from a set of components. Chapter 5 extends this

process to evolutionary development where the system configuration is not known in

advance. The steps in specifying a given instance of an application are:

a. Analyze the problem instance and the target execution environment. Identify the

attributes and attribute values which characterize the components desired for this

problem instance and execution environment.

b. Identify the components from which the application instance will be composed. If

the needed components are not available then some additional implementations of

components may be necessary together with an extension of the domain analysis.

c. Identify the dependence graph of the application instance. The dependence graph

is expressed in terms of the components identified. Specify the number of

replications desired for parallelism and for fault-tolerance. Incorporate these

specifications into the component interfaces or as parameters in the Start

component if parameterized parallelism has been incorporated into the component

interfaces.

d. Define a Start component which initializes the replication parameters, sets

attribute values needed to ensure that the desired components are selected and

matched.

e. Define at least one Stop component.

 15

2.5 INTERFACE DEFINITION LANGUAGE

The fundamental concepts underlying the interface definition language were

given in Section 2.2 and 2.3. This section illustrates the interface of a component in the

P-COM2 syntax.

Figure 2: Accepts interface of gather_transpose component

Figure 2 shows the accepts interface of a component in the matrix algebra domain

named gather_transpose. The function of this component is to collect the rows of a

complex-valued matrix and when the collection is complete, perform a transpose of the

matrix.

The accepts interface has three parts. The profile part shows the properties of this

component. The semantics of the properties and their values were determined by a prior

profile:
 string domain = "matrix";

string function = "gather";
string element_type = "complex";
bool combine_by_row = true;
bool transpose = true;
string implementation_level = "code";

operation:
 // 1st operation

guard { state == 0 }
// make sure that the arguments are correct
pre_condition { TRUE ==> (n > 0) && (m > 0) && (p >= 2); }
void get_p(in int n, in int m, in int p);
post_condition { }
action { state = 1; }

 ||

 // 2nd operation
 guard { state == 1 }

pre_condition { TRUE ==> (inst >= 0); }
void get_grid_n_m_inst(in mat1 grid_re,in mat1 grid_im,in int inst);

 // make sure that the values are copied into the big matrix
 post_condition { TRUE ==> forall(int i:0..(n*m-1)|
 out_grid_re[n*m*inst + i] == grid_re[i]); }
 action { }
protocol: dataflow;

 16

domain analysis of the program. The properties describe that this component gathers

complex-valued matrices and combines them by rows and finally transposes the

combined matrix. The property “implementation_level” is used to differentiate between

abstract and concrete components and will be described in Chapter 5. The value of the

property implementation_level describes this component as a concrete component.

The operation section shows that this component has two operations that are

related by an OR (||) operation. This means that if the operations are enabled, any one of

them can be invoked. The guard part of an operation decides whether the operation is

enabled or not. According to the guard part, the two operations cannot both be enabled at

the same time since the value of the variable “state” cannot be 0 and 1 at the same time.

The initial value of the variable is 0 and thus the first operation is enabled initially. The

action part of the first operation changes the value of the variable “state” to 1 after the

operation is invoked. Thus the guard and action part together forms the state machine of

the component. After the first operation is invoked, the second operation becomes

enabled and the first operation becomes disabled.

The pre_condition and post_condition section is the implementation of the

obligation and guarantee of contracts respectively which are evaluated at runtime. For

example the pre_condition section of the second transaction shows the obligation of this

transaction is that the value of the variable “inst” must be greater than or equal to zero.

The post_condition makes sure that each individual piece of the complex matrix has

been copied properly. The operations specify the parameters and their types. The

protocol of the component is dataflow.

Figure 3 shows the requires interface of the gather_transpose component. The

requires interface of this component has two requires clauses. Each of the requires clause

shows the selector and operation part while the protocol part is omitted. The requires

 17

interface invokes a component whose desired properties are shown by the selector section

of the requires interface. The first requires interface is looking for a component that can

partition a complex matrix by row-wise. The second requires clause is looking for a

component that can print a complex matrix. As before the guards of the operations

determine which of the two operations are enabled. From the specification of the guards

both operations cannot be enabled at the same time. The guard section in conjunction

with the action section changes the state of the component.

Figure 3: Requires interface of gather_transpose component

selector:
 string domain == "matrix";
 string function == "distribute";
 string element_type == "complex";
 bool distribute_by_row == true;
 string implementation_level == "code";
operation:
 guard { no_of_times_invoked == 1 && gathered == p }
 void get_matrix(out mat1 out_grid_re,out mat1 out_grid_im,
 out int m, out int n*p, out int p);
 action { state = 0; initialized = 0; }

selector:
 string domain == "matrix";
 string function == "print";
 string element_type == "complex";
 string implementation_level == "code";
operation:
 guard { no_of_times_invoked == 2 && gathered == p }
 void get_grid_n_m(out mat1 out_grid_re,out mat1 out_grid_im,
 out int m,out int n*p);
 action { no_of_times_invoked = 0; state = 0; initialized = 0; }

 18

Chapter 3: Automated Composition

3.1 MOTIVATION

Component-oriented software development is one of the most active and

significant threads of research in software engineering [93], [1], [21], [82]. There are

many motivations for raising the level of abstraction of program composition from

individual statements to components with substantial semantics. It is often the case that

there is a family of applications which can be generated from a modest number of

appropriately-defined components. Optimization and adaptation for different execution

environments is readily accomplished by creating and maintaining multiple versions of

components rather than by direct modifications of complete applications. Programs

generated and maintained as compositions of components are much more understandable

and thus much more readily modifiable and maintainable.

Even though there are additional benefits to component-oriented development in

the distributed and parallel domain3, there has been relatively little research on

component based programming in the context of high performance parallel and

distributed programming. The execution environments for parallel programs are much

more diverse than those for sequential programs. It is often necessary to maintain

multiple versions of parallel programs for different execution environments. Program

development by composition of components enables adaptation of parallel programs to

different execution environments and optimization for different application instances by

replacement of components. Adaptive control of parallel and distributed programs [2] is

also enabled by replacement of components. Management of adaptations such as degree

3 CORBA, Web Services, etc. which are very much component-oriented development systems, are not
commonly used for development of parallel or high performance applications.

 19

of parallelism and load balancing are readily accomplished at the component level.

Parallelism is most often determined by the number of instances of a component which

are executing in parallel (single program multiple data parallelism). It has also been

found that viewing programs as compositions of components tends to lead to programs

with better structuring and better performance even for sequential versions.

We approach component-oriented development of parallel and distributed

programs from a different perspective than most other projects. The principal concerns

and goals for the P-COM2 project have been to enable automation of composition

through a compiler, to develop a mechanism enabling runtime adaptation of parallel and

distributed programs at the component level [2] and to enable performance-oriented,

evolutionary development of parallel and distributed programs. This chapter covers the

first topic, compiler-implemented composition. Automation of composition of programs

from components substantially enhances the effectiveness of component based

development. In addition to the obvious benefit of programmer productivity in initial

program generation, automated composition enables very rapid customization of

programs to problem instances and execution environments through recompilation.

Automated composition insures that interactions among components (the most commons

source of error in parallel programming) are correctly generated. Perhaps surprisingly,

automated composition frequently leads to programs which are more efficient that

manually composed programs since compilers can generate correct code for complex

behaviors such as asynchronous communication and can also recognize and generate

efficient code for frequently occurring patterns of interaction behavior.

3.2 AUTOMATED COMPOSITION

The fundamental concepts underlying the interface definition language were

given in Chapter 2. This section describes how the automated composition process

 20

works, shows an example of the composition process and finally shows an extension of

the interface definition language that enables matching even when the program library is

not complete.

3.2.1 Program Composition Process

The conditional expression of a selector is a template which has slots for attribute

names and values. The names and values are specified in the profiles of other

components of the domain. Each attribute name in the selector expression of a component

behaves as a variable. The attribute variables in a selector are instantiated with the values

defined in the profile of another component. The profile and the selector are said to match

when the instantiated conditional expression evaluates to true.

The source program for the compilation process is a start component which

implements initialization for the program and a requires interface which specifies the

components implementing the first steps of the computation and one or more libraries to

search for components. The libraries should include the components needed to compose

a family of applications specified by a domain analysis. The components which are

composed to form a program are dependent on the requires interface of the Start

component.

The compilation process first parses the associative interface of the start

component. The compiler then searches a specified list of libraries for components whose

accepts interface matches with the requires interface of the start component. If the

matching between the selector of one component and the profile of another component is

successful, the compiler tries to match the corresponding operations of the requires and

accepts interface. The operations are said to match when all of the following conditions

are true. 1) The name of the two operations is the same. 2) The number of arguments of

each of the two operations is the same. 3) The data type of each argument in the requires

 21

operation is the same as that of the corresponding argument in the accepts operation. 4)

The sequencing constraint given by the conditional expression in the accepts operation

specification (the state machine) is satisfied. Finally the protocol specifications must be

consistent.

The target language for the compilation process is a generalized data flow graph

(GDFG) as described in CODE [69]. The GDFG has two special node types, a start node

and a stop node. When compilation of the P-COM2 Start component is completed, it is

converted into a start node [69] for the GDFG and each match of a requires interface to

an accepts interface results in addition of a node to the data flow graph which is being

incrementally constructed by the compilation process and an arc connecting the this new

node to the node which is currently being processed by the compiler. If there is a

replication clause in an operation specification then at runtime the specified number of

replicas of the matched component are instantiated and linked with data flow arcs. This

searching and matching process for the requires interface is applied recursively to each of

the components that are in the matched set. The composition process stops when no more

matching of interfaces is possible which will always occur with a Stop component since a

Stop component has no requires interface. Compilation of a P-COM2 Stop component

results in generation of a stop node for the data flow graph. The compiler will signal an

error if a requires interface cannot be matched with an accepts interface of a desired

component. The generated GDFG is then compiled to a parallel program for a specific

architecture by compilation processes implemented in the CODE [69] parallel

programming system.

3.2.2 Example of Composition Process

To illustrate the automated composition process, let us look at the second clause

of the requires interface section of gather_transpose component shown in Figure 4. The

 22

accepts interface of the matching component, the function of which is to output the

results is given as Figure 5. The P-COM2 compiler will search its set of component

libraries to find a match for the requires of the gather_transpose and generate a match

with this accepts clause. This component is the Stop component and has no requires

interface so the recursive matching process terminates with this component.

Figure 4: Requires interface of gather_transpose component

Figure 5: Accepts interface of print component

// 1st requires clause
selector:
 string domain == "matrix";
 string function == "distribute";
 string element_type == "complex";
 bool distribute_by_row == true;
 string implementation_level == "code";
operation:
 guard { no_of_times_invoked == 1 && gathered == p }
 void get_matrix(out mat1 out_grid_re,out mat1 out_grid_im,
 out int m, out int n*p, out int p);
 action { state = 0; initialized = 0; }

// 2nd requires clause
selector:
 string domain == "matrix";
 string function == "print";
 string element_type == "complex";
 string implementation_level == "code";
operation:
 guard { no_of_times_invoked == 2 && gathered == p }
 void get_grid_n_m(out mat1 out_grid_re,out mat1 out_grid_im,
 out int m,out int n*p);
 action { no_of_times_invoked = 0; state = 0; initialized = 0; }

profile:
 string domain = "matrix";
 string function = "print";
 string element_type = "complex";
 string implementation_level = "code";
operation:
 void get_grid_n_m(in mat1 grid_re,in mat1 grid_im,
 in int n,in int m);

 23

To see how the automated composition process begins and continues let us

examine the start component Initialize (as shown in Figure 6) for a matrix formulation of

the Swarztrauber's multiprocessor FFT algorithm [92].

Figure 6: Requests interface of initialize component

The requires clause will be matched by a component which partitions a matrix by

rows and then implements SIMD parallel computation on the partitions. Such a

component is seen in Figure 7 and Figure 8. The compiler starts by matching the requires

interface of the Initialize component with the accepts interface of the distribute

component. The recursive process of composition is continued by the compiler seeking a

matching one-D fft component to match the requires of the distribute component, and etc.

This process continues until the terminating component is found as illustrated preceding.

Figure 7: Accepts interface of distribute component

selector:
 string domain == "matrix";
 string function == "distribute";
 string element_type == "complex";
 bool distribute_by_row == true;
 string implementation_level == "code";
operation:
 void get_matrix(out mat1 grid_re,out mat1 grid_im, out int n,
 out int m, out int p);

profile:
 string domain = "matrix";
 string function = "distribute";
 string element_type = "complex";
 bool distribute_by_row = true;
 string implementation_level = "code";
operation:
 // make sure that the arguments are correct
 pre_condition { TRUE ==> (n > 0) && (m > 0) && (p >= 2); }
 void get_matrix(in mat1 grid_re,in mat1 grid_im,in int n,in int m,
 in int p);
 // make sure that the matrices ar properly copied
 post_condition{TRUE ==> forall(int i:0..(p-1),int j:0..(n_p*m-1)
 | (grid_re[i*n_p*m+j] == out_grid_re[i][j]) &&
 (grid_im[i*n_p*m+j] == out_grid_im[i][j])); }

 24

Figure 8: Requests interface of distribute component

3.2.3 Containment Relationship and Approximate Matching

The previous sections sketched how P-COM2 implements automated composition

of programs from components by searching for a component whose accepts interface

exactly matches the requires interface of the component whose requirements are being

met. It may be the case that an exact match with the properties desired is not available in

the component library. We can also specify, as a part of the architectural information,

containment relationships between multiple values of a property. The component

matching algorithm has been extended to implement containment relations on profile

attributes. A containment relation can be defined for each attribute in a profile. A

containment relation (A >> B) specifies that the functionality of A is a superset of the

functionality of B (i.e. general purpose solver for a linear system contains triangular

solver) and that A can be substituted for B if a component implementing B is not

// 1st requires clause
selector:
 string domain == "matrix";
 string function == "gather";
 string element_type == "complex";
 bool combine_by_row == true;
 bool transpose == true;
 string implementation_level == "code";
operation:
 int get_p(out int n/p, out int m,out int p);

// 2nd requires clause
{selector:
 string domain == "fft";
 string input == "matrix";
 string element_type == "complex";
 string fft_dimension == "1D";
 bool apply_per_row == true;
 string implementation_level == "code";
operation:
 void get_grid_n_m(out mat1 out_grid_re[],out mat1 out_grid_im[],
 out int n/p, out int m);
} index [p]

 25

available. The requires section of a component states that it needs a component with

some desired functional and nonfunctional properties. The P-COM2 compiler searches

the library of components and tries to find a component that has those properties. The

search can result in an exact match (each desired property is found) or it can result in an

approximate match (for some desired property, a component is found whose offered

property value contains the desired property). An exact match is preferred over on

approximate match. The containment relation enables composition of a program even

when an exact match for a requires clause is not available.

3.3 CASE STUDY

The P-COM2 framework has been used in the development of a number of non-

trivial parallel programs. The summary results are shown below.

Linear Systems Solution by Fast Multipole Algorithm: Development of a

parallel version of the matrix formulation of the fast multipole (FMM) algorithm for

solution of linear systems was used to motivate and test the P-COM2 compiler. A

surprising result of this case study was the first observation that the serial version of the

program composed from self-describing components was significantly faster than the

serial version of the original monolithic code which was claimed to be highly optimized.

The case study also showed good parallel speedup. This case study is described in

Section 3.3.1.

Sweep3D: The most extensive set of experiments is based on a conversion of the

DOE ASCI benchmark program, Sweep3D to self-describing components. It was found

that after the rather laborious conversion to components was completed, that a pair of

undergraduate students was able to generate near optimal versions of the Sweep3D code

for multiple execution environments with only about two weeks of effort. It was found,

as for the FMM code, that the serial version of the componentized program was

 26

significantly faster that the serial version of the original Sweep3D program. We believe

that the speedup of the componentized program over the original program is due to the

facts that the C compiler generates more efficient code for the relatively small code units

of the components than for the complex structures in the original code. In addition good

parallel speedup was observed. A full report can be found in [98].

