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Development of efficient and correct parallel programs is a complex task.  These 

parallel codes have strong requirements for performance and correctness and must 

operate robustly and efficiently across a wide spectrum of application parameters and on 

a wide spectrum of execution environments. Scientific and engineering programs 

increasingly use adaptive algorithms whose behavior can change dramatically at runtime.  

Performance properties are often not known until programs are tested and performance 

may degrade during execution. Many errors in parallel programs arise in incorrect 

programming of interactions and synchronizations. Testing has proven to be inadequate.  

Formal proofs of correctness are needed.  

This research is based on systematic application of software engineering methods 

to effective development of efficiently executing families of high performance parallel 

programs. We have developed a framework (P-COM2) for development of parallel 

program families which addresses many of the problems cited above.  The conceptual 

innovations underlying P-COM2 are a software architecture specification language based 



 viii

on self-describing components, a timing and sequencing algorithm which enables 

execution of programs with both concrete and abstract components and a formal 

semantics for the architecture specification language.  The description of each component 

incorporates compiler-useable specifications for the properties and behaviors of the 

components, the functionality a component implements, pre-conditions and post-

conditions on the inputs and outputs and state machine based sequencing control for 

invocations of the component.  The P-COM2 compiler and runtime system implement 

these concepts to enable:  (a) evolutionary development where a program instance is 

evolved from a performance model to a complete application with performance known at 

each step of evolution, (b) automated composition of program instances targeting specific 

application instances and/or execution environments from self-describing components 

including generation of all parallel structuring, (c) runtime adaptation of programs on a 

component by component basis, (d) runtime validation of pre-and post-conditions and 

sequencing of interactions and (e) formal proofs of correctness for interactions among 

components based on model checking of the interaction and synchronization properties of 

the program.  The concepts and their integration are defined, the implementation is 

described and the capabilities of the system are illustrated through several examples. 
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Chapter 1: Introduction 

1.1 PROBLEM STATEMENT 

Many application packages in the high performance computing domain can be 

applied to a wide spectrum of problems in engineering and sciences [4], [11]. These 

application codes must operate robustly and efficiently across a wide spectrum of 

application parameters and on a wide spectrum of execution environments.  The 

properties and behavior of the program may vary widely with change of the problem or 

with change of the execution environment. Thus adaptability and optimization based on 

problem or execution environment is a highly desirable feature of these application 

packages. Establishing correctness of parallel structures is a difficult task. Often the 

implementation has to be modeled manually in a particular formal language. It would be 

desirable to establish correctness of the implementation without going through a manual 

modeling step. 

The complexity of the parallel structures of these codes combined with the 

complexity and diversity of parallel execution environments makes predicting the 

performance of these programs difficult.  Conventional development methods for parallel 

programs where a program is fully developed before its performance properties are 

evaluated worsen the problem.   

Modern computational algorithms utilize adaptive methods where the behavior of 

the program may change substantially during its execution so that the performance (and 

accuracy) of programs optimized for the initial conditions of execution may deteriorate 

during execution. Common practice in development of adaptive codes is to construct 

them as an integrated and comprehensive package of functional modules based on 

common, shared data structures. These packages are usually composed of a large number 
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of parameterized functions. A package which is robust and offers a spectrum of 

implementations giving efficient execution across application parameters and execution 

environments may be very complex and very difficult to debug and to maintain and 

modify. These codes are often sub-optimally efficient on many of the problems to which 

they are applied and many of the execution environments upon which they may be 

hosted.  Thus one has to choose between performance and productivity.  This problem is 

aggravated by the multiplicity of and constant change in parallel execution environments.  

Porting across execution environments with retention of efficiency often requires effort 

intensive redesign and re-implementation. Finally, conventional monolithic program 

structures make evolution of parallel programs particularly difficult.  

1.2 INNOVATIONS AND CONTRIBUTIONS OF THIS DISSERTATION 

This research is based on innovative application of software engineering methods 

to effective development of efficiently executing families of high performance parallel 

programs. We have developed a framework (P-COM2) for development of parallel 

program families which addresses many of the problems cited above.  The conceptual 

innovations upon which P-COM2 is based are: (i) a software architecture specification 

language (ASL) based on self-describing components, (ii) a timing and sequencing 

algorithm which enables execution of programs with both concrete and abstract 

components and (iii) a formal semantics for the architecture specification language.  The 

description of each component in the ASL incorporates compiler-useable specifications 

for the properties and behaviors of the components, the functionality a component 

implements, pre-conditions and post-conditions on the inputs and outputs and state 

machine based sequencing control for invocations of the component.  P-COM2 utilizes 

these concepts in a compiler for the architecture specification language and a runtime 

system which unifies direct and simulated execution and runtime substitution of 
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components. The unique capabilities implemented by the P-COM2 compiler and runtime 

system include:  (a) evolutionary development where a program instance is evolved from 

a performance model to a complete application with performance known at each step of 

evolution, (b) automated composition of program instances targeting specific application 

instances and/or execution environments from self-describing components including 

generation of all parallel structuring, (c) runtime adaptation of programs on a component 

by component basis, (d) runtime validation of pre-and post-conditions and sequencing of 

interactions and (e) formal proofs of correctness for interactions among components 

based on model checking of the interaction and synchronization properties of the program 

Each of these capabilities is summarized below and detailed in separate chapters of this 

dissertation. 

1.2.1 An Architecture Specification Language based on Self-Describing Components 

A P-COM2 self-describing component consists of one or more sequential 

computations written in some conventional procedural programming language and a 

specification written in the P-COM2 ASL.  The P-COM2 ASL specifications for a 

component may incorporate information on any or all of its functionality, its non-

functional properties such as performance or robustness, preconditions and 

postconditions and a state machine which specifies the correct sequences of invocation 

for stateful components.  Self-describing components and the ASL are detailed in 

Chapter 2. 

1.2.2 Automated Composition 

The P-COM2 system automates composition of parallel programs from the self-

describing components sketched in the previous subsection.  The meta-information 

associated with the components by the ASL specifications, together with the 
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programming model enables automated composition. Given specifications of a particular 

instance of a program family (See Chapter 2 for a definition of a program family and an 

instance of a program family.), the P-COM2 compiler searches the library for matching 

components and instantiates an appropriate application instance. “Smart” matching based 

on containment relationships among components allows closest matching rather than 

exact matching and thus allows program instantiation in the absence of complete domain 

libraries. 

1.2.3 Automated Adaptation 

The P-COM2 compiler automatically adds performance monitoring code to each 

component. This monitored information is available to the adapt component type. Users 

of the application can put their adaptation logic in the adapt component and use the 

information collected by the monitors to evaluate the effectiveness of system execution 

and to determine when a component replacement is needed. Adaptation is achieved by 

runtime replacement of components using dynamic linking. 

1.2.4 Performance Modeling and Evolutionary Development 

The P-COM2 framework allows performance modeling of parallel programs 

starting from the design stage. The feature is based on a unified execution model which 

combines simulated execution with direct execution. Users can supply a performance 

model of a component instead of an actual implementation and the system will include its 

simulated execution time with the program execution time. The network is also modeled 

using a performance model. The unified execution model allows execution of both the 

abstract performance models and concrete implementation of components in the same 

program. Thus development can start with all abstract components and we can see if the 

program can meet the performance goal without providing actual implementations. Once 
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the abstract program meets the performance goal, users can replace abstract components 

with actual concrete implementation and can periodically execute the program to 

incrementally verify performance properties. Thus in our framework a program can 

evolve from abstract performance model to complete program. Performance of the 

program can be estimated at any stage of realization. 

1.2.5 Robustness and Formal Verification 

The P-COM2 framework facilitates development of robust components through 

provisions in the ASL for definition of preconditions and postconditions and specification 

of sequencing behavior of component operations. It allows runtime verification of the 

preconditions and postconditions and runtime verification of correct sequencing behavior 

by the use of interface state machines. The preconditions and postconditions work as a 

contract where the component guarantees the postconditions when users meet the 

obligations of the preconditions. Also through the use of interface state machines correct 

sequencing behavior of the component interactions can be ensured and verified at 

runtime. Finally we have provided formal semantics of the P-COM2 ASL which can be 

used to reason about component interactions. By providing the semantics of the ASL and 

automatically generating the semantics in the formal language Communicating 

Sequential Process (CSP) [44] we can formally verify the interaction behaviors of a 

parallel program using the CSP model checker FDR [31]. 

1.3 DISSERTATION OUTLINE 

The remainder of this dissertation is organized as follows. In Chapter 2, we 

present the P-COM2 ASL and the programming model. Chapter 3 presents automated 

composition in detail together with related work and a case study. Automated adaptation 

and its related work and case studies are discussed in Chapter 4. Chapter 5 presents 
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details about the performance modeling and evolutionary development capability 

together with related work and a case study. Chapter 6 gives details on how the P-COM2 

ASL enables writing robust components and formal verification of the interaction 

behaviors of parallel programs. Finally Chapter 7 concludes this dissertation and 

discusses future research directions. 
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Chapter 2: Software Architectures and Self-Describing Components 

This chapter informally defines and describes the elements of the P-COM2 

programming system including its programming model. 

2.1 SOFTWARE ARCHITECTURE AND DOMAIN ANALYSIS 

A software architecture [76] is a representation of the set of components from 

which a family of applications can be built and the relationships among them which 

define the structures for the instances of the application family.  An architecture 

description language (ADL) is usually used to specify an architecture [63].  Domain 

analysis [81] is the basis for gathering the information by which to define a software 

architecture. It is also the process by which a set of attributes in which the properties and 

behaviors of the components can be defined. Property based schemes are very well suited 

[76] for describing the elements of a software architecture. 

Conventional ADLs separate specification of components and the relationships 

among components.  ADLs typically provide means for specification of functional and 

non-functional properties of components.  The relationships among components are often 

defined in terms of communication protocols and/or connectors (which define 

interactions among components). In the P-COM2 language, all of the information 

defining a software architecture is captured in a set of  self-describing components. The 

P-COM2 language is an architecture description language in which relationships and 

connectors1 among components are implicitly defined.  Connectors are synthesized at 

compile time by matching property specifications and interaction behaviors when the 

components are composed into a program.   P-COM2 uses a property based scheme for 

describing components. An architecture description in P-COM2  provides both functional 
                                                 
1 A connector is an instantiation of an interaction between components 
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and non-functional properties of the components and can describe a component in the 

context of an architecture. 

2.2 SELF-DESCRIBING COMPONENTS 

A component is one or more sequential computations and a specification for the 

properties and interactions of the components. Each component, in addition to 

implementing one or more functions, has an associated specification which defines its 

properties and its interactions as well as its functional signatures2. We call our 

components self-describing components. Self-describing components are the enabling 

concept for all of automated composition, adaptation/optimization, evolutionary 

development and the formal semantics of P-COM2. Interaction specifications include 

both the interactions the component accepts and those that it initiates in order to fulfill the 

interactions it accepts.  The properties and interactions are specified in an associative 

interface which specifies the information used for selection and matching of components, 

a state machine which manages the interactions with other peers and the invocation of the 

sequential computations and a set of pre-conditions and post-conditions which are used to 

insure that the components execution behavior is robust. An interaction may be initiated 

by an incoming message (or set of messages) or by an invocation of an operation. An 

interaction triggers an action which is associated with some state of the state machine. 

The action may include execution of a sequential computation. A sequential computation 

executes in run to completion mode and refers only to its own local variables and its input 

variables.  Figure 1 shows the conceptual view of a self-describing component.  

The attributes (variable domains) in which the properties and behaviors of the 

components are defined are derived from the domain analysis for the family of 

                                                 
2 A component may implement multiple related functions. 
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applications and the execution environments.  The set of attributes in which the properties 

of the components are expressed is common global knowledge for the components.   

There can be multiple implementations of a component implementing the same 

logical functionality but with substantially different behaviors, applicability, robustness, 

and performance properties. A given implementation might have been optimized for a 

particular execution environment.  A component may be a complete implementation or 

an abstract timing or performance model.  Execution of a program which includes 

abstract components reports estimated computation time of the program. The invocations 

of other components by a given component may depend on which of the interactions it 

implements it is currently executing. 

 

Figure 1: Conceptual view of a self-describing component. 

The interfaces of self-describing components carry specifications for all of these 

properties.  When a component specifies an interaction it will invoke, the invoking 
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component will specify not only what functionality it needs, it will also specify the other 

non-functional properties of the required components.  

Components are allowed to be stateful. The interactions of a component may 

depend upon its current state.  Therefore invocations of the functions implemented by a 

component are managed by a state machine defined in the interface specifications.  The 

state machine is defined by guards over the internal state of the component and pre-

conditions and post-conditions over the inputs and outputs of the functions.   

Since this information is specified in the interfaces of the components, a compiler 

can, given an initial condition which selects an initial component, automate the 

composition process by matching requirements to capabilities in libraries of components. 

The automated composition process is defined and described in Chapter 3. 

The elements of a self-describing component together with a number of 

definitions that will be used in later chapters are sketched in the following. 

2.3 ASSOCIATIVE INTERFACE 

An associative interface [13] encapsulates a component. It describes the behavior 

and functionality of a component. One of the most important properties of associative 

interfaces is that they differentiate among alternative implementations of the same 

component. Properties of implementations such as degree of parallelism for a given 

component are also specified in the associative interface as runtime determined 

parameters. These interfaces are called "associative" because selection and matching is 

similar to operations on content-addressable memories.  An associative interface consists 

of accepts specification/interface and requires specification/interface. 

Accepts Interface: An accepts interface describes the set of interactions in which 

a component is willing to participate. The accepts interface for a component is a three-

tuple (profile, state machine, protocol). 
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• Profile: A profile characterizes the properties and behaviors of a component and 

enables the compositional mechanism to select components meeting the 

requirements for efficient implementation of a given instance of an application 

family for a given execution environment.  A profile is a set of attribute/value 

pairs. The attribute names and values are derived by domain analysis. 

• State Machine: The interaction behavior of a component is managed by a state 

machine.  Each state of the state machine is a guarded command with a condition 

(which is evaluated at runtime) for the execution of the function and a function 

signature. The state machine is defined as expressions in a linear propositional 

temporal logic over the attributes and state variables of the component. A function 

signature and its enabling condition are called an operation. An operation can be 

enabled or disabled based on its current state and its current state can be used in 

runtime binding of the components.  The state machine can be used to represent 

complex interactions such as precedence of transactions, "and" relationships 

among transactions and "or" relationships among enabling states and transactions. 

Each operation of a component can be specified with a contractual agreement 

between the user of the component and the component itself. The contract is 

specified using pre-conditions and post-conditions. Having explicit contract of an 

operation helps in better understanding of the components functionally as well as 

automatic runtime checking of the contract. 

• Protocol: A protocol defines a sequence of simple interactions necessary to 

complete the interaction specified by the profile. The most basic protocol is data-

flow (continuations), which is defined as executing the functionality of a 

component and transmitting the output to a successor defined by the selectors at 

that component without returning to the invoking component. 
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Requires Interface: A requires interface describes the set of interactions which a 

component must initiate if it is to complete the interactions it has agreed to accept. The 

requires interface is a set of three-tuple (selector, state machine, protocol).  

• Selector: A selector is a conditional expression over the attributes of the 

components in the domain. 

• State Machine: State machine specifications are similar to those for accepts 

specifications except that the state machine is a single state. 

• Protocol: Protocol specifications are as given for accepts specifications. 

Start Component: A start component is a component that has at least one 

requires interface and no accepts interface. Every program requires a start component. 

There can be only one start component in a program which provides a starting point for 

the program. 

Stop Component: A stop component is a component that has at least one accepts 

interface and no requires interface. A stop component is also a requirement for 

termination of a program. There can be more than one stop component of a program 

denoting multiple ending points for the program. 

Adapt Component: An adapt component contains the logic for utilizing the 

behavioral information measured in the execution of the code.  The fact that the measured 

data can be analyzed in the context of the known semantics of the components in which 

the measurements are taken enables straightforward analysis and decision processes. 

2.4 SOFTWARE ARCHITECTURE BASED PROGRAMMING MODEL 

2.4.1 Programming Model 

The software architecture-based, component-oriented programming model targets 

development of a family of programs rather than single programs. The process defined by 
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the programming model has two phases: development of an architecture in terms of self-

describing components and specification of instances from the family of programs which 

can be instantiated from the set of components. 