3.3.1 Case Study – A Generalized Fast Multipole Solver

The Fast Multipole Method (FMM) [37], [38] which solves the N-body

electrostatics problems in O(N) rather than O(N2) operations, is central to fast

computational strategies for particle simulations. The FMM is also useful for iterative

solution of linear algebraic equations associated with approximate solution of integral

equations. There the FMM is used for O(N) matrix-vector multiplication. In order to

adapt the FMM for applications in fluid and solid mechanics, the classical electrostatics

problem must be replaced with a generalized electrostatics problem [32], [33]. Such

problems involve vector and tensor valued charges, which means that one generalized

electrostatics problem is equivalent to several classical electrostatics problems, which

share the same geometry. In particular, FLEMS code [32] relies on the generalized

electrostatics problem that is equivalent to 13 classical electrostatics problems.

We have performed a domain analysis for the FMM for generalized (multiple

charge type) electrostatics. For example, the FMM tree has certain attributes, such as its

depth and its number of charges per cell and the application component has an attribute

with values that select between classical and generalized electrostatics. For generalized

electrostatics the number of charge types is an attribute. For each attribute, the analysis

defines a range of legal values. Components for a family of FMM codes for generalized

electrostatics were derived from the FLEMS FMM implementation. These components

were given associative interfaces that define their properties and behaviors and were

 27

annotated with domain attributes and architectural attributes. An instance of the

component family can be specified by providing specific values for each attribute. An

example of an attribute that would lead to different implementations is the number of

charge types to be processed simultaneously.

There are space-computation tradeoffs which can be applied in the matrix-

structured formulation [90] of the FMM algorithm which can be chosen to optimize the

code for a given execution environment and problem specification. These include:

• Simultaneous computation of cell potentials for multiple charge types.

• Use of optimized library routines for vector-matrix multiply.

• Use of optimized library routines for matrix-matrix multiply.

• Loop interchange over the two outer loops to improve locality (within a

component).

• Number of terms in the multipole expansion.

There are many variants of these structures and interactions among them. The

original FMM implementation in the FLEMS code is approximately 4500 lines in length

with the logic distributed throughout the code. Manual construction of optimized

versions for even a modest number of execution environments would lead to rather

complex code. But a small number (eight) of components characterized by the number

of charges which are simultaneously computed and the number of terms in the multipole

expansion suffice to realize an important subset of execution environment optimized

codes.

The FMM includes five translation theorems:

• Particle charge to Multipole (P2M is applied at the finest partitioning level)

• Multipole to Multipole (M2M is applied at all partitioning levels, from the finest

to the coarsest)

 28

• Multipole to Local (M2L is applied at all partitioning levels)

• Local to Local (L2L is applied at all partitioning levels, from the coarsest to the

finest)

• Local to Particle potential and forces (L2P is applied at the finest partitioning

level)

Figure 9: Data flow graph of FMM code

Two kinds of components are needed structure the FMM computation framework.

The first category comes directly from the FMM algorithm. The five translation

theorems, charges-to-multipole, multipole-to-multipole, multipole-to-local, local-to-local,

local-to-potential and force, and direct-interaction calculation belong to this category.

The second category contains the communication components, distribute and collect

which actually also derive from the FMM algorithm since they implement distribution

 29

and collection according to the interaction lists for each partition of the domain. The data

flow graph for the FMM code for two processors is shown in Figure 9.

Table 1. Performance data for tree depth of four.

Number of
Charge Types

Run time on 2
processors
(Seconds)

Run time on 4
processors
(Seconds)

Run time on 8
processors
(Seconds)

5 413.84 215.52 121.11
12 561.53 305.50 254.14

An extensive set of performance studies were made comparing the original and

componentized sequential codes. Preliminary results were reported [27] and more

detailed results were reported in [59]. The performance of the sequential componentized

code, contrary to conventional wisdom, is up to 15 times faster than the original

implementation which had itself been optimized by several generations of students and

post-doctoral fellows. This surprising result is largely due to specialization of

functionality based on selection of optimal components and replacing loop

implementations of matrix-matrix multiply by BLAS implementations of matrix-matrix

multiply. Table 1 shows a small sample of the performance data obtained. The data was

taken on a Linux cluster of Pentium III’s at 1.8 Gigahertz and a 100MB Ethernet

interconnect. There are approximately half a million charges in this system. There are

two factors to be noted: (i) Speedup is near-linear for the small number of processors and

(ii) the time increases less than linearly with the number of charge types due to the

change due to optimizations local to components.

3.4 RELATED WORK

The related work can be categorized into different categories which are described

below.

 30

3.4.1 Component-based development

COM [65], EJB [89], and CORBA [70] are the most widely used industrial

component models. However they do not provide automated composition facilities and

are not feasible for high performance computing.

Piccola [1] is a composition language for components. Component

implementation and composition are separated in Piccola. It uses one central script which

composes different components. Whereas the composition occurs during compile time in

P-COM2 using the information that is distributed among components and it is fully

automated.

In the CoML [15] approach of composing components there are two parts. One is

CoPL (Component Plan Language), which is basically a description of composition. The

Application programmer processes these CoPL plans with a generator. The generator

produces CoML (Component Markup Language) code, which can be used by different

IDEs for different component technologies. The Component Markup Language is an

XML application for composing software components. So this is another script based

component composition where the composition is done in a central place.

H2O [91] is a component-oriented framework for composition of distributed

programs based on web services. Triana [94] is a graphical development environment for

composing distributed programs from components targeting peer to peer execution

environments. The G2 [50] composes distributed parallel programs from web services

through Microsoft .Net. Armada [73] composes distributed/parallel programs specialized

to data movement and filtering.

The Common Component Architecture (CCA) project [10] is a major research

and development project focused on composition of parallel programs from components.

However, the goals of CCA are rather different from the goals of this project. One

 31

primary goal of CCA is to enable composition of programs from components written in

multiple languages. To this end BABEL [51] has been introduced which acts as the

interface specification language and uses intermediate object representation to

automatically translate from one language to another. CCA has developed interface

standards. The implementations of the CCA interface specifications are object-oriented.

There are several frameworks including Ccaffeine [9], XCAT [35], SCIRun2 [99] and

DCA [14] implementing the CCA interface specification system. The different

implementations target different architectures and adopt different programming models.

For example Ccaffeine targets parallel architectures and adopts a single program multiple

data (SPMD) model, XCAT targets distributed architectures and adopts the grid model,

SCIRun2 and DCA targets both distributed and parallel architectures and implement both

SPMD and MPMD (multiple program multiple data) models. Component composition

process is either graphical or through scripts and make files. CCA components interact

through two types of ports. The first type of port is the provides port. The provides port is

an interface that components provide to other components. The second type of port is the

uses port. It is an interface through which components connects with other components

which they require. These port type exhibit some similarities to the accepts and requires

operation specifications. However, the details and implementations are quite different as

we have focused on incorporation of the information necessary to enable composition by

compilation. Users are responsible for implementing communication between replicated

components which is not handled by the framework of CCA. Also diagonal

communication among two different components is not defined in the CCA standard.

3.4.2 Composition Techniques

Broadway annotational compiler [40] uses annotations for retaining domain

specific semantics information. Using the information the compiler can choose domain

 32

specific optimization techniques. Using dynamic feedback techniques the compiler can

choose dynamically the best implementation from multiple versions of optimized code.

PCOM2 also uses semantic information in the form of attributes and their values. Using

the same type of semantics information the PCOM2 compiler can choose the best

component at compiler time. The use of dynamic loading also enables our compiler to

choose the best implementation at runtime which will be discussed in next chapter.

Amphion [88] is a system that uses deductive composition mechanism to

automatically generate program from a subroutine library given a program specification.

In order to develop a program a theory is needed for the application domain which is

specified in the form of application domain axioms. The information about subroutines is

also put in the forms of axioms in that domain theory. Finally there is a graphical

interface that helps user to formulate the specification of the required program. The

properties of this graphical construct are also put in the form of axioms. Given a formal

specification of the program (using the graphical interface), the specification of the

program is translated into a theorem and then a constructive theorem prover is used. The

theorem prover constructs a proof showing that the goal is achievable and how to achieve

it. From the given a proof a program is constructed out of the subroutines automatically.

A semi-automatic composition technique for web services is described in [87]. It

has two basic parts, a composer and an inference engine. The profile of a web service has

two parts – functional properties and non-functional properties. Functional properties are

expressed using Web Ontology Language [22] (OWL) and have inheritance concept

using OWL class. Non-functional properties describe the services. Users can add

properties to the class description using DAML-S [8] which attaches semantics

information to the profile of the web service. Non-functional properties are used to filter

when choosing a particular web service. The idea is to start by choosing one of the web

 33

services that is registered in the composer, apply query on that service to find out what

other web services it needs to implement its functionality. The composer comes back

with a list of web services that can connect with the input of the selected web service.

The same procedure is applied recursively to each of the selected web service. The

selection from the list is manual. To make this process fully automated, AI planning

techniques can be applied [96].

The ICENI [41] approach for grid services also uses OWL to annotate interfaces.

This approach introduces an abstraction layer named metadata space on top of the grid

services. Semantic annotation is used to describe the service as well as to describe the

service methods. The meta-services use this ontological annotation to find appropriate

matches between requirement publisher and implementation publisher. The semantic

annotation used to describe the structure of the service method is also used to filter out

incompatible matches.

ArchJava [5] annotates ports with provides and requires methods which helps the

programmer to better understand the dependency relations among components by

exposing it to the programmer. The accepts and requests interface of a P-COM2

component incorporate signatures as do ArchJava provides and requires. The accepts and

requests interfaces also include profiles and precedence specification carrying semantic

information and enabling automatic program composition. The attribute name/value pairs

in profiles are used for both selecting and matching components thereby providing a

semantics-based matching in addition to type checking of the matching interfaces.

The use of associative interface has been reported earlier in the literature.

Associative interface is used in one broadcast based coordination model [17]. This model

uses run time composition, whereas our approach uses compile time composition.

 34

Associative interfaces have also been reported in composition of performance modeling

[16].

3.4.3 Architecture Description Languages (ADL)

Darwin [56] is a declarative binding language which can be used to define

hierarchical compositions of interconnected components through programmers writing

compositional scripts. It is particularly useful for describing distributed system

architectures. It does not support the specification of non-functional properties. Both

Darwin and P-COM2 uses implicit connectors. In P-COM2, the composition information

encapsulates the components themselves; as a result the compiler can choose the required

component automatically.

Wright [6] uses explicit connectors in describing the architecture. It uses protocol

description for specifying the order of interactions between components. The

composition process of specifying the attachments of a port with a role is manual. In

Wright the port-role compatibility analysis is done statically. The matching of selector

and profile in P-COM2 can be seen as a kind of compatibility analysis which is done

during compile time.

C2 [61], [62] is an ADL suitable for describing architectures of highly-distributed,

evolvable, and dynamic systems. Component invariants and operation pre- and post-

conditions are specified in 1st order logic.

Weaves [36] are networks of concurrent components that communicate by

passing objects. It allows automatic composition of programs by giving the high level

goals to the weaver. Component selection and interconnection is done by the weaver

starting from the output goal and working backwards recursively.

UniCon [83] is an ADL with a focus on interconnecting existing components

using common interface protocols. Components specify players through which they

 35

interact with outside world. Connectors (via protocols) specify roles at which the

connector can mediate the interaction among components. UniCon does not support

automated composition.

The SOFA environment [78],[49] describes application architecture using the

SOFA component definition language (SOFA CDL). The SOFA CDL is then mapped

into C++ which is used to implement the components. A component in SOFA consists of

a component frame and a component architecture. A component frame lists all the

interfaces that the component requires and provides and is used a black box view. A

component architecture implements the operations of the provided interfaces using only

internal operations and the operations of the required interfaces. A component

architecture can be primitive or composed and provides a grey box view. The binding

between component is explicit and manual. Whereas in P-COM2 the compiler uses the

information distributed among the components to instantiate the architecture and bindings

and it is an automatic process. The connectors of SOFA are pregenerated using CORBA

and dynamically linked with the components. Whereas in P-COM2 the connectors are

pregenerated using MPI.

 36

Chapter 4: Dynamic (Runtime) Adaptation

4.1 MOTIVATION AND OVERVIEW

The need for runtime adaptation comes from two factors:

a. Adaptive computational methods may change the behavior of the program

substantially during its execution. These behavioral changes may result in

deterioration of performance and/or failure to meet specifications for accuracy.

b. The resource sets available to a program may change during execution leading to

either deterioration of performance or opportunity for enhanced performance.

The self-describing component model in PCOM2 enables runtime adaptation to

respond to behavior changes through replacement of components and expansion or

contraction of resource usage by increasing or decreasing the number of replicas of a

component in the application architecture. Since components are the unit of work,

composition and architecture description in our model, making components the unit of

replacement and/or replication fits well within the model. In P-COM2 a component is not

loaded until it is first executed and the component interfaces have built in state machines

which has the ability to enable or disable component invocation at runtime. Thus we can

achieve a dynamic architecture by replacing, enabling or disabling the components which

compose an application architecture at runtime.

During compile time, a search is made for a component matching the

requirements specified in the self-description of each component which invokes other

components. A component which meets the requirement as it is known at compile time is

composed into the program. If component requirements changed during runtime, a

suitable component implementation meeting the new requirements can be loaded. The

behavior (performance or other property) of each component may be (selectively)

 37

monitored by the runtime system. The monitored data may be analyzed by the runtime

system or sent to an adapt component which analyzes the data. If it is determined that

some requirement is no longer being met by the currently loaded component

implementation then a suitable component implementation meeting the new requirements

can be loaded.

An architecture of self-describing components also simplifies load balancing and

responses to changes in resource availability since increasing or decreasing the number of

copies of a component running in parallel is straightforward.

The principal restriction on runtime adaptation in P-COM2 is that the component

structure of the application architecture established at compile time cannot be changed at

runtime. However the degree of parallelism can vary at runtime and components can be

replaced at runtime. In summary, the implementations of the components within the

architecture and the number of replicas of a given component can be adapted at runtime.

4.2 IMPLEMENTATION

Most operating systems enable runtime linking of components to executable

images. The requirements for intelligent use of this capability are: to identify

components (through monitoring of execution behavior) which need to be replaced, to

specify the properties of the component which is to be substituted for the existing

component and invoke the operating system functionality to load the new component.

Composition of a program from self-describing components enables and

facilitates each of these tasks. Monitoring can be done on a component by component

basis; components whose behavior is unlikely to vary need not be monitored. The

monitoring code is readily generated by the compiler on a component by component

basis. The compiler automatically generates the communication path to send the

monitored data to the adapt component. The required analysis and actions is provided in

 38

the adapt component or components. The analysis code in the adapt components must be

provided by the programmer.

When an adapt component detects a need to replace a component and determines

which component implementation should be used, the requires interface of the

component which invokes the component for which the implementation is to be replaced

is modified to reflect the current requirements. An adapt component invokes the runtime

system to complete the identification of a component which meets the new requirements

and then uses the operating system facilities for dynamic linking to recompose a new

version of the program with the component meeting the new requirements. Thus the

compile time mechanisms for program composition are extended to runtime. This

unification of compile and runtime composition enables automated adaptation through a

single mechanism once the programmer has provided the analysis logic to determine the

adaptation to be made.

The number of replicas of a component to be executed in parallel within an

application architecture is determined by parameters which can be modified at runtime

thus enabling increases or decreases in parallelism at runtime.

4.3 CASE STUDY

An h-p adaptive finite element code [24] was used for the case study. The code

was chosen since it is an application which may benefit from both customization at

compile time and optimization at runtime. An h-p adaptive finite element code may adapt

both the mesh spacing and the approximation function for the elements on a local basis in

order to attain a given accuracy in the solution. (h is mesh spacing and p is the degree of

the polynomial approximation to the solution on the elements of the mesh.) An h-p

adaptive finite element code is therefore a good example of an application where the

execution behavior may change material as it executes. The adaptive code may make

 39

many cycles through the basic loop of solution adaptation. The requirements of the

solution process may change substantially as the solution mesh and approximating

functions are locally or globally adapted. In a parallel implementation, the amount of

work in different partitions may become unbalanced during runtime even if the initial

load balance was even across processors.

The component-composition approach to application family development enabled

substitution of components implementing different algorithms during execution to adapt

to the changes in solution process. The case study demonstrated the effectiveness of the

runtime adaptation capability. A factor of nearly three in performance was obtained

through runtime replacement of the linear solver component as the solution was adapted.

The case study is based on an h-p adaptive finite element code structure

developed in [24], [25], [26]. These packages have a common data structure in one-,

two-, and three-dimensional space. The major logical components include mesh

generation, problem definition, shape function definition, and element routine, linear

system of equation solver, error estimation module, and h-p adaptation module. We have

used the one-dimensional code in this case study since it has the same structure as the

two-D and three-D codes but is of considerably smaller size.

4.3.1 Componentization of the h-p Adaptive Finite Element Code

The set of components is determined by constructing a workflow diagram for the

application in which each logical function is identified as a component. Figure 10 is a

workflow diagram for a family of codes implementing h-p adaptive codes. Figure 10 and

the components in Figure 10 were obtained by reverse engineering the one-dimensional

code described in the previous section. This componentization does not represent the

finest granularity of functional decomposition. The “Coarse Mesh Solver” and the “Fine

Mesh Solver” each contain three logical functions, the computational model, the element

 40

generator for the stiffness matrix and the solver for the stiffness matrix.

Componentization was stopped at the level shown in Figure 10 because component

extraction by reverse engineering of the existing code was laborious and because this

componentization enables practical experiments in componentization.

Initialization

Meshgen

hp_strategy_init

Coarse Mesh
Solver

Global_hpref

Global_hpref

Fine Mesh
Solver

Compute_error

Optimize

Error <
Tolerance ?

Yes No

Figure 10: Workflow diagram for h-p adaptive finite element code

4.3.2 Experiments

The experiments illustrate composition of programs implementing a sequence of

models, compile time choice of linear solvers and runtime substitution of the linear

solver.

Compile time selection of linear solvers is illustrated by composing application

instances first using a direct solver for the coarse mesh and a conjugate gradient solver

with a diagonal pre-conditioner for the fine mesh. Runtime replacement (and

optimization) is illustrated by replacement of the direct solver by the conjugate gradient

 41

solver after the first cycle of the adaptation demonstrates that the direct solver is not an

efficient choice.

Composition of applications based on different computational models for a

physical system is illustrated by composing a sequence of applications using successively

more accurate models for bioheat transfer. We consider a set of bioheat transfer

equations ranging from simple conductivity (Poisson) to incorporation of blood perfusion

(Pennes Equation) to incorporation of artery-vein countercurrent (Weinbaum-Jiji

Equation [26]).

These models represent progression of complexity and accuracy from the simple

Poisson model through the Pennes and Weinbaum-Jiji models. The experiment compares

a standard metric resulting from solution of each of the models.

4.3.3 Illustrations of Automated Composition

4.3.3.1 Compile Time Selection of Solver and Model

The component library is initialized with two solvers: i) A direct solver that uses

LU factorization and back substitution and ii) A Preconditioned Conjugate Gradient

(PCG) solver that uses a diagonal pre-conditioner. Each of the four models sketched in

Section 3.3: i) Laplace model ii) Poisson model iii) Pennes model and iv) Weinbaum-Jiji

model have been incorporated into a component. The componentization of the h-p

adaptive code leaves the model and the solver in the same component although they

could readily be separated and would be separated for a production implementation.

There are therefore eight implementations of the solver component. Each can be used for

the coarse or fine solver so long as the model is the same for both the coarse and fine

meshes. These eight implementations were encapsulated using the interface definition

language of P-COM2. A component that needs a particular combination of solver and

 42

model expresses that requirement using the selector interface. The selector of a

component that requires a direct solver and Poisson model is shown below (only the

attributes part is shown here).

selector:
string domain == “application”;
string component == “solver”;
string solver_type == “Direct”
string model == “Poisson”

Similarly a PCG implementation of a solver that uses a Laplace model expresses

that information in the profile of that implementation.

profile:
 string domain = “application”;
 string component = “solver”;
 string solver_type = “PCG”
 string model = “Laplace”

The compiler chooses the appropriate component as described in Chapter 3. By

changing the selector section of a component the appropriate implementation can be

chosen at compile time.

Table 2 compares the solutions obtained from application family instances based

on each of Poisson, Pennes and Weinbaum-Jiji computational models. Using Weinbaum-

Jiji as a base model, we compared the solution in H1(D)-norm. Table 2 indicates that

differences are significant. These quantities in percentage can be used as a criterion for

the decision-making in model selection. For example, if the acceptance criterion is set to

20%, then we need to reject both Poisson and Pennes models with respect to more

accurate Weinbaum-Jiji model.

Table 2. Properties of solutions from multiple models

Model Poisson Pennes Weinbaum-Jiji
Solution Norm 0.18787E+06 0.18348E+06 0.14895E+06

Percentage 26% 23% -

 43

4.3.3.2 Runtime Optimization by Component Replacement

The P-COM2 compiler automatically generates performance measures for the

execution behavior of each component. This information can be used to determine

whether a currently loaded component is performing efficiently and/or robustly. When it

is determined that a change of algorithm is needed, the dynamic loading capability of the

P-COM2 runtime system can be used to dynamically replace an implementation of a

component. The implementation of the solver component incorporated code to load

libraries at runtime depending upon argument values in the transaction specification.

Based on the argument (a domain attribute) the implementation can either run the direct

solver or load a PCG solver from the library and invoke it. Similarly the PCG solver can

be directed to replace itself by a direct solver.

Table 3. Execution time improvement with dynamic solver replacement

Iteration Coarse Mesh Solve Fine Mesh Solve Total Solve Time

1 2401x2401Direct
3.162 sec.

5401x5401PCG
1.199 sec. 4.361sec.

2 2404x2404PCG
0.536 sec.

5404x5404PCG
0.972 sec. 1.508 sec.

In the illustration reported here, during the first iteration the coarse mesh was

solved using a direct solver and the fine mesh was solved using a PCG solver. But for

large mesh sizes the direct solver component may take a longer time to solver the coarse

mesh than the PCG solver takes to solve the fine mesh. After the first iteration, the

runtime of the direct solve of the coarse mesh and the PCG solve of the fine mesh are

compared component are compared in the optimize component, “optimize.” If it turns out

that the direct solve of the coarse mesh is too slow, an appropriate argument is passed to

the coarse mesh solver so that it can load the PCG solver using dynamic loading from the

library on the next mesh refinement iteration. Table 3 summarizes the results of some

 44

experiments with dynamic solver replacement. An appropriate choice of solver cuts the

time for solution down by nearly a factor of three.

4.4 RELATED WORK

AspectIX [42] offers the ability to replace an implementation at runtime. The

functional and configuration interface in AspectIX is similar to the operation and

attributes of the profile in P-COM2. The operation provides the syntax of a component

invocation and the attributes expresses the semantics in the program domain. AspectIX

uses interface information at runtime whereas P-COM2 integrates both runtime and

compile time composition.

The emerging field of autonomic computing (see [74] for a survey] is concerned

with runtime adaptation of systems to evolving environments. Automate [3], [75] is an

autonomic system designed to handle the complexity, heterogeneity and dynamism of

grid computing environment. It features a component-based development framework to

support the development of autonomic self-managed applications. Each autonomic

element is controlled by an element manager/rule agent and has three kinds of ports:

functional ports, control ports and operational ports. The functional ports are similar to

the signature in our operation description. The control port is used to get information

from sensors and to control those sensors. The operational port is used to inject

interaction and behavioral rules into the component. The attributes in the profile

description of our components are used in selecting the behavior of a required component

and the selection mechanism is carried out by the compiler at compile time and by the

runtime system at runtime. Also the interaction rules are similar to the state machine

description of our operation. In case of automate a workflow is submitted to the

composition manager which transforms it into a set of interaction rules and sends them to

each individual element manager/rule agent. In our case the transition of workflow to

 45

state machine description is performed manually and inserted into the interface

components.

COMPAS [28] is a framework for automatic performance tuning of component

based systems. The monitoring and diagnosis module is responsible for acquiring runtime

performance information on software components, as well as on the software

application’s execution environment. For that purpose it automatically instruments EJB

with a proxy layer. The performance monitoring probes can use either a collaborative

approach in diagnosing performance problems and in adapting the application or can use

a centralized approach by sending monitored information to a central monitoring

dispatcher. Adaptation functionality is based on the usage of multiple, functionally

equivalent component implementations, each one optimized for a different running

context. A rule based decision making process is used in selecting and activating the

optimal component implementation in the current running context. P-COM2 uses a rule

based system in decision making, depends on multiple implementations, and uses a

centralized approach (adapt component) in the decision making process. But it is also

possible to use multiple adapt component to collaborate in the decision making process.

The ICENI [41] approach uses semantic annotation in the interface. There are two

stages of semantic annotation. In the first stage the semantic annotation is used to

describe the service. In the second stage the annotation is used to describe the structure of

the service methods. The meta-services use this annotation to find appropriate matches. It

can match semantically equivalent but syntactically different services by adapting the

interface of incompatible matches based on some graph transformation rule. Thus it

supports adaptive interface for composition. But it does not support adaptive components

at runtime.

 46

Adaptive MPI (AMPI) [45] is an MPI implementation and extension that supports

processor virtualization. AMPI builds on top of CHARM++ [48], shares the runtime

system with it, and provides the capabilities of CHARM++ in a more traditional MPI

programming model. AMPI implements virtual MPI processes (VPs), several of which

may be mapped to a single physical processor. It encapsulates each VP within a user-

level migratable thread implemented as a Charm++ object. By embedding each thread

with a chare, AMPI programs can automatically take advantage of the features of the

Charm++ runtime system (such as automatic adaptive overlap of communication and

computation and automatic load balancing) with little or no changes to the underlying

MPI program. AMPI thus allows automatic optimization with the use of migratable

threads. However it does not allow replacing components at runtime to provide better

performance nor does it allow changes in the application structure at runtime. P-COM2

supports dynamic load balancing by changing number of replicated components at

runtime.

ArchJava [5] provides the ability to dynamically add components at runtime using

the “new” operator, but an addition of new connection is restricted by connection

patterns. These patterns define through which interfaces and to which types of

components the new component can be connected. It does not provide a performance

monitoring ability which can be helpful in making the decision as to when to add new

components or connectors.

Darwin [57] supports constrained changes in the architecture at runtime

(constrained dynamism) by replication of components via dynamic instantiation, as well

as deletion and rebinding of components by interpreting Darwin scripts. Rapide [53]

enables constrained dynamism by conditional connection, event patterns, and dynamic

instantiation of components. C2 [61] supports unconstrained changes in the architecture

 47

at runtime by element insertion, removal and rewiring. P-COM2 (our approach) supports

constrained dynamism by replication of components by dynamic instantiation and also

supports runtime reconnection using conditional operators of the state machine.

Dynamic Wright [7] is an extension of Wright [6] which allows dynamic

adaptation of software architecture. The protocol description of Wright was modified to

include special control events. Configurors, which are separate configuration programs

use these control events to trigger reconfigurations. In case of P-COM2 the same effect

can be achieved by the use of the adapt components.

The SOFA/DCUP [78] framework enables dynamic replacement of a component

at runtime. A component in DCUP is divided into a permanent part and a replaceable

part. The interaction of SOFAnode and DCUP allows publisher of a component to

dynamically update a component at runtime and usually it is done to reflect changes of

version of a component. SOFA 2.0 [19], [43] enables modification of software

architecture at runtime by introducing a set of reconfiguration patterns and permitting

only those dynamic reconfigurations that are compliant with the patterns. However it

does not provide any performance monitoring functionality which can be used in the

decision making process.

 48

Chapter 5: Performance Modeling and Evolutionary Development

5.1 MOTIVATION AND OVERVIEW

Designing and implementing parallel/distributed programs to meet performance

requirements is still not an exact science. Attaining performance goals is rendered more

difficult by the multiplicity of and constant change in parallel execution environments.

Porting across execution environments with retention of efficiency often requires effort

intensive redesign and re-implementation. Conventional development methods for

parallel programs where a program is fully developed before its performance properties

can be evaluated worsen the problem. Conventional parallel program structures based on

partitioning of shared data across processes and threads make optimization for different

execution environments and problem instances difficult.

We present a method (Evolutionary Development) for design and implementation

of instances of families of parallel/distributed programs enabling evaluation of

performance properties of parallel programs for arbitrary parallel/distributed execution

environments at design time through performance modeling followed by evolution of the

performance model to a production program. The performance model is an instance of

the program where the computation of each component is a performance model for that

concrete component (An evaluation of the execution time of the concrete component on

some execution environment4) and communication times are estimated by parameterized

performance models of the interconnection networks of the execution environment.

When an instance of the program which meets performance specifications on a given

execution environment is identified, then the abstract performance model components are

4 Data element sizes are typically propagated through the abstract components and sometimes data element
sizes must be computed or estimated in abstract components.

 49

systematically replaced by the equivalent concrete components. This approach also

enables ready customization of existing application instances to execution environments.

The research presented here extends the P-COM2 framework which has

previously been shown (Chapter 3) to compose programs from fully implemented

components [59], to compose, execute and monitor the execution behavior of systems

with both abstract (implemented as timing or performance models) components and

concrete components. That is; a performance model of the program is constructed by an

extended version of the compiler which is used to generate the concrete program. The

key enabling insight is that combining a component-based program structure with a

runtime system implementing an integration of direct execution and simulated execution

enables execution of programs with components at multiple levels of abstraction in

parallel/distributed execution environments.

The implementation is a compiler which generates code for implementation of an

extended Lamport clock [52] and a runtime system which interprets associative interfaces

and supports unified parallel/distributed execution/simulation of parallel programs

composed from components at different levels of abstraction. The P-COM2 compiler

generates a parallel/distributed program as a precedence-constrained data dependence

graph. Integration of execution behavior and parallel/distributed simulation is based on a

formulation of parallel/distributed discrete event simulation as traversal of precedence

constrained execution structures where the execution time is measured using the extended

Lamport [52] clock defined in Section 5.2.2.

Evolutionary development begins with a program conforming to some instance of

the application family architecture where some or all components are abstract

(implemented as timing or performance models). Each component may have multiple

representations at multiple levels of realization from analytical timing models to

 50

production code. Each component is encapsulated with an interface which specifies its

properties and behaviors and distinguishes among different representations of a

component. Performance evaluation begins with the P-COM2 compiler composing the

program with abstractly implemented components. This abstract program is executed in a

desired execution environment. The performance of the program is evaluated to predict if

the implementation will meet its performance goals. If the performance goal is not met

then different compositions of the program can be evaluated for their performance until a

suitable configuration is found. Then the concrete program is realized in this

configuration by systematically replacing abstract components by concrete components.

A program instance need not be composed from either all abstract or all concrete

components. A performance model of the program may include both concrete and

abstract components. Execution of a program which includes abstract components reports

estimated computation time of the program. Performance can be estimated at any stage of

realization. This capability can used to evaluate the impact of different implementations

of a component on performance at any stage of development. Further, as seen in Chapter

4, evolution can be continued by monitoring component behavior and replacing

components during runtime.

The benefits of this approach include: (a) The abstract program has the same

parallel structure as the concrete program thus eliminating a major source of uncertainty

in the performance estimates. (b) Automation of model construction though compiler

composition of performance models removes much of the tedious effort of model

development, (c) The executions of programs realized with abstract components are very

fast enabling exploration of a wide range of system configurations and (d) optimal

choices for component instantiations and structures are known at design time avoiding

wasted time and effort in re-implementing to correct performance problems.

 51

There is an underlying assumption, which has been empirically verified in our

experiments to date that the performance of parallel programs structured as data

dependence graphs of components can be accurately modeled with simple timing models

for the components and communication systems and analytic representation of contention

for resources.

5.2 INTEGRATION OF DIRECT EXECUTION AND SIMULATED EXECUTION

This section describes how the integration of direct execution with simulated

execution is achieved. A data flow graph model of execution is the basis of such

integration. How the simulated execution is unified with this model of execution is also

explained.

5.2.1 Data Flow Graph Model of Execution

The data flow model of parallel computation which underlies the unification of

execution and simulation formulates a parallel execution as a dynamic generalized data

flow graph (GDFG) which is an extension of the data flow graphs in [69]. The nodes of

the graph contain the actions of the program which may include a local sequential

discrete event simulator. The arcs specify the dependence relations between the actions

of the programs. Execution of the program is traversal of the graph. The nodes of the

graph are defined as six tuples ({input ports}, firing rule, an initialization, a computation,

routing rule, {output ports}). Input ports are containers for a typed object or data

structure. A firing rule is a conditional expression over the values in the input ports of

the node. A node is enabled for execution when its firing rule evaluates to true. A

computation is the action associated with the node. The routing rule of a node assigns

values to the output ports of a node as soon as the computation has completed an

execution. A node once enabled remains enabled until the enabled execution begins. The

 52

execution of a node is run to completion. The arcs of the graph are infinite fifo queues

which bind output ports of a source node to input ports of sink nodes. Execution of a

program is accomplished by generation and traversal of the directed graph. The data

flow graph explicitly specifies the valid execution sequences for the components

including which components can be executed in parallel.