2.4.2 Domain Analysis and Component Implementation 

The set of components which enables construction of a family of application 

programs may include components which utilize different algorithms for the same 

functionality for different problem instances or different implementation strategies for 

different execution environments.  A program for a given problem instance or given 

execution environment is composed from appropriate components by selecting desired 

properties for the components and the properties of the execution environment in the 

Start component. The steps are: 

a. Domain Analysis – Execute the necessary domain analyses to obtain the software 

architecture.  It is commonly the case that applications require components from 

multiple domains. 

b. Component Development – Specify and either design and implement or discover 

in existing libraries, the family of components identified in the domain analysis in 

an appropriate sequential procedural language.  The specification for each 

component should include pre-conditions and post-conditions defining the 

applicability of this implementation of the functionality of the component. 

c. Specify Properties and Interactions – Specify for each component  (in the P-

COM2 interface definition language) its properties and the interactions in which it 

can engage using the attributes identified in the domain analysis to specify 

associative interfaces for the components.  The interfaces must differentiate the 

components by identifying their properties in terms of the attributes defined in the 

domain analysis. 



 14

The resulting set of P-COM2 self-describing components defines a software 

architecture for a family of application instances in which the relationships are realized at 

compile-time and runtime. 

2.4.3 Program Instance Development 

This section gives the basic process for specification of an application family 

instance in the case where the system configuration is known in advance and the only 

requirement is to compose the program from a set of components.  Chapter 5 extends this 

process to evolutionary development where the system configuration is not known in 

advance.  The steps in specifying a given instance of an application are: 

a. Analyze the problem instance and the target execution environment. Identify the 

attributes and attribute values which characterize the components desired for this 

problem instance and execution environment. 

b. Identify the components from which the application instance will be composed. If 

the needed components are not available then some additional implementations of 

components may be necessary together with an extension of the domain analysis. 

c. Identify the dependence graph of the application instance. The dependence graph 

is expressed in terms of the components identified. Specify the number of 

replications desired for parallelism and for fault-tolerance.  Incorporate these 

specifications into the component interfaces or as parameters in the Start 

component if parameterized parallelism has been incorporated into the component 

interfaces. 

d. Define a Start component which initializes the replication parameters, sets 

attribute values needed to ensure that the desired components are selected and 

matched. 

e. Define at least one Stop component. 
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2.5 INTERFACE DEFINITION LANGUAGE 

The fundamental concepts underlying the interface definition language were 

given in Section 2.2 and 2.3. This section illustrates the interface of a component in the 

P-COM2 syntax. 

 

Figure 2: Accepts interface of gather_transpose component 

Figure 2 shows the accepts interface of a component in the matrix algebra domain 

named gather_transpose. The function of this component is to collect the rows of a 

complex-valued matrix and when the collection is complete, perform a transpose of the 

matrix.  

The accepts interface has three parts. The profile part shows the properties of this 

component. The semantics of the properties and their values were determined by a prior 

profile: 
   string domain = "matrix"; 

string function = "gather"; 
string element_type = "complex"; 
bool combine_by_row = true; 
bool transpose = true; 
string implementation_level = "code";     

operation: 
   // 1st operation 

guard { state == 0 } 
// make sure that the arguments are correct 
pre_condition { TRUE ==> (n > 0) && (m > 0) && (p >= 2);  } 
void get_p(in int n, in int m, in int p);   
post_condition { } 
action { state = 1; } 

 
   || 
 
   // 2nd operation 
   guard { state == 1 } 

pre_condition { TRUE ==> (inst >= 0); } 
void get_grid_n_m_inst(in mat1 grid_re,in mat1 grid_im,in int inst);

   // make sure that the values are copied into the big matrix 
   post_condition { TRUE ==> forall(int i:0..(n*m-1)|     
          out_grid_re[n*m*inst + i] == grid_re[i]); }  
   action { } 
protocol: dataflow; 
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domain analysis of the program. The properties describe that this component gathers 

complex-valued matrices and combines them by rows and finally transposes the 

combined matrix. The property “implementation_level” is used to differentiate between 

abstract and concrete components and will be described in Chapter 5. The value of the 

property implementation_level describes this component as a concrete component. 

The operation section shows that this component has two operations that are 

related by an OR (||) operation. This means that if the operations are enabled, any one of 

them can be invoked. The guard part of an operation decides whether the operation is 

enabled or not. According to the guard part, the two operations cannot both be enabled at 

the same time since the value of the variable “state” cannot be 0 and 1 at the same time. 

The initial value of the variable is 0 and thus the first operation is enabled initially. The 

action part of the first operation changes the value of the variable “state” to 1 after the 

operation is invoked. Thus the guard and action part together forms the state machine of 

the component. After the first operation is invoked, the second operation becomes 

enabled and the first operation becomes disabled.  

The pre_condition and post_condition section is the implementation of the 

obligation and guarantee of contracts respectively which are evaluated at runtime.  For 

example the pre_condition section of the second transaction shows the obligation of this 

transaction is that the value of the variable “inst” must be greater than or equal to zero. 

The post_condition  makes sure that each individual piece of the complex matrix has 

been copied properly.  The operations specify the parameters and their types. The 

protocol of the component is dataflow. 

Figure 3 shows the requires interface of the gather_transpose component. The 

requires interface of this component has two requires clauses. Each of the requires clause 

shows the selector and operation part while the protocol part is omitted. The requires 
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interface invokes a component whose desired properties are shown by the selector section 

of the requires interface. The first requires interface is looking for a component that can 

partition a complex matrix by row-wise. The second requires clause is looking for a 

component that can print a complex matrix. As before the guards of the operations 

determine which of the two operations are enabled. From the specification of the guards 

both operations cannot be enabled at the same time. The guard section in conjunction 

with the action section changes the state of the component. 

 

Figure 3: Requires interface of gather_transpose component 

selector: 
   string domain == "matrix"; 
   string function == "distribute"; 
   string element_type == "complex"; 
   bool distribute_by_row == true; 
   string implementation_level == "code"; 
operation: 
   guard {  no_of_times_invoked == 1 && gathered == p }  
   void get_matrix(out mat1 out_grid_re,out mat1 out_grid_im,  
      out int m, out int n*p, out int p); 
   action { state = 0; initialized = 0; } 
 
selector: 
   string domain == "matrix"; 
   string function == "print"; 
   string element_type == "complex"; 
   string implementation_level == "code";   
operation: 
   guard { no_of_times_invoked == 2  && gathered == p } 
   void get_grid_n_m(out mat1 out_grid_re,out mat1 out_grid_im, 
     out int m,out int n*p);  
   action { no_of_times_invoked = 0; state = 0; initialized = 0; } 



 18

Chapter 3: Automated Composition 

3.1 MOTIVATION 

Component-oriented software development is one of the most active and 

significant threads of research in software engineering [93], [1], [21], [82]. There are 

many motivations for raising the level of abstraction of program composition from 

individual statements to components with substantial semantics. It is often the case that 

there is a family of applications which can be generated from a modest number of 

appropriately-defined components. Optimization and adaptation for different execution 

environments is readily accomplished by creating and maintaining multiple versions of 

components rather than by direct modifications of complete applications. Programs 

generated and maintained as compositions of components are much more understandable 

and thus much more readily modifiable and maintainable. 

Even though there are additional benefits to component-oriented development in 

the distributed and parallel domain3, there has been relatively little research on 

component based programming in the context of high performance parallel and 

distributed programming. The execution environments for parallel programs are much 

more diverse than those for sequential programs.  It is often necessary to maintain 

multiple versions of parallel programs for different execution environments.  Program 

development by composition of components enables adaptation of parallel programs to 

different execution environments and optimization for different application instances by 

replacement of components. Adaptive control of parallel and distributed programs [2] is 

also enabled by replacement of components.  Management of adaptations such as degree 

                                                 
3 CORBA, Web Services, etc. which are very much component-oriented development systems, are not 
commonly used for development of parallel or high performance applications. 
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of parallelism and load balancing are readily accomplished at the component level.   

Parallelism is most often determined by the number of instances of a component which 

are executing in parallel (single program multiple data parallelism). It has also been 

found that viewing programs as compositions of components tends to lead to programs 

with better structuring and better performance even for sequential versions. 

We approach component-oriented development of parallel and distributed 

programs from a different perspective than most other projects.  The principal concerns 

and goals for the P-COM2 project have been to enable automation of composition 

through a compiler, to develop a mechanism enabling runtime adaptation of parallel and 

distributed programs at the component level [2] and to enable performance-oriented, 

evolutionary development of parallel and distributed programs. This chapter covers the 

first topic, compiler-implemented composition.  Automation of composition of programs 

from components substantially enhances the effectiveness of component based 

development.  In addition to the obvious benefit of programmer productivity in initial 

program generation, automated composition enables very rapid customization of 

programs to problem instances and execution environments through recompilation. 

Automated composition insures that interactions among components (the most commons 

source of error in parallel programming) are correctly generated.  Perhaps surprisingly, 

automated composition frequently leads to programs which are more efficient that 

manually composed programs since compilers can generate correct code for complex 

behaviors such as asynchronous communication and can also recognize and generate 

efficient code for frequently occurring patterns of interaction behavior. 

3.2 AUTOMATED COMPOSITION 

The fundamental concepts underlying the interface definition language were 

given in Chapter 2.  This section describes how the automated composition process 
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works, shows an example of the composition process and finally shows an extension of 

the interface definition language that enables matching even when the program library is 

not complete. 

3.2.1 Program Composition Process 

The conditional expression of a selector is a template which has slots for attribute 

names and values. The names and values are specified in the profiles of other 

components of the domain. Each attribute name in the selector expression of a component 

behaves as a variable. The attribute variables in a selector are instantiated with the values 

defined in the profile of another component. The profile and the selector are said to match 

when the instantiated conditional expression evaluates to true. 

The source program for the compilation process is a start component which 

implements initialization for the program and a requires interface which specifies the 

components implementing the first steps of the computation and one or more libraries to 

search for components.  The libraries should include the components needed to compose 

a family of applications specified by a domain analysis.  The components which are 

composed to form a program are dependent on the requires interface of the Start 

component. 

The compilation process first parses the associative interface of the start 

component. The compiler then searches a specified list of libraries for components whose 

accepts interface matches with the requires interface of the start component.  If the 

matching between the selector of one component and the profile of another component is 

successful, the compiler tries to match the corresponding operations of the requires and 

accepts interface. The operations are said to match when all of the following conditions 

are true. 1) The name of the two operations is the same. 2) The number of arguments of 

each of the two operations is the same. 3) The data type of each argument in the requires 
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operation is the same as that of the corresponding argument in the accepts operation. 4) 

The sequencing constraint given by the conditional expression in the accepts operation 

specification (the state machine) is satisfied. Finally the protocol specifications must be 

consistent.  

The target language for the compilation process is a generalized data flow graph 

(GDFG) as described in CODE [69].  The GDFG has two special node types, a start node 

and a stop node.   When compilation of the P-COM2 Start component is completed, it is 

converted into a start node [69] for the GDFG and each match of a requires interface to 

an accepts interface results in addition of a node to the data flow graph which is being 

incrementally constructed by the compilation process and an arc connecting the this new 

node to the node which is currently being processed by the compiler.  If there is a 

replication clause in an operation specification then at runtime the specified number of 

replicas of the matched component are instantiated and linked with data flow arcs. This 

searching and matching process for the requires interface is applied recursively to each of 

the components that are in the matched set. The composition process stops when no more 

matching of interfaces is possible which will always occur with a Stop component since a 

Stop component has no requires interface. Compilation of a P-COM2 Stop component 

results in generation of a stop node for the data flow graph.  The compiler will signal an 

error if a requires interface cannot be matched with an accepts interface of a desired 

component.  The generated GDFG is then compiled to a parallel program for a specific 

architecture by compilation processes implemented in the CODE [69] parallel 

programming system. 

3.2.2 Example of Composition Process 

To illustrate the automated composition process, let us look at the second clause 

of the requires interface section of gather_transpose component shown in Figure 4.  The 
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accepts interface of the matching component, the function of which is to output the 

results is given as Figure 5.  The P-COM2 compiler will search its set of component 

libraries to find a match for the requires of the gather_transpose and generate a match 

with this accepts clause.  This component is the Stop component and has no requires 

interface so the recursive matching process terminates with this component. 

 

Figure 4: Requires interface of gather_transpose component 

 

Figure 5: Accepts interface of print component 

 

// 1st requires clause 
selector: 
   string domain == "matrix"; 
   string function == "distribute"; 
   string element_type == "complex"; 
   bool distribute_by_row == true; 
   string implementation_level == "code"; 
operation: 
   guard {  no_of_times_invoked == 1 && gathered == p }  
   void get_matrix(out mat1 out_grid_re,out mat1 out_grid_im,  
      out int m, out int n*p, out int p); 
   action { state = 0; initialized = 0; } 
 
// 2nd requires clause 
selector: 
   string domain == "matrix"; 
   string function == "print"; 
   string element_type == "complex"; 
   string implementation_level == "code";   
operation: 
   guard { no_of_times_invoked == 2  && gathered == p } 
   void get_grid_n_m(out mat1 out_grid_re,out mat1 out_grid_im, 
     out int m,out int n*p);  
   action { no_of_times_invoked = 0; state = 0; initialized = 0; } 

profile: 
   string domain = "matrix"; 
   string function = "print"; 
   string element_type = "complex"; 
   string implementation_level = "code";   
operation: 
   void get_grid_n_m(in mat1 grid_re,in mat1 grid_im, 
      in int n,in int m);  
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To see how the automated composition process begins and continues let us 

examine the start component Initialize (as shown in Figure 6) for a matrix formulation of 

the Swarztrauber's multiprocessor FFT algorithm [92]. 

 

Figure 6: Requests interface of initialize component 

The requires clause will be matched by a component which partitions a matrix by 

rows and then implements SIMD parallel computation on the partitions. Such a 

component is seen in Figure 7 and Figure 8.  The compiler starts by matching the requires 

interface of the Initialize component with the accepts interface of the distribute 

component.  The recursive process of composition is continued by the compiler seeking a 

matching one-D fft component to match the requires of the distribute component, and etc.  

This process continues until the terminating component is found as illustrated preceding. 

 

Figure 7: Accepts interface of distribute component 

selector: 
   string domain == "matrix"; 
   string function == "distribute"; 
   string element_type == "complex"; 
   bool distribute_by_row == true; 
   string implementation_level == "code";     
operation: 
   void get_matrix(out mat1 grid_re,out mat1 grid_im, out int n,  
    out int m, out int p); 

profile: 
   string domain = "matrix"; 
   string function = "distribute"; 
   string element_type = "complex"; 
   bool distribute_by_row = true; 
   string implementation_level = "code";     
operation: 
   // make sure that the arguments are correct 
   pre_condition { TRUE ==> (n > 0) && (m > 0) && (p >= 2);  }  
   void get_matrix(in mat1 grid_re,in mat1 grid_im,in int n,in int m, 
   in int p); 
   // make sure that the matrices ar properly copied 
   post_condition{TRUE ==> forall(int i:0..(p-1),int j:0..(n_p*m-1)  
    | (grid_re[i*n_p*m+j] == out_grid_re[i][j]) &&   
     (grid_im[i*n_p*m+j] == out_grid_im[i][j]) ); }  
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Figure 8: Requests interface of distribute component 

3.2.3 Containment Relationship and Approximate Matching 

The previous sections sketched how P-COM2 implements automated composition 

of programs from components by searching for a component whose accepts interface 

exactly matches the requires interface of the component whose requirements are being 

met.  It may be the case that an exact match with the properties desired is not available in 

the component library. We can also specify, as a part of the architectural information, 

containment relationships between multiple values of a property. The component 

matching algorithm has been extended to implement containment relations on profile 

attributes.  A containment relation can be defined for each attribute in a profile. A 

containment relation (A >> B) specifies that the functionality of A is a superset of the 

functionality of B (i.e. general purpose solver for a linear system contains triangular 

solver) and that A can be substituted for B if a component implementing B is not 

// 1st requires clause 
selector: 
   string domain == "matrix"; 
   string function == "gather";  
   string element_type == "complex"; 
   bool combine_by_row == true; 
   bool transpose == true; 
   string implementation_level == "code";     
operation: 
  int get_p(out int n/p, out int m,out int p);  
    
// 2nd requires clause 
{selector: 
   string domain == "fft"; 
   string input == "matrix"; 
   string element_type == "complex"; 
   string fft_dimension == "1D"; 
   bool apply_per_row == true; 
   string implementation_level == "code";     
operation: 
   void get_grid_n_m(out mat1 out_grid_re[],out mat1 out_grid_im[], 
        out int n/p, out int m); 
} index [ p ] 
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available. The requires section of a component states that it needs a component with 

some desired functional and nonfunctional properties. The P-COM2 compiler searches 

the library of components and tries to find a component that has those properties. The 

search can result in an exact match (each desired property is found) or it can result in an 

approximate match (for some desired property, a component is found whose offered 

property value contains the desired property). An exact match is preferred over on 

approximate match. The containment relation enables composition of a program even 

when an exact match for a requires clause is not available.  