5.2.2 Unification of Simulated Execution and Direct Execution

This section presents a data flow formulation of parallel/distributed discrete event

simulation for simulation modeling of parallel/distributed systems which are formulated

as precedence-constrained dynamic generalized data flow graphs and the integration of

this formulation of parallel/distributed discrete event simulation with direct execution.

Sequential execution of discrete event simulation can be viewed as the generation

and traversal of a dynamic, ordered list of events. Parallel/distributed execution of

discrete event simulation can be viewed as generation and traversal of a directed graph of

events. Parallel algorithms must partition generation and traversal of a dynamic time-

ordered ordered list of events into subsets while preserving a valid order of generation

and graph traversal. Valid executions of parallel/distributed discrete event simulations are

constrained to traversals of the directed graph that conform to an order which would

result from some sequential execution.

The parallel/distributed discrete event simulation model is formulated as a

directed graph of nodes where the dependence relations among the nodes are an order-

preserving subset of the nodes of the data flow graph of the actual system. In practice,

the nodes with abstract models of the node computation are given the same firing rules as

the nodes with the concrete code for the computation. Simulation time is generated by an

extended Lamport clock [52] at each node in the graph. A Lamport clock is a mechanism

 53

for ordering the execution of events in a distributed system of concurrently and

asynchronously executing processes.

a. Each process maintains a local clock and communicates by sending messages

time-stamped with the value of the local clock.

b. When a process receives a message, it compares the timestamp in the message to

the value of its local clock and sets its clock to the larger of these values.

This insures that any subsequent actions at the receiving process will have

timestamps greater than the timestamp on the most recently received message. A

Lamport clock thus maintains a logical causal order among actions in a distributed

system.

The extended Lamport clock which defines causality and enables integration of

actual execution and distributed simulation in the execution of the dataflow graph model

of a parallel/distributed software system is defined as follows.

• An arc carrying the simulation time of a source node to each sink node of the

source node is added (by the compiler) to the arc set of the data flow graph of the

simulation model.

a. If the firing rule is an "and" over several ports, the start time for the execution of

the node is taken to be the largest time among the current value of the local clock

and the times associated with the data messages in the firing rule.

b. If the firing rule is an "or" over multiple ports then the start time for the

execution of the node is a Lamport clock computation carried out for each

invocation. The local clock for a node is updated to include the time (real or

simulated) taken to execute the node computations and this local time is sent on

the simulation time arc to nodes to which the node has a data output arc.

 54

Causality is maintained in that the execution order will be an execution order

which could have been generated by some serial execution of the actual system. No

deadlock management algorithms (other than what is required for the actual system) are

necessary. Parallel speed-up of execution of the simulation is bounded by the parallel

speed-up of the actual system.

5.2.3 Example

The example application presented here is a parallel solution of LaPlace’s

equation showcasing the accuracy to be expected when simple abstract performance

models of components are used to predict performance of an application.

A parallel implementation of an iterative LaPlace equation solver partitions the

matrix by rows or by columns or blocks. The partitions and overlapping elements (called

shadow elements) are iteratively evaluated using the shadow elements as boundary

conditions. The iterations are continued until some convergence metric becomes

sufficiently small.

 The algorithm for the LaPlace solver in two dimensions is as follows:

1. The NxM matrix is partitioned row wise into P sub-matrices and the sub-matrices

are sent to the P processors.

2. The shadow rows are communicated. After the communication the topmost and

bottom-most processor has a matrix of size N/P+1 x M and all other processors

has a matrix of size N/P+2 x M.

3. Each processor performs a Jacobi iteration on its partition. A difference norm

between the old values and the new values are calculated.

4. Each processor sends its value of the difference norm to a designated processor

(“sum”) which collects the P difference norms.

 55

5. The “sum” processor decides whether to stop the iteration process and sends the

decision message to each of the P processor.

6. If a process receives a stop iteration message it sends its partition to the “gather”

processor.

7. The designated processor collects all the submatrices and composes these into a N

x M matrix.

8. The solution is printed.

Five components can be identified from this algorithm:

a. Distribute which performs step 1 and 2,

b. Jacobi: performs steps 2, 3,4 and 6,

c. Sum which performs step 5,

d. Gather which performs step 7, and

e. Print which performs step 8.

Figure 11 shows the data flow graph of the program in terms of the components

identified. The data flow graph is shown for the case when the matrix is partitioned into

three parts.

Distribute

Jacobi[0] Jacobi[2]

Sum Gather

Print

Jacobi[1]

Figure 11: Data flow graph for Laplace solver

 56

From the data flow graph, the data elements that have to be passed from one

component to the other are identified. Abstract components are coded where the

computation section is empty and/or is not yet implemented. The timing model for the

component is added in the computation section of the abstract component to give an

estimate of the runtime of the component. Communication is modeled using the size of

the data elements being passed and the properties of the interconnection network. The

complete program can then be run using the abstract components which gives an estimate

of the runtime of the program. When the implementation of a component is complete, the

concrete component can then be plugged into the program replacing the abstract

component. The process of replacing an abstract component with a concrete component

is continued until all the abstract components are replaced with concrete components.

During the evolutionary development the estimated runtime of the program gets more and

more accurate and at the end of the process we have a fully functional program.

The computational components (Jacobi and Sum) in this family of applications

are floating point intensive. For these components, the computation time for each

component is modeled using an estimate of the number of floating point operations

needed to implement the computation. The estimated time for the computation is

computed by dividing that number with the FLOPS (Floating Point Operations per

Second) of the processor. Normalization of the FLOPS rate for a single component is

usually sufficient to give good accuracy for computation times. The execution times for

Distribute and Gather are primarily the costs for data movement and data copy which are

similarly modeled with approximate instruction counts. Communication time is modeled

as the expected time to send a given number of bytes. Communication time for each

message is computed as a + b*x where a is a startup time for the communication to begin,

b is the data transfer rate of the network and x is the given size of the data. The

 57

parameters a and b are estimated from measurements on the execution environment to be

modeled. We have tried several versions of more sophisticated performance models for

both computation time communication time and have not found substantial increase in

accuracy. We speculate that the success of simple performance models at the component

levels giving quite accurate performance estimates at the system level is due to the fact

that each component implements a relatively simple and well-understood algorithm.

Table 4: Comparison of estimated & actual runtimes

Matrix
Size n
(nxn)

of partitions
= # of

processors

Estimated
runtime

(sec)

Actual runtime
(sec)

1024 2 27.979618 26.04458
1024 4 15.411232 14.234831
1024 8 9.275731 8.47888
1024 16 7.051624 6.31288
2048 2 107.157538 101.566281
2048 4 57.962647 54.137176
2048 8 47.306664 44.850613
2048 16 23.367203 21.459022
4096 2 432.709424 422.8589
4096 4 223.485333 218.343156
4096 8 178.698618 172.806012
4096 16 142.53143 136.246375

Table 4 shows a comparison of the estimated runtime and actual runtime for

various matrix sizes and partition sizes. The measurements were taken on “lonestar” a

Cray/Dell Linux cluster at the Texas Advanced Computer Center. The estimated runtime

is for the program when all the components are abstract components. The estimated

runtime is within 10% of the actual runtime in most of the cases.

5.3 CASE STUDY

The case study is based on hp adaptive finite element code [24]. The workflow

diagram of the program and the componentization was shown in Section 4.3.1. The

 58

solution of the linear systems for the coarse and fine mesh takes about 80%-90% of the

execution time of the program. Composition of a performance "optimal" instance of the

h-p adaptive code is illustrated by choice of linear solver and by determination of the

appropriate degree of parallelism for the coarse and fine solvers as a function on mesh

properties. (“Optimal” means the lowest execution time which can be obtained using the

members of the component library.) There are several choices of implementations which

may have substantially different performance. The componentized structure naturally

suggests executing the coarse and fine mesh solutions in parallel. The linear system for

the fine mesh will have size approximately twice that for the coarse mesh. The number

of diagonal bands in the matrix structure increases with the degree of the approximating

polynomial. Different solution methods may be more efficient for solution of the linear

systems which result from different sizes and structures for the different meshes. It may

be advantageous to use a higher degree of parallelism for solution of the linear system for

the fine mesh than for the coarse mesh. However, the linear system for one-dimensional

finite element models is very sparse so that solution requires only modest computational

work for their solution. So the overheads of communication may limit the effective

degree of parallelism.

A system configuration which used concrete representations of all components

except the linear solvers was executed on lonestar. For small matrices a direct solver is

typically used and that was the case for the original code which we re-engineered into

components. However, if the approximating polynomial is of high degree or the matrix is

large, solution by an iterative method such as a conjugate gradient method can be much

more efficient.

A wide range of experiments were executed ranging across mesh properties, types

of linear equation solvers and degree of parallelism for the solution of the linear system

 59

from the fine mesh. Each experiment required only changing of values in requires

interfaces and invocation of the compiler.

We report here the results of two experiments which lead to the important

performance optimizations. The linear systems from the coarse and fine mesh were

solved in parallel in both of the experiments. Each of the two experiments used an initial

mesh of 500 elements with the approximating polynomial for the finite elements being

chosen to be of degree 2 and degree 8. The initial linear systems for the 500x2 mesh is

1001x1001 for the coarse mesh and 4001x4001 for the fine mesh while the initial linear

systems for the 500x8 mesh are 4001x4001 and 9001x9001.

Experiment 1 used an abstract performance model of the direct solver for the

coarse mesh and an abstraction performance of the parallel conjugate gradient solver for

the fine mesh and varied the degree of parallelism for solution of the linear system of the

fine mesh. For the preconditioned conjugate gradient method it is assumed that the total

number of iterations required for convergence is proportional to the square root of the

spectral condition number of the input matrix. The result of experiment 1 is shown in

Table 5.

Table 5: Estimated execution times for experiment 1.

Mesh (# of
elements

x polynomial
degree)

Estimated
Coarse Mesh
Solution Time

(sec)

Number of
Processors

for Fine
Mesh

Solution

Estimated
Fine Mesh
Solution

Time
(sec)

Estimated
Total Time

(sec)

500x2 0.26 1 1.65 3.08
500x2 0.26 2 8.14 9.71
500x2 .026 4 27.49 29.76
500x8 13.82 1 3.93 18.43
500x8 13.82 2 11.93 18.47
500x8 13.82 4 23.15 27.74

 60

From this experiment we conclude that there is no performance gain from parallel

execution of the conjugate gradient solver on the linear system from the fine mesh and

that the direct solver is a bottleneck for larger matrices resulting from high degree

approximating polynomials.

Experiment 2 replaces the direct solver for the coarse mesh with a serial

implementation of the conjugate gradient solver and the parallel conjugate gradient solver

for the fine mesh with this same serial conjugate gradient solver. The result of this

experiment is given in Table 6.

This experiment shows that the conjugate gradient solver is only marginally faster

than the direct solver for the linear systems from meshes with low degree approximating

polynomials but dramatically faster for meshes with high degree approximating

polynomials.

Table 6: Estimated execution times for experiment 2.

Mesh (# of elements
x polynomial

degree)

Estimated Coarse
Mesh Solution Time

(sec)

Estimated Fine Mesh
Solution Time

(sec)

Estimated
Total Time

(sec)
500x2 0.25 1.13 2.49
500x8 0.91 3.31 6.64

These (and other) experiments suggest that a concrete configuration similar to the

abstract configuration of experiment 2 would be near optimal. Table 7 shows the

execution times for the program with concrete components.

Table 7: Actual execution times for optimal configuration

Mesh (# of elements
x

polynomial degree)

Coarse Mesh
Solution Time

(sec)

Fine Mesh
Solution Time

(sec)

Total Time
(sec)

500x2 0.22 1.19 2.42
500x8 0.86 3.23 6.25

 61

The abstract performance model of the system gave quite accurate predictions of

the performance of various system configurations and lead directly to a near-optimal

system configuration.

In conclusion, the case study showed evolutionary development process and also

showed very good prediction (within 15% of actual runtime) of parallel program

performance. The combination of a component-defined program structure where the

components are self-describing and the integration of execution and simulation has

enabled: (a) automated support for evolutionary development of parallel/distributed

programs from abstract design or performance models, (b) prediction of the performance

properties of parallel/distributed programs for specific application instances and

execution environments.

5.4 RELATED WORK

The most directly related research is MPI-SIM. MPI-SIM [80] predicts the

performance of existing MPI programs by using direct execution to simulate sequential

blocks of code and simulates a subset of MPI core functions. The simulator can run in

parallel and a conservative synchronization algorithm together with a number of

optimizations is used reduce the frequency and cost of synchronizations in the parallel

simulator. But the simulator assumes the existence of program implementation and

cannot predict the program performance at the design stage. It can, however, accurately

predict the behavior of a program across multiple parallel execution environments and

has been applied to several large scale parallel programs [23].

The survey paper in [12] gives a taxonomy of some existing model based

performance prediction techniques. The paper classifies existing techniques in three

dimensions where the dimensions are: the integration level of the software model with

the performance model, the level of integration of performance analysis in the software

 62

lifecycle, and the methodology automation degree. Using the classification criterion our

work falls in the category where the performance model is the same as the software

model, the level of integration in the software lifecycle falls in the software design stage

and the level of automation is high.

Predicting performance of computations using user input has been discussed in

[95]. The user has to predict about the performance of a component and the techniques

discussed in that paper can be used in asserting the prediction.

SBASCO [29] is a skeleton based system that exposes skeleton (internal

structure) of components in the interface. SBASCO uses two different kind of interface.

The application view interface provides the signatures of the operations provided. The

configuration view interface exposes the structure. SBASCO uses a number of predefined

skeletons (or patterns) that have associated cost models. Given a set of components a

configuration tool uses runtime analysis to calculate the constants of the cost model. The

constants together with the cost model are then used in mapping the components to the

processors and also to find out the best value for the parameters such as degrees of

parallelism. SBASCO thus uses a cost model based performance prediction technique in

optimizing an application. However it does not have the ability to execute cost model and

actual implementation in the same application resulting in evolutionary development.

COMPAS [67] is a framework for performance management in component based

systems using a model driven architecture approach. It obtains real-time performance

information from a running application by inserting a proxy layer in each EJB

component. It then creates UML models of the target application using information from

the monitoring module. The generated models of the application are simulated with

different workloads to identify design problems or poor performing components.

COMPAS requires a running application and uses runtime monitoring to build the

 63

application model and thus cannot be used at the design stage. The execution model of P-

COM2 together with the integration of simulated execution enables the prediction of

program performance using abstract components from the design stage.

Parallel/distributed simulation research has two main branches: conservative

originated by (Chandy, Misra, Bryant) [18], [20] and virtual time or optimistic originated

by Jefferson [46]. In each case the execution model is the communicating sequential

processes model with asynchronous execution of distributed processes communicating by

messages on one way channels. In conservative simulation, causality is maintained by

restricting progress at nodes which limits effective parallelism in the simulation. In

optimistic simulation, causality is maintained by a clever mechanism for detecting and

recovering from breaches of causality. When multiple time scales are present in the

system being simulated, rollback and restart can severely restrict forward progress. There

has been much research on hybrid models of distributed simulation where processes

“look ahead” to both progress beyond the time allowed by pure conservative simulation

and to avoid most of the breaches of causality which might occur under optimistic

execution. Bagrodia and his students [64], [97] have carried several studies which use

data flow graph based “look ahead” to improve the efficiency of parallel/distributed

simulation. There have been many hybrid schemes many of which are described in

Fujimoto’s [34] comprehensive book.

The data flow precedence-constrained execution model used herein is different

from the CSP-based execution model for distributed discrete event simulations in

fundamental ways.

a. The causality preserving execution sequences for nodes are derived from the data

flow graph formulation of the program.

 64

b. The simulation clock is derived from an execution order derived from the logic of

the data flow model for execution of the program rather than the simulation clock

determining the order of execution.

The data flow formulation of parallel/distributed simulation is not, however, a

general model of parallel/distributed simulation. It applies only to systems which can be

formulated in a data flow model of execution.

 65

Chapter 6: Robustness and Formal Verification

6.1 MOTIVATION AND OVERVIEW

The increasing prevalence of parallelism in mission critical systems coupled with

the increasing role of numerical computations in control systems such as medical

instruments [71], [72] makes architecting parallel computation systems and establishing

the correctness of parallel computation systems a task of safety critical importance. Most

errors in parallel programming arise in the design and coding of interactions

(synchronization and communication) among units of computation (processes, threads or

components) which are executing concurrently. While there is little hope for verification

of conventionally programmed parallel computation systems, definition of parallel

applications in an architecture specification language with compilable/executable

semantics enables all of automated composition of parallel programs, formal verification

of the synchronization and communication structure and interaction properties of parallel

computation systems and efficient runtime monitoring of component interactions and

synchronization.

Software architecture definition languages (ADL) [76], [63] typically define

software architectures as components and connectors between components. We use the

phrase Architecture specification language (ASL) rather than the usual ADL since the P-

COM2 architecture specification language incorporates specification of implementation

and behavioral properties of components, enables deferral of definition of connectors to

compile time and has compilable semantics. Incorporation of implementation and

behavior properties and deferral of definition and realization of connectors to compile

time are all extensions of conventional architecture definition languages.

 66

The P-COM2 ASL specifies the behaviors and implementations of components

and interactions among components in a manner which enables the compiler for the ASL

to automatically generate parallel program structures including connectors among

components and choose components appropriate for a given execution environment and

problem instance. Compiler generated parallel structures should be much more likely to

be correct than manually coded parallel computation structures but there is still need for

verification of correctness for the communication and synchronization of the compiled

parallel programs and support for programmer defined runtime checks of interactions

since the specifications for the interactions may be flawed.

This chapter reports the development and application of formal verification of the

interaction and synchronization properties of practical high performance parallel

programs via model checking and capabilities for generating runtime monitoring of

component interactions. Verification is based on development of a formal semantics for

the architecture specification language (ASL) of the P-COM2
 development system for

parallel programs, translation to the language of the FDR model checker [31] and

application of the FDR model checker to the verification of the interactions and

synchronization behavior of programs specified in the ASL. The critical factor enabling

both formal verification and generation of efficient monitoring code is that the P-COM2

ASL rigorously separates specifications of interactions from computations enabling

specification of a formal semantics for the interactions among components.

A unique specification issue is that deferral of the realization of connectors to

compile time requires that the semantics of the language be defined in two phases: for the

language itself and for the execution model for the language since the connections

between the components are not explicitly defined or realized until the compiler matches

the specifications among components to generate the connectors.

 67

Model checking verification of the properties of the interactions among

components requires that the component interfaces be represented in a model checkable

language. This chapter defines the semantics of the P-COM2 ASL and execution model

in terms of Hoare’s CSP [44]. A translator from the P-COM2 language to FDR extension

of CSP has been defined. The representations in the FDR-extended version of CSP are

verified for concurrency properties using the FDR model checker.

The P-COM2 ASL implements features targeting increased reliability and

robustness including preconditions and postconditions on inputs and outputs of the

component computations, fault-tolerance by replication of components, and enhanced

state machine control of operation sequencing. The P-COM2 compiler generates code for

runtime verification of pre-conditions and post-conditions and state machine sequencing.

6.2 FEATURES OF P-COM2 FOR IMPROVING RELIABILITY AND ROBUSTNESS

This section describes the features of P-COM2 ASL that improves robustness and

reliability of an application. Compile time semantics, executable semantics, and formal

verification of sequencing behavior are presented in the following sections.

6.2.1 Preconditions and Postconditions

Since a software system is built from a set of components, the correctness and

robustness of the system cannot be ensured unless we can ensure the correctness and

robustness of the individual software components. A component usually offers one or

more service to its users. Each service of a component is a contractual agreement

between the user of the component and the component itself. A contract has an obligation

to fulfill and a guarantee that it provides. Given the proper set of input the component

provides the correct set of output or service. The contract requires the user of the

component to meet the obligations of the contract, and when the obligation is met the

 68

component guarantees to provide the correct output. The obligation of the contract is to

provide the correct set of input that the component is expecting and can process. Once the

user has met the obligation of the component, the component guarantees to produce

correct result.

Traditionally this contract of a service has been implicit. But an implicit contract

can result in software failure and in the absence of an explicit contract it becomes

cumbersome to find and fix bugs. An explicit contract can result in better understanding

of the behavior of the software component. Once the contract is explicitly stated in the

interface of a component, it provides a precise description of the components

functionality. When the service of a component is invoked, the runtime system can

automatically check if the obligation has been fulfilled before the implementation of the

component is invoked. If the obligation is not fulfilled the correct result cannot be

generated and some appropriate action can be taken. A range of actions are possible. The

action can be to print some diagnostics information and quit the program making fault

diagnosis easier and giving the user direction on what went wrong. Or the user of the

component can be notified to take care of the obligation. Once the obligation is fulfilled,

and the implementation of the component is invoked the runtime system can

automatically check if the guarantee of the component has been fulfilled by producing the

correct result. If the guarantee is not fulfilled it usually means that the implementation of

the component is incorrect or we have done a poor job in documenting what the

component guarantees to provide. When the guarantee section of a contract fails again

we can take an appropriate action. At the least we can print some diagnostic information

and quit the program. Or we can invoke an alternate implementation. Invoking an

alternate implementation can improve the robustness of a component.

 69

In P-COM2 ASL the obligation of the contract is specified as precondition of

accepts operation. The guarantee of the contract is specified as postcondition of accepts

operation. The precondition and postcondition together gives a precise description of the

components behavior. The runtime system of the P-COM2 compiler automatically checks

the precondition before invoking the implementation and also automatically checks the

postcondition after the implementation is invoked.

6.2.2 Fault-Tolerance by Component Replication

P-COM2 ASL allows a component to be replicated. The number of replicated

instantiation of a component is determined by the number of replicas specified in the

requires clause of the invoking component. Replication may be done for SPMD (single

program multiple datastream) parallel structuring or for fault-tolerance.

If the invocation is for SPMD parallelism then each replica will execute on

different data and the component which receives the outputs of the replicated component

will generally have its interface specified to receive the outputs from all of the replicas.

If the replication is for fault-tolerance, then each replica will execute on the same

data and the components which receive the outputs of the replicated component will

generally be programmed to receive only the output of the first successful execution of

the replicated component. The receiving component will then set its state machine guard

to not receive the outputs of the other replicas. Note that this replication does not require

synchronization. It is also possible to collect output from all the replicated components

and perform a computation such as comparison or leader election on the collected output.

It is also possible to have a requires clause which invokes MPSD (multiple

program single datastream) parallelism for fault tolerance. In this case, the invoking

component has separate requires clause for several different implementations of the same

 70

functionality. The receiving component will usually receive all of the components and

compare the results of the several executions.

6.2.3 Runtime Verification of State Machines

The state machine specification used in the interface of the components is not

only serves the purpose of specification and formal verification but also is the actual

syntax of the state machine implementation. Thus it is not a model of the state machine

but an actual implementation of the state machine. As a result the guards and conditions

together with actions of the operations are actively monitored and verified during

runtime.

6.3 COMPILE TIME SEMANTICS

The compile time semantics is presented here using tuple notation and first order

logic through a number of definitions and introduction of some matching operators and

component composition operator. During compile time the channels between components

are established through application of component composition operators.

Component: A Component is a tuple (AI, C, RI), where AI is the accepts

interface which is a set of accepts interface clause, C is the computation, and RI is the

requires interface which is a set of requires interface clause. There are three types of

components. A start component has a requests interface but do not have an accepts

interface. AI is empty for a start component. A stop component has an accepts interface

but do not have a requests interface. RI is empty for a stop component. A component is a

regular component if it is neither a start component nor a stop component.

Accepts interface clause: An accepts interface clause AI is a tuple (P, TA, LA,

IndxA), where P is the profile which is a set of profile attributes p, TA is a set of accepts

operations, LA is an identifier representing accepts protocol, and IndxA is an integer

 71

(greater than zero) representing optional replication parameter. In the absence of this

optional parameter the value of IndxA is assumed to be one.

Intuitively the operations in TA are related by an OR relationship so that the

component can execute when any of the operations in TA has its data ready. Whether the

operation can actually execute will depend on its guard as is shown later in the execution

model semantics description. In the presence of the optional parameter IndxA, the input

channels that are established for this accepts interface clause (as described later) will be

replicated establishing replicated input channels.

Requires interface clause: A requires interface clause RI is a tuple (S, TR, LR,

IndxR), where S is the selector which is a set of selector attributes s, TR is a set of requires

operations, LR is an identifier representing requires protocol, and IndxR is an integer

(greater than zero) representing optional replication parameter. In the absence of this

optional parameter the value of IndxR is assumed to be one.

Intuitively the operations in TR are related by an AND relationship so that the

component must try to execute all of its requires operation. Whether it can actually

execute the requires operation will depend on the guard of the requires operation as will

be shown later in the execution model semantics description. In the presence of the

optional parameter IndxR , the output channels that are established for this requires

interface clause (as described later) will be replicated establishing replicated output

channels.

Profile attribute: A profile attribute p is a tuple (tp, np, a), where tp is the type of

profile attribute, np is the name of profile attribute, and a is the value of np conforming to

type tp.

Selector attribute: A selector attribute s is a tuple (ts, ns, Op, b), where ts is the

type of selector attribute, ns is the name of selector attribute, Op is a comparison operator

 72

that is valid in type ts, and b is a value that conforms to type ts. Comparison operators = =

and != are valid in every type. Comparison operator > , < , >= and <= are valid only for

ordered types.

Containment relationship: A containment relationship is a tuple (t, n, a, b),

where t is the type, n is the name, a is a value of type t, b is a value of type t. We say that

value a contains value b. The relationship is transitive. Thus if we have a contains b,

(t,n,a,b) and b contains c, (t,n,b,c) we can infer that a contains c, (t,n,a,c).

Accepts operation: An accepts operation tA is a tuple (GA, PreC, SA, PostC,

ActA), where GA is the guard which is a boolean expression, PreC is the precondition

which is an expression that is checked before the execution of the component, SA is a set

of signature, PostC is the postcondition which is an expression that is checked after the

execution of the component, and ActA is the action which is a set of instructions.

Intuitively the signatures in SA are related by an AND relationship requiring that

all the signatures in SA must be ready to execute for the component computation to

execute.

Requires operation: A requires operation tR is a tuple (CR, sR, ActR), where CR is

the condition which is a boolean expression, sR is a signature, and ActR is the action

which is a set of instructions.

Signature: A signature s is a tuple (N, n, a0, …, an-1), where N is the name of the

signature which is an identifier, n is a positive integer representing number of arguments

of signature s, and ai’s (i = 0 … n-1) are the argument of signature s.

Argument: An argument a is a tuple (t, n), where t is the type of argument a, and

n is the name of argument a.

 73

Argument matching operator: The argument matching operator arg takes as

operands two arguments and produces a true/false value. Given arguments a(ta , na) and

b(tb , nb), a arg b is true iff ta = tb, otherwise a arg b is false.

Signature matching operator: The signature matching operator sig takes as

operands two signatures and produces a true/false value. Given signatures c(Nc, n, a0, …,

an-1) and d(Nd, m, b0, …, bm-1), c sig d is true, iff all of the following are true

1. Nc = Nd

2. n = m

3. ai arg bi = true for i = 0, … , n-1.

c sig d is false, otherwise.

Operation matching operator: The operation matching operator op takes a

requires operation as its left operand and an accepts operation as its right operand and

produces a true/false value. Given a requires operation tR(CR, sR, ActR) and an accepts

operation tA(GA, PreC, SA, PostC, ActA),

tR op tA is true, iff ASs∈∃ • (sR sig s = true).

tR op tA is false, otherwise.

Intuitively the matching of signature sR and s means the possibility of the

generation of a channel from the source component (the component where the requires

operation resides) to the sink component (the component where the accepts operation

resides). The channel can carry a structure whose fields are arguments a0 to an-1. The

name of the channel will be either the name of the signature or a compiler generated

name such that the name of the channel is unique within the program’s scope. The source

component uses the channel as an output channel and the sink component uses the

channel as an input channel. Whether the channel will be generated is decided by the

 74

successful matching of the requires interface clause and accepts interface clause as

described later.

Attribute matching operator: The attribute matching operator attr takes a

selector attribute as its left operand and a profile attribute as its right operand and

produces a true/false value. Given a selector attribute s(ts, ns, Op, b) and a profile attribute

p(tp, np, a), s attr p is true, iff all of the following are true

1. ts = tp

2. ns = np

3. The boolean expression (a Op b) evaluates to true.

Or

 Value a contains (see containment relationship) value b, (ts,ns,a,b) and the operator Op

is = =.

s attr p is false, otherwise.

Selector and profile matching operator: The selector and profile matching

operator SP takes a selector as its left operand and a profile as its right operand and

produces a true/false value. Given a selector S and a profile P,

S SP P is true, iff PpSs ∈∃∈∀ , • (s attr p = true).

S SP P is false, otherwise.

Interface clause matching operator: The interface clause matching operator IC

takes a requires interface clause as its left operand and an accepts interface clause as its

right operand and produces a true/false value. If the application of the interface clause

matching operator produces a true value then the operator also generates a channel as

described below. Given a requires interface clause R(S, TR, LR, IndxR) and an accepts

interface clause A(P, TA, LA, IndxA),

 75

R IC A is true, and also generates a channel between tR and tA iff all of the following are

true:

1. S SP P = true

2. AARR TtTt ∈∃∈∃ , • (tR op tA = true)

3. LR = LA

4. Both IndxA and IndxR are not more than one.

R IC A is false, otherwise.

Matching of the requires interface clause and the accepts interface clause

generates a channel between the source and sink component for each matching between

the requires operation and the accepts operation. If IndxR is greater than one then the sink

component is said to be replicated and the source component gets the replicated output

channel. Each of the replicated output channel i ends in the replicated component i. If

IndxA is greater than one then the sink component gets the replicated input channel and

the replicated input channel i starts at some replicated component i. If both IndxA and

IndxR are equal to one then a simple non-replicated channel is established between the

source and sink component.

Component composition operator: The component composition operator

takes two components as operands and generates channel as described below. Given

components a(AIa, Ca, RIa) and b(AIb, Cb, RIb), a b generates channel as described by

the operator IC iff ba AIARIR ∈∃∈∃ , • (R IC A = true), a b does not do anything

otherwise.

The P-COM2 compiler applies the component composition operator between each

two components that exists in the program description and the result is the generation of

channels between matching components as described by the component composition

operator. In order to generate an executable program the program description must

 76

include exactly one start component, one or more stop component, and zero or more

general components.

There are three scenarios that require special handling. The scenarios are the

following:

Scenario 1: where t1 op t2 returns true and t1 op t3 also returns true (t2 and t3

are two different accepts operation) and the corresponding interface clause matches. This

results in a compile time error and the user has to choose between the matching of t1 and

t2 and the matching of t1 and t3.

Scenario 2: where t1 op t2 returns true and t3 op t2 also returns true (t1 and t3

are two different requires operation) and the corresponding interface clause matches and

none of the definitions of t1, t2, and t3 uses index. The compiler in this case generates

indexed channels between the two matching and generates different index for the two

channels. The indices are used to describe the semantics of the execution model.

Scenario 3: where t1 op t2 returns true and none of the definitions uses index,

but t1 belongs to a replicated component and t2 belongs to a non replicated component.

In this case also the compiler generates indexed channel names between t1 and t2 and

uses a different index for each replica of the replicated component. The indices are used

to describe the semantics of the execution model.

 Scenario 2 and 3 results in indexed (or replicated) channels and requires

separate treatment in describing the semantics of the sink component (described in

section 6.4). The semantics of the source component indexed channels do not require

special treatment other than the use of the index that will be supplied by the compiler to

the component.

 77

6.4 EXECUTION MODEL SEMANTICS

During execution, each P-COM2
 component is modeled as a process. The

processes communicate through the channels that were generated by the application of

the component composition operator during compile time. The semantics of the execution

model is described in terms of these processes and channels. The semantics is presented

using process algebra FDR CSP [31].

We use the following special processes in the translation rules.

ERROR = -> STOP, where denotes a special error event.

TERM = end -> STOP, where end denotes a special termination event.