3.3 CASE STUDY 

The P-COM2 framework has been used in the development of a number of non-

trivial parallel programs. The summary results are shown below. 

Linear Systems Solution by Fast Multipole Algorithm: Development of a 

parallel version of the matrix formulation of the fast multipole (FMM) algorithm for 

solution of linear systems was used to motivate and test the P-COM2  compiler.  A 

surprising result of this case study was the first observation that the serial version of the 

program composed from self-describing components was significantly faster than the 

serial version of the original monolithic code which was claimed to be highly optimized. 

The case study also showed good parallel speedup. This case study is described in 

Section 3.3.1.  

Sweep3D:  The most extensive set of experiments is based on a conversion of the 

DOE ASCI benchmark program, Sweep3D to self-describing components.  It was found 

that after the rather laborious conversion to components was completed, that a pair of 

undergraduate students was able to generate near optimal versions of the Sweep3D code 

for multiple execution environments with only about two weeks of effort.  It was found, 

as for the FMM code, that the serial version of the componentized program was 
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significantly faster that the serial version of the original Sweep3D program.  We believe 

that the speedup of the componentized program over the original program is due to the 

facts that the C compiler generates more efficient code for the relatively small code units 

of the components than for the complex structures in the original code.  In addition good 

parallel speedup was observed. A full report can be found in [98]. 

3.3.1 Case Study – A Generalized Fast Multipole Solver 

The Fast Multipole Method (FMM) [37], [38] which solves the N-body 

electrostatics problems in O(N) rather than O(N2) operations, is central to fast 

computational strategies for particle simulations. The FMM is also useful for iterative 

solution of linear algebraic equations associated with approximate solution of integral 

equations. There the FMM is used for O(N) matrix-vector multiplication. In order to 

adapt the FMM for applications in fluid and solid mechanics, the classical electrostatics 

problem must be replaced with a generalized electrostatics problem [32], [33].  Such 

problems involve vector and tensor valued charges, which means that one generalized 

electrostatics problem is equivalent to several classical electrostatics problems, which 

share the same geometry. In particular, FLEMS code [32] relies on the generalized 

electrostatics problem that is equivalent to 13 classical electrostatics problems. 

We have performed a domain analysis for the FMM for generalized (multiple 

charge type) electrostatics. For example, the FMM tree has certain attributes, such as its 

depth and its number of charges per cell and the application component has an attribute 

with values that select between classical and generalized electrostatics. For generalized 

electrostatics the number of charge types is an attribute. For each attribute, the analysis 

defines a range of legal values.  Components for a family of FMM codes for generalized 

electrostatics were derived from the FLEMS FMM implementation. These components 

were given associative interfaces that define their properties and behaviors and were 
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annotated with domain attributes and architectural attributes. An instance of the 

component family can be specified by providing specific values for each attribute. An 

example of an attribute that would lead to different implementations is the number of 

charge types to be processed simultaneously. 

There are space-computation tradeoffs which can be applied in the matrix-

structured formulation [90] of the FMM algorithm which can be chosen to optimize the 

code for a given execution environment and problem specification.  These include:  

• Simultaneous computation of cell potentials for multiple charge types. 

• Use of optimized library routines for vector-matrix multiply. 

• Use of optimized library routines for matrix-matrix multiply. 

• Loop interchange over the two outer loops to improve locality (within a 

component). 

• Number of terms in the multipole expansion. 

There are many variants of these structures and interactions among them. The 

original FMM implementation in the FLEMS code is approximately 4500 lines in length 

with the logic distributed throughout the code.  Manual construction of optimized 

versions for even a modest number of execution environments would lead to rather 

complex code.  But a small number (eight) of  components characterized by the number 

of charges which are simultaneously computed and the number of terms in the multipole 

expansion suffice to realize an important subset of execution environment optimized 

codes. 

The FMM includes five translation theorems: 

• Particle charge to Multipole (P2M is applied at the finest partitioning level) 

• Multipole to Multipole (M2M is applied at all partitioning levels, from the finest 

to the coarsest) 
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• Multipole to Local (M2L is applied at all partitioning levels) 

• Local to Local (L2L is applied at all partitioning levels, from the coarsest to the 

finest) 

• Local to Particle potential and forces (L2P is applied at the finest partitioning 

level) 

 

Figure 9: Data flow graph of FMM code 

Two kinds of components are needed structure the FMM computation framework. 

The first category comes directly from the FMM algorithm. The five translation 

theorems, charges-to-multipole, multipole-to-multipole, multipole-to-local, local-to-local, 

local-to-potential and force, and direct-interaction calculation belong to this category. 

The second category contains the communication components, distribute and collect 

which actually also derive from the FMM algorithm since they implement distribution 
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and collection according to the interaction lists for each partition of the domain. The data 

flow graph for the FMM code for two processors is shown in Figure 9. 

Table 1. Performance data for tree depth of four. 

Number of 
Charge Types 

Run time on 2 
processors 
(Seconds) 

Run time on 4 
processors 
(Seconds) 

Run time on 8 
processors 
(Seconds) 

5 413.84 215.52 121.11 
12 561.53 305.50 254.14 

An extensive set of performance studies were made comparing the original and 

componentized sequential codes. Preliminary results were reported [27] and more 

detailed results were reported in [59]. The performance of the sequential componentized 

code, contrary to conventional wisdom, is up to 15 times faster than the original 

implementation which had itself been optimized by several generations of students and 

post-doctoral fellows.  This surprising result is largely due to specialization of 

functionality based on selection of optimal components and replacing loop 

implementations of matrix-matrix multiply by BLAS implementations of matrix-matrix 

multiply.  Table 1 shows a small sample of the performance data obtained. The data was 

taken on a Linux cluster of Pentium III’s at 1.8 Gigahertz and a 100MB Ethernet 

interconnect.  There are approximately half a million charges in this system.  There are 

two factors to be noted: (i) Speedup is near-linear for the small number of processors and 

(ii) the time increases less than linearly with the number of charge types due to the 

change due to optimizations local to components.   

3.4 RELATED WORK 

The related work can be categorized into different categories which are described 

below. 
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3.4.1 Component-based development 

COM [65], EJB [89], and CORBA [70] are the most widely used industrial 

component models. However they do not provide automated composition facilities and 

are not feasible for high performance computing.  

Piccola [1] is a composition language for components. Component 

implementation and composition are separated in Piccola. It uses one central script which 

composes different components. Whereas the composition occurs during compile time in 

P-COM2 using the information that is distributed among components and it is fully 

automated. 

In the CoML [15] approach of composing components there are two parts. One is 

CoPL (Component Plan Language), which is basically a description of composition. The 

Application programmer processes these CoPL plans with a generator. The generator 

produces CoML (Component Markup Language) code, which can be used by different 

IDEs for different component technologies. The Component Markup Language is an 

XML application for composing software components. So this is another script based 

component composition where the composition is done in a central place. 

H2O [91] is a component-oriented framework for composition of distributed 

programs based on web services. Triana [94] is a graphical development environment for 

composing distributed programs from components targeting peer to peer execution 

environments. The G2 [50] composes distributed parallel programs from web services 

through Microsoft .Net.  Armada [73] composes distributed/parallel programs specialized 

to data movement and filtering. 

The Common Component Architecture (CCA) project [10] is a major research 

and development project focused on composition of parallel programs from components. 

However, the goals of CCA are rather different from the goals of this project. One 
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primary goal of CCA is to enable composition of programs from components written in 

multiple languages. To this end BABEL [51] has been introduced which acts as the 

interface specification language and uses intermediate object representation to 

automatically translate from one language to another. CCA has developed interface 

standards. The implementations of the CCA interface specifications are object-oriented. 

There are several frameworks including Ccaffeine [9], XCAT [35], SCIRun2 [99] and 

DCA [14] implementing the CCA interface specification system. The different 

implementations target different architectures and adopt different programming models. 

For example Ccaffeine targets parallel architectures and adopts a single program multiple 

data (SPMD) model, XCAT targets distributed architectures and adopts the grid model, 

SCIRun2 and DCA targets both distributed and parallel architectures and implement both 

SPMD and MPMD (multiple program multiple data) models. Component composition 

process is either graphical or through scripts and make files. CCA components interact 

through two types of ports. The first type of port is the provides port. The provides port is 

an interface that components provide to other components. The second type of port is the 

uses port. It is an interface through which components connects with other components 

which they require. These port type exhibit some similarities to the accepts and requires 

operation specifications. However, the details and implementations are quite different as 

we have focused on incorporation of the information necessary to enable composition by 

compilation. Users are responsible for implementing communication between replicated 

components which is not handled by the framework of CCA. Also diagonal 

communication among two different components is not defined in the CCA standard. 

3.4.2 Composition Techniques 

Broadway annotational compiler [40] uses annotations for retaining domain 

specific semantics information. Using the information the compiler can choose domain 
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specific optimization techniques. Using dynamic feedback techniques the compiler can 

choose dynamically the best implementation from multiple versions of optimized code.  

PCOM2 also uses semantic information in the form of attributes and their values. Using 

the same type of semantics information the PCOM2 compiler can choose the best 

component at compiler time. The use of dynamic loading also enables our compiler to 

choose the best implementation at runtime which will be discussed in next chapter.  

Amphion [88] is a system that uses deductive composition mechanism to 

automatically generate program from a subroutine library given a program specification. 

In order to develop a program a theory is needed for the application domain which is 

specified in the form of application domain axioms. The information about subroutines is 

also put in the forms of axioms in that domain theory. Finally there is a graphical 

interface that helps user to formulate the specification of the required program. The 

properties of this graphical construct are also put in the form of axioms. Given a formal 

specification of the program (using the graphical interface), the specification of the 

program is translated into a theorem and then a constructive theorem prover is used. The 

theorem prover constructs a proof showing that the goal is achievable and how to achieve 

it. From the given a proof a program is constructed out of the subroutines automatically. 

A semi-automatic composition technique for web services is described in [87]. It 

has two basic parts, a composer and an inference engine. The profile of a web service has 

two parts – functional properties and non-functional properties. Functional properties are 

expressed using Web Ontology Language [22] (OWL) and have inheritance concept 

using OWL class. Non-functional properties describe the services. Users can add 

properties to the class description using DAML-S [8] which attaches semantics 

information to the profile of the web service. Non-functional properties are used to filter 

when choosing a particular web service. The idea is to start by choosing one of the web 
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services that is registered in the composer, apply query on that service to find out what 

other web services it needs to implement its functionality. The composer comes back 

with a list of web services that can connect with the input of the selected web service. 

The same procedure is applied recursively to each of the selected web service. The 

selection from the list is manual. To make this process fully automated, AI planning 

techniques can be applied [96]. 

The ICENI [41] approach for grid services also uses OWL to annotate interfaces. 

This approach introduces an abstraction layer named metadata space on top of the grid 

services. Semantic annotation is used to describe the service as well as to describe the 

service methods. The meta-services use this ontological annotation to find appropriate 

matches between requirement publisher and implementation publisher. The semantic 

annotation used to describe the structure of the service method is also used to filter out 

incompatible matches. 

ArchJava [5] annotates ports with provides and requires methods which helps the 

programmer to better understand the dependency relations among components by 

exposing it to the programmer. The accepts and requests interface of a P-COM2 

component incorporate signatures as do ArchJava provides and requires.  The accepts and 

requests interfaces also include profiles and precedence specification carrying semantic 

information and enabling automatic program composition. The attribute name/value pairs 

in profiles are used for both selecting and matching components thereby providing a 

semantics-based matching in addition to type checking of the matching interfaces. 

The use of associative interface has been reported earlier in the literature. 

Associative interface is used in one broadcast based coordination model [17]. This model 

uses run time composition, whereas our approach uses compile time composition. 
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Associative interfaces have also been reported in composition of performance modeling 

[16]. 

3.4.3 Architecture Description Languages (ADL) 

Darwin [56] is a declarative binding language which can be used to define 

hierarchical compositions of interconnected components through programmers writing 

compositional scripts. It is particularly useful for describing distributed system 

architectures. It does not support the specification of non-functional properties. Both 

Darwin and P-COM2 uses implicit connectors.  In P-COM2, the composition information 

encapsulates the components themselves; as a result the compiler can choose the required 

component automatically.  

Wright [6] uses explicit connectors in describing the architecture. It uses protocol 

description for specifying the order of interactions between components. The 

composition process of specifying the attachments of a port with a role is manual. In 

Wright the port-role compatibility analysis is done statically. The matching of selector 

and profile in P-COM2 can be seen as a kind of compatibility analysis which is done 

during compile time. 

C2 [61], [62] is an ADL suitable for describing architectures of highly-distributed, 

evolvable, and dynamic systems. Component invariants and operation pre- and post-

conditions are specified in 1st order logic. 

Weaves [36] are networks of concurrent components that communicate by 

passing objects. It allows automatic composition of programs by giving the high level 

goals to the weaver. Component selection and interconnection is done by the weaver 

starting from the output goal and working backwards recursively. 

UniCon [83] is an ADL with a focus on interconnecting existing components 

using common interface protocols. Components specify players through which they 
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interact with outside world. Connectors (via protocols) specify roles at which the 

connector can mediate the interaction among components. UniCon does not support 

automated composition. 

The SOFA environment [78],[49] describes application architecture using the 

SOFA component definition language (SOFA CDL). The SOFA CDL is then mapped 

into C++ which is used to implement the components. A component in SOFA consists of 

a component frame and a component architecture. A component frame lists all the 

interfaces that the component requires and provides and is used a black box view. A 

component architecture implements the operations of the provided interfaces using only 

internal operations and the operations of the required interfaces. A component 

architecture can be primitive or composed and provides a grey box view. The binding 

between component is explicit and manual. Whereas in P-COM2 the compiler uses the 

information distributed among the components to instantiate the architecture and bindings 

and it is an automatic process. The connectors of SOFA are pregenerated using CORBA 

and dynamically linked with the components. Whereas in P-COM2 the connectors are 

pregenerated using MPI. 
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Chapter 4: Dynamic (Runtime) Adaptation 

4.1 MOTIVATION AND OVERVIEW 

The need for runtime adaptation comes from two factors: 

a. Adaptive computational methods may change the behavior of the program 

substantially during its execution. These behavioral changes may result in 

deterioration of performance and/or failure to meet specifications for accuracy.  

b. The resource sets available to a program may change during execution leading to 

either deterioration of performance or opportunity for enhanced performance. 

The self-describing component model in PCOM2 enables runtime adaptation to 

respond to behavior changes through replacement of components and expansion or 

contraction of resource usage by increasing or decreasing the number of replicas of a 

component in the application architecture.  Since components are the unit of work, 

composition and architecture description in our model, making components the unit of 

replacement and/or replication fits well within the model.  In P-COM2 a component is not 

loaded until it is first executed and the component interfaces have built in state machines 

which has the ability to enable or disable component invocation at runtime. Thus we can 

achieve a dynamic architecture by replacing, enabling or disabling the components which 

compose an application architecture at runtime. 

During compile time, a search is made for a component matching the 

requirements specified in the self-description of each component which invokes other 

components. A component which meets the requirement as it is known at compile time is 

composed into the program. If component requirements changed during runtime, a 

suitable component implementation meeting the new requirements can be loaded. The 

behavior (performance or other property) of each component may be (selectively) 
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monitored by the runtime system.  The monitored data may be analyzed by the runtime 

system or sent to an adapt component which analyzes the data.  If it is determined that 

some requirement is no longer being met by the currently loaded component 

implementation then a suitable component implementation meeting the new requirements 

can be loaded.  

An architecture of self-describing components also simplifies load balancing and 

responses to changes in resource availability since increasing or decreasing the number of 

copies of a component running in parallel is straightforward. 

The principal restriction on runtime adaptation in P-COM2 is that the component 

structure of the application architecture established at compile time cannot be changed at 

runtime.  However the degree of parallelism can vary at runtime and components can be 

replaced at runtime. In summary, the implementations of the components within the 

architecture and the number of replicas of a given component can be adapted at runtime. 

4.2 IMPLEMENTATION 

Most operating systems enable runtime linking of components to executable 

images.  The requirements for intelligent use of this capability are: to identify 

components (through monitoring of execution behavior) which need to be replaced, to 

specify the properties of the component which is to be substituted for the existing 

component and invoke the operating system functionality to load the new component.  

Composition of a program from self-describing components enables and 

facilitates each of these tasks.  Monitoring can be done on a component by component 

basis; components whose behavior is unlikely to vary need not be monitored. The 

monitoring code is readily generated by the compiler on a component by component 

basis.  The compiler automatically generates the communication path to send the 

monitored data to the adapt component.  The required analysis and actions is provided in 
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the adapt component or components. The analysis code in the adapt components must be 

provided by the programmer. 

When an adapt component detects a need to replace a component and determines 

which component implementation should be used, the requires interface of the 

component which invokes the component for which the implementation is to be replaced 

is modified to reflect the current requirements. An adapt component invokes the runtime 

system to complete the identification of a component which meets the new requirements 

and then uses the operating system facilities for dynamic linking to recompose a new 

version of the program with the component meeting the new requirements.  Thus the 

compile time mechanisms for program composition are extended to runtime. This 

unification of compile and runtime composition enables automated adaptation through a 

single mechanism once the programmer has provided the analysis logic to determine the 

adaptation to be made. 

The number of replicas of a component to be executed in parallel within an 

application architecture is determined by parameters which can be modified at runtime 

thus enabling increases or decreases in parallelism at runtime. 

4.3 CASE STUDY 

An h-p adaptive finite element code [24] was used for the case study. The code 

was chosen since it is an application which may benefit from both customization at 

compile time and optimization at runtime. An h-p adaptive finite element code may adapt 

both the mesh spacing and the approximation function for the elements on a local basis in 

order to attain a given accuracy in the solution.  (h is mesh spacing and p is the degree of 

the polynomial approximation to the solution on the elements of the mesh.)  An h-p 

adaptive finite element code is therefore a good example of an application where the 

execution behavior may change material as it executes.  The adaptive code may make 
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many cycles through the basic loop of solution adaptation.  The requirements of the 

solution process may change substantially as the solution mesh and approximating 

functions are locally or globally adapted.  In a parallel implementation, the amount of 

work in different partitions may become unbalanced during runtime even if the initial 

load balance was even across processors.   

The component-composition approach to application family development enabled 

substitution of components implementing different algorithms during execution to adapt 

to the changes in solution process. The case study demonstrated the effectiveness of the 

runtime adaptation capability.  A factor of nearly three in performance was obtained 

through runtime replacement of the linear solver component as the solution was adapted. 

The case study is based on an h-p adaptive finite element code structure 

developed in [24], [25], [26].  These packages have a common data structure in one-, 

two-, and three-dimensional space.  The major logical components include mesh 

generation, problem definition, shape function definition, and element routine, linear 

system of equation solver, error estimation module, and h-p adaptation module. We have 

used the one-dimensional code in this case study since it has the same structure as the 

two-D and three-D codes but is of considerably smaller size. 

4.3.1 Componentization of the h-p Adaptive Finite Element Code 

The set of components is determined by constructing a workflow diagram for the 

application in which each logical function is identified as a component. Figure 10 is a 

workflow diagram for a family of codes implementing h-p adaptive codes.  Figure 10 and 

the components in Figure 10 were obtained by reverse engineering the one-dimensional 

code described in the previous section.  This componentization does not represent the 

finest granularity of functional decomposition. The “Coarse Mesh Solver” and the “Fine 

Mesh Solver” each contain three logical functions, the computational model, the element 
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generator for the stiffness matrix and the solver for the stiffness matrix.  

Componentization was stopped at the level shown in Figure 10 because component 

extraction by reverse engineering of the existing code was laborious and because this 

componentization enables practical experiments in componentization. 

Initialization

Meshgen

hp_strategy_init

Coarse Mesh
Solver

Global_hpref

Global_hpref

Fine Mesh 
Solver

Compute_error

Optimize

Error < 
Tolerance ?

Yes No

 

Figure 10: Workflow diagram for h-p adaptive finite element code 

4.3.2 Experiments 

The experiments illustrate composition of programs implementing a sequence of 

models, compile time choice of linear solvers and runtime substitution of the linear 

solver.  

Compile time selection of linear solvers is illustrated by composing application 

instances first using a direct solver for the coarse mesh and a conjugate gradient solver 

with a diagonal pre-conditioner for the fine mesh. Runtime replacement (and 

optimization) is illustrated by replacement of the direct solver by the conjugate gradient 



 41

solver after the first cycle of the adaptation demonstrates that the direct solver is not an 

efficient choice. 

Composition of applications based on different computational models for a 

physical system is illustrated by composing a sequence of applications using successively 

more accurate models for bioheat transfer.  We consider a set of bioheat transfer 

equations ranging from simple conductivity (Poisson) to incorporation of blood perfusion 

(Pennes Equation) to incorporation of artery-vein countercurrent (Weinbaum-Jiji 

Equation  [26]).  

These models represent progression of complexity and accuracy from the simple 

Poisson model through the Pennes and Weinbaum-Jiji models.  The experiment compares 

a  standard metric resulting from solution of each of the models.  

4.3.3 Illustrations of Automated Composition 

4.3.3.1 Compile Time Selection of Solver and Model 

The component library is initialized with two solvers:  i) A direct solver that uses 

LU factorization and back substitution and  ii) A Preconditioned Conjugate Gradient 

(PCG) solver that uses a diagonal pre-conditioner. Each of the four models sketched in 

Section 3.3:  i) Laplace model ii) Poisson model iii) Pennes model and iv) Weinbaum-Jiji 

model have been incorporated into a component.  The componentization of the h-p 

adaptive code leaves the model and the solver in the same component although they 

could readily be separated and would be separated for a production implementation.  

There are therefore eight implementations of the solver component.  Each can be used for 

the coarse or fine solver so long as the model is the same for both the coarse and fine 

meshes.  These eight implementations were encapsulated using the interface definition 

language of P-COM2. A component that needs a particular combination of solver and 
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model expresses that requirement using the selector interface. The selector of a 

component that requires a direct solver and Poisson model is shown below (only the 

attributes part is shown here). 

selector: 
string domain == “application”; 
string component == “solver”; 
string solver_type == “Direct” 
string model == “Poisson” 

Similarly a PCG implementation of a solver that uses a Laplace model expresses 

that information in the profile of that implementation. 

profile: 
     string domain = “application”; 
 string component = “solver”; 
 string solver_type = “PCG” 
 string model = “Laplace” 

The compiler chooses the appropriate component  as described in Chapter 3.  By 

changing the selector section of a component the appropriate implementation can be 

chosen at compile time. 

Table 2 compares the solutions obtained from application family instances based 

on each of Poisson, Pennes and Weinbaum-Jiji computational models. Using Weinbaum-

Jiji as a base model, we compared the solution in H1(D)-norm. Table 2 indicates that 

differences are significant. These quantities in percentage can be used as a criterion for 

the decision-making in model selection. For example, if the acceptance criterion is set to 

20%, then we need to reject both Poisson and Pennes models with respect to more 

accurate Weinbaum-Jiji model.  

Table 2. Properties of solutions from multiple models 

Model Poisson Pennes Weinbaum-Jiji 
Solution Norm 0.18787E+06 0.18348E+06 0.14895E+06 

Percentage 26% 23% - 
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4.3.3.2 Runtime Optimization by Component Replacement 

The P-COM2 compiler automatically generates performance measures for the 

execution behavior of each component.  This information can be used to determine 

whether a currently loaded component is performing efficiently and/or robustly. When it 

is determined that a change of algorithm is needed, the dynamic loading capability of the 

P-COM2 runtime system can be used to dynamically replace an implementation of a 

component. The implementation of the solver component incorporated code to load 

libraries at runtime depending upon argument values in the transaction specification. 

Based on the argument (a domain attribute) the implementation can either run the direct 

solver or load a PCG solver from the library and invoke it. Similarly the PCG solver can 

be directed to replace itself by a direct solver.   

Table 3. Execution time improvement with dynamic solver replacement 

Iteration Coarse Mesh Solve Fine Mesh Solve Total Solve Time 

1 2401x2401Direct 
3.162 sec. 

5401x5401PCG 
1.199 sec. 4.361sec. 

2 2404x2404PCG 
0.536 sec. 

5404x5404PCG 
0.972 sec. 1.508 sec. 

In the illustration reported here, during the first iteration the coarse mesh was 

solved using a direct solver and the fine mesh was solved using a PCG solver. But for 

large mesh sizes the direct solver component may take a longer time to solver the coarse 

mesh than the PCG solver takes to solve the fine mesh.  After the first iteration, the 

runtime of the direct solve of the coarse mesh and the PCG solve of the fine mesh are 

compared component are compared in the optimize component, “optimize.” If it turns out 

that the direct solve of the coarse mesh is too slow, an appropriate argument is passed to 

the coarse mesh solver so that it can load the PCG solver using dynamic loading from the 

library on the next mesh refinement iteration. Table 3 summarizes the results of some 
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experiments with dynamic solver replacement.  An appropriate choice of solver cuts the 

time for solution down by nearly a factor of three. 

4.4 RELATED WORK 

AspectIX [42] offers the ability to replace an implementation at runtime. The 

functional and configuration interface in AspectIX is similar to the operation and 

attributes of the profile in P-COM2. The operation provides the syntax of a component 

invocation and the attributes expresses the semantics in the program domain. AspectIX 

uses interface information at runtime whereas P-COM2 integrates both runtime and 

compile time composition. 

The emerging field of autonomic computing (see [74] for a survey] is concerned 

with runtime adaptation of systems to evolving environments. Automate [3], [75] is an 

autonomic system designed to handle the complexity, heterogeneity and dynamism of 

grid computing environment. It features a component-based development framework to 

support the development of autonomic self-managed applications. Each autonomic 

element is controlled by an element manager/rule agent and has three kinds of ports: 

functional ports, control ports and operational ports. The functional ports are similar to 

the signature in our operation description. The control port is used to get information 

from sensors and to control those sensors. The operational port is used to inject 

interaction and behavioral rules into the component. The attributes in the profile 

description of our components are used in selecting the behavior of a required component 

and the selection mechanism is carried out by the compiler at compile time and by the 

runtime system at runtime. Also the interaction rules are similar to the state machine 

description of our operation. In case of automate a workflow is submitted to the 

composition manager which transforms it into a set of interaction rules and sends them to 

each individual element manager/rule agent. In our case the transition of workflow to 
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state machine description is performed manually and inserted into the interface 

components. 

COMPAS [28] is a framework for automatic performance tuning of component 

based systems. The monitoring and diagnosis module is responsible for acquiring runtime 

performance information on software components, as well as on the software 

application’s execution environment. For that purpose it automatically instruments EJB 

with a proxy layer. The performance monitoring probes can use either a collaborative 

approach in diagnosing performance problems and in adapting the application or can use 

a centralized approach by sending monitored information to a central monitoring 

dispatcher. Adaptation functionality is based on the usage of multiple, functionally 

equivalent component implementations, each one optimized for a different running 

context. A rule based decision making process is used in selecting and activating the 

optimal component implementation in the current running context. P-COM2 uses a rule 

based system in decision making, depends on multiple implementations, and uses a 

centralized approach (adapt component) in the decision making process. But it is also 

possible to use multiple adapt component to collaborate in the decision making process. 

The ICENI [41] approach uses semantic annotation in the interface. There are two 

stages of semantic annotation. In the first stage the semantic annotation is used to 

describe the service. In the second stage the annotation is used to describe the structure of 

the service methods. The meta-services use this annotation to find appropriate matches. It 

can match semantically equivalent but syntactically different services by adapting the 

interface of incompatible matches based on some graph transformation rule. Thus it 

supports adaptive interface for composition. But it does not support adaptive components 

at runtime. 
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Adaptive MPI (AMPI) [45] is an MPI implementation and extension that supports 

processor virtualization. AMPI builds on top of CHARM++ [48], shares the runtime 

system with it, and provides the capabilities of CHARM++ in a more traditional MPI 

programming model. AMPI  implements virtual MPI processes (VPs), several of which 

may be mapped to a single physical processor. It encapsulates each VP within a user-

level migratable thread implemented as a Charm++ object. By embedding each thread 

with a chare, AMPI programs can automatically take advantage of the features of the 

Charm++ runtime system (such as automatic adaptive overlap of communication and 

computation and automatic load balancing) with little or no changes to the underlying 

MPI program. AMPI thus allows automatic optimization with the use of migratable 

threads. However it does not allow replacing components at runtime to provide better 

performance nor does it allow changes in the application structure at runtime. P-COM2 

supports dynamic load balancing by changing number of replicated components at 

runtime. 

ArchJava [5] provides the ability to dynamically add components at runtime using 

the “new” operator, but an addition of new connection is restricted by connection 

patterns. These patterns define through which interfaces and to which types of 

components the new component can be connected. It does not provide a performance 

monitoring ability which can be helpful in making the decision as to when to add new 

components or connectors. 

Darwin [57] supports constrained changes in the architecture at runtime 

(constrained dynamism) by replication of components via dynamic instantiation, as well 

as deletion and rebinding of components by interpreting Darwin scripts. Rapide [53] 

enables constrained dynamism by conditional connection, event patterns, and dynamic 

instantiation of components. C2 [61] supports unconstrained changes in the architecture 
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at runtime by element insertion, removal and rewiring. P-COM2 (our approach) supports 

constrained dynamism by replication of components by dynamic instantiation and also 

supports runtime reconnection using conditional operators of the state machine. 

Dynamic Wright [7] is an extension of Wright [6] which allows dynamic 

adaptation of software architecture. The protocol description of Wright was modified to 

include special control events. Configurors, which are separate configuration programs 

use these control events to trigger reconfigurations. In case of P-COM2 the same effect 

can be achieved by the use of the adapt components. 

The SOFA/DCUP [78] framework enables dynamic replacement of a component 

at runtime. A component in DCUP is divided into a permanent part and a replaceable 

part. The interaction of SOFAnode and DCUP allows publisher of a component to 

dynamically update a component at runtime and usually it is done to reflect changes of 

version of a component. SOFA 2.0 [19], [43] enables modification of software 

architecture at runtime by introducing a set of reconfiguration patterns and permitting 

only those dynamic reconfigurations that are compliant with the patterns. However it 

does not provide any performance monitoring functionality which can be used in the 

decision making process. 
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Chapter 5: Performance Modeling and Evolutionary Development 

5.1 MOTIVATION AND OVERVIEW 

Designing and implementing parallel/distributed programs to meet performance 

requirements is still not an exact science.  Attaining performance goals is rendered more 

difficult by the multiplicity of and constant change in parallel execution environments.  

Porting across execution environments with retention of efficiency often requires effort 

intensive redesign and re-implementation. Conventional development methods for 

parallel programs where a program is fully developed before its performance properties 

can be evaluated worsen the problem.  Conventional parallel program structures based on 

partitioning of shared data across processes and threads make optimization for different 

execution environments and problem instances difficult. 

We present a method (Evolutionary Development) for design and implementation 

of instances of families of parallel/distributed programs enabling evaluation of 

performance properties of parallel programs for arbitrary parallel/distributed execution 

environments at design time through performance modeling followed by evolution of the 

performance model to a production program.  The performance model is an instance of 

the program where the computation of each component is a performance model for that 

concrete component (An evaluation of the execution time of the concrete component on 

some execution environment4) and communication times are estimated by parameterized 

performance models of the interconnection networks of the execution environment.  

When an instance of the program which meets performance specifications on a given 

execution environment is identified, then the abstract performance model components are 

                                                 
4 Data element sizes are typically propagated through the abstract components and sometimes data element 
sizes must be computed or estimated in abstract components. 
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systematically replaced by the equivalent concrete components. This approach also 

enables ready customization of existing application instances to execution environments.   

The research presented here extends the P-COM2 framework which has 

previously been shown (Chapter 3) to compose programs from fully implemented 

components [59], to compose, execute and monitor the execution behavior of systems 

with both abstract (implemented as timing or performance models) components and 

concrete components.  That is; a performance model of the program is constructed by an 

extended version of the compiler which is used to generate the concrete program.  The 

key enabling insight is that combining a component-based program structure with a 

runtime system implementing an integration of direct execution and simulated execution 

enables execution of programs with components at multiple levels of abstraction in 

parallel/distributed execution environments.  

The implementation is a compiler which generates code for implementation of an 

extended Lamport clock [52] and a runtime system which interprets associative interfaces 

and supports unified parallel/distributed execution/simulation of parallel programs 

composed from components at different levels of abstraction.  The P-COM2 compiler 

generates a parallel/distributed program as a precedence-constrained data dependence 

graph. Integration of execution behavior and parallel/distributed simulation is based on a 

formulation of parallel/distributed discrete event simulation as traversal of precedence 

constrained execution structures where the execution time is measured using the extended 

Lamport [52] clock defined in Section 5.2.2. 