Given a P-COM2 specification for a program, P, let us use the notation TRAN(P)

to denote the semantics of P in FDR CSP. Similarly TRAN(P,Q) takes two P-COM2

definitions and produces a semantics in FDR CSP and so on.

If P is a P-COM2 program composed of components A, B, and C where none of

the components are replicated (as described in the definition of matching between

requires interface clause and accepts interface clause) then

TRAN(P) = TRAN(A)~ [||] TRAN(B)~ [||] TRAN(C)~

Here for example TRAN(A) is the semantics of component A as defined later in

this section and the operator ~ is the asynchrony operator as described in [47]. The

asynchrony operator works by attaching buffer processes to each of the input and output

channels of a process. The details of the ~ operator can be seen in [47]. The shared

channels in the parallel composition operator are generated by the compiler and are

omitted here for simplicity.

If a component B is replicated n times in the program then

TRAN(P) = TRAN(A)~ [||] TRAN(C)~ [||] ([||] i:{0..n-

1}@TRAN(B)~)

 78

CSP labels are used here to differentiate between replicas of replicated component

B. Replicated output channel i ends in replicated component i. Similarly replicated input

channel i starts in replicated component i. The proper connection of channels between

components is done during compile time as part of the matching process.

If A is a component consisting of accepts interface AI, computation C, and

requires interface RI then

TRAN(A) = TRAN(AI,C) ; TRAN(RI) ; TRAN(A)

Since accepts interface and components are closely related, the semantics of them

are related and thus shown together. Thus TRAN(AI,C) denotes the semantics of AI and

C in CSP.

If A is a start component then

TRAN(A)= TRAN(C) ; TRAN(RI)

If A is a stop component then

TRAN(A)= TRAN(AI,C) ; TERM

Given an accepts interface AI, and computation C, where the accepts interface AI

consists of a set of accepts interface clause AIC0 , … , AICn-1 then

TRAN(AI,C) = [] i:{0..n-1} TRAN(AICi , C)

Given an accepts interface clause AIC and computation C, where AIC is a tuple

(P, TA, LA, IndxA) as described in the definition of accepts interface clause then

TRAN(AIC,C) = TRAN(TA, C, IndxA)

Given a set of accepts operation T, computation C, and replication parameter

Indx, where T consists of T0, …, Tn-1 then

TRAN(T,C,Indx) = [] i:{0..n-1} TRAN(Ti,C,Indx)

 79

Given an accepts operation T, computation C, and replication parameter Indx,

where T is a tuple (G, PreC, S, PostC, Act) as defined in the definition of accepts

operation and S consists of signatures S0, …, Sn-1 then

TRAN(T,C,Indx) = TRAN(G) &

 TRAN(S0,Indx,r) -> … -> TRAN(Sn-1,Indx,r) ->

 (if !TRAN(PreC) ERROR

 else (TRAN(C) ; if !TRAN(PostC) then

 ERROR else TRAN(Act))

Given a signature S where is S is a tuple (N, n, a0, …, an-1) as described in the

definition of signature

TRAN(S,Indx,r) = N?tuple_N , if Indx = 1 but not scenario 2 or 3 as described

in section 6.3.

TRAN(S,Indx,r) = (N[0]?tuple_N [] … [] N[m-1]?tuple_N), if

scenario 2 or 3 where the value m is supplied by the compiler as the index of the indexed

channels.

TRAN(S,Indx,r) = N[0]?tuple_N[0] -> … -> N[Indx-

1]?tuple_N[Indx-1] , If Index>1.

Here N is used as a channel name and tuple_N is used to represent a tuple variable

whose fields are arguments a0 to an-1. If the channel name N is not unique within the

program then the compiler selects the channel name in such a way such that it will be

unique within the program and the source and sink component uses the same unique

channel name. TRAN(G), TRAN(PreC), TRAN(Act), TRAN(C), and TRAN(PostC) are

similarly defined.

Given a requires interface clause RI where RI is a set of requires interface clause

RIC0, … , RICn-1

 80

TRAN(RI) = ; i:{0..n-1} @ TRAN(RICi)

Given a requires interface clause RIC where RIC is the tuple (S , TR , LR , IndxR),

TRAN(RIC) = TRAN(TR, Indx)

Given a set of requires operation T, and replication parameter Indx, where T

consists of T0, …, Tn-1 then

TRAN(T,Indx) = ; i:{0..n-1} @ TRAN(Ti,Indx)

Given a requires operation T and replication parameter Indx, where T is a tuple

(Cond , S , Act) and signature S is a tuple (N, n, a0, …, an-1),

TRAN(T,Indx) = if TRAN(Cond) then

 (TRAN(S, Indx, s); TRAN(Act)) else SKIP

TRAN(S,Indx,s) = N!tuple_N , if Indx = 1.

TRAN(S,Indx,s) = N[0]!tuple_N[0] -> … -> N[Indx-

1]?tuple_N[Indx-1] , If Index>1.

TRAN(Cond) and TRAN(Act) are similarly defined.

6.5 AN EXAMPLE SHOWING SEMANTICS

This section illustrates the semantics of a P-COM2 program using a simple but

practical example. This example application was introduced in [59]. The application

solves the 2D FFT of a given matrix. A brief description of the application together with

its workflow graph and interfaces are described in Section 6.5.1. The semantics of the

example 2D FFT application is shown in Section 6.5.2.

6.5.1 2D FFT Application Example

Given an N x M matrix of complex numbers where both N and M are powers of

2, we want to compute the 2D FFT of the complex matrix. This 2D FFT can be calculated

in terms of 1D FFTs using the Swarztrauber algorithm [92] which helps in parallelizing

 81

the application. The algorithm works by partitioning the matrix row wise (horizontally)

and distributing the sub-matrices into available processors, applying 1D FFT on every

row of the sub-matrix on each processor, collecting the sub-matrices to form a matrix and

transposing the matrix and repeating the process of partitioning, distributing, applying 1D

FFT on each row of sub-matrix, collecting and transposing the matrix. After the second

collection and transposition operation we get the 2D FFT of the source matrix. This

application can be described using five components. The components are, a start

component INIT, a stop component PRINT, and three regular components DISTR,

FFT_1D, and GATHER. The workflow diagram of the program is shown in Figure 12.

Figure 12: Workflow graph of 2D FFT application

The DISTR component partitions a matrix row-wise and sends the partition to the

replicated FFT_1D components. The GATHER component collects partitioned result

from the replicated FFT_1D components, transposes them and sends the result to DISTR

component for the first invocation and to the stop component PRINT for the second

invocation. The requires interface of INIT component is shown in Figure 13 and the

accepts interface of DISTR component is shown in Figure 14. Other interfaces of the

 82

components are shown in Figures 15 through 20 (protocol is not shown, value is

“dataflow” by default).

Figure 13: Requires interface of INIT component

Figure 14: Accepts interface of DISTR component

Figure 15: Requires interface of DISTR component

selector:
 string domain == "matrix";
 string function == "distribute";
 string element_type == "complex";
 bool distribute_by_row == true;
operation:
 void init_data(out mat2 grid_re,out mat2 grid_im, out int n, out int
 m, out int p);
protocol: dataflow;

profile:
 string domain = "matrix";
 string function = "distribute";
 string element_type = "complex";
 bool distribute_by_row = true;
operation:
 guard { got_init_data == 0 }
 void init_data(in mat2 grid_re,in mat2 grid_im, in int n, in int m,
 in int p);
 action { got_init_data = 1; }
 ||
 guard { got_init_data == 1 }
 void go_another(in mat2 grid_re,in mat2 grid_im, in int n, in int m,
 in int p);
 action { got_init_data = 0; }
protocol: dataflow;

{selector:
 string domain == "fft";
 string input == "matrix";
 string element_type == "complex";
 string algorithm == "Cooley-Tukey";
 bool apply_per_row == true;
operation:
 void get_part_matr(out mat2 out_grid_re[], out mat2 out_grid_im[],
 out int n, out int m, out int p);
}index [N]

 83

Figure 16: Accepts interface of FFT_1D component

Figure 17: Requires interface of FFT_1D component

Figure 18: Accepts interface of GATHER component

profile:
 string domain = "fft";
 string input = "matrix";
 string element_type = "complex";
 string algorithm = "Cooley-Tukey";
 bool apply_per_row = true;
operation:
 void get_part_matr(in mat2 grid_re,in mat2 grid_im,in int n, in int
 m, in int p);

selector:
 string domain == "matrix";
 string function == "gather";
 string element_type == "complex";
 bool combine_by_row == true;
 bool transpose == true;
operation:
 void get_row_fft(out mat2 out_grid_re,out mat2 out_grid_im, out int
 n, out int m, out int p, out int my_id);

{profile:
 string domain = "matrix";
 string function = "gather";
 string element_type = "complex";
 bool combine_by_row = true;
 bool transpose = true;
operation:
 void get_row_fft(in mat2 grid_re,in mat2 grid_im, in int n, in int m,
 in int p, in int i);
} index [N]

 84

Figure 19: Requires interface of GATHER component

Figure 20: Accepts interface of PRINT component

6.5.2 Semantics of the 2D FFT Application

This section illustrates the semantics of the P-COM2 compiler and the execution

model of the resulting program using the example that was presented in Section 6.5.1.

The component composition operator is applied between each possible pair of

components in the program description. A channel named init_data is generated from the

application of INIT DISTR. Similarly other channels are generated and are shown as

annotation on the arcs of Figure 12. Let’s explain how the init_data channel is generated.

selector:
 string domain == "matrix";
 string function == "distribute";
 string element_type == "complex";
 bool distribute_by_row == true;
operation:
 condition { state == 0 }
 void go_another(out mat2 out_grid_re, out mat2 out_grid_im, out int
 m, out int n, out int p);
 action { state = 1; }

selector:
 string domain == "print";
 string input == "matrix";
 string element_type == "complex";
operation:
 condition { state == 1 }
 void final_result(out mat2 out_grid_re,out mat2 out_grid_im, out int
 m,out int n);
 action { state = 0; }

profile:
 string domain = "print";
 string input = "matrix";
 string element_type = "complex";
operation:
 void final_result(in mat2 grid_re,in mat2 grid_im, in int n,
 in int m);

 85

The application of interface clause matching operator IC between the requires interface

clause of component INIT (Figure 13) and the accepts interface clause of component

DISTR (Figure 14) returns true because the selector and profile matching operator SP

returns true, the operation matching operator op returns true and also the protocol

matches (index’s default value is one and thus do not violate the matching condition of

IC). Thus application of component composition operator generates the channel

named “init_data” which is used as an output channel by component INIT and as an input

channel by component DISTR. After the compilation stage we get a number of processes

and channels connecting them as in Figure 12.

Figure 21: Semantics of FFT program using FDR CSP syntax

The FDR/CSP program resulting from the translation is given in Figure 21 and

Figure 22. The program has been manually edited to make it more readable. The reader

V = { 1,2 } {- values transferred thru channels,not important since
we are modeling state machine only -}
replica_number = {0..1} {- we are modeling 2 replicas of the FFT_1D
component -}
channel from_user,init_data,init_data', go_another,go_another',
final_result,final_result': V
channel get_part_matr,get_part_matr', get_row_fft,get_row_fft' :
replica_number.V
channel end
{- the channel names and processes that end with ' are for buffering
purpose -}
BUFF(in,out,n) = {- buffer process for implementing asynchronous
operation -}
 let
 B(s) = not null(s) & out!head(s) -> B(tail(s))
 []
 #s < n & in?x -> B(s^<x>)
 within B(<>)

{- the from_user channel is not in the program but introduced for
simplified property checking -}
INIT = from_user?x -> init_data!x -> SKIP
INIT' = INIT [init_data <-> init_data'] BUFF(init_data',init_data,5)
{- we are using a buffer size of 5 throughout the program for quick
checking of properties -}

 86

may wish to refer to the workflow graph (Figure 12) and the ASL interface definitions

when reading the FDR/CSP program. Figure 21 and 22 is literally the data flow graph

resulting from unrolling the workflow graph. Note the simplicity of the state machines

and small ranges for the integer variables in the state machines.

Figure 22: Semantics of FFT program using FDR CSP syntax (continued)

DISTR(got_init_data) =
 (got_init_data == 0 & init_data?x -> get_part_matr.0!x ->
 get_part_matr.1!x -> DISTR(1))
[] (got_init_data == 1 & go_another?x -> get_part_matr.0!x ->
 get_part_matr.1!x -> DISTR(0))
DISTR'(got_init_data) = ((BUFF(go_another,go_another',5)
 [go_another' <-> go_another] (BUFF(init_data,init_data',5)
 [init_data' <-> init_data] DISTR(got_init_data)))
 [get_part_matr <-> get_part_matr']
 BUFF(get_part_matr',get_part_matr,5))
 [get_row_fft <-> get_row_fft'] BUFF(get_row_fft',get_row_fft,5)

FFT_1D(i) = get_part_matr.i?x -> get_row_fft.i!x -> FFT_1D(i)
FFT_1D'(i) = (BUFF(get_part_matr.i,get_part_matr'.i,5)
 [get_part_matr'.i <-> get_part_matr.i]FFT_1D(i))
 [get_row_fft.i <-> get_row_fft'.i]
 BUFF(get_row_fft'.i,get_row_fft.i,5)
FFT_1D_REPLICAS' = [|{}|] i:{0..1} @ FFT_1D'(i)

GATHER(state) = get_row_fft.0?x -> get_row_fft.1?x ->
 ((state == 0 & go_another!x -> GATHER(1))
 [] (state == 1 & final_result!x -> GATHER(0)))
GATHER'(state) = (GATHER(state) [go_another <-> go_another']
 BUFF(go_another',go_another,5))[final_result <-> final_result']
 BUFF(final_result',final_result,5)

TERM = end -> STOP
PRINT = (final_result?x -> SKIP) ; TERM
PRINT' = BUFF(final_result,final_result',5)
 [final_result' <-> final_result] PRINT

FFT_PROGRAM = (((((INIT' [|{|init_data|}|] DISTR'(0))
 [| {|get_part_matr|} |]
 FFT_1D_REPLICAS')
 [| {|get_row_fft, go_another|} |]
 GATHER'(0))
 [| {|final_result|} |]
 PRINT'))

 87

The translated program was model-checked using FDR for the following

properties: 1) for every input, the program should give us an output (SPEC_1), 2)

complete sequencing behavior of the operations (SPEC_2), and 3) deadlock checking

(SPEC_3). The properties are shown in Figure 23. Our implementation passed all the

properties. The program specification was reduced to 1365 states and FDR used 128k

memory. The refinement check used 113 state with 165 transitions and took less than a

second for each refinement on a 2.4GHz Pentium 4 with 1GB of memory under Debian

Linux.

Figure 23: Properties checked on FFT_PROGRAM

{- SPEC_1 says that for an input thru from_user channel we will get
output thru final_result channel -}
SPEC_1 = (from_user?x -> final_result.x -> STOP)
{- check that our implementation satisfies the property SPEC_1 -}
assert SPEC_1 [FD= (FFT_PROGRAM \
{|init_data,get_part_matr,get_row_fft,go_another,end|})

{- full specification showing the sequencing relationship of each
event -}
SPEC_2_helper(x) = ((get_part_matr.0.x -> (get_row_fft.0.x -> SKIP
 ||| (get_part_matr.1.x -> SKIP)); get_row_fft.1.x ->
SKIP))
SPEC_2 = (from_user?x -> init_data.x -> (SPEC_2_helper(x);
 go_another.x -> (SPEC_2_helper(x) ; final_result!x -> end ->
 STOP)))
{- check that our program follows the sequencing relationship -}
assert SPEC_2 [FD= FFT_PROGRAM

-- deadlock checking or check that shows that our program terminates
SPEC_3 = end -> STOP
assert SPEC_3 [FD= (FFT_PROGRAM \
 {|from_user,init_data,get_part_matr,get_row_fft,go_another,
 final_result|})

 88

Figure 24: Accepts interface of DISTR component with erroneous state machine

Figure 25: FDR translation of erroneous DISTR component

We artificially introduced an error in the DISTR component so that it did not

change the state of the component correctly in the first operation as shown in Figure 24.

The FDR translation of the erroneous state machine is shown in Figure 25. The resulted

program failed to pass any of the properties and provided a trace as counter example

showing why the property failed. The trace was useful in finding the bug since it showed

why DISTR component was not ready to take input even though the GATHER

component was ready to output. While it is easier to find errors for the simple example of

this paper, for more complex systems the errors may be quite difficult to detect using

informal means.

profile:
 string domain = "matrix";
 string function = "distribute";
 string element_type = "complex";
 bool distribute_by_row = true;
operation:
 guard { got_init_data == 0 }
 void init_data(in mat2 grid_re,in mat2 grid_im, in int n, in int m,
 in int p);
 action { }
 ||
 guard { got_init_data == 1 }
 void go_another(in mat2 grid_re,in mat2 grid_im, in int n, in int m,
 in int p);
 action { got_init_data = 0; }
protocol: dataflow;

DISTR(got_init_data) =
 (got_init_data == 0 & init_data?x -> get_part_matr.0!x ->
 get_part_matr.1!x -> SKIP)
 [](got_init_data == 1 & go_another?x -> get_part_matr.0!x ->
 get_part_matr.1!x -> DISTR(0))

 89

6.6 RELATED WORK

There has been research on model checking parallel numerical programs using

symbolic execution [86]. The model checking approach requires that a sequential version

of the parallel program be provided which serves as a specification for the parallel one

and uses equivalence to establish the correctness of the parallel program in terms of the

sequential one. There has been research on direct model checking of mpi programs [85],

[84], [77]. MPI communication calls are represented as finite-state models abstracted

from the program. As in our approach, this research verifies only the communication and

synchronization properties. In P-COM2 we represent communication and synchronization

as finite state models but generate the mpi library calls during composition. Automated

composition avoids the errors which can occur in manual transcription between the mpi

state machines and the calls to the mpi library.

There is a substantial literature on ADLs. For a comparative study, the ADL

survey paper by Medvidovic and Taylor [63] is an excellent source. We restrict our

related work discussion to those ADLs for which a complete or partial formal semantics

has been formulated. We categorize the related work into two categories. The related

work in the first category (Darwin [55], [57], Wright [6], SOFA [79], and Rapide [36])

have complete semantics whereas (C2 [61], [62], Weaves [36], UniCon [83]) have

defined only a partial formal semantics. We provide only a brief description of the

related work in the second category.

Darwin [55], [57] is a declarative binding language which can be used to define

hierarchical compositions of interconnected components through programmers writing

compositional scripts. It is particularly useful for describing distributed system

architectures. It does not support the specification of non-functional properties. It

supports constrained dynamism by replication of components via dynamic instantiation,

 90

as well as deletion and rebinding of components by interpreting Darwin scripts. P-COM2

also supports constrained dynamism by replication of components by dynamic

instantiation and also supports runtime reconnection using conditional operators. Both

Darwin and P-COM2 uses implicit connectors. The semantics of Darwin is described in

π-calculus [66] which allows sending of a connection name to a different component as

part of a message. Darwin can [58] either use a graphical notation named labeled

transition system (LTS) or a process algebra textual notation named finite state processes

(FSP) to describe the behavior of individual components. The semantics of the

architecture is automatically generated from the user supplied component behaviors. A

tool named labeled transition system analyzer (LTSA) can be used for deadlock

checking, and safety and liveness property checking. In P-COM2 we can also check these

types of properties using FDR. However in our case the FDR program can be generated

directly from the program whereas in Darwin the user has to supply the component

behavior. The component behavior specified in Darwin is only a model and may not be

followed at runtime. In P-COM2 the model can be generated directly from the

implementation. Also the composition process in Darwin is manual whereas it is

automatic in our approach.

Wright [6] uses explicit connectors in describing the architecture. It uses protocol

description for specifying the order of interactions between components. CSP [44] is used

for specifying the protocol descriptions in ports, roles, and glues as well as describing the

semantics. FDR is also used in Wright for checking port-role compatibility as well as

deadlock checking of connectors. But the composition process of specifying the

attachments of a port with a role is manual. Dynamic Wright [7] is an extension of

Wright to include dynamism of software architecture. The protocol description was

modified to include special control events. Configurors, which are separate configuration

 91

programs use these control events to trigger reconfigurations. In case of P-COM2 the

same effect can be achieved by the use of the adapt components [60].

The behavior protocol used in SOFA [79] uses regular expressions as syntax for

generating a set of traces that are permitted by a protocol. Classical regular expressions

operators were enhanced by introducing operators necessary for modeling interaction of

concurrent processes/agents. Interface protocols model the interaction behavior on a

particular interface. Frame protocols model the interaction behavior of a component’s

provides and requires interface. Architecture protocols model the interaction behavior of

all the components of an architecture. The interface and frame protocols are provided by

the user whereas the architecture protocol is automatically generated by SOFA CDL

(component definition language) compiler. The semantics of protocol conformance is

explained in terms of the language described by the protocol.. Interface protocol

conformance can be used to check if one interface is compatible with another interface.

Frame protocol conformance with the interface protocol can be used to check if an

interface is being correctly used in a component. Finally the architecture protocol

conformance with the frame protocol can be used to check if the architecture will behave

correctly given the behaviors of the components. The CDL compiler automatically

generates architecture protocols and tests the interface, frame and architecture protocol

conformance. The protocols are written separately from the SOFA executable code.

SOFA thus uses protocol guard and runtime system to check if the implementation is

within the constraints of the protocol guard. P-COM2 generates the model of the

sequencing behavior of the components from the actual specification of the state

machine. The implementation is constrained by the state machine at runtime and thus

there is no need of constructs like protocol guard for checking the sequencing behavior at

runtime. P-COM2 statically check the state machine for correctness and dynamically

 92

check the implementation for correctness by looking at the actual data values being

transmitted by the use of pre and post conditions. SOFA approach uses a scripting

language for program composition whereas P-COM2 automatically composes programs

from components encapsulated in its ASL.

Rapide [53] is an ADL that can be used for modeling and simulation of the

dynamic behavior described by an architecture. It uses events (partially ordered event set,

poset) to characterize component interaction and provides a fixed set of connector types

to characterize how events flow between components. Connectors in Rapide can be

modeled by defining new kinds of components and thus the connectors in Rapide are also

implicit. It supports constrained dynamism by conditional connection, event patterns, and

dynamic instantiation of components. The timed poset model allows modeling of non-

functional property like modeling of timing. However it does not allow non-functional

properties of components or connectors. The semantics of Rapide is described in terms of

poset and event processing [54]. Constraints in Rapide can be used to restrict the

behavior of components and can be checked at runtime for violation detection. The

guards, preconditions and postconditions of P-COM2 operations can be used in achieving

the same goal.

C2 [61], [62] is an ADL suitable for describing architectures of highly-distributed,

evolvable, and dynamic systems. Component invariants and operation pre- and post-

conditions are specified in 1st order logic. For connectors partial semantics is specified

by message filters. C2 supports unconstrained dynamism by element insertion, removal

and rewiring.

Weaves [36] are networks of concurrent components that communicate by

passing objects. The semantics of the components are given using partial ordering of

input and output objects while the semantics of the connectors are given by the naming

 93

conventions of the queue. It allows automatic composition of programs by giving the

high level goals to the weaver. Component selection and interconnection is done by the

weaver starting from the output goal and working backwards recursively.

UniCon [83] is an ADL with a focus on interconnecting existing components

using common interface protocols. Components specify players through which they

interact with outside world. Connectors (via protocols) specify roles at which the

connector can mediate the interaction among components. The semantics of the

components and the connectors are implicit in their types and additionally the property

list can be used to provide further semantics. UniCon does not support automated

composition.

 94

Chapter 7: Conclusions and Future Research

Parallel programming has always been a complex task. Parallel programming

techniques have been typically employed in scientific computing where performance gets

more priority than productivity. Although performance is very important, we cannot

overlook the impact of software productivity. It has been well known that maintenance of

software is the most costly part of software life cycle. The critical issue for parallel

programming is to increase productivity while improving performance over the life of a

family of programs. With the rise of multicore chips, parallel programming will be more

pervasive so that combining productivity, parallelism and performance becomes even

more important. With the increasing prevalence of parallelism and parallel computation

in mission critical systems it is important that the correctness of parallel programs be

established at design time and also be validated at runtime.

We presented the conceptual foundations for the P-COM2 development

environment which are a software architecture specification language based on self-

describing components, a timing and sequencing algorithm which enables execution of

programs with both concrete and abstract components and a formal semantics for the

architecture specification language. These concepts are a synthesis from multiple

disciplines of computer science including, artificial intelligence, compilers, software

architecture, component-oriented development, distributed and parallel computing, and

model checking.

We defined and described the compiler and runtime system which implements

these concepts. The compiler composes parallel programs from independently written

components; the runtime system enables monitoring and runtime adaptation at the

component level. The compiler and runtime system together were shown to enable

 95

evolutionary development of programs to meet performance goals and runtime adaptation

of programs by component substitution. A formal semantics for the ASL was developed.

Formal verification of component interactions and state machines by translation of ASL

instances to model checkable languages was formulated. Each capability of the P-COM2

development environment was illustrated and evaluated by one or more examples

The programming methodology and tools developed in this dissertation enhance

productivity by:

a. Automated composition of program instances from families of components.

b. Enabling design of instances of an application family to meet performance goals.

c. Raising the level of abstraction of program composition to the component level.

d. Enabling reuse of components across instances of an application family

e. Enabling runtime adaptation of a program at the component level.

f. Enhancing program understanding through yielding simple and clean program

structures.

g. Providing a basis for better understanding of component and program behavior

through precise description of the properties and behaviors of components and

thus programs composed from components.

h. Runtime validation of program behaviors through preconditions and

postconditions.

i. Verification of correctness of state machines and component interactions during

design time.

Performance is enhanced by:

a. Design time evaluation of performance.

b. Customization of program instances to problem cases and execution environments

 96

c. Runtime adaptation to maintain performance when execution environments or

problem behavior changes.

7.1 FUTURE RESEARCH DIRECTIONS

While the P-COM2 approach to development of parallel programs has great

potential, its application is impeded by the requirement that there exists a family of

components from which application instances can be composed. The parallelism which

can be implemented in P-COM2 is limited by the capabilities of the MPI and threads

packages to which we compile. Additionally, we have applied P-COM2 only at the level

of functionally defined components. It could potentially also be used to compose larger

systems from existing applications.

The Weaves [68] framework enables separation of global variables while

composing applications from existing applications. It uses light-weight threads for

connecting the applications. Much of the re-engineering effort done during

componentization of legacy systems in P-COM2 comes from removal of global variables.

Integration of Weaves with P-COM2 can substantially reduce the re-engineering cost.

Also the light-weight threads of Weaves can be used to take advantage of multi-core

machines. The speedup of parallel programs will be much better when we can take

advantage of both clusters and multiple processors. A important practical means of

enhancing both Weaves and P-COM2 is to integrate the them.

A unification of the ASL of P-COM2 with other modeling and software

architecture tools is an important direction of research.

More case studies need to be done to see the effectiveness and scalability of the

model checking technique in proving correctness of parallel programs. Translations to

other model checking languages and tools to extend the applicability of model checking

would be desirable. Use of P-COM2 ASL as an annotation language in existing programs

 97

to enable automatic compilation of parallel structures and model checking of non-

component based programs is in consideration.

 98

Bibliography

[1] Achermann F., Lumpe M., et al., Piccola - a Small Composition Language, in
Formal Methods for Distributed Processing - A Survey of Object-Oriented
Approaches, pp. 403-426, Cambridge University Press, 2001.

[2] Adve V., Akinsanmi A., et al., Model-Based Control of Adaptive Applications: an
Overview, in Proceedings of the 16th International Parallel and Distributed
Processing Symposium (IPDPS 2002), April 2002.

[3] Agarwal M., Bhat V., et al., AutoMate: Enabling Autonomic Applications on the
Grid, Proceedings of the Autonomic Computing Workshop, 5th Annual International
Active Middleware Services Workshop (AMS2003), Seattle, WA, USA, IEEE
Computer Society Press, pp 48-57, June 2003.

[4] Ainsworth M., and Oden J.T., A Posteriori Error Estimation in Finite Element
Analysis. John Wiley & Sons, New York, (2000).

[5] Aldrich J., Chambers C., et al., ArchJava: connecting software architecture to
implementation, in Proceedings of the 22nd International Conference on Software
Engineering, pp. 187-197, May 2002.

[6] Allen R., and Garlan D., A formal basis for architectural connection, ACM Trans.
Softw. Eng. Methodol. 6, 3 (Jul. 1997), 213-249.

[7] Allen R., Douence D., and Garlan D., Specifying and Analyzing Dynamic Software
Architectures, Lecture Notes in Computer Science, Volume 1382, Jan 1998, pp. 21-
37.

[8] Ankolekar A., Burstein M., et al., DAML-S: Web service description for the
semantic web. In Proceedings of the First International Semantic Web Conference,
2002.

[9] Allan B. A., Armstrong, R. C., et al., The CCA core specification in a distributed
memory SPMD framework, Concurrency Computation, 14:1–23, 2002.

[10] Armstrong R., Gannon D., et al., Toward a Common Component Architecture for
High-performance Scientific Computing, in Proceedings of the 8th IEEE
International Symposium on High Performance Distributed Computation, pp. 115-
124, August 1999.

 99

[11] Babuska I., and Strouboulis T., Finite Element Method and its Reliability. Oxford
Univ. Press (2001).

[12] Balsamo S., Marco A. Di, et al., Model-based Performance Prediction in Software
Development: A Survey, IEEE Transactions on Software Engineering, Vol 30, N. 5,
pp. 295-310, May 2004.

[13] Bayerdorffer B., Associative Broadcast and the Communication Semantics of
Naming in Concurrent Systems, Ph.D. Dissertation, Dept. of Computer Sciences,
University of Texas at Austin, December 1993.

[14] Bertrand F., and Bramley R., DCA: A Distributed CCA Framework Based on MPI,
Proceedings of the Ninth International Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS'04), vol. 00, no. , pp. 80-
89, 2004.

[15] Birngruber D., Coml: Yet another, but simple component composition language, in
Workshop on Composition Languages, WCL'01, pp. 1-13, September 2001.

[16] Browne J.C., and Dube A., Compositional Development of Performance Models in
POEMS, in International Journal of High-Performance Computing Applications,
vol. 14(4), Winter 2000.

[17] Browne J.C., Kane K., et al., An Associative Broadcast Based Coordination Model
for Distributed Processes, in Proceedings of COORDINATION 2002, LNCS 2315,
pp. 96-110, 2002.

[18] Bryant R.E., Simulation of packet communication architecture computer systems.
MIT:TR-188, Massachusetts Institute of Technology, 1977.

[19] Bures T., Hnetynka P., and Plasil F., SOFA 2.0: Balancing Advanced Features in a
Hierarchical Component Model, Fourth International Conference on Software
Engineering Research, Management and Applications (SERA'06), pp. 40-48, Aug
2006.

[20] Chandy K.M., and Misra J., Distributed Simulation: A Case Study in Design and
Verification of Distributed Programs, IEEE Transactions on Software Engineering,
vol. SE-5, no. 5, Sept. 1979, pp. 440-452.

[21] Czarnecki K., and Eisenecker U.W., Components and Generative Programming, in
Proceedings of the Joint European Software Engineering Conference and ACM
SIGSOFT International Symposium on the Foundations of Software Engineering,
Springer-Verlag LNCS 1687, pp. 2-19, 1999.

 100

[22] Dean M., Connolly D., et al., Web ontology language (OWL) reference version 1.0.
W3C Working Draft 12 November 2002, http://www.w3.org/TR/2002/WD-owlref-
20021112/.

[23] Deelman E., Bagrodia R., et al., Improving Lookahead in Parallel Discrete Event
Simulations of Large-Scale Applications using Compiler Analysis, Proceedings of
the 15th Workshop on Parallel and Distributed Simulation (PADS 2001), May 2001.
p. 5-13.

[24] Demkowicz L., and Kim C.W., 1D hp-Adaptive Finite Element Package. Fortran 90
Implementation (1Dhp90), TICAM Report 99-38, The University of Texas at Austin
(1999).

[25] Demkowicz L., 2D hp-Adaptive Finite Element Package (2Dhp90) version 2.0,
TICAM Report 02-06, The University of Texas at Austin (2002)

[26] Demkowicz L., Pardo D., and Rachowicz W., 3D hp-Adaptive Finite Element
Package (3Dhp90) version 2.0: The Ultimate Data Structure for Three Dimensional,
Anisotropic hp Refinitement, TICAM Report 02-24, The University of Texas at
Austin (2002)

[27] Deng G., New approaches for FMM implementation, Masters Thesis, Dept. of
Manufacturing Systems Engineering, University of Texas at Austin, 2002.