Evolutionary development begins with a program conforming to some instance of 

the application family architecture where some or all components are abstract 

(implemented as timing or performance models).  Each component may have multiple 

representations at multiple levels of realization from analytical timing models to 
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production code. Each component is encapsulated with an interface which specifies its 

properties and behaviors and distinguishes among different representations of a 

component.  Performance evaluation begins with the P-COM2 compiler composing the 

program with abstractly implemented components. This abstract program is executed in a 

desired execution environment. The performance of the program is evaluated to predict if 

the implementation will meet its performance goals.  If the performance goal is not met 

then different compositions of the program can be evaluated for their performance until a 

suitable configuration is found. Then the concrete program is realized in this 

configuration by systematically replacing abstract components by concrete components.   

A program instance need not be composed from either all abstract or all concrete 

components.  A performance model of the program may include both concrete and 

abstract components. Execution of a program which includes abstract components reports 

estimated computation time of the program. Performance can be estimated at any stage of 

realization.  This capability can used to evaluate the impact of different implementations 

of a component on performance at any stage of development.  Further, as seen in Chapter 

4, evolution can be continued by monitoring component behavior and replacing 

components during runtime. 

The benefits of this approach include: (a) The abstract program has the same 

parallel structure as the concrete program thus eliminating a major source of uncertainty 

in the performance estimates.  (b) Automation of model construction though compiler 

composition of performance models removes much of the tedious effort of model 

development, (c) The executions of programs realized with abstract components are very 

fast enabling exploration of a wide range of system configurations and (d) optimal 

choices for component instantiations and structures are known at design time avoiding 

wasted time and effort in re-implementing to correct performance problems.   
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There is an underlying assumption, which has been empirically verified in our 

experiments to date that the performance of parallel programs structured as data 

dependence graphs of components can be accurately modeled with simple timing models 

for the components and communication systems and analytic representation of contention 

for resources.   

5.2 INTEGRATION OF DIRECT EXECUTION AND SIMULATED EXECUTION 

This section describes how the integration of direct execution with simulated 

execution is achieved. A data flow graph model of execution is the basis of such 

integration. How the simulated execution is unified with this model of execution is also 

explained. 

5.2.1 Data Flow Graph Model of Execution 

The data flow model of parallel computation which underlies the unification of 

execution and simulation formulates a parallel execution as a dynamic generalized data 

flow graph (GDFG) which is an extension of the data flow graphs in [69].  The nodes of 

the graph contain the actions of the program which may include a local sequential 

discrete event simulator.  The arcs specify the dependence relations between the actions 

of the programs.  Execution of the program is traversal of the graph.  The nodes of the 

graph are defined as six tuples ({input ports}, firing rule, an initialization, a computation, 

routing rule, {output ports}). Input ports are containers for a typed object or data 

structure.  A firing rule is a conditional expression over the values in the input ports of 

the node. A node is enabled for execution when its firing rule evaluates to true.  A 

computation is the action associated with the node. The routing rule of a node assigns 

values to the output ports of a node as soon as the computation has completed an 

execution.  A node once enabled remains enabled until the enabled execution begins. The 
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execution of a node is run to completion.  The arcs of the graph are infinite fifo queues 

which bind output ports of a source node to input ports of sink nodes.  Execution of a 

program is accomplished by generation and traversal of the directed graph.  The data 

flow graph explicitly specifies the valid execution sequences for the components 

including which components can be executed in parallel. 

5.2.2 Unification of Simulated Execution and Direct Execution 

This section presents a data flow formulation of parallel/distributed discrete event 

simulation for simulation modeling of parallel/distributed systems which are formulated 

as precedence-constrained dynamic generalized data flow graphs and the integration of 

this formulation of parallel/distributed discrete event simulation with direct execution.   

Sequential execution of discrete event simulation can be viewed as the generation 

and traversal of a dynamic, ordered list of events. Parallel/distributed execution of 

discrete event simulation can be viewed as generation and traversal of a directed graph of 

events.  Parallel algorithms must partition generation and traversal of a dynamic time-

ordered ordered list of events into subsets while preserving a valid order of generation 

and graph traversal. Valid executions of parallel/distributed discrete event simulations are 

constrained to traversals of the directed graph that conform to an order which would 

result from some sequential execution. 

The parallel/distributed discrete event simulation model is formulated as a 

directed graph of nodes where the dependence relations among the nodes are an order-

preserving subset of the nodes of the data flow graph of the actual system.  In practice, 

the nodes with abstract models of the node computation are given the same firing rules as 

the nodes with the concrete code for the computation.  Simulation time is generated by an 

extended Lamport clock [52] at each node in the graph.  A Lamport clock is a mechanism 
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for ordering the execution of events in a distributed system of concurrently and 

asynchronously executing processes.   

a. Each process maintains a local clock and communicates by sending messages 

time-stamped with the value of the local clock.   

b. When a process receives a message, it compares the timestamp in the message to 

the value of its local clock and sets its clock to the larger of these values.   

This insures that any subsequent actions at the receiving process will have 

timestamps greater than the timestamp on the most recently received message.  A 

Lamport clock thus maintains a logical causal order among actions in a distributed 

system.   

The extended Lamport clock which defines causality and enables integration of 

actual execution and distributed simulation in the execution of the dataflow graph model 

of a parallel/distributed software system is defined as follows. 

• An arc carrying the simulation time of a source node to each sink node of the 

source node is added (by the compiler) to the arc set of the data flow graph of the 

simulation model.  

a. If the firing rule is an "and" over several ports, the start time for the execution of 

the node is taken to be the largest time among the current value of the local clock 

and the times associated with the data messages in the firing rule.  

b. If the firing rule is an "or" over multiple ports then the start time for the 

execution of the node is a Lamport clock computation carried out for each 

invocation.  The local clock for a node is updated to include the time (real or 

simulated) taken to execute the node computations and this local time is sent on 

the simulation time arc to nodes to which the node has a data output arc.   
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Causality is maintained in that the execution order will be an execution order 

which could have been generated by some serial execution of the actual system.  No 

deadlock management algorithms (other than what is required for the actual system) are 

necessary. Parallel speed-up of execution of the simulation is bounded by the parallel 

speed-up of the actual system. 

5.2.3 Example 

The example application presented here is a parallel solution of LaPlace’s 

equation showcasing the accuracy to be expected when simple abstract performance 

models of components are used to predict performance of an application.   

A parallel implementation of an iterative LaPlace equation solver partitions the 

matrix by rows or by columns or blocks.  The partitions and overlapping elements (called 

shadow elements) are iteratively evaluated using the shadow elements as boundary 

conditions.  The iterations are continued until some convergence metric becomes 

sufficiently small.   

 The algorithm for the LaPlace solver in two dimensions is as follows: 

1. The NxM matrix is partitioned row wise into P sub-matrices and the sub-matrices 

are sent to the P processors. 

2. The shadow rows are communicated.  After the communication the topmost and 

bottom-most processor has a matrix of size N/P+1 x M and all other processors 

has a matrix of size N/P+2 x M. 

3. Each processor performs a Jacobi iteration on its partition. A difference norm 

between the old values and the new values are calculated.  

4. Each processor sends its value of the difference norm to a designated processor 

(“sum”) which collects the P difference norms. 
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5. The “sum” processor decides whether to stop the iteration process and sends the 

decision message to each of the P processor. 

6. If  a process receives a stop iteration message it sends its partition to the “gather” 

processor. 

7. The designated processor collects all the submatrices and composes these into a N 

x M matrix. 

8. The solution is printed. 

Five components can be identified from this algorithm: 

a. Distribute which performs step 1 and 2,  

b. Jacobi: performs steps 2, 3,4 and 6,  

c. Sum which performs step 5,  

d. Gather which performs step 7, and  

e. Print which performs step 8.   

Figure 11 shows the data flow graph of the program in terms of the components 

identified. The data flow graph is shown for the case when the matrix is partitioned into 

three parts. 

Distribute

Jacobi[0] Jacobi[2]

Sum Gather

Print

Jacobi[1]

 

Figure 11: Data flow graph for Laplace solver 
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From the data flow graph, the data elements that have to be passed from one 

component to the other are identified. Abstract components are coded where the 

computation section is empty and/or is not yet implemented. The timing model for the 

component is added in the computation section of the abstract component to give an 

estimate of the runtime of the component. Communication is modeled using the size of 

the data elements being passed and the properties of the interconnection network. The 

complete program can then be run using the abstract components which gives an estimate 

of the runtime of the program. When the implementation of a component is complete, the 

concrete component can then be plugged into the program replacing the abstract 

component. The process of replacing an abstract component with a concrete component 

is continued until all the abstract components are replaced with concrete components. 

During the evolutionary development the estimated runtime of the program gets more and 

more accurate and at the end of the process we have a fully functional program. 

The computational components (Jacobi and Sum) in this family of applications 

are floating point intensive. For these components, the computation time for each 

component is modeled using an estimate of the number of floating point operations 

needed to implement the computation. The estimated time for the computation is 

computed by dividing that number with the FLOPS (Floating Point Operations per 

Second) of the processor.  Normalization of the FLOPS rate for a single component is 

usually sufficient to give good accuracy for computation times. The execution times for 

Distribute and Gather are primarily the costs for data movement and data copy which are 

similarly modeled with approximate instruction counts. Communication time is modeled 

as the expected time to send a given number of bytes.  Communication time for each 

message is computed as a + b*x where a is a startup time for the communication to begin, 

b is the data transfer rate of the network and x is the given size of the data. The 
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parameters a and b are estimated from measurements on the execution environment to be 

modeled.  We have tried several versions of more sophisticated performance models for 

both computation time communication time and have not found substantial increase in 

accuracy.  We speculate that the success of simple performance models at the component 

levels giving quite accurate performance estimates at the system level is due to the fact 

that each component implements a relatively simple and well-understood algorithm. 

Table 4: Comparison of estimated & actual runtimes 

Matrix 
Size n 
(nxn) 

# of partitions  
=  # of 

processors 

Estimated 
runtime 

(sec) 

Actual runtime 
(sec) 

1024 2 27.979618 26.04458 
1024 4 15.411232 14.234831 
1024 8 9.275731 8.47888 
1024 16 7.051624 6.31288 
2048 2 107.157538 101.566281 
2048 4 57.962647 54.137176 
2048 8 47.306664 44.850613 
2048 16 23.367203 21.459022 
4096 2 432.709424 422.8589 
4096 4 223.485333 218.343156 
4096 8 178.698618 172.806012 
4096 16 142.53143 136.246375 

Table 4 shows a comparison of the estimated runtime and actual runtime for 

various matrix sizes and partition sizes. The measurements were taken on “lonestar” a 

Cray/Dell Linux cluster at the Texas Advanced Computer Center.  The estimated runtime 

is for the program when all the components are abstract components. The estimated 

runtime is within 10% of the actual runtime in most of the cases. 

5.3 CASE STUDY 

The case study is based on hp adaptive finite element code [24]. The workflow 

diagram of the program and the componentization was shown in Section 4.3.1. The 
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solution of the linear systems for the coarse and fine mesh takes about 80%-90% of the 

execution time of the program. Composition of a performance "optimal" instance of the 

h-p adaptive code is illustrated by choice of linear solver and by determination of the 

appropriate degree of parallelism for the coarse and fine solvers as a function on mesh 

properties. (“Optimal” means the lowest execution time which can be obtained using the 

members of the component library.)  There are several choices of implementations which 

may have substantially different performance. The componentized structure naturally 

suggests executing the coarse and fine mesh solutions in parallel.  The linear system for 

the fine mesh will have size approximately twice that for the coarse mesh.  The number 

of diagonal bands in the matrix structure increases with the degree of the approximating 

polynomial.  Different solution methods may be more efficient for solution of the linear 

systems which result from different sizes and structures for the different meshes.  It may 

be advantageous to use a higher degree of parallelism for solution of the linear system for 

the fine mesh than for the coarse mesh.  However, the linear system for one-dimensional 

finite element models is very sparse so that solution requires only modest computational 

work for their solution.  So the overheads of communication may limit the effective 

degree of parallelism.  

A system configuration which used concrete representations of all components 

except the linear solvers was executed on lonestar.  For small matrices a direct solver is 

typically used and that was the case for the original code which we re-engineered into 

components. However, if the approximating polynomial is of high degree or the matrix is 

large, solution by an iterative method such as a conjugate gradient method can be much 

more efficient.  

A wide range of experiments were executed ranging across mesh properties, types 

of linear equation solvers and degree of parallelism for the solution of the linear system 
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from the fine mesh. Each experiment required only changing of values in requires 

interfaces and invocation of the compiler. 

We report here the results of two experiments which lead to the important 

performance optimizations.  The linear systems from the coarse and fine mesh were 

solved in parallel in both of the experiments.   Each of the two experiments used an initial 

mesh of 500 elements with the approximating polynomial for the finite elements being 

chosen to be of degree 2 and degree 8.  The initial linear systems for the 500x2 mesh is 

1001x1001 for the coarse mesh and 4001x4001 for the fine mesh while the initial linear 

systems for the 500x8 mesh are 4001x4001 and 9001x9001.  

Experiment 1 used an abstract performance model of the direct solver for the 

coarse mesh and an abstraction performance of the parallel conjugate gradient solver for 

the fine mesh and varied the degree of parallelism for solution of the linear system of the 

fine mesh.  For the preconditioned conjugate gradient method it is assumed that the total 

number of iterations required for convergence is proportional to the square root of the 

spectral condition number of the input matrix. The result of experiment 1 is shown in 

Table 5. 

Table 5: Estimated execution times for experiment 1. 

Mesh (# of 
elements 

x polynomial 
degree) 

Estimated 
Coarse Mesh 
Solution Time 

(sec) 

Number of 
Processors 

for Fine 
Mesh 

Solution 

Estimated 
Fine Mesh 
Solution 

Time 
(sec) 

Estimated 
Total Time 

(sec) 

500x2 0.26 1 1.65 3.08 
500x2 0.26 2 8.14 9.71 
500x2 .026 4 27.49 29.76 
500x8 13.82 1 3.93 18.43 
500x8 13.82 2 11.93 18.47 
500x8 13.82 4 23.15 27.74 
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From this experiment we conclude that there is no performance gain from parallel 

execution of the conjugate gradient solver on the linear system from the fine mesh and 

that the direct solver is a bottleneck for larger matrices resulting from high degree 

approximating polynomials. 

Experiment 2 replaces the direct solver for the coarse mesh with a serial 

implementation of the conjugate gradient solver and the parallel conjugate gradient solver 

for the fine mesh with this same serial conjugate gradient solver.  The result of this 

experiment is given in Table 6. 

This experiment shows that the conjugate gradient solver is only marginally faster 

than the direct solver for the linear systems from meshes with low degree approximating 

polynomials but dramatically faster for meshes with high degree approximating 

polynomials. 

Table 6: Estimated execution times for experiment 2. 

Mesh (# of elements 
x polynomial 

degree) 

Estimated Coarse 
Mesh Solution Time 

(sec) 

Estimated Fine Mesh 
Solution Time 

(sec) 

Estimated 
Total Time 

(sec) 
500x2 0.25 1.13 2.49 
500x8 0.91 3.31 6.64 

These (and other) experiments suggest that a concrete configuration similar to the 

abstract configuration of experiment 2 would be near optimal.  Table 7 shows the 

execution times for the program with concrete components. 

Table 7: Actual execution times for optimal configuration 

Mesh (# of elements 
x 

polynomial degree) 

Coarse Mesh 
Solution Time

(sec) 

Fine Mesh 
Solution Time 

(sec) 

Total Time 
(sec) 

500x2 0.22 1.19 2.42 
500x8 0.86 3.23 6.25 
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The abstract performance model of the system gave quite accurate predictions of 

the performance of various system configurations and lead directly to a near-optimal 

system configuration. 

In conclusion, the case study showed evolutionary development process and also 

showed very good prediction (within 15% of actual runtime) of parallel program 

performance. The combination of a component-defined program structure where the 

components are self-describing and the integration of execution and simulation has 

enabled: (a) automated support for evolutionary development of parallel/distributed 

programs from abstract design or performance models, (b) prediction of the performance 

properties of parallel/distributed programs for specific application instances and 

execution environments. 