[28] Diaconescu A., Mos A., and Murphy J., Automatic Performance Management in
Component Based Software Systems, Proc. of IEEE International Conference on
Autonomic Computing (ICAC-04), pp. 214-221, May 2004.

[29] Diaz M., Rubio B., et al., SBASCO: Skeleton-Based Scientific Components, 12th
Euromicro Conference on Parallel, Distributed and Network-Based Processing
(PDP'04), p. 318, 2004.

[30] Ensink B., Stanley J., and Adve V., Program Control Language: A Programming
Language for Adaptive Distributed Applications, Journal of Parallel and Distributed
Computing , vol. 63, no. 11, pp. 1082-1104, Nov. 2003.

[31] Formal Systems (Europe) Ltd. Failures Divergence Refinement: FDR2 User Manual,
1997.

[32] Fu Y., Klimkowski K.J., et al., A fast solution method for three-dimensional many-
particle problems of linear elasticity, in International Journal for Numerical Methods
in Engineering, vol. 42(7): pp. 1215-1229, 1998.

[33] Fu Y., and Rodin G.J., Fast solution method for three dimensional Stokesian many-
particle problems, in Commun. Numer. Meth. Engng, vol. 16(2): pp. 145-149, 2000.

 101

[34] Fujimoto, R.M., Parallel and Distribution Simulation Systems, John Wiley & Sons,
Inc., New York, NY, 1999.

[35] Govindaraju M., Krishnan S., et al., Merging the CCA Component Model with the
OGSI Framework, in Proceedings of the 3rd International Symposium on Cluster
Computing and the Grid (CCGrid2003), pp. 182-189, May 2003.

[36] Gorlick, M.M., and Razouk R.R., Using Weaves for Software Construction and
Analysis. In Proceedings of the 13th International Conference on Software
Engineering, pp 23-34, May 1991.

[37] Greengard L., and Rokhlin V., A fast algorithm for particle simulations, in Journal
of Computational Physics, vol. 73(2): pp. 325-348, 1987.

[38] Greengard L., and Rokhlin V., A new version of the fast multipole method for the
Laplace equation on three dimensions, in Acta Numerica, vol. 6: pp. 229-270, 1997.

[39] Guyer S.Z., Berger E., and Lin C., Customizing Software Libraries for Performance
Portability, Proceedings of the 10th SIAM Conference on Parallel Processing for
Scientific Computing, March 2001.

[40] Guyer S., and Lin C., An Annotation Language for Optimizing Software Libraries, in
Proceedings of the Second Conference on Domain Specific Languages, pp. 39-53,
October 1999.

[41] Hau J., Lee, W., and Newhouse S., The ICENI service adaptation framework, in
Proc. U.K. e-Science All Hands Meeting, pp. 79-86, 2003.

[42] Hauck F., Becker U., et al., AspectIX an Aspect-Oriented and CORBA-Compliant
ORB Architecture, Tech. Report TR-I4-98-08, IMMD IV, Univ. Erlangen-Nürnberg,
Sep. 1998.

[43] Hnetynka P., and Plasil F., Dynamic Reconfiguration and Access to Services in
Hierarchical Component Models, Proceedings of CBSE 2006, pp. 352 - 359, June
2006.

[44] Hoare C.A.R., Communicating Sequential Processes. Communications of the ACM,
21(8):666-677, Aug. 1978.

[45] Huang C., Lawlor O., and Kale L.V., Adaptive MPI; in Proceedings of the 16th
International Workshop on Languages and Compilers for Parallel Computing
(LCPC 2003), LNCS 2958, pg 306-322, 2003.

[46] Jefferson D.R., Virtual Time, ACM Transactions on Programming Languages and
Systems, vol. 7, no. 3, pp. 404-425, July 1985.

 102

[47] Jifeng H., Josephs M.B., and Hoare C.A.R., A Theory of Synchrony and
Asynchrony, Proceedings of the IFIP Working Conference on Programming
Concepts and Methods, pp. 446-465, 1990.

[48] Kale L.V., and Krishnan S., CHARM++ : A Portable Concurrent Object Oriented
System Based On C++, Proceedings of the Conference on Object Oriented
Programming Systems, Languages and Applications, ACM Sigplan Notes, Vol. 28,
No. 10, pp. 91-108, 1993.

[49] Kalibera T., and Tuma P., Distributed component system based on architecture
description: The SOFA experience, in Proceedings of Distributed Objects and
Applications, Springer-Verlag, LNCS 2519, 2002.

[50] Kelly W., Roe P., et al., An Enhanced Programming Model for Internet Based Cycle
Stealing, in Proceedings of the 2003 International Conference on Parallel and
Distributed Processing Techniques and Applications, pp. 1649-1655, June 2003.

[51] Kohn S., Kumfert G., et al., Divorcing Language Dependencies from a Scientific
Software Library. 10th SIAM Conference on Parallel Processing, Portsmouth, VA.
March 12-14, 2001.

[52] Lamport L., Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM, v.21 n.7, p.558-565, July 1978.

[53] Luckham D.C., Kenney, J.J., et al., Specification and Analysis of System
Architecture Using Rapide, IEEE Trans. Software Eng., vol. 21, no. 4, pp. 336-355,
Apr. 1995.

[54] Luckham D.C., and Vera J., An Event-Based Architecture Definition Language,
IEEE Operations on Software Engineering, Vol 21, No 9, pp.717-734. Sep. 1995.

[55] Magee J., Dulay N., et al., Specifying Distributed Software Architectures, Proc. Fifth
European Software Eng. Conf. (ESEC '95), Sept. 1995.

[56] Magee J., Dulay N., et al., Structuring parallel and distributed programs, in Software
Engineering Journal, vol. 8(2): pp. 73-82, March 1993.

[57] Magee J. and Kramer J., Dynamic Structure in Software Architectures, Proc. ACM
SIGSOFT '96: Fourth Symp. Foundations of Software Eng. (FSE4), pp. 3-14, Oct.
1996.

[58] Magee J., Kramer J., and Giannakopoulou D., 1999. Behaviour Analysis of Software
Architectures. In Proceedings of the First Working IFIP Conference on Software
Architecture (Wicsa1), IFIP Conference Proceedings, vol. 140. pp. 35-50, 1999.

 103

[59] Mahmood N., Deng G., and Browne J.C., Compositional Development of Parallel
Programs, Proceedings of the 16th Workshop on Languages and Compilers for
Parallel Computing (LCPC'03), pp. 109-126, College Station, TX, 2-4 October
2003.

[60] Mahmood N., Feng Y., and Browne J.C., A Case Study in Application Family
Development by Automated Component Composition: h-p Adaptive Finite Element
Codes, Proceedings of the International Conference on Computational Science
(ICCS'05), pp. 347-354 Atlanta, GA, 22-25 May 2005.

[61] Medvidovic N., Oreizy P., et al., Using Object-Oriented Typing to Support
Architectural Design in the C2 Style, Proc. ACM SIGSOFT '96: Fourth Symp.
Foundations Software of Eng. (FSE4), pp. 24-32, Oct. 1996.

[62] Medvidovic N., Rosenblum D.S., and Taylor R.N., A Language and Environment for
Architecture-Based Software Development and Evolution, Proc. 21st Int'l Conf.
Software Eng. (ICSE '99), pp. 44-53, May 1999.

[63] Medvidovic N., and Taylor R.N., A Classification and Comparison Framework for
Software Architecture Description Languages, IEEE Transactions on Software
Engineering, vol. 26, no. 1, pages 70-93 (January 2000).

[64] Meyer R.A., and Bagrodia R., Path Lookahead: A Data Flow View of PDES Models,
Proceedings of the 13th Workshop on Parallel and Distributed Simulation (PADS
'99), May 1-4, 1999 in Atlanta, Georgia.

[65] Microsoft: Component Object Model Specification 0.9, http://www.microsoft.com,
1995.

[66] Milner R., Parrow J., and Walker D., A calculus of mobile processes (Parts I and II),
Information and Computation, 100:1-77, 1992.

[67] Mos A., and Murphy J., Performance Management in Component-Oriented Systems
using a Model Driven Architecture Approach, Proc. of IEEE 6th International
Enterprise Distributed Object Computing (EDOC) Conference, pp. 227-237,
September 2002.

[68] Mukherjee J., and Varadarajan S., Weaves: A Framework for Reconfigurable
Programming, International Journal of Parallel Programming, Volume 33, Issue 2 -
3, Jun 2005, Pages 279 - 305.

[69] Newton P., and Browne J.C., 1992. The CODE 2.0 Graphical Parallel Programming
Language, in Proceedings of the ACM International Conference on Supercomputing.

 104

[70] Object Management Group: Common Object Request Broker: Architecture and
Specification, CORBA 2.6.1, formal/02-05-08, ftp://ftp.omg.org/pub/docs/formal/02-
05-08.pdf, 2002.

[71] Oden J.T., Diller K.R., et al., Dynamic Data-Driven Finite Element Models for Laser
Treatment of Cancer, Journal for Numerical Methods for Partial Differential
Equations, Accepted for publication, 2007.

[72] Oden J.T., Diller K.R., et al., Development of a computational paradigm for laser
treatment of cancer, in Proceedings of International Conference on Computation
Science (ICCS 2006), pp. 530-537, 2006.

[73] Oldfield R., and Kotz D., Armada: a parallel I/O framework for computational grids,
Future Generation Computer Systems, vol. 18(4), pp. 501-523, 2002.

[74] Parashar M., and Hariri S., Autonomic Computing: An Overview, UPP 2004, Mont
Saint-Michel, France, Editors: J.-P. Banâtre et al. LNCS, Springer Verlag, Vol. 3566,
pp. 247-259, 2005.

[75] Parashar M., Li Z., et al., Enabling Autonomic Grid Applications: Requirements,
Models and Infrastructures, Self-Star Properties in Complex Information Systems,
Lecture Notes in Computer Science, Springer Verlag. Editors: O. Babaoglu, M.
Jelasity, A. Montresor, C. Fetzer, S. Leonardi, A. van Moorsel, and M. van Steen,
Vol. 3460, 2005.

[76] Perry D.E., and Wolf A.L., Foundations for the study of software architecture, ACM
SIGSOFT Software Engineering Notes, volume 17, issue 4, pp 40-52, 1992.

[77] Pervez S., Gopalakrishnan G., et al., Formal verification of programs that use MPI
one-sided communication, in Proceedings of the 13th European PVM/MPI Users’
Group Meeting, LNCS, Springer, pp. 30-39, 2006.

[78] Plasil F., Balek D., and Janecek R., SOFA/DCUP Architecture for Component
Trading and Dynamic Updating, Proceedings of the ICCDS ’98, Annapolis, IEEE
Computer Soc. Press, pp. 43-52, 1998.

[79] Plasil F., and Visnovsky S., Behavior Protocols for Software Components, in IEEE
transactions on Software Engineering, Vol. 28, No. 11, pp 1056-1076, Nov. 2002.

[80] Prakash S., and Bagrodia R., Using Parallel Simulation to Evaluate MPI Programs,
Proceedings of the Winter Simulation Conference, Washington D.C., Dec. 1998.

[81] Prieto-Diaz R., Domain Analysis: An Introduction. Software Engineering Notes 15,
2 , pp: 47-54, April 1990.

 105

[82] Seiter L., Mezini M., et al., Dynamic component gluing, in OOPSLA Workshop on
Multi-Dimensional Separation of Concerns in Object-Oriented Systems, November
1999.

[83] Shaw M., DeLine R., et al., Abstractions for Software Architecture and Tools to
Support Them, IEEE Transactions on Software Engineering, vol. 21, no. 4, pp.
314-335, Apr., 1995.

[84] Siegel S.F., Model Checking Nonblocking MPI Programs, in Proceedings of 8th
International Conference on Verification, Model Checking, and Abstract
Interpretation, VMCAI 2007, LNCS 4349, pp. 44-58, 2007.

[85] Siegel S.F., and Avrunin G.S., Verification of MPI-Based Software for Scientific
Computation. In Proceedings of the 11th International SPIN Workshop, (SPIN
2004), LNCS 2989, pp. 286-303, 2004.

[86] Siegel S.F., Mironova A., et al., Using Model Checking with Symbolic Execution to
Verify Parallel Numerical Programs, In Proceedings of the 2006 International
Symposium on Software Testing and Analysis (ISSTA '06) , pp. 157-168, July 17 -
20, 2006.

[87] Sirin E., Hendler J.A., and Parsia B., Semi-automatic composition of web services
using semantic descriptions. In Proc. Workshop on Web Services: Modeling,
Architecture and Infrastructure (WSMAI), pages 17-24. ICEIS Press, 2003.

[88] Stickel M., Waldinger R., et al., Deductive Composition of Astronomical Software
from Subroutine Libraries, in Proc. 12th Intl. Conf. Automated Deduction, edited by
A. Bundy, Springer, 1994, vol. 814 of Lect. Notes Artificial Intelligence, pp. 341--
355.

[89] Sun Microsystems: Enterprise JavaBeans Specification 2.0,
http://www.microsoft.com, 2002.

[90] Sun X., and Pitsianis N., A Matrix Version of the Fast Multipole Method, in Siam
Review, vol. 43(2): pp. 289-300, 2001.

[91] Sunderam V., and Kurzyniec D., Lightweight Self-Organizing Frameworks for
Metacomputing, in Proceedings of the 11th IEEE International Symposium on High
Performance Distributed Computing HPDC-11 (HPDC'02), pp. 113-124, July 2002.

[92] Swarztrauber P.N., Multiprocessor FFTs, in Journal of Parallel Computing, vol. 5:
pp. 197-210, 1987.

[93] Szyperski C., Component Software: Beyond Object-Oriented Programming, 2nd
edition, Addison-Wesley, Jan 2002.

 106

[94] Taylor I., Shields M., et al., Distributed P2P Computing within Triana: A Galaxy
Visualization Test Case, in Proceedings of International Parallel and Distributed
Processing Symposium (IPDPS 2003), April 2003.

[95] Vetter J.S., and Worley P.H., Asserting Performance Expectations, Proceedings of
the ACM/IEEE Conference on High Performance Networking and Computing
(SC'02), pp. 1-13, Balitimore, MD, Nov. 2002.

[96] Wu D., Sirin E., et al., Automatic Web services composition using SHOP2. In
Workshop on Planning for Web Services, Trento, Italy, June 2003.

[97] Xu K., Takai M., et al., Looking Ahead of Real Time in Hybrid Component
Networks, Proceedings of the 15th Workshop on Parallel and Distributed Simulation
(PADS 2001), May 2001.

[98] Yoon Y., Browne J.C., et al., Productivity and Performance Through Components:
The ASCI Sweep3D Application: Research Articles. Concurrency and Computation:
Practice & Experience, 19, 5 (Apr. 2007), pp. 721-742.

[99] Zhang K., Damevski K., et al., SCIRun2: A CCA Framework for High Performance
Computing, Proceedings of the Ninth International Workshop on High-Level
Parallel Programming Models and Supportive Environments (HIPS'04), pp. 72-79,
2004.

 107

Vita

Nasim Mahmood was born in Feni, Bangladesh on April 5, 1976. He is the eldest

son of Rafique Ahmed and Jahanara Akhter. He has an elder sister Rafiqa Sharmin

(Luna) and younger brother Ashique Mahmood (Rupam). He grew up in Dhaka,

Bangladesh. He received a B.S. in Computer Science and Engineering from Bangladesh

University of Engineering & Technology, Dhaka, Bangladesh in May 2000. He served as

a lecturer of Bangladesh University of Engineering & Technology, Dhaka, Bangladesh

from July 2000 to August 2001. In August 2001 he entered the Graduate School of The

University of Texas at Austin. He received a M.S. in Computer Sciences from the

University of Texas at Austin in December 2003.

Nasim has been happily married to his lovely wife, Farhana Wasik (Joya), since

2001. They were blessed with their son, Zafir Abrar Nasim, born on March 19th 2007.

Permanent address: 3373 Lake Austin Blvd, Apt B

 Austin, TX 78703 USA

This dissertation was typed by the author.