5.4 RELATED WORK 

The most directly related research is MPI-SIM.  MPI-SIM [80] predicts the 

performance of existing MPI programs by using direct execution to simulate sequential 

blocks of code and simulates a subset of MPI core functions. The simulator can run in 

parallel and a conservative synchronization algorithm together with a number of 

optimizations is used reduce the frequency and cost of synchronizations in the parallel 

simulator. But the simulator assumes the existence of program implementation and 

cannot predict the program performance at the design stage.  It can, however, accurately 

predict the behavior of a program across multiple parallel execution environments and 

has been applied to several large scale parallel programs [23]. 

The survey paper in [12] gives a taxonomy of some existing model based 

performance prediction techniques. The paper classifies existing techniques in three 

dimensions where the dimensions are: the integration level of the software model with 

the performance model, the level of integration of performance analysis in the software 
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lifecycle, and the methodology automation degree. Using the classification criterion our 

work falls in the category where the performance model is the same as the software 

model, the level of integration in the software lifecycle falls in the software design stage 

and the level of automation is high. 

Predicting performance of computations using user input has been discussed in 

[95]. The user has to predict about the performance of a component and the techniques 

discussed in that paper can be used in asserting the prediction. 

SBASCO [29] is a skeleton based system that exposes skeleton (internal 

structure) of components in the interface. SBASCO uses two different kind of interface. 

The application view interface provides the signatures of the operations provided. The 

configuration view interface exposes the structure. SBASCO uses a number of predefined 

skeletons (or patterns) that have associated cost models. Given a set of components a 

configuration tool uses runtime analysis to calculate the constants of the cost model. The 

constants together with the cost model are then used in mapping the components to the 

processors and also to find out the best value for the parameters such as degrees of 

parallelism. SBASCO thus uses a cost model based performance prediction technique in 

optimizing an application. However it does not have the ability to execute cost model and 

actual implementation in the same application resulting in evolutionary development. 

COMPAS [67] is a framework for performance management in component based 

systems using a model driven architecture approach. It obtains real-time performance 

information from a running application by inserting a proxy layer in each EJB 

component. It then creates UML models of the target application using information from 

the monitoring module. The generated models of the application are simulated with 

different workloads to identify design problems or poor performing components. 

COMPAS requires a running application and uses runtime monitoring to build the 
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application model and thus cannot be used at the design stage. The execution model of P-

COM2 together with the integration of simulated execution enables the prediction of 

program performance using abstract components from the design stage. 

Parallel/distributed simulation research has two main branches: conservative 

originated by (Chandy, Misra, Bryant) [18], [20] and virtual time or optimistic  originated 

by Jefferson [46].  In each case the execution model is the communicating sequential 

processes model with asynchronous execution of distributed processes communicating by 

messages on one way channels.  In conservative simulation, causality is maintained by 

restricting progress at nodes which limits effective parallelism in the simulation.  In 

optimistic simulation, causality is maintained by a clever mechanism for detecting and 

recovering from breaches of causality.  When multiple time scales are present in the 

system being simulated, rollback and restart can severely restrict forward progress.  There 

has been much research on hybrid models of distributed simulation where processes 

“look ahead” to both progress beyond the time allowed by pure conservative simulation 

and to avoid most of the breaches of causality which might occur under optimistic 

execution. Bagrodia and his students [64], [97] have carried several studies which use 

data flow graph based “look ahead” to improve the efficiency of parallel/distributed 

simulation. There have been many hybrid schemes many of which are described in 

Fujimoto’s [34] comprehensive book.   

The data flow precedence-constrained execution model used herein is different 

from the CSP-based execution model for distributed discrete event simulations in 

fundamental ways. 

a. The causality preserving execution sequences for nodes are derived from the data 

flow graph formulation of the program. 
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b. The simulation clock is derived from an execution order derived from the logic of 

the data flow model for execution of the program rather than the simulation clock 

determining the order of execution. 

The data flow formulation of parallel/distributed simulation is not, however, a 

general model of parallel/distributed simulation.  It applies only to systems which can be 

formulated in a data flow model of execution. 
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Chapter 6: Robustness and Formal Verification 

6.1 MOTIVATION AND OVERVIEW 

The increasing prevalence of parallelism in mission critical systems coupled with 

the increasing role of numerical computations in control systems such as medical 

instruments [71], [72] makes architecting parallel computation systems and establishing 

the correctness of parallel computation systems a task of safety critical importance.  Most 

errors in parallel programming arise in the design and coding of interactions 

(synchronization and communication) among units of computation (processes, threads or 

components) which are executing concurrently. While there is little hope for verification 

of conventionally programmed parallel computation systems, definition of parallel 

applications in an architecture specification language with compilable/executable 

semantics enables all of automated composition of parallel programs, formal verification 

of the synchronization and communication structure and interaction properties of parallel 

computation systems and efficient runtime monitoring of component interactions and 

synchronization. 

Software architecture definition languages (ADL) [76], [63] typically define 

software architectures as components and connectors between components. We use the 

phrase Architecture specification language (ASL) rather than the usual ADL since the P-

COM2 architecture specification language incorporates specification of implementation 

and behavioral properties of components,  enables deferral of  definition of connectors to 

compile time and has compilable semantics. Incorporation of implementation and 

behavior properties and deferral of definition and realization of connectors to compile 

time are all extensions of conventional architecture definition languages.  
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The P-COM2 ASL  specifies the behaviors and implementations of components 

and interactions among components in a manner which enables the compiler for the ASL 

to automatically generate parallel program structures including connectors among 

components and choose components appropriate for a given execution environment and 

problem instance. Compiler generated parallel structures should be much more likely to 

be correct than manually coded parallel computation structures but there is still need for 

verification of correctness for the communication and synchronization of the compiled 

parallel programs and support for programmer defined runtime checks of interactions 

since the specifications for the interactions may be flawed. 

This chapter reports the development and application of formal verification of the 

interaction and synchronization properties of practical high performance parallel 

programs via model checking and capabilities for generating runtime monitoring of 

component interactions.  Verification is based on development of a formal semantics for 

the architecture specification language (ASL) of the P-COM2
 development system for 

parallel programs, translation to the language of the FDR model checker [31] and 

application of the FDR model checker to the verification of the interactions and 

synchronization behavior of programs specified in the ASL.   The critical factor enabling 

both formal verification and generation of efficient monitoring code is that the P-COM2 

ASL rigorously separates specifications of interactions from computations enabling 

specification of a formal semantics for the interactions among components.   

A unique specification issue is that deferral of the realization of connectors to 

compile time requires that the semantics of the language be defined in two phases: for the 

language itself and for the execution model for the language since the connections 

between the components are not explicitly defined or realized until the compiler matches 

the specifications among components to generate the connectors.  
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Model checking verification of the properties of the interactions among 

components requires that the component interfaces be represented in a model checkable 

language.  This chapter defines the semantics of the P-COM2 ASL and execution model 

in terms of Hoare’s CSP [44].  A translator from the P-COM2 language to FDR extension 

of CSP has been defined.  The representations in the FDR-extended version of CSP are 

verified for concurrency properties using the FDR model checker.  

The P-COM2 ASL implements features targeting increased reliability and 

robustness including preconditions and postconditions on inputs and outputs of the 

component computations, fault-tolerance by replication of components, and enhanced 

state machine control of operation sequencing. The P-COM2 compiler generates code for 

runtime verification of pre-conditions and post-conditions and state machine sequencing.    

6.2 FEATURES OF P-COM2 FOR IMPROVING RELIABILITY AND ROBUSTNESS 

This section describes the features of P-COM2 ASL that improves robustness and 

reliability of an application. Compile time semantics, executable semantics, and formal 

verification of sequencing behavior are presented in the following sections. 

6.2.1 Preconditions and Postconditions 

Since a software system is built from a set of components, the correctness and 

robustness of the system cannot be ensured unless we can ensure the correctness and 

robustness of the individual software components. A component usually offers one or 

more service to its users. Each service of a component is a contractual agreement 

between the user of the component and the component itself. A contract has an obligation 

to fulfill and a guarantee that it provides. Given the proper set of input the component 

provides the correct set of output or service. The contract requires the user of the 

component to meet the obligations of the contract, and when the obligation is met the 
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component guarantees to provide the correct output. The obligation of the contract is to 

provide the correct set of input that the component is expecting and can process. Once the 

user has met the obligation of the component, the component guarantees to produce 

correct result.  

Traditionally this contract of a service has been implicit. But an implicit contract 

can result in software failure and in the absence of an explicit contract it becomes 

cumbersome to find and fix bugs. An explicit contract can result in better understanding 

of the behavior of the software component. Once the contract is explicitly stated in the 

interface of a component, it provides a precise description of the components 

functionality. When the service of a component is invoked, the runtime system can 

automatically check if the obligation has been fulfilled before the implementation of the 

component is invoked. If the obligation is not fulfilled the correct result cannot be 

generated and some appropriate action can be taken. A range of actions are possible. The 

action can be to print some diagnostics information and quit the program making fault 

diagnosis easier and giving the user direction on what went wrong. Or the user of the 

component can be notified to take care of the obligation. Once the obligation is fulfilled, 

and the implementation of the component is invoked the runtime system can 

automatically check if the guarantee of the component has been fulfilled by producing the 

correct result. If the guarantee is not fulfilled it usually means that the implementation of 

the component is incorrect or we have done a poor job in documenting what the 

component guarantees to provide.  When the guarantee section of a contract fails again 

we can take an appropriate action. At the least we can print some diagnostic information 

and quit the program. Or we can invoke an alternate implementation. Invoking an 

alternate implementation can improve the robustness of a component.  
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In P-COM2 ASL the obligation of the contract is specified as precondition of 

accepts operation. The guarantee of the contract is specified as postcondition of accepts 

operation. The precondition and postcondition together gives a precise description of the 

components behavior. The runtime system of the P-COM2 compiler automatically checks 

the precondition before invoking the implementation and also automatically checks the 

postcondition after the implementation is invoked.  

6.2.2 Fault-Tolerance by Component Replication 

P-COM2 ASL allows a component to be replicated. The number of replicated 

instantiation of a component is determined by the number of replicas specified in the 

requires clause of the invoking component. Replication may be done for SPMD (single 

program multiple datastream) parallel structuring or for fault-tolerance.  

If the invocation is for SPMD parallelism then each replica will execute on 

different data and the component which receives the outputs of the replicated component 

will generally have its interface specified to receive the outputs from all of the replicas.   

If the replication is for fault-tolerance, then each replica will execute on the same 

data and the components which receive the outputs of the replicated component will 

generally be programmed to receive only the output of the first successful execution of 

the replicated component.  The receiving component will then set its state machine guard 

to not receive the outputs of the other replicas.  Note that this replication does not require 

synchronization.  It is also possible to collect output from all the replicated components 

and perform a computation such as comparison or leader election on the collected output.  

It is also possible to have a requires clause which invokes MPSD (multiple 

program single datastream) parallelism for fault tolerance.  In this case, the invoking 

component has separate requires clause for several different implementations of the same 



 70

functionality.  The receiving component will usually receive all of the components and 

compare the results of the several executions. 

6.2.3 Runtime Verification of State Machines 

The state machine specification used in the interface of the components is not 

only serves the purpose of specification and formal verification but also is the actual 

syntax of the state machine implementation. Thus it is not a model of the state machine 

but an actual implementation of the state machine. As a result the guards and conditions 

together with actions of the operations are actively monitored and verified during 

runtime. 

6.3 COMPILE TIME SEMANTICS 

The compile time semantics is presented here using tuple notation and first order 

logic through a number of definitions and introduction of some matching operators and 

component composition operator. During compile time the channels between components 

are established through application of component composition operators.  

Component: A Component is a tuple (AI, C, RI), where AI is the accepts 

interface which is a set of accepts interface clause, C is the computation, and RI is the 

requires interface which is a set of requires interface clause. There are three types of 

components. A start component has a requests interface but do not have an accepts 

interface. AI is empty for a start component. A stop component has an accepts interface 

but do not have a requests interface. RI is empty for a stop component. A component is a 

regular component if it is neither a start component nor a stop component. 

Accepts interface clause: An accepts interface clause AI is a tuple (P, TA, LA, 

IndxA), where P is the profile which is a set of profile attributes p, TA is a set of accepts 

operations, LA is an identifier representing accepts protocol, and IndxA is an integer 
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(greater than zero) representing optional replication parameter. In the absence of this 

optional parameter the value of IndxA is assumed to be one. 

Intuitively the operations in TA are related by an OR relationship so that the 

component can execute when any of the operations in TA has its data ready. Whether the 

operation can actually execute will depend on its guard as is shown later in the execution 

model semantics description. In the presence of the optional parameter IndxA, the input 

channels that are established for this accepts interface clause (as described later) will be 

replicated establishing replicated input channels. 

Requires interface clause: A requires interface clause RI is a tuple (S, TR, LR, 

IndxR), where S is the selector which is a set of selector attributes s, TR is a set of requires 

operations, LR is an identifier representing requires protocol, and IndxR is an integer 

(greater than zero) representing optional replication parameter. In the absence of this 

optional parameter the value of IndxR is assumed to be one. 

Intuitively the operations in TR are related by an AND relationship so that the 

component must try to execute all of its requires operation. Whether it can actually 

execute the requires operation will depend on the guard of the requires operation as will 

be shown later in the execution model semantics description. In the presence of the 

optional parameter IndxR , the output channels that are established for this requires 

interface clause (as described later) will be replicated establishing replicated output 

channels. 

Profile attribute: A profile attribute p is a tuple (tp, np, a), where tp is the type of 

profile attribute, np is the name of profile attribute, and a is the value of np conforming to 

type tp. 

Selector attribute: A selector attribute s is a tuple (ts, ns, Op, b), where ts is the 

type of selector attribute, ns is the name of selector attribute, Op is a comparison operator 
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that is valid in type ts, and b is a value that conforms to type ts. Comparison operators = = 

and != are valid in every type. Comparison operator > , < , >= and <= are valid only for 

ordered types. 

Containment relationship: A containment relationship is a tuple (t, n, a, b), 

where t is the type, n is the name, a is a value of type t, b is a value of type t. We say that 

value a contains value b. The relationship is transitive. Thus if we have a contains b, 

(t,n,a,b) and b contains c, (t,n,b,c) we can infer that a contains c, (t,n,a,c). 

Accepts operation: An accepts operation tA is a tuple (GA, PreC, SA, PostC, 

ActA), where GA is the guard which is a boolean expression, PreC is the precondition 

which is an expression that is checked before the execution of the component, SA is a set 

of signature, PostC is the postcondition which is an expression that is checked after the 

execution of the component, and ActA is the action which is a set of instructions.  

Intuitively the signatures in SA are related by an AND relationship requiring that 

all the signatures in SA must be ready to execute for the component computation to 

execute. 

Requires operation: A requires operation tR is a tuple (CR, sR, ActR), where CR is 

the condition which is a boolean expression, sR is a signature, and ActR is the action 

which is a set of instructions. 

Signature: A signature s is a tuple (N, n, a0, …, an-1 ), where N is the name of the 

signature which is an identifier, n is a positive integer representing number of arguments 

of signature s, and ai’s ( i = 0 … n-1 ) are the argument of signature s. 

Argument: An argument a is a tuple (t, n), where t is the type of argument a, and 

n is the name of argument a. 
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Argument matching operator: The argument matching operator arg takes as 

operands two arguments and produces a true/false value. Given arguments a(ta , na) and 

b(tb , nb), a arg b is true  iff ta = tb, otherwise a arg b is false. 

Signature matching operator: The signature matching operator sig takes as 

operands two signatures and produces a true/false value. Given signatures c(Nc, n, a0, …, 

an-1) and d(Nd, m, b0, …, bm-1), c sig d is true, iff all of the following are true 

1. Nc = Nd 

2. n = m 

3. ai arg bi = true for i = 0, … , n-1. 

c sig d is false, otherwise. 

Operation matching operator: The operation matching operator op takes a 

requires operation as its left operand and an accepts operation as its right operand and 

produces a true/false value. Given a requires operation tR(CR, sR, ActR) and an accepts 

operation tA(GA, PreC, SA, PostC, ActA),  

tR op tA is true, iff ASs∈∃ • (sR sig s = true). 

tR op tA is false, otherwise. 

Intuitively the matching of signature sR and s means the possibility of the 

generation of a channel from the source component (the component where the requires 

operation resides) to the sink component (the component where the accepts operation 

resides). The channel can carry a structure whose fields are arguments a0 to an-1. The 

name of the channel will be either the name of the signature or a compiler generated 

name such that the name of the channel is unique within the program’s scope. The source 

component uses the channel as an output channel and the sink component uses the 

channel as an input channel. Whether the channel will be generated is decided by the 
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successful matching of the requires interface clause and accepts interface clause as 

described later. 

Attribute matching operator: The attribute matching operator attr takes a 

selector attribute as its left operand and a profile attribute as its right operand and 

produces a true/false value. Given a selector attribute s(ts, ns, Op, b) and a profile attribute 

p(tp, np, a), s attr p is true, iff all of the following are true 

1. ts = tp 

2. ns = np 

3. The boolean expression ( a Op b ) evaluates to true. 

Or 

   Value a contains (see containment relationship) value b, (ts,ns,a,b) and the operator Op 

is = =. 

s attr p is false, otherwise. 

Selector and profile matching operator: The selector and profile matching 

operator SP takes a selector as its left operand and a profile as its right operand and 

produces a true/false value. Given a selector S and a profile P,  

S SP P is true, iff PpSs ∈∃∈∀ ,  • (s attr p = true). 

S SP P is false, otherwise. 

Interface clause matching operator: The interface clause matching operator IC 

takes a requires interface clause as its left operand and an accepts interface clause as its 

right operand and produces a true/false value. If the application of the interface clause 

matching operator produces a true value then the operator also generates a channel as 

described below. Given a requires interface clause R(S, TR, LR, IndxR) and an accepts 

interface clause A(P, TA, LA, IndxA), 
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R IC A is true, and also generates a channel between tR and tA iff all of the following are 

true: 

1. S SP P = true 

2. AARR TtTt ∈∃∈∃ ,  • (tR op tA = true) 

3. LR = LA 

4. Both IndxA and IndxR are not more than one. 

R IC A is false, otherwise. 

Matching of the requires interface clause and the accepts interface clause 

generates a channel between the source and sink component for each matching between 

the requires operation and the accepts operation. If IndxR is greater than one then the sink 

component is said to be replicated and the source component gets the replicated output 

channel. Each of the replicated output channel i ends in the replicated component i. If 

IndxA is greater than one then the sink component gets the replicated input channel and 

the replicated input channel i starts at some replicated component i. If both IndxA and 

IndxR are equal to one then a simple non-replicated channel is established between the 

source and sink component. 

Component composition operator: The component composition operator  

takes two components as operands and generates channel as described below. Given 

components a(AIa, Ca, RIa) and b(AIb, Cb, RIb), a  b generates channel as described by 

the operator IC iff ba AIARIR ∈∃∈∃ , • (R IC A = true), a  b does not do anything 

otherwise. 

The P-COM2 compiler applies the component composition operator between each 

two components that exists in the program description and the result is the generation of 

channels between matching components as described by the component composition 

operator. In order to generate an executable program the program description must 
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include exactly one start component, one or more stop component, and zero or more 

general components. 

There are three scenarios that require special handling. The scenarios are the 

following: 

Scenario 1: where t1 op t2 returns true and t1 op t3 also returns true (t2 and t3 

are two different accepts operation) and the corresponding interface clause matches. This 

results in a compile time error and the user has to choose between the matching of t1 and 

t2 and the matching of t1 and t3.  

Scenario 2: where t1 op t2 returns true and t3 op t2 also returns true (t1 and t3 

are two different requires operation) and the corresponding interface clause matches and 

none of the definitions of t1, t2, and t3 uses index. The compiler in this case generates 

indexed channels between the two matching and generates different index for the two 

channels. The indices are used to describe the semantics of the execution model. 

Scenario 3: where t1 op t2 returns true and none of the definitions uses index, 

but t1 belongs to a replicated component and t2 belongs to a non replicated component. 

In this case also the compiler generates indexed channel names between t1 and t2 and 

uses a different index for each replica of the replicated component. The indices are used 

to describe the semantics of the execution model. 

 Scenario 2 and 3 results in indexed (or replicated) channels and requires 

separate treatment in describing the semantics of the sink component (described in 

section 6.4). The semantics of the source component indexed channels do not require 

special treatment other than the use of the index that will be supplied by the compiler to 

the component. 
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6.4 EXECUTION MODEL SEMANTICS 

During execution, each P-COM2
 component is modeled as a process. The 

processes communicate through the channels that were generated by the application of 

the component composition operator during compile time. The semantics of the execution 

model is described in terms of these processes and channels. The semantics is presented 

using process algebra FDR CSP [31].  

We use the following special processes in the translation rules. 

ERROR =  -> STOP, where  denotes a special error event. 

TERM = end -> STOP, where end denotes a special termination event. 

Given a P-COM2 specification for a program, P, let us use the notation TRAN(P) 

to denote the semantics of P in FDR CSP. Similarly TRAN(P,Q) takes two P-COM2 

definitions and produces a semantics in FDR CSP and so on.  

If P is a P-COM2 program composed of components A, B, and C where none of 

the components are replicated (as described in the definition of matching between 

requires interface clause and accepts interface clause) then  

TRAN(P) = TRAN(A)~ [||] TRAN(B)~ [||] TRAN(C)~ 

Here for example TRAN(A) is the semantics of component A as defined later in 

this section and the operator ~ is the asynchrony operator as described in [47]. The 

asynchrony operator works by attaching buffer processes to each of the input and output 

channels of a process. The details of the ~ operator can be seen in [47]. The shared 

channels in the parallel composition operator are generated by the compiler and are 

omitted here for simplicity. 

If a component B is replicated n times in the program then  

TRAN(P) = TRAN(A)~ [||] TRAN(C)~ [||] ([||] i:{0..n-

1}@TRAN(B)~) 
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CSP labels are used here to differentiate between replicas of replicated component 

B. Replicated output channel i ends in replicated component i. Similarly replicated input 

channel i starts in replicated component i. The proper connection of channels between 

components is done during compile time as part of the matching process. 

If A is a component consisting of accepts interface AI, computation C, and 

requires interface RI then 

TRAN(A) = TRAN(AI,C) ; TRAN(RI) ; TRAN(A) 

Since accepts interface and components are closely related, the semantics of them 

are related and thus shown together. Thus TRAN(AI,C) denotes the semantics of AI and 

C in CSP.  

If A is a start component then   

TRAN(A)= TRAN(C) ; TRAN(RI) 

If A is a stop component then  

TRAN(A)= TRAN(AI,C) ; TERM 

Given an accepts interface AI, and computation C, where the accepts interface AI 

consists of a set of accepts interface clause AIC0 , … , AICn-1 then 

TRAN(AI,C) = [] i:{0..n-1} TRAN(AICi , C) 

Given an accepts interface clause AIC and computation C, where AIC is a tuple 

(P, TA, LA, IndxA) as described in the definition of accepts interface clause then  

TRAN(AIC,C) = TRAN(TA, C, IndxA) 

Given a set of accepts operation T, computation C, and replication parameter 

Indx, where T consists of T0, …, Tn-1 then 

TRAN(T,C,Indx) = [] i:{0..n-1} TRAN(Ti,C,Indx) 
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Given an accepts operation T, computation C, and replication parameter Indx, 

where T is a tuple (G, PreC, S, PostC, Act) as defined in the definition of accepts 

operation and S consists of signatures S0, …, Sn-1 then 

TRAN(T,C,Indx) = TRAN(G) & 

 TRAN(S0,Indx,r) -> … -> TRAN(Sn-1,Indx,r) -> 

  (if !TRAN(PreC) ERROR  

       else ( TRAN(C) ; if !TRAN(PostC) then       

                ERROR else TRAN(Act)) 

Given a signature S where is S is a tuple  (N, n, a0, …, an-1) as described in the 

definition of signature 

TRAN(S,Indx,r) = N?tuple_N , if Indx = 1 but not scenario 2 or 3 as described 

in section 6.3. 

TRAN(S,Indx,r) = (N[0]?tuple_N [] … [] N[m-1]?tuple_N), if 

scenario 2 or 3 where the value m is supplied by the compiler as the index of the indexed 

channels. 

TRAN(S,Indx,r) = N[0]?tuple_N[0] -> … -> N[Indx-

1]?tuple_N[Indx-1] , If Index>1. 

Here N is used as a channel name and tuple_N is used to represent a tuple variable 

whose fields are arguments a0 to an-1. If the channel name N is not unique within the 

program then the compiler selects the channel name in such a way such that it will be 

unique within the program and the source and sink component uses the same unique 

channel name. TRAN(G), TRAN(PreC), TRAN(Act), TRAN(C), and TRAN(PostC) are 

similarly defined. 

Given a requires interface clause RI where RI is a set of requires interface clause 

RIC0, … , RICn-1 
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TRAN(RI) = ; i:{0..n-1} @ TRAN(RICi) 

Given a requires interface clause RIC where RIC is the tuple ( S , TR , LR , IndxR),  

TRAN(RIC) = TRAN(TR, Indx) 

Given a set of requires operation T, and replication parameter Indx, where T 

consists of T0, …, Tn-1 then 

TRAN(T,Indx) = ; i:{0..n-1} @ TRAN(Ti,Indx) 

Given a requires operation T and replication parameter Indx, where T is a tuple 

(Cond , S , Act) and signature S is a tuple  (N, n, a0, …, an-1),  

TRAN(T,Indx) = if TRAN(Cond) then  

   (TRAN(S, Indx, s); TRAN(Act)) else SKIP 

TRAN(S,Indx,s) = N!tuple_N  ,  if Indx = 1. 

TRAN(S,Indx,s) = N[0]!tuple_N[0] -> … -> N[Indx-

1]?tuple_N[Indx-1] , If Index>1. 

TRAN(Cond) and TRAN(Act) are similarly defined. 

6.5 AN EXAMPLE SHOWING SEMANTICS 

This section illustrates the semantics of a P-COM2 program using a simple but 

practical example. This example application was introduced in [59]. The application 

solves the 2D FFT of a given matrix. A brief description of the application together with 

its workflow graph and interfaces are described in Section 6.5.1. The semantics of the 

example 2D FFT application is shown in Section 6.5.2. 

6.5.1 2D FFT Application Example 

Given an N x M matrix of complex numbers where both N and M are powers of 

2, we want to compute the 2D FFT of the complex matrix. This 2D FFT can be calculated 

in terms of 1D FFTs using the Swarztrauber algorithm [92] which helps in parallelizing 
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the application. The algorithm works by partitioning the matrix row wise (horizontally) 

and distributing the sub-matrices into available processors, applying 1D FFT on every 

row of the sub-matrix on each processor, collecting the sub-matrices to form a matrix and 

transposing the matrix and repeating the process of partitioning, distributing, applying 1D 

FFT on each row of sub-matrix, collecting and transposing the matrix. After the second 

collection and transposition operation we get the 2D FFT of the source matrix. This 

application can be described using five components. The components are, a start 

component INIT, a stop component PRINT, and three regular components DISTR, 

FFT_1D, and GATHER. The workflow diagram of the program is shown in Figure 12. 

 

Figure 12: Workflow graph of 2D FFT application 

The DISTR component partitions a matrix row-wise and sends the partition to the 

replicated FFT_1D components. The GATHER component collects partitioned result 

from the replicated FFT_1D components, transposes them and sends the result to DISTR 

component for the first invocation and to the stop component PRINT for the second 

invocation. The requires interface of INIT component is shown in Figure 13 and the 

accepts interface of DISTR component is shown in Figure 14. Other interfaces of the 
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components are shown in Figures 15 through 20 (protocol is not shown, value is 

“dataflow” by default).  

 

Figure 13: Requires interface of INIT component 

 

Figure 14: Accepts interface of DISTR component 

 

Figure 15: Requires interface of DISTR component 

selector: 
  string domain == "matrix"; 
  string function == "distribute"; 
  string element_type == "complex"; 
  bool distribute_by_row == true; 
operation: 
  void init_data(out mat2 grid_re,out mat2 grid_im, out int n, out int 
       m, out int p); 
protocol: dataflow; 

profile: 
  string domain = "matrix"; 
  string function = "distribute"; 
  string element_type = "complex"; 
  bool distribute_by_row = true; 
operation: 
  guard { got_init_data == 0  } 
  void init_data(in mat2 grid_re,in mat2 grid_im, in int n, in int m, 
       in int p); 
  action { got_init_data = 1; } 
  || 
  guard { got_init_data == 1  } 
  void go_another(in mat2 grid_re,in mat2 grid_im, in int n, in int m, 
   in int p); 
  action { got_init_data = 0; } 
protocol: dataflow; 

{selector: 
  string domain == "fft"; 
  string input == "matrix"; 
  string element_type == "complex"; 
  string algorithm == "Cooley-Tukey"; 
  bool apply_per_row == true; 
operation: 
  void get_part_matr(out mat2 out_grid_re[], out mat2 out_grid_im[], 
      out int n, out int m, out int p); 
}index [ N ] 
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Figure 16: Accepts interface of FFT_1D component 

 

Figure 17: Requires interface of FFT_1D component 

 

Figure 18: Accepts interface of GATHER component 

profile: 
  string domain = "fft"; 
  string input = "matrix"; 
  string element_type = "complex"; 
  string algorithm = "Cooley-Tukey"; 
  bool apply_per_row = true; 
operation: 
  void get_part_matr(in mat2 grid_re,in mat2 grid_im,in int n, in int 
      m, in int p); 

selector: 
  string domain == "matrix"; 
  string function == "gather"; 
  string element_type == "complex"; 
  bool combine_by_row == true; 
  bool transpose == true; 
operation: 
  void get_row_fft(out mat2 out_grid_re,out mat2 out_grid_im, out int 
    n, out int m, out int p, out int my_id); 

{profile: 
  string domain = "matrix"; 
  string function = "gather"; 
  string element_type = "complex"; 
  bool combine_by_row = true; 
  bool transpose = true; 
operation: 
  void get_row_fft(in mat2 grid_re,in mat2 grid_im, in int n, in int m,
    in int p, in int i); 
} index [N] 
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Figure 19: Requires interface of GATHER component 

 

Figure 20: Accepts interface of PRINT component 

6.5.2 Semantics of the 2D FFT Application 

This section illustrates the semantics of the P-COM2 compiler and the execution 

model of the resulting program using the example that was presented in Section 6.5.1. 

The component composition operator  is applied between each possible pair of 

components in the program description. A channel named init_data is generated from the 

application of INIT  DISTR. Similarly other channels are generated and are shown as 

annotation on the arcs of Figure 12. Let’s explain how the init_data channel is generated. 

selector: 
  string domain == "matrix"; 
  string function == "distribute"; 
  string element_type == "complex"; 
  bool distribute_by_row == true; 
operation: 
  condition { state == 0 } 
  void go_another(out mat2 out_grid_re, out mat2 out_grid_im, out int
   m, out int n, out int p); 
  action { state = 1; } 
 
selector: 
  string domain == "print"; 
  string input == "matrix"; 
  string element_type == "complex"; 
operation: 
  condition { state == 1 } 
  void final_result(out mat2 out_grid_re,out mat2 out_grid_im, out int
     m,out int n); 
  action { state = 0; } 

profile: 
  string domain = "print"; 
  string input = "matrix"; 
  string element_type = "complex"; 
operation: 
  void final_result(in mat2 grid_re,in mat2 grid_im, in int n,  
     in int m); 
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The application of interface clause matching operator IC between the requires interface 

clause of component INIT (Figure 13) and the accepts interface clause of component 

DISTR (Figure 14) returns true because the selector and profile matching operator SP 

returns true, the operation matching operator op returns true and also the protocol 

matches (index’s default value is one and thus do not violate the matching condition of 

IC). Thus application of component composition operator  generates the channel 

named “init_data” which is used as an output channel by component INIT and as an input 

channel by component DISTR. After the compilation stage we get a number of processes 

and channels connecting them as in Figure 12.  

 

Figure 21: Semantics of FFT program using FDR CSP syntax 

The FDR/CSP program resulting from the translation is given in Figure 21 and 

Figure 22.  The program has been manually edited to make it more readable.  The reader 

V = { 1,2 } {- values transferred thru channels,not important since 
we are modeling state machine only -} 
replica_number = {0..1} {- we are modeling 2 replicas of the FFT_1D 
component -} 
channel from_user,init_data,init_data', go_another,go_another', 
final_result,final_result': V 
channel get_part_matr,get_part_matr', get_row_fft,get_row_fft' : 
replica_number.V 
channel end 
{- the channel names and processes that end with ' are for buffering 
purpose -} 
BUFF(in,out,n) = {- buffer process for implementing asynchronous 
operation -} 
 let 
    B(s) =  not null(s) & out!head(s) -> B(tail(s)) 
   [] 
   #s < n & in?x -> B(s^<x>) 
 within B(<>) 
 
{- the from_user channel is not in the program but introduced for 
simplified property checking -} 
INIT = from_user?x -> init_data!x -> SKIP 
INIT' = INIT [init_data <-> init_data'] BUFF(init_data',init_data,5) 
{- we are using a buffer size of 5 throughout the program for quick 
checking of properties -}
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may wish to refer to the workflow graph (Figure 12) and the ASL interface definitions 

when reading the FDR/CSP program.  Figure 21 and 22 is literally the data flow graph 

resulting from unrolling the workflow graph. Note the simplicity of the state machines 

and small ranges for the integer variables in the state machines. 

 

Figure 22: Semantics of FFT program using FDR CSP syntax (continued) 

  

DISTR(got_init_data) =  
   (got_init_data == 0 & init_data?x -> get_part_matr.0!x ->  
    get_part_matr.1!x -> DISTR(1)) 
[] (got_init_data == 1 & go_another?x -> get_part_matr.0!x ->  
    get_part_matr.1!x -> DISTR(0)) 
DISTR'(got_init_data) = ((BUFF(go_another,go_another',5)   
 [go_another' <-> go_another] (BUFF(init_data,init_data',5)  
 [init_data' <-> init_data] DISTR(got_init_data)))   
 [get_part_matr <-> get_part_matr'] 
 BUFF(get_part_matr',get_part_matr,5))    
 [get_row_fft <-> get_row_fft'] BUFF(get_row_fft',get_row_fft,5) 
 
FFT_1D(i) = get_part_matr.i?x -> get_row_fft.i!x -> FFT_1D(i) 
FFT_1D'(i) = (BUFF(get_part_matr.i,get_part_matr'.i,5)   
  [get_part_matr'.i <-> get_part_matr.i]FFT_1D(i))  
  [get_row_fft.i <-> get_row_fft'.i] 
 BUFF(get_row_fft'.i,get_row_fft.i,5) 
FFT_1D_REPLICAS' = [|{}|] i:{0..1} @ FFT_1D'(i) 
 
GATHER(state) = get_row_fft.0?x -> get_row_fft.1?x  ->  
    ((state == 0 & go_another!x -> GATHER(1)) 
  [] (state == 1 & final_result!x -> GATHER(0)) ) 
GATHER'(state) = (GATHER(state) [go_another <-> go_another']  
 BUFF(go_another',go_another,5))[final_result <-> final_result'] 
 BUFF(final_result',final_result,5) 
 
TERM = end -> STOP 
PRINT = (final_result?x -> SKIP) ; TERM 
PRINT' = BUFF(final_result,final_result',5)       
    [final_result' <-> final_result] PRINT 
 
FFT_PROGRAM = (( (  ((INIT' [|{|init_data|}|] DISTR'(0))  
         [| {|get_part_matr|}  |]  
         FFT_1D_REPLICAS' )  
            [| {|get_row_fft, go_another|}  |]  
                      GATHER'(0) )  
       [| {|final_result|} |] 
       PRINT' )) 
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The translated program was model-checked using FDR for the following 

properties: 1) for every input, the program should give us an output (SPEC_1), 2) 

complete  sequencing behavior of the operations (SPEC_2), and 3) deadlock checking  

(SPEC_3). The properties are shown in Figure 23. Our implementation passed all the 

properties. The program specification was reduced to 1365 states and FDR used 128k 

memory. The refinement check used 113 state with 165 transitions and took less than a 

second for each refinement on a 2.4GHz Pentium 4 with 1GB of memory under Debian 

Linux.   

 

Figure 23: Properties checked on FFT_PROGRAM 

{- SPEC_1 says that for an input thru from_user channel we will get 
output thru final_result channel -} 
SPEC_1 = (from_user?x -> final_result.x -> STOP) 
{- check that our implementation satisfies the property SPEC_1 -} 
assert SPEC_1 [FD= ( FFT_PROGRAM \ 
{|init_data,get_part_matr,get_row_fft,go_another,end|} ) 
 
{- full specification showing the sequencing relationship of each 
event -} 
SPEC_2_helper(x) = ((get_part_matr.0.x -> (get_row_fft.0.x -> SKIP 
  ||| (get_part_matr.1.x -> SKIP)); get_row_fft.1.x -> 
SKIP)) 
SPEC_2 = (from_user?x -> init_data.x -> (SPEC_2_helper(x); 
 go_another.x -> (SPEC_2_helper(x) ; final_result!x -> end -> 
 STOP))) 
{- check that our program follows the sequencing relationship -} 
assert SPEC_2 [FD= FFT_PROGRAM   
 
-- deadlock checking or check that shows that our program terminates  
SPEC_3 = end -> STOP 
assert SPEC_3 [FD= ( FFT_PROGRAM \ 
 {|from_user,init_data,get_part_matr,get_row_fft,go_another, 
     final_result|} ) 
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Figure 24: Accepts interface of DISTR component with erroneous state machine 

 

Figure 25: FDR translation of erroneous DISTR component 

We artificially introduced an error in the DISTR component so that it did not 

change the state of the component correctly in the first operation as shown in Figure 24. 

The FDR translation of the erroneous state machine is shown in Figure 25. The resulted 

program failed to pass any of the properties and provided a trace as counter example 

showing why the property failed. The trace was useful in finding the bug since it showed 

why DISTR component was not ready to take input even though the GATHER 

component was ready to output. While it is easier to find errors for the simple example of 

this paper, for more complex systems the errors may be quite difficult to detect using 

informal means. 

profile: 
  string domain = "matrix"; 
  string function = "distribute"; 
  string element_type = "complex"; 
  bool distribute_by_row = true; 
operation: 
  guard { got_init_data == 0  } 
  void init_data(in mat2 grid_re,in mat2 grid_im, in int n, in int m, 
       in int p); 
  action { } 
  || 
  guard { got_init_data == 1  } 
  void go_another(in mat2 grid_re,in mat2 grid_im, in int n, in int m, 
   in int p); 
  action { got_init_data = 0; } 
protocol: dataflow; 
 

DISTR(got_init_data) =  
   (got_init_data == 0 & init_data?x -> get_part_matr.0!x ->   
   get_part_matr.1!x -> SKIP) 
 [](got_init_data == 1 & go_another?x -> get_part_matr.0!x ->  
   get_part_matr.1!x -> DISTR(0)) 



 89

6.6 RELATED WORK 

There has been research on model checking parallel numerical programs using 

symbolic execution [86]. The model checking approach requires that a sequential version 

of the parallel program be provided which serves as a specification for the parallel one 

and uses equivalence to establish the correctness of the parallel program in terms of the 

sequential one. There has been research on direct model checking of mpi programs [85], 

[84], [77].  MPI communication calls are represented as finite-state models abstracted 

from the program. As in our approach, this research verifies only the communication and 

synchronization properties. In P-COM2 we represent communication and synchronization 

as finite state models but generate the mpi library calls during composition. Automated 

composition avoids the errors which can occur in manual transcription between the mpi 

state machines and the calls to the mpi library.  

There is a substantial literature on ADLs.  For a comparative study, the ADL 

survey paper by Medvidovic and Taylor [63] is an excellent source.  We restrict our 

related work discussion to those ADLs for which a complete or partial formal semantics 

has been formulated. We categorize the related work into two categories. The related 

work in the first category (Darwin [55], [57], Wright [6], SOFA [79], and Rapide [36]) 

have complete semantics whereas (C2 [61], [62], Weaves [36], UniCon [83]) have 

defined only a  partial formal semantics. We provide only a brief description of the 

related work in the second category.  

Darwin [55], [57] is a declarative binding language which can be used to define 

hierarchical compositions of interconnected components through programmers writing 

compositional scripts. It is particularly useful for describing distributed system 

architectures. It does not support the specification of non-functional properties. It 

supports constrained dynamism by replication of components via dynamic instantiation, 



 90

as well as deletion and rebinding of components by interpreting Darwin scripts. P-COM2 

also supports constrained dynamism by replication of components by dynamic 

instantiation and also supports runtime reconnection using conditional operators. Both 

Darwin and P-COM2 uses implicit connectors. The semantics of Darwin is described in 

π-calculus [66] which allows sending of a connection name to a different component as 

part of a message. Darwin can [58] either use a graphical notation named labeled 

transition system (LTS) or a process algebra textual notation named finite state processes 

(FSP) to describe the behavior of individual components. The semantics of the 

architecture is automatically generated from the user supplied component behaviors. A 

tool named labeled transition system analyzer (LTSA) can be used for deadlock 

checking, and safety and liveness property checking. In P-COM2 we can also check these 

types of properties using FDR. However in our case the FDR program can be generated 

directly from the program whereas in Darwin the user has to supply the component 

behavior. The component behavior specified in Darwin is only a model and may not be 

followed at runtime. In P-COM2 the model can be generated directly from the 

implementation. Also the composition process in Darwin is manual whereas it is 

automatic in our approach. 

Wright [6] uses explicit connectors in describing the architecture. It uses protocol 

description for specifying the order of interactions between components. CSP [44] is used 

for specifying the protocol descriptions in ports, roles, and glues as well as describing the 

semantics. FDR is also used in Wright for checking port-role compatibility as well as 

deadlock checking of connectors. But the composition process of specifying the 

attachments of a port with a role is manual. Dynamic Wright [7] is an extension of 

Wright to include dynamism of software architecture. The protocol description was 

modified to include special control events. Configurors, which are separate configuration 
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programs use these control events to trigger reconfigurations. In case of P-COM2 the 

same effect can be achieved by the use of the adapt components [60]. 

The behavior protocol used in SOFA [79] uses regular expressions as syntax for 

generating a set of traces that are permitted by a protocol. Classical regular expressions 

operators were enhanced by introducing operators necessary for modeling interaction of 

concurrent processes/agents. Interface protocols model the interaction behavior on a 

particular interface. Frame protocols model the interaction behavior of a component’s 

provides and requires interface. Architecture protocols model the interaction behavior of 

all the components of an architecture. The interface and frame protocols are provided by 

the user whereas the architecture protocol is automatically generated by SOFA CDL 

(component definition language) compiler. The semantics of protocol conformance is 

explained in terms of the language described by the protocol.. Interface protocol 

conformance can be used to check if one interface is compatible with another interface. 

Frame protocol conformance with the interface protocol can be used to check if an 

interface is being correctly used in a component. Finally the architecture protocol 

conformance with the frame protocol can be used to check if the architecture will behave 

correctly given the behaviors of the components. The CDL compiler automatically 

generates architecture protocols and tests the interface, frame and architecture protocol 

conformance. The protocols are written separately from the SOFA executable code. 

SOFA thus uses protocol guard and runtime system to check if the implementation is 

within the constraints of the protocol guard. P-COM2 generates the model of the 

sequencing behavior of the components from the actual specification of the state 

machine. The implementation is constrained by the state machine at runtime and thus 

there is no need of constructs like protocol guard for checking the sequencing behavior at 

runtime. P-COM2 statically check the state machine for correctness and dynamically 
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check the implementation for correctness by looking at the actual data values being 

transmitted by the use of pre and post conditions. SOFA approach uses a scripting 

language for program composition whereas P-COM2 automatically composes programs 

from components encapsulated in its ASL.  

Rapide [53] is an ADL that can be used for modeling and simulation of the 

dynamic behavior described by an architecture. It uses events (partially ordered event set, 

poset) to characterize component interaction and provides a fixed set of connector types 

to characterize how events flow between components. Connectors in Rapide can be 

modeled by defining new kinds of components and thus the connectors in Rapide are also 

implicit. It supports constrained dynamism by conditional connection, event patterns, and 

dynamic instantiation of components. The timed poset model allows modeling of non-

functional property like modeling of timing. However it does not allow non-functional 

properties of components or connectors. The semantics of Rapide is described in terms of 

poset and event processing [54]. Constraints in Rapide can be used to restrict the 

behavior of components and can be checked at runtime for violation detection. The 

guards, preconditions and postconditions of P-COM2 operations can be used in achieving 

the same goal. 

C2 [61], [62] is an ADL suitable for describing architectures of highly-distributed, 

evolvable, and dynamic systems. Component invariants and operation pre- and post-

conditions are specified in 1st order logic. For connectors partial semantics is specified 

by message filters. C2 supports unconstrained dynamism by element insertion, removal 

and rewiring. 

Weaves [36] are networks of concurrent components that communicate by 

passing objects. The semantics of the components are given using partial ordering of 

input and output objects while the semantics of the connectors are given by the naming 
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conventions of the queue. It allows automatic composition of programs by giving the 

high level goals to the weaver. Component selection and interconnection is done by the 

weaver starting from the output goal and working backwards recursively.  

UniCon [83] is an ADL with a focus on interconnecting existing components 

using common interface protocols. Components specify players through which they 

interact with outside world. Connectors (via protocols) specify roles at which the 

connector can mediate the interaction among components. The semantics of the 

components and the connectors are implicit in their types and additionally the property 

list can be used to provide further semantics. UniCon does not support automated 

composition. 
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Chapter 7: Conclusions and Future Research 

Parallel programming has always been a complex task. Parallel programming 

techniques have been typically employed in scientific computing where performance gets 

more priority than productivity. Although performance is very important, we cannot 

overlook the impact of software productivity. It has been well known that maintenance of 

software is the most costly part of software life cycle. The critical issue for parallel 

programming is to increase productivity while improving performance over the life of a 

family of programs.  With the rise of multicore chips,  parallel programming will be more 

pervasive so that combining productivity, parallelism and performance becomes even 

more important. With the increasing prevalence of parallelism and parallel computation 

in mission critical systems it is important that the correctness of parallel programs be 

established at design time and also be validated at runtime. 

We presented the conceptual foundations for the P-COM2 development 

environment which are a software architecture specification language based on self-

describing components, a timing and sequencing algorithm which enables execution of 

programs with both concrete and abstract components and a formal semantics for the 

architecture specification language.  These concepts are a synthesis from multiple 

disciplines of computer science including, artificial intelligence, compilers, software 

architecture, component-oriented development, distributed and parallel computing, and 

model checking.  

We defined and described the compiler and runtime system which implements 

these concepts.  The compiler composes parallel programs from independently written 

components; the runtime system enables monitoring and runtime adaptation at the 

component level. The compiler and runtime system together were shown to enable 
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evolutionary development of programs to meet performance goals and runtime adaptation 

of programs by component substitution.  A formal semantics for the ASL was developed. 

Formal verification of component interactions and state machines by translation of ASL 

instances to model checkable languages was formulated.  Each capability of the P-COM2 

development environment was illustrated and evaluated by one or more examples 

The programming methodology and tools developed in this dissertation enhance 

productivity by: 

a. Automated composition of program instances from families of components. 

b. Enabling design of instances of an application family to meet performance goals. 

c. Raising the level of abstraction of program composition to the component level. 

d. Enabling reuse of components across instances of an application family 

e. Enabling runtime adaptation of a program at the component level. 

f. Enhancing program understanding through yielding simple and clean program 

structures. 

g. Providing a basis for better understanding of component and program behavior 

through precise description of the properties and behaviors of components and 

thus programs composed from components. 

h. Runtime validation of program behaviors through preconditions and 

postconditions. 

i. Verification of correctness of state machines and component interactions during 

design time. 

Performance is enhanced by: 

a. Design time evaluation of performance. 

b. Customization of program instances to problem cases and execution environments 
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c. Runtime adaptation to maintain performance when execution environments or 

problem behavior changes. 

7.1 FUTURE RESEARCH DIRECTIONS 

While the P-COM2 approach to development of parallel programs has great 

potential, its application is impeded by the requirement that there exists a family of 

components from which application instances can be composed.  The parallelism which 

can be implemented in P-COM2 is limited by the capabilities of the MPI and threads 

packages to which we compile.  Additionally, we have applied P-COM2 only at the level 

of functionally defined components.  It could potentially also be used to compose larger 

systems from existing applications.  

The Weaves [68] framework enables separation of global variables while 

composing applications from existing applications. It uses light-weight threads for 

connecting the applications. Much of the re-engineering effort done during 

componentization of legacy systems in P-COM2 comes from removal of global variables. 

Integration of Weaves with P-COM2 can substantially reduce the re-engineering cost. 

Also the light-weight threads of Weaves can be used to take advantage of multi-core 

machines. The speedup of parallel programs will be much better when we can take 

advantage of both clusters and multiple processors. A important practical means of 

enhancing both Weaves and P-COM2 is to integrate the them.   

A unification of the ASL of P-COM2 with other modeling and software 

architecture tools is an important direction of research.  

More case studies need to be done to see the effectiveness and scalability of the 

model checking technique in proving correctness of parallel programs.  Translations to 

other model checking languages and tools to extend the applicability of model checking 

would be desirable.  Use of P-COM2 ASL as an annotation language in existing programs 
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to enable automatic compilation of parallel structures and model checking of non-

component based programs is in consideration. 
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